prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import unittest import pdb import pandas as pd import numpy as np from pandas.util.testing import assert_frame_equal, assert_index_equal from ..models.condition_models import RuleKPI, RuleCondition, RuleConditionalOperator, RuleConditionGroup, RuleConditionGroupOperator class Test_conditional_operator(unittest.TestCase): def setUp(self): """ Create sample data """ d = { "datum": pd.Series([3., 2., 1., np.nan]), "criterion": pd.Series([np.nan, 1., 2., 3.]), } self.df = pd.DataFrame(d) def test_greater(self): """ Test filtering by greater than """ operator = RuleConditionalOperator.greater index = operator.selectedIndex(self.df, "criterion", 2.) self.assertEqual(index, pd.Int64Index([3])) def test_less(self): """ Test filtering by greater than """ operator = RuleConditionalOperator.less index = operator.selectedIndex(self.df, "criterion", 2.) self.assertEqual(index, pd.Int64Index([1])) def test_greater_than_or_equal(self): """ Test filtering by greater than """ operator = RuleConditionalOperator.greaterThanOrEqual index = operator.selectedIndex(self.df, "criterion", 2.) assert_index_equal(index, pd.Int64Index([2, 3])) def test_less_than_or_equal(self): """ Test filtering by greater than """ operator = RuleConditionalOperator.lessThanOrEqual index = operator.selectedIndex(self.df, "criterion", 2.) assert_index_equal(index, pd.Int64Index([1, 2])) def test_equal(self): """ Test filtering by greater than """ operator = RuleConditionalOperator.equal index = operator.selectedIndex(self.df, "criterion", 2.) assert_index_equal(index, pd.Int64Index([2])) class Test_condiition(unittest.TestCase): """ Test module for the search ads condition classes """ def test_spend(self): """ Test filtering by total spend """ d = { "keywordId": pd.Series([1, 2, 1]), "localSpend": pd.Series([1., 3., 3.]), } df = pd.DataFrame(d) condition = RuleCondition(kpi=RuleKPI("totalSpend"), operator=RuleConditionalOperator("greater"), comparisonValue=3.) index = condition.selectedIndex(df, groupByID="keywordId") assert_index_equal(index, pd.Int64Index([0, 2])) dataIndex = [0, 1, 2] d = { "keywordId": pd.Series([1, 2, 1], index=dataIndex), "localSpend": pd.Series([1., 3., 3.], index=dataIndex), "totalSpend": pd.Series([4., 3., 4.], index=dataIndex), } assert_frame_equal(df.sort_index(axis=1), pd.DataFrame(d).sort_index(axis=1)) def test_cpt(self): """ Test filtering by total CPT """ d = { "keywordId": pd.Series([1, 2, 1]), "localSpend": pd.Series([1., 3., 3.]), "taps": pd.Series([0, 0, 2.]), } df = pd.DataFrame(d) condition = RuleCondition(kpi=RuleKPI("reavgCPT"), operator=RuleConditionalOperator("less"), comparisonValue=3.) index = condition.selectedIndex(df, groupByID="keywordId") assert_index_equal(index, pd.Int64Index([0, 2])) dataIndex = [0, 1, 2] d = { "keywordId": pd.Series([1, 2, 1], index=dataIndex), "localSpend": pd.Series([1., 3., 3.], index=dataIndex), "taps":
pd.Series([0, 0, 2.], index=dataIndex)
pandas.Series
# Copyright 2021 The Private Cardinality Estimation Framework Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Point Aggregator. Given a collection of true reach values and a corresponding collection of reach estimates, computes a single row DataFrame with summary statistics on the differences between the true values and the estimated values. """ import numpy as np import pandas as pd from typing import List from wfa_planning_evaluation_framework.models.reach_point import ReachPoint # A list of functions for computing aggregation metrics. Each function # takes as input the true reach and modeled reach points and produces # as output a scalar value (could be float, int or string). AGGREGATORS = { # Number of test points "npoints": lambda x, y: len(x), # Mean error (bias) "mean_error": lambda x, y: np.mean(_reach(x) - _reach(y)), # Mean absolute error in predicted reach "mean_abs_error": lambda x, y: np.mean(np.abs(_reach(x) - _reach(y))), # Mean squared error in predicted reach "mean_squared_error": lambda x, y: np.mean((_reach(x) - _reach(y)) ** 2), # Mean absolute relative error in predicted reach "mean_abs_relative_error": lambda x, y: _mean_abs_relative_error(x, y), # Mean absolute relative error at frequencies 2..9 "mare_freq_at_least_2": lambda x, y: _mean_abs_relative_error(x, y, 2), "mare_freq_at_least_3": lambda x, y: _mean_abs_relative_error(x, y, 3), "mare_freq_at_least_4": lambda x, y: _mean_abs_relative_error(x, y, 4), "mare_freq_at_least_5": lambda x, y: _mean_abs_relative_error(x, y, 5), "mare_freq_at_least_6": lambda x, y: _mean_abs_relative_error(x, y, 6), "mare_freq_at_least_7": lambda x, y: _mean_abs_relative_error(x, y, 7), "mare_freq_at_least_8": lambda x, y: _mean_abs_relative_error(x, y, 8), "mare_freq_at_least_9": lambda x, y: _mean_abs_relative_error(x, y, 9), # Mean squared relative error in predicted reach "mean_squared_relative_error": lambda x, y: np.mean( (_reach(x) - _reach(y)) ** 2 / _reach(x) ** 2 ), # Error variance in predicted reach "var_error": lambda x, y: np.var(_reach(x) - _reach(y)), # Relative error variance in predicted reach "var_relative_error": lambda x, y: np.var((_reach(x) - _reach(y)) / _reach(x)), # Quantiles of relative error in predicted reach "relative_error_q10": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.10 ), "relative_error_q20": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.20 ), "relative_error_q30": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.30 ), "relative_error_q40": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.40 ), "relative_error_q50": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.50 ), "relative_error_q60": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.60 ), "relative_error_q70": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.70 ), "relative_error_q80": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.80 ), "relative_error_q90": lambda x, y: np.quantile( np.abs(_reach(x) - _reach(y)) / _reach(x), 0.90 ), # Mean shuffle distance "mean_shuffle_distance": lambda x, y: np.mean( [_shuffle_distance(x[i], y[i]) for i in range(len(x))] ), # Mean squared shuffle distance "mean_squared_shuffle_distance": lambda x, y: np.mean( [_shuffle_distance(x[i], y[i]) ** 2 for i in range(len(x))] ), # Variance of shuffle distance "var_shuffle_distance": lambda x, y: np.var( [_shuffle_distance(x[i], y[i]) for i in range(len(x))] ), } def _mean_abs_relative_error(x: ReachPoint, y: ReachPoint, k=1) -> float: """Returns the mean absolute relative error at freq k.""" if any([k > p.max_frequency for p in x]): return np.nan if any([k > p.max_frequency for p in y]): return np.nan return np.mean(np.abs(_reach(x, k) - _reach(y, k)) / _reach(x, k)) def _reach(point_list: List[ReachPoint], k=1) -> np.array: """Returns list of k+ frequencies from list of ReachPoints.""" return np.array([point.reach(k) for point in point_list]) def _shuffle_distance(xpoint: ReachPoint, ypoint: ReachPoint, k=5) -> float: """Computes shuffle distance of first k frequency buckets.""" if xpoint.max_frequency <= k or ypoint.max_frequency <= k: return 1.0 xfreq = np.array([xpoint.frequency(i + 1) for i in range(k)]) yfreq = np.array([ypoint.frequency(i + 1) for i in range(k)]) if sum(xfreq) == 0 or sum(yfreq) == 0: return 0.5 return 0.5 * np.sum(np.abs(xfreq / sum(xfreq) - yfreq / sum(yfreq))) def aggregate( true_reach: List[ReachPoint], simulated_reach: List[ReachPoint] ) -> pd.DataFrame: """Returns a DataFrame of the statistics listed in keys. Args: keys: A list of strings. Each string should specify the name of an aggregation statistic, as given in AGGREGATORS. true_reach: A list of points representing true reach values. simulated_reach: A list of points representing modeled reach values. This list must be of the same length as true_reach. The value of simulated_reach[i] should be the output of the modeling function for the spend vector that was used to compute true_reach[i]. Returns: A single row DataFrame representing the values of the statistics listed in keys. """ stats = {"model_succeeded": [1], "model_exception": [""]} for key in AGGREGATORS: stats[key] = [AGGREGATORS[key](true_reach, simulated_reach)] return pd.DataFrame(data=stats) def aggregate_on_exception(inst: Exception) -> pd.DataFrame: """Returns a DataFrame of the same shape as aggregate but for case of an exception. Args: inst: The exception instance that was generated in the modeling attempt. Returns: A single row DataFrame of NAs with columns being the statistics listed in keys. """ stats = {"model_succeeded": [0], "model_exception": [str(inst)]} for key in AGGREGATORS: stats[key] = [np.NaN] return
pd.DataFrame(data=stats)
pandas.DataFrame
# Standard Library from enum import Enum # Third Party import pandas as pd # First Party from smdebug.core.logger import get_logger class StatsBy(Enum): """ Enum to get stats by different categories. """ # training phase such as TRAIN/EVAL/GLOBAL. TRAINING_PHASE = "training_phase" # framework metrics such as function names/ operator names FRAMEWORK_METRICS = "framework_metric" # event phase name as retrieved from events PROCESS = "process" class Resource(Enum): """ Enum to specify the device/resource specified in system metrics """ CPU = "cpu" GPU = "gpu" IO = "i/o" NETWORK = "network" MEMORY = "memory" # Container class for job stats class JobStats(dict): def __setitem__(self, key, item): self.__dict__[key] = item def __getitem__(self, key): return self.__dict__[key] def __repr__(self): return repr(
pd.DataFrame.from_dict(self.__dict__)
pandas.DataFrame.from_dict
from app import app from bokeh.io import show from bokeh.embed import components from bokeh.plotting import figure from bokeh.resources import INLINE from bokeh.models import NumeralTickFormatter from bokeh.models import ColumnDataSource, HoverTool from bokeh.palettes import Category20c from bokeh.transform import cumsum from bokeh.layouts import gridplot from flask import render_template, flash, redirect, url_for, request, jsonify from flask_login import current_user, login_user, logout_user, login_required from datetime import datetime from math import pi from app.db import get_db, query from app.plot import formatter, hbar, multiline import pandas as pd import numpy as np import math @app.route('/employees', methods=['GET', 'POST']) @login_required def employees(): """ Render employee page """ date_start = request.form.get('date_start', '2018-01-01') date_end = request.form.get('date_end', '2018-01-31') time_frame = request.form.get('time_frame') if request.form.get('time_frame') is None: time_frame = 'date' else: time_frame = request.form.get('time_frame') # average order_numbers avg = get_avg_selling_per(date_start, date_end) avg_order = formatter(avg[0][0]) avg_revenue = formatter(avg[1][0], 'dollar') # most revenue revenue_total = get_employee_revenue_total(date_start, date_end) # sql result is reversed due to the hbar layout most_revenue_name = revenue_total.loc[9, 'employee'] # Revenue by employee js_revenue_total, div_revenue_total = hbar(revenue_total, 'revenue', 'employee') # most orders orders_total = get_employee_orders_total(date_start, date_end) # sql result is reversed due to the hbar layout most_orders_name = orders_total.loc[9, 'employee'] # Order numbers by employee js_orders_total, div_orders_total = hbar(orders_total, 'order_number', 'employee') time_dict = {'date': 'date', 'ww': 'week', 'mon': 'month', 'q': 'quarter'} # Top 5 revenue employee trend rev_top10 = revenue_total.loc[::-1, 'employee'].tolist() # sql result is reversed thus first reverse to correct sequence rev_top5 = rev_top10[: 5] rev_trend_data = get_employee_trend(date_start, date_end, time_frame, rev_top5, 'revenue') rev_trend_js, rev_trend_div = multiline(rev_trend_data, time_dict[time_frame], 'revenue', 'dollar', rev_top5[0], rev_top5[1], rev_top5[2], rev_top5[3], rev_top5[4]) # top 5 order number employee trend num_top10 = orders_total.loc[::-1 , 'employee'].tolist() num_top5 = num_top10[: 5] num_trend_data = get_employee_trend(date_start, date_end, time_frame, num_top5, 'order_number') num_trend_js, num_trend_div = multiline(num_trend_data, time_dict[time_frame], 'order_number', 'number', num_top5[0], num_top5[1], num_top5[2], num_top5[3], num_top5[4]) # gender relation distribution in order g = get_ec_gender(date_start, date_end) gender = pd.Series(g).reset_index(name='orders').rename(columns={'index':'gender'}) gender['angle'] = gender['orders']/gender['orders'].sum() * 2*pi gender['color'] = Category20c[len(g)] gender_hover = HoverTool(tooltips=[('Gender', '@gender'), ('Order number', '@orders{0.00 a}')]) gender_fig = figure(sizing_mode='scale_width', height=400, toolbar_location=None, tools=[gender_hover], x_range=(-0.5, 1.0)) gender_fig.wedge(x=0, y=1, radius=0.4, start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), line_color="white", fill_color='color', legend='gender', source=gender, hover_color='red', hover_fill_alpha=0.8) gender_fig.axis.axis_label=None gender_fig.axis.visible=False gender_fig.grid.grid_line_color = None js_gender, div_gender = components(gender_fig) # state relation distribution in order s = get_ec_state(date_start, date_end) state =
pd.Series(s)
pandas.Series
# -*- coding: utf-8 -*- import os import sys import shutil from dotenv import find_dotenv dotenv_path = find_dotenv() project_dir = os.path.dirname(dotenv_path) sys.path.append(project_dir) from src.models.KeyWordsModel import KeyWordClassifier import json from glob import glob import click import logging from pathlib import Path import pandas as pd INPUT_FILEPATH = r"D:\develop\hr-scoring\data\interim\pool-test.json" OUTPUT_DIRPATH = r"D:\develop\hr-scoring\models\cv-with-labels" def rm_files_in_dir(dir_path): folder = dir_path for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) @click.command() @click.argument('input_filepath', default=INPUT_FILEPATH) @click.argument('output_dirpath', type=click.Path(), default=OUTPUT_DIRPATH) @click.argument('search_roles', default='all') def main(input_filepath, output_dirpath, search_roles): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info(f'Input FILE: {input_filepath}') logger.info(f'Output Dir: {output_dirpath}') logger.info(f'Search Roles: {search_roles}') search_roles = search_roles.split('-') rm_files_in_dir(output_dirpath) logger.info(f'Delete Files in "{output_dirpath}') resumes = None with open(input_filepath, 'r', encoding='utf-8') as fd: resumes = json.load(fd) logger.info(f'Read Resumes {len(resumes)} in "{input_filepath}') df_resumes =
pd.DataFrame(resumes)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: from nowcasting_dataset.datamodule import NowcastingDataModule from pathlib import Path import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import torch from torch import nn import torch.nn.functional as F import pytorch_lightning as pl from neptune.new.integrations.pytorch_lightning import NeptuneLogger import logging logging.basicConfig() logger = logging.getLogger('nowcasting_dataset') logger.setLevel(logging.DEBUG) # In[2]: import numpy as np # In[3]: BUCKET = Path('solar-pv-nowcasting-data') # Solar PV data PV_PATH = BUCKET / 'PV/PVOutput.org' PV_DATA_FILENAME = PV_PATH / 'UK_PV_timeseries_batch.nc' PV_METADATA_FILENAME = PV_PATH / 'UK_PV_metadata.csv' # SAT_FILENAME = BUCKET / 'satellite/EUMETSAT/SEVIRI_RSS/OSGB36/all_zarr_int16_single_timestep_quarter_geospatial.zarr' SAT_FILENAME = BUCKET / 'satellite/EUMETSAT/SEVIRI_RSS/OSGB36/all_zarr_int16_single_timestep.zarr' # Numerical weather predictions #NWP_BASE_PATH = BUCKET / 'NWP/UK_Met_Office/UKV_zarr' #NWP_BASE_PATH = BUCKET / 'NWP/UK_Met_Office/UKV_single_step_and_single_timestep_all_vars.zarr' NWP_BASE_PATH = BUCKET / 'NWP/UK_Met_Office/UKV_single_step_and_single_timestep_all_vars_full_spatial_2018_7-12_float32.zarr' # In[4]: params = dict( batch_size=32, history_len=6, #: Number of timesteps of history, not including t0. forecast_len=12, #: Number of timesteps of forecast. nwp_channels=( 't', 'dswrf', 'prate', 'r', 'sde', 'si10', 'vis', 'lcc', 'mcc', 'hcc') ) # In[5]: data_module = NowcastingDataModule( pv_power_filename=PV_DATA_FILENAME, pv_metadata_filename=f'gs://{PV_METADATA_FILENAME}', sat_filename = f'gs://{SAT_FILENAME}', # sat_channels =('HRV', 'WV_062', 'WV_073'), nwp_base_path = f'gs://{NWP_BASE_PATH}', pin_memory = True, #: Passed to DataLoader. num_workers = 22, #: Passed to DataLoader. prefetch_factor = 256, #: Passed to DataLoader. n_samples_per_timestep = 8, #: Passed to NowcastingDataset **params ) # In[6]: data_module.prepare_data() # In[7]: data_module.setup() # ## Define very simple ML model # In[8]: import tilemapbase from nowcasting_dataset.geospatial import osgb_to_lat_lon # In[9]: tilemapbase.init(create=True) # In[10]: def plot_example(batch, model_output, example_i: int=0, border: int=0): fig = plt.figure(figsize=(20, 20)) ncols=4 nrows=2 # Satellite data extent = ( float(batch['sat_x_coords'][example_i, 0].cpu().numpy()), float(batch['sat_x_coords'][example_i, -1].cpu().numpy()), float(batch['sat_y_coords'][example_i, -1].cpu().numpy()), float(batch['sat_y_coords'][example_i, 0].cpu().numpy())) # left, right, bottom, top def _format_ax(ax): #ax.set_xlim(extent[0]-border, extent[1]+border) #ax.set_ylim(extent[2]-border, extent[3]+border) # ax.coastlines(color='black') ax.scatter( batch['x_meters_center'][example_i].cpu(), batch['y_meters_center'][example_i].cpu(), s=500, color='white', marker='x') ax = fig.add_subplot(nrows, ncols, 1) #, projection=ccrs.OSGB(approx=False)) sat_data = batch['sat_data'][example_i, :, :, :, 0].cpu().numpy() sat_min = np.min(sat_data) sat_max = np.max(sat_data) ax.imshow(sat_data[0], extent=extent, interpolation='none', vmin=sat_min, vmax=sat_max) ax.set_title('t = -{}'.format(params['history_len'])) _format_ax(ax) ax = fig.add_subplot(nrows, ncols, 2) ax.imshow(sat_data[params['history_len']+1], extent=extent, interpolation='none', vmin=sat_min, vmax=sat_max) ax.set_title('t = 0') _format_ax(ax) ax = fig.add_subplot(nrows, ncols, 3) ax.imshow(sat_data[-1], extent=extent, interpolation='none', vmin=sat_min, vmax=sat_max) ax.set_title('t = {}'.format(params['forecast_len'])) _format_ax(ax) ax = fig.add_subplot(nrows, ncols, 4) lat_lon_bottom_left = osgb_to_lat_lon(extent[0], extent[2]) lat_lon_top_right = osgb_to_lat_lon(extent[1], extent[3]) tiles = tilemapbase.tiles.build_OSM() lat_lon_extent = tilemapbase.Extent.from_lonlat( longitude_min=lat_lon_bottom_left[1], longitude_max=lat_lon_top_right[1], latitude_min=lat_lon_bottom_left[0], latitude_max=lat_lon_top_right[0]) plotter = tilemapbase.Plotter(lat_lon_extent, tile_provider=tiles, zoom=6) plotter.plot(ax, tiles) ############## TIMESERIES ################## # NWP ax = fig.add_subplot(nrows, ncols, 5) nwp_dt_index = pd.to_datetime(batch['nwp_target_time'][example_i].cpu().numpy(), unit='s') pd.DataFrame( batch['nwp'][example_i, :, :, 0, 0].T.cpu().numpy(), index=nwp_dt_index, columns=params['nwp_channels']).plot(ax=ax) ax.set_title('NWP') # datetime features ax = fig.add_subplot(nrows, ncols, 6) ax.set_title('datetime features') datetime_feature_cols = ['hour_of_day_sin', 'hour_of_day_cos', 'day_of_year_sin', 'day_of_year_cos'] datetime_features_df = pd.DataFrame(index=nwp_dt_index, columns=datetime_feature_cols) for key in datetime_feature_cols: datetime_features_df[key] = batch[key][example_i].cpu().numpy() datetime_features_df.plot(ax=ax) ax.legend() ax.set_xlabel(nwp_dt_index[0].date()) # PV yield ax = fig.add_subplot(nrows, ncols, 7) ax.set_title('PV yield for PV ID {:,d}'.format(batch['pv_system_id'][example_i].cpu())) pv_actual = pd.Series( batch['pv_yield'][example_i].cpu().numpy(), index=nwp_dt_index, name='actual') pv_pred = pd.Series( model_output[example_i].detach().cpu().numpy(), index=nwp_dt_index[params['history_len']+1:], name='prediction')
pd.concat([pv_actual, pv_pred], axis='columns')
pandas.concat
""" Processing data from the output database. """ import logging from typing import List from datetime import date import numpy as np import pandas as pd from autumn.tools.db.database import get_database from autumn.tools.db.load import load_mcmc_tables from autumn.tools.utils.runs import read_run_id logger = logging.getLogger(__name__) def collate_databases(src_db_paths: List[str], target_db_path: str, tables=None): """ Collate the output of many calibration databases into a single database. Run names are renamed to be ascending in the final database. """ logger.info("Collating db outputs into %s", target_db_path) target_db = get_database(target_db_path) for db_path in src_db_paths: logger.info("Reading data from %s", db_path) source_db = get_database(db_path) for table_name in source_db.table_names(): if tables and table_name not in tables: logger.info("Skipping table %s", table_name) continue logger.info("Copying table %s", table_name) table_df = source_db.query(table_name) target_db.dump_df(table_name, table_df) logger.info("Finished collating db outputs into %s", target_db_path) def find_mle_run(df: pd.DataFrame) -> pd.DataFrame: accept_mask = df["accept"] == 1 max_ll = df[accept_mask]["loglikelihood"].max() max_ll_mask = accept_mask & (df["loglikelihood"] == max_ll) return df[max_ll_mask].copy() def find_mle_params(mcmc_df: pd.DataFrame, param_df: pd.DataFrame) -> dict: mle_run_df = find_mle_run(mcmc_df) run_id = mle_run_df["run"].iloc[0] chain_id = mle_run_df["chain"].iloc[0] param_mask = (param_df["run"] == run_id) & (param_df["chain"] == chain_id) params = {} for _, row in param_df[param_mask].iterrows(): params[row["name"]] = row["value"] return params def get_identifying_run_ids(table: pd.DataFrame) -> pd.Series: """ Args: table (pd.DataFrame): Table with 'run' and 'chain' columns Returns: pd.Series: Combined run identifier of same length as table """ return table["chain"].astype(str) + ":" + table["run"].astype(str) def select_pruning_candidates(src_db_path: str, n_candidates: int, weighted=True) -> pd.DataFrame: """Select a random set of 'good enough' candidates for manual inspection The output set will be guaranteed to contain the highest MLE run from all the chains, in addition to randomly selected candidates Args: src_db_path (str): Base path of calibration run (containing subdirectories for each chain) n_candidates (int): Number of candidates to select. If 1, then only the MLE run from all chains will be selected weighted (bool): Weight candidates by 1.0/loglikelihood (False means uniform selection) Returns: candidates (pd.DataFrame): DataFrame containing unique identifiers (chain_id, run_id) of all candidates """ # +++ FIXME/TODO # We just use a naive random selection, disregarding burn-in etc # Could possibly use selection routine from sample_outputs_for_calibration_fit # Load all MCMC run data to select from all_mcmc_df = pd.concat(load_mcmc_tables(src_db_path), ignore_index=True) all_accepted = all_mcmc_df[all_mcmc_df["accept"] == 1] # Find the MLE candidate max_ll = all_accepted["loglikelihood"].max() max_ll_candidate = all_accepted[all_accepted["loglikelihood"] == max_ll].iloc[0].name # Ensure candidates have been sampled and that output data is available accepted_and_sampled = all_accepted[all_accepted["sampled"] == 1] # Sample random candidates possible_candidates = list(accepted_and_sampled.index) if max_ll_candidate in possible_candidates: possible_candidates.remove(max_ll_candidate) if weighted: # +++ FIXME Adding 10.0 to not overweight, should parameterise this weights = 1.0 / ( 10.0 + np.abs(np.array(accepted_and_sampled.loc[possible_candidates].loglikelihood)) ) weights = weights / weights.sum() else: weights = None # Ensure we aren't sampling too many candidates (most likely to show up in testing) n_candidates = min(n_candidates, len(possible_candidates)) candidates = list( np.random.choice(possible_candidates, n_candidates - 1, replace=False, p=weights) ) # Ensure we have the max likelihood candidate candidates.append(max_ll_candidate) candidates_df = all_accepted.loc[candidates] return candidates_df def prune_chain(source_db_path: str, target_db_path: str, chain_candidates: pd.DataFrame): """ Read the model outputs from a database and removes output data that is not MLE. This is an operation applied to each chain's database. """ logger.info("Pruning %s into %s", source_db_path, target_db_path) source_db = get_database(source_db_path) target_db = get_database(target_db_path) # Copy tables over, pruning some. tables_to_copy = source_db.table_names() for table_name in tables_to_copy: table_df = source_db.query(table_name) if table_name == "outputs": # Drop everything except the MLE run logger.info("Pruning outputs so that it only contains candidate runs") candidate_mask = table_df["run"].isin(chain_candidates["run"]) candidate_table_df = table_df[candidate_mask] target_db.dump_df(table_name, candidate_table_df) elif table_name: # Copy table over (mcmc_run, mcmc_params, derived_outputs) # We need to keep derived outputs here to be used by uncertainty calculations logger.info("Copying %s", table_name) target_db.dump_df(table_name, table_df) logger.info("Finished pruning %s into %s", source_db_path, target_db_path) def prune_final(source_db_path: str, target_db_path: str, candidates_df: pd.DataFrame): """ Read the model outputs from a database and remove all run-related data that is not MLE. This is the final pruning for the collated database. """ logger.info("Pruning %s into %s", source_db_path, target_db_path) source_db = get_database(source_db_path) target_db = get_database(target_db_path) # Find the maximum accepted loglikelihood for all runs mcmc_run_df = source_db.query("mcmc_run") mle_run_df = find_mle_run(mcmc_run_df) mle_run_id = mle_run_df.run.iloc[0] mle_chain_id = mle_run_df.chain.iloc[0] # Copy tables over, pruning some. tables_to_copy = source_db.table_names() for table_name in tables_to_copy: table_df = source_db.query(table_name) if table_name == "derived_outputs": # Drop everything except the candidate runs logger.info("Pruning derived_outputs so that it only contains candidate runs") candidate_iruns = get_identifying_run_ids(candidates_df) table_df["irun_id"] = get_identifying_run_ids(table_df) filtered_table_df = table_df[table_df["irun_id"].isin(candidate_iruns)] final_df = filtered_table_df.drop(columns="irun_id") target_db.dump_df(table_name, final_df) elif table_name: # Copy table over (outputs, mcmc_run, mcmc_params) # Note: Outputs has already been pruned to candidates in early prune_chains sweep logger.info("Copying %s", table_name) target_db.dump_df(table_name, table_df) logger.info("Finished pruning %s into %s", source_db_path, target_db_path) def powerbi_postprocess(source_db_path: str, target_db_path: str, run_id: str): """ Read the model outputs from a database and then convert them into a form that is readable by our PowerBI dashboard. Save the converted data into its own database. """ from autumn.tools.project import get_project source_db = get_database(source_db_path) target_db = get_database(target_db_path) tables_to_copy = [t for t in source_db.table_names() if t != "outputs"] for table_name in tables_to_copy: logger.info("Copying %s", table_name) table_df = source_db.query(table_name) if table_name == "uncertainty": # Rename "time" field to "times" table_df.rename(columns={"time": "times"}) target_db.dump_df(table_name, table_df) app_name, region_name, timestamp, git_commit = read_run_id(run_id) # Add build metadata table build_key = f"{timestamp}-{git_commit}" logger.info("Adding 'build' metadata table with key %s", build_key) build_df = pd.DataFrame.from_dict( {"build_key": [build_key], "app_name": [app_name], "region_name": [region_name]} ) target_db.dump_df("build", build_df) # Add scenario metadata table logger.info("Adding 'scenario' metadata table") project = get_project(app_name, region_name) basline_params = project.param_set.baseline.to_dict() sc_params = [sc.to_dict() for sc in project.param_set.scenarios] # Add default scenario scenario_data = [ { "scenario": 0, "start_time": int(basline_params["time"]["start"]), "description": basline_params.get("description", ""), } ] for sc_idx, sc_params in enumerate(sc_params): sc_datum = { "scenario": int(sc_idx + 1), "start_time": int(sc_params["time"]["start"]), "description": sc_params.get("description", ""), } scenario_data.append(sc_datum) scenario_df = pd.DataFrame(scenario_data) target_db.dump_df("scenario", scenario_df) # Add calibration targets logger.info("Adding 'targets' table") targets_data = [] for target in project.calibration.targets: for t, v in zip(target["years"], target["values"]): t_datum = { "key": target["output_key"], "times": t, "value": v, } targets_data.append(t_datum) targets_df = pd.DataFrame(targets_data) target_db.dump_df("targets", targets_df) logger.info("Converting outputs to PowerBI format") outputs_df = source_db.query("outputs") pbi_outputs_df = unpivot_outputs(outputs_df) target_db.dump_df("powerbi_outputs", pbi_outputs_df) logger.info("Finished creating PowerBI output database at %s", target_db_path) def unpivot_outputs(output_df: pd.DataFrame): """ Take outputs in the form they come out of the model object and convert them into a "long", "melted" or "unpiovted" format in order to more easily plug to PowerBI """ id_cols = ["chain", "run", "scenario", "times"] value_cols = [c for c in output_df.columns if c not in id_cols] output_df = output_df.melt(id_vars=id_cols, value_vars=value_cols) cols = {"compartment"} def label_strata(row: list): strata = {"compartment": row[0]} for el in row[1:]: parts = el.split("_") k = parts[0] # FIXME: Use this once Milinda can use it in PowerBI # v = "_".join(parts[1:]) strata[k] = el cols.add(k) return strata variables = (s.split("X") for s in output_df.variable) new_cols_df = pd.DataFrame([label_strata(row) for row in variables]) output_df = output_df.join(new_cols_df) output_df = output_df.drop(columns="variable") return output_df def sample_runs(mcmc_df: pd.DataFrame, num_samples: int): """ Returns a list of chain ids + run ids for each sampled run. Choose runs with probability proprotional to their acceptance weights. """ run_choices = list(zip(mcmc_df["chain"].tolist(), mcmc_df["run"].tolist())) assert num_samples < len(run_choices), "Must be more samples than choices" weights = mcmc_df["weight"].to_numpy() sample_pr = weights / weights.sum() idxs = np.array([i for i in range(len(weights))]) chosen_idxs = np.random.choice(idxs, size=num_samples, replace=False, p=sample_pr) chosen_runs = [run_choices[i] for i in chosen_idxs] return chosen_runs def select_outputs_from_candidates( output_name: str, derived_output_tables: pd.DataFrame, candidates_df: pd.DataFrame, ref_date: date, ): out_df = pd.DataFrame() for idx, c in candidates_df.iterrows(): chain = int(c["chain"]) run = int(c["run"]) ctable = derived_output_tables[chain] run_mask = ctable["run"] == run scenario_mask = ctable["scenario"] == 0 masked = ctable[run_mask & scenario_mask] name = f"{chain}_{run}" out_df[name] = pd.Series( index=timelist_to_dti(masked["times"], ref_date), data=masked[output_name].data ) return out_df def timelist_to_dti(times, ref_date): datelist = [ref_date + pd.offsets.Day(t) for t in times] return
pd.DatetimeIndex(datelist)
pandas.DatetimeIndex
import pandas as pd from pandas import DataFrame import numpy as np from sklearn import metrics import heapq import random from random import choice from copy import deepcopy def calclass(value, threshold): new_value = [] for i in value: if i > threshold: new_value.append(1) else: new_value.append(0) return new_value def binary_perf_ddG(Y_true, Y_pred, threshold=1.36): y_true = calclass(Y_true, 1.36) y_pred = calclass(Y_pred, threshold) # calculate the precision, recall and F1 F1_score = metrics.f1_score(y_true, y_pred) Recall_score = metrics.recall_score(y_true, y_pred) Precision_score = metrics.precision_score(y_true, y_pred) Balanced_accuracy_score = metrics.balanced_accuracy_score(y_true, y_pred) MMC = metrics.matthews_corrcoef(y_true, y_pred) # record the performance perf = { 'Recall': Recall_score, 'Precision': Precision_score, 'Balanced Accuracy': Balanced_accuracy_score, 'F1 Score': F1_score, 'Matthews Correlation Coefficient': MMC } return perf def binary_perf_top(Y_true, Y_pred, threshold=0.15): top = int(len(Y_pred)*threshold) top_index = heapq.nlargest(top, range(len(Y_pred)), Y_pred.__getitem__) top_pred = [] for i in range(len(Y_pred)): if i in top_index: top_pred.append(1) else: top_pred.append(0) y_true = calclass(Y_true, 1.36) perf = { 'Recall': metrics.recall_score(y_true, top_pred), 'Precision': metrics.precision_score(y_true, top_pred), 'Balanced Accuracy': metrics.balanced_accuracy_score(y_true, top_pred), 'F1 Score': metrics.f1_score(y_true, top_pred), 'Matthews Correlation Coefficient': metrics.matthews_corrcoef(y_true, top_pred) } return perf def cal_performance(result_list): result_min = min(result_list) result_max = max(result_list) result_mean = np.mean(result_list) result_var = np.var(result_list) result_median = np.median(result_list) result_std = np.std(result_list, ddof = 1) results = pd.DataFrame(columns=['value']) results.loc['min'] = result_min results.loc['max'] = result_max results.loc['mean'] = result_mean results.loc['var'] = result_var results.loc['median'] = result_median results.loc['std'] = result_std return results def random_select_samples_group(X_sel, Y, tki, Y_tki, group_tki, group_train, feature_name): group_dict = {} select_num = 2 mask = [c for c in feature_name] X_test = tki[mask] Y_test = Y_tki for index, value in enumerate(group_tki): if value not in group_dict.keys(): group_dict[value] = [] group_dict[value].append(index) else: group_dict[value].append(index) selected_tki = [] for key in group_dict: slice = random.sample(group_dict[key], select_num) selected_tki.extend(slice) print("Selected sample list:", selected_tki) tki_list = [i for i in range(len(Y_test))] tki_rest = list(set(tki_list).difference(set(selected_tki))) X_test_s = X_test.loc[selected_tki] Y_test_s = Y_test.loc[selected_tki] X_test_new = X_test.loc[tki_rest] Y_test_new = Y_test.loc[tki_rest] X_sel.columns = feature_name # Reset the group information group_tki_select = group_tki.loc[selected_tki] group_tki_new = ['Abl' for i in group_tki_select] group_tki_new =
pd.Series(group_tki_new)
pandas.Series
# CONTINUED IN https://github.com/rcsmit/COVIDcases/blob/main/covid_dashboard_rcsmit.py # 27/28 feb 2021 # Calculate the relation between gliding R and mobility (Apple and Google) # Calculate the corelation with hospital admissions and factors mentioned above # Plotting a heatmap with correlations # Plotting a scattermap # Plotting a graph in time, with an adjusted x- # 1 maart 2021 # Merging files on date in different date formats # Remove outliers (doesnt work) # Calculating moving avarages # Make different statistics for weekdays and weekend # Scraping statistics from RIVM # 2 maart # R van ziekenhuisopnames # weekgrafiek # corrigeren vd merge functie # 3 maart # added restrictions (file van @HK_nien, MIT-licence) # downloaden en mergen hospital admission # downloaden en mergen r-getal RIVM # alles omgeFzet in functies # 4 maart # meer onderverdeling in functies. Alles aan te roepen vanuit main() met parameters # 5 maart # custom colors # weekend different color in barplot # annoying problem met een join (van outer naar inner naar outer en toen werkte het weer) # R value (14 days back due to smoothing) #6 maart # last row in bar-graph was omitted due to ["date of statistics"] instead of ["date"] in addwalkingR # Bug wit an reset.index() somewhere. Took a long time to find out # Tried to first calculate SMA and R, and then cut of FROM/UNTIL. Doesnt # work. Took also a huge amount of time. Reversed everything afterwards # 7 maart # weekgraph function with parameters # 8 maart # find columns with max correlation # find the timelag between twee columns # added a second way to calculate and display R # 9-11 maart: Grafieken van Dissel : bezetting bedden vs R # 12 maart # Genormeerde grafiek (max = 1 of begin = 100) # Various Tg vd de R-number-curves # I used iloc. Iterating through pandas objects is generally slow. # In many cases, iterating manually over the rows is not needed and # can be avoided with one of the following approaches: # http://pandas-docs.github.io/pandas-docs-travis/getting_started/basics.html#iteration import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.dates as mdates import seaborn as sn from scipy import stats import datetime as dt from datetime import datetime, timedelta from matplotlib.backends.backend_agg import RendererAgg from matplotlib.font_manager import FontProperties from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) import matplotlib.ticker as ticker import math _lock = RendererAgg.lock from scipy.signal import savgol_filter import urllib import urllib.request from pathlib import Path from inspect import currentframe, getframeinfo # R-numbers from 'https://data.rivm.nl/covid-19/COVID-19_reproductiegetal.json' # Google mobilty from https://www.google.com/covid19/mobility/?hl=nl # Apple mobility from https://covid19.apple.com/mobility # # Merged in one file in Excel and saved to CSV # Hospitals from RIVM 'https://data.rivm.nl/covid-19/COVID-19_ziekenhuisopnames.csv def download_mob_r(): """ _ _ _ """ df_mob_r = pd.read_csv( r'covid19_seir_models\input\mobility.csv', delimiter=';', low_memory=False ) # datum is 16-2-2020 df_mob_r['date']=
pd.to_datetime(df_mob_r['date'], format="%d-%m-%Y")
pandas.to_datetime
''' Pandas: data manipulation ========================= It is often said that 80% of data analysis is spent on the cleaning and small, but important, aspect of data manipulation and cleaning with Pandas. **Sources**: - <NAME>: https://github.com/justmarkham - Pandas doc: http://pandas.pydata.org/pandas-docs/stable/index.html **Data structures** - **Series** is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method to create a Series is to call `pd.Series([1,3,5,np.nan,6,8])` - **DataFrame** is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It stems from the `R data.frame()` object. ''' import pandas as pd import numpy as np ############################################################################## # Create DataFrame # ---------------- columns = ['name', 'age', 'gender', 'job'] user1 = pd.DataFrame([['alice', 19, "F", "student"], ['john', 26, "M", "student"]], columns=columns) user2 = pd.DataFrame([['eric', 22, "M", "student"], ['paul', 58, "F", "manager"]], columns=columns) user3 = pd.DataFrame(dict(name=['peter', 'julie'], age=[33, 44], gender=['M', 'F'], job=['engineer', 'scientist'])) print(user3) ############################################################################## # Combining DataFrames # -------------------- ############################################################################## # Concatenate DataFrame # ~~~~~~~~~~~~~~~~~~~~~ ############################################################################## # Concatenate columns (axis = 1). height = pd.DataFrame(dict(height=[1.65, 1.8])) print(user1, "\n", height) print(pd.concat([user1, height], axis=1)) ############################################################################## # Concatenate rows (default: axis = 0) users = pd.concat([user1, user2, user3]) print(users) ############################################################################## # Concatenate rows: append user1.append(user2) ############################################################################## # Join DataFrame # ~~~~~~~~~~~~~~ user4 = pd.DataFrame(dict(name=['alice', 'john', 'eric', 'julie'], height=[165, 180, 175, 171])) print(user4) ############################################################################## # Use intersection of keys from both frames merge_inter =
pd.merge(users, user4)
pandas.merge
#%% import requests import json import pandas as pd headers = {'Content-type': 'application/json'} #api_key = [enter key here] def get_json(url): req = requests.get(url=url, headers=headers) return req.json()['results'] #%% #%% def get_df(): url = 'http://api.reimaginebanking.com/enterprise/customers?key=' + api_key X = get_json(url) addresses = [cust['address'] for cust in X] X = [{k: v for k, v in d.items() if k != 'address'} for d in X] X = [{**d1, **d2} for d1, d2 in zip(X, addresses)] #%% cust_df =
pd.DataFrame(data=X)
pandas.DataFrame
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]] tm.assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=["B", "D"]) result = ix[f.index[5:10], [False, True, False, True]] tm.assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] tm.assert_frame_equal(result, expected) result = ix[boolvec, :] tm.assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=["C", "D"]) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_boolean(self, float_frame): # from 2d, set with booleans frame = float_frame.copy() expected = float_frame.copy() mask = frame["A"] > 0 frame.loc[mask] = 0.0 expected.values[mask.values] = 0.0 tm.assert_frame_equal(frame, expected) frame = float_frame.copy() expected = float_frame.copy() frame.loc[mask, ["A", "B"]] = 0.0 expected.values[mask.values, :2] = 0.0 tm.assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self, float_frame): result = float_frame.iloc[[1, 4, 7]] expected = float_frame.loc[float_frame.index[[1, 4, 7]]] tm.assert_frame_equal(result, expected) result = float_frame.iloc[:, [2, 0, 1]] expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]] tm.assert_frame_equal(result, expected) def test_getitem_setitem_boolean_misaligned(self, float_frame): # boolean index misaligned labels mask = float_frame["A"][::-1] > 1 result = float_frame.loc[mask] expected = float_frame.loc[mask[::-1]] tm.assert_frame_equal(result, expected) cp = float_frame.copy() expected = float_frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 tm.assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] tm.assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5 tm.assert_frame_equal(df, expected) def test_getitem_setitem_float_labels(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.random.randn(5, 5), index=index) result = df.loc[1.5:4] expected = df.reindex([1.5, 2, 3, 4]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4:5] expected = df.reindex([4, 5]) # reindex with int tm.assert_frame_equal(result, expected, check_index_type=False) assert len(result) == 2 result = df.loc[4:5] expected = df.reindex([4.0, 5.0]) # reindex with float tm.assert_frame_equal(result, expected) assert len(result) == 2 # loc_float changes this to work properly result = df.loc[1:2] expected = df.iloc[0:2] tm.assert_frame_equal(result, expected) df.loc[1:2] = 0 result = df[1:2] assert (result == 0).all().all() # #2727 index = Index([1.0, 2.5, 3.5, 4.5, 5.0]) df = DataFrame(np.random.randn(5, 5), index=index) # positional slicing only via iloc! msg = ( "cannot do positional indexing on Float64Index with " r"these indexers \[1.0\] of type float" ) with pytest.raises(TypeError, match=msg): df.iloc[1.0:5] result = df.iloc[4:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 cp = df.copy() with pytest.raises(TypeError, match=_slice_msg): cp.iloc[1.0:5] = 0 with pytest.raises(TypeError, match=msg): result = cp.iloc[1.0:5] == 0 assert result.values.all() assert (cp.iloc[0:1] == df.iloc[0:1]).values.all() cp = df.copy() cp.iloc[4:5] = 0 assert (cp.iloc[4:5] == 0).values.all() assert (cp.iloc[0:4] == df.iloc[0:4]).values.all() # float slicing result = df.loc[1.0:5] expected = df tm.assert_frame_equal(result, expected) assert len(result) == 5 result = df.loc[1.1:5] expected = df.reindex([2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4.51:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 result = df.loc[1.0:5.0] expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 5 cp = df.copy() cp.loc[1.0:5.0] = 0 result = cp.loc[1.0:5.0] assert (result == 0).values.all() def test_setitem_single_column_mixed_datetime(self): df = DataFrame( np.random.randn(5, 3), index=["a", "b", "c", "d", "e"], columns=["foo", "bar", "baz"], ) df["timestamp"] = Timestamp("20010102") # check our dtypes result = df.dtypes expected = Series( [np.dtype("float64")] * 3 + [np.dtype("datetime64[ns]")], index=["foo", "bar", "baz", "timestamp"], ) tm.assert_series_equal(result, expected) # GH#16674 iNaT is treated as an integer when given by the user df.loc["b", "timestamp"] = iNaT assert not isna(df.loc["b", "timestamp"]) assert df["timestamp"].dtype == np.object_ assert df.loc["b", "timestamp"] == iNaT # allow this syntax (as of GH#3216) df.loc["c", "timestamp"] = np.nan assert isna(df.loc["c", "timestamp"]) # allow this syntax df.loc["d", :] = np.nan assert not isna(df.loc["c", :]).all() def test_setitem_mixed_datetime(self): # GH 9336 expected = DataFrame( { "a": [0, 0, 0, 0, 13, 14], "b": [ datetime(2012, 1, 1), 1, "x", "y", datetime(2013, 1, 1), datetime(2014, 1, 1), ], } ) df = DataFrame(0, columns=list("ab"), index=range(6)) df["b"] = pd.NaT df.loc[0, "b"] = datetime(2012, 1, 1) df.loc[1, "b"] = 1 df.loc[[2, 3], "b"] = "x", "y" A = np.array( [ [13, np.datetime64("2013-01-01T00:00:00")], [14, np.datetime64("2014-01-01T00:00:00")], ] ) df.loc[[4, 5], ["a", "b"]] = A tm.assert_frame_equal(df, expected) def test_setitem_frame_float(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] float_frame.loc[float_frame.index[-2] :, ["A", "B"]] = piece.values result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_setitem_frame_mixed(self, float_string_frame): # GH 3216 # already aligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=f.index[0:2], columns=["A", "B"] ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal(f.loc[f.index[0:2], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_rows_unaligned(self, float_string_frame): # GH#3216 rows unaligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], index=list(f.index[0:2]) + ["foo", "bar"], columns=["A", "B"], ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal( f.loc[f.index[0:2:], ["A", "B"]].values, piece.values[0:2] ) def test_setitem_frame_mixed_key_unaligned(self, float_string_frame): # GH#3216 key is unaligned with values f = float_string_frame.copy() piece = f.loc[f.index[:2], ["A"]] piece.index = f.index[-2:] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece piece["B"] = np.nan tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_ndarray(self, float_string_frame): # GH#3216 ndarray f = float_string_frame.copy() piece = float_string_frame.loc[f.index[:2], ["A", "B"]] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece.values tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_upcast(self): # needs upcasting df = DataFrame([[1, 2, "foo"], [3, 4, "bar"]], columns=["A", "B", "C"]) df2 = df.copy() df2.loc[:, ["A", "B"]] = df.loc[:, ["A", "B"]] + 0.5 expected = df.reindex(columns=["A", "B"]) expected += 0.5 expected["C"] = df["C"] tm.assert_frame_equal(df2, expected) def test_setitem_frame_align(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] piece.index = float_frame.index[-2:] piece.columns = ["A", "B"] float_frame.loc[float_frame.index[-2:], ["A", "B"]] = piece result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_getitem_setitem_ix_duplicates(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc["foo"] expected = df[:2] tm.assert_frame_equal(result, expected) result = df.loc["bar"] expected = df.iloc[[2, 4]] tm.assert_frame_equal(result, expected) result = df.loc["baz"] expected = df.iloc[3] tm.assert_series_equal(result, expected) def test_getitem_ix_boolean_duplicates_multiple(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc[["bar"]] exp = df.iloc[[2, 4]] tm.assert_frame_equal(result, exp) result = df.loc[df[1] > 0] exp = df[df[1] > 0] tm.assert_frame_equal(result, exp) result = df.loc[df[0] > 0] exp = df[df[0] > 0] tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("bool_value", [True, False]) def test_getitem_setitem_ix_bool_keyerror(self, bool_value): # #2199 df = DataFrame({"a": [1, 2, 3]}) message = f"{bool_value}: boolean label can not be used without a boolean index" with pytest.raises(KeyError, match=message): df.loc[bool_value] msg = "cannot use a single bool to index into setitem" with pytest.raises(KeyError, match=msg): df.loc[bool_value] = 0 # TODO: rename? remove? def test_single_element_ix_dont_upcast(self, float_frame): float_frame["E"] = 1 assert issubclass(float_frame["E"].dtype.type, (int, np.integer)) result = float_frame.loc[float_frame.index[5], "E"] assert is_integer(result) # GH 11617 df = DataFrame({"a": [1.23]}) df["b"] = 666 result = df.loc[0, "b"] assert is_integer(result) expected = Series([666], [0], name="b") result = df.loc[[0], "b"] tm.assert_series_equal(result, expected) def test_iloc_row(self): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) result = df.iloc[1] exp = df.loc[2] tm.assert_series_equal(result, exp) result = df.iloc[2] exp = df.loc[4] tm.assert_series_equal(result, exp) # slice result = df.iloc[slice(4, 8)] expected = df.loc[8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[1, 2, 4, 6]] expected = df.reindex(df.index[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_row_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) original = df.copy() # verify slice is view # setting it makes it raise/warn subset = df.iloc[slice(4, 8)] assert np.shares_memory(df[2], subset[2]) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 2] = 0.0 exp_col = original[2].copy() # TODO(ArrayManager) verify it is expected that the original didn't change if not using_array_manager: exp_col[4:8] = 0.0 tm.assert_series_equal(df[2], exp_col) def test_iloc_col(self): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) result = df.iloc[:, 1] exp = df.loc[:, 2] tm.assert_series_equal(result, exp) result = df.iloc[:, 2] exp = df.loc[:, 4] tm.assert_series_equal(result, exp) # slice result = df.iloc[:, slice(4, 8)] expected = df.loc[:, 8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[:, [1, 2, 4, 6]] expected = df.reindex(columns=df.columns[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_col_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) original = df.copy() subset = df.iloc[:, slice(4, 8)] if not using_array_manager: # verify slice is view assert np.shares_memory(df[8]._values, subset[8]._values) # and that we are setting a copy msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 8] = 0.0 assert (df[8] == 0).all() else: # TODO(ArrayManager) verify this is the desired behaviour subset[8] = 0.0 # subset changed assert (subset[8] == 0).all() # but df itself did not change (setitem replaces full column) tm.assert_frame_equal(df, original) def test_loc_duplicates(self): # gh-17105 # insert a duplicate element to the index trange = date_range( start=Timestamp(year=2017, month=1, day=1), end=Timestamp(year=2017, month=1, day=5), ) trange = trange.insert(loc=5, item=Timestamp(year=2017, month=1, day=5)) df = DataFrame(0, index=trange, columns=["A", "B"]) bool_idx = np.array([False, False, False, False, False, True]) # assignment df.loc[trange[bool_idx], "A"] = 6 expected = DataFrame( {"A": [0, 0, 0, 0, 6, 6], "B": [0, 0, 0, 0, 0, 0]}, index=trange ) tm.assert_frame_equal(df, expected) # in-place df = DataFrame(0, index=trange, columns=["A", "B"]) df.loc[trange[bool_idx], "A"] += 6 tm.assert_frame_equal(df, expected) def test_setitem_with_unaligned_tz_aware_datetime_column(self): # GH 12981 # Assignment of unaligned offset-aware datetime series. # Make sure timezone isn't lost column = Series(date_range("2015-01-01", periods=3, tz="utc"), name="dates") df = DataFrame({"dates": column}) df["dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) df = DataFrame({"dates": column}) df.loc[[0, 1, 2], "dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) def test_loc_setitem_datetimelike_with_inference(self): # GH 7592 # assignment of timedeltas with NaT one_hour = timedelta(hours=1) df = DataFrame(index=date_range("20130101", periods=4)) df["A"] = np.array([1 * one_hour] * 4, dtype="m8[ns]") df.loc[:, "B"] = np.array([2 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "C"] = np.array([3 * one_hour] * 3, dtype="m8[ns]") df.loc[:, "D"] = np.array([4 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "E"] = np.array([5 * one_hour] * 3, dtype="m8[ns]") df["F"] = np.timedelta64("NaT") df.loc[df.index[:-1], "F"] = np.array([6 * one_hour] * 3, dtype="m8[ns]") df.loc[df.index[-3] :, "G"] = date_range("20130101", periods=3) df["H"] = np.datetime64("NaT") result = df.dtypes expected = Series( [np.dtype("timedelta64[ns]")] * 6 + [np.dtype("datetime64[ns]")] * 2, index=list("ABCDEFGH"), ) tm.assert_series_equal(result, expected) def test_getitem_boolean_indexing_mixed(self): df = DataFrame( { 0: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 1: { 35: np.nan, 40: 0.32632316859446198, 43: np.nan, 49: 0.32632316859446198, 50: 0.39114724480578139, }, 2: { 35: np.nan, 40: np.nan, 43: 0.29012581014105987, 49: np.nan, 50: np.nan, }, 3: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 4: { 35: 0.34215328467153283, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan, }, "y": {35: 0, 40: 0, 43: 0, 49: 0, 50: 1}, } ) # mixed int/float ok df2 = df.copy() df2[df2 > 0.3] = 1 expected = df.copy() expected.loc[40, 1] = 1 expected.loc[49, 1] = 1 expected.loc[50, 1] = 1 expected.loc[35, 4] = 1 tm.assert_frame_equal(df2, expected) df["foo"] = "test" msg = "not supported between instances|unorderable types" with pytest.raises(TypeError, match=msg): df[df > 0.3] = 1 def test_type_error_multiindex(self): # See gh-12218 mi = MultiIndex.from_product([["x", "y"], [0, 1]], names=[None, "c"]) dg = DataFrame( [[1, 1, 2, 2], [3, 3, 4, 4]], columns=mi, index=Index([0, 1], name="i") ) with pytest.raises(InvalidIndexError, match="slice"): dg[:, 0] index = Index(range(2), name="i") columns = MultiIndex( levels=[["x", "y"], [0, 1]], codes=[[0, 1], [0, 0]], names=[None, "c"] ) expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index) result = dg.loc[:, (slice(None), 0)] tm.assert_frame_equal(result, expected) name = ("x", 0) index = Index(range(2), name="i") expected = Series([1, 3], index=index, name=name) result = dg["x", 0] tm.assert_series_equal(result, expected) def test_getitem_interval_index_partial_indexing(self): # GH#36490 df = DataFrame( np.ones((3, 4)), columns=pd.IntervalIndex.from_breaks(np.arange(5)) ) expected = df.iloc[:, 0] res = df[0.5] tm.assert_series_equal(res, expected) res = df.loc[:, 0.5] tm.assert_series_equal(res, expected) def test_setitem_array_as_cell_value(self): # GH#43422 df = DataFrame(columns=["a", "b"], dtype=object) df.loc[0] = {"a": np.zeros((2,)), "b": np.zeros((2, 2))} expected = DataFrame({"a": [np.zeros((2,))], "b": [np.zeros((2, 2))]}) tm.assert_frame_equal(df, expected) # with AM goes through split-path, loses dtype @td.skip_array_manager_not_yet_implemented def test_iloc_setitem_nullable_2d_values(self): df = DataFrame({"A": [1, 2, 3]}, dtype="Int64") orig = df.copy() df.loc[:] = df.values[:, ::-1] tm.assert_frame_equal(df, orig) df.loc[:] = pd.core.arrays.PandasArray(df.values[:, ::-1]) tm.assert_frame_equal(df, orig) df.iloc[:] = df.iloc[:, :] tm.assert_frame_equal(df, orig) @pytest.mark.parametrize( "null", [pd.NaT, pd.NaT.to_numpy("M8[ns]"), pd.NaT.to_numpy("m8[ns]")] ) def test_setting_mismatched_na_into_nullable_fails( self, null, any_numeric_ea_dtype ): # GH#44514 don't cast mismatched nulls to pd.NA df = DataFrame({"A": [1, 2, 3]}, dtype=any_numeric_ea_dtype) ser = df["A"] arr = ser._values msg = "|".join( [ r"int\(\) argument must be a string, a bytes-like object or a " "(real )?number, not 'NaTType'", r"timedelta64\[ns\] cannot be converted to an? (Floating|Integer)Dtype", r"datetime64\[ns\] cannot be converted to an? (Floating|Integer)Dtype", "object cannot be converted to a FloatingDtype", "'values' contains non-numeric NA", ] ) with pytest.raises(TypeError, match=msg): arr[0] = null with pytest.raises(TypeError, match=msg): arr[:2] = [null, null] with pytest.raises(TypeError, match=msg): ser[0] = null with pytest.raises(TypeError, match=msg): ser[:2] = [null, null] with pytest.raises(TypeError, match=msg): ser.iloc[0] = null with pytest.raises(TypeError, match=msg): ser.iloc[:2] = [null, null] with pytest.raises(TypeError, match=msg): df.iloc[0, 0] = null with pytest.raises(TypeError, match=msg): df.iloc[:2, 0] = [null, null] # Multi-Block df2 = df.copy() df2["B"] = ser.copy() with pytest.raises(TypeError, match=msg): df2.iloc[0, 0] = null with pytest.raises(TypeError, match=msg): df2.iloc[:2, 0] = [null, null] def test_loc_expand_empty_frame_keep_index_name(self): # GH#45621 df = DataFrame(columns=["b"], index=Index([], name="a")) df.loc[0] = 1 expected = DataFrame({"b": [1]}, index=Index([0], name="a")) tm.assert_frame_equal(df, expected) def test_loc_expand_empty_frame_keep_midx_names(self): # GH#46317 df = DataFrame( columns=["d"], index=MultiIndex.from_tuples([], names=["a", "b", "c"]) ) df.loc[(1, 2, 3)] = "foo" expected = DataFrame( {"d": ["foo"]}, index=MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]), ) tm.assert_frame_equal(df, expected) class TestDataFrameIndexingUInt64: def test_setitem(self, uint64_frame): df = uint64_frame idx = df["A"].rename("foo") # setitem assert "C" not in df.columns df["C"] = idx tm.assert_series_equal(df["C"],
Series(idx, name="C")
pandas.Series
import datetime import time import gspread from gspread_dataframe import set_with_dataframe import json import os import pandas as pd import requests username = os.getenv("PELOTON_USERNAME") password = os.getenv("PELOTON_PASSWORD") user_id = os.getenv("PELOTON_USER_ID") service_account_creds = os.getenv("SERVICE_ACCOUNT_CREDS") worksheet_key = os.getenv("WORKSHEET_KEY") sheet_index = int(os.getenv("SHEET_INDEX")) KEYFILE = 'service_account_creds.json' def convertEpochToTimestamp(epoch): date_format = "%Y-%m-%dT%H:%m:%S" created_at_datetime = datetime.datetime.fromtimestamp(epoch) created_at_date = created_at_datetime.strftime(date_format) return created_at_date def authenticate(): # start requests session & authenticate s = requests.Session() payload = {'username_or_email': username, 'password': password} s.post('https://api.onepeloton.com/auth/login', json=payload) return s def getWorkouts(s): # get workouts route = f"https://api.onepeloton.com/api/user/{user_id}/workouts?limit=99999" my_results = s.get(route).json() my_results_df = pd.DataFrame(my_results['data']) my_results_df['created_at_timestamp'] = [convertEpochToTimestamp(x) for x in my_results_df['created_at']] my_results_df['start_time_timestamp'] = [convertEpochToTimestamp(x) for x in my_results_df['start_time']] my_results_df['end_time_timestamp'] = [convertEpochToTimestamp(x) for x in my_results_df['end_time']] my_results_df = my_results_df[[ 'created_at_timestamp' , 'start_time_timestamp' , 'end_time_timestamp' , 'id' , 'is_total_work_personal_record' , 'status' , 'total_work']] # filter to workouts on or after April 1, 2021 # my_results_df = my_results_df[my_results_df['created_at']>=1617458062] return my_results_df def getWorkoutDetails(s, workouts_df): workout_ids = workouts_df['id'] workout_data_fields = [ 'description' , 'difficulty_rating_avg' , 'duration' , 'id' , 'image_url' , 'instructor_id' , 'is_explicit' , 'length' , 'location' , 'overall_rating_avg' , 'overall_rating_count' , 'ride_type_id' , 'series_id' , 'title' ] base_uri = "https://api.onepeloton.com/api/workout/" workouts_dict_list = [] i = 1 total = len(workout_ids) for workout_id in workout_ids: print(f"Processing workout {i} out of {total}...") route = base_uri + workout_id workout_details = s.get(route).json() workout_details_dict = {k: v for k, v in workout_details['ride'].items() if k in workout_data_fields} workout_details_dict['workout_id'] = workout_id workouts_dict_list.append(workout_details_dict) i += 1 workout_df =
pd.DataFrame(workouts_dict_list)
pandas.DataFrame
import pandas as pd import gensim import pickle def create_dictionary(i): nfile_lst = [57, 57, 56, 56, 56] df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python ######################################################################## ## 02/08/2021 ## By <NAME>, ## <EMAIL> ## Peng's Lab ## Version.beta ######################################################################## # Usage #python ${EXE_PATH} -b ${INPUT_FILE} -c ${INPUT_NAME} -k ${GENE_LIST_FOLDER}/${GENELISTFILE} -l ${GENELISTFILE: :-4} -r ${RESOLUTION} -f ${FRAGMENTSIZE} -g ${GTFFILE} \ # -w ${WINDOWSIZE} -n ${NORMALIZATION} -t ${REGIONTYPE} -u ${UP_EXTENSION} -d ${DOWN_EXTENSION} -o ${OUTPUTDIR} -p ${Genic_Partition} ######################################################################## import pandas as pd import numpy as np import igraph as ig from scipy import stats from optparse import OptionParser import sys, os, multiprocessing from gooey import Gooey @Gooey #################################################################################### ## FUNCTIONS ### FUNCTION def Norm_df_hic(_df_interaction, _col_fore, _col_back, _resolution): col_fore = _col_fore col_back = _col_back resolution = _resolution _df_interaction = _df_interaction.fillna(0).replace(0,1) df_interaction = LOESS_Norm_df(_df_interaction, col_fore, col_back) df_interaction.loc[:,'#chr']=df_interaction.iloc[:,0].astype(str).replace('chr','') df_interaction.loc[:,'#chr1']=df_interaction.iloc[:,0] df_interaction.loc[:,'x1']=df_interaction.iloc[:,1].astype(int) df_interaction.loc[:,'x2']=df_interaction.iloc[:,1].astype(int)+int(resolution) df_interaction.loc[:,'chr2']=df_interaction.iloc[:,0] df_interaction.loc[:,'y1']=df_interaction.iloc[:,2].astype(int) df_interaction.loc[:,'y2']=df_interaction.iloc[:,2].astype(int)+int(resolution) if('logFC' in df_interaction.columns): df_interaction.loc[:,'log_FC'] = df_interaction.loc[:,'logFC'] else: df_interaction.loc[:,'log_FC'] = np.log2(df_interaction.loc[:,col_fore] / df_interaction.loc[:,col_back]) df_interaction = df_interaction.loc[:,['#chr1','x1','x2','chr2','y1','y2','log_FC', col_fore, col_back]] return df_interaction def LOESS_Norm_df (_df, _col1, _col2): ## this is a similar approach as LOESS Normalization df_test = _df n_bins = 100 df_test['A'] = 0.5*(np.log2(df_test[_col1]) + np.log2(df_test[_col2])).rank(method='first') ## A is the value for MA plot df_test['label'] = pd.qcut(df_test['A'].values, q=np.arange(0,1+1/n_bins, 1/n_bins), labels = np.arange(0,n_bins))#, duplicates='drop') df_group = df_test.groupby('label') df_out = pd.DataFrame() for df_for_norm in df_group: df_bbb = df_for_norm[1] sum_1 = df_bbb[_col1].sum(axis=0) sum_2 = df_bbb[_col2].sum(axis=0) df_bbb[_col2] = round(df_bbb[_col2]/sum_2*sum_1, 2) df_out = df_out.append(df_bbb) return df_out.sort_index() def Convert_Loops_to_Graph(_df_hic, _weight_col): ## Assign a list of weight ot graph ## loop format: ['#chr1', 'x1', 'x2', 'chr2', 'y1', 'y2', 'GeneID', 'weight_cols'] df_bins = Loops_Return_two_bins_no_dup(_df_hic) ## eliminate float in chr df_bins['name'] = df_bins['#chr1'].astype(str).str.split(".",expand=True)[0]+':'+df_bins['x1'].astype(int).astype(str)+'-'+df_bins['x2'].astype(int).astype(str) Num_vs = len(df_bins.index) ## Initiation a graph from loops file graph_tem = ig.Graph() graph_tem.add_vertices(Num_vs) graph_tem.vs["name"] = df_bins.loc[:,'name'] df_edge = _df_hic.merge(df_bins, on=['#chr1', 'x1', 'x2']).merge( df_bins, left_on=['chr2', 'y1', 'y2'], right_on=['#chr1', 'x1', 'x2']) graph_tem.add_edges(df_edge.loc[:, ['index_x','index_y']].values) for weight in _weight_col: if (weight in _df_hic.columns): graph_tem.es[weight] = df_edge.loc[:,weight].values return graph_tem def Loops_Return_two_bins_no_dup(df_hic): ## Associated by promoter second_bin_columns = [3,4,5,0,1,2]+list(range(6,len(df_hic.columns),1)) df_hic=df_hic.append(pd.DataFrame(df_hic.iloc[:, second_bin_columns].values, columns=df_hic.columns),sort=False).sort_index() return df_hic.iloc[:,0:3].drop_duplicates().reset_index().drop('index',axis=1).reset_index() def convert_cluster2bed(df_cluster, usecol): df_tem = df_cluster[usecol].str.split(r"\:|-",expand=True) df_tem = pd.concat( [df_tem, df_cluster], axis=1) if (df_tem.iloc[0,0].find('chr') == -1): df_tem[0] = 'chr'+df_tem[0] return df_tem def convert_bin2bed(df_cluster, col_name): df_tem = df_cluster[col_name].str.split(r"\:|-",expand=True) df_tem = pd.concat( [df_tem, df_cluster], axis=1) if (df_tem.iloc[0,0].find('chr') == -1): df_tem[0] = 'chr'+df_tem[0] return df_tem def convert_vs2bed(input_graph, col_name): ## output first 3 columns is standard bed format df_tem = pd.DataFrame(data={col_name:input_graph.vs[col_name]}) df_tem = pd.concat( [df_tem[col_name].str.split(r"\:|-",expand=True),df_tem], axis=1) if (df_tem.iloc[0,0].find('chr') == -1): df_tem[0] = 'chr'+df_tem[0] return df_tem def convert_graph_vs_to_df(_input_graph): df_vs = pd.DataFrame(data= {"degree":_input_graph.degree()}) for col in _input_graph.vs.attributes(): df_vs[col] = _input_graph.vs[col] return df_vs def graph_community_multilevel_Blondel(input_graph, cutoff): ## input graph should have at least one attribute: name df_vs = convert_graph_vs_to_df(input_graph) _col_vs_name='name' if (input_graph.is_weighted()): print ("Weighted Graph Cluster") structure = input_graph.community_multilevel(weights=input_graph.es['weight'] ,return_levels=False) else: structure = input_graph.community_multilevel(return_levels=False) df_vs['membership'] = structure.membership df_vs_cluster_group = df_vs.groupby('membership') ## Rank each cluster by number of bins cluster_name=[] cluster_num_vertices=[] for df_vs_cluster in df_vs_cluster_group: df_vs_inside_cluster = Cluster_Filter_by_Denisty(df_vs_cluster[1], _col_vs_name, 'degree', cutoff) #df_vs_inside_cluster =df_vs_cluster[1] df_cluster_coordiante = df_vs_inside_cluster[_col_vs_name].str.split(r"\:|-",expand=True) cluster_coordinate = 'chr'+df_cluster_coordiante.iloc[0,0]+':'+str(df_cluster_coordiante.iloc[:,1].astype(int).min())+'-'+str(df_cluster_coordiante.iloc[:,2].astype(int).max()) cluster_name.append(cluster_coordinate) ##0: cluster name cluster_num_vertices.append(len(df_vs_inside_cluster)) # 1: num_vertices df_cluster_output = pd.DataFrame(data={'hub_name':cluster_name,'Num_vertices':cluster_num_vertices}).sort_values('Num_vertices', ascending=False) return df_cluster_output, df_vs_cluster_group def Graph_Pagerank(_input_graph): input_graph = _input_graph input_graph.vs['pagerank'] = input_graph.pagerank(weights=input_graph.es['weight']) return input_graph ### allow a gap size of one window def Stich_Region_Above_global_Mean(_graph, _resolution, _gap_size, _mean): resolution=_resolution df_vs_graph = convert_graph_vs_to_df(_graph) df_nodes = convert_cluster2bed(df_vs_graph, 'name') df_nodes[1] = df_nodes[1].astype(int) df_nodes = df_nodes.sort_values(by=1) df_nodes = df_nodes[df_nodes['pagerank'] > _mean] ## Only use nodes > mean Report_list=[] if (len(df_nodes)>0): ## report stich regions reg_chr = str(df_nodes.iloc[0,0]) reg_start= int(df_nodes.iloc[0,1]) reg_end = int(reg_start) for bin1 in df_nodes.iloc[:,1].astype(int): if (bin1-reg_end)<=_gap_size*resolution: reg_end = bin1 else: Report_list.append([reg_chr+':'+str(reg_start)+'-'+str(reg_end+resolution), _gap_size]) reg_start = bin1 reg_end = bin1 Report_list.append([reg_chr+':'+str(reg_start)+'-'+str(reg_end+resolution), _gap_size]) return pd.DataFrame(data=Report_list, columns=['hub_name', 'merge_level']) def Return_Sorted_Adjacency_Matrix(_graph, _attr): ## Sort by coordinate graph_tem = _graph attr =_attr idx_name = [int(str(x).split(":")[1].split("-")[0]) for x in graph_tem.vs['name']] matrix_tem = pd.DataFrame(data=graph_tem.get_adjacency(attribute=attr), columns=idx_name, index=idx_name) df_reindex = pd.DataFrame(data={ 'rank': (stats.rankdata(matrix_tem.columns)-1).astype(int)}) idx_rank = df_reindex.sort_values(by='rank').index ## reference https://wil.yegelwel.com/cluster-correlation-matrix/ return matrix_tem.iloc[idx_rank, :].T.iloc[idx_rank, :] def Pvalue_Rank_Test_Matrix(_matirx): matrix_for_test = _matirx data_test = matrix_for_test.fillna(0).values.flatten() ## flatten 2d into 1D if (len(data_test)>10): w, pvalue =stats.wilcoxon(data_test, zero_method='zsplit', alternative='greater', correction=True, mode='approx') # “zsplit”: Includes zero-differences in the ranking process and split the zero rank between positive and negative ones. else: pvalue=1.0 return float(pvalue) def Return_Pvalue_For_Given_Graph(_df_region, _resolution, _matrix): df_region = _df_region df_regionh_bed = convert_cluster2bed(df_region, 'hub_name').sort_values(by=1) resolution = _resolution matrix_for_test = _matrix ## convert each region into bins idx_regs = [] for name_stitch in df_region.hub_name: region_loc= name_stitch.split(":")[1].split("-") idx_reg = [] for idx in matrix_for_test.index: if ((idx>=int(region_loc[0]))&(idx<=int(region_loc[1]))): idx_reg.append(idx) idx_regs.append(idx_reg) pvalue_region= [] for i in range(len(idx_regs)): ## first check on pyramid change, only after pyramid is significant, then calculate stripes. part_matrix_for_test = matrix_for_test.loc[idx_regs[i],:].T.loc[idx_regs[i], :] pvalue_tem = Pvalue_Rank_Test_Matrix(part_matrix_for_test) if (pvalue_tem < 1):# ## cutoff 10**-2): pvalue_region.append([df_region.hub_name[i],df_region.hub_name[i],-np.log10(pvalue_tem)]) for j in range(0, i, 1): part_matrix_for_test = matrix_for_test.loc[idx_regs[i],:].T.loc[idx_regs[j], :] pvalue_tem = Pvalue_Rank_Test_Matrix(part_matrix_for_test) pvalue_region.append([df_region.hub_name[i],df_region.hub_name[j], np.round(-np.log10(pvalue_tem),3)]) return pd.DataFrame(data=pvalue_region, columns=['reg1', 'reg2', '-log10(pvalue)']).sort_values('-log10(pvalue)', ascending=False) def Main_For_Diff_Regions(df_hic, _col_fore, _col_back, _resolution, _pvalue): #Create a weight basing on logFC (logFC < 0) _gapsize=2 ## this parameter is try to avoid blank due to artifacts logfc_cutoff=0 cut_pvalue=-np.log10(_pvalue) _df_hic = df_hic _df_hic[_col_fore+'_weight'] = _df_hic[_col_fore]*_df_hic.log_FC.apply(lambda x: 1 if x > logfc_cutoff else(0)) Norm_window_Size=0 ### To be optimized for boundary _df_hic['diff'] = _df_hic[_col_fore] - _df_hic[_col_back] _df_hic['pagerank_weight'] = _df_hic['diff']*(abs(_df_hic.y1-_df_hic.x1)).apply(lambda x : 1 if x >= Norm_window_Size*_resolution else (0) ) _df_hic['pagerank_weight'] = _df_hic['pagerank_weight'].apply(lambda x : x if x >0 else (0) ) weight_list= ['diff','pagerank_weight', _col_fore+'_weight'] input_graph = Convert_Loops_to_Graph(_df_hic, weight_list) ######################################################## Diff_weight for pagerank input_graph.es['weight'] = input_graph.es['pagerank_weight']#input_graph.es[_col_fore+'_weight'] #input_graph.es['pagerank_weight'] input_graph = Graph_Pagerank(input_graph) global_median = np.percentile(input_graph.vs['pagerank'], 50) cut_off = global_median# - np.std(input_graph.vs['pagerank']) ####################################################### Strength weight for structure input_graph.es['weight'] = input_graph.es[_col_fore+'_weight'] structure = input_graph.community_multilevel(weights=input_graph.es['weight'], return_levels=True) ####################################################### ### Stich according to pagerank locally df_out =
pd.DataFrame(columns=['reg1', 'reg2', '-log10(pvalue)'])
pandas.DataFrame
from urllib import parse import requests import time import os.path from os import path import argparse import csv import pandas as pd from selenium import webdriver from selenium.webdriver.chrome.options import Options import time target_url = 'https://pechlilab.shinyapps.io/output/' async def test(source): output = './' try: source_index = get_permitted_sources().index(source) + 1 except ValueError: print('Invalid source parameter {}'.format(source)) print('Choose from {}'.format('\n'.join(get_permitted_sources()))) return options = Options() options.headless = True options.add_argument('--disable-gpu') options.add_argument('--no-sandbox') driver = webdriver.Chrome(options=options) driver.implicitly_wait(10) driver.get(target_url) inputButton = driver.find_element_by_tag_name('input[value="{}"]'.format(source_index)) inputButton.click() modelButton = driver.find_element_by_id('DisplayModel1') modelButton.click() time.sleep(5) button = driver.find_element_by_id('Download') data_endpoint = button.get_attribute('href') # Download the file data = requests.get(data_endpoint, allow_redirects=True) lines = data.content.decode("utf-8").split('\n') reader = csv.reader(lines) parsed_csv = list(reader) columns = parsed_csv[0] columns[0]='date' df =
pd.DataFrame(data=parsed_csv[1:], columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun Apr 25 13:55:59 2021 @author: tatia """ from dataproc.cohort import query_esbl_pts, remove_dups, observation_window from dataproc.sampling import generate_samples from dataproc.sampling import stratify_set from dataproc.roc_auc_curves import plt_roc_auc_curve, plt_precision_recall_curve from dataproc.create_dataset import dataset_creation from dataproc.create_dataset import prescriptions from dataproc.create_dataset import previous_admissions from dataproc.create_dataset import open_wounds_diags, intubation_cpt, noteevents from dataproc.embeddings import loinc_values from hyper_params import HyperParams import numpy as np import pandas as pd from sklearn.impute import SimpleImputer import re # load hyperparams instance params = HyperParams() def cohort_creation(observation_window_hours): # Select esbl microbiology test esbl_admits = query_esbl_pts() # Remove dups esbl_admits = remove_dups(esbl_admits) # Create observation window esbl_admits_window = observation_window(esbl_admits, window_size=observation_window_hours) # Subset columns pts_labels = esbl_admits_window[['hadm_id', 'index_date','RESISTANT_YN']] return pts_labels def loinc_values_proc(loinc_codes): loinc_vals = loinc_values(loinc_codes) loinc_vals.dropna(subset=['value'], inplace=True) loinc_vals = loinc_vals.astype({'value': 'string', 'loinc_code': 'category'}) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.lstrip('LESS THAN ')) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.lstrip('GREATER THAN ')) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.lstrip('>GREATER THAN ')) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.lstrip('<LESS THAN ')) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.rstrip(' NG/ML')) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.lstrip('<>')) loinc_vals['value'] = loinc_vals['value'].map(lambda x: x.replace(',', '.')) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == 'UNABLE TO ANALYZE'].index), inplace=True) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == 'MOLYSIS FALSELY DECREASES THIS RESULT'].index), inplace=True) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == 'COMPUTER NETWORK FAILURE. TEST NOT RESULTED.'].index), inplace=True) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == 'UNABLE TO DETERMINE'].index), inplace=True) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == ':UNABLE TO DETERMINE'].index), inplace=True) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == 'UNABLE TO QUANTITATE'].index), inplace=True) loinc_vals.drop(list(loinc_vals.loc[loinc_vals['value'] == 'UNABLE TO REPORT'].index), inplace=True) return loinc_vals def lab_records_categories(loinc_vals): numeric = [] categorical = [] weird = [] for code in loinc_codes: size = len(loinc_vals.loc[loinc_vals['loinc_code'] == str(code), 'value']) size_unique = len(loinc_vals.loc[loinc_vals['loinc_code'] == str(code), 'value'].unique()) sum_na = pd.to_numeric(loinc_vals.loc[loinc_vals['loinc_code'] == str(code), 'value'], errors='coerce').isna().sum() if sum_na / size < 0.05: numeric.append(code) elif sum_na / size > 0.05 and size_unique < 100: categorical.append(code) else: weird.append(code) # Remove columns that are not useful: # remove lab column that contains only 'inf' and 'Nan' numeric.remove('26498-6') # remove lab column that only contains phrase 'See comments' categorical.remove('33914-3') # remove lab column that contains phrase 'Random' categorical.remove('13362-9') return numeric, categorical, weird def sum_stats_numeric_labs(loinc_vals, numeric): numeric_stats = [] for code in numeric: a = pd.to_numeric(loinc_vals.loc[loinc_vals['loinc_code'] == str(code), 'value'], errors='coerce').describe() numeric_stats.append(a) numeric_stats_df = pd.concat(numeric_stats, axis=1, keys=numeric) return numeric_stats_df def stanardize_numeric_values(df, list_of_clms, ref_df): """ Use the median and interquartile range to standardize the numeric variables value = (value – median) / (p75 – p25) """ for code in list_of_clms: median = ref_df[code]['50%'] p25 = ref_df[code]['25%'] p75 = ref_df[code]['75%'] df[code] = (df[code] - median) / (p75 - p25) # Subset relevant columns columns = ['hadm_id'] + list_of_clms df = df[columns].copy() return df def replace_missing_val(df, list_of_clms, how='median'): """ Imputation of missing values using median """ imp = SimpleImputer(strategy=how) df_prc = imp.fit_transform(df[list_of_clms]) df_prc =
pd.DataFrame(df_prc, columns=list_of_clms)
pandas.DataFrame
from scipy.spatial.distance import euclidean import pandas as pd import numpy as np import os import argparse parser = argparse.ArgumentParser() parser.add_argument('--path', help='Path to the images') parser.add_argument('--fast', dest='fast', action='store_true', help='Analyze faster!') parser.set_defaults(fast=False) args = parser.parse_args() df = pd.read_csv(os.path.join(args.path, 'features.csv')) df_feat = df[[col for col in df if col.startswith('images_feat')]] # Pre-sort by a norm so it's a little bit easier to find matches when using `--fast` df['D'] = np.linalg.norm(df_feat, axis=1) df = df.sort_values(by=['D']).reset_index(drop=True) R = [] Left = df.index.tolist() while Left: if len(Left) % 10 == 0: print('Sorting images... %d left' % len(Left)) if not R: i = np.random.randint(len(Left)) Left.remove(i) R.append(i) i = R[-1] best_j = Left[0] best_sim = np.inf if args.fast: end = 101 limit = 1 else: end = len(Left) limit = np.inf for j in Left[1:end]: dist = (df.iloc[i]['D'] - df.iloc[j]['D'])**2 if dist < limit: #TODO: make a better similarity measure sim = 1/(1 + euclidean(df_feat.iloc[i], df_feat.iloc[j])) if sim < best_sim: best_j = j best_sim = best_sim else: print(dist) break Left.remove(best_j) R.append(best_j) df['R'] =
pd.Series(R)
pandas.Series
import argparse import pathlib import sys import pandas as pd FILE_FORMAT = "fastq" def read_ena_xlsx_sheet(xlsx_path, sheet_name): file_path = pathlib.Path(xlsx_path) file_extension = file_path.suffix.lower()[1:] if file_extension == "xlsx": engine = "openpyxl" else: engine = None df = ( pd.read_excel( xlsx_path, sheet_name=sheet_name, engine=engine, converters={"collection date": str}, ) .dropna(axis=0, how="all") .dropna(axis=1, how="all") ) assert not df.empty, f"Sheet '{sheet_name}' is empty in {xlsx_path}" return df def extract_data(xl_sheet, expected_columns, unique_key="alias"): if any(xl_sheet.columns.value_counts() > 1): sys.exit("Duplicated columns") for col in range(len(expected_columns)): assert ( expected_columns[col] in xl_sheet.columns ), f"Expected column {expected_columns[col]} not found" assert not any( xl_sheet.duplicated(subset=[unique_key]) ), f"{unique_key} identificators not unique" xl_sheet = xl_sheet.set_index(unique_key) return xl_sheet.to_dict("index") def main(xlsx_path, out_path, action, viral_submission=False): # PARSE STUDIES ################# xl_sheet = read_ena_xlsx_sheet(xlsx_path, sheet_name="ENA_study") if xl_sheet.shape[0] < 1: raise ValueError("No entries found in studies sheet") studies_col = ["alias", "title", "study_type", "study_abstract"] try: studies_dict = extract_data(xl_sheet, studies_col) except AssertionError as e: print("Sheet ENA_study: ", e) raise # PARSE SAMPLES ################# xl_sheet = read_ena_xlsx_sheet(xlsx_path, sheet_name="ENA_sample") if xl_sheet.shape[0] < 1: raise ValueError("No entries found in samples") if viral_submission: samples_cols = [ "alias", "title", "scientific_name", "sample_description", "geographic location (country and/or sea)", "host common name", "host health state", "host sex", "host scientific name", "collector name", "collection date", "collecting institution", "isolate", ] else: samples_cols = ["alias", "title", "scientific_name", "sample_description"] try: samples_dict = extract_data(xl_sheet, samples_cols) except AssertionError as e: print("Sheet ENA_sample: ", e) raise # PARSE EXPERIMENTS ################# xl_sheet = read_ena_xlsx_sheet(xlsx_path, sheet_name="ENA_experiment") if xl_sheet.shape[0] < 1: raise ValueError("No experiments found in experiments sheet") exp_columns = [ "alias", "title", "study_alias", "sample_alias", "design_description", "library_name", "library_strategy", "library_source", "library_selection", "library_layout", "insert_size", "library_construction_protocol", "platform", "instrument_model", ] try: experiments_dict = extract_data(xl_sheet, exp_columns) except AssertionError as e: print("Sheet ENA_experiment: ", e) raise # PARSE RUNS SHEET ################# xl_sheet = read_ena_xlsx_sheet(xlsx_path, sheet_name="ENA_run") if xl_sheet.shape[0] < 1: raise ValueError("No entries found in runs sheet") run_cols = ["alias", "experiment_alias", "file_name", "file_format"] try: runs_dict = extract_data(xl_sheet, run_cols, unique_key="file_name") except AssertionError as e: print("Sheet ENA_run: ", e) raise # DROP COMMENTS ############### studies_dict = { k: v for k, v in studies_dict.items() if k in set([v["study_alias"] for k, v in experiments_dict.items()]) } assert bool(studies_dict), "No entries found in studies" experiments_dict = { k: v for k, v in experiments_dict.items() if v["study_alias"] in studies_dict.keys() } assert bool(experiments_dict), "No entries found in experiments" samples_dict = { k: v for k, v in samples_dict.items() if k in set([v["sample_alias"] for k, v in experiments_dict.items()]) } assert bool(samples_dict), "No entries found in samples" runs_dict = { k: v for k, v in runs_dict.items() if v["experiment_alias"] in experiments_dict.keys() } assert bool(runs_dict), "No entries found in runs" # WRITE HEADERS TO TABLES studies_table = open(pathlib.Path(out_path) / "studies.tsv", "w") studies_table.write( "\t".join( [ "alias", "status", "accession", "title", "study_type", "study_abstract", "pubmed_id", "submission_date", ] ) + "\n" ) samples_table = open(pathlib.Path(out_path) / "samples.tsv", "w") if viral_submission: samples_table.write( "\t".join( [ "alias", "status", "accession", "title", "scientific_name", "taxon_id", "sample_description", "collection_date", "geographic_location", "host_common_name", "host_subject_id", "host_health_state", "host_sex", "host_scientific_name", "collector_name", "collecting_institution", "isolate", "submission_date", ] ) + "\n" ) else: samples_table.write( "\t".join( [ "alias", "status", "accession", "title", "scientific_name", "taxon_id", "sample_description", "submission_date", ] ) + "\n" ) experiments_table = open(pathlib.Path(out_path) / "experiments.tsv", "w") experiments_table.write( "\t".join( [ "alias", "status", "accession", "title", "study_alias", "sample_alias", "design_description", "library_name", "library_strategy", "library_source", "library_selection", "library_layout", "insert_size", "library_construction_protocol", "platform", "instrument_model", "submission_date", ] ) + "\n" ) runs_table = open(pathlib.Path(out_path) / "runs.tsv", "w") runs_table.write( "\t".join( [ "alias", "status", "accession", "experiment_alias", "file_name", "file_format", "file_checksum", "submission_date", ] ) + "\n" ) action = action # WRITE DICTIONARIES TO TABLE FILES # ADD A TIMESTAMP TO THE ALIAS? SEEMS LIKE ENA REQUIRES ALL ENTRIES FOR A WEBIN TO HAVE UNIQUE IDS? # dt_oobj = datetime.now(tz=None) # timestamp = dt_oobj.strftime("%Y%m%d_%H:%M:%S") for study_alias, study in studies_dict.items(): # study_alias = study_alias + '_' + timestamp studies_table.write( "\t".join( [ study_alias, action, "ENA_accession", study["title"], study["study_type"], study["study_abstract"], "", "ENA_submission_data", ] ) + "\n" ) # assuming no pubmed_id for sample_alias, sample in samples_dict.items(): # sample_alias = sample_alias + '_' + timestamp if viral_submission: if sample["collector name"] == "": sample["collector name"] = "unknown" samples_table.write( "\t".join( [ sample_alias, action, "ena_accession", sample["title"], sample["scientific_name"], "tax_id_updated_by_ENA", sample["sample_description"], sample["collection date"], sample["geographic location (country and/or sea)"], sample["host common name"], "host subject id", sample["host health state"], sample["host sex"], sample["host scientific name"], sample["collector name"], sample["collecting institution"], sample["isolate"], "ENA_submission_date", ] ) + "\n" ) else: samples_table.write( "\t".join( [ sample_alias, action, "ena_accession", sample["title"], sample["scientific_name"], "tax_id_updated_by_ENA", sample["sample_description"], ] ) + "\n" ) for exp_alias, exp in experiments_dict.items(): # should I check here if any experiment has a study or sample alias that is incorrect? # (not listed in the samples or study dict) # process the experiments for this sample if exp["sample_alias"] == sample_alias: if
pd.isnull(exp["library_name"])
pandas.isnull
''' Created on Sep 30, 2018 @author: yewen ''' import os from datetime import datetime import pandas as pd import numpy as np from scipy import stats from scipy import optimize from _ast import operator import Equity_port.historical_price as historical_price import Equity_port.finance as finance import Crypto.technical_indicators as ti class Alert: def __init__(self, today): xl = pd.ExcelFile('watchlist.xlsx') self.watchlist = xl.parse('watchlist') self.watchlist['Index'] = self.watchlist['Ticker'] self.watchlist.set_index('Index', inplace = True) print(self.watchlist) self.today = today self.last_year = pd.Series(pd.date_range(end=self.today, periods=365)) #total calendar days def get_price_history (self, history = None, workbook='Historical price.xlsx', sheet='Historical price'): if history is None: r = historical_price.get_price_history(workbook=workbook, sheet=sheet) else: r = history #self.forex = r['forex'] #self.company_name = r['company_name'] #self.equity_currency = r['equity_currency'] self.equity_prices_local = r['equity_price_local'][self.watchlist.index] #self.equity_prices_USD = r['equity_price_USD'] self.equity_daily_return_local = r['equity_daily_return_local'][self.watchlist.index] #self.equity_daily_return_USD = r['equity_daily_return_USD'] def sharp(self): df =
pd.DataFrame(index=self.last_year, columns=['Sharp10','SharpSigma'])
pandas.DataFrame
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts =
tm.makeTimeSeries()
pandas.util.testing.makeTimeSeries
''' 07 - Clustering the fish data You'll now use your standardization and clustering pipeline from the previous exercise to cluster the fish by their measurements, and then create a cross- tabulation to compare the cluster labels with the fish species. As before, samples is the 2D array of fish measurements. Your pipeline is available as pipeline, and the species of every fish sample is given by the list species. INSTRUCTIONS - Import pandas as pd. - Fit the pipeline to the fish measurements samples. - Obtain the cluster labels for samples by using the .predict() method of pipeline. - Using pd.DataFrame(), create a DataFrame df with two columns named 'labels' and 'species', using labels and species, respectively, for the column values. - Using pd.crosstab(), create a cross-tabulation ct of df['labels'] and df['species']. ''' # Import pandas import pandas as pd # Fit the pipeline to samples pipeline.fit(samples) # Calculate the cluster labels: labels labels = pipeline.predict(samples) # Create a DataFrame with labels and species as columns: df df = pd.DataFrame({'labels': labels, 'species': species}) # Create crosstab: ct ct =
pd.crosstab(df['labels'], df['species'])
pandas.crosstab
#------------------------------------------------------------------------------- # Name: GIS Viewer Attribution Evaluation # Version: V_2.0 # Purpose: Produce report for installation geodatabase detailing data attribution # # Author: <NAME> # # Created: 2018/01/26 # Last Update: 2018/03/22 # Description: Evaluate installation geodatabases for minimum attribution required # by AFCEC GIS viewer for best display of data. #------------------------------------------------------------------------------- # Import modules import arcpy, os, numpy, pandas from pandas import DataFrame from datetime import datetime # Start time timenow = datetime.now() print(timenow) # WHICH FEATURE DATASETS ARE MISSING FROM THE INSTALLATION DATABASE COMPARED TO COMPARISON DATABASE missFDSTable = arcpy.GetParameterAsText(0) # WITHIN THE FEATURE DATASETS THAT THE INSTALLATION HAS, # WHICH FEATURE CLASSES ARE MISSING? missFCTable = arcpy.GetParameterAsText(1) # WITHIN EACH REQUIRED FEATURE DATASET AND FEATURE CLASS THAT THE INSTALLATION HAS, # WHICH FIELDS ARE MISSING? missFLDTable = arcpy.GetParameterAsText(2) # WITHIN EACH REQUIRED FEATURE DATASET AND FEATURE CLASS THAT THE INSTALLATION HAS, # WHICH FIELDS ARE MISSING? nullTable = arcpy.GetParameterAsText(3) outputFile = arcpy.GetParameterAsText(4) # ============================================================================= # missFDSTable = os.path.join(installGDB,"CIP_MissingFDS") # missFCTable = os.path.join(installGDB,"CIP_MissingFCs") # missFLDTable = os.path.join(installGDB,"CIP_MissingFields") # nullTable = os.path.join(installGDB,"CIP_MissingData") # ============================================================================= # to get dataframe of feature datasets, feature classes, and fields of geodatabase def getFeaturesdf(GDB): ''' # to get unique FDS, FC, and FIELDS across a geodatabase Parameters ---------- GDB = path to GDB Returns ------- pandas dataframe of with two columns: Feature Dataset, Feature Class for each fc in gdb. ''' d = pandas.DataFrame([]) arcpy.env.workspace = GDB for theFDS in arcpy.ListDatasets(): for theFC in arcpy.ListFeatureClasses(feature_dataset=theFDS): minFields = (fld.name.upper() for fld in arcpy.ListFields(os.path.join(GDB,theFDS,theFC)) if str(fld.name) not in ['Shape', 'OBJECTID', 'Shape_Length', 'Shape_Area']) minFields = list(minFields) for FLD in minFields: d = d.append(pandas.DataFrame({'FDS': str(theFDS), 'FC': str(theFC), 'FLD': str(FLD.name)}, index=[0]), ignore_index=True) return(d) # to get field name of a ArcGIS table def get_field_names(table): """ Get a list of field names not inclusive of the geometry and object id fields. Parameters ---------- table: Table readable by ArcGIS Returns ------- List of field names. """ # list to store values field_list = [] # iterate the fields for field in arcpy.ListFields(table): # if the field is not geometry nor object id, add it as is if field.type != 'Geometry' and field.type != 'OID': field_list.append(field.name) # if geomtery is present, add both shape x and y for the centroid elif field.type == 'Geometry': field_list.append('SHAPE@XY') # return the field list return field_list # to convert arcgis table to pandas dataframe def table_to_pandas_dataframe(table, field_names=None): """ Load data into a Pandas Data Frame from esri geodatabase table for subsequent analysis. Parameters ---------- table = Table readable by ArcGIS. field_names: List of fields. Returns ------- Pandas DataFrame object. """ # if field names are not specified if not field_names: # get a list of field names field_names = get_field_names(table) # create a pandas data frame dataframe = DataFrame(columns=field_names) # use a search cursor to iterate rows with arcpy.da.SearchCursor(table, field_names) as search_cursor: # iterate the rows for row in search_cursor: # combine the field names and row items together, and append them dataframe = dataframe.append( dict(zip(field_names, row)), ignore_index=True ) # return the pandas data frame return dataframe def get_geodatabase_path(input_table): '''Return the Geodatabase path from the input table or feature class. :param input_table: path to the input table or feature class ''' workspace = os.path.dirname(input_table) if [any(ext) for ext in ('.gdb', '.mdb', '.sde') if ext in os.path.splitext(workspace)]: return workspace else: return os.path.dirname(workspace) # to get a pandas dataframe into a arcgis table def pandas_to_table(pddf,tablename): ''' Parameters ---------- pddf = pandas dataframe tablename = output table name to 'installGDB' Returns ------- a geodatabase table from pandas dataframe inside 'installGDB' geodatabase object (string to .gdb path) ''' x = numpy.array(numpy.rec.fromrecords(pddf)) names = pddf.dtypes.index.tolist() x.dtype.names = tuple(names) gdbTbl = os.path.join(installGDB,tablename) if arcpy.Exists(gdbTbl): arcpy.Delete_management(gdbTbl) arcpy.da.NumPyArrayToTable(x, gdbTbl) def summariseMissingData(installGDB): start_time = datetime.now() arcpy.env.workspace = installGDB installationName = os.path.splitext(os.path.basename(installGDB))[0] tb = os.path.splitext(os.path.basename(nullTable))[0] compName = tb.split("_")[0] # output table names, with comparison geodatabase name prepended # missingFDTblName=compName+"_MissingFDS" # missingFCTblName=compName+"_MissingFCs" # missingFLDTblName=compName+"_MissingFields" # nullTableName=compName+"_MissingData" # ## CONVERT TABLES TO PANDAS DATAFRAMES pdNullTbl= table_to_pandas_dataframe(nullTable, field_names=None) pdFLDTbl= table_to_pandas_dataframe(missFLDTable, field_names=None) pdFCTbl= table_to_pandas_dataframe(missFCTable, field_names=None) pdFDSTbl= table_to_pandas_dataframe(missFDSTable, field_names=None) # replace cells with '' as NaN pdNullTbl = pdNullTbl.replace('', numpy.nan) pdFLDTbl = pdFLDTbl.replace('', numpy.NaN) pdFCTbl = pdFCTbl.replace('', numpy.NaN) pdFDSTbl = pdFDSTbl.replace('', numpy.NaN) # FOR EACH FEATURE CLASS, GET COUNT OF CELLS THAT ARE INDETERMINANT arcpy.AddMessage ("Getting count of indeterminant cells per feature class") indtCntByFC = pdNullTbl.groupby(['FDS','FC','INSTALLATION'])['TOTAL_INDT_COUNT'].agg('sum').fillna(0).reset_index() indtCntByFC=pandas.DataFrame(indtCntByFC) # FOR EACH FEATURE CLASS, GET COUNT OF CELLS THAT ARE INDETERMINANT arcpy.AddMessage ("Getting count of indeterminant cells per feature class") detCntByFC = pdNullTbl.groupby(['FDS','FC','INSTALLATION'])['TOTAL_DET_COUNT'].agg('sum').fillna(0).reset_index() detCntByFC=pandas.DataFrame(detCntByFC) # FOR EACH FEATURE CLASS, GET COUNT OF CELLS THAT ARE NULL ## THEN EXPORT THEM TO THE GEODATABASE arcpy.AddMessage ("Getting count of 'null' cells per feature class") nullCntByFC = pdNullTbl.groupby(['FDS','FC','INSTALLATION'])['NULL_FC_COUNT'].agg('sum').fillna(0).reset_index() nullCntByFC=
pandas.DataFrame(nullCntByFC)
pandas.DataFrame
from __future__ import print_function from apiclient.discovery import build from httplib2 import Http from oauth2client import file, client, tools import pandas as pd SPREADSHEET_ID = '1XoJEbDUAXoqsTB44FoXFirHdx_F8TtO8-nByFpHNoqk' # <Your spreadsheet ID> RANGE_NAME = 'member' # <Your worksheet name> def get_google_sheet(spreadsheet_id, range_name): """ Retrieve sheet data using OAuth credentials and Google Python API. """ scopes = 'https://www.googleapis.com/auth/spreadsheets.readonly' # Setup the Sheets API store = file.Storage('credentials.json') creds = store.get() if not creds or creds.invalid: flow = client.flow_from_clientsecrets('client_secret.json', scopes) creds = tools.run_flow(flow, store) service = build('sheets', 'v4', http=creds.authorize(Http())) # Call the Sheets API gsheet = service.spreadsheets().values().get(spreadsheetId=spreadsheet_id, range=range_name).execute() return gsheet def gsheet2df(gsheet): """ Converts Google sheet data to a Pandas DataFrame. Note: This script assumes that your data contains a header file on the first row! Also note that the Google API returns 'none' from empty cells - in order for the code below to work, you'll need to make sure your sheet doesn't contain empty cells, or update the code to account for such instances. """ header = gsheet.get('values', [])[0] # Assumes first line is header! values = gsheet.get('values', [])[1:] # Everything else is data. if not values: print('No data found.') else: all_data = [] for col_id, col_name in enumerate(header): column_data = [] for row in values: column_data.append(row[col_id]) ds =
pd.Series(data=column_data, name=col_name)
pandas.Series
import numpy as np from numpy.testing import assert_allclose import pandas as pd import pandas._testing as tm import quantopy as qp class TestReturnDataFrame: def test_from_price(self): rdf = qp.ReturnDataFrame.from_price([80, 85, 90]) assert type(rdf) is qp.ReturnDataFrame assert_allclose( rdf, [[0.0625], [0.058824]], rtol=1e-1, ) assert_allclose( qp.ReturnDataFrame.from_price( {"stock_1": [80, 85, 90], "stock_2": [10, 20, 30]} ), [[0.0625, 1.0], [0.058824, 0.5]], rtol=1e-1, ) assert_allclose( qp.ReturnDataFrame.from_price(
pd.DataFrame({"stock_1": [80, 85, 90], "stock_2": [10, 20, 30]})
pandas.DataFrame
from dataset_loader import * from utils import * from model import BeautyModel import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.style as style from PIL import Image physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) IMG_SIZE=224 CHANNELS=3 class Inferencing: def __init__(self, model_path, device_): with tf.device(device_): self.device = device_ # self.model = BeautyModel().create_model() self.model = tf.keras.models.load_model(model_path, compile=False) # self.model.summary() def create_confusion_matrix(self, model): dataloader = BeautyDataLoader() label_names = dataloader.get_label_names() y_val_bin = dataloader.dataset_split['valid_y'] dataset = dataloader.create_dataset(fold=0) val_dataset = dataset['valid'] target = y_val_bin[0] df = perf_grid(self.device, val_dataset, target, label_names, model) # Get the maximum F1-score for each label when using the second model and varying the threshold print(df.head(10)) # return df, label_names def get_predictions(self, filenames, labels, model): from keras.preprocessing import image org_dataset = pd.read_csv('Dataset/beauty_dataset.csv') # Get movie info nrows = 5 ncols = 2 fig = plt.gcf() fig.set_size_inches(ncols * 10, nrows * 10) # print(filenames) for i, img_path in enumerate(filenames): gt = org_dataset.loc[org_dataset['file_path'] == img_path, ['isbeauty', 'skill']].iloc[0] k,l = gt # Read and prepare image img = image.load_img(img_path, target_size=(IMG_SIZE,IMG_SIZE,CHANNELS)) img = image.img_to_array(img) img = img/255 img = np.expand_dims(img, axis=0) # Generate prediction score = model.predict(img) prediction = (score > 0.5).astype('int') prediction = pd.Series(prediction[0]) prediction.index = labels prediction = prediction[prediction==1].index.values # Dispaly image with prediction # style.use('default') # plt.figure(figsize=(8,4)) # plt.imshow(Image.open(img_path)) # plt.show() # Set up subplot; subplot indices start at 1 sp = plt.subplot(nrows, ncols, i + 1) sp.axis('Off') # Don't show axes (or gridlines) plt.imshow(Image.open(img_path)) file_ = os.path.basename(img_path) plt.title('\n\n{}\n\GT\n{}\n\nPrediction\n{}\n'.format(file_, (k,l), list(prediction)), fontsize=9) plt.savefig('./logs/predictions.png') if __name__ == "__main__": inference = Inferencing(device_='/gpu:0',model_path='./ckpt/20210226-130849/0/') print(inference.model.summary()) df, labels = inference.create_confusion_matrix(inference.model) org_dataset =
pd.read_csv('Dataset/beauty_dataset.csv')
pandas.read_csv
import lightgbm as lgbm import optuna from scipy import sparse as ssp from sklearn.model_selection import StratifiedKFold import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder def Gini(y_true, y_pred): # check and get number of samples assert y_true.shape == y_pred.shape n_samples = y_true.shape[0] # sort rows on prediction column # (from largest to smallest) arr = np.array([y_true, y_pred]).transpose() true_order = arr[arr[:, 0].argsort()][::-1, 0] pred_order = arr[arr[:, 1].argsort()][::-1, 0] # get Lorenz curves L_true = np.cumsum(true_order) * 1. / np.sum(true_order) L_pred = np.cumsum(pred_order) * 1. / np.sum(pred_order) L_ones = np.linspace(1 / n_samples, 1, n_samples) # get Gini coefficients (area between curves) G_true = np.sum(L_ones - L_true) G_pred = np.sum(L_ones - L_pred) # normalize to true Gini coefficient return G_pred * 1. / G_true cv_only = True save_cv = True full_train = False def evalerror(preds, dtrain): labels = dtrain.get_label() return 'gini', Gini(labels, preds), True path = "data/input/" train = pd.read_csv(path+'train.csv') #train = train.sample(frac=0.1, random_state=0).reset_index(drop=True) train_label = train['target'] train_id = train['id'] test = pd.read_csv(path+'test.csv') #test = test.sample(frac=0.1, random_state=0).reset_index(drop=True) test_id = test['id'] NFOLDS = 4 kfold = StratifiedKFold(n_splits=NFOLDS, shuffle=True, random_state=218) y = train['target'].values drop_feature = [ 'id', 'target' ] X = train.drop(drop_feature,axis=1) feature_names = X.columns.tolist() cat_features = [c for c in feature_names if ('cat' in c and 'count' not in c)] num_features = [c for c in feature_names if ('cat' not in c and 'calc' not in c)] train['missing'] = (train==-1).sum(axis=1).astype(float) test['missing'] = (test==-1).sum(axis=1).astype(float) num_features.append('missing') train.shape for c in cat_features: le = LabelEncoder() le.fit(train[c]) train[c] = le.transform(train[c]) test[c] = le.transform(test[c]) # 事前にlabelEncoderを行っているから、この使い方でユニークな値で割り当てられる。引数categories = 'auto'で警告を消す enc = OneHotEncoder(categories='auto') enc.fit(train[cat_features]) X_cat = enc.transform(train[cat_features]) X_t_cat = enc.transform(test[cat_features]) ind_features = [c for c in feature_names if 'ind' in c] count=0 for c in ind_features: if count == 0: train['new_ind'] = train[c].astype(str)+'_' test['new_ind'] = test[c].astype(str)+'_' count += 1 else: train['new_ind'] += train[c].astype(str)+'_' test['new_ind'] += test[c].astype(str)+'_' cat_count_features = [] for c in cat_features+['new_ind']: d = pd.concat([train[c],test[c]]).value_counts().to_dict() train['%s_count'%c] = train[c].apply(lambda x:d.get(x,0)) test['%s_count'%c] = test[c].apply(lambda x:d.get(x,0)) cat_count_features.append('%s_count'%c) train_list = [train[num_features+cat_count_features].values, X_cat] test_list = [test[num_features+cat_count_features].values, X_t_cat] X = ssp.hstack(train_list).tocsr() X_test = ssp.hstack(test_list).tocsr() def objective(trial): drop_rate = trial.suggest_uniform('drop_rate', 0, 1.0) feature_fraction = trial.suggest_uniform('feature_fraction', 0, 1.0) learning_rate = trial.suggest_uniform('learning_rate', 0, 1.0) subsample = trial.suggest_uniform('subsample', 0.8, 1.0) num_leaves = trial.suggest_int('num_leaves', 5, 1000) verbosity = trial.suggest_int('verbosity', -1, 1) num_boost_round = trial.suggest_int('num_boost_round', 10, 100000) min_data_in_leaf = trial.suggest_int('min_data_in_leaf', 10, 100000) min_child_samples = trial.suggest_int('min_child_samples', 5, 500) min_child_weight = trial.suggest_int('min_child_weight', 5, 500) params = {"objective": "binary", "boosting_type": "gbdt", "learning_rate": learning_rate, "num_leaves": num_leaves, "max_bin": 256, "feature_fraction": feature_fraction, "verbosity": verbosity, "drop_rate": drop_rate, "is_unbalance": False, "max_drop": 50, "min_child_samples": min_child_samples, "min_child_weight": min_child_weight, "min_split_gain": 0, "min_data_in_leaf": min_data_in_leaf, "subsample": subsample } x_score = [] final_cv_train = np.zeros(len(train_label)) final_cv_pred = np.zeros(len(test_id)) cv_train = np.zeros(len(train_label)) cv_pred = np.zeros(len(test_id)) params['seed'] = 0 kf = kfold.split(X, train_label) best_trees = [] fold_scores = [] for i, (train_fold, validate) in enumerate(kf): print('kfold_index:', i) X_train, X_validate, label_train, label_validate = \ X[train_fold, :], X[validate, :], train_label[train_fold], train_label[validate] dtrain = lgbm.Dataset(X_train, label_train) dvalid = lgbm.Dataset(X_validate, label_validate, reference=dtrain) bst = lgbm.train(params, dtrain, num_boost_round, valid_sets=dvalid, feval=evalerror, verbose_eval=100, early_stopping_rounds=100) best_trees.append(bst.best_iteration) cv_pred += bst.predict(X_test, num_iteration=bst.best_iteration) cv_train[validate] += bst.predict(X_validate) score = Gini(label_validate, cv_train[validate]) print(score) fold_scores.append(score) cv_pred /= NFOLDS final_cv_train += cv_train final_cv_pred += cv_pred print("cv score:") print(Gini(train_label, cv_train)) print("current score:", Gini(train_label, final_cv_train / (params['seed'] + 1.)), params['seed']+1) print(fold_scores) print(best_trees, np.mean(best_trees)) x_score.append(Gini(train_label, cv_train)) print(x_score) pd.DataFrame({'id': test_id, 'target': final_cv_pred / 16.}).to_csv('data/output/optuna_lgbm3_pred_avg_2.csv', index=False)
pd.DataFrame({'id': train_id, 'target': final_cv_train / 16.})
pandas.DataFrame
# Author: <NAME>, PhD # University of Los Angeles California import os import sys import re import tkinter as tk from tkinter import ttk from tkinter import filedialog import matplotlib matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib import pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats from scipy import optimize from itertools import groupby # from https://gist.github.com/walkermatt/2871026 from threading import Timer def debounce(wait): """ Decorator that will postpone a functions execution until after wait seconds have elapsed since the last time it was invoked. """ def decorator(fn): def debounced(*args, **kwargs): def call_it(): fn(*args, **kwargs) try: debounced.t.cancel() except(AttributeError): pass debounced.t = Timer(wait, call_it) debounced.t.start() return debounced return decorator ############################################################################# # --------- Natural Abundance Correction CLASS -----------------------------# ############################################################################# class NAProcess: # Adapted from IsoCor code (https://github.com/MetaSys-LISBP/IsoCor) ################## ## Init and setup ################## def __init__(self, entry, atomTracer="H", purityTracer=[0, 1], FAMES=True, CHOL=False): self.NaturalAbundanceDistributions = self.__getNaturalAbundanceDistributions() self.formula = self.getFAFormulaString(entry, FAMES, CHOL) self.elementsDict = self.parseFormula(self.formula) self.atomTracer = atomTracer self.purityTracer = purityTracer self.correctionMatrix = self.computeCorrectionMatrix(self.elementsDict, self.atomTracer, self.NaturalAbundanceDistributions, purityTracer) def getFAFormulaString(self, entry, FAMES, CHOL=False): ''' Return formula string e.g.: C3H2O3''' regex = "C([0-9]+):([0-9]+)" carbon,doubleBond = [int(val) for val in re.findall(regex, entry)[0]] hydrogen = 3+(carbon-2)*2+1-2*doubleBond oxygen = 2 silicon = 0 if (FAMES): carbon=carbon+1 hydrogen=hydrogen-1+3 if (CHOL): carbon, hydrogen, oxygen, silicon = 30, 54, 1, 1 return "".join(["".join([letter,str(n)]) for [letter,n] in [ ["C", carbon], ["H", hydrogen], ["Si", silicon], ["O", oxygen]] if n>0]) def parseFormula(self, formula): """ Parse the elemental formula and return the number of each element in a dictionnary d={'El_1':x,'El_2':y,...}. """ regex = f"({'|'.join(self.NaturalAbundanceDistributions.keys())})([0-9]{{0,}})" elementDict = dict((element, 0) for element in self.NaturalAbundanceDistributions.keys()) for element,n in re.findall(regex, formula): if n: elementDict[element] += int(n) else: elementDict[element] += 1 return elementDict def __getNaturalAbundanceDistributions(self): '''Return a dictionary of the isotopic proportions at natural abundance desribed in https://www.ncbi.nlm.nih.gov/pubmed/27989585''' H1, H2 = 0.999885, 0.000115 C12, C13 = 0.9893, 0.0107 N14, N15 = 0.99632, 0.00368 O16, O17, O18 = 0.99757, 0.00038, 0.00205 Si28, Si29, Si30 = 0.922297, 0.046832, 0.030872 S32, S33, S34, S36 = 0.9493, 0.0076, 0.0429, 0.0002 return {'H': np.array([H1, H2]), # hydrogen 'C': np.array([C12, C13]), # carbon 'N': np.array([N14, N15]), # nitrogen 'O': np.array([O16, O17, O18]), # oxygen 'Si': np.array([Si28, Si29, Si30]), # silicon 'S': np.array([S32, S33, S34, S36])} # sulphur def __calculateMassDistributionVector(self, elementDict, atomTracer, NADistributions): """ Calculate a mass distribution vector (at natural abundancy), based on the elemental compositions of metabolite. The element corresponding to the isotopic tracer is not taken into account in the metabolite moiety. """ result = np.array([1.]) for atom,n in elementDict.items(): if atom not in [atomTracer]: for i in range(n): result = np.convolve(result, NADistributions[atom]) return result def computeCorrectionMatrix(self, elementDict, atomTracer, NADistributions, purityTracer): # calculate correction vector used for correction matrix construction # it corresponds to the mdv at natural abundance of all elements except the # isotopic tracer correctionVector = self.__calculateMassDistributionVector(elementDict, atomTracer, NADistributions) # check if the isotopic tracer is present in formula try: nAtomTracer = elementDict[atomTracer] except: print("The isotopic tracer must to be present in the metabolite formula!") tracerNADistribution = NADistributions[atomTracer] m = 1+nAtomTracer*(len(tracerNADistribution)-1) c = len(correctionVector) if m > c + nAtomTracer*(len(tracerNADistribution)-1): print("There might be a problem in matrix size.\nFragment does not contains enough atoms to generate this isotopic cluster.") if c < m: # padd with zeros correctionVector.resize(m) # create correction matrix correctionMatrix = np.zeros((m, nAtomTracer+1)) for i in range(nAtomTracer+1): column = correctionVector[:m] for na in range(i): column = np.convolve(column, purityTracer)[:m] for nb in range(nAtomTracer-i): column = np.convolve(column, tracerNADistribution)[:m] correctionMatrix[:,i] = column return correctionMatrix ################## ## Data processing ################## def _computeCost(self, currentMID, target, correctionMatrix): """ Cost function used for BFGS minimization. return : (sum(target - correctionMatrix * currentMID)^2, gradient) """ difference = target - np.dot(correctionMatrix, currentMID) # calculate sum of square differences and gradient return (np.dot(difference, difference), np.dot(correctionMatrix.transpose(), difference)*-2) def _minimizeCost(self, args): ''' Wrapper to perform least-squares optimization via the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm, with an explicit lower boundary set to zero to eliminate any potential negative fractions. ''' costFunction, initialMID, target, correctionMatrix = args res = optimize.minimize(costFunction, initialMID, jac=True, args=(target, correctionMatrix), method='L-BFGS-B', bounds=[(0., float('inf'))]*len(initialMID), options={'gtol': 1e-10, 'eps': 1e-08, 'maxiter': 15000, 'ftol': 2.220446049250313e-09, 'maxcor': 10, 'maxfun': 15000}) return res def correctForNaturalAbundance(self, dataFrame, method="LSC"): ''' Correct the Mass Isotope Distributions (MID) from a given dataFrame. Method: SMC (skewed Matrix correction) / LSC (Least Squares Skewed Correction) ''' correctionMatrix = self.computeCorrectionMatrix(self.elementsDict, self.atomTracer, self.NaturalAbundanceDistributions, self.purityTracer) nRows, nCols = correctionMatrix.shape # ensure compatible sizes (will extend data) if nCols<dataFrame.shape[1]: print("The measure MID has more clusters than the correction matrix.") else: dfData = np.zeros((len(dataFrame), nCols)) dfData[:dataFrame.shape[0], :dataFrame.shape[1]] = dataFrame.values if method == "SMC": # will mltiply the data by inverse of the correction matrix correctionMatrix = np.linalg.pinv(correctionMatrix) correctedData = np.matmul(dfData, correctionMatrix.transpose()) # flatten unrealistic negative values to zero correctedData[correctedData<0] = 0 elif method == "LSC": # Prepare multiprocessing optimization targetMIDList = dfData.tolist() initialMID = np.zeros_like(targetMIDList[0]) argsList = [(self._computeCost, initialMID, targetMID, correctionMatrix) for targetMID in targetMIDList] # minimize for each MID allRes = [self._minimizeCost(args) for args in argsList] correctedData = np.vstack([res.x for res in allRes]) return pd.DataFrame(columns=dataFrame.columns, data=correctedData[:, :dataFrame.shape[1]]) ############################################################################# # --------- DATA OBJECT CLASS ----------------------------------------------# ############################################################################# class MSDataContainer: ################## ## Init and setup ################## def __init__(self, fileNames, internalRef="C19:0", tracer="H", tracerPurity=[0.00, 1.00]): assert len(fileNames)==2 , "You must choose 2 files!" self.internalRef = internalRef self._cholesterol = False self.tracer = tracer self.tracerPurity = tracerPurity self.NACMethod = "LSC" # least squares skewed matrix correction self.dataFileName, self.templateFileName = self.__getDataAndTemplateFileNames(fileNames) self._baseFileName = os.path.basename(self.dataFileName).split('.')[0] self.pathDirName = os.path.dirname(self.dataFileName) self.__regexExpression = {"Samples": '^(?!neg|S\d+$)', "colNames": '(\d+)_(\d+)(?:\.\d+)?_(\d+)'} self.dataDf = self._computeFileAttributes() self.__standardDf_template = self.__getStandardsTemplateDf() self.volumeMixTotal = 500 self.volumeMixForPrep = 100 self.volumeStandards = [1, 5, 10, 20, 40, 80] self.standardDf_nMoles = self.computeStandardMoles() # for normalization # volume (uL) in which the original sample was diluted samplesLoc = self.dataDf.SampleName.str.match(self.__regexExpression["Samples"], na=False) self.numberOfSamples = len(self.dataDf.loc[samplesLoc]) self.volumesOfDilution = [750]*self.numberOfSamples # volume (uL) of sample used in MS self.volumesOfSampleSoupUsed = [5]*self.numberOfSamples self.weightNormalization = False def __getDataAndTemplateFileNames(self, fileNames, templateKeyword="template"): '''Classify files (data or template) based on fileName''' dataFileName = [fileName for fileName in fileNames if templateKeyword not in fileName][0] templateFileName = [fileName for fileName in fileNames if fileName != dataFileName][0] return [dataFileName, templateFileName] def __parseIon(self, ion): ionID, ionMass, ionDescription = re.findall(self.__regexExpression["colNames"], ion)[0] return {"id": int(ionID), "mass": int(ionMass), "description": ionDescription} def __parseSampleColumns(self, columnNames): # indexed ions from columns ions = map(lambda name: self.__parseIon(name), columnNames) return list(ions)#[self.__getIndexedIon(ion, i) for i,ion in enumerate(ions)] def __isLabeledExperiment(self, ionsDetected): # if more than 40% of the ions are duplicate, it probably means that the file is # from a labeled experimnets (lots of fragments for each ion) ionsList = list(map(lambda ion: ion["description"], ionsDetected)) uniqueIons = set(ionsList) return len(uniqueIons)/len(ionsList) < 0.6 def __getIonParentedGroups(self, ionsDetected): # groupby parental ions (save initial index for sorting later) groupedIons = groupby(enumerate(ionsDetected), key=lambda ion: ion[1]['description']) groupsIntraSorted = list(map(lambda group: (group[0], sorted(group[1], key=lambda ion: ion[1]['mass'])), groupedIons)) # split groups if most abundant ion present finalGroups = [] for key,group in groupsIntraSorted: # only process groups that have more than 1 ion if len(group) != 1: masses = np.array([ion[1]["mass"] for ion in group]) differences = masses[1:]-masses[0:-1] idx = np.where(differences != 1) # and that have non unitary jumps in differences from ion to ion if len(idx[0])>0: start = 0 for i in range(len(idx[0])+1): if i < len(idx[0]): end = idx[0][i]+1 subgroup = group[start:end] start = idx[0][i] + 1 finalGroups.append((f"{key}-{i}", subgroup)) else: subgroup = group[start:] finalGroups.append((f"{key}-{i}", subgroup)) else: finalGroups.append((key, group)) else: finalGroups.append((key, group)) return finalGroups def _computeFileAttributes(self): # extract columns columnsOfInterest = pd.read_excel(self.dataFileName, nrows=2).filter(regex=self.__regexExpression["colNames"]).columns # load data and template files and isolate data part df = pd.read_excel(self.dataFileName, skiprows=1) templateMap = pd.read_excel(self.templateFileName, sheet_name="MAP") # check if cholesterol experiment letter = df["Name"][0][0] # F or C df_Meta,df_Data = self.__getOrderedDfBasedOnTemplate(df, templateMap, letter) if letter == "C": self._cholesterol = True # assign columns names ionsDetected = self.__parseSampleColumns(columnsOfInterest) self.dataColNames = [f"C{ion['description'][:2]}:{ion['description'][2:]} ({ion['mass']})" for ion in ionsDetected] self.internalRefList = self.dataColNames self.experimentType = "Not Labeled" # Check if this is a labeled experiment. # If it is, need to rework the columns names by adding info of non parental ion if self.__isLabeledExperiment(ionsDetected): self.experimentType = "Labeled" # split groups if most abundant ion present finalGroups = self.__getIonParentedGroups(ionsDetected) if letter == "F": startM = 0 else: assert len(finalGroups) == 2, "For cholesterol experiment we only expect 2 parental ions!" startM = -2 sortedIonNames = [(idx, f"C{ion['description'][:2]}:{ion['description'][2:]} ({group[0][1]['mass']}) M.{n}") for (key,group) in finalGroups for n,(idx, ion) in enumerate(group)] orderedIdx,orderedIonNames = zip(*sortedIonNames) # reorder the columns by ions df_Data = df_Data.iloc[:, list(orderedIdx)] self.dataColNames = orderedIonNames # only parental ions for internalRefList self.internalRefList = [ f"C{carbon.split('-')[0][:2]}:{carbon.split('-')[0][2:]} ({group[0][1]['mass']})" for (carbon, group) in finalGroups] df_Data.columns = self.dataColNames # get sample meta info from template file df_TemplateInfo = self.__getExperimentMetaInfoFromMAP(templateMap) assert len(df_TemplateInfo)==len(df_Data), \ f"The number of declared samples in the template (n={len(df_TemplateInfo)}) does not match the number of samples detected in the data file (n={len(df_Data)})" # save the number of columns (meta info) before the actual data self._dataStartIdx = len(df_Meta.columns)+len(df_TemplateInfo.columns) if (letter == "F") | (self.experimentType == "Not Labeled"): dataDf = pd.concat([df_Meta, df_TemplateInfo, df_Data.fillna(0)], axis=1) else: # if chol experiment, remove the M.-2 and M.-1 dataDf = pd.concat([df_Meta, df_TemplateInfo, df_Data.iloc[:, 2:].fillna(0)], axis=1) # but save a copy with everything for posterity self.dataDf_chol = pd.concat([df_Meta, df_TemplateInfo, df_Data.fillna(0)], axis=1) return dataDf def __getOrderedDfBasedOnTemplate(self, df, templateMap, letter="F", skipCols=7): '''Get new df_Data and df_Meta based on template''' # reorder rows based on template and reindex with range newOrder = list(map(lambda x: f"{letter}{x.split('_')[1]}", templateMap.SampleID[templateMap.SampleName.dropna().index].values))[:len(df)] df.index=df["Name"] df = df.reindex(newOrder) df.index = list(range(len(df))) df_Meta = df[["Name", "Data File"]] df_Data = df.iloc[:, skipCols:] # 7 first cols are info return df_Meta, df_Data def __getExperimentMetaInfoFromMAP(self, templateMap): '''Return the meta info of the experiment''' # keep only rows with declared names declaredIdx = templateMap.SampleName.dropna().index templateMap = templateMap.loc[declaredIdx] templateMap.index = range(len(templateMap)) # in case there were missing values # fill in missing weights with 1 templateMap.loc[templateMap.SampleWeight.isna(), "SampleWeight"]=1 return templateMap[["SampleID", "SampleName", "SampleWeight", "Comments"]] def __getStandardsTemplateDf(self, sheetKeyword="STANDARD"): '''Loads the correct sheet for standard and returns it''' sheetName = f"{sheetKeyword}_{'_'.join(self.experimentType.upper().split(' '))}" templateStandard = pd.read_excel(self.templateFileName, sheet_name=sheetName) return templateStandard def __makeResultFolder(self): if self._cholesterol: suffix = "-CHOL" else: suffix = "" directory = f"{self.pathDirName}/results-{self._baseFileName}{suffix}" if not os.path.exists(directory): os.mkdir(directory) return directory ################## ## Analysis and Updates ################## def updateInternalRef(self, newInternalRef): '''Update FAMES chosen as internal reference and normalize data to it''' print(f"Internal Reference changed from {self.internalRef} to {newInternalRef}") self.internalRef = newInternalRef self.dataDf_norm = self.computeNormalizedData() def updateStandards(self, volumeMixForPrep, volumeMixTotal, volumeStandards): self.volumeMixForPrep = volumeMixForPrep self.volumeMixTotal = volumeMixTotal self.volumeStandards = volumeStandards self.standardDf_nMoles = self.computeStandardMoles() def computeStandardMoles(self): '''Calculate nMoles for the standards''' template = self.__standardDf_template.copy() template["Conc in Master Mix (ug/ul)"] = template["Stock conc (ug/ul)"]*template["Weight (%)"]/100*self.volumeMixForPrep/self.volumeMixTotal # concentration of each carbon per standard volume for ul in self.volumeStandards: template[f"Std-Conc-{ul}"]=ul*(template["Conc in Master Mix (ug/ul)"]+template["Extra"]) # nMol of each FAMES per standard vol for ul in self.volumeStandards: template[f"Std-nMol-{ul}"] = 1000*template[f"Std-Conc-{ul}"]/template["MW"] # create a clean template with only masses and carbon name templateClean = pd.concat([template.Chain, template.filter(like="Std-nMol")], axis=1).transpose() templateClean.columns = [f"C{chain} ({int(mass)})" for chain,mass in zip(self.__standardDf_template.Chain, self.__standardDf_template.MW)] templateClean = templateClean.iloc[1:] return templateClean def getStandardAbsorbance(self): '''Get normalized absorbance data for standards''' matchedLocations = self.dataDf_norm.SampleName.str.match('S[0-9]+', na=False) return self.dataDf_norm.loc[matchedLocations] def updateTracer(self, newTracer): self.tracer = newTracer print(f"The tracer has been updated to {newTracer}") self.computeNACorrectionDf() def updateTracerPurity(self, newPurity): self.tracerPurity = newPurity self.computeNACorrectionDf() def updateNACMethod(self, newMethod): self.NACMethod = newMethod print(f"The correction method for natural abundance has been updated to {newMethod}") self.computeNACorrectionDf() def updateVolumesOfSampleDilution(self, newVolumeOfDilution, newVolumeOfSampleUsed, useValueDilution=True, useValueSample=True): if useValueDilution: self.volumesOfDilution = [newVolumeOfDilution]*self.numberOfSamples if useValueSample: self.volumesOfSampleSoupUsed = [newVolumeOfSampleUsed]*self.numberOfSamples print(f"The volumes used for normalization have been updated:\n\tVolume of dilution: {self.volumesOfDilution}\n\tVolume of sample used: {self.volumesOfSampleSoupUsed}") def updateVolumeOfDilutionFromTemplateFile(self, columnName, activated, variable="dilution", backupValueDilution=750, backupValueSample=5, useBackupDilution=True, useBackupSample=True): templateMap = pd.read_excel(self.templateFileName, sheet_name="MAP") declaredIdx = templateMap.SampleName.dropna()[templateMap.SampleName.dropna().str.match(self.__regexExpression["Samples"], na=False)].index if ((variable == "dilution") & (activated)): self.volumesOfDilution = templateMap.loc[declaredIdx, columnName].values print(f"The dilution volumes used for normalization have been updated from template to {self.volumesOfDilution}") assert len(self.volumesOfDilution[~np.isnan(self.volumesOfDilution)])==len(declaredIdx),\ f"The number of volume of dilutions declared in the Template file (n={len(self.volumesOfDilution[~np.isnan(self.volumesOfDilution)])}) is different than the number of samples declared (n={len(declaredIdx)})" elif ((variable == "sample") & (activated)): self.volumesOfSampleSoupUsed = templateMap.loc[declaredIdx, columnName].values print(f"The sample volumes used for normalization have been updated from template to {self.volumesOfSampleSoupUsed}") assert len(self.volumesOfSampleSoupUsed[~np.isnan(self.volumesOfSampleSoupUsed)])==len(declaredIdx),\ f"The number of sample volumes declared in the Template file (n={len(self.volumesOfSampleSoupUsed[~np.isnan(self.volumesOfSampleSoupUsed)])}) is different than the number of samples declared (n={len(declaredIdx)})" else: self.updateVolumesOfSampleDilution(backupValueDilution, backupValueSample, useBackupDilution, useBackupSample) def updateNormalizationType(self, newType): self.weightNormalization = bool(newType) if (self.weightNormalization): typeNorm = "by total weight" else: typeNorm = "by relative weight" print(f"The normalization when computing the data has been changed to '{typeNorm}'") # Debouncing active for computing the NA correction. # Makes for a smoother user experience (no lagging) when ion purity are changed int he textbox # Note that this means that the function will be called with the specified delay after parameters are changed @debounce(1.1) def computeNACorrectionDf(self): self.dataDf_corrected = self.correctForNaturalAbundance() self.dataDf_labeledProportions = self.calculateLabeledProportionForAll() def computeNormalizedData(self): '''Normalize the data to the internal ref''' if self.experimentType == "Not Labeled": dataDf_norm = self.dataDf.copy() dataDf_norm.iloc[:, self._dataStartIdx:] = dataDf_norm.iloc[:, self._dataStartIdx:].divide(dataDf_norm[self.internalRef], axis=0) else: sumFracDf = self.calculateSumIonsForAll() sumFracDf = sumFracDf.divide(sumFracDf[self.internalRef], axis=0) # sumFracDf = pd.DataFrame(columns=sumFracDf.columns, data=sumFracDf.values/sumFracDf[self.internalRef].values[:, np.newaxis]) dataDf_norm =
pd.concat([self.dataDf.iloc[:, :self._dataStartIdx], sumFracDf], axis=1)
pandas.concat
import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical import time import multiprocessing as mp start_time=time.time() def deepl(location1,location2): data=pd.read_csv(location1) data_columns=data.columns xtrain = data[data_columns[data_columns != 'typeoffraud']] ytrain=data['typeoffraud'] data1=pd.read_csv(location2) data1_columns=data1.columns xtest = data1[data1_columns[data1_columns != 'typeoffraud']] ytest=data1['typeoffraud'] xtrain_norm = (xtrain - xtrain.mean()) / xtrain.std() xtest_norm = (xtest - xtest.mean()) / xtest.std() n_cols = xtrain_norm.shape[1] ytrain=to_categorical(ytrain) ytest=to_categorical(ytest) num_classes=ytrain.shape[1] def classification_model(): # create model model = Sequential() model.add(Dense(100,activation='relu', input_shape=(n_cols,))) model.add(Dense(100, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # compile model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model # build the model model = classification_model() # fit the model model.fit(xtrain_norm, ytrain, validation_data=(xtest_norm, ytest), epochs=10, verbose=1) # evaluate the model # test_loss,test_acc=model.evaluate(xtest_norm, ytest) test_labels_p=model.predict(xtest_norm) test_labels_p=np.argmax(test_labels_p,axis=1) rel=list(zip(test_labels_p)) pp=pd.DataFrame(data=rel,columns=['label']) pp.to_csv('label.csv',index=False) ################################################################################################################ def maketags(location2,location3): e=pd.read_csv(location2) tags=[] ids=[] tags1=[] ids1=[] for i,l in enumerate(e['typeoffraud']): if l==1 or l==2 or l==3: ids.append(e.iloc[i,1]) tags.append(e.iloc[i,4]) if l==4 or l==5 or l==6: ids1.append(e.iloc[i,1]) tags1.append(e.iloc[i,4]) rel=list(zip(ids,tags)) pp=pd.DataFrame(data=rel,columns=['ids','tags']) pp.to_csv('labelofhead.csv',index=False) rel1=list(zip(ids1,tags1)) pp1=
pd.DataFrame(data=rel1,columns=['ids','tags'])
pandas.DataFrame
""" This module tests high level dataset API functions which require entire datasets, indices, etc """ from collections import OrderedDict import pandas as pd import pandas.testing as pdt from kartothek.core.dataset import DatasetMetadata from kartothek.core.index import ExplicitSecondaryIndex def test_dataset_get_indices_as_dataframe_partition_keys_only( dataset_with_index, store_session ): expected = pd.DataFrame( OrderedDict([("P", [1, 2])]), index=pd.Index(["P=1/cluster_1", "P=2/cluster_2"], name="partition"), ) ds = dataset_with_index.load_partition_indices() result = ds.get_indices_as_dataframe(columns=dataset_with_index.partition_keys) pdt.assert_frame_equal(result, expected) def test_dataset_get_indices_as_dataframe(dataset_with_index, store_session): expected = pd.DataFrame( OrderedDict([("L", [1, 2]), ("P", [1, 2])]), index=pd.Index(["P=1/cluster_1", "P=2/cluster_2"], name="partition"), ) ds = dataset_with_index.load_partition_indices() ds = ds.load_index("L", store_session) result = ds.get_indices_as_dataframe() pdt.assert_frame_equal(result, expected) def test_dataset_get_indices_as_dataframe_duplicates(): ds = DatasetMetadata( "some_uuid", indices={ "l_external_code": ExplicitSecondaryIndex( "l_external_code", {"1": ["part1", "part2"], "2": ["part1", "part2"]} ), "p_external_code": ExplicitSecondaryIndex( "p_external_code", {"1": ["part1"], "2": ["part2"]} ), }, ) expected = pd.DataFrame( OrderedDict( [ ("p_external_code", ["1", "1", "2", "2"]), ("l_external_code", ["1", "2", "1", "2"]), ] ), index=pd.Index(["part1", "part1", "part2", "part2"], name="partition"), ) result = ds.get_indices_as_dataframe()
pdt.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
import os import pandas as pd import numpy as np import pickle import argparse ## torch packages import torch from transformers import BertTokenizer,AutoTokenizer import re ## for visualisation import matplotlib.pyplot as plt import collections ## custom packages from extract_lexicon import get_arousal_vec,get_valence_vec,get_dom_vec from utils import flatten_list,tweet_preprocess from label_dict import ed_label_dict as emo_map from label_dict import ed_emo_dict as emo_map_inverse def get_one_hot(emo, class_size): targets = np.zeros(class_size) emo_list = [int(e) for e in emo.split(",")] for e in emo_list: targets[e] = 1 return list(targets) def get_speaker_info(speaker_id): if int(speaker_id) % 2 == 0: speaker = 1 # listener utterance else: speaker = 0 # speaker utterance return speaker def data_reader(data_folder, datatype,save=True): ''' Reads the raw data from EmpatheticDialogues dataset, preprocess the data and save it in a pickle file ''' print("Datatype:",datatype) ongoing_utterance_list = [] ids = [] speaker_info = [] data = {'prompt':[],'utterance_data_list':[],'utterance_data':[],'utterance_id':[],"speaker_info":[],'emotion_label':[],'emotion':[]} df = open(os.path.join(data_folder, f"{datatype}.csv")).readlines() for i in range(2,len(df)): # starts with 2 becauase df[0] is the coloumn headers, so i-1 i.e. 2-1=1 will start from the actual data prev_utterance_parts = df[i-1].strip().split(",") current_utterance_parts = df[i].strip().split(",") if prev_utterance_parts[0] == current_utterance_parts[0]: #to detect if its the ongoing conversation or the next conversation prev_utterance_str = prev_utterance_parts[5].replace("_comma_", ",") #replace _comma_ for utterance ongoing_utterance_list.append(prev_utterance_str) ids.append((prev_utterance_parts[0],prev_utterance_parts[1])) speaker_info.append(get_speaker_info(prev_utterance_parts[1])) if i == len(df)-1 : # reaches the end of the dataset and this adds the last utterance to the ongoing utterance list current_utterance_str = current_utterance_parts[5].replace("_comma_", ",") #replace _comma_ for utterance emotion_label_str = current_utterance_parts[2] prompt_str = current_utterance_parts[3].replace("_comma_", ",") emotion_label_int = emo_map[current_utterance_parts[2]] ongoing_utterance_list.append(current_utterance_str) ids.append((current_utterance_parts[0],current_utterance_parts[1])) speaker_info.append(get_speaker_info(current_utterance_parts[1])) data["prompt"].append(prompt_str) data["utterance_data_list"].append(ongoing_utterance_list) data["utterance_data"].append("".join(ongoing_utterance_list)) data["utterance_id"].append(ids) data["speaker_info"].append(speaker_info) data["emotion_label"].append(emotion_label_str) data["emotion"].append(emotion_label_int) else: # condition where it reaches the end of a conversation, so the prev_utterance was part of the previous conversation which is added to the ongoing utterance list prev_utterance_str = prev_utterance_parts[5].replace("_comma_", ",") #replace _comma_ for utterance emotion_label_str = prev_utterance_parts[2] prompt_str = prev_utterance_parts[3].replace("_comma_", ",") emotion_label_int = emo_map[prev_utterance_parts[2]] ongoing_utterance_list.append(prev_utterance_str) ids.append((prev_utterance_parts[0],prev_utterance_parts[1])) speaker_info.append(get_speaker_info(prev_utterance_parts[1])) data["prompt"].append(prompt_str) data["utterance_data_list"].append(ongoing_utterance_list) data["utterance_data"].append("".join(ongoing_utterance_list)) data["utterance_id"].append(ids) data["speaker_info"].append(speaker_info) data["emotion_label"].append(emotion_label_str) data["emotion"].append(emotion_label_int) ongoing_utterance_list = [] ongoing_utterance_inter_list = [] ids = [] speaker_info = [] processed_data = {"prompt":data["prompt"],"utterance_data_list":data["utterance_data_list"],"utterance_data":data["utterance_data"],"speaker_info":data["speaker_info"],"emotion":data["emotion"]} return processed_data def tokenize_data(processed_data,tokenizer_type="bert-base-uncased"): tokenizer = AutoTokenizer.from_pretrained(tokenizer_type) tokenized_inter_speaker, tokenized_inter_listener = [],[] tokenized_total_data,tokenized_speaker,tokenized_listener = [],[],[] tokenized_list_data,tokenized_turn_data = [],[] arousal_data,valence_data,dom_data = [],[],[] for u,val_utterance in enumerate(processed_data["utterance_data_list"]): #val utterance is one conversation which has multiple utterances tokenized_i= tokenizer.batch_encode_plus(val_utterance,add_special_tokens=False)["input_ids"] speaker_utterance,listener_utterance,speaker_iutterance,listener_iutterance,total_utterance = [101],[101],[101],[101],[101] total_utterance_list = [] for s,val_speaker in enumerate(tokenized_i): ## for each utterance inside a conversation if s%2 == 0: # when person is the "speaker" speaker_utterance.extend(val_speaker+[102]) speaker_iutterance.extend(val_speaker+[102]) listener_iutterance.extend([0 for _ in range(len(val_speaker))]+[102]) # else: listener_utterance.extend(val_speaker+[102]) listener_iutterance.extend(val_speaker+[102]) speaker_iutterance.extend([0 for _ in range(len(val_speaker))]+[102]) total_utterance.extend(val_speaker+[102]) total_utterance_list.append(val_speaker+[102]) turn_data = [[101]+a+b for a, b in zip(total_utterance_list[::2],total_utterance_list[1::2])] # turnwise data, [[s1],[l1],[s2],[l2],..] --> [[s1;l1],[s2;l2],..] total_utterance_list = [[101]+i for i in total_utterance_list] #appending 101 to every utterance start arousal_vec = get_arousal_vec(tokenizer,total_utterance) valence_vec = get_valence_vec(tokenizer,total_utterance) dom_vec = get_dom_vec(tokenizer,total_utterance) tokenized_inter_speaker.append(speaker_iutterance) tokenized_inter_listener.append(listener_iutterance) tokenized_speaker.append(speaker_utterance) tokenized_listener.append(listener_utterance) tokenized_total_data.append(total_utterance) tokenized_list_data.append(total_utterance_list) tokenized_turn_data.append(turn_data) arousal_data.append(arousal_vec) valence_data.append(valence_vec) dom_data.append(dom_vec) assert len(tokenized_list_data) == len(tokenized_turn_data) ==len(tokenized_inter_speaker) == len(tokenized_inter_listener) == len(tokenized_total_data) ==len(tokenized_listener) ==len(tokenized_speaker) == len(processed_data["emotion"]) == len(tokenized_total_data) == len(arousal_data) == len(valence_data) == len(dom_data) save_data = {"utterance_data_list":tokenized_list_data,"utterance_data":tokenized_total_data,"utterance_data_str":processed_data["utterance_data_list"],"speaker_idata":tokenized_inter_speaker,"listener_idata":tokenized_inter_listener,"speaker_data":tokenized_speaker,"listener_data":tokenized_listener,"turn_data":tokenized_turn_data,"arousal_data":arousal_data,"valence_data":valence_data,"dom_data":dom_data,"emotion":processed_data["emotion"]} return save_data def go_emotions_preprocess(tokenizer_type="bert-base-uncased"): data_dict = {} data_home = "./.data/goemotions/" nlabel = 28 for datatype in ["train","valid","test"]: datafile = data_home + datatype + ".tsv" ## cause => tweet, changed for uniformity sake data = pd.read_csv(datafile, sep='\t',names=["cause","emotion","user"]) emotion,cause = [],[] for i,emo in enumerate(data["emotion"]): emotion.append(get_one_hot(emo,nlabel)) cause.append(data["cause"][i]) print("Tokenizing data") tokenizer = AutoTokenizer.from_pretrained(tokenizer_type) tokenized_cause =tokenizer.batch_encode_plus(cause).input_ids processed_data = {} maximum_utterance = max([len(i) for i in tokenized_cause]) average_utterance = np.mean([len(i) for i in tokenized_cause]) print(len(cause),len(emotion),len(tokenized_cause)) print("Max utterance length:",maximum_utterance,"Avg utterance length:",average_utterance) ## changed prompt --> cause for uniformity processed_data["tokenized_cause"] = tokenized_cause processed_data["emotion"] = emotion processed_data["cause"] = cause arousal_vec,valence_vec,dom_vec = [],[],[] for cause_i in tokenized_cause: arousal_vec.append(get_arousal_vec(tokenizer,cause_i)) valence_vec.append(get_valence_vec(tokenizer,cause_i)) dom_vec.append(get_dom_vec(tokenizer,cause_i)) processed_data["arousal_data"] = arousal_vec processed_data["valence_data"] = valence_vec processed_data["dom_data"] = dom_vec processed_data =
pd.DataFrame.from_dict(processed_data)
pandas.DataFrame.from_dict
import streamlit as st import torch import torchvision from detectron2.utils.logger import setup_logger import numpy as np import os, json, cv2, random from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog from PIL import Image import pandas as pd import requests import plotly.express as px import warnings warnings.filterwarnings("ignore") from streamlit_folium import folium_static import folium setup_logger() title = '<p style="font-family:monospace; color:orange; font-size: 40px;"><b>Parking Space Detection using Detectron2</b></p>' st.markdown(title,unsafe_allow_html=True) st.sidebar.subheader('**Upload a File**') file_upload = st.sidebar.file_uploader("Choose a Image",type=['png','jpeg','jpg']) if file_upload is not None: #get file details file_details = {"filename":file_upload.name, "filetype":file_upload.type,"filesize":file_upload.size} st.sidebar.markdown('**File Details**') st.sidebar.write(file_details) st.subheader('**Input Image**') file_bytes = np.asarray(bytearray(file_upload.read()), dtype=np.uint8) opencv_image = cv2.imdecode(file_bytes, 1) st.image(opencv_image, channels="BGR",width=380) st.write('\n') cfg = get_cfg() cfg.MODEL.DEVICE = "cpu" cfg.merge_from_file('config.yml') cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.3 cfg.MODEL.WEIGHTS = 'model_final.pth' predictor = DefaultPredictor(cfg) outputs = predictor(opencv_image) c,k=0,0 for i in outputs["instances"].pred_classes: if i==1: c=c+1 elif i==2: k=k+1 st.subheader('**Inferenced Image**') v = Visualizer(opencv_image[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) out = v.draw_instance_predictions(outputs["instances"].to("cpu")) st.image(out.get_image()[:, :, ::-1],caption='Processed Image',width=380) st.write('**Inferenced Details**') st.markdown(f"Available Parking Space: {c}") st.markdown(f"Filled Parking Space: {k}") # Visualize st.subheader('**Visualize**') d = {'X_axis': ['Available Parking Space','Filled Parking Space'], 'Y_axis': [c,k]} df =
pd.DataFrame(d)
pandas.DataFrame
import scipy.optimize as sco from pandas_datareader import data import pandas as pd import numpy as np from scipy.stats import norm # declare tickers& weights (3m) portfolio_tickers = ['SPY', 'AMZN', 'AAPL'] weights = [0.5, 0.5, 0.0] start_date = '2021-07-01' end_date = '2021-09-30' panel_data_2y = data.DataReader( portfolio_tickers, 'yahoo', start_date, end_date) closes_3m = panel_data_2y[['Close', 'Adj Close']] closes_3m = closes_3m.loc[start_date: end_date] # portfolio returns return_series_adj = (closes_3m['Adj Close'].pct_change() + 1).cumprod() - 1 weighted_return_series_adj = weights * (return_series_adj) return_series_adj = weighted_return_series_adj.sum(axis=1) sector_etf = ['XLE', 'XLF', 'XLK', 'XLRE', 'XLY', 'XLI', 'XLB', 'XLC', 'XLV', 'XLP', 'XLU'] # start_date = '2021-07-01' # end_date = '2021-09-30' panel_data = data.DataReader(sector_etf, 'yahoo', start_date, end_date) sector_closes_3m = panel_data[['Close', 'Adj Close']] sector_closes_3m = sector_closes_3m.loc[start_date: end_date] weighted_closes = pd.DataFrame((weights * closes_3m["Close"]).sum(axis=1)) weighted_closes = weighted_closes.rename(columns={0: 'portfolio'}) all_closes_3m = sector_closes_3m["Close"].join(weighted_closes) return_series_close = (all_closes_3m.pct_change() + 1).cumprod() - 1 correlation = pd.DataFrame(return_series_close.corr().tail(1).round(3)) # correlation correlation = correlation.sort_values(by="portfolio", axis=1) top3_inverse_sectors = correlation.columns.tolist()[0:3] # top3_inverse_sectors # select 3 representative tickers by sectors; sector_dict = { 'XLB': ['LIN', 'ECL', 'GOLD'], 'XLC': ['GOOGL', 'FB', 'NFLX'], 'XLY': ['AMZN', 'TSLA', 'NKE'], 'XLP': ['KO', 'WMT', 'PEP'], 'XLE': ['XOM', 'CVX', 'PSX'], 'XLF': ['V', 'MA', 'JPM'], 'XLV': ['JNJ', 'PFE', 'UNH'], 'XLI': ['HON', 'GE', 'FDX'], 'XLR': ['AMT', 'CCI', 'PSA'], 'XLK': ['MSFT', 'AAPL', 'CRM'], 'XLU': ['NEE', 'DUK', 'XEL'] } inverse_sector_tickers = [] for t in top3_inverse_sectors: for x in sector_dict[t]: inverse_sector_tickers.append(x) # use 2y for rs start_date = '2019-01-01' end_date = '2020-12-31' panel_data = data.DataReader( inverse_sector_tickers, 'yahoo', start_date, end_date) sector_closes_2y = panel_data[['Adj Close']] sector_closes_2y = sector_closes_2y.loc[start_date: end_date] ########################################################### # portfolio_2y_return_series_adj ########################################################### # portfolio_tickers = ['SPY','AMZN','AAPL'] # weights = [0.5, 0.5, 0.0] # start_date = '2019-01-01' # end_date = '2020-12-31' panel_data = data.DataReader(portfolio_tickers, 'yahoo', start_date, end_date) closes_2y = panel_data[['Adj Close']] closes_2y = closes_2y.loc[start_date: end_date] # // return series for the period and plot the returns on a single chart. return_series_adj = (closes_2y['Adj Close'].pct_change() + 1).cumprod() - 1 ret_ax = return_series_adj.plot(figsize=(16, 9), title="Total Return") ret_ax.yaxis.set_major_formatter( FuncFormatter(lambda y, _: '{:.0%}'.format(y))) # portfolio returns weighted_return_series_adj_2y = weights * (return_series_adj) return_series_adj_2y = weighted_return_series_adj_2y.sum(axis=1) ########################################################### # Efficient Frontiner from Modern Portfolio Theory ########################################################### plt.style.use('fivethirtyeight') np.random.seed(777) get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") ########################################################### # Random Portfolios Generation def portfolio_annualised_performance(weights, mean_returns, cov_matrix): returns = np.sum(mean_returns*weights) * 252 std = np.sqrt(np.dot(weights.T, np.dot( cov_matrix, weights))) * np.sqrt(252) return std, returns ########################################################### # Efficient Frontier ########################################################### def neg_sharpe_ratio(weights, mean_returns, cov_matrix, risk_free_rate): p_var, p_ret = portfolio_annualised_performance( weights, mean_returns, cov_matrix) return -(p_ret - risk_free_rate) / p_var def max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate): num_assets = len(mean_returns) args = (mean_returns, cov_matrix, risk_free_rate) constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bound = (0.0, 1.0) bounds = tuple(bound for asset in range(num_assets)) result = sco.minimize(neg_sharpe_ratio, num_assets*[1./num_assets, ], args=args, method='SLSQP', bounds=bounds, constraints=constraints) return result def portfolio_volatility(weights, mean_returns, cov_matrix): return portfolio_annualised_performance(weights, mean_returns, cov_matrix)[0] def min_variance(mean_returns, cov_matrix): num_assets = len(mean_returns) args = (mean_returns, cov_matrix) constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bound = (0.0, 1.0) bounds = tuple(bound for asset in range(num_assets)) result = sco.minimize(portfolio_volatility, num_assets*[1./num_assets, ], args=args, method='SLSQP', bounds=bounds, constraints=constraints) return result def efficient_return(mean_returns, cov_matrix, target): num_assets = len(mean_returns) args = (mean_returns, cov_matrix) def portfolio_return(weights): return portfolio_annualised_performance(weights, mean_returns, cov_matrix)[1] constraints = ({'type': 'eq', 'fun': lambda x: portfolio_return(x) - target}, {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bounds = tuple((0, 1) for asset in range(num_assets)) result = sco.minimize(portfolio_volatility, num_assets*[ 1./num_assets, ], args=args, method='SLSQP', bounds=bounds, constraints=constraints) return result def efficient_frontier(mean_returns, cov_matrix, returns_range): efficients = [] for ret in returns_range: efficients.append(efficient_return(mean_returns, cov_matrix, ret)) return efficients def display_ef_with_selected(mean_returns, cov_matrix, risk_free_rate): max_sharpe = max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate) sdp, rp = portfolio_annualised_performance( max_sharpe['x'], mean_returns, cov_matrix) max_sharpe_allocation = pd.DataFrame( max_sharpe.x, index=table.columns, columns=['allocation']) max_sharpe_allocation.allocation = [ round(i*100, 2)for i in max_sharpe_allocation.allocation] max_sharpe_allocation = max_sharpe_allocation.T max_sharpe_allocation min_vol = min_variance(mean_returns, cov_matrix) sdp_min, rp_min = portfolio_annualised_performance( min_vol['x'], mean_returns, cov_matrix) min_vol_allocation = pd.DataFrame( min_vol.x, index=table.columns, columns=['allocation']) min_vol_allocation.allocation = [ round(i*100, 2)for i in min_vol_allocation.allocation] min_vol_allocation = min_vol_allocation.T an_vol = np.std(returns) * np.sqrt(252) an_rt = mean_returns * 252 ret_list = [round(rp, 2), round(sdp, 2), max_sharpe_allocation.iloc[0, 0], max_sharpe_allocation.iloc[0, 1], round( rp_min, 2), round(sdp_min, 2), min_vol_allocation.iloc[0, 0], min_vol_allocation.iloc[0, 1]] for i, txt in enumerate(table.columns): ret_list.append(round(an_rt[i], 2)) ret_list.append(round(an_vol[i], 2)) ret_list.append(pd.DataFrame(mean_returns).index.tolist()[0]) return ret_list ##################################################################### # content for each sector in ret_list ##################################################################### # Maximum Sharpe Ratio Portfolio Allocation # 1) Annualised Return: 0.39 # 2) Annualised Volatility: 0.29 # JPM portfolio # 3) allocation- sector ticker 6.81 # 4) allocation- portfolio 93.19 ##################################################################### # Minimum Volatility Portfolio Allocation # 5) Annualised Return: 0.36 # 6) Annualised Volatility: 0.28 # JPM portfolio # 7) allocation- sector ticker 28.11 # 8) allocation- portfolio 71.89 ##################################################################### # Individual Stock Returns and Volatility # 9) annuaised return- sector ticker; # 10) annualised volatility- sector ticker; # 11) annuaised return- portfolio; # 12) annualised volatility- portfolio; # 13) ticker_symbol ##################################################################### # 2y # portfolio_tickers = ['SPY','AMZN','AAPL'] start_date = '2019-01-01' end_date = '2020-12-31' panel_data = data.DataReader(portfolio_tickers, 'yahoo', start_date, end_date) closes_2y = panel_data[['Adj Close']] closes_2y = closes_2y.loc[start_date: end_date] weighted_closes_2y = pd.DataFrame( (weights * closes_2y["Adj Close"]).sum(axis=1)) weighted_closes_2y = weighted_closes_2y.reset_index() weighted_closes_2y = weighted_closes_2y.rename( columns={"Date": "date", 0: "adj_close"}) weighted_closes_2y["ticker"] = "portfolio" sector_res = [] for t in inverse_sector_tickers: panel_data = pd.DataFrame() t_data = data.DataReader(t, 'yahoo', start_date, end_date) t_data = t_data.loc[start_date: end_date] t_data = t_data[['Adj Close']] t_data = t_data.reset_index() t_data["ticker"] = t t_data = t_data.rename( columns={"Date": "date", t_data.columns[1]: "adj_close"}) panel_data = panel_data.append(t_data) panel_data = panel_data.append(weighted_closes_2y) df = panel_data.set_index('date') df.head() table = df.pivot(columns='ticker') table.columns = [col[1] for col in table.columns] table.head() returns = table.pct_change() mean_returns = returns.mean() cov_matrix = returns.cov() risk_free_rate = 0.0178 sector_res.append(display_ef_with_selected( mean_returns, cov_matrix, risk_free_rate)) # print(sector_res) ########################################################### # Maximum Sharpe Ratio Portfolio Allocation ########################################################### # Plot the weighted returns and individual returns on the same plot for comparison fig, ax = plt.subplots(figsize=(16, 9)) ax.plot(return_series_adj_2y, label='current portfolio') for sector in sector_res: # portfolio returns weights = [sector[2], sector[3]] sector_closes_2y_return_series_adj = ( sector_closes_2y['Adj Close'].pct_change() + 1).cumprod() - 1 return_series_adj_2y_new_sector = pd.DataFrame(sector_closes_2y_return_series_adj[sector[12]]).join( pd.DataFrame(return_series_adj_2y)).rename(columns={0: 'portfolio'}) weighted_return_series_adj = weights * (return_series_adj_2y_new_sector) # Sum the weighted returns for portfolio df = weighted_return_series_adj.sum(axis=1)/100 ax.plot(df, label="+ " + sector[12]) ax.set_title("Return series (for Maximum Sharpe Ratio Portfolio Allocation)") ax.legend() ax.legend(labelspacing=0.8) ############################################################ # Minimum Volatility Portfolio Allocation ########################################################### fig, ax = plt.subplots(figsize=(16, 9)) ax.plot(return_series_adj_2y, label='current portfolio') for sector in sector_res: # portfolio returns weights = [sector[6], sector[7]] sector_closes_2y_return_series_adj = ( sector_closes_2y['Adj Close'].pct_change() + 1).cumprod() - 1 return_series_adj_2y_new_sector = pd.DataFrame(sector_closes_2y_return_series_adj[sector[12]]).join(
pd.DataFrame(return_series_adj_2y)
pandas.DataFrame
import pandas as pd df =
pd.read_csv("data/1P2015AEDL.csv", header=0, sep=",", low_memory=False)
pandas.read_csv
def upsampled(names,homepath): ''' Parameters ---------- `names` (list): List of the cancer names found from `featSelect` function. `homepath` (str): Path where you want to save all the generated files and folders. Return: ------- None Outputs: -------- Upsample the train data into 3:1 ratio and save it in "~/train_data" ''' import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from imblearn.over_sampling import SMOTE from collections import Counter import os import warnings warnings.filterwarnings("ignore") # Directory directory = "train_data" # Parent Directory path parent_dir = homepath # Path path = os.path.join(parent_dir, directory) if not os.path.exists(path): os.mkdir(path) # Directory directory = "train_data/cancer" # Parent Directory path parent_dir = homepath # Path path = os.path.join(parent_dir, directory) if not os.path.exists(path): os.mkdir(path) # Directory directory = "train_data/normal" # Parent Directory path parent_dir = homepath # Path path = os.path.join(parent_dir, directory) if not os.path.exists(path): os.mkdir(path) #len(names) print("Upsampling on train data is running") for index in range(len(names)): Cancer = pd.read_csv(homepath+"/pre_upsample_train_data/cancer/"+ names[index]+".txt.bz2",header=None, delimiter = '\t') Normal = pd.read_csv(homepath+"/pre_upsample_train_data/normal/"+ names[index]+".txt.bz2",header=None, delimiter = '\t') can_sample = len(Cancer.columns) norm_sample = len(Normal.columns) Cancer = Cancer.T Normal = Normal.T if( norm_sample <= round(can_sample/3) ): ## adding target in the last col Cancer[str(len(Cancer.columns))] = 1 Normal[str(len(Normal.columns))] = 0 #print(len(Cancer.columns)) frame = [Cancer,Normal] Data = pd.concat(frame,axis=0) #print(Data) x = Data.iloc[:,:len(Cancer.columns)-1] y = Data.iloc[:,len(Cancer.columns)-1] # print(x) # print(y) # summarize class distribution counter = Counter(y) #print(counter) # transform the dataset oversample = SMOTE(k_neighbors=1, sampling_strategy=0.3333) X, y = oversample.fit_resample(x, y) # summarize the new class distribution counter = Counter(y) #print(counter) X =
pd.DataFrame(data=X)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #Creating GUI with tkinter import json import tkinter from tkinter import * from tensorflow.keras.models import load_model, model_from_json import io import os import pandas as pd import numpy as np symptoms_url = "https://raw.githubusercontent.com/KellieChong/MacHacks2021/main/symptoms_diseases_data/sym_t.csv" diagnosis_url = "https://raw.githubusercontent.com/KellieChong/MacHacks2021/main/symptoms_diseases_data/dia_t.csv" symptomsdf = pd.read_csv(symptoms_url) diagnosisdf = pd.read_csv(diagnosis_url) # symptomsdf = symptomsdf.tonumpy() # diagnosisdf = diagnosisdf.tonumpy() #not really sure if we need to load these f = open("/Users/kelliechong/documents/MacHacks/model.json",) json_model = json.loads(f.read()) model = load_model('/Users/kelliechong/documents/MacHacks/diagnosis_model_updated.h5') model.load_weights('/Users/kelliechong/documents/MacHacks/diagnosis_model_updated.h5') symptomsdf = pd.DataFrame(symptomsdf).to_numpy() diagnosisdf =
pd.DataFrame(diagnosisdf)
pandas.DataFrame
## calculating correlationcoefficient ## # using sitiuation is Transfer learning. # Can be used to fill missing values. import numpy as np import pandas as pd from minepy import MINE from pyHSICLasso import HSICLasso from sklearn.utils import check_array class CorrelationCoefficient(): def mic_matrix(self, data, n_sample=False, frac_sample=False): '''Get mic correlation coefficient matrix Calculated coefficients are saved as instances. data: (numpy or pandas) A data frame that contains all explanatory and objective variables n_sample : (int) How much random sampling to do. False if not. If a numerical value is entered, sampling is performed using that number of rows. frac_sample: [0 ~ 1] (float) Sampled as a percentage of the number of rows. Not used at the same time as n_sample. ''' data = pd.DataFrame(data).copy() data = data.dropna() # Delete missing values and think # Sampling when n_sample contains a numerical value if not n_sample: if not frac_sample: # n_sample=False, frac_sample=False pass else: # n_sample=False, frac_sample=int data = data.sample(frac=frac_sample, replace=True) else: if not frac_sample: # n_sample=int, frac_sample=False data = data.sample(n=n_sample, replace=True) else: # n_sample=int, frac_sample=int raise ValueError('Please enter a value for `frac` OR `n`, not both') data = check_array(data, accept_sparse="csc", dtype=float) # numpy.ndarrayに変換 n_col = data.shape[1] mic_array = [] mic_append = mic_array.append for i in range(n_col): temp_mic = [] # list to store one line of mic temp_mic_append = temp_mic.append for j in range(n_col): # Calculate only one of them because it is symmetric if i>=j: temp_mic_append(0.0) else: mine=MINE() mine.compute_score(data[:, i], data[:, j]) temp_mic_append(mine.mic()) mic_append(temp_mic) mic_ = np.array(mic_array) # Create a correlation coefficient matrix by copying the symmetry of the upper triangular matrix → transpose → unit matrix. self.mic = mic_ + mic_.T + np.eye(N=n_col, dtype=float) return self.mic def mine_matrix(self, data ,n_sample=False, frac_sample=False): '''Obtains all coefficient values related to mine as a correlation coefficient matrix. Calculated coefficients are saved as instances. data: (numpy or pandas) A data frame that contains all explanatory and objective variables n_sample : (int) How much random sampling to do. False if not. If a numerical value is entered, sampling is performed using that number of rows. frac_sample: [0 ~ 1] (float) Sampled as a percentage of the number of rows. Not used at the same time as n_sample. ''' data =
pd.DataFrame(data)
pandas.DataFrame
import logging import numpy as np import pandas as pd from ilastikrag.accumulators import BaseEdgeAccumulator logger = logging.getLogger(__name__) class EdgeRegionEdgeAccumulator(BaseEdgeAccumulator): """ Accumulator for computing region axes and region radii over edge coordinates. (The :py:class:`~ilastikrag.accumulators.standard.StandardEdgeAccumulator` class does not provide region features.) We don't use vigra's RegionFeatureAccumulators because we only have access to the sparse lists of edge pixels (along each axis). Instead, we manually compute the region axes/radii directly from the edge coordinate columns. Supported feature names: - edgeregion_edge_area (radii_0 * radii_1) - edgeregion_edge_volume (radii_0 * radii_1 * radii_2) .. - edgeregion_edge_regionradii (all of the below) - edgeregion_edge_regionradii_0 - edgeregion_edge_regionradii_1 - edgeregion_edge_regionradii_2 .. - edgeregion_edge_regionaxes (all of the below) - edgeregion_edge_regionaxes_0x - edgeregion_edge_regionaxes_0y - edgeregion_edge_regionaxes_0z - edgeregion_edge_regionaxes_1x - edgeregion_edge_regionaxes_1y - edgeregion_edge_regionaxes_1z - edgeregion_edge_regionaxes_2x - edgeregion_edge_regionaxes_2y - edgeregion_edge_regionaxes_2z """ ACCUMULATOR_ID = 'edgeregion' def __init__(self, rag, feature_names): self.cleanup() # Initialize members label_img = rag.label_img self._dense_axiskeys = list(label_img.axistags.keys()) if rag.flat_superpixels: self._dense_axiskeys = ['y', 'x'] feature_names = list(feature_names) # 'edgeregion_edge_regionradii' is shorthand for "all edge region radii" if 'edgeregion_edge_regionradii' in feature_names: feature_names.remove('edgeregion_edge_regionradii') for component_index in range(label_img.ndim): feature_names.append( 'edgeregion_edge_regionradii_{}'.format( component_index ) ) # 'edgeregion_edge_regionaxes' is shorthand for "all edge region axes" if 'edgeregion_edge_regionaxes' in feature_names: feature_names.remove('edgeregion_edge_regionaxes') for component_index in range(label_img.ndim): for axisname in ['xyz'[k] for k in range(label_img.ndim)]: feature_names.append( 'edgeregion_edge_regionaxes_{}{}'.format( component_index, axisname ) ) self._feature_names = feature_names self._rag = rag def cleanup(self): self._final_df = None def ingest_edges(self, rag, edge_values): # This class computes only unweighted region # features, so edge_values is not used below. # Concatenate edges from all axes into one big DataFrame tables = [table[['sp1', 'sp2'] + self._dense_axiskeys] for table in rag.dense_edge_tables.values()] coords_df =
pd.concat(tables, axis=0)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[3]: from pandas import DataFrame import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.linear_model import SGDRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn import metrics #Import the xls into a dataframe using pandas file = r'Concrete_Data.xls' df = pd.read_excel(file) df.head() #Prints the first few rows # In[3]: df.describe() # In[4]: #Let Y contain the output variable compressive strength #Let X contain the data regarding the features Y = df['Concrete compressive strength(MPa, megapascals) '] X = df.drop('Concrete compressive strength(MPa, megapascals) ', axis = 1) #Perform train test split (80% train / 20% test) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,random_state=1) # In[5]: ''' Hyperparameter tuning using Grid search CV ''' #Set the possible values for lambda alphas = [i for i in range(1,1500)] #Store the values of cross_val stored = [] #Store the first set of data to test (e.g. 0.1) regressor = Ridge(alpha = 0) cross_scores = cross_val_score(regressor,X_train,y_train,cv = 10,scoring = 'neg_mean_squared_error') stored.append(cross_scores.mean()) best_value = cross_scores.mean() best_alpha = 0 #Loop for the remaining possible values of lambda for i in range(1,len(alphas)): #Create a model with the given lambda regressor = Ridge(alpha = alphas[i]) #Store the value of cross-validated score cross_scores = cross_val_score(regressor,X_train,y_train,cv = 10,scoring = 'neg_mean_squared_error') stored.append(cross_scores.mean()) #Update the values if a smaller value was found if cross_scores.mean() < best_value : best_value = cross_scores.mean() best_alpha = alphas[i] print('Best alpha %f Best Value %f'%(best_alpha,best_value)) # In[5]: plt.plot(alphas, stored) plt.xlabel('Alpha Values') plt.ylabel('R^2 Scores') # In[6]: #Create Ridge regression model using chosen alpha regressor = Ridge(alpha = best_alpha) regressor.fit(X_train,y_train) y_pred = regressor.predict(X_test) # In[10]: plt.title("Predicted Y vs. Actual Y") plt.xlabel("Actual Y", fontsize = 9) plt.ylabel("Predicted Y", fontsize = 9) plt.scatter(y_test, y_pred, color='black') # In[19]: coeff_df =
pd.DataFrame(regressor.coef_, X.columns, columns=['Coefficient'])
pandas.DataFrame
import pandas as pd import numpy as np from matplotlib import pyplot as plt import utils from datetime import datetime import pickle import os testset_fraction=0.2 dataset_one_path = os.path.join(os.path.dirname(__file__),"..", "data", "dataset_one.csv") dataset_two_path = os.path.join(os.path.dirname(__file__),"..", "data", "dataset_two.xlsx") preprocessed_data_path = os.path.join(os.path.dirname(__file__),"..", "data", "data_preprocessed.pkl") # load both datasets data1 =
pd.read_csv(dataset_one_path, sep=";", decimal=",", encoding="iso-8859-1", delimiter=";", parse_dates={"date and time": ["Date", "Time"]})
pandas.read_csv
# -*- coding: utf8 -*- import pandas as pd import matplotlib.pyplot as plt plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['axes.spines.right'] = False plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.linewidth'] = 2 plt.rcParams['xtick.major.width'] = 2 plt.rcParams['ytick.major.width'] = 2 if __name__ == '__main__': df1 =
pd.read_csv('FASMAtest.csv', delimiter='\t')
pandas.read_csv
from __future__ import division import numpy as np import pandas as pd from aneris import utils from aneris import pd_read from aneris.methods import harmonize_factors, constant_offset, reduce_offset, \ constant_ratio, reduce_ratio, linear_interpolate, model_zero, hist_zero, \ coeff_of_var, default_methods def _log(msg, *args, **kwargs): utils.logger().info(msg, *args, **kwargs) def _warn(msg, *args, **kwargs): utils.logger().warning(msg, *args, **kwargs) class Harmonizer(object): """A class used to harmonize model data to historical data in the standard calculation format """ # WARNING: it is not possible to programmatically do the offset methods # because they use lambdas. you can't do `for y in years: lambda x: f(x, # kwarg=str(y))` because y is evaluated when the lambda is executed, not in # this block _methods = { 'model_zero': model_zero, 'hist_zero': hist_zero, 'constant_ratio': constant_ratio, 'constant_offset': constant_offset, 'reduce_offset_2150_cov': lambda df, offsets: reduce_offset(df, offsets, final_year='2150'), 'reduce_ratio_2150_cov': lambda df, ratios: reduce_ratio(df, ratios, final_year='2150'), 'reduce_offset_2020': lambda df, offsets: reduce_offset(df, offsets, final_year='2020'), 'reduce_offset_2030': lambda df, offsets: reduce_offset(df, offsets, final_year='2030'), 'reduce_offset_2040': lambda df, offsets: reduce_offset(df, offsets, final_year='2040'), 'reduce_offset_2050': lambda df, offsets: reduce_offset(df, offsets, final_year='2050'), 'reduce_offset_2060': lambda df, offsets: reduce_offset(df, offsets, final_year='2060'), 'reduce_offset_2070': lambda df, offsets: reduce_offset(df, offsets, final_year='2070'), 'reduce_offset_2080': lambda df, offsets: reduce_offset(df, offsets, final_year='2080'), 'reduce_offset_2090': lambda df, offsets: reduce_offset(df, offsets, final_year='2090'), 'reduce_offset_2100': lambda df, offsets: reduce_offset(df, offsets, final_year='2100'), 'reduce_offset_2150': lambda df, offsets: reduce_offset(df, offsets, final_year='2150'), 'reduce_ratio_2020': lambda df, ratios: reduce_ratio(df, ratios, final_year='2020'), 'reduce_ratio_2030': lambda df, ratios: reduce_ratio(df, ratios, final_year='2030'), 'reduce_ratio_2040': lambda df, ratios: reduce_ratio(df, ratios, final_year='2040'), 'reduce_ratio_2050': lambda df, ratios: reduce_ratio(df, ratios, final_year='2050'), 'reduce_ratio_2060': lambda df, ratios: reduce_ratio(df, ratios, final_year='2060'), 'reduce_ratio_2070': lambda df, ratios: reduce_ratio(df, ratios, final_year='2070'), 'reduce_ratio_2080': lambda df, ratios: reduce_ratio(df, ratios, final_year='2080'), 'reduce_ratio_2090': lambda df, ratios: reduce_ratio(df, ratios, final_year='2090'), 'reduce_ratio_2100': lambda df, ratios: reduce_ratio(df, ratios, final_year='2100'), 'reduce_ratio_2150': lambda df, ratios: reduce_ratio(df, ratios, final_year='2150'), 'linear_interpolate_2020': lambda df, offsets: linear_interpolate(df, offsets, final_year='2020'), 'linear_interpolate_2030': lambda df, offsets: linear_interpolate(df, offsets, final_year='2030'), 'linear_interpolate_2040': lambda df, offsets: linear_interpolate(df, offsets, final_year='2040'), 'linear_interpolate_2050': lambda df, offsets: linear_interpolate(df, offsets, final_year='2050'), 'linear_interpolate_2060': lambda df, offsets: linear_interpolate(df, offsets, final_year='2060'), 'linear_interpolate_2070': lambda df, offsets: linear_interpolate(df, offsets, final_year='2070'), 'linear_interpolate_2080': lambda df, offsets: linear_interpolate(df, offsets, final_year='2080'), 'linear_interpolate_2090': lambda df, offsets: linear_interpolate(df, offsets, final_year='2090'), 'linear_interpolate_2100': lambda df, offsets: linear_interpolate(df, offsets, final_year='2100'), 'linear_interpolate_2150': lambda df, offsets: linear_interpolate(df, offsets, final_year='2150'), } def __init__(self, data, history, config={}, verify_indicies=True): """Parameters ---------- data : pd.DataFrame model data in standard calculation format history : pd.DataFrame history data in standard calculation format config : dict, optional configuration dictionary (see http://mattgidden.com/aneris/config.html for options) verify_indicies : bool, optional check indicies of data and history, provide warning message if different """ if not isinstance(data.index, pd.MultiIndex): raise ValueError('Data must use utils.df_idx') if not isinstance(history.index, pd.MultiIndex): raise ValueError('History must use utils.df_idx') if verify_indicies and not data.index.equals(history.index): idx = history.index.difference(data.index) msg = 'More history than model reports, adding 0 values {}' _warn(msg.format(idx.to_series().head())) df = pd.DataFrame(0, columns=data.columns, index=idx) data = pd.concat([data, df]).sort_index().loc[history.index] assert data.index.equals(history.index) key = 'harmonize_year' # TODO type self.base_year = str(config[key]) if key in config else '2015' numcols = utils.numcols(data) cols = [x for x in numcols if int(x) >= int(self.base_year)] self.data = data[cols] self.model = pd.Series(index=self.data.index, name=self.base_year).to_frame() self.history = history self.methods_used = None self.offsets, self.ratios = harmonize_factors( self.data, self.history, self.base_year) # get default methods to use in decision tree key = 'default_luc_method' self.luc_method = config[key] if key in config else None key = 'default_offset_method' self.offset_method = config[key] if key in config else None key = 'default_ratio_method' self.ratio_method = config[key] if key in config else None def metadata(self): """Return pd.DataFrame of method choice metadata""" methods = self.methods_used if isinstance(methods, pd.Series): # only defaults used methods = methods.to_frame() methods['default'] = methods['method'] methods['override'] = '' meta = pd.concat([ methods['method'], methods['default'], methods['override'], self.offsets, self.ratios, self.history[self.base_year], self.history.apply(coeff_of_var, axis=1), self.data[self.base_year], self.model[self.base_year], ], axis=1) meta.columns = [ 'method', 'default', 'override', 'offset', 'ratio', 'history', 'cov', 'unharmonized', 'harmonized', ] return meta def _default_methods(self): methods, diagnostics = default_methods( self.history, self.data, self.base_year, self.luc_method, self.offset_method, self.ratio_method ) return methods def _harmonize(self, method, idx, check_len): # get data model = self.data.loc[idx] hist = self.history.loc[idx] offsets = self.offsets.loc[idx] ratios = self.ratios.loc[idx] # get delta delta = ratios if 'ratio' in method else offsets # checks assert(not model.isnull().values.any()) assert(not hist.isnull().values.any()) assert(not delta.isnull().values.any()) if check_len: assert((len(model) < len(self.data)) & (len(hist) < len(self.history))) # harmonize model = Harmonizer._methods[method](model, delta) y = str(self.base_year) if model.isnull().values.any(): msg = '{} method produced NaNs: {}, {}' where = model.isnull().any(axis=1) raise ValueError(msg.format(method, model.loc[where, y], delta.loc[where])) # construct the full df of history and future return model def methods(self, overrides=None): """Return pd.DataFrame of methods to use for harmonization given pd.DataFrame of overrides """ # get method listing methods = self._default_methods() if overrides is not None: midx = self.model.index oidx = overrides.index # remove duplicate values dup = oidx.duplicated(keep='last') if dup.any(): msg = 'Removing duplicated override entries found: {}\n' _warn(msg.format(overrides.loc[dup])) overrides = overrides.loc[~dup] # get subset of overrides which are in model outidx = oidx.difference(midx) if outidx.size > 0: msg = 'Removing override methods not in processed model output:\n{}' _warn(msg.format(overrides.loc[outidx])) inidx = oidx.intersection(midx) overrides = overrides.loc[inidx] # overwrite defaults with overrides final_methods = overrides.combine_first(methods).to_frame() final_methods['default'] = methods final_methods['override'] = overrides methods = final_methods return methods def harmonize(self, overrides=None): """Return pd.DataFrame of harmonized trajectories given pd.DataFrame overrides """ # get special configurations methods = self.methods(overrides=overrides) # save for future inspection self.methods_used = methods if isinstance(methods, pd.DataFrame): methods = methods['method'] # drop default and override info if (methods == 'unicorn').any(): msg = """Values found where model has positive and negative values and is zero in base year. Unsure how to proceed:\n{}\n{}""" cols = ['history', 'unharmonized'] df1 = self.metadata().loc[methods == 'unicorn', cols] df2 = self.data.loc[methods == 'unicorn'] raise ValueError(msg.format(df1.reset_index(), df2.reset_index())) dfs = [] y = str(self.base_year) for method in methods.unique(): _log('Harmonizing with {}'.format(method)) # get subset indicies idx = methods[methods == method].index check_len = len(methods.unique()) > 1 # harmonize df = self._harmonize(method, idx, check_len) if method not in ['model_zero', 'hist_zero']: close = (df[y] - self.history.loc[df.index, y]).abs() < 1e-5 if not close.all(): report = df[~close][y].reset_index() msg = """Harmonization failed with method {} harmonized \ values != historical values. This is likely due to an \ override in the following variables:\n\n{} """ raise ValueError(msg.format(method, report)) dfs.append(df) df = pd.concat(dfs).sort_index() self.model = df return df class _TrajectoryPreprocessor(object): def __init__(self, hist, model, overrides, regions, prefix, suffix): self.hist = hist self.model = model self.overrides = overrides self.prefix = prefix self.suffix = suffix self.regions = regions def _downselect_scen(self, scenario): isscen = lambda df: df.Scenario == scenario self.model = self.model[isscen(self.model)] self.overrides = self.overrides[isscen(self.overrides)] def _downselect_var(self): # separate data select = '|'.join([self.prefix, self.suffix]) _log('Downselecting {} variables'.format(select)) hasprefix = lambda df: df.Variable.str.startswith(self.prefix) hassuffix = lambda df: df.Variable.str.endswith(self.suffix) subset = lambda df: df[hasprefix(df) & hassuffix(df)] self.model = subset(self.model) self.hist = subset(self.hist) self.overrides = subset(self.overrides) if len(self.model) == 0: msg = 'No Variables found for harmonization. Searched for {}.' raise ValueError(msg.format(select)) assert(len(self.hist) > 0) def _to_std(self): _log('Translating to standard format') xlator = utils.FormatTranslator() self.model = ( xlator.to_std(df=self.model.copy(), set_metadata=True) .set_index(utils.df_idx) .sort_index() ) self.hist = ( xlator.to_std(df=self.hist.copy(), set_metadata=False) .set_index(utils.df_idx) .sort_index() ) # override with special cases if more are found in history self.hist = self.hist[~self.hist.index.duplicated(keep='last')] # hackery required because unit needed for df_idx if self.overrides.empty: self.overrides = None else: self.overrides['Unit'] = 'kt' self.overrides = ( xlator.to_std(df=self.overrides.copy(), set_metadata=False) .set_index(utils.df_idx) .sort_index() ) self.overrides.columns = self.overrides.columns.str.lower() self.overrides = self.overrides['method'] def _agg_hist(self): # aggregate and clean hist _log('Aggregating historical values to native regions') # must set verify to false for now because some isos aren't included! self.hist = utils.agg_regions( self.hist, verify=False, mapping=self.regions, rfrom='ISO Code', rto='Native Region Code' ) def _fill_model_trajectories(self): # add zeros to model values if not covered idx = self.hist.index notin = ~idx.isin(self.model.index) if notin.any(): msg = 'Not all of self.history is covered by self.model: \n{}' _df = self.hist.loc[notin].reset_index()[utils.df_idx] _warn(msg.format(_df.head())) zeros =
pd.DataFrame(0, index=idx, columns=self.model.columns)
pandas.DataFrame
""" utils4text.py is the script file storing many useful functions for processing the comment dataframes from the subreddits. That is, it is mainly used for text EDA. Made by <NAME>. """ import numpy as np import pandas as pd import multiprocess as mp import re import nltk import contractions import string from emoji import UNICODE_EMOJI from itertools import repeat from collections import Counter from nltk import pos_tag, word_tokenize from nltk.stem.wordnet import WordNetLemmatizer from nltk.corpus import stopwords, wordnet from joblib import Parallel, delayed from profanity_check import predict_prob from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer def build_convs(df): """ Use parallel computing. Consider only one post at each time. Reconstruct the dataframe to a more conversation-like dataframe. Arg: df: A given dataframe scraped from a certain subreddit. Return: df_convs: A more conversation-like dataframe with the columns such as conversation ID, subreddit, post title, author, dialog turn, and text. """ # initialize conversation dataframe df_convs = pd.DataFrame(columns = ['subreddit', 'post title', 'author', 'dialog turn', 'text']) # consider each post df_link_id = df.reset_index().drop('index', axis = 1) row_list = [] convs_turn = 0 # add post from df_link_id post_row = df_link_id.loc[0, :] convs_turn += 1 row_list.append({'subreddit': post_row['subreddit'], 'post title': post_row['title'], 'author': post_row['post_author'], 'dialog turn': convs_turn, 'text': post_row['post_content']}) # iterate over each comment from df_link_id for i, row in df_link_id.iterrows(): convs_turn += 1 row_list.append({'subreddit': row['subreddit'], 'post title': row['title'], 'author': row['comment_author'], 'dialog turn': convs_turn, 'text': row['comment_content']}) df_convs = df_convs.append(pd.DataFrame(row_list)) # change data types df_convs['dialog turn'] = df_convs['dialog turn'].astype('int32') return df_convs def apply_parallel(grouped_df, func): """ Parallelize the 'build_convs' function by grouping each post and its comments. And then concatenate all of them into a complete dataframe. Arg: grouped_df: A dataframe on which groupby function is applied. Return: pd.concat(retLst): A complete dataframe with the conversation sets between posts and comments. """ retLst = Parallel(n_jobs = mp.cpu_count())(delayed(func)(group) for id, group in grouped_df) return pd.concat(retLst) def build_concise_convs_df(df_convs, njobs = mp.cpu_count()): """ Using the functions, build_convs and apply_parallel, a dataframe with conversation sets can be easily built. Also the id for each conversation is added. Arg: df_convs: The original dataframe consisting of posts and comments parsed from the text files. Return: df_convs_concise: The concise version of a dataframe with conversation sets. """ df_convs_concise = apply_parallel(df_convs.groupby(df_convs.link_id), build_convs) df_convs_concise['conversation id'] = (df_convs_concise.groupby(['post title']).cumcount() == 0).astype(int) df_convs_concise['conversation id'] = df_convs_concise['conversation id'].cumsum() df_convs_concise = df_convs_concise[['conversation id', 'subreddit', 'post title', 'author', 'dialog turn', 'text']] df_convs_concise = df_convs_concise.reset_index().drop('index', axis = 1) return df_convs_concise def remove_marks(text): """ Remove those unnecessary marks inside texts. Arg: text: A string that could be either posts or comments. Return: new_text: A string which is a clean sentence. """ # remove HTML tags new_text = re.sub('<.*?>', '', text) # remove URL new_text = re.sub('http\S+', '', new_text) # replace number with <NUM> token new_text = re.sub('\d+', ' NUM ', new_text) return new_text def get_wordnet_pos(tag): """ Transform a positional tag to its corresponding WordNet format. Arg: tag: A positional tag from pos_tag function. Return: The associated wordnet format given by a tag. """ if tag.startswith('J'): return wordnet.ADJ elif tag.startswith('V'): return wordnet.VERB elif tag.startswith('N'): return wordnet.NOUN elif tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN def token_lemmatize(token, lemmatizer): """ Lemmatize a token to convert a token back to its root form. When dealing with punctuation marks or emojis, simply return them as usual. Arg: token: A word in the string type. lemmatizer: The object from wordnet lemmatizer. Return: token in its root form. """ if token == 'NUM': # keep NUM token as usual return token elif token in string.punctuation: # keep punctuation marks as usual return token elif token in UNICODE_EMOJI: # keep emojis return token elif token.isalpha(): # consider English words token, tag = pos_tag([token])[0][0], pos_tag([token])[0][1] return lemmatizer.lemmatize(token, get_wordnet_pos(tag)) # else: # # transform those nonwords as the token NOWORD # token = 'NONWORD' # return token def text_lemmatize(text, lemmatizer): """ Apply lemmatization on the raw texts to convert the words in texts back to their root forms. Before lemmatization, remove unnecessary marks and stopwords to keep only the meaningful words. Arg: text: A string text. lemmatizer: An object of WordNetLemmatizer. Return: lem_words: A list of lemmatized words. """ # remove unnecessary marks and tokenize tokens = word_tokenize(remove_marks(text)) # remove stopwords filtered_tokens = [word for word in tokens if word not in stopwords.words('english')] # lemmatize the tokenized texts lem_words = [] lem_words += list(map(token_lemmatize, filtered_tokens, repeat(lemmatizer))) return lem_words def compute_tokens(subreddit_convs_concise): """ Given the text data from a subreddit, lemmatize and compute the word tokens using the defined function, text_lemmatize. Before that, remove the newline tag and expanding the English contraction. The reason why the progress_bar is set to false is because of Google Colab's memory limitation. If it's not the problem in your local machine, you could simply convert it to be true to check the processing status. Arg: subreddit_convs_concise: A conversation dataframe from a subreddit. Return: subreddit_tokens: A series with each row containing a list of word tokens from either post or comment. """ # copy the text column from original dataframe subreddit_text = subreddit_convs_concise['text'].copy() # expanding contraction subreddit_text = subreddit_text.swifter.progress_bar(False).apply(lambda text: text.replace('\n', ' '))\ .swifter.progress_bar(False).apply(lambda text: ' '.join([contractions.fix(word) for word in text.split()])) # lemmatize lemmatizer = WordNetLemmatizer() subreddit_tokens = subreddit_text.swifter.progress_bar(False).apply(lambda text: text_lemmatize(text, lemmatizer)) return subreddit_tokens def compute_turn_distribution(df): """ Given a conversation dataframe from a subreddit (note that the dataframe is in the concise format indicated by Supervisor), find out the dialog turn distribution. Arg: df: A conversation dataframe from a subreddit. Return: turn_dist: A series about dialog turn distribution. """ turn_dist = df.groupby('conversation id').size().value_counts().sort_index() turn_dist = pd.DataFrame(turn_dist).reset_index().rename(columns = {'index': 'turns', 0: 'count'}) return turn_dist def extract_turn_10_more(df): """ Given a concise conversation dataframe, extract those with 10 or more dialog turns. Arg: df: A conversation dataframe from a subreddit. Return: turn_10_more: A dataframe containing only those conversations with 10 or more turns. """ turn_dist = df.groupby('conversation id').size() turn_dist_10_more_index = turn_dist[turn_dist >= 10].index turn_10_more = df[df['conversation id'].isin(list(turn_dist_10_more_index))] return turn_10_more def remove_newline(df): """ For each text in either post or comment, remove the newline tag. Arg: df: A given conversation dataframe from a certain subreddit. Return: df: A cleaner conversation dataframe without the newline tags. """ df['text'] = df['text'].swifter.progress_bar(False).apply(lambda text: text.replace('\n', ' ')) df['text'] = df['text'].swifter.progress_bar(False).apply(lambda text: text.replace("\\", '')) return df def remove_toxicity(df): """ Use parallel computing. Consider only one post at each time. In each post, detect the toxicity and remove the following dialog turns. Arg: df: A given conversation dataframe from a certain subreddit. Return: df_clean: A cleaner version of the conversation dataframe with no toxic words. """ # initialize clean conversation dataframe df_clean = pd.DataFrame(columns = ['conversation id', 'subreddit', 'post title', 'author', 'dialog turn', 'text']) # consider each post df_post = df.reset_index().drop('index', axis = 1) clean_row_list = [] # iterate over each comment from df_link_id for i, row in df_post.iterrows(): if predict_prob([row['text']])[0] > 0.95 and row['dialog turn'] > 1: break else: clean_row_list.append({'conversation id': row['conversation id'], 'subreddit': row['subreddit'], 'post title': row['post title'], 'author': row['author'], 'dialog turn': row['dialog turn'], 'text': row['text']}) df_clean = df_clean.append(pd.DataFrame(clean_row_list)) return df_clean def extract_toxicity(df): """ Use parallel computing. Consider only one post at each time. In each post, extract the toxic texts. Arg: df: A given conversation dataframe from a certain subreddit. Return: df_toxic: A conversation dataframe with exclusively toxic words. """ # initialize clean conversation dataframe df_toxic = pd.DataFrame(columns = ['conversation id', 'subreddit', 'post title', 'author', 'dialog turn', 'text']) # consider each post df_post = df.reset_index().drop('index', axis = 1) toxic_row_list = [] # iterate over each comment from df_link_id for i, row in df_post.iterrows(): if predict_prob([row['text']])[0] > 0.95 and row['dialog turn'] > 1: # record the toxic text toxic_row_list.append({'conversation id': row['conversation id'], 'subreddit': row['subreddit'], 'post title': row['post title'], 'author': row['author'], 'dialog turn': row['dialog turn'], 'text': row['text']}) df_toxic = df_toxic.append(
pd.DataFrame(toxic_row_list)
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx)
tm.assert_isinstance(result[0], Timestamp)
pandas.util.testing.assert_isinstance
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Series, Timestamp, date_range, isna, ) import pandas._testing as tm def test_where_unsafe_int(any_signed_int_numpy_dtype): s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) expected = Series( list(range(2, 7)) + list(range(5, 10)), dtype=any_signed_int_numpy_dtype, ) tm.assert_series_equal(s, expected) def test_where_unsafe_float(float_numpy_dtype): s = Series(np.arange(10), dtype=float_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) data = list(range(2, 7)) + list(range(5, 10)) expected =
Series(data, dtype=float_numpy_dtype)
pandas.Series
from kfp.components import InputPath, OutputPath def get_ml_dataset( features_dataset_path : InputPath('DataFrame'), target_dataset_path : InputPath('DataFrame'), tech_indi_dataset_path : InputPath('DataFrame'), ml_dataset_path : OutputPath('DataFrame') ): import pandas as pd df_feats =
pd.read_pickle(features_dataset_path)
pandas.read_pickle
#!/usr/bin/env python3 from functools import wraps import os.path import glog as log import numpy as np import pandas as pd import datasets CACHE_DIR = "./cache" TOY_TABLES = { "A": pd.DataFrame({"x": [1, 2, 3]}), "B": pd.DataFrame({ "x": [1, 2, 2, 2, 4], "y": [10, 20, 20, 30, 30], "z": [100, 100, 100, 100, 200], }), "C": pd.DataFrame({"y": [10, 20, 20, 40]}), "D":
pd.DataFrame({"z": [100, 100, 200, 300]})
pandas.DataFrame
from typing import Type, Callable, Tuple, Union import numpy as np import pandas as pd import pytest from py4j.java_gateway import JVMView from keanu import set_deterministic_state from keanu.context import KeanuContext from keanu.vartypes import tensor_arg_types, primitive_types, numpy_types, pandas_types from keanu.vertex import Gaussian, Const, UniformInt, Bernoulli, IntegerProxy, Double from keanu.vertex.base import Vertex @pytest.fixture def jvm_view(): from py4j.java_gateway import java_import jvm_view = KeanuContext().jvm_view() java_import(jvm_view, "io.improbable.keanu.vertices.tensor.number.floating.dbl.probabilistic.GaussianVertex") return jvm_view def assert_vertex_value_equals_scalar(vertex: Vertex, expected_type: Type, scalar: primitive_types) -> None: vertex_value = vertex.get_value() assert vertex_value == scalar assert type(vertex_value) == numpy_types assert vertex_value.shape == () assert vertex_value.dtype == expected_type def assert_vertex_value_equals_ndarray(vertex: Vertex, expected_type: Type, ndarray: numpy_types) -> None: vertex_value = vertex.get_value() expected_value = ndarray.astype(expected_type) assert np.array_equal(vertex_value, expected_value) assert np.issubdtype(vertex_value.dtype, expected_type) def assert_vertex_value_equals_pandas(vertex: Vertex, expected_type: Type, pandas: pandas_types) -> None: get_value = vertex.get_value() expected_value = pandas.values.astype(expected_type).reshape(get_value.shape) assert np.array_equal(get_value, expected_value) assert np.issubdtype(get_value.dtype, expected_type) def test_can_pass_scalar_to_vertex() -> None: gaussian = Gaussian(0., 1.) sample = gaussian.sample() assert type(sample) == numpy_types assert sample.shape == () assert sample.dtype == float def test_can_pass_ndarray_to_vertex() -> None: gaussian = Gaussian(np.array([0.1, 0.4]), np.array([0.4, 0.5])) sample = gaussian.sample() assert sample.shape == (2,) def test_can_pass_pandas_dataframe_to_vertex() -> None: gaussian = Gaussian(pd.DataFrame(data=[0.1, 0.4]), pd.DataFrame(data=[0.1, 0.4])) sample = gaussian.sample() assert sample.shape == (2, 1) def test_can_pass_pandas_series_to_vertex() -> None: gaussian = Gaussian(pd.Series(data=[0.1, 0.4]), pd.Series(data=[0.1, 0.4])) sample = gaussian.sample() assert sample.shape == (2,) def test_can_pass_vertex_to_vertex(jvm_view: JVMView) -> None: mu = Gaussian(0., 1.) gaussian = Vertex(jvm_view.GaussianVertex, "gaussian", mu, Const(1.)) sample = gaussian.sample() assert type(sample) == numpy_types assert sample.shape == () assert sample.dtype == float def test_can_pass_array_to_vertex(jvm_view: JVMView) -> None: gaussian = Vertex(jvm_view.GaussianVertex, "gaussian", [3, 3], Const(0.), Const(1.)) sample = gaussian.sample() assert sample.shape == (3, 3) def test_cannot_pass_generic_to_vertex(jvm_view: JVMView) -> None: class GenericExampleClass: pass with pytest.raises(ValueError, match=r"Can't parse generic argument. Was given {}".format(GenericExampleClass)): Vertex( # type: ignore # this is expected to fail mypy jvm_view.GaussianVertex, "gaussian", GenericExampleClass(), GenericExampleClass()) def test_int_vertex_value_is_a_numpy_array() -> None: ndarray = np.array([[1, 2], [3, 4]]) vertex = Const(ndarray) value = vertex.get_value() assert type(value) == np.ndarray assert value.dtype == np.int64 or value.dtype == np.int32 assert (value == ndarray).all() def test_float_vertex_value_is_a_numpy_array() -> None: ndarray = np.array([[1., 2.], [3., 4.]]) vertex = Const(ndarray) value = vertex.get_value() assert type(value) == np.ndarray assert value.dtype == np.float64 assert (value == ndarray).all() def test_boolean_vertex_value_is_a_numpy_array() -> None: ndarray = np.array([[True, True], [False, True]]) vertex = Const(ndarray) value = vertex.get_value() assert type(value) == np.ndarray assert value.dtype == np.bool_ assert (value == ndarray).all() def test_scalar_vertex_value_is_a_numpy_array() -> None: scalar = 1. vertex = Const(scalar) value = vertex.get_value() assert type(value) == numpy_types assert value.shape == () assert value.dtype == float assert value == scalar def test_vertex_sample_is_a_numpy_array() -> None: mu = np.array([[1., 2.], [3., 4.]]) sigma = np.array([[.1, .2], [.3, .4]]) vertex = Gaussian(mu, sigma) value = vertex.sample() assert type(value) == np.ndarray assert value.dtype == np.float64 assert value.shape == (2, 2) def test_get_connected_graph() -> None: gaussian = Gaussian(0., 1.) connected_graph = set(gaussian.iter_connected_graph()) assert len(connected_graph) == 3 def test_id_str_of_downstream_vertex_is_higher_than_upstream() -> None: hyper_params = Gaussian(0., 1.) gaussian = Gaussian(0., hyper_params) hyper_params_id = hyper_params.get_id() gaussian_id = gaussian.get_id() assert type(hyper_params_id) == tuple assert type(gaussian_id) == tuple assert hyper_params_id < gaussian_id def test_construct_vertex_with_java_vertex() -> None: java_vertex = Gaussian(0., 1.).unwrap() python_vertex = Vertex._from_java_vertex(java_vertex) assert tuple(java_vertex.getId().getValue()) == python_vertex.get_id() def test_java_collections_to_generator() -> None: gaussian = Gaussian(0., 1.) java_collections = gaussian.unwrap().getConnectedGraph() python_list = list(Vertex._to_generator(java_collections)) java_vertex_ids = [Vertex._get_python_id(java_vertex) for java_vertex in java_collections] assert java_collections.size() == len(python_list) assert all(type(element) == Double and element.get_id() in java_vertex_ids for element in python_list) def test_get_vertex_id() -> None: gaussian = Gaussian(0., 1.) java_id = gaussian.unwrap().getId().getValue() python_id = gaussian.get_id() assert all(value in python_id for value in java_id) def test_ids_are_reset() -> None: gaussian = Gaussian(0., 1.) set_deterministic_state() gaussian2 = Gaussian(0., 1.) assert gaussian.get_id() == gaussian2.get_id() @pytest.mark.parametrize("vertex, expected_type", [(Gaussian(0., 1.), np.floating), (UniformInt(0, 10), np.integer), (Bernoulli(0.5), np.bool_)]) @pytest.mark.parametrize("value, assert_vertex_value_equals", [(np.array([[4]]), assert_vertex_value_equals_ndarray), (np.array([[5.]]), assert_vertex_value_equals_ndarray), (np.array([[True]]), assert_vertex_value_equals_ndarray), (np.array([[1, 2], [3, 4]]), assert_vertex_value_equals_ndarray), (pd.Series(data=[4]), assert_vertex_value_equals_pandas), (pd.Series(data=[5.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True]), assert_vertex_value_equals_pandas), (pd.Series(data=[1, 2, 3]), assert_vertex_value_equals_pandas), (pd.Series(data=[1., 2., 3.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True, False, False]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[4]]), assert_vertex_value_equals_pandas), (
pd.DataFrame(data=[[5.]])
pandas.DataFrame
""" See here https://stackoverflow.com/questions/52371329/fast-spearman-correlation-between-two-pandas-dataframes Calculate correlation between two matrix, row by row """ from numba import njit import numpy as np import pandas as pd from scipy.sparse import coo_matrix from concurrent.futures import ProcessPoolExecutor, as_completed import anndata import scanpy as sc import xarray as xr from sklearn.impute import SimpleImputer @njit def _mean(a): n = len(a) b = np.empty(n) for i in range(n): b[i] = a[i].mean() return b @njit def _std(a): n = len(a) b = np.empty(n) for i in range(n): b[i] = a[i].std() return b @njit def _corr(a, b, row, col): """ Correlation between rows in a and b, no nan value """ _, k = a.shape mu_a = _mean(a) mu_b = _mean(b) sig_a = _std(a) sig_b = _std(b) out = np.zeros(shape=row.shape, dtype=np.float32) for idx in range(out.size): i = row[idx] j = col[idx] _sig_a = sig_a[i] _sig_b = sig_b[j] if _sig_a == 0 or _sig_b == 0: # if any variable std == 0 out[idx] = np.nan else: out[idx] = (a[i] - mu_a[i]) @ (b[j] - mu_b[j]) / k / _sig_a / _sig_b return out def _corr_preprocess(da, sample_mch, sample_mcg, cpu=1): imputer = SimpleImputer(copy=False) df = da.to_pandas() imputer.fit_transform(df) assert df.isna().values.sum() == 0 adata = anndata.AnnData(X=df.values, obs=
pd.DataFrame([], index=df.index)
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- # # GUI module generated by PAGE version 5.0.3 # in conjunction with Tcl version 8.6 # Feb 08, 2021 09:54:12 PM +03 platform: Windows NT # -*- coding: utf-8 -*- from logging import disable from selenium import webdriver from selenium.webdriver.support.ui import Select from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.chrome.options import Options import chromedriver_autoinstaller import time import pandas as pd from datetime import timedelta from datetime import datetime # import tkinter as tk import tkinter as tk from tkinter import messagebox, DISABLED, NORMAL, simpledialog from tkinter.filedialog import askopenfilename import sys import os #Driver setup #Driver setup path = "driver/config.csv" if not os.path.exists(path): data={ "username":[], "password":[], "late_time":[] } df = pd.DataFrame(data=data) df.to_csv("driver/config.csv", encoding="utf-8-sig", index=False) import madrasti_fetcher_support def vp_start_gui(): '''Starting point when module is the main routine.''' global val, w, root root = tk.Tk() top = Toplevel1 (root) madrasti_fetcher_support.init(root, top) root.mainloop() w = None def create_Toplevel1(rt, *args, **kwargs): '''Starting point when module is imported by another module. Correct form of call: 'create_Toplevel1(root, *args, **kwargs)' .''' global w, w_win, root #rt = root root = rt w = tk.Toplevel (root) top = Toplevel1 (w) madrasti_fetcher_support.init(w, top, *args, **kwargs) return (w, top) def destroy_Toplevel1(): global w w.destroy() w = None class Toplevel1: def donate(self): window = tk.Toplevel() window.geometry("290x294+688+270") window.minsize(148, 1) window.maxsize(1684, 1025) window.resizable(1, 1) window.title("BuY me A COFFEE!") window.configure(background="#d9d9d9") window.iconbitmap("driver/icon-rules-book-96.ico") self.Btndonate = tk.Button(window) self.Btndonate.place(relx=-0.034, rely=-0.035, height=303, width=306) self.Btndonate.configure(activebackground="#ececec") self.Btndonate.configure(activeforeground="#000000") self.Btndonate.configure(background="#d9d9d9") self.Btndonate.configure(disabledforeground="#a3a3a3") self.Btndonate.configure(foreground="#000000") self.Btndonate.configure(highlightbackground="#d9d9d9") self.Btndonate.configure(highlightcolor="black") global _img22 _img22 = tk.PhotoImage(file="driver/qr.png") self.Btndonate.configure(image=_img22) self.Btndonate.configure(pady="0") self.Btndonate.configure(relief="flat") self.Btndonate.configure(command=window.destroy) def startapp(self): global driver, late_time # messagebox.showerror("xx","errrrrrrrrrrrrr") self.Btnstart["state"] = DISABLED self.Btnkillchrome["state"] = NORMAL self.Btngheyab["state"] = NORMAL self.Btnaddgeyab["state"] = NORMAL self.Btnhw["state"] = NORMAL self.Btnactive["state"] = NORMAL caps = DesiredCapabilities().CHROME caps["pageLoadStrategy"] = "normal" options = Options() options.add_argument("--log-level=3") chromedriver_autoinstaller.install(True) # install driver driver = webdriver.Chrome(options=options, desired_capabilities=caps) # driver = webdriver.Chrome(options=options, desired_capabilities=caps, executable_path='driver/chromedriver.exe') driver.implicitly_wait(30) base_url = "https://www.google.com/" verificationErrors = [] accept_next_alert = True df_settings = pd.read_csv("driver/config.csv") username = str(df_settings.iloc[0,0]) password = str(df_settings.iloc[0,1]) late_time = df_settings.iloc[0,2] if username == " " and password == " ": driver.get("https://schools.madrasati.sa/") else: driver.get("https://schools.madrasati.sa/") time.sleep(4) # Login driver.find_element_by_xpath("//*[@id='Beneficiaries']/div/div[1]/div[2]/a/div/div").click() driver.find_element_by_id("i0116").send_keys(username) time.sleep(1) driver.find_element_by_id("idSIButton9").click() time.sleep(1) driver.find_element_by_id("i0118").send_keys(password) time.sleep(1) driver.find_element_by_id("idSIButton9").click() time.sleep(1) driver.find_element_by_id("idSIButton9").click() def settings(self): _username_get = simpledialog.askstring("اعدادات","ادخل البريد الالكتروني لحسابك في منصة مدرستي:") _username = [_username_get] if _username_get == None: pass else: _password_get = simpledialog.askstring("<PASSWORD>","ادخل كلمة المرور", show="*") _password = [_password_get] if _password_get == None: pass else: _late_time_get = simpledialog.askstring("اعدادات","يرصد للطالب (تأخر) اذا مر على زمن الحصة الدراسية (ضع الرقم بالدقائق)") if _late_time_get == "" or (_late_time_get == None) or len(_late_time_get) > 2: _late_time_get = "15" _late_time = [_late_time_get] if (_username_get == "") or (_password_get == ""): _username = " " _password = " " if (_username_get == None) or (_password_get == None): pass else: data={ "username":_username, "password":_password, "late_time":_late_time } df_settings = pd.DataFrame(data) df_settings.to_csv("driver/config.csv", encoding = "UTF-8-sig", index = False) messagebox.showinfo("رسالة","تم حفظ الاعدادات بنجاح.") def reformat_time(self): # Clean DF for reformat Time df = pd.DataFrame() file_path = askopenfilename(title="choose a file", initialdir="Downloads", filetype=[("Csv file","*.csv")]) df = pd.read_csv(f"{file_path}", sep="\t" ,encoding="utf-16le", engine="python") df.reset_index(inplace=True) df.columns = ["Full Name","User Action","Timestamp"] # print(df) # df = pd.read_clipboard() clean_df =
pd.DataFrame(columns=["Full Name", "User Action", "Timestamp"])
pandas.DataFrame
import os os.environ['CUDA_DEVICE_ORDER']='PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES']='0' import numpy as np import pandas as pd from models import RnnVersion3 import gc from keras.models import Model from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau,EarlyStopping,Callback from tqdm import tqdm_notebook user_app_actived = pd.read_csv('../../data/original_data/user_app_actived.csv',names=['uId', 'appId']) usage_list = pd.read_csv('../../data/processed_data/usage_app_info.csv') #重采样的usage_app usage_appId = pd.read_csv('../../data/processed_data/usage_appId.csv') #使用表的app词典 appId = pd.read_csv('../../data/processed_data/appId.csv') #激活表的app词典 user_app_actived['app_list'] = user_app_actived.appId.str.split('#') import ast from tqdm import tqdm usage_train = [] for idx in tqdm(usage_list.appId): usage_train.append(ast.literal_eval(idx)) usage_list['app_list'] = usage_train user_app_actived.drop('appId',axis=1,inplace=True) usage_list.drop('appId',axis=1,inplace=True) user_app_actived = pd.merge(user_app_actived, usage_list, how='left', on='uId') result = [] for index,row in tqdm(user_app_actived.iterrows()): try: result.append(np.sort(list(set(row['app_list_x']) | set(row['app_list_y'])))) except: result.append(row['app_list_x']) user_app_actived['app_list'] = result user_app_actived.drop(['app_list_x','app_list_y'],axis=1,inplace =True) del usage_list gc.collect() x_train = pd.read_csv('../../data/original_data/age_train.csv',names=['uId','age_group'],dtype={'uId':np.int32, 'age_group':np.int8}) x_test = pd.read_csv('../../data/original_data/age_test.csv',names=['uId'],dtype={'uId':np.int32}) x_train = pd.merge(x_train, user_app_actived, how='left', on='uId') x_test = pd.merge(x_test, user_app_actived, how='left', on='uId') y_train = x_train.age_group - 1 x_train = x_train.drop('age_group',axis=1) del user_app_actived gc.collect() usage_appId =
pd.read_csv('../../data/processed_data/usage_appId_top_num100000.csv')
pandas.read_csv
from sail.sobol_lib import i4_sobol_generate import numpy as np import pandas as pd def sobol2indx(sobSet, sobPoints, d, edges): # sobSet is DataFrame # sobPoints is list with indices # print("sobSet") # print(sobSet) # print("sobPoints") # print(sobPoints) # print("edges") # print(edges) sampleCoords = sobSet.iloc[sobPoints, :] # TODO: Error : Positional Indexes out of bounds # print("sampleCoords") # print(sampleCoords) nans = np.empty([len(sobPoints),d.nDims]) nans[:] = np.nan binIndx =
pd.DataFrame(data=nans)
pandas.DataFrame
import pandas as pd import re import numpy as np import os import sys from collections import OrderedDict, defaultdict import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns from scipy import stats, integrate # load msncodes msncodes =
pd.read_csv("data/csv/original/msncodes.csv")
pandas.read_csv
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import numpy as np import pandas as pd import scipy from xgboost import XGBClassifier from sklearn.cross_validation import train_test_split #from sklearn.metrics import roc_auc_score from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel np.random.seed(42) df_train, df_test = pd.read_csv('train.csv'), pd.read_csv('test.csv') feature_cols = df_train.columns[1:-1] X_train = df_train[feature_cols] y_train = df_train['TARGET'] X_test = df_test[feature_cols] id_test = df_test['ID'] sd = X_train.std() empties = sd[sd==0].index X_train, X_test = X_train.drop(empties,1), X_test.drop(empties,1) ''' v_cols = None for col in X_train.columns: if not v_cols: v_cols = [col] else: valid = True for valid_col in v_cols: if all(X_train[col]==X_train[valid_col]): valid=False break if valid: v_cols.append(col) X_train, X_test = X_ train[v_cols], X_test[v_cols] ''' dependencies = [] feature_cols = X_train.columns Q, R = np.linalg.qr(np.matrix(X_train)) indep_locs = np.where(abs(R.diagonal())>1e-7)[1] for i, col in enumerate(feature_cols): if i not in indep_locs: dependencies.append(col) X_train, X_test = X_train.drop(dependencies,1), X_test.drop(dependencies,1) ''' clf = ExtraTreesClassifier() clf.fit(train, labels) model = SelectFromModel(clf, prefit=True) return (pd.DataFrame(model.transform(train)), pd.DataFrame(model.transform(test))) ''' booster = XGBClassifier( n_estimators = 409, learning_rate = 0.0202048, max_depth = 5, subsample = 0.6815, colsample_bytree = 0.701 ) X_fit, X_val, y_fit, y_val = train_test_split(X_train, y_train, test_size=0.25, stratify=y_train) booster.fit(X_fit, y_fit, eval_metric="auc", eval_set=[(X_val, y_val)]) # predicting y_pred = booster.predict_proba(X_test)[:,1] submission =
pd.DataFrame({'TARGET':y_pred}, index=id_test)
pandas.DataFrame
import plotly.graph_objects as go import plotly.express as px import numpy as np import pandas as pd # from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( roc_curve, roc_auc_score, precision_recall_curve, auc, average_precision_score, ) def make_dummies(y): y_onehot =
pd.get_dummies(y, prefix="bin")
pandas.get_dummies
import os import unittest import pandas as pd import argopandas.index as dfi from argopandas.mirror import FileMirror class TestDataFrameIndex(unittest.TestCase): def setUp(self) -> None: this_file = os.path.dirname(__file__) mirror_dir = "argo-test-mirror" self.mirror = FileMirror(os.path.join(this_file, mirror_dir)) def test_subset(self): df = pd.DataFrame.from_records([{'file': 'csio/2900313/2900313_prof.nc'}]) df = dfi.DataFrameIndex(df) self.assertIsInstance(df[[]], dfi.DataFrameIndex) self.assertIsInstance(df.iloc[[], :], dfi.DataFrameIndex) def test_info(self): df = pd.DataFrame.from_records([{'file': 'csio/2900313/2900313_prof.nc'}]) df = dfi.DataFrameIndex(df, _mirror=self.mirror) self.assertIn('DATA_TYPE', df.info.keys()) def test_prof(self): df = pd.DataFrame.from_records([{'file': 'csio/2900313/profiles/D2900313_002.nc'}]) df = dfi.ProfIndex(df, _mirror=self.mirror) self.assertIn('PRES', df.levels.keys()) self.assertIn('PRES', df.levels_('PRES').keys()) self.assertIn('PLATFORM_NUMBER', df.prof.keys()) self.assertIn('PLATFORM_NUMBER', df.prof_('PLATFORM_NUMBER').keys()) self.assertIn('PARAMETER', df.calib.keys()) self.assertIn('STATION_PARAMETERS', df.param.keys()) self.assertIn('HISTORY_DATE', df.history.keys()) def test_traj(self): df = pd.DataFrame.from_records([{'file': 'csio/2900313/2900313_Rtraj.nc'}]) df = dfi.TrajIndex(df, _mirror=self.mirror) self.assertIn('LATITUDE', df.measurement.keys()) self.assertIn('LATITUDE', df.measurement_('LATITUDE').keys()) self.assertIn('JULD_DESCENT_START', df.cycle.keys()) self.assertIn('JULD_DESCENT_START', df.cycle_('JULD_DESCENT_START').keys()) self.assertIn('TRAJECTORY_PARAMETERS', df.param.keys()) self.assertIn('HISTORY_DATE', df.history.keys()) def test_tech(self): df = pd.DataFrame.from_records([{'file': 'csio/2900313/2900313_tech.nc'}]) df = dfi.TechIndex(df, _mirror=self.mirror) self.assertIn('CYCLE_NUMBER', df.tech_param.keys()) def test_meta(self): df = pd.DataFrame.from_records([{'file': 'csio/2900313/2900313_meta.nc'}]) df = dfi.MetaIndex(df, _mirror=self.mirror) self.assertIn('CONFIG_PARAMETER_VALUE', df.config_param.keys()) self.assertIn('CONFIG_PARAMETER_NAME', df.config_param.keys()) self.assertIn('CONFIG_MISSION_NUMBER', df.missions.keys()) self.assertIn('TRANS_SYSTEM', df.trans_system.keys()) self.assertIn('POSITIONING_SYSTEM', df.positioning_system.keys()) self.assertIn('LAUNCH_CONFIG_PARAMETER_NAME', df.launch_config_param.keys()) self.assertIn('SENSOR', df.sensor.keys()) self.assertIn('PARAMETER', df.param.keys()) def test_zero_length(self): df = pd.DataFrame({'file': []}) df = dfi.DataFrameIndex(df) self.assertEqual({k: list(v) for k, v in df.info.items()}, {'file': []}) class TestDataFrameIndexHelpers(unittest.TestCase): def setUp(self) -> None: # recs = prof_all.iloc[[0, 1000, 100000]].to_records() # [{k: r[k] for k in prof_all.columns} for r in recs] records = [ { 'file': 'aoml/13857/profiles/R13857_001.nc', 'date': pd.Timestamp('1997-07-29 20:03:00+0000', tz='UTC'), 'latitude': 0.267, 'longitude': -16.032, 'ocean': 'A', 'profiler_type': 845, 'institution': 'AO', 'date_update': pd.Timestamp('2018-10-11 18:05:20+0000', tz='UTC') }, { 'file': 'aoml/15854/profiles/R15854_030.nc', 'date': pd.Timestamp('1998-07-01 02:22:54+0000', tz='UTC'), 'latitude': -5.997, 'longitude': -9.028, 'ocean': 'A', 'profiler_type': 845, 'institution': 'AO', 'date_update': pd.Timestamp('2018-10-11 18:11:16+0000', tz='UTC') }, { 'file': 'aoml/1901499/profiles/D1901499_139.nc', 'date': pd.Timestamp('2015-03-09 07:39:02+0000', tz='UTC'), 'latitude': 7.959, 'longitude': -52.677, 'ocean': 'A', 'profiler_type': 851, 'institution': 'AO', 'date_update':
pd.Timestamp('2018-07-17 10:28:15+0000', tz='UTC')
pandas.Timestamp
import logging import math import numpy as np import pandas as pd from numpy import savetxt from common.constants import Constants from sklearn.metrics.pairwise import cosine_similarity class Trainner: def __init__(self): self.logger = logging.getLogger(__name__) def convert_rating_to_user_item(self, file_name): try: path = Constants.TRAINING_SUB_DATASETS_DIRECTORY path_file_in = path + file_name ratings = pd.read_csv(path_file_in, delimiter=',') file_user_hotel = "user_hotel_" + file_name users = ratings.loc[0:, 'user_id'].unique() hotels = ratings.loc[0:, 'hotel_id'].unique() matrix_rating = pd.DataFrame(index=users, columns=hotels, dtype='float64') total_row = len(ratings) for i in range(0, total_row): try: userId = ratings.loc[i, 'user_id'] hotelId = ratings.loc[i, 'hotel_id'] score = ratings.loc[i, 'rate_star'] matrix_rating.loc[userId, hotelId] = score self.logger.info(str(i + 1) + "/" + str(total_row)) except Exception as e2: self.logger.error(e2) for i in range(0, len(users)): for j in range(0, len(hotels)): userId = users[i] hotelId = hotels[j] score = matrix_rating.loc[userId, hotelId] if math.isnan(score): matrix_rating.loc[userId, hotelId] = 0 path_normal_expor = Constants.USER_ITEM_DATASETS_NORMAL_DIRECTORY + file_user_hotel matrix_rating.to_csv(path_normal_expor, sep=',') # matrix_rating_svd.insert(0, " ", np.array(users)) logging.info("Parse to csv done !") # tinh svd self.logger.info("Start calculate sdv") userIds = ratings.loc[0:, 'user_id'].unique().tolist() hotelIds = ratings.loc[0:, 'hotel_id'].unique().tolist() self.calculate_sdv_matrix_rating(matrix_rating, hotelIds, userIds, file_user_hotel) except Exception as e1: self.logger.exception(e1) def calculate_sdv_matrix_rating(self, matrix_rating, items, users, path_file_user_hotel): u, s, vh = np.linalg.svd(matrix_rating, full_matrices=False) smat = np.diag(s) matrix_A_xap_xi = u.dot(smat).dot(vh) matrix_A_xap_xi = pd.DataFrame.from_records(matrix_A_xap_xi, index=users, columns=items) path_out = Constants.USER_ITEM_DATASETS_DIRECTORY + path_file_user_hotel matrix_A_xap_xi.to_csv(path_out, sep=',') def calculate_similar_item_item(self, file_name): path = Constants.USER_ITEM_DATASETS_DIRECTORY file_name_user_hotel = path + file_name user_item_rating = pd.read_csv(file_name_user_hotel, index_col=0) items = user_item_rating.columns.tolist() item_base =
pd.DataFrame(index=items, columns=items)
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: li @file: factor_operation_capacity.py @time: 2019-05-30 """ import gc import sys sys.path.append('../') sys.path.append('../../') sys.path.append('../../../') import six, pdb import pandas as pd from pandas.io.json import json_normalize from utilities.singleton import Singleton # from basic_derivation import app # from ultron.cluster.invoke.cache_data import cache_data pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) @six.add_metaclass(Singleton) class FactorBasicDerivation(object): """ 基础衍生类因子 """ def __init__(self): __str__ = 'factor_basic_derivation' self.name = '基础衍生' self.factor_type1 = '基础衍生' self.factor_type2 = '基础衍生' self.description = '基础衍生类因子' @staticmethod def EBIT(tp_derivation, factor_derivation, dependencies=['total_profit', 'interest_expense', 'interest_income', 'financial_expense']): """ :name: 息税前利润(MRQ) :desc: [EBIT_反推法]息税前利润(MRQ) = 利润总额 + 利息支出 - 利息收入 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None func = lambda x: (x[0] + x[1] - x[2]) if x[1] is not None and x[2] is not None else (x[0] + x[3] if x[3] is not None else None) management['EBIT'] = management[dependencies].apply(func, axis=1) # management = management.drop(dependencies, axis=1) management = management[['EBIT']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EBITDA(tp_derivation, factor_derivation, dependencies=['total_profit', 'income_tax'], dependency=['EBIT']): """ :name: 息前税后利润(MRQ) :desc: 息前税后利润(MRQ)=EBIT(反推法)*(if 所得税&利润总额都>0,则1-所得税率,否则为1),所得税税率 = 所得税/ 利润总额 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management2 = factor_derivation.loc[:, dependency] management = pd.merge(management, management2, how='outer', on='security_code') management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: None if x[0] is None or x[1] is None or x[2] is None or x[1] == 0 else (x[0] * (1 - x[2] / x[1]) if x[1] > 0 and x[2] > 0 else x[0]) management['EBITDA'] = management[dependency].apply(func, axis=1) # management = management.drop(dependencies, axis=1) management = management[['EBITDA']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def DepAndAmo(tp_derivation, factor_derivation, dependencies=['fixed_assets_depreciation', 'intangible_assets_amortization', 'defferred_expense_amortization']): """ :name: 折旧和摊销(MRQ) :desc: 固定资产折旧 + 无形资产摊销 + 长期待摊费用摊销 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['DepAndAmo'] = management[dependencies].apply(func, axis=1) # management = management.drop(dependencies, axis=1) management = management[['DepAndAmo']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def FCFF(tp_derivation, factor_derivation, dependencies=['total_current_assets', 'cash_equivalents', 'total_current_liability', 'shortterm_loan', 'shortterm_bonds_payable', 'non_current_liability_in_one_year', 'total_current_assets_pre', 'cash_equivalents_pre', 'total_current_liability_pre', 'shortterm_loan_pre', 'shortterm_bonds_payable_pre', 'non_current_liability_in_one_year_pre', 'fix_intan_other_asset_acqui_cash', ], dependency=['EBITDA', 'DepAndAmo']): """ :name: 企业自由现金流量(MRQ) :desc: 息前税后利润+折旧与摊销-营运资本增加-资本支出 = 息前税后利润+ 折旧与摊销-营运资本增加-构建固定无形和长期资产支付的现金, 营运资本 = 流动资产-流动负债, 营运资金=(流动资产-货币资金)-(流动负债-短期借款-应付短期债券-一年内到期的长期借款-一年内到期的应付债券) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management2 = factor_derivation.loc[:, dependency] management = pd.merge(management, management2, how='outer', on='security_code') management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: x[0] + x[1] - (x[2] - x[3] - x[4] + x[5] + x[6] + x[7]) + (x[2] - x[3] - x[4] + x[5] + x[6] + x[7]) - x[8]if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None and \ x[5] is not None and \ x[6] is not None and \ x[7] is not None and \ x[8] is not None else None management['FCFF'] = management[dependency].apply(func, axis=1) management = management[['FCFF']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def FCFE(tp_derivation, factor_derivation, dependencies=['borrowing_repayment', 'cash_from_borrowing', 'cash_from_bonds_issue'], dependency=['FCFF']): """ :name: 股东自由现金流量(MRQ) :desc: 企业自由现金流量-偿还债务所支付的现金+取得借款收到的现金+发行债券所收到的现金(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management2 = factor_derivation.loc[:, dependency] management = pd.merge(management, management2, how='outer', on='security_code') management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: x[0] - x[1] + x[2] + x[3] if x[0] is not None and x[1] is not None and \ x[2] is not None and x[3] is not None else None management['FCFE'] = management[dependency].apply(func, axis=1) management = management[['FCFE']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NonRecGainLoss(tp_derivation, factor_derivation, dependencies=['np_parent_company_owners', 'np_cut']): """ :name: 非经常性损益(MRQ) :desc: 归属母公司净利润(MRQ) - 扣非净利润(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['NonRecGainLoss'] = management[dependencies].apply(func, axis=1) management = management[['NonRecGainLoss']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetOptInc(tp_derivation, factor_derivation, sw_industry, dependencies_er=['total_operating_revenue', 'total_operating_cost'], dependencies_yh=['commission_income', 'net_profit', 'other_business_profits', 'operating_cost'], dependencies_zq=['commission_income', 'net_profit', 'other_operating_revenue', 'operating_cost'], dependencies_bx=['operating_revenue', 'operating_cost', 'fair_value_variable_income', 'investment_income', 'exchange_income']): """ :name: 经营活动净收益(MRQ) :desc: 新准则(一般企业):营业总收入-营业总成本" :unit: 元 :view_dimension: 10000 """ industry2_set = ['430100', '370100', '410400', '450500', '640500', '510100', '620500', '610200', '330200', '280400', '620400', '450200', '270500', '610300', '280300', '360300', '410100', '370400', '280200', '730200', '710200', '720200', '640400', '270300', '110400', '220100', '240300', '270400', '710100', '420100', '420500', '420400', '370600', '720100', '640200', '220400', '330100', '630200', '610100', '370300', '410300', '220300', '640100', '490300', '450300', '220200', '370200', '460200', '420200', '460100', '360100', '620300', '110500', '650300', '420600', '460300', '720300', '270200', '630400', '410200', '280100', '210200', '420700', '650200', '340300', '220600', '110300', '350100', '620100', '210300', '240200', '340400', '240500', '360200', '270100', '230100', '370500', '110100', '460400', '110700', '110200', '630300', '450400', '220500', '730100', '640300', '630100', '240400', '420800', '650100', '350200', '620200', '210400', '420300', '110800', '360400', '650400', '110600', '460500', '430200', '210100', '240100', '250100', '310300', '320200', '310400', '310200', '320100', '260500', '250200', '450100', '470200', '260200', '260400', '260100', '440200', '470400', '310100', '260300', '220700', '470300', '470100', '340100', '340200', '230200'] dependencies = list(set(dependencies_er + dependencies_yh + dependencies_bx + dependencies_zq)) management = tp_derivation.loc[:, dependencies] management = management.fillna(0) management = pd.merge(management, sw_industry, how='outer', on='security_code').set_index('security_code') if len(management) <= 0: return None management_tm = pd.DataFrame() func = lambda x: x[0] + x[1] + x[2] - x[3] if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None else None # 银行 ['440100', '480100'] management_yh = management[management['industry_code2'].isin(['440100', '480100'])] management_yh['NetOptInc'] = management_yh[dependencies_yh].apply(func, axis=1) management_tm = management_tm.append(management_yh) # 证券['440300', '490100'] management_zq = management[management['industry_code2'].isin(['440300', '490100'])] management_zq['NetOptInc'] = management_zq[dependencies_zq].apply(func, axis=1) management_tm = management_tm.append(management_zq) func1 = lambda x: x[0] - x[1] - x[2] - x[3] - x[4] if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None else None # 保险['440400', '490200'] management_bx = management[management['industry_code2'].isin(['440400', '490200'])] management_bx['NetOptInc'] = management_bx[dependencies_bx].apply(func1, axis=1) management_tm = management_tm.append(management_bx) func2 = lambda x: None if x[0] is None else (x[0] if x[1] is None else x[0] - x[1]) management_er = management[management['industry_code2'].isin(industry2_set)] management_er['NetOptInc'] = management_er[dependencies_er].apply(func2, axis=1) management_tm = management_tm.append(management_er) dependencies = dependencies + ['industry_code2'] management_tm = management_tm[['NetOptInc']] factor_derivation = pd.merge(factor_derivation, management_tm, how='outer', on="security_code") return factor_derivation @staticmethod def WorkingCap(tp_derivation, factor_derivation, dependencies=['total_current_assets', 'total_current_liability']): """ :name: 运营资本(MRQ) :desc: 流动资产(MRQ)-流动负债(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['WorkingCap'] = management[dependencies].apply(func, axis=1) management = management[['WorkingCap']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TangibleAssets(tp_derivation, factor_derivation, dependencies=['equities_parent_company_owners', 'intangible_assets', 'development_expenditure', 'good_will', 'long_deferred_expense', 'deferred_tax_assets']): """ :name: 有形资产(MRQ) :desc: 股东权益(不含少数股东权益)- (无形资产 + 开发支出 + 商誉 + 长期待摊费用 + 递延所得税资产) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - (x[1] + x[2] + x[3] + x[4] + x[5]) if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None and \ x[5] is not None else None management['TangibleAssets'] = management[dependencies].apply(func, axis=1) management = management[['TangibleAssets']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def RetainedEarnings(tp_derivation, factor_derivation, dependencies=['surplus_reserve_fund', 'retained_profit']): """ :name: 留存收益(MRQ) :desc: 盈余公积MRQ + 未分配利润MRQ :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] if x[0] is not None and x[1] is not None else None management['RetainedEarnings'] = management[dependencies].apply(func, axis=1) management = management[['RetainedEarnings']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestFreeCurLb(tp_derivation, factor_derivation, dependencies=['bill_receivable', 'accounts_payable', 'advance_peceipts', 'salaries_payable', 'taxs_payable', 'accrued_expenses', 'other_payable', 'long_term_deferred_income', 'other_current_liability', ]): """ :name: 无息流动负债(MRQ) :desc: 无息流动负债 = 应收票据+应付帐款+预收款项+应付职工薪酬+应交税费+其他应付款+预提费用+递延收益+其他流动负债 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] if x[0] is not None or \ x[1] is not None or \ x[2] is not None or \ x[3] is not None or \ x[4] is not None or \ x[5] is not None or \ x[6] is not None or \ x[7] is not None or \ x[8] is not None else None management['InterestFreeCurLb'] = management[dependencies].apply(func, axis=1) management = management[['InterestFreeCurLb']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestFreeNonCurLb(tp_derivation, factor_derivation, dependencies=['total_non_current_liability', 'longterm_loan', 'bonds_payable']): """ :name: 无息非流动负债(MRQ) :desc: 非流动负债合计 - 长期借款 - 应付债券 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] - x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['InterestFreeNonCurLb'] = management[dependencies].apply(func, axis=1) management = management[['InterestFreeNonCurLb']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestBearingLiabilities(tp_derivation, factor_derivation, dependencies=['total_liability'], dependency=['InterestFreeCurLb', 'InterestFreeNonCurLb']): """ :name: 带息负债(MRQ) :desc: 负债合计-无息流动负债-无息非流动负债(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management1 = factor_derivation.loc[:, dependency] management = pd.merge(management, management1, how='outer', on="security_code") management = management.fillna(0) if len(management) <= 0: return None dependency = dependencies + dependency func = lambda x: x[0] - x[1] - x[2] if x[0] is not None and \ x[1] is not None and \ x[2] is not None else None management['InterestBearingLiabilities'] = management[dependency].apply(func, axis=1) management = management[['InterestBearingLiabilities']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetDebt(tp_derivation, factor_derivation, dependencies=['cash_equivalents'], dependency=['InterestBearingLiabilities']): """ :name: 净债务(MRQ) :desc: 净债务 = 带息债务(MRQ) - 货币资金(MRQ)。 其中,带息负债 = 短期借款 + 一年内到期的长期负债 + 长期借款 + 应付债券 + 应付利息 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management1 = factor_derivation.loc[:, dependency] management = pd.merge(management, management1, how='outer', on="security_code") management = management.fillna(0) if len(management) <= 0: return None dependency = dependency + dependencies func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['NetDebt'] = management[dependency].apply(func, axis=1) management = management[['NetDebt']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EquityPC(tp_derivation, factor_derivation, dependencies=['equities_parent_company_owners']): """ :name: 归属于母公司的股东权益(MRQ) :desc: 归属于母公司的股东权益(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None management = management.rename(columns={'equities_parent_company_owners': 'EquityPC'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalInvestedCap(tp_derivation, factor_derivation, dependencies=['total_owner_equities' ], dependency=['InterestBearingLiabilities']): """ :name: 全部投入资本(MRQ) :desc: 股东权益+(负债合计-无息流动负债-无息长期负债) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management1 = factor_derivation.loc[:, dependency] management = pd.merge(management, management1, how='outer', on="security_code") management = management.fillna(0) dependency = dependency + dependencies if len(management) <= 0: return None func = lambda x: x[0] + x[1] if x[0] is not None and x[1] is not None else None management['TotalInvestedCap'] = management[dependency].apply(func, axis=1) management = management[['TotalInvestedCap']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalAssets(tp_derivation, factor_derivation, dependencies=['total_assets']): """ :name: 资产总计(MRQ) :desc: 资产总计(MRQ) balance :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_assets': 'TotalAssets'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalFixedAssets(tp_derivation, factor_derivation, dependencies=['total_fixed_assets_liquidation']): """ :name: 固定资产合计(MRQ) :desc: 固定资产合计(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_fixed_assets_liquidation': 'TotalFixedAssets'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalLib(tp_derivation, factor_derivation, dependencies=['total_liability']): """ :name: 负债合计(MRQ) :desc: 负债合计(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_liability': 'TotalLib'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def ShEquity(tp_derivation, factor_derivation, dependencies=['total_owner_equities']): """ :name: 股东权益(MRQ) :desc: 股东权益(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_owner_equities': 'ShEquity'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def CashAndCashEqu(tp_derivation, factor_derivation, dependencies=['cash_and_equivalents_at_end']): """ :name: 期末现金及现金等价物(MRQ) :desc: 期末现金及现金等价物(MRQ) :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'cash_and_equivalents_at_end': 'CashAndCashEqu'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def SalesTTM(tp_derivation, factor_derivation, dependencies=['total_operating_revenue']): """ :name: 营业总收入(TTM) :desc: 根据截止指定日已披露的最新报告期“营业总收入”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_operating_revenue': 'SalesTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalOptCostTTM(tp_derivation, factor_derivation, dependencies=['total_operating_cost']): """ :name: 营业总成本(TTM) :desc: 根据截止指定日已披露的最新报告期“营业总成本”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_operating_cost': 'TotalOptCostTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def OptIncTTM(tp_derivation, factor_derivation, dependencies=['operating_revenue']): """ :name: 营业收入(TTM) :desc: 根据截止指定日已披露的最新报告期“营业收入”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'operating_revenue': 'OptIncTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def GrossMarginTTM(tp_derivation, factor_derivation, dependencies=['total_operating_revenue', 'total_operating_cost']): """ :name: 毛利(TTM) 营业毛利润 :desc: 根据截止指定日已披露的最新报告期“毛利”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: (x[0] - x[1]) / x[1] if x[1] != 0 and x[1] is not None else None management['GrossMarginTTM'] = management[dependencies].apply(func, axis=1) management = management[['GrossMarginTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def SalesExpensesTTM(tp_derivation, factor_derivation, dependencies=['sale_expense']): """ :name: 销售费用(TTM) :desc: 根据截止指定日已披露的最新报告期“销售费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'SALESEsale_expenseXPE': 'SalesExpensesTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def AdmFeeTTM(tp_derivation, factor_derivation, dependencies=['administration_expense']): """ :name: 管理费用(TTM) :desc: 根据截止指定日已披露的最新报告期“管理费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'administration_expense': 'AdmFeeTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def FinFeeTTM(tp_derivation, factor_derivation, dependencies=['financial_expense']): """ :name: 财务费用(TTM) :desc: 根据截止指定日已披露的最新报告期“财务费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'financial_expense': 'FinFeeTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def PerFeeTTM(tp_derivation, factor_derivation, dependencies=['sale_expense', 'administration_expense', 'financial_expense', ]): """ :name: 期间费用(TTM) :desc: 根据截止指定日已披露的最新报告期“期间费用”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['PerFeeTTM'] = management[dependencies].apply(func, axis=1) management = management[['PerFeeTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def InterestExpTTM(tp_derivation, factor_derivation, dependencies=['interest_expense']): """ :name: 利息支出(TTM) :desc: 根据截止指定日已披露的最新报告期“利息支出”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'interest_expense': 'InterestExpTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def MinorInterestTTM(tp_derivation, factor_derivation, dependencies=['minority_profit']): """ :name: 少数股东损益(TTM) :desc: 根据截止指定日已披露的最新报告期“少数股东损益”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'minority_profit': 'MinorInterestTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def AssetImpLossTTM(tp_derivation, factor_derivation, dependencies=['asset_impairment_loss']): """ :name: 资产减值损失(TTM) :desc: 根据截止指定日已披露的最新报告期“资产减值损失”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'asset_impairment_loss': 'AssetImpLossTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetIncFromOptActTTM(tp_derivation, factor_derivation, dependencies=['total_operating_revenue', 'total_operating_cost']): """ :name: 经营活动净收益(TTM) :desc: 根据截止指定日已披露的最新报告期“经营活动净收益”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] if x[0] is not None and x[1] is not None else None management['NetIncFromOptActTTM'] = management[dependencies].apply(func, axis=1) management = management[['NetIncFromOptActTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetIncFromValueChgTTM(tp_derivation, factor_derivation, dependencies=['fair_value_variable_income', 'investment_income', 'exchange_income', ]): """ :name: 价值变动净收益(TTM) :desc: 公允价值变动净收益+投资净收益+汇兑净收益 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] if x[0] is not None and x[1] is not None and x[2] is not None else None management['NetIncFromValueChgTTM'] = management[dependencies].apply(func, axis=1) management = management[['NetIncFromValueChgTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def OptProfitTTM(tp_derivation, factor_derivation, dependencies=['operating_profit']): """ :name: 营业利润(TTM) :desc: 根据截止指定日已披露的最新报告期“营业利润”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'operating_profit': 'OptProfitTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetNonOptIncAndExpTTM(tp_derivation, factor_derivation, dependencies=['non_operating_revenue', 'non_operating_expense', ]): """ :name: 营业外收支净额(TTM) :desc: 根据截止指定日已披露的最新报告期“营业外收支净额”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] management['NetNonOptIncAndExpTTM'] = management[dependencies].apply(func, axis=1) management = management[['NetNonOptIncAndExpTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EBITTTM(tp_derivation, factor_derivation, dependencies=['total_profit', 'interest_expense']): """ :name: 息税前利润(TTM) :desc: [EBIT_反推]息税前利润 = 利润总额+利息支出 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] management['EBITTTM'] = management[dependencies].apply(func, axis=1) management = management[['EBITTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def IncTaxTTM(tp_derivation, factor_derivation, dependencies=['income_tax']): """ :name: 所得税(TTM) :desc:根据截止指定日已披露的最新报告期“所得税”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'income_tax': 'IncTaxTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def TotalProfTTM(tp_derivation, factor_derivation, dependencies=['total_profit']): """ :name: 利润总额(TTM) :desc: 根据截止指定日已披露的最新报告期“利润总额”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'total_profit': 'TotalProfTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetIncTTM(tp_derivation, factor_derivation, dependencies=['net_profit']): """ :name: 净利润(TTM) :desc: 根据截止指定日已披露的最新报告期“净利润(含少数股东权益)”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'net_profit': 'NetIncTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetProfToPSTTM(tp_derivation, factor_derivation, dependencies=['np_parent_company_owners']): """ :name: 归属母公司股东的净利润(TTM) :desc: 根据截止指定日已披露的最新报告期“归属母公司股东的净利润”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。注:交易日匹配财报数据披露日,业绩快报数据不参与计算 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'np_parent_company_owners': 'NetProfToPSTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def NetProfAfterNonRecGainsAndLossTTM(tp_derivation, factor_derivation, dependencies=['np_cut']): """ :name: 扣除非经常性损益后的净利润(TTM) :desc: 根据截止指定日已披露的最新报告期“扣除非经常性损益后的净利润”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'np_cut': 'NetProfAfterNonRecGainsAndLossTTM'}) factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EBITFORPTTM(tp_derivation, factor_derivation, dependencies=['operating_revenue', 'operating_tax_surcharges', 'operating_cost', 'sale_expense', 'administration_expense', 'rd_expenses', 'service_commission_fee', 'asset_impairment_loss', 'other_earnings', ]): """ 缺坏账损失, 存货跌价损失 :name: EBIT(TTM) :desc: (营业收入-营业税金及附加)-(营业成本+利息支出+手续费及佣金支出+销售费用+管理费用+研发费用+坏账损失+存货跌价损失) +其他收益 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] - x[1] - (x[2] + x[3] + x[4] + x[5] + x[6] + x[7]) + x[8] \ if x[0] is not None and \ x[1] is not None and \ x[2] is not None and \ x[3] is not None and \ x[4] is not None and \ x[5] is not None and \ x[6] is not None and \ x[7] is not None and \ x[8] is not None else None management['EBITFORPTTM'] = management[dependencies].apply(func, axis=1) management = management[['EBITFORPTTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def EBITDATTM(tp_derivation, factor_derivation, dependencies=['total_profit', 'fixed_assets_depreciation', 'intangible_assets_amortization', 'defferred_expense_amortization' ]): """ :name: EBITDA(TTM) :desc: [EBITDA(TTM)_正向]息税前利润 + 当期计提折旧与摊销 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] management = management.fillna(0) if len(management) <= 0: return None func = lambda x: x[0] + x[1] + x[2] + x[3] if x[0] is not None and x[1] is not None and x[2] is not None and x[ 3] is not None else None management['EBITDATTM'] = management[dependencies].apply(func, axis=1) management = management[['EBITDATTM']] factor_derivation = pd.merge(factor_derivation, management, how='outer', on="security_code") return factor_derivation @staticmethod def CashRecForSGAndPSTTM(tp_derivation, factor_derivation, dependencies=['goods_sale_and_service_render_cash']): """ :name: 销售商品提供劳务收到的现金(TTM) :desc: 根据截止指定日已披露的最新报告期“销售商品提供劳务收到的现金”计算:(1)最新报告期是年报。则TTM=年报;(2)最新报告期不是年报,Q则TTM=本期+(上年年报-上年同期合并数),如果上年年报非空,本期、上年同期台并数存在空值,则返回上年年报。 :unit: 元 :view_dimension: 10000 """ management = tp_derivation.loc[:, dependencies] if len(management) <= 0: return None management = management.rename(columns={'goods_sale_and_service_render_cash': 'CashRecForSGAndPSTTM'}) factor_derivation =
pd.merge(factor_derivation, management, how='outer', on="security_code")
pandas.merge
import argparse import numpy as np import pandas as pd import scanpy as sc import matplotlib.pyplot as plt import os import scrublet as scr import scipy.io plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.sans-serif'] = 'Arial' plt.rc('font', size=14) plt.rcParams['pdf.fonttype'] = 42 parser = argparse.ArgumentParser() parser.add_argument('-i','--input', type=str,help="The directory of input matrix") parser.add_argument('-o','--output', type=str,help="The directory of output",default='./') args = parser.parse_args() input_dir = args.input os.system('gunzip '+input_dir+"/*" ) counts_matrix = scipy.io.mmread(input_dir + '/matrix.mtx').T.tocsc() genes = np.array(scr.load_genes(input_dir + '/genes.tsv', delimiter='\t', column=1)) print('Counts matrix shape: {} rows, {} columns'.format(counts_matrix.shape[0], counts_matrix.shape[1])) print('Number of genes in gene list: {}'.format(len(genes))) #os.system('gzip '+input_dir+"/*" ) scrub = scr.Scrublet(counts_matrix, expected_doublet_rate=0.06) doublet_scores, predicted_doublets = scrub.scrub_doublets(min_counts=2,min_cells=3,min_gene_variability_pctl=85,n_prin_comps=30) print('Running UMAP...') scrub.set_embedding('UMAP', scr.get_umap(scrub.manifold_obs_, 10, min_dist=0.3)) print('Done.') scrub.plot_embedding('UMAP', order_points=True); plt.savefig(args.output+"/umap_doublet_plot.png") plt.cla() len_array = np.array(range(0,len(predicted_doublets))) result = list(len_array[list(predicted_doublets)]) print("There are "+str(len(result))+" doublets.") adata = sc.read_10x_mtx( input_dir, # the directory with the `.mtx` file var_names='gene_symbols' # use gene symbols for the variable names (variables-axis index) ) print(adata) barcodes=adata.obs.index.tolist() genes=adata.var.index.tolist() mat=adata.X.todense() filtered=
pd.DataFrame(data=mat,columns=genes,index=barcodes)
pandas.DataFrame
## Functions to support SPEI drought index analysis ## Code: EHU | SPEI data: SC ## 12 Sept 2019 import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm from datetime import date import collections ## Constants associated with this analysis yrs = np.linspace(1900, 2101, num=2412) model_names = ['CanESM2', 'CCSM4', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'GISS-E2-R', 'INMCM4', 'MIROC-ESM', 'NorESM1-M'] # all models used in comparison scenarios = ['Rcp4p5', 'Rcp8p5'] # climate scenarios basin_names = ['INDUS','TARIM','BRAHMAPUTRA','ARAL SEA','COPPER','GANGES','YUKON','ALSEK','SUSITNA','BALKHASH','STIKINE','SANTA CRUZ', 'FRASER','BAKER','YANGTZE','SALWEEN','COLUMBIA','ISSYK-KUL','AMAZON','COLORADO','TAKU','MACKENZIE','NASS','THJORSA','JOEKULSA A F.', 'KUSKOKWIM','RHONE','SKEENA','OB','OELFUSA','MEKONG','DANUBE','NELSON RIVER','PO','KAMCHATKA','RHINE','GLOMA','HUANG HE','INDIGIRKA', 'LULE','RAPEL','SANTA','SKAGIT','KUBAN','TITICACA','NUSHAGAK','BIOBIO','IRRAWADDY','NEGRO','MAJES','CLUTHA','DAULE-VINCES', 'KALIXAELVEN','MAGDALENA','DRAMSELV','COLVILLE'] def plot_basin_runmean(basin_id, permodel_dict, which='diff', window_yrs=30, cmap_name='viridis', show_labels=True, show_plot=True, save_plot=False, output_tag=None, ax=None, shade_axis=True): """Make a plot of running mean difference in SPEI for a given basin, comparing across models. Arguments: basin_id: integer, index of basin in the standard list "basin_names" permodel_dict: dictionary storing SPEI per model, with the structure dict[modelname]['diff'/'WRunoff'/'NRunoff'][basinname] = basin difference in SPEI for this model which: string identifying 'WRunoff' (with glacial runoff), 'NRunoff' (no runoff), or 'diff' (their difference) window_yrs: number of years to consider in running average. Default 30 cmap_name: name of matplotlib colormap from which to select line colors. Default 'viridis' show_plot: Boolean, whether to show the resulting plot. Default True save_plot: Boolean, whether to save the plot in the working directory. Default False output_tag: anything special to note in output filename, e.g. global settings applied. Default None will label 'default' ax: Axes instance on which to plot. Default None will set up a new instance shade_axis: Boolean, whether to shade regions for which the running window includes years before the glacier model switch-on """ window_size = 12 * window_yrs # size of window given monthly data basin_runavg_bymodel = [np.convolve(permodel_dict[m][which][basin_id], np.ones((window_size,))/window_size, mode='valid') for m in model_names] #compute running means colors = cm.get_cmap(cmap_name)(np.linspace(0, 1, num=len(model_names))) styles = ('-',':') if ax is None: fig, ax = plt.subplots() # create Axes instance if needed if shade_axis: cutoff_year = 1980 + window_yrs/2 ax.axvspan(1900, cutoff_year, color='Grey', alpha=0.3) for k,m in enumerate(model_names): ax.plot(yrs[(window_size/2):-(window_size/2 -1)], basin_runavg_bymodel[k], label=m, color=colors[k], ls=styles[np.mod(k, len(styles))], linewidth=2.0) ax.tick_params(axis='both', labelsize=14) ax.set(xlim=(1900,2100), xticks=[1900,1950, 2000, 2050, 2100]) if show_labels: ax.set_xlabel('Years', fontsize=16) ax.set_ylabel('Mean SPEI {}'.format(which), fontsize=16) ax.set_title('{} year running mean, {} case, {} basin'.format(window_yrs, which, basin_names[basin_id]), fontsize=18) ax.legend(loc='best') plt.tight_layout() if save_plot: if output_tag is None: output_tag='default' plt.savefig(fname='{}yr_runmean-{}-{}_basin-{}-{}.png'.format(window_yrs, which, basin_names[basin_id], output_tag, date.today())) if show_plot: plt.show() def plot_runmean_comparison(basin_id, permodel_dict, window_yrs=30, cmaps=('Blues', 'Wistia'), show_labels=True, show_plot=True, save_plot=False, output_tag=None, ax=None): """Make a plot comparing running-average model projections of SPEI with and without glacial runoff. Arguments: basin_id: integer, index of basin in the standard list "basin_names" permodel_dict: dictionary storing SPEI per model, with the structure dict[modelname]['diff'/'WRunoff'/'NRunoff'][basinname] = basin difference in SPEI for this model window_yrs: number of years to consider in running average. Default 30 cmaps: tuple (str, str) of matplotlib colormap names from which to select line colors for each case. Default ('Blues', 'Greys') show_plot: Boolean, whether to show the resulting plot. Default True save_plot: Boolean, whether to save the plot in the working directory. Default False output_tag: anything special to note, e.g. global settings applied. Default None will label 'default' ax: Axes instance on which to plot. Default None will set up a new instance """ window_size = 12 * window_yrs # size of window given monthly data basin_runavg_w = [np.convolve(permodel_dict[m]['WRunoff'][basin_id], np.ones((window_size,))/window_size, mode='valid') for m in model_names] #compute running means basin_runavg_n = [np.convolve(permodel_dict[m]['NRunoff'][basin_id], np.ones((window_size,))/window_size, mode='valid') for m in model_names] #compute running means colors_w = cm.get_cmap(cmaps[0])(np.linspace(0.2, 1, num=len(model_names))) colors_n = cm.get_cmap(cmaps[1])(np.linspace(0.2, 1, num=len(model_names))) if ax is None: fig, ax = plt.subplots() ax.axhline(y=0, color='Gainsboro', linewidth=2.0) for k,m in enumerate(model_names): ax.plot(yrs[(window_size/2):-(window_size/2 -1)], basin_runavg_w[k], label=m, color=colors_w[k], linewidth=2.0) ax.plot(yrs[(window_size/2):-(window_size/2 -1)], basin_runavg_n[k], ls='-.', color=colors_n[k], linewidth=2.0) ax.tick_params(axis='both', labelsize=14) ax.set(xlim=(1900,2100), xticks=[1900,1950, 2000, 2050, 2100]) if show_labels: ax.set_xlabel('Years', fontsize=16) ax.set_ylabel('SPEI', fontsize=16) ax.set_title('{} year running average trajectories, {} basin'.format(window_yrs, basin_names[basin_id]), fontsize=18) ax.legend(loc='best') plt.tight_layout() if save_plot: if output_tag is None: output_tag='default' plt.savefig(fname='{}yr_runmean_comp-{}_basin-{}-{}.png'.format(window_yrs, basin_names[basin_id], output_tag, date.today())) if show_plot: plt.show() def plot_basin_runvar(basin_id, permodel_dict, which='diff', window_yrs=30, cmaps='viridis', show_labels=True, show_plot=True, save_plot=False, output_tag=None, ax=None, shade_axis=True): """Make a plot comparing running-average model projections of SPEI with and without glacial runoff. Arguments: basin_id: integer, index of basin in the standard list "basin_names" permodel_dict: dictionary storing SPEI per model, with the structure dict[modelname]['diff'/'WRunoff'/'NRunoff'][basinname] = basin difference in SPEI for this model window_yrs: number of years to consider in running average. Default 30 cmaps: tuple (str, str) of matplotlib colormap names from which to select line colors for each case. Default ('Blues', 'Greys') show_plot: Boolean, whether to show the resulting plot. Default True save_plot: Boolean, whether to save the plot in the working directory. Default False output_tag: anything special to note, e.g. global settings applied. Default None will label 'default' ax: Axes instance on which to plot. Default None will set up a new instance shade_axis: Boolean, whether to shade regions for which the running window includes years before the glacier model switch-on """ basin_dict = {m: {'NRunoff': [], 'WRunoff': [], 'diff': []} for m in model_names} varwindow = 12*window_yrs # number of months to window in rolling variance for m in model_names: nr = pd.Series(permodel_dict[m]['NRunoff'][basin_id]) wr =
pd.Series(permodel_dict[m]['WRunoff'][basin_id])
pandas.Series
"""Pypiplot.""" from d3heatmap import d3heatmap as d3 import pypistats import requests import matplotlib.pyplot as plt from datetime import datetime, timedelta import argparse import pandas as pd import numpy as np import os from calplot import calplot, yearplot import tempfile # %% class Pypiplot: """Class pypiplot.""" def __init__(self, username, category=['with_mirrors', 'without_mirrors'], sep=';', savepath=None, verbose=3): """Initialize pypiplot. Parameters ---------- username : String Github user account name. category : list, optional Downloads is counted for one or both of these categories ['with_mirrors', 'without_mirrors']. sep : str, (Default: ';') Seperator to store data in csv file. savepath : String, (Default: None) Storage of the csv files containing download statistics. verbose : int, (Default: 3) Verbosity message. Returns ------- None. """ self.username = username self.repo_link = 'https://api.github.com/users/' + username + '/repos' self.sep = sep self.category = category self.curpath = os.path.dirname(os.path.abspath(__file__)) self.tempdir = os.path.abspath(tempfile.gettempdir()) # self.curpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data') if savepath is None: self.savepath = os.path.join(self.curpath, 'pypi_data') if not os.path.exists(self.savepath): os.makedirs(self.savepath) else: self.savepath = savepath self.verbose=verbose def update(self, repo=None): """Update repo download file(s). Description ----------- Update the local stored file with daily downloads for the specified repos. Parameters ---------- repo : list of Strings, (Default: None) None : Take all available pypi repos for the username. Returns ------- None. """ if (repo is not None) and ('str' in str(type(repo))): repo = [repo] # Extract all repos repos = self._get_repo_names_from_git() if (repo is not None): repos = repo if not np.any(np.isin(repos, repo)): raise ValueError('[pypiplot] >Error: repos [%s] does not exists or is private.' %(repo)) if self.verbose>=3: print('[pypiplot] >Start updating..') for repo in repos: try: if self.verbose>=3: print('[pypiplot] >[%s]' %(repo)) status = True df = pypistats.overall(repo, total=True, format="pandas") df.dropna(inplace=True) df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%d') df = df.sort_values("date") df.reset_index(drop=True, inplace=True) del df['percent'] # Merge with any on disk pathname = os.path.join(self.savepath, repo + '.csv') if os.path.isfile(pathname): # Read repo from disk df_disk = read_repo_counts_from_disk(pathname, self.sep) # Merge with latest counts df, status = add_new_counts_to_repo(df, df_disk, repo, verbose=self.verbose) # Write to disk if status: if self.verbose>=3: print('[pypiplot] >Write to disk: [%s]' %(pathname)) df.to_csv(pathname, index=False, sep=self.sep) except: if self.verbose>=1: print('[pypiplot] >Skip [%s] because could not retrieve statistics from Pypi.' %(repo)) def stats(self, repo=None): """Compute statistics for the specified repo(s). Description ----------- Compute and summarize statistics for the libraries. Parameters ---------- repo : list of Strings, (Default: None) None : Take all available pypi repos for the username. Returns ------- dict() * data : Download statistics for the repo(s). * heatmap : DataFrame containing (summarized) data statistics. * repos : Number of repos. * n_libraries : Number of libraries processed. """ # Retrieve all repos for the username status, repos, filenames, pathnames = self._get_repos() if (repo is not None) and ('str' in str(type(repo))): repo = [repo] # Check whether specific repo exists. if repo is not None: Iloc = np.isin(repos, repo) if not np.any(Iloc): raise ValueError('[pypiplot] >Error: repos [%s] does not exists or is private. Tip: Run the .update() first.' %(repo)) # repos = [repo] repos = repos[Iloc] filenames = filenames[Iloc] pathnames = pathnames[Iloc] if not status: if self.verbose>=3: print('[pypiplot] >No repos could be retrieved from git nor disk <return>') return None out = pd.DataFrame() for repo, pathname in zip(repos, pathnames): df = read_repo_counts_from_disk(pathname, self.sep) # Take desired categories Iloc = np.isin(df['category'], self.category) df = df.loc[Iloc, :] # Group by date df = df.groupby("date").sum().sort_values("date") df.reset_index(drop=False, inplace=True) dftmp = df.groupby("date").sum() dftmp.rename(columns={'downloads': repo}, inplace=True) out = pd.concat([out, dftmp], axis=0) out.fillna(value=0, inplace=True) out.reset_index(drop=False, inplace=True) out = out.groupby("date").sum() # Make heatmap heatmap = _compute_history_heatmap(out, verbose=self.verbose) self.results = {} self.results['data'] = out self.results['heatmap'] = heatmap self.results['n_libraries'] = out.shape[1] self.results['repos'] = repos return self.results def _get_repo_names_from_git(self): # Extract repos for user if self.verbose>=3: print('[pypiplot] >Extracting repo names for [%s]..' %(self.username)) r = requests.get(self.repo_link) data = r.json() # Extract the repo names repos = [] for rep in data: # full_names.insert(0, rep['full_name']) repos.insert(0, rep['name']) if self.verbose>=3: print('[pypiplot] >[%.0d] repos found for [%s]' %(len(repos), self.username)) # Return return np.array(repos) def _get_repos(self): status = True # Retrieve all downloads from disk repos, filenames, pathnames = get_files_on_disk(self.savepath, verbose=self.verbose) # Update and retrieve if needed if len(repos)==0: if self.verbose>=3: print('[pypiplot] >No files found on disk. Lets update first!') # Update all repos self.update() # Retrieve all downloads from disk repos, filenames, pathnames = get_files_on_disk(self.savepath, verbose=0) if len(repos)==0: status = False # Return return status, repos, filenames, pathnames def plot_cal(self, method='mean', vmin=None, vmax=None, cmap='YlGn', norm=False): X = self.results['data'].copy() if vmin is not None: X[X<=vmin]=vmin if vmax is not None: X[X>=vmax]=vmax if norm: print('[pypiplot]> Normalizing..') X = (X-X.mean(axis=0)) / X.std(axis=0) print('[pypiplot]> Method: [%s]' %(method)) if method=='median': events=X.median(axis=1) elif method=='mean': events=X.mean(axis=1) else: events=X.sum(axis=1) # Make the calender plt.figure() calplot(events, cmap=cmap, colorbar=False, figsize=None, suptitle=None) def plot_year(self, title=None, description=None, path='d3heatmap.html', vmin=10, vmax=None, cmap='interpolateGreens', visible=True, overwrite=False): """Plot heatmap across all repos. Description ----------- Plot heatmap of all the repos combined with weeks vs day-name Parameters ---------- title : String, (Default: None) Title of the heatmap. description : String, (Default: None) Description of the heatmap. path : String, (Default: 'd3heatmap.html'.) Full pathname or filename to store the file. If None is used, the system tempdir is used. vmin : int, (Default: 25) Minimum color: Used for colorscheme. None: Take the minimum value in the matrix. vmax : int, (Default: None) Minimum color: Used for colorscheme. None: Take the maximum value in the matrix. cmap : String, (default: 'interpolateInferno'). The colormap scheme. This can be found at: https://github.com/d3/d3-scale-chromatic. visible : Bool, (default: True). Open the browser. Returns ------- None. """ if description is None: if self.results['n_libraries']>1: description = '%.0d Total Pypi downloads across %.0d libraries' %(self.results['heatmap'].sum().sum(), self.results['n_libraries']) else: description = '%.0d Total Pypi downloads for %s' %(self.results['heatmap'].sum().sum(), self.results['repos'][0]) if title is None: title = '' # Make heatmap with d3js. d3.matrix(self.results['heatmap'], fontsize=9, title=title, description=description, path=path, width=700, height=200, cmap=cmap, vmin=vmin, vmax=vmax, stroke='black', showfig=visible, overwrite=True) def plot(self, title=None, method='mean', legend=True, figsize=(25, 15)): plt.figure() if method=='median': self.results['data'].rolling(window=30).median().plot(figsize=figsize, legend=legend) elif method=='sum': self.results['data'].rolling(window=30).sum().plot(figsize=figsize, legend=legend) else: self.results['data'].rolling(window=30).mean().plot(figsize=figsize, legend=legend) plt.xlabel('Date') plt.ylabel('Average number of downloads in a rolling window of 30 days') plt.grid(True) plt.title(title) def plot_heatmap(self, title=None, description=None, path='d3_heatmap_repos.html', vmin=10, vmax=None, width=700, height=None, cmap='interpolateGreens'): """Plot heatmap across all repos. Description ----------- Plot heatmap of all the repos combined with weeks vs day-name Parameters ---------- title : String, (Default: None) Title of the heatmap. description : String, (Default: None) Description of the heatmap. path : String, (Default: 'd3_heatmap_repos.html'.) Full pathname or filename to store the file. If None is used, the system tempdir is used. vmin : int, (Default: 25) Minimum color: Used for colorscheme. None: Take the minimum value in the matrix. vmax : int, (Default: None) Minimum color: Used for colorscheme. None: Take the maximum value in the matrix. cmap : String, (default: 'interpolateInferno'). The colormap scheme. This can be found at: https://github.com/d3/d3-scale-chromatic 'interpolateOranges' width : int, (default: 700). Width of the window. height : int, (default: None). None: Determine based on number of repos. Returns ------- None. """ heatmap = pd.DataFrame() cols = self.results['data'].columns.values for col in cols: heatmap[col] = _compute_history_heatmap(pd.DataFrame(self.results['data'][col])).sum(axis=0) if title is None: title = '' if description is None: if self.results['n_libraries']>1: description = '%.0d Pypi downloads last year across %.0d libraries' %(self.results['heatmap'].sum().sum(), self.results['n_libraries']) else: description = '%.0d Pypi downloads last year for %s' %(self.results['heatmap'].sum().sum(), self.results['repos'][0]) if height is None: height = np.maximum(np.minimum(40 * heatmap.shape[1], 550), 200) # Make heatmap with d3js. d3.matrix(heatmap.T, fontsize=9, title=title, description=description, path=path, width=700, height=height, cmap=cmap, vmin=vmin, vmax=vmax, stroke='black', overwrite=True) # %% def _compute_history_heatmap(df, duration=360, nr_days=7, verbose=3): df = df.sum(axis=1).copy() datetimeformat='%Y-%m-%d' if verbose>=3: print('[pypiplot] >Computing heatmap across the last %.0d days.' %(duration)) # Make sure the duration is tops 365 from now extend_days = datetime.now() - timedelta(duration) dates_start = pd.to_datetime(pd.date_range(start=extend_days, end=df.index[0]).strftime(datetimeformat), format=datetimeformat) df_start = pd.DataFrame(np.zeros((len(dates_start), 1)), dtype=int, index=dates_start) # Fill the gap between now and the latest point of the date in the data dates_end = pd.to_datetime(pd.date_range(start=df.index[-1] + timedelta(1), end=datetime.now()).strftime(datetimeformat), format=datetimeformat) df_end = pd.DataFrame(np.zeros((len(dates_end), 1)), dtype=int, index=dates_end) # dataframe containing 365 days of data df_365 =
pd.concat([df_start, df, df_end], axis=0)
pandas.concat
import re import json import requests from bs4 import BeautifulSoup import time import datetime import pandas as pd import numpy as np # Fans page ================================================================== # Crawl_PagePosts def Crawl_PagePosts(pageurl, until_date='2019-01-01'): page_id = pagecrawler.get_pageid(pageurl) timeline_cursor = '' content_df = [] # post feedback_df = [] # reactions max_date = datetime.datetime.now() break_times = 0 rs = requests.session() # request date and break loop when reach the goal while max_date >= datetime.datetime.strptime(until_date, '%Y-%m-%d'): try: url = 'https://www.facebook.com/pages_reaction_units/more/' params = {'page_id': page_id, 'cursor': str({"timeline_cursor":timeline_cursor, "timeline_section_cursor":'{}', "has_next_page":'true'}), # 'surface': 'www_pages_home', 'surface': 'www_pages_posts', 'unit_count': 20, '__a': '1'} resp = rs.get(url, params=params) data = json.loads(re.sub(r'for \(;;\);','',resp.text)) # contesnts:poster's name, poster's ID, post ID, time, content ndf = pageparser.parse_content(data=data) content_df.append(ndf) # reactions ndf1 = pageparser.get_reaction(data=data) feedback_df.append(ndf1) # update request params max_date = ndf['TIME'].max() print('TimeStamp: {}.'.format(ndf['TIME'].max())) timeline_cursor = re.findall(r'timeline_cursor%22%3A%22(.*?)%22%2C%22timeline_section_cursor', data['domops'][0][3]['__html'])[0] # break times to zero break_times = 0 except: break_times += 1 print('break_times:', break_times) time.sleep(3) time.sleep(2) if break_times > 5: break # join content and reactions content_df = pd.concat(content_df, ignore_index=True) feedback_df = pd.concat(feedback_df, ignore_index=True) df = pd.merge(left=content_df, right=feedback_df, how='left', on=['PAGEID', 'POSTID']) df = df.loc[:,['NAME', 'TIME', 'CONTENT', 'PAGEID', 'POSTID', 'display_comments_count', 'total_comments_count', 'reaction_count', 'share_count', 'LIKE', 'LOVE', 'HAHA', 'SUPPORT', 'WOW', 'ANGER', 'SORRY']] df = df.rename(columns={'display_comments_count':'DISPLAYCOMMENTS', 'total_comments_count':'TOTAL_COMMENTS', 'reaction_count':'REACTIONS','share_count':'SHARES'}) df['UPDATETIME'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") print('There are {} posts in the DataFrame.'.format(str(df.shape[0]))) return df # Group page ================================================================== ## parse_group_content def parse_group_content(resp): soup = BeautifulSoup(resp.text, 'lxml') df = [] for ele in soup.findAll('article'): try: df.append([ re.findall('"actor_id":([0-9]{1,})' ,str(ele))[0], # actorid re.findall('"top_level_post_id":"(.*?)"' ,str(ele))[0], # postid ele.find('strong').text, # actorname json.loads(re.findall(r'"post_context":({.*?})', str(ele))[0])['publish_time'], # TIME json.loads(re.findall(r'"post_context":({.*?})', str(ele))[0])['story_name'], # story_name ele.select_one('div.story_body_container > div').text, # content ' '.join([i.text for i in ele.findAll('span', {'class':'_28wy'})]) # reactions ]) except: pass df = pd.DataFrame(data=df, columns = ['ACTORID','POSTID', 'NAME', 'TIME','STORYNAME', 'CONTENT', 'REACTIONS']) try: df['GROUPID'] = re.findall('\?id=([0-9]{1,})"',resp.text)[0] except: df['GROUPID'] = re.findall('https://m.facebook.com/groups/([0-9]{1,})\?',resp.text)[0] df['TIME'] = df['TIME'].apply(lambda x: datetime.datetime.fromtimestamp(int(x))) df['LIKES'] = df['REACTIONS'].apply(lambda x: re.findall('([0-9]{1,}) Like', x)[0] if 'Like' in x else '0') df['COMMENTS'] = df['REACTIONS'].apply(lambda x: re.findall('([0-9]{1,}) Comment', x)[0] if 'Comment' in x else '0') df['SHARES'] = df['REACTIONS'].apply(lambda x: re.findall('([0-9]{1,}) Share', x)[0] if 'Share' in x else '0') df = df.loc[:,['ACTORID', 'NAME', 'GROUPID', 'POSTID', 'TIME', 'STORYNAME', 'CONTENT', 'LIKES', 'COMMENTS', 'SHARES']] df['UPDATETIME'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") return df ## get_bac def get_bac(resp): # string = urllib.parse.unquote(resp.text) # try: # bac = re.findall('bac=(.*?)%3D',resp.text)[0] # except: # bac = re.findall('bac=(.*?)\&multi',resp.text)[0] bac = re.findall('bac=([0-9A-Za-z]{10,})',resp.text)[0] return bac # def get_bac(resp): # try: # bac = re.findall('bac=(.*?)%3D',resp.text)[0] # print('type1') # except: # try: # bac = re.findall('bac=(.*?)&amp',resp.text)[0] # print('type2') # except: # bac = re.findall('bac%3D(.*?)%26', resp.text)[0] # print('type3') # return bac ## Crawl_GroupPosts def Crawl_GroupPosts(groupurl, until_date='2021-05-01'): groupurl = re.sub('www','m', groupurl) headers = { 'referer': 'https://m.facebook.com/', 'cookie': 'locale=en_US', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36' } df = [] bac = '' max_date = datetime.datetime.now() break_times = 0 # request data and break loop when reach the goal while max_date >= datetime.datetime.strptime(until_date, '%Y-%m-%d'): # request params params = { 'bac': bac, 'multi_permalinks': '', 'refid': '18' } resp = requests.get(groupurl, headers=headers, params=params) try: ndf = parse_group_content(resp) df.append(ndf) # update request params bac = get_bac(resp) # print(bac) # there are some posts will be pinned at top, so we can't take the max date directly max_date = ndf['TIME'].sort_values(ascending=False,ignore_index=True)[3] print('TimeStamp: {}.'.format(max_date)) break_times = 0 # break times to zero except: break_times += 1 print('break_times:', break_times) time.sleep(2) if break_times > 5: return resp # return print('ERROR: Please send the following URL to the author. \n', resp.url) # concat data we collect df =
pd.concat(df, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Test data """ # Imports import pandas as pd from edbo.feature_utils import build_experiment_index # Build data sets from indices def aryl_amination(aryl_halide='ohe', additive='ohe', base='ohe', ligand='ohe', subset=1): """ Load aryl amination data with different features. """ # SMILES index index = pd.read_csv('data/aryl_amination/experiment_index.csv') # Choose supset: ar123 = ['FC(F)(F)c1ccc(Cl)cc1','FC(F)(F)c1ccc(Br)cc1','FC(F)(F)c1ccc(I)cc1'] ar456 = ['COc1ccc(Cl)cc1','COc1ccc(Br)cc1','COc1ccc(I)cc1'] ar789 = ['CCc1ccc(Cl)cc1','CCc1ccc(Br)cc1','CCc1ccc(I)cc1'] ar101112 = ['Clc1ccccn1','Brc1ccccn1','Ic1ccccn1'] ar131415 = ['Clc1cccnc1','Brc1cccnc1','Ic1cccnc1'] def get_subset(ar): a = index[index['Aryl_halide_SMILES'] == ar[0]] b = index[index['Aryl_halide_SMILES'] == ar[1]] c = index[index['Aryl_halide_SMILES'] == ar[2]] return pd.concat([a,b,c]) if subset == 1: index = get_subset(ar123) elif subset == 2: index = get_subset(ar456) elif subset == 3: index = get_subset(ar789) elif subset == 4: index = get_subset(ar101112) elif subset == 5: index = get_subset(ar131415) # Aryl halide features if aryl_halide == 'dft': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_dft.csv') elif aryl_halide == 'mordred': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_mordred.csv') elif aryl_halide == 'ohe': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_ohe.csv') # Additive features if additive == 'dft': add_features = pd.read_csv('data/aryl_amination/additive_dft.csv') elif additive == 'mordred': add_features = pd.read_csv('data/aryl_amination/additive_mordred.csv') elif additive == 'ohe': add_features = pd.read_csv('data/aryl_amination/additive_ohe.csv') # Base features if base == 'dft': base_features = pd.read_csv('data/aryl_amination/base_dft.csv') elif base == 'mordred': base_features = pd.read_csv('data/aryl_amination/base_mordred.csv') elif base == 'ohe': base_features = pd.read_csv('data/aryl_amination/base_ohe.csv') # Ligand features if ligand == 'Pd(0)-dft': ligand_features = pd.read_csv('data/aryl_amination/ligand-Pd(0)_dft.csv') elif ligand == 'mordred': ligand_features = pd.read_csv('data/aryl_amination/ligand_mordred.csv') elif ligand == 'ohe': ligand_features = pd.read_csv('data/aryl_amination/ligand_ohe.csv') # Build the descriptor set index_list = [index['Aryl_halide_SMILES'], index['Additive_SMILES'], index['Base_SMILES'], index['Ligand_SMILES']] lookup_table_list = [aryl_features, add_features, base_features, ligand_features] lookup_list = ['aryl_halide_SMILES', 'additive_SMILES', 'base_SMILES', 'ligand_SMILES'] experiment_index = build_experiment_index(index['entry'], index_list, lookup_table_list, lookup_list) experiment_index['yield'] = index['yield'].values return experiment_index def suzuki(electrophile='ohe', nucleophile='ohe', base='ohe', ligand='ohe', solvent='ohe'): """ Load Suzuki data with different features. """ # SMILES index index = pd.read_csv('data/suzuki/experiment_index.csv') # Electrophile features if electrophile == 'dft': elec_features = pd.read_csv('data/suzuki/electrophile_dft.csv') elif electrophile == 'mordred': elec_features = pd.read_csv('data/suzuki/electrophile_mordred.csv') elif electrophile == 'ohe': elec_features = pd.read_csv('data/suzuki/electrophile_ohe.csv') # Nucleophile features if nucleophile == 'dft': nuc_features = pd.read_csv('data/suzuki/nucleophile_dft.csv') elif nucleophile == 'mordred': nuc_features = pd.read_csv('data/suzuki/nucleophile_mordred.csv') elif nucleophile == 'ohe': nuc_features = pd.read_csv('data/suzuki/nucleophile_ohe.csv') # Base features if base == 'dft': base_features = pd.read_csv('data/suzuki/base_dft.csv') elif base == 'mordred': base_features = pd.read_csv('data/suzuki/base_mordred.csv') elif base == 'ohe': base_features = pd.read_csv('data/suzuki/base_ohe.csv') # Ligand features if ligand == 'random-dft': ligand_features = pd.read_csv('data/suzuki/ligand-random_dft.csv') elif ligand == 'boltzmann-dft': ligand_features = pd.read_csv('data/suzuki/ligand-boltzmann_dft.csv') elif ligand == 'mordred': ligand_features = pd.read_csv('data/suzuki/ligand_mordred.csv') elif ligand == 'ohe': ligand_features = pd.read_csv('data/suzuki/ligand_ohe.csv') # Solvent features if solvent == 'dft': solvent_features = pd.read_csv('data/suzuki/solvent_dft.csv') elif solvent == 'mordred': solvent_features = pd.read_csv('data/suzuki/solvent_mordred.csv') elif solvent == 'ohe': solvent_features = pd.read_csv('data/suzuki/solvent_ohe.csv') # Build the descriptor set index_list = [index['Electrophile_SMILES'], index['Nucleophile_SMILES'], index['Base_SMILES'], index['Ligand_SMILES'], index['Solvent_SMILES']] lookup_table_list = [elec_features, nuc_features, base_features, ligand_features, solvent_features] lookup_list = ['electrophile_SMILES', 'nucleophile_SMILES', 'base_SMILES', 'ligand_SMILES', 'solvent_SMILES'] experiment_index = build_experiment_index(index['entry'], index_list, lookup_table_list, lookup_list) experiment_index['yield'] = index['yield'] return experiment_index def direct_arylation(base='ohe', ligand='ohe', solvent='ohe'): """ Load direct arylation data with different features. """ # SMILES index index = pd.read_csv('data/direct_arylation/experiment_index.csv') # Base features if base == 'dft': base_features = pd.read_csv('data/direct_arylation/base_dft.csv') elif base == 'mordred': base_features = pd.read_csv('data/direct_arylation/base_mordred.csv') elif base == 'ohe': base_features = pd.read_csv('data/direct_arylation/base_ohe.csv') # Ligand features if ligand == 'random-dft': ligand_features = pd.read_csv('data/direct_arylation/ligand-random_dft.csv') elif ligand == 'boltzmann-dft': ligand_features =
pd.read_csv('data/direct_arylation/ligand-boltzmann_dft.csv')
pandas.read_csv
from typing import Dict import numpy as np import pandas as pd from houseregression_model import __version__ as _version from houseregression_model.config.core import config from houseregression_model.processing.utility_functions import load_pipeline from houseregression_model.processing.validation import validate_inputs pipeline_file = f"{config.app_config.pipeline_save_file}{_version}.pkl" pipe = load_pipeline(file_name=pipeline_file) def make_predictions(*, input_data: pd.DataFrame) -> Dict: data =
pd.DataFrame(input_data)
pandas.DataFrame
import pandas as pd df = pd.read_csv('/mnt/data3/scott/1950-2018_actual_tornadoes.csv') df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
# Fundamental libraries import os import re import sys import time import glob import random import datetime import warnings import itertools import numpy as np import pandas as pd import pickle as cp import seaborn as sns import multiprocessing from scipy import stats from pathlib import Path from ast import literal_eval import matplotlib.pyplot as plt from collections import Counter from scipy.special import logit from argparse import ArgumentParser from pandas.api.types import CategoricalDtype os.environ['CUDA_LAUNCH_BLOCKING'] = "1" warnings.filterwarnings(action="ignore") # SciKit-Learn methods from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, roc_curve from sklearn.preprocessing import LabelEncoder, KBinsDiscretizer, OneHotEncoder, StandardScaler from sklearn.model_selection import StratifiedShuffleSplit from sklearn.utils import resample from sklearn.utils.class_weight import compute_class_weight # StatsModel methods from statsmodels.nonparametric.smoothers_lowess import lowess from statsmodels.miscmodels.ordinal_model import OrderedModel from statsmodels.discrete.discrete_model import Logit from statsmodels.tools.tools import add_constant # TQDM for progress tracking from tqdm import tqdm # Function to load and compile test prediction files def collect_preds(pred_file_info,progress_bar = True, progress_bar_desc = ''): output_df = [] if progress_bar: iterator = tqdm(range(pred_file_info.shape[0]),desc=progress_bar_desc) else: iterator = range(pred_file_info.shape[0]) for i in iterator: curr_pred = pd.read_csv(pred_file_info.file[i]) curr_pred['repeat'] = pred_file_info.repeat[i] curr_pred['fold'] = pred_file_info.fold[i] output_df.append(curr_pred) return pd.concat(output_df,ignore_index=True) # Function to load and compile test performance metrics for DeepIMPACT models def collect_metrics(metric_file_info,progress_bar = True, progress_bar_desc = ''): output_df = [] if progress_bar: iterator = tqdm(metric_file_info.file,desc=progress_bar_desc) else: iterator = metric_file_info.file return pd.concat([
pd.read_csv(f)
pandas.read_csv
# module for processing adjacency matrices in various ways import pandas as pd import numpy as np import csv from tqdm import tqdm import matplotlib.pyplot as plt import seaborn as sns import pymaid from tqdm import tqdm from joblib import Parallel, delayed class Adjacency_matrix(): def __init__(self, adj, input_counts, mat_type): self.skids = list(adj.index) self.pairs = Promat.get_pairs() self.input_counts = input_counts self.mat_type = mat_type # 'ad', 'aa', 'dd', 'da', 'summed' self.adj = pd.DataFrame(adj, index = self.skids, columns = self.skids) self.adj_fract = self.fraction_input_matrix() self.adj_inter = self.interlaced_matrix() self.adj_pairwise = self.average_pairwise_matrix() def fraction_input_matrix(self): adj_fract = self.adj.copy() for column in adj_fract.columns: if((self.mat_type=='aa') | (self.mat_type=='da')): axon_input = self.input_counts.loc[column].axon_input if(axon_input == 0): adj_fract.loc[:, column] = 0 if(axon_input > 0): adj_fract.loc[:, column] = adj_fract.loc[:, column]/axon_input if((self.mat_type=='ad') | (self.mat_type=='dd')): dendrite_input = self.input_counts.loc[column].dendrite_input if(dendrite_input == 0): adj_fract.loc[:, column] = 0 if(dendrite_input > 0): adj_fract.loc[:, column] = adj_fract.loc[:, column]/dendrite_input if((self.mat_type=='summed') | (self.mat_type not in ['aa', 'da', 'ad', 'dd']) ): all_input = self.input_counts.loc[column].dendrite_input + self.input_counts.loc[column].axon_input if(all_input == 0): adj_fract.loc[:, column] = 0 if(all_input > 0): adj_fract.loc[:, column] = adj_fract.loc[:, column]/all_input return(adj_fract) def interlaced_matrix(self, fract=True): if(fract): adj_mat = self.adj_fract.copy() brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(adj_mat, self.pairs) if(fract==False): adj_mat = self.adj.copy() brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(adj_mat, self.pairs) # left_right interlaced order for brain matrix brain_pair_order = [] for i in range(0, len(brain_pairs)): brain_pair_order.append(brain_pairs.iloc[i].leftid) brain_pair_order.append(brain_pairs.iloc[i].rightid) order = brain_pair_order + list(brain_nonpaired.nonpaired) interlaced_mat = adj_mat.loc[order, order] index_df = pd.DataFrame([['pairs', Promat.get_paired_skids(skid, self.pairs)[0], skid] for skid in brain_pair_order] + [['nonpaired', skid, skid] for skid in list(brain_nonpaired.nonpaired)], columns = ['pair_status', 'pair_id', 'skid']) index = pd.MultiIndex.from_frame(index_df) interlaced_mat.index = index interlaced_mat.columns = index return(interlaced_mat) def average_pairwise_matrix(self): adj = self.adj_inter.copy() adj = adj.groupby('pair_id', axis = 'index').sum().groupby('pair_id', axis='columns').sum() order = [x[1] for x in self.adj_inter.index] # remove duplicates (in pair_ids) order_unique = [] for x in order: if (order_unique.count(x) == 0): order_unique.append(x) # order as before adj = adj.loc[order_unique, order_unique] # regenerate multiindex index = [x[0:2] for x in self.adj_inter.index] # remove skid ids from index # remove duplicates (in pair_ids) index_unique = [] for x in index: if (index_unique.count(x) == 0): index_unique.append(x) # add back appropriate multiindex index_df = pd.DataFrame(index_unique, columns = ['pair_status', 'pair_id']) index_df = pd.MultiIndex.from_frame(index_df) adj.index = index_df adj.columns = index_df # convert to average (from sum) for paired neurons adj.loc['pairs'] = adj.loc['pairs'].values/2 adj.loc['nonpaired', 'pairs'] = adj.loc['nonpaired', 'pairs'].values/2 return(adj) def downstream(self, source, threshold, exclude=[], by_group=False, exclude_unpaired = False): adj = self.adj_pairwise source_pair_id = np.unique([x[1] for x in self.adj_inter.loc[(slice(None), slice(None), source), :].index]) if(by_group): bin_mat = adj.loc[(slice(None), source_pair_id), :].sum(axis=0) > threshold bin_column = np.where(bin_mat)[0] ds_neurons = bin_mat.index[bin_column] ds_neurons_skids = [] for pair in ds_neurons: if((pair[0] == 'pairs') & (pair[1] not in exclude)): ds_neurons_skids.append(pair[1]) ds_neurons_skids.append(Promat.identify_pair(pair[1], self.pairs)) if((pair[0] == 'nonpaired') & (pair[1] not in exclude) & (exclude_unpaired==False)): ds_neurons_skids.append(pair[1]) return(ds_neurons_skids) if(by_group==False): bin_mat = adj.loc[(slice(None), source_pair_id), :] > threshold bin_column = np.where(bin_mat.sum(axis = 0) > 0)[0] ds_neurons = bin_mat.columns[bin_column] bin_row = np.where(bin_mat.sum(axis = 1) > 0)[0] us_neurons = bin_mat.index[bin_row] ds_neurons_skids = [] for pair in ds_neurons: if((pair[0] == 'pairs') & (pair[1] not in exclude)): ds_neurons_skids.append(pair[1]) ds_neurons_skids.append(Promat.identify_pair(pair[1], self.pairs)) if((pair[0] == 'nonpaired') & (pair[1] not in exclude) & (exclude_unpaired==False)): ds_neurons_skids.append(pair[1]) source_skids = [] for pair in us_neurons: if(pair[0] == 'pairs'): source_skids.append(pair[1]) source_skids.append(Promat.identify_pair(pair[1], self.pairs)) if(pair[0] == 'nonpaired'): source_skids.append(pair[1]) edges = [] for pair in us_neurons: if(pair[0] == 'pairs'): specific_ds = adj.loc[('pairs', pair[1]), bin_mat.loc[('pairs', pair[1]), :]].index if(exclude_unpaired): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[0]=='pairs') & (x[1] not in exclude)] if(exclude_unpaired==False): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[1] not in exclude)] for edge in specific_ds_edges: edges.append(edge) if(pair[0] == 'nonpaired'): specific_ds = adj.loc[('nonpaired', pair[1]), bin_mat.loc[('nonpaired', pair[1]), :]].index if(exclude_unpaired): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[0]=='pairs') & (x[1] not in exclude)] if(exclude_unpaired==False): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[1] not in exclude)] for edge in specific_ds_edges: edges.append(edge) return(source_skids, ds_neurons_skids, edges) def upstream(self, source, threshold, exclude = []): adj = self.adj_pairwise source_pair_id = np.unique([x[1] for x in self.adj_inter.loc[(slice(None), slice(None), source), :].index]) bin_mat = adj.loc[:, (slice(None), source_pair_id)] > threshold bin_row = np.where(bin_mat.sum(axis = 1) > 0)[0] us_neuron_pair_ids = bin_mat.index[bin_row] us_neurons_skids = [] for pair in us_neuron_pair_ids: if((pair[0] == 'pairs') & (pair[1] not in exclude)): us_neurons_skids.append(pair[1]) us_neurons_skids.append(Promat.identify_pair(pair[1], self.pairs)) if((pair[0] == 'nonpaired') & (pair[1] not in exclude)): us_neurons_skids.append(pair[1]) us_neuron_pair_ids = Promat.extract_pairs_from_list(us_neurons_skids, self.pairs) us_neuron_pair_ids = list(us_neuron_pair_ids[0].leftid) + list(us_neuron_pair_ids[2].nonpaired) edges = [] for pair in us_neuron_pair_ids: specific_ds = bin_mat.loc[(slice(None), pair), bin_mat.loc[(slice(None), pair), :].values[0]].columns specific_ds_edges = [[pair, x[1]] for x in specific_ds] for edge in specific_ds_edges: edges.append(edge) return(us_neurons_skids, edges) def downstream_multihop(self, source, threshold, min_members=0, hops=10, exclude=[], strict=False, allow_source_ds=False): if(allow_source_ds==False): _, ds, edges = self.downstream(source, threshold, exclude=(source + exclude)) if(allow_source_ds): _, ds, edges = self.downstream(source, threshold, exclude=(exclude)) left = Promat.get_hemis('left') right = Promat.get_hemis('right') _, ds = self.edge_threshold(edges, threshold, direction='downstream', strict=strict, left=left, right=right) if(allow_source_ds==False): before = source + ds if(allow_source_ds): before = ds layers = [] layers.append(ds) for i in range(0,(hops-1)): source = ds _, ds, edges = self.downstream(source, threshold, exclude=before) _, ds = self.edge_threshold(edges, threshold, direction='downstream', strict=strict, left=left, right=right) if((len(ds)!=0) & (len(ds)>=min_members)): layers.append(ds) before = before + ds return(layers) def upstream_multihop(self, source, threshold, min_members=10, hops=10, exclude=[], strict=False, allow_source_us=False): if(allow_source_us==False): us, edges = self.upstream(source, threshold, exclude=(source + exclude)) if(allow_source_us): us, edges = self.upstream(source, threshold, exclude=(exclude)) _, us = self.edge_threshold(edges, threshold, direction='upstream', strict=strict) if(allow_source_us==False): before = source + us if(allow_source_us): before = us layers = [] layers.append(us) for i in range(0,(hops-1)): source = us us, edges = self.upstream(source, threshold, exclude = before) _, us = self.edge_threshold(edges, threshold, direction='upstream', strict=strict) if((len(us)!=0) & (len(us)>=min_members)): layers.append(us) before = before + us return(layers) # checking additional threshold criteria after identifying neurons over summed threshold # left and right are only necessary when nonpaired neurons are included def edge_threshold(self, edges, threshold, direction, strict=False, include_nonpaired=True, left=[], right=[]): adj = self.adj_inter.copy() all_edges = [] for edge in edges: print(edge) specific_edges = adj.loc[(slice(None), edge[0]), (slice(None), edge[1])] us_pair_status = adj.loc[(slice(None), slice(None), edge[0]), :].index[0][0] ds_pair_status = adj.loc[(slice(None), slice(None), edge[1]), :].index[0][0] # note that edge weights in 'left', 'right' columns refer to %input onto the dendrite of the left or right hemisphere downstream neuron # the 'type' column indicates whether the edge is contralateral/ipsilateral (this can allow one to determine whether the signal originated on the left or right side if that's important) # note: the split_paired_edges() method takes the output of threshold_edge_list() and splits these paired edges so that it becomes more explicit which hemisphere the upstream neuron belongs to # check for paired connections if((us_pair_status == 'pairs') & (ds_pair_status == 'pairs')): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0,0], specific_edges.iloc[1,1], False, 'ipsilateral', 'paired','paired'], [edge[0], edge[1], specific_edges.iloc[1,0], specific_edges.iloc[0,1], False, 'contralateral', 'paired','paired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(strict==True): # is each edge weight over threshold? for index in specific_edges.index: if((specific_edges.loc[index].left>threshold) & (specific_edges.loc[index].right>threshold)): specific_edges.loc[index, 'overthres'] = True if(strict==False): # is average edge weight over threshold for index in specific_edges.index: if(((specific_edges.loc[index].left + specific_edges.loc[index].right)/2) > threshold): specific_edges.loc[index, 'overthres'] = True # are both edges present? for index in specific_edges.index: if((specific_edges.loc[index].left==0) | (specific_edges.loc[index].right==0)): specific_edges.loc[index, 'overthres'] = False all_edges.append(specific_edges.values[0]) all_edges.append(specific_edges.values[1]) # check for edges to downstream nonpaired neurons if((us_pair_status == 'pairs') & (ds_pair_status == 'nonpaired') & (include_nonpaired==True)): if(edge[1] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0].values[0], 0, False, 'ipsilateral', 'paired', 'nonpaired'], [edge[0], edge[1], specific_edges.iloc[1].values[0], 0, False, 'contralateral', 'paired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[1] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], 0, specific_edges.iloc[0].values[0], False, 'contralateral', 'paired', 'nonpaired'], [edge[0], edge[1], 0, specific_edges.iloc[1].values[0], False, 'ipsilateral', 'paired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) # is edge over threshold? # don't check both because one will be missing # strict==True/False doesn't apply for the same reason for index in specific_edges.index: if(((specific_edges.loc[index].left + specific_edges.loc[index].right)>threshold)): specific_edges.loc[index, 'overthres'] = True all_edges.append(specific_edges.values[0]) all_edges.append(specific_edges.values[1]) # check for edges from upstream nonpaired neurons if((us_pair_status == 'nonpaired') & (ds_pair_status == 'pairs') & (include_nonpaired==True)): if(edge[0] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0, 0], 0, False, 'ipsilateral', 'nonpaired', 'paired'], [edge[0], edge[1], 0, specific_edges.iloc[0, 1], False, 'contralateral', 'nonpaired', 'paired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[0] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0, 0], 0, False, 'contralateral', 'nonpaired', 'paired'], [edge[0], edge[1], 0, specific_edges.iloc[0, 1], False, 'ipsilateral', 'nonpaired', 'paired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) # is edge over threshold? # don't check both because one will be missing # strict==True/False doesn't apply for the same reason for index in specific_edges.index: if(((specific_edges.loc[index].left + specific_edges.loc[index].right)>threshold)): specific_edges.loc[index, 'overthres'] = True all_edges.append(specific_edges.values[0]) all_edges.append(specific_edges.values[1]) # check for edges between two nonpaired neurons if((us_pair_status == 'nonpaired') & (ds_pair_status == 'nonpaired') & (include_nonpaired==True)): edge_weight = specific_edges.values[0][0] if(edge[0] in left): if(edge[1] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], 0, edge_weight, False, 'contralateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[1] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], edge_weight, 0, False, 'ipsilateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[0] in right): if(edge[1] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], edge_weight, 0, False, 'contralateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[1] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], 0, edge_weight, False, 'ipsilateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) # is edge over threshold? # only one edge so strict==True/False doesn't apply if(edge_weight>threshold): specific_edges.loc[:, 'overthres'] = True all_edges.append(specific_edges.values[0]) all_edges = pd.DataFrame(all_edges, columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(direction=='downstream'): partner_skids = np.unique(all_edges[all_edges.overthres==True].downstream_pair_id) # identify downstream pairs if(direction=='upstream'): partner_skids = np.unique(all_edges[all_edges.overthres==True].upstream_pair_id) # identify upstream pairs partner_skids = [x[2] for x in adj.loc[(slice(None), partner_skids), :].index] # convert from pair_id to skids return(all_edges, partner_skids) # select edges from results of edge_threshold that are over threshold; include non_paired edges as specified by user def select_edges(self, pair_id, threshold, edges_only=False, include_nonpaired=[], exclude_nonpaired=[], left=[], right=[]): _, ds, ds_edges = self.downstream(pair_id, threshold) ds_edges, _ = self.edge_threshold(ds_edges, threshold, 'downstream', include_nonpaired=include_nonpaired, left=left, right=right) overthres_ds_edges = ds_edges[ds_edges.overthres==True] overthres_ds_edges.reset_index(inplace=True) overthres_ds_edges.drop(labels=['index', 'overthres'], axis=1, inplace=True) if(edges_only==False): return(overthres_ds_edges, np.unique(overthres_ds_edges.downstream_pair_id)) if(edges_only): return(overthres_ds_edges) # generate edge list for whole matrix with some threshold def threshold_edge_list(self, all_sources, matrix_nonpaired, threshold, left, right): all_edges = Parallel(n_jobs=-1)(delayed(self.select_edges)(pair, threshold, edges_only=True, include_nonpaired=matrix_nonpaired, left=left, right=right) for pair in tqdm(all_sources)) all_edges_combined = [x for x in all_edges if type(x)==pd.DataFrame] all_edges_combined = pd.concat(all_edges_combined, axis=0) all_edges_combined.reset_index(inplace=True, drop=True) return(all_edges_combined) # convert paired edge list with pair-wise threshold back to normal edge list, input from threshold_edge_list() # note that neurons with bilateral dendrites aren't treated in any special way, so they may be indicated as contralateral edges even if that's inaccurate/complicated def split_paired_edges(self, all_edges_combined, left, right, flip_weirdos=True): pairs = self.pairs # note that edge_weights are from the perspective of the downstream neuron, i.e. %input onto their dendrite all_edges_combined_split = [] for i in range(len(all_edges_combined.index)): row = all_edges_combined.iloc[i] if((row.upstream_status=='paired') & (row.downstream_status=='paired')): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), Promat.identify_pair(row.downstream_pair_id, pairs), 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, Promat.identify_pair(row.downstream_pair_id, pairs), 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) # note that pair_ids are really skeleton IDs for nonpaired neurons; this allows one to compare to left/right annotations # this comparison is required because the location of nonpaired -> pair edges depends on whether the nonpaired is left or right if((row.upstream_status=='nonpaired') & (row.downstream_status=='paired')): if(row.upstream_pair_id in left): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, Promat.identify_pair(row.downstream_pair_id, pairs), 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.upstream_pair_id in right): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, Promat.identify_pair(row.downstream_pair_id, pairs), 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) # use the downstream_pair_id because this is really just skeleton ID for nonpaired neurons # therefore one can compare to left/right annotations to determine which hemisphere it belongs to if((row.upstream_status=='paired') & (row.downstream_status=='nonpaired')): if(row.downstream_pair_id in left): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.downstream_pair_id in right): if(row.type=='ipsilateral'): all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), row.downstream_pair_id, 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) # use the downstream_pair_id because this is really just skeleton ID for nonpaired neurons # therefore one can compare to left/right annotations to determine which hemisphere it belongs to if((row.upstream_status=='nonpaired') & (row.downstream_status=='nonpaired')): if(row.downstream_pair_id in left): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.downstream_pair_id in right): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) all_edges_combined_split = pd.DataFrame(all_edges_combined_split, columns = ['upstream_skid', 'downstream_skid', 'upstream_side', 'downstream_side', 'edge_weight', 'type', 'upstream_status', 'downstream_status']) return(all_edges_combined_split) # generate edge list for whole matrix def edge_list(self, exclude_loops=False): edges = [] for i in range(len(self.adj.index)): for j in range(len(self.adj.columns)): if(exclude_loops): if((self.adj.iloc[i, j]>0) & (i!=j)): edges.append([self.adj.index[i], self.adj.columns[j]]) if(exclude_loops==False): if(self.adj.iloc[i, j]>0): edges.append([self.adj.index[i], self.adj.columns[j]]) edges = pd.DataFrame(edges, columns = ['upstream_pair_id', 'downstream_pair_id']) return(edges) # generate a binary connectivity matrix that displays number of hops between neuron types def hop_matrix(self, layer_id_skids, source_leftid, destination_leftid, include_start=False): mat = pd.DataFrame(np.zeros(shape = (len(source_leftid), len(destination_leftid))), index = source_leftid, columns = destination_leftid) for index in mat.index: data = layer_id_skids.loc[index, :] for i, hop in enumerate(data): for column in mat.columns: if(column in hop): if(include_start==True): # if the source of the hop signal is the first layer mat.loc[index, column] = i if(include_start==False): # if the first layer is the first layer downstream of source mat.loc[index, column] = i+1 max_value = mat.values.max() mat_plotting = mat.copy() for index in mat_plotting.index: for column in mat_plotting.columns: if(mat_plotting.loc[index, column]>0): mat_plotting.loc[index, column] = 1 - (mat_plotting.loc[index, column] - max_value) return(mat, mat_plotting) class Promat(): # default method to import pair list and process it to deal with duplicated neurons @staticmethod def get_pairs(pairs_path='data/pairs/pairs-2021-04-06.csv', flip_weirdos=True): print(f'Path to pairs list is: {pairs_path}') pairs = pd.read_csv(pairs_path, header = 0) # import pairs, manually determined with help from <NAME> and <NAME>'s scripts pairs = pairs.loc[:, ['leftid', 'rightid']] # only include useful columns # duplicated right-side neurons to throw out for simplicity duplicated = pymaid.get_skids_by_annotation('mw duplicated neurons to delete') duplicated_index = np.where(sum([pairs.rightid==x for x in duplicated])==1)[0] pairs = pairs.drop(duplicated_index) # change left/right ids of contra-contra neurons so they behave properly in downstream analysis # these neurons have somas on one brain hemisphere and dendrites/axons on the other # and so they functionally all completely contralateral and can therefore be considered ipsilateral neurons if(flip_weirdos): # identify contra-contra neurons contra_contra = np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw contralateral dendrite')) contra_contra_pairs = Promat.extract_pairs_from_list(contra_contra, pairs)[0] if(len(contra_contra_pairs)>0): # flip left/right neurons in contra-contra neurons for index in contra_contra_pairs.index: cc_left = contra_contra_pairs.loc[index, 'leftid'] cc_right = contra_contra_pairs.loc[index, 'rightid'] pairs.loc[pairs[pairs.leftid==cc_left].index, 'rightid'] = cc_left pairs.loc[pairs[pairs.leftid==cc_left].index, 'leftid'] = cc_right return(pairs) # returns all skids in left or right side of the brain, depending on whether side = 'left' or 'right' def get_hemis(side=None, flip_weirdos=True): left = pymaid.get_skids_by_annotation('mw left') right = pymaid.get_skids_by_annotation('mw right') if(flip_weirdos): # identifying contra-contra neurons so they can be flipped to opposite side of brain neurons_to_flip = np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw contralateral dendrite')) neurons_to_flip_left = [skid for skid in neurons_to_flip if skid in left] neurons_to_flip_right = [skid for skid in neurons_to_flip if skid in right] # removing neurons_to_flip and adding to the other side left = list(np.setdiff1d(left, neurons_to_flip_left)) + neurons_to_flip_right right = list(np.setdiff1d(right, neurons_to_flip_right)) + neurons_to_flip_left if(side=='left'): return(left) if(side=='right'): return(right) if(side==None): return([left, right]) # converts any df with df.index = list of skids to a multiindex with ['pair_status', 'pair_id', 'skid'] # 'pair_status': pairs / nonpaired # 'pair_id': left skid of a pair or simply the skid of a nonpaired neuron @staticmethod def convert_df_to_pairwise(df, pairs=None): if(pairs==None): pairs = Promat.get_pairs() brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(df.index, pairList = pairs) # left_right interlaced order for brain matrix brain_pair_order = [] for i in range(0, len(brain_pairs)): brain_pair_order.append(brain_pairs.iloc[i].leftid) brain_pair_order.append(brain_pairs.iloc[i].rightid) order = brain_pair_order + list(brain_nonpaired.nonpaired) interlaced = df.loc[order, :] index_df = pd.DataFrame([['pairs', Promat.get_paired_skids(skid, pairs)[0], skid] for skid in brain_pair_order] + [['nonpaired', skid, skid] for skid in list(brain_nonpaired.nonpaired)], columns = ['pair_status', 'pair_id', 'skid']) index = pd.MultiIndex.from_frame(index_df) interlaced.index = index return(interlaced) # trim out neurons not currently in the brain matrix @staticmethod def trim_missing(skidList, brainMatrix): trimmedList = [] for i in skidList: if(i in brainMatrix.index): trimmedList.append(i) else: print("*WARNING* skid: %i is not in whole brain matrix" % (i)) return(trimmedList) # identify skeleton ID of hemilateral neuron pair, based on CSV pair list @staticmethod def identify_pair(skid, pairList): pair_skid = [] if(skid in pairList["leftid"].values): pair_skid = pairList["rightid"][pairList["leftid"]==skid].iloc[0] if(skid in pairList["rightid"].values): pair_skid = pairList["leftid"][pairList["rightid"]==skid].iloc[0] if((skid not in pairList['rightid'].values) & (skid not in pairList['leftid'].values)): print(f'skid {skid} is not in paired list') pair_skid = skid return(pair_skid) # returns paired skids in array [left, right]; can input either left or right skid of a pair to identify @staticmethod def get_paired_skids(skid, pairList): if(type(skid)!=list): if(skid in pairList["leftid"].values): pair_right = pairList["rightid"][pairList["leftid"]==skid].iloc[0] pair_left = skid if(skid in pairList["rightid"].values): pair_left = pairList["leftid"][pairList["rightid"]==skid].iloc[0] pair_right = skid if((skid in pairList["leftid"].values) == False and (skid in pairList["rightid"].values) == False): print(f"skid {skid} is not in paired list") return([skid]) return([pair_left, pair_right]) if(type(skid)==list): data = [Promat.get_paired_skids(x, pairList) for x in skid] df = pd.DataFrame(data, columns = ['leftid', 'rightid']) return(df) # converts array of skids into left-right pairs in separate columns # puts unpaired and nonpaired neurons in different lists @staticmethod def extract_pairs_from_list(skids, pairList): pairs = pd.DataFrame([], columns = ['leftid', 'rightid']) unpaired = pd.DataFrame([], columns = ['unpaired']) nonpaired = pd.DataFrame([], columns = ['nonpaired']) for i in skids: if((int(i) not in pairList.leftid.values) & (int(i) not in pairList.rightid.values)): nonpaired = nonpaired.append({'nonpaired': int(i)}, ignore_index=True) continue if((int(i) in pairList["leftid"].values) & (Promat.get_paired_skids(int(i), pairList)[1] in skids)): pair = Promat.get_paired_skids(int(i), pairList) pairs = pairs.append({'leftid': pair[0], 'rightid': pair[1]}, ignore_index=True) if(((int(i) in pairList["leftid"].values) & (Promat.get_paired_skids(int(i), pairList)[1] not in skids)| (int(i) in pairList["rightid"].values) & (Promat.get_paired_skids(int(i), pairList)[0] not in skids))): unpaired = unpaired.append({'unpaired': int(i)}, ignore_index=True) pairs = pd.DataFrame(pairs) unpaired = pd.DataFrame(unpaired) nonpaired = pd.DataFrame(nonpaired) return(pairs, unpaired, nonpaired) # loads neurons pairs from selected pymaid annotation @staticmethod def load_pairs_from_annotation(annot, pairList, return_type='pairs', skids=None, use_skids=False): if(use_skids==False): skids = pymaid.get_skids_by_annotation(annot) pairs = Promat.extract_pairs_from_list(skids, pairList) if(return_type=='pairs'): return(pairs[0]) if(return_type=='unpaired'): return(pairs[1]) if(return_type=='nonpaired'): return(pairs[2]) if(return_type=='all_pair_ids'): pairs_pair_id = list(pairs[0].leftid) nonpaired_pair_id = list(pairs[2].nonpaired) combined = pairs_pair_id + nonpaired_pair_id return(combined) # include nonpaired neurons and ['leftid', 'rightid'] columns; duplicated leftid/rightid for nonpaired neurons if(return_type=='all_pair_ids_bothsides'): pairs_pair_id = list(pairs[0].leftid) nonpaired_pair_id = list(pairs[2].nonpaired) combined_left = pairs_pair_id + nonpaired_pair_id pairs_id_right = list(pairs[0].rightid) combined_right = pairs_id_right + nonpaired_pair_id combined = pd.DataFrame(zip(combined_left, combined_right), columns=['leftid', 'rightid']) return(combined) # loads neurons pairs from selected pymaid annotation @staticmethod def get_pairs_from_list(skids, pairList, return_type='pairs'): pairs = Promat.extract_pairs_from_list(skids, pairList) if(return_type=='pairs'): return(pairs[0]) if(return_type=='unpaired'): return(pairs[1]) if(return_type=='nonpaired'): return(pairs[2]) if(return_type=='all_pair_ids'): pairs_pair_id = list(pairs[0].leftid) nonpaired_pair_id = list(pairs[2].nonpaired) combined = pairs_pair_id + nonpaired_pair_id return(combined) # generates interlaced left-right pair adjacency matrix with nonpaired neurons at bottom and right @staticmethod def interlaced_matrix(adj_df, pairs): brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(mg.meta.index, pairs) # left_right interlaced order for brain matrix brain_pair_order = [] for i in range(0, len(brain_pairs)): brain_pair_order.append(brain_pairs.iloc[i].leftid) brain_pair_order.append(brain_pairs.iloc[i].rightid) interlaced_mat = adj_df.loc[brain_pair_order + list(brain_nonpaired), brain_pair_order + list(brain_nonpaired)] index_df = pd.DataFrame([['pairs', skid] for skid in brain_pair_order] + [['nonpaired', skid] for skid in list(brain_nonpaired)], columns = ['pair_status', 'skid']) index = pd.MultiIndex.from_frame(index_df) interlaced_mat.index = index interlaced_mat.columns = index return(interlaced_mat) # converts matrix to fraction_input matrix by dividing every column by dendritic input @staticmethod def fraction_input_matrix(adj_df, mg, axon=False): for column in adj_df.columns: if(axon): axon_input = mg.meta.loc[column].axon_input adj_df.loc[:, column] = adj_df.loc[:, column]/axon_input if(axon==False): dendrite_input = mg.meta.loc[column].dendrite_input adj_df.loc[:, column] = adj_df.loc[:, column]/dendrite_input return(adj_df) # converts a interlaced left-right pair adjacency matrix into a binary connection matrix based on some threshold @staticmethod def binary_matrix(adj, threshold, total_threshold): oddCols = np.arange(0, len(adj.columns), 2) oddRows = np.arange(0, len(adj.index), 2) # column names are the skid of left neuron from pair binMat = np.zeros(shape=(len(oddRows),len(oddCols))) binMat = pd.DataFrame(binMat, columns = adj.columns[oddCols], index = adj.index[oddRows]) for i in oddRows: for j in oddCols: sum_all = adj.iat[i, j] + adj.iat[i+1, j+1] + adj.iat[i+1, j] + adj.iat[i, j+1] if(adj.iat[i, j] >= threshold and adj.iat[i+1, j+1] >= threshold and sum_all >= total_threshold): binMat.iat[int(i/2), int(j/2)] = 1 if(adj.iat[i+1, j] >= threshold and adj.iat[i, j+1] >= threshold and sum_all >= total_threshold): binMat.iat[int(i/2), int(j/2)] = 1 return(binMat) # summing input from a group of upstream neurons # generating DataFrame with sorted leftid, rightid, summed-input left, summed-input right # SOMETHING IS WRONG*** # It works as local function within particular .py file, but not when called through process_matrix.py @staticmethod def summed_input(group_skids, matrix, pairList): submatrix = matrix.loc[group_skids, :] submatrix = submatrix.sum(axis = 0) cols = ['leftid', 'rightid', 'leftid_input', 'rightid_input'] summed_paired = [] for i in range(0, len(pairList['leftid'])): if(pairList['leftid'][i] in submatrix.index): left_identifier = pairList['leftid'][i] left_sum = submatrix.loc[left_identifier] right_identifier = Promat.identify_pair(pairList['leftid'][i], pairList) right_sum = submatrix.loc[right_identifier] summed_paired.append([left_identifier, right_identifier, left_sum, right_sum]) summed_paired = pd.DataFrame(summed_paired, columns= cols) return(summed_paired) # identifies downstream neurons based on summed threshold (summed left/right input) and low_threshold (required edge weight on weak side) @staticmethod def identify_downstream(sum_df, summed_threshold, low_threshold): downstream = [] for i in range(0, len(sum_df['leftid'])): if((sum_df['leftid_input'].iloc[i] + sum_df['rightid_input'].iloc[i])>=summed_threshold): if(sum_df['leftid_input'].iloc[i]>sum_df['rightid_input'].iloc[i] and sum_df['rightid_input'].iloc[i]>=low_threshold): downstream.append(sum_df.iloc[i]) if(sum_df['rightid_input'].iloc[i]>sum_df['leftid_input'].iloc[i] and sum_df['leftid_input'].iloc[i]>=low_threshold): downstream.append(sum_df.iloc[i]) return(pd.DataFrame(downstream)) # compares neuron similarity based on inputs, outputs, or both # outputs a matrix where each row/column is a pair of neurons # NOT currently working @staticmethod def similarity_matrix(matrix_path, type): matrix = pd.read_csv(matrix_path, header=0, index_col=0, quotechar='"', skipinitialspace=True) oddCols = np.arange(0, len(matrix.columns), 2) oddRows = np.arange(0, len(matrix.index), 2) # column names are the skid of left neuron from pair sim_matrix = np.zeros(shape=(len(oddRows),len(oddCols))) sim_matrix = pd.DataFrame(sim_matrix, columns = matrix.columns[oddCols], index = matrix.index[oddRows]) return(sim_matrix) @staticmethod def writeCSV(data, path): with open(path, mode='w') as file: writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in data: writer.writerow(row) print("Write complete") return() @staticmethod def pull_adj(type_adj, subgraph): adj = pd.read_csv(f'data/adj/all-neurons_{type_adj}.csv', index_col = 0).rename(columns=int) if(subgraph=='brain'): brain = pymaid.get_skids_by_annotation('mw brain paper clustered neurons') adj = adj.loc[np.intersect1d(adj.index, brain), np.intersect1d(adj.index, brain)] if(subgraph=='brain and accessory'): brain = pymaid.get_skids_by_annotation('mw brain paper clustered neurons') + pymaid.get_skids_by_annotation('mw brain accessory neurons') adj = adj.loc[np.intersect1d(adj.index, brain), np.intersect1d(adj.index, brain)] #if(subgraph=='brain-A1'): #if(subgraph=='A1'): return(adj) def pull_edges(type_edges, pairs_combined, select_neurons=[]): if(pairs_combined): edges = pd.read_csv(f'data/edges_threshold/{type_edges}_all-paired-edges.csv', index_col=0) if(len(select_neurons)>0): indices_us = [True if x in select_neurons else False for x in edges.upstream_pair_id.to_list()] indices_ds = [True if x in select_neurons else False for x in edges.downstream_pair_id.to_list()] edges = edges.loc[np.logical_and(indices_us, indices_ds), :] if(pairs_combined==False): edges = pd.read_csv(f'data/edges_threshold/pairwise-threshold_{type_edges}_all-edges.csv', index_col=0) if(len(select_neurons)>0): indices_us = [True if x in select_neurons else False for x in edges.upstream_skid.to_list()] indices_ds = [True if x in select_neurons else False for x in edges.downstream_skid.to_list()] edges = edges.loc[np.logical_and(indices_us, indices_ds), :] return(edges) # recursive function that identifies all downstream partners X-hops away from source # uses pregenerated edge list from threshold_edge_list() or the split-pair version @staticmethod def downstream_multihop(edges, sources, hops, hops_iter=1, pairs_combined=False, exclude_source=True, exclude=[], exclude_skids_from_source=[]): if(pairs_combined): id1 = 'upstream_pair_id' id2 = 'downstream_pair_id' if(pairs_combined==False): id1 = 'upstream_skid' id2 = 'downstream_skid' edges_df = edges.set_index(id1) if(hops_iter>1): sources = list(np.setdiff1d(sources, exclude_skids_from_source)) # exclude user-selected neurons from sources ds = list(np.unique(edges_df.loc[np.intersect1d(sources, edges_df.index), id2])) if(exclude_source): ds = list(np.setdiff1d(ds, sources)) # exclude source from downstream ds = list(np.setdiff1d(ds, exclude)) # exclude user-selected neurons from downstream partners if(hops_iter==hops): return([ds]) else: hops_iter += 1 return([ds] + Promat.downstream_multihop(edges=edges, sources=ds, hops=hops, hops_iter=hops_iter)) # recursive function that identifies all upstream partners X-hops away from source # uses pregenerated edge list from threshold_edge_list() or the split-pair version @staticmethod def upstream_multihop(edges, sources, hops, hops_iter=1, pairs_combined=False, exclude_source=True, exclude=[], exclude_skids_from_source=[]): if(pairs_combined): id1 = 'downstream_pair_id' id2 = 'upstream_pair_id' if(pairs_combined==False): id1 = 'downstream_skid' id2 = 'upstream_skid' edges_df = edges.set_index(id1) if(hops_iter>1): sources = list(np.setdiff1d(sources, exclude_skids_from_source)) # exclude user-selected neurons from sources us = list(np.unique(edges_df.loc[np.intersect1d(sources, edges_df.index), id2])) if(exclude_source): us = list(np.setdiff1d(us, sources)) # exclude source from upstream us = list(np.setdiff1d(us, exclude)) # exclude user-selected neurons from upstream partners if(hops_iter==hops): return([us]) else: hops_iter += 1 return([us] + Promat.upstream_multihop(edges=edges, sources=us, hops=hops, hops_iter=hops_iter, exclude_source=exclude_source, exclude=exclude)) @staticmethod def find_all_partners(pairids, edgelist, all_paired_skids=True): pairs = Promat.get_pairs() data = [] for pairid in pairids: if(pairid in list(edgelist.upstream_pair_id)): # make sure pairid has downstream partners (TRUE if it is in upstream_pair_id list); if not, manually set empty list downstream = list(np.unique(edgelist.set_index('upstream_pair_id').loc[pairid, 'downstream_pair_id'])) else: downstream = [] if(pairid in list(edgelist.downstream_pair_id)): # make sure pairid has upstream partners (TRUE if it is in downstream_pair_id list); if not, manually set empty list upstream = list(np.unique(edgelist.set_index('downstream_pair_id').loc[pairid, 'upstream_pair_id'])) else: upstream = [] if(all_paired_skids): downstream = Promat.get_paired_skids(downstream, pairs) downstream = list(downstream.leftid) + list(downstream.rightid) upstream = Promat.get_paired_skids(upstream, pairs) upstream = list(upstream.leftid) + list(upstream.rightid) pair = Promat.get_paired_skids(pairid, pairs) data.append([pairid, pair, upstream, downstream]) if(all_paired_skids): df = pd.DataFrame(data, columns = ['source_pairid', 'source_pair', 'upstream', 'downstream']) return(df) @staticmethod def find_all_partners_hemispheres(pairids, edgelist, all_paired_skids=True): pairs = Promat.get_pairs() data = [] for pairid in pairids: # identify downstream partners if(pairid in list(edgelist.upstream_pair_id)): # make sure pairid has downstream partners (TRUE if it is in upstream_pair_id list); if not, manually set empty list downstream = edgelist.set_index('upstream_pair_id').loc[pairid, :] if(type(downstream)==pd.Series): downstream = pd.DataFrame([downstream]) # convert to pd.DataFrame if it is a Series (meaning only one partner); causes issues otherwise downstream_ipsi = list(np.unique(downstream[downstream.type=='ipsilateral']['downstream_pair_id'])) downstream_contra = list(np.unique(downstream[downstream.type=='contralateral']['downstream_pair_id'])) else: downstream_ipsi = [] downstream_contra = [] # identify upstream partners if(pairid in list(edgelist.downstream_pair_id)): # make sure pairid has upstream partners (TRUE if it is in downstream_pair_id list); if not, manually set empty list upstream = edgelist.set_index('downstream_pair_id').loc[pairid, :] if(type(upstream)==pd.Series): upstream =
pd.DataFrame([upstream])
pandas.DataFrame
import os import unittest import random import sys import site # so that ai4water directory is in path ai4_dir = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0]))) site.addsitedir(ai4_dir) import scipy import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from ai4water import Model from ai4water.preprocessing import DataHandler, SiteDistributedDataHandler from ai4water.preprocessing.datahandler import MultiLocDataHandler from ai4water.datasets import load_u1, arg_beach os.environ['PYTHONHASHSEED'] = '313' random.seed(313) np.random.seed(313) # todo, check last dimension of x,y # todo test with 3d y def _check_xy_equal_len(x, prev_y, y, lookback, num_ins, num_outs, num_examples, data_type='training'): feat_dim = 1 if lookback > 1: assert x.shape[1] == lookback feat_dim = 2 assert x.shape[ feat_dim] == num_ins, f"for {data_type} x's shape is {x.shape} while num_ins of dataloader are {num_ins}" if y is not None: assert y.shape[1] == num_outs, f"for {data_type} y's shape is {y.shape} while num_outs of dataloader are {num_outs}" else: assert num_outs == 0 y = x # just for next statement to run if prev_y is None: prev_y = x # just for next statement to run assert x.shape[0] == y.shape[0] == prev_y.shape[ 0], f"for {data_type} xshape: {x.shape}, yshape: {y.shape}, prevyshape: {prev_y.shape}" if num_examples: assert x.shape[ 0] == num_examples, f'for {data_type} x contains {x.shape[0]} samples while expected samples are {num_examples}' return def assert_xy_equal_len(x, prev_y, y, data_loader, num_examples=None, data_type='training'): if isinstance(x, np.ndarray): _check_xy_equal_len(x, prev_y, y, data_loader.lookback, data_loader.num_ins, data_loader.num_outs, num_examples, data_type=data_type) elif isinstance(x, list): while len(y)<len(x): y.append(None) for idx, i in enumerate(x): _check_xy_equal_len(i, prev_y[idx], y[idx], data_loader.lookback[idx], data_loader.num_ins[idx], data_loader.num_outs[idx], num_examples, data_type=data_type ) elif isinstance(x, dict): for key, i in x.items(): _check_xy_equal_len(i, prev_y.get(key, None), y.get(key, None), data_loader.lookback[key], data_loader.num_ins[key], data_loader.num_outs[key], num_examples, data_type=data_type ) elif x is None: # all should be None assert all(v is None for v in [x, prev_y, y]) else: raise ValueError def _check_num_examples(train_x, val_x, test_x, val_ex, test_ex, tot_obs): val_examples = 0 if val_ex: val_examples = val_x.shape[0] test_examples = 0 if test_ex: test_examples = test_x.shape[0] xyz_samples = train_x.shape[0] + val_examples + test_examples # todo, whould be equal assert xyz_samples == tot_obs, f""" data_loader has {tot_obs} examples while sum of train/val/test examples are {xyz_samples}.""" def check_num_examples(train_x, val_x, test_x, val_ex, test_ex, data_loader): if isinstance(train_x, np.ndarray): _check_num_examples(train_x, val_x, test_x, val_ex, test_ex, data_loader.tot_obs_for_one_df()) elif isinstance(train_x, list): for idx in range(len(train_x)): _check_num_examples(train_x[idx], val_x[idx], test_x[idx], val_ex, test_ex, data_loader.tot_obs_for_one_df()[idx]) return def check_inverse_transformation(data, data_loader, y, cols, key): if cols is None: # not output columns, so not checking return # check that after inverse transformation, we get correct y. if data_loader.source_is_df: train_y_ = data_loader.inverse_transform(data=pd.DataFrame(y.reshape(-1, len(cols)), columns=cols), key=key) train_y_, index = data_loader.deindexify(train_y_, key=key) compare_individual_item(data, key, cols, train_y_, data_loader) elif data_loader.source_is_list: #for idx in range(data_loader.num_sources): # y_ = y[idx].reshape(-1, len(cols[idx])) train_y_ = data_loader.inverse_transform(data=y, key=key) train_y_, _ = data_loader.deindexify(train_y_, key=key) for idx, y in enumerate(train_y_): compare_individual_item(data[idx], f'{key}_{idx}', cols[idx], y, data_loader) elif data_loader.source_is_dict: train_y_ = data_loader.inverse_transform(data=y, key=key) train_y_, _ = data_loader.deindexify(train_y_, key=key) for src_name, val in train_y_.items(): compare_individual_item(data[src_name], f'{key}_{src_name}', cols[src_name], val, data_loader) def compare_individual_item(data, key, cols, y, data_loader): if y is None: return train_index = data_loader.indexes[key] if y.__class__.__name__ in ['DataFrame']: y = y.values for i, v in zip(train_index, y): if len(cols) == 1: if isinstance(train_index, pd.DatetimeIndex): # if true value in data is None, y's value should also be None if np.isnan(data[cols].loc[i]).item(): assert np.isnan(v).item() else: _t = round(data[cols].loc[i].item(), 0) _p = round(v.item(), 0) if not np.allclose(data[cols].loc[i].item(), v.item()): print(f'true: {_t}, : pred: {_p}, index: {i}, col: {cols}') else: if isinstance(v, np.ndarray): v = round(v.item(), 3) _true = round(data[cols].loc[i], 3).item() _p = round(v, 3) if _true != _p: print(f'true: {_true}, : pred: {_p}, index: {i}, col: {cols}') else: if isinstance(train_index, pd.DatetimeIndex): assert abs(data[cols].loc[i].sum() - np.nansum(v)) <= 0.00001, f'{data[cols].loc[i].sum()},: {v}' else: assert abs(data[cols].iloc[i].sum() - v.sum()) <= 0.00001 def check_kfold_splits(data_handler): if data_handler.source_is_df: splits = data_handler.KFold_splits() for (train_x, train_y), (test_x, test_y) in splits: ... # print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) return def assert_uniquenes(train_y, val_y, test_y, out_cols, data_loader): if isinstance(train_y, list): assert isinstance(val_y, list) assert isinstance(test_y, list) train_y = train_y[0] val_y = val_y[0] test_y = test_y[0] if isinstance(train_y, dict): train_y = list(train_y.values())[0] assert isinstance(val_y, dict) isinstance(test_y, dict) val_y = list(val_y.values())[0] test_y = list(test_y.values())[0] if out_cols is not None: b = train_y.reshape(-1, ) if val_y is None: a = test_y.reshape(-1, ) else: a = val_y.reshape(-1, ) if not len(np.intersect1d(a, b)) == 0: raise ValueError(f'train and val have overlapping values') if data_loader.val_data != 'same' and out_cols is not None and val_y is not None and test_y is not None: a = test_y.reshape(-1,) b = val_y.reshape(-1,) assert len(np.intersect1d(a, b)) == 0, 'test and val have overlapping values' return def build_and_test_loader(data, config, out_cols, train_ex=None, val_ex=None, test_ex=None, save=True, assert_uniqueness=True, check_examples=True, true_train_y=None, true_val_y=None, true_test_y=None): config['teacher_forcing'] = True # todo if 'val_fraction' not in config: config['val_fraction'] = 0.3 if 'test_fraction' not in config: config['test_fraction'] = 0.3 data_loader = DataHandler(data=data, save=save, verbosity=0, **config) #dl = DataLoader.from_h5('data.h5') train_x, prev_y, train_y = data_loader.training_data(key='train') assert_xy_equal_len(train_x, prev_y, train_y, data_loader, train_ex) val_x, prev_y, val_y = data_loader.validation_data(key='val') assert_xy_equal_len(val_x, prev_y, val_y, data_loader, val_ex, data_type='validation') test_x, prev_y, test_y = data_loader.test_data(key='test') assert_xy_equal_len(test_x, prev_y, test_y, data_loader, test_ex, data_type='test') if check_examples: check_num_examples(train_x, val_x, test_x, val_ex, test_ex, data_loader) if isinstance(data, str): data = data_loader.data check_inverse_transformation(data, data_loader, train_y, out_cols, 'train') if val_ex: check_inverse_transformation(data, data_loader, val_y, out_cols, 'val') if test_ex: check_inverse_transformation(data, data_loader, test_y, out_cols, 'test') check_kfold_splits(data_loader) if assert_uniqueness: assert_uniquenes(train_y, val_y, test_y, out_cols, data_loader) if true_train_y is not None: assert np.allclose(train_y, true_train_y) if true_val_y is not None: assert np.allclose(val_y, true_val_y) if true_test_y is not None: assert np.allclose(test_y, true_test_y) return data_loader class TestAllCases(object): def __init__(self, input_features, output_features, lookback=3, allow_nan_labels=0, save=True): self.input_features = input_features self.output_features = output_features self.lookback = lookback self.allow_nan_labels=allow_nan_labels self.save=save self.run_all() def run_all(self): all_methods = [m for m in dir(self) if callable(getattr(self, m)) and not m.startswith('_') and m not in ['run_all']] for m in all_methods: getattr(self, m)() return def test_basic(self): examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data = pd.DataFrame(data, columns=['a', 'b', 'c']) config = {'input_features':self.input_features, 'output_features': self.output_features, 'lookback': self.lookback} tr_examples = 49 - (self.lookback - 2) if self.lookback>1 else 49 val_examples = 22 - (self.lookback - 2) if self.lookback>1 else 22 test_examples = 30 - (self.lookback - 2) if self.lookback>1 else 30 if self.output_features == ['c']: tty = np.arange(202, 250).reshape(-1, 1, 1) tvy = np.arange(250, 271).reshape(-1, 1, 1) ttesty = np.arange(271, 300).reshape(-1, 1, 1) else: tty, tvy, ttesty = None, None, None loader = build_and_test_loader(data, config, self.output_features, tr_examples, val_examples, test_examples, save=self.save, true_train_y=tty, true_val_y=tvy, true_test_y=ttesty, check_examples=True, ) assert loader.source_is_df return def test_with_random(self): examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data = pd.DataFrame(data, columns=['a', 'b', 'c']) config = {'input_features':self.input_features, 'output_features': self.output_features, 'lookback': self.lookback, 'train_data': 'random'} tr_examples = 49 - (self.lookback - 2) if self.lookback>1 else 49 loader = build_and_test_loader(data, config, self.output_features, tr_examples, 20, 30, save=self.save, ) assert loader.source_is_df return def test_drop_remainder(self): examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data = pd.DataFrame(data, columns=['a', 'b', 'c']) config = {'input_features':self.input_features, 'output_features': self.output_features, 'lookback': self.lookback, 'batch_size': 8, 'drop_remainder': True, 'train_data': 'random'} loader = build_and_test_loader(data, config, self.output_features, 48, 16, 24, check_examples=False, save=self.save, ) assert loader.source_is_df return def test_with_same_val_data(self): # val_data is "same" as and train_data is make based upon fractions. examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data = pd.DataFrame(data, columns=['a', 'b', 'c']) config = {'input_features':self.input_features, 'output_features': self.output_features, 'lookback': self.lookback, 'val_data': 'same'} if self.output_features == ['c']: tty = np.arange(202, 271).reshape(-1, 1, 1) tvy = np.arange(271, 300).reshape(-1, 1, 1) ttesty = np.arange(271, 300).reshape(-1, 1, 1) else: tty, tvy, ttesty = None, None, None tr_examples = 71 - (self.lookback - 1) if self.lookback > 1 else 71 loader = build_and_test_loader(data, config, self.output_features, tr_examples, 29, 29, true_train_y=tty, true_val_y=tvy, true_test_y=ttesty, save=self.save, check_examples=False ) assert loader.source_is_df return def test_with_same_val_data_and_random(self): examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data = pd.DataFrame(data, columns=['a', 'b', 'c']) config = {'input_features':self.input_features, 'output_features': self.output_features, 'lookback': self.lookback, 'train_data': 'random', 'val_data': 'same'} tr_examples = 70 - (self.lookback - 1) if self.lookback > 1 else 70 loader = build_and_test_loader(data, config, self.output_features, tr_examples, 30, 30, check_examples=False, save=self.save ) assert loader.source_is_df return def test_with_no_val_data(self): # we dont' want to have any validation_data examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data = pd.DataFrame(data, columns=['a', 'b', 'c']) config = {'input_features':self.input_features, 'output_features': self.output_features, 'lookback': self.lookback, 'val_fraction': 0.0} if self.output_features == ['c']: tty = np.arange(202, 271).reshape(-1, 1, 1) ttesty = np.arange(271, 300).reshape(-1, 1, 1) else: tty, tvy, ttesty = None, None, None tr_examples = 71 - (self.lookback - 1) if self.lookback > 1 else 71 loader = build_and_test_loader(data, config, self.output_features, tr_examples, 0, 29, true_train_y=tty, true_test_y=ttesty, save=self.save) assert loader.source_is_df return def test_with_no_val_data_with_random(self): # we dont' want to have any validation_data examples = 100 data = np.arange(int(examples * 3), dtype=np.int32).reshape(-1, examples).transpose() data =
pd.DataFrame(data, columns=['a', 'b', 'c'])
pandas.DataFrame
import streamlit as st import pandas as pd import math import altair as alt import numpy as np import pydeck as pdk st.beta_set_page_config(layout="wide") # Function to remove dollar from price (TBD - move to cleaning later) def remove_dollar(price): return price.replace('$', '').replace(',', '') # Function to add month to the dataframe def get_month(date): separator = "/" if date.__contains__('-'): separator = '-' month_x = str(date).split(separator)[1] return month_x # Function to add year to the dataframe def get_year(date): separator = "/" if date.__contains__('-'): separator = '-' year = str(date).split(separator)[0] return year def get_coordinates(lat, lon): coordinates_list = list() coordinates_list.append(lat) coordinates_list.append(lon) return coordinates_list @st.cache # add caching so we load the data only once def load_data(): # Load the airbnb data acquired from InsideAirbnb.com # Server root_path = "https://raw.githubusercontent.com/CMU-IDS-2020/a3-data-diggers/master/data/" reviews = {'NYC': pd.read_csv(root_path + 'NYC_reviews.csv')} NYC_listings = {'01': pd.read_csv(root_path + '2020/NYC/listings_01.csv'), '02': pd.read_csv(root_path + '2020/NYC/listings_02.csv'), '03': pd.read_csv(root_path + '2020/NYC/listings_03.csv'), '04': pd.read_csv(root_path + '2020/NYC/listings_04.csv'), '05': pd.read_csv(root_path + '2020/NYC/listings_05.csv'), '06': pd.read_csv(root_path + '2020/NYC/listings_06.csv'), '07': pd.read_csv(root_path + '2020/NYC/listings_07.csv'), '08': pd.read_csv(root_path + '2020/NYC/listings_08.csv'), '09': pd.read_csv(root_path + '2020/NYC/listings_09.csv')} # Calculating + appending month and year to the reviews dataframe for key in reviews.keys(): rdf = reviews[key] rdf["Month"] = rdf.apply(lambda row: get_month(row["date"]), axis=1) rdf["year"] = rdf.apply(lambda row: get_year(row["date"]), axis=1) reviews[key] = rdf # Removing dollar from price, removing nan for key in NYC_listings.keys(): ldf = NYC_listings[key] ldf["price"] = ldf["price"].fillna(0) ldf["price"] = ldf.apply(lambda row: remove_dollar(row["price"]), axis=1) ldf["price"] = pd.to_numeric(ldf["price"]) ldf['neighbourhood_group_cleansed'] = ldf['neighbourhood_group_cleansed'].fillna("other") ldf['room_type'] = ldf['room_type'].fillna("other") ldf['bedrooms'] = ldf['bedrooms'].fillna(0) NYC_listings[key] = ldf # Load in the Covid-19 data covid_data = {'09':
pd.read_csv(root_path + '2020/COVID/covid_data_cleaned_09.csv')
pandas.read_csv
from ..workflow_obj import workflow_obj from ..ui import get_run_data from ..formatter import add_cols, remove_blanks, remove_pools, get_pos import pandas as pd from workflow.logger import Script_Logger class WorkflowObj2(workflow_obj): # constructor def __init__(self): self.id = "WF_2" self.log = Script_Logger("WF_2_Parse_Run_Data") self.log.start_log("Initialization of WF_2_sucessful") # methods def get_json(self): super().get_json(2) self.log.write_log("get_json","Argument passed was 2") def get_info_from_json(self, runId): self.log.write_log("get_info_from_json","runing") run_data, self.machine_num, self.wgs_run_date, \ self.day_run_num, self.platform = get_run_data(runId) self.log.write_log("get_info_from_json","get_run_data completed, now cleaing up controls") if self.include_controls: neg = False pos = False # store away the control values for the run for sample_num in range(len(run_data['hsn'])): if "neg" in run_data['hsn'][sample_num].lower(): self.neg_ctrl_pass = (run_data['percent_cvg'][sample_num] <= self.neg_percent_cvg_cutoff) self.neg_name = "1" + self.wgs_run_date[:-4].replace("/", "") + self.wgs_run_date[-2:] + str(self.machine_num) + str(self.day_run_num) run_data['hsn'][sample_num] = self.neg_name neg = True if "pos" in run_data['hsn'][sample_num].lower(): self.pos_ctrl_pass = (run_data['percent_cvg'][sample_num] >= self.percent_cvg_cutoff) self.pos_name = "2" + self.wgs_run_date[:-4].replace("/", "") + self.wgs_run_date[-2:] + str(self.machine_num) + str(self.day_run_num) run_data['hsn'][sample_num] = self.pos_name pos = True if neg and pos: break self.log.write_log("get_info_from_json"," creating df for qc/research table") # create dataframe for QC/Research table self.df_qc = pd.DataFrame.from_dict(run_data) def format_dataframe(self): self.log.write_log("format_dataframe","runing") self.df_qc = remove_pools(self.df_qc, 'hsn') self.df_qc = remove_blanks(self.df_qc, 'hsn') # add columns self.log.write_log("format_dataframe","adding columns") self.df_qc['position'] = self.df_qc.apply(lambda row: get_pos(row['position']), axis=1) self.df_qc = add_cols(obj=self, \ df=self.df_qc, \ col_lst=self.add_col_lst, \ col_func_map=self.col_func_map) self.df_qc = self.df_qc.astype({"wgs_run_date": str}) if self.include_controls: self.df_qc=add_cols(obj=self, \ df=self.df_qc, \ col_lst=self.add_col_lst_ctrl, \ col_func_map=self.col_func_map) else: self.df_qc['pos_pass'] = 0 self.df_qc['neg_pass'] = 0 self.df_qc['reportable'] = 0 self.log.write_log("format_dataframe","creating results df") # create dataframe for results table self.df_results = self.df_qc.copy() # sort/remove columns to match table 1 # sort/remove columns to match table 2 self.df_results = pd.DataFrame(self.df_results[self.df_results_cols]) self.df_qc =
pd.DataFrame(self.df_qc[self.df_qc_cols])
pandas.DataFrame
# --------------------------------- # Name : adjmatvec.py # Author : E.Taskesen # Contact : <EMAIL> # Licence : See licences # --------------------------------- import pandas as pd import numpy as np from ismember import ismember # %% Convert adjacency matrix to vector def vec2adjmat(source, target, weight=None, symmetric=True): """Convert source and target into adjacency matrix. Parameters ---------- source : list The source node. target : list The target node. weight : list of int The Weights between the source-target values symmetric : bool, optional Make the adjacency matrix symmetric with the same number of rows as columns. The default is True. Returns ------- pd.DataFrame adjacency matrix. Examples -------- >>> source=['Cloudy','Cloudy','Sprinkler','Rain'] >>> target=['Sprinkler','Rain','Wet_Grass','Wet_Grass'] >>> vec2adjmat(source, target) >>> >>> weight=[1,2,1,3] >>> vec2adjmat(source, target, weight=weight) """ if len(source)!=len(target): raise Exception('[hnet] >Source and Target should have equal elements.') if weight is None: weight = [1]*len(source) df =
pd.DataFrame(np.c_[source, target], columns=['source','target'])
pandas.DataFrame
import typing as tp import collections import itertools as it import string import shutil import tempfile import os from urllib import request import numpy as np import pandas as pd import static_frame as sf from static_frame.performance.perf_test import PerfTest class SampleData: _store = {} URL_CSV = 'https://data.ny.gov/api/views/xe9x-a24f/rows.csv?accessType=DOWNLOAD' FP_CSV = '/tmp/sf_pydata_2018.csv' URL_JSON = 'https://jsonplaceholder.typicode.com/photos' @classmethod def create(cls): if not os.path.exists(cls.FP_CSV): with request.urlopen(cls.URL_CSV) as response: with open(cls.FP_CSV, 'w') as f: f.write(response.read().decode('utf-8')) cls._store['data_csv_fp'] = cls.FP_CSV cls._store['data_json_url'] = cls.URL_JSON labels_src = list(''.join(x) for x in it.combinations(string.ascii_lowercase, 4)) assert len(labels_src) > 10000 index = labels_src[:10000] columns = labels_src[:1000] data_float = np.random.rand(len(index), len(columns)) # alt floats, Bools data_func = [ lambda: np.random.rand(len(index)), lambda: np.random.randint(-1, 1, len(index)).astype(bool) ] cls._store['index'] = index cls._store['index_target'] = [idx for idx in index if 'd' in idx] cls._store['columns'] = columns cls._store['columns_target'] = [c for c in columns if 'd' in c] cls._store['data_float'] = data_float cls._store['data_func'] = data_func cls._store['sf.FrameFloat'] = sf.Frame(data_float, index=index, columns=columns) cls._store['pd.FrameFloat'] =
pd.DataFrame(data_float, index=index, columns=columns)
pandas.DataFrame
import json import math import os import random import sys import time import warnings from functools import reduce from itertools import combinations, product from operator import add from typing import List, Sequence, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import pretty_errors import scipy.optimize as sco import seaborn as sns import statsmodels.api as sm from pyecharts import options as opts from pyecharts.charts import Bar, Grid, Kline, Line from pyecharts.commons.utils import JsCode from statsmodels import regression from tqdm import tqdm, trange sys.path.append(os.path.dirname(__file__) + os.sep + '../') try: from ..data.Stock import StockData from ..log.log import hide, makedir, progress_bar, show, slog, sprint except: from data.Stock import StockData from log.log import hide, makedir, progress_bar, show, slog, sprint warnings.filterwarnings('ignore') plt.rcParams['font.sans-serif'] = ['FangSong'] plt.rcParams['axes.unicode_minus'] = False # 正常显示负号 plt.rcParams['font.size'] = 13 class Markovitz(object): ''' 组合投资权重\n names=['贵州茅台', '隆基股份', '五粮液']\n start_date='2021-05-01'\n end_date='2021-11-01'\n frequency='d' --> d/w/m\n rfr=0.023467/365\n funds=10000000\n path --> 默认缓存路径为:".\\Suluoya cache\\",可传入False不缓存 ''' def __init__(self, names=['比亚迪', '阳光电源', '璞泰来', '紫光国微', '盛新锂能'], start_date='2021-05-01', end_date='2021-11-01', frequency='d', rfr=0.023467, funds=10000000, path='.\\Markovitz cache\\'): self.names = names self.lens = len(names) self.start_date = start_date self.end_date = end_date self.frequency = frequency self.rfr = (rfr*100) / \ {'d': 365, 'w': 52, 'm': 30}[frequency] self.funds = funds self.path = path if self.path: makedir(self.path, '') sprint('Initializing...') if not self.path: sd = StockData(names=self.names, start_date=self.start_date, end_date=self.end_date, frequency=self.frequency) self.datas = sd.stocks_data() else: try: self.datas = pd.read_csv( f'{self.path}\\stock data\\stocks_data.csv') except: sd = StockData(names=self.names, start_date=self.start_date, end_date=self.end_date, frequency=self.frequency, path=self.path) self.datas = sd.stocks_data() self.datas.index = self.datas['name'] self.data = self.datas.reset_index(drop=True) self.date = list(map(lambda x: str(x)[:10], self.data.date.unique())) self.first_date = self.date[0] self.last_date = self.date[-1] # 第一天开盘价 self.first_price = self.data[self.data.date == self.data.date.unique( )[0]][['open', 'name']].set_index('name').to_dict()['open'] # 最后一天收盘价 self.last_price = self.data[self.data.date == self.data.date.unique( )[-1]][['close', 'name']].set_index('name').to_dict()['close'] # 每只股票最大手数 self.max_shares_dict = {name: math.floor( self.funds/(shares*100)) for name, shares in self.last_price.items()} def weights(self, number=5000): ''' 生成股票随机权重 ''' return np.random.dirichlet(np.ones(self.lens), size=number) def calculate(self): ''' 计算收益率均值、协方差矩阵、相关系数矩阵 ''' data = self.data[['date', 'name', 'pctChg']] # 收益率均值 data_mean = data.groupby('name').mean().T[self.names] # 协方差矩阵 & 相关系数矩阵 df = pd.DataFrame() for name in self.names: df[name] = list(data[data['name'] == name]['pctChg']) data_cov = df.cov() data_corr = df.corr() if self.path: makedir(self.path, 'mean,cov,corr') data_mean.T.to_csv( f'{self.path}\\mean,cov,corr\\data_mean.csv') data_cov.to_csv(f'{self.path}\\mean,cov,corr\\data_cov.csv') data_corr.to_csv(f'{self.path}\\mean,cov,corr\\data_corr.csv') return {'mean': data_mean, 'cov': data_cov, 'correlation': data_corr} def heatmap(self, show=True): ''' 收益率相关系数热力图 ''' if self.path: try: data_corr = pd.read_csv(f'{self.path}\\mean,cov,corr\\data_corr.csv').rename( {'Unnamed: 0', 'correlation'}).set_index('correlation') except: data_corr = self.calculate()['correlation'] else: data = self.data[['name', 'pctChg']] df =
pd.DataFrame()
pandas.DataFrame
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from meterstick import metrics from meterstick import operations from meterstick import utils import mock import numpy as np import pandas as pd from pandas import testing from scipy import stats import unittest class DistributionTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'] }) sum_x = metrics.Sum('X') distribution = operations.Distribution('grp', sum_x) def test_distribution(self): output = self.distribution.compute_on(self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_normalize(self): output = operations.Normalize('grp', self.sum_x).compute_on(self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_over_multiple_columns(self): df = pd.DataFrame({ 'X': [2, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'platform': ['desktop', 'mobile', 'desktop', 'mobile'] }) sum_x = metrics.Sum('X') dist = operations.Distribution(['grp', 'platform'], sum_x) output = dist.compute_on(df, 'country') expected = pd.DataFrame({ 'Distribution of sum(X)': [1., 0.5, 0.25, 0.25], 'country': ['EU', 'US', 'US', 'US'], 'grp': ['B', 'A', 'A', 'B'], 'platform': ['mobile', 'desktop', 'mobile', 'desktop'] }) expected.set_index(['country', 'grp', 'platform'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_melted(self): output = self.distribution.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0.25, 0.75], 'grp': ['A', 'B'], 'Metric': ['Distribution of sum(X)', 'Distribution of sum(X)'] }) expected.set_index(['Metric', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby(self): output = self.distribution.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Distribution of sum(X)': [1., 2. / 3, 1. / 3], 'grp': ['B', 'A', 'B'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby_melted(self): output = self.distribution.compute_on(self.df, 'country', melted=True) expected = pd.DataFrame({ 'Value': [1., 2. / 3, 1. / 3], 'grp': ['B', 'A', 'B'], 'Metric': ['Distribution of sum(X)'] * 3, 'country': ['EU', 'US', 'US'] }) expected.set_index(['Metric', 'country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5, 0, 1, 2, 3.5], 'grp': ['A', 'A', 'B', 'B'] * 2, 'country': ['US', 'US', 'US', 'EU'] * 2, 'grp0': ['foo'] * 4 + ['bar'] * 4 }) output = self.distribution.compute_on(df, ['grp0', 'country']) bar = self.distribution.compute_on(df[df.grp0 == 'bar'], 'country') foo = self.distribution.compute_on(df[df.grp0 == 'foo'], 'country') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0'])
testing.assert_frame_equal(output, expected)
pandas.testing.assert_frame_equal
from hyperopt import fmin, tpe, space_eval, hp, Trials, STATUS_OK, STATUS_FAIL from hyperopt.pyll import stochastic, scope from os.path import join import os import pandas as pd import numpy as np @scope.define def round_n(x, n=3): return np.round(x, n) def monitor_callback(params, scores, name=''): tmp = {'NED':scores['ned'], 'Coverage': scores['coverageNS'], 'scores': scores} tmp = {**params['disc'], **params['clustering'], **tmp} outfile = join(params['exp_root'], 'results', name + '_expresults.csv') if os.path.exists(outfile): pd.DataFrame([tmp]).to_csv(outfile, mode='a', header=False) else:
pd.DataFrame([tmp])
pandas.DataFrame
from argparse import ArgumentParser from pathlib import Path import os import time import glob import torch import logging import json import random import numpy as np import pandas as pd from contextlib import contextmanager from collections import namedtuple, defaultdict from tempfile import TemporaryDirectory import numba.cuda as profile_cuda from tqdm import tqdm from tensorboardX import SummaryWriter from torch.utils.data import DataLoader, Dataset, RandomSampler from torch.utils.data.distributed import DistributedSampler from pytorch_transformers.modeling_bert import BertForPreTraining from pytorch_transformers.tokenization_bert import BertTokenizer from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule try: from apex.parallel import DistributedDataParallel as DDP from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") from utils import Timers InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next") log_format = '%(asctime)-10s: %(message)s' logging.basicConfig(level=logging.INFO, format=log_format) def check_files(checkpoint_path, prefix, max_files=10): """ checkFiles Check the number of checkpoints, if it exceeds max_files, delete the oldest ones, return the latest checkpoint file path. checkpoint_path: str, path to checkpoints max_files: int, maximum number of checkpoints to retain """ try: pattern = os.path.join(checkpoint_path, prefix + "*.tar") checkpoint_files = glob.glob(pattern) checkpoint_files.sort(key=lambda x: os.path.getmtime(x)) except FileNotFoundError: return None try: latest_checkpoint = checkpoint_files[-1] except IndexError: # No checkpoint files, list is empty! latest_checkpoint = None print("CURRENTLY %d CHECKPOINTS" % len(checkpoint_files)) if len(checkpoint_files) > max_files: logging.info("DELETE EXCESS CHECKPOINTS") for idx, checkpoint_file in enumerate(checkpoint_files[:-max_files]): if checkpoint_file=='training_checkpoint_most_recent.tar':continue logging.info("DELETE %s" % checkpoint_file) os.remove(checkpoint_file) return latest_checkpoint def save_checkpoint(model, optimizer, epoch, global_step, checkpoint_path, filename): """ saveCheckpoint Save the model and optimizer state in a dictionary model: [class], torch model instance optimizer: [class], torch optimizer instance epoch: int, current epoch global_step: int, current global step checkpoint_path: string, path filename: string, name of the checkpoint file """ logging.info("** ** * Saving fine-tuned model ** ** * ") if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path, exist_ok=True) torch.save({"epoch": epoch, "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "global_step": global_step}, filename) logging.info("** ** * Model saved! ** ** * ") def restore_checkpoint(model, optimizer, checkpoint_file, device): """ Restores model and optimizer from a checkpoint file and returns checkpoint information. Has side effect of loading the state_dict for model and optimizer (i.e. modifies the instances). :param model: [class], torch model instance :param optimizer: [class], torch optimizer instance :param checkpoint_file: string, full file path :param device: [class], torch device instance :return: Tuple of the checkpoint values """ assert checkpoint_file logging.info("** ** * Restore from checkpoint: %s" % checkpoint_file) checkpoint_state = torch.load(checkpoint_file, map_location=device) model.load_state_dict(checkpoint_state["model_state_dict"]) optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"]) last_epoch = checkpoint_state["epoch"] global_step = checkpoint_state["global_step"] logging.info(" RESTORED AT epoch:%d-%s, global_step:%d" % (last_epoch, global_step)) logging.info("** ** * Model restored! ** ** * ") # model.train() # Do this in calling code for now, maybe want model.eval() there instead return last_epoch, global_step def convert_example_to_features(example, tokenizer, max_seq_length): tokens = example["tokens"] segment_ids = example["segment_ids"] is_random_next = example["is_random_next"] masked_lm_positions = example["masked_lm_positions"] masked_lm_labels = example["masked_lm_labels"] assert len(tokens) == len(segment_ids) <= max_seq_length # The preprocessed data should be already truncated input_ids = tokenizer.convert_tokens_to_ids(tokens) masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels) input_array = np.zeros(max_seq_length, dtype=np.int) input_array[:len(input_ids)] = input_ids mask_array = np.zeros(max_seq_length, dtype=np.bool) mask_array[:len(input_ids)] = 1 segment_array = np.zeros(max_seq_length, dtype=np.bool) segment_array[:len(segment_ids)] = segment_ids lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1) lm_label_array[masked_lm_positions] = masked_label_ids features = InputFeatures(input_ids=input_array, input_mask=mask_array, segment_ids=segment_array, lm_label_ids=lm_label_array, is_next=is_random_next) return features class PregeneratedDataset(Dataset): def __init__(self, training_path, epoch, chunk, tokenizer, num_data_epochs, reduce_memory=False): self.vocab = tokenizer.vocab self.tokenizer = tokenizer self.epoch = epoch self.data_epoch = epoch % num_data_epochs data_file = training_path / f"epoch_{self.data_epoch}-{chunk}.json" data_zip = training_path / f"epoch_{self.data_epoch}-{chunk}.zip" if not os.path.isfile(data_file): # If file not there, then there should be a zip file that extracts to it extract_zip(data_zip) assert os.path.isfile(data_file) logging.info('Training on: {}'.format(data_file)) metrics_file = training_path / f"metrics_epoch_{self.data_epoch}-{chunk}.json" assert data_file.is_file() and metrics_file.is_file() metrics = json.loads(metrics_file.read_text()) num_samples = metrics['num_training_examples'] seq_len = metrics['max_seq_len'] self.temp_dir = None self.working_dir = None if reduce_memory: self.temp_dir = TemporaryDirectory() self.working_dir = Path(self.temp_dir.name) input_ids = np.memmap(filename=self.working_dir/'input_ids.memmap', mode='w+', dtype=np.int32, shape=(num_samples, seq_len)) input_masks = np.memmap(filename=self.working_dir/'input_masks.memmap', shape=(num_samples, seq_len), mode='w+', dtype=np.bool) segment_ids = np.memmap(filename=self.working_dir/'segment_ids.memmap', shape=(num_samples, seq_len), mode='w+', dtype=np.bool) lm_label_ids = np.memmap(filename=self.working_dir/'lm_label_ids.memmap', shape=(num_samples, seq_len), mode='w+', dtype=np.int32) lm_label_ids[:] = -1 is_nexts = np.memmap(filename=self.working_dir/'is_nexts.memmap', shape=(num_samples,), mode='w+', dtype=np.bool) else: input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32) input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool) segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool) lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1) is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool) logging.info(f"Loading training examples for epoch {epoch}") with data_file.open() as f: for i, line in enumerate(tqdm(f, total=num_samples, desc="Training examples")): line = line.strip() example = json.loads(line) features = convert_example_to_features(example, tokenizer, seq_len) input_ids[i] = features.input_ids segment_ids[i] = features.segment_ids input_masks[i] = features.input_mask lm_label_ids[i] = features.lm_label_ids is_nexts[i] = features.is_next assert i == num_samples - 1 # Assert that the sample count metric was true logging.info("Loading complete!") self.num_samples = num_samples self.seq_len = seq_len self.input_ids = input_ids self.input_masks = input_masks self.segment_ids = segment_ids self.lm_label_ids = lm_label_ids self.is_nexts = is_nexts def __len__(self): return self.num_samples def __getitem__(self, item): return (torch.tensor(self.input_ids[item].astype(np.int64)), torch.tensor(self.input_masks[item].astype(np.int64)), torch.tensor(self.segment_ids[item].astype(np.int64)), torch.tensor(self.lm_label_ids[item].astype(np.int64)), torch.tensor(self.is_nexts[item].astype(np.int64))) def get_chunks(dir_path, epoch): """ Look in the specified directory for files of the form epoch_0-000, epoch_0-001, ...etc. and return a list of the chunks e.g. ['000', '001', '002', ...] There could be a mix of .json and .zip files so sometimes we could get duplicates. """ if isinstance(dir_path, Path): dir_path = str(dir_path) chunks = [x.split('-')[-1].strip('.json').strip('.zip') for x in glob.glob("{}/epoch_{}-*".format(dir_path, epoch))] chunks = list(set(chunks)) return sorted(chunks) def get_args(): parser = ArgumentParser() parser.add_argument('--pregenerated_data', type=Path, required=True) parser.add_argument('--output_dir', type=Path, required=True) parser.add_argument('--restore_dir', type=Path, help="Restore from a checkpoint file and continue training") parser.add_argument("--bert_model", type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--do_lower_case", action="store_true") parser.add_argument("--reduce_memory", action="store_true", help="Store training data as on-disc memmaps to massively reduce memory usage") parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--num_workers", type=int, default=0, help="Number of workers to load data") # training config parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--batch_size", default=12, type=int, help="Total batch size for training.") parser.add_argument("--seq_length", default=128, type=int, help="Seq length of each sample.") parser.add_argument('--train_iters', type=int, default=2000, help='number of iterations per epoch') # distributed training config parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus. Passed from distributed launcher") # AMP config parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") # optimization parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") # nvprof args parser.add_argument('--nvprof', action='store_true', help='profile this program') parser.add_argument('--profile_start', type=int, default=200, help="""Start iteration of nvidia profiler""") parser.add_argument('--profile_stop', type=int, default=201, help="""Stop iteration of nvidia profiler""") parser.add_argument('--warmup_iter', type=int, default=200, help="""Start iteration of nvidia profiler""") # benchmarking args parser.add_argument('--benchmark', action='store_true', help='benchmark this program') parser.add_argument('--benchmark_dir', type=str, default="benchmark_output", help="""Dir to save benchmark output stats""") parser.add_argument('--benchmark_start', type=int, default=1000, help="""Start iteration of nvidia profiler""") parser.add_argument('--benchmark_stop', type=int, default=2000, help="""Stop iteration of nvidia profiler""") parser.add_argument('--benchmark_partition', type=str, default="t4", help="""Partition of gpus""") parser.add_argument('--log_interval', type=int, default=100, help='report interval') args = parser.parse_args() assert args.pregenerated_data.is_dir(), \ "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!" args.rank = int(os.getenv('RANK', '0')) args.world_size = int(os.getenv("WORLD_SIZE", '1')) return args def main(): args = get_args() total_train_examples = 0 for i in range(args.epochs): chunks = get_chunks(args.pregenerated_data, i) if i == 0 and len(chunks) == 0: exit("No training data was found!") elif len(chunks) == 0: print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).") print("This script will loop over the available data, but training diversity may be negatively impacted.") num_data_epochs = i break for chunk in chunks: epoch_file = args.pregenerated_data / f"epoch_{i}-{chunk}.json" epoch_zip = args.pregenerated_data / f"epoch_{i}-{chunk}.zip" metrics_file = args.pregenerated_data / f"metrics_epoch_{i}-{chunk}.json" if (epoch_file.is_file() or epoch_zip.is_file()) and metrics_file.is_file(): metrics = json.loads(metrics_file.read_text()) total_train_examples += metrics['num_training_examples'] else: num_data_epochs = args.epochs if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 init_method = 'tcp://' master_ip = os.getenv('MASTER_ADDR', 'localhost') master_port = os.getenv('MASTER_PORT', '6000') init_method += master_ip + ':' + master_port torch.distributed.init_process_group( backend='nccl', world_size=args.world_size, rank=args.rank, init_method=init_method) # Initializes the distributed backend which will take care of sychronizing nodes/GPUs # torch.distributed.init_process_group(backend='nccl') logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) # args.batch_size = args.batch_size // args.gradient_accumulation_steps print("CUDA device count: {}".format(torch.cuda.device_count())) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if args.output_dir.is_dir() and list(args.output_dir.iterdir()): logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!") args.output_dir.mkdir(parents=True, exist_ok=True) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) num_train_optimization_steps = int( total_train_examples / args.batch_size) if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // args.world_size model = BertForPreTraining.from_pretrained(args.bert_model) if args.fp16: model.half() model.to(device) if args.local_rank != -1: model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) # scheduler not compatible with APEX::FP16_optimizer scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps) if args.output_dir: last_checkpoint = check_files(args.output_dir, args.bert_model) last_epoch, global_step = restore_checkpoint(model, optimizer, last_checkpoint, device) else: last_epoch, global_step = 0, 0 logging.info("***** Running training *****") logging.info(f" Num examples = {total_train_examples}") logging.info(" Batch size = %d", args.batch_size) logging.info(" Num steps = %d", num_train_optimization_steps) iteration = 0 benchmark_stats = defaultdict(lambda: []) grad_stats = defaultdict(lambda: []) summary_writer = SummaryWriter() if args.rank == 0 else None model.train() for epoch in range(last_epoch, args.epochs): shuffled_chunks = get_chunks(args.pregenerated_data, epoch) random.shuffle(shuffled_chunks) logging.info('New shuffled chunks: {}'.format(shuffled_chunks)) for chunk in shuffled_chunks: epoch_dataset = PregeneratedDataset(epoch=epoch, chunk=chunk, training_path=args.pregenerated_data, tokenizer=tokenizer, num_data_epochs=num_data_epochs, reduce_memory=args.reduce_memory) if args.local_rank == -1: train_sampler = RandomSampler(epoch_dataset) else: train_sampler = DistributedSampler(epoch_dataset) train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.batch_size, num_workers=args.num_workers) data_iterator = iter(train_dataloader) timers = Timers() timers('interval time').start() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for batch in data_iterator: # while iteration < args.train_iters: if args.nvprof: if iteration == args.profile_start: profile_cuda.profile_start() print("CUDA profiling starts!") if iteration == args.profile_stop: profile_cuda.profile_stop() print("CUDA profiling stops!") iteration += 1 # benchmark dataloading time # batch = next(data_iterator) batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch outputs = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next) loss = outputs[0] if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: # loss = loss / args.gradient_accumulation_steps if args.local_rank != -1: if iteration % args.gradient_accumulation_steps == 0: # we are using APEX DDP => enable_allreduce / disable_allreduce # print("iteration {}, all reduce enabled!".format(iteration)) model.enable_allreduce() else: # print("iteration {}, all reduce disabled!".format(iteration)) model.disable_allreduce() # note that loss.backward accumulates the gradient => gradient will be accumulated until we call zero_grad if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 # mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps mean_loss = tr_loss / nb_tr_steps if iteration % args.gradient_accumulation_steps == 0: start = time.time() scheduler.step() # Update learning rate schedule (commented as lr_scheduler not compatible with FP16_Optimizer) optimizer.step() optimizer.zero_grad() benchmark_stats['weight_update_time'].append(time.time() - start) # unit in s global_step += 1 if iteration % args.log_interval == 0: elapsed_time = timers('interval time').elapsed() log_string = ' epoch{:2d} |'.format(epoch) log_string += ' iteration {:8d} |'.format(iteration) log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(elapsed_time * 1000.0 / args.log_interval) log_string += ' mean loss {:.3E} |'.format(mean_loss) if args.rank == 0: summary_writer.add_scalar('mean_loss', mean_loss, iteration) # args.rank == 0 => this is master process if args.benchmark and args.rank == 0: if args.benchmark_start < iteration <= args.benchmark_stop: benchmark_stats['iteration'].append(iteration) benchmark_stats['seq_length'].append(args.seq_length) benchmark_stats['batch_size'].append(args.batch_size * args.world_size) benchmark_stats['num_tokens'].append(args.seq_length * args.batch_size * args.world_size) benchmark_stats['elapsed_time'].append(elapsed_time) benchmark_stats['log_interval'].append(args.log_interval) print(log_string, flush=True) # Save a trained model if n_gpu > 1 and torch.distributed.get_rank() or n_gpu <=1: logging.info("** ** * Saving fine-tuned model ** ** * ") model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training save_checkpoint( model, optimizer, epoch, global_step, args.output_dir, os.path.join(args.output_dir, "{}_{}.tar".format(args.bert_model, global_step)) ) model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Save a trained model if n_gpu > 1 and torch.distributed.get_rank() == 0 or n_gpu <=1: logging.info("** ** * Saving fine-tuned model ** ** * ") model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training save_checkpoint( model, optimizer, epoch, global_step, args.output_dir, os.path.join(args.output_dir, "{}_{}.tar".format(args.bert_model, global_step)) ) model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) if args.rank == 0: summary_writer.close() if args.benchmark and args.rank == 0: benchmark_csv = { k: [np.mean(l)] for k,l in benchmark_stats.items() } benchmark_csv['weight_update_time'] = args.log_interval * np.array(benchmark_csv['weight_update_time']) benchmark_csv['token_throughput'] = np.array(benchmark_csv['num_tokens']) * np.array(benchmark_csv['log_interval'])\ / np.array(benchmark_csv['elapsed_time']) benchmark_csv['precision'] = [ 'fp16' if args.fp16 else 'fp32' ] save_dir = os.path.join( args.benchmark_dir, "{gpus}_gpus_{partition}_trials".format( gpus=args.world_size, partition=args.benchmark_partition ) ) if not os.path.exists(save_dir): os.mkdir(save_dir) df =
pd.DataFrame.from_dict(benchmark_csv)
pandas.DataFrame.from_dict
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import operator import string import numpy as np import pandas as pd import pytest import cudf from cudf.core._compat import PANDAS_GE_110 from cudf.testing._utils import ( NUMERIC_TYPES, assert_eq, assert_exceptions_equal, ) @pytest.fixture def pd_str_cat(): categories = list("abc") codes = [0, 0, 1, 0, 1, 2, 0, 1, 1, 2] return pd.Categorical.from_codes(codes, categories=categories) def test_categorical_basic(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) cudf_cat = cudf.Index(cat) pdsr = pd.Series(cat, index=["p", "q", "r", "s", "t"]) sr = cudf.Series(cat, index=["p", "q", "r", "s", "t"]) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) string = str(sr) expect_str = """ p a q a r b s c t a """ assert all(x == y for x, y in zip(string.split(), expect_str.split())) assert_eq(cat.codes, cudf_cat.codes.to_array()) def test_categorical_integer(): if not PANDAS_GE_110: pytest.xfail(reason="pandas >=1.1 required") cat = pd.Categorical(["a", "_", "_", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal( cat.codes, sr.cat.codes.astype(cat.codes.dtype).fillna(-1).to_array() ) assert sr.null_count == 2 np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.astype(pdsr.cat.codes.dtype).fillna(-1).to_array(), ) string = str(sr) expect_str = """ 0 a 1 <NA> 2 <NA> 3 c 4 a dtype: category Categories (3, object): ['a', 'b', 'c'] """ assert string.split() == expect_str.split() def test_categorical_compare_unordered(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # test equal out = sr == sr assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr == pdsr) # test inequality out = sr != sr assert not np.any(out.to_array()) assert not np.any(pdsr != pdsr) assert not pdsr.cat.ordered assert not sr.cat.ordered # test using ordered operators assert_exceptions_equal( lfunc=operator.lt, rfunc=operator.lt, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), ) def test_categorical_compare_ordered(): cat1 = pd.Categorical( ["a", "a", "b", "c", "a"], categories=["a", "b", "c"], ordered=True ) pdsr1 = pd.Series(cat1) sr1 = cudf.Series(cat1) cat2 = pd.Categorical( ["a", "b", "a", "c", "b"], categories=["a", "b", "c"], ordered=True ) pdsr2 = pd.Series(cat2) sr2 = cudf.Series(cat2) # test equal out = sr1 == sr1 assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr1 == pdsr1) # test inequality out = sr1 != sr1 assert not np.any(out.to_array()) assert not np.any(pdsr1 != pdsr1) assert pdsr1.cat.ordered assert sr1.cat.ordered # test using ordered operators np.testing.assert_array_equal(pdsr1 < pdsr2, (sr1 < sr2).to_array()) np.testing.assert_array_equal(pdsr1 > pdsr2, (sr1 > sr2).to_array()) def test_categorical_binary_add(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), expected_error_message="Series of dtype `category` cannot perform " "the operation: add", ) def test_categorical_unary_ceil(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=getattr, rfunc=sr.ceil, lfunc_args_and_kwargs=([pdsr, "ceil"],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: ceil", ) def test_categorical_element_indexing(): """ Element indexing to a cat column must give the underlying object not the numerical index. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_eq(pdsr, sr) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) def test_categorical_masking(): """ Test common operation for getting a all rows that matches a certain category. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # check scalar comparison expect_matches = pdsr == "a" got_matches = sr == "a" np.testing.assert_array_equal( expect_matches.values, got_matches.to_array() ) # mask series expect_masked = pdsr[expect_matches] got_masked = sr[got_matches] assert len(expect_masked) == len(got_masked) assert len(expect_masked) == got_masked.valid_count assert_eq(got_masked, expect_masked) def test_df_cat_set_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a") pddf = df.to_pandas(nullable_pd_dtype=False) expect = pddf.set_index("a") assert_eq(got, expect) def test_df_cat_sort_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a").sort_index() expect = df.to_pandas(nullable_pd_dtype=False).set_index("a").sort_index() assert_eq(got, expect) def test_cat_series_binop_error(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) dfa = df["a"] dfb = df["b"] # lhs is a categorical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfa, dfb],), rfunc_args_and_kwargs=([dfa, dfb],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: add", ) # if lhs is a numerical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfb, dfa],), rfunc_args_and_kwargs=([dfb, dfa],), check_exception_type=False, expected_error_message="'add' operator not supported", ) @pytest.mark.parametrize("num_elements", [10, 100, 1000]) def test_categorical_unique(num_elements): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), num_elements ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_sorted = np.sort(gdf["a"].unique().to_pandas()) # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique_sorted = np.sort(pdf["a"].unique()) # verify np.testing.assert_array_equal(pdf_unique_sorted, gdf_unique_sorted) @pytest.mark.parametrize("nelem", [20, 50, 100]) def test_categorical_unique_count(nelem): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), nelem ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_count = gdf["a"].nunique() # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique = pdf["a"].unique() # verify assert gdf_unique_count == len(pdf_unique) def test_categorical_empty(): cat = pd.Categorical([]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal(cat.codes, sr.cat.codes.to_array()) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) def test_categorical_set_categories(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) psr = pd.Series(cat) sr = cudf.Series.from_categorical(cat) # adding category expect = psr.cat.set_categories(["a", "b", "c", "d"]) got = sr.cat.set_categories(["a", "b", "c", "d"]) assert_eq(expect, got) # removing category expect = psr.cat.set_categories(["a", "b"]) got = sr.cat.set_categories(["a", "b"]) assert_eq(expect, got) def test_categorical_set_categories_preserves_order(): series = pd.Series([1, 0, 0, 0, 2]).astype("category") # reassigning categories should preserve element ordering assert_eq( series.cat.set_categories([1, 2]), cudf.Series(series).cat.set_categories([1, 2]), ) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_as_ordered(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(False)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(False)) assert cd_sr.cat.ordered is False assert cd_sr.cat.ordered == pd_sr.cat.ordered pd_sr_1 = pd_sr.cat.as_ordered(inplace=inplace) cd_sr_1 = cd_sr.cat.as_ordered(inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert cd_sr_1.cat.ordered is True assert cd_sr_1.cat.ordered == pd_sr_1.cat.ordered assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_as_unordered(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(True)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(True)) assert cd_sr.cat.ordered is True assert cd_sr.cat.ordered == pd_sr.cat.ordered pd_sr_1 = pd_sr.cat.as_unordered(inplace=inplace) cd_sr_1 = cd_sr.cat.as_unordered(inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert cd_sr_1.cat.ordered is False assert cd_sr_1.cat.ordered == pd_sr_1.cat.ordered assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("from_ordered", [True, False]) @pytest.mark.parametrize("to_ordered", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_reorder_categories( pd_str_cat, from_ordered, to_ordered, inplace ): pd_sr = pd.Series(pd_str_cat.copy().set_ordered(from_ordered)) cd_sr = cudf.Series(pd_str_cat.copy().set_ordered(from_ordered)) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) kwargs = dict(ordered=to_ordered, inplace=inplace) pd_sr_1 = pd_sr.cat.reorder_categories(list("cba"), **kwargs) cd_sr_1 = cd_sr.cat.reorder_categories(list("cba"), **kwargs) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert_eq(pd_sr_1, cd_sr_1) assert str(cd_sr_1) == str(pd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_add_categories(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy()) cd_sr = cudf.Series(pd_str_cat.copy()) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) pd_sr_1 = pd_sr.cat.add_categories(["d"], inplace=inplace) cd_sr_1 = cd_sr.cat.add_categories(["d"], inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert "d" in pd_sr_1.cat.categories.to_list() assert "d" in cd_sr_1.cat.categories.to_pandas().to_list() assert_eq(pd_sr_1, cd_sr_1) @pytest.mark.parametrize("inplace", [True, False]) def test_categorical_remove_categories(pd_str_cat, inplace): pd_sr = pd.Series(pd_str_cat.copy()) cd_sr = cudf.Series(pd_str_cat.copy()) assert_eq(pd_sr, cd_sr) assert str(pd_sr) == str(cd_sr) pd_sr_1 = pd_sr.cat.remove_categories(["a"], inplace=inplace) cd_sr_1 = cd_sr.cat.remove_categories(["a"], inplace=inplace) pd_sr_1 = pd_sr if pd_sr_1 is None else pd_sr_1 cd_sr_1 = cd_sr if cd_sr_1 is None else cd_sr_1 assert "a" not in pd_sr_1.cat.categories.to_list() assert "a" not in cd_sr_1.cat.categories.to_pandas().to_list() assert_eq(pd_sr_1, cd_sr_1) # test using ordered operators assert_exceptions_equal( lfunc=cd_sr.to_pandas().cat.remove_categories, rfunc=cd_sr.cat.remove_categories, lfunc_args_and_kwargs=([["a", "d"]], {"inplace": inplace}), rfunc_args_and_kwargs=([["a", "d"]], {"inplace": inplace}), expected_error_message="removals must all be in old categories", ) def test_categorical_dataframe_slice_copy(): pdf = pd.DataFrame({"g": pd.Series(["a", "b", "z"], dtype="category")}) gdf = cudf.from_pandas(pdf) exp = pdf[1:].copy() gdf = gdf[1:].copy() assert_eq(exp, gdf) @pytest.mark.parametrize( "data", [ pd.Series([1, 2, 3, 89]),
pd.Series([1, 2, 3, 89, 3, 1, 89], dtype="category")
pandas.Series
import contextlib import json import gzip import io import logging import os.path import pickle import random import shutil import sys import tempfile import traceback import unittest import pandas COMMON_PRIMITIVES_DIR = os.path.join(os.path.dirname(__file__), 'common-primitives') # NOTE: This insertion should appear before any code attempting to resolve or load primitives, # so the git submodule version of `common-primitives` is looked at first. sys.path.insert(0, COMMON_PRIMITIVES_DIR) TEST_PRIMITIVES_DIR = os.path.join(os.path.dirname(__file__), 'data', 'primitives') sys.path.insert(0, TEST_PRIMITIVES_DIR) from common_primitives.column_parser import ColumnParserPrimitive from common_primitives.construct_predictions import ConstructPredictionsPrimitive from common_primitives.dataset_to_dataframe import DatasetToDataFramePrimitive from common_primitives.no_split import NoSplitDatasetSplitPrimitive from common_primitives.random_forest import RandomForestClassifierPrimitive from common_primitives.train_score_split import TrainScoreDatasetSplitPrimitive from test_primitives.random_classifier import RandomClassifierPrimitive from test_primitives.fake_score import FakeScorePrimitive from d3m import cli, index, runtime, utils from d3m.container import dataset as dataset_module from d3m.contrib.primitives.compute_scores import ComputeScoresPrimitive from d3m.metadata import base as metadata_base, pipeline as pipeline_module, pipeline_run as pipeline_run_module, problem as problem_module TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') PROBLEM_DIR = os.path.join(TEST_DATA_DIR, 'problems') DATASET_DIR = os.path.join(TEST_DATA_DIR, 'datasets') PIPELINE_DIR = os.path.join(TEST_DATA_DIR, 'pipelines') class TestCLIRuntime(unittest.TestCase): def setUp(self): self.test_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_dir) @classmethod def setUpClass(cls): to_register = { 'd3m.primitives.data_transformation.dataset_to_dataframe.Common': DatasetToDataFramePrimitive, 'd3m.primitives.classification.random_forest.Common': RandomForestClassifierPrimitive, 'd3m.primitives.classification.random_classifier.Test': RandomClassifierPrimitive, 'd3m.primitives.data_transformation.column_parser.Common': ColumnParserPrimitive, 'd3m.primitives.data_transformation.construct_predictions.Common': ConstructPredictionsPrimitive, 'd3m.primitives.evaluation.no_split_dataset_split.Common': NoSplitDatasetSplitPrimitive, 'd3m.primitives.evaluation.compute_scores.Test': FakeScorePrimitive, 'd3m.primitives.evaluation.train_score_dataset_split.Common': TrainScoreDatasetSplitPrimitive, # We do not have to load this primitive, but loading it here prevents the package from loading all primitives. 'd3m.primitives.evaluation.compute_scores.Core': ComputeScoresPrimitive, } # To hide any logging or stdout output. with utils.silence(): for python_path, primitive in to_register.items(): index.register_primitive(python_path, primitive) def _call_cli_runtime(self, arg): logger = logging.getLogger('d3m.runtime') with utils.silence(): with self.assertLogs(logger=logger) as cm: # So that at least one message is logged. logger.warning("Debugging.") cli.main(arg) # We skip our "debugging" message. return cm.records[1:] def _call_cli_runtime_without_fail(self, arg): try: return self._call_cli_runtime(arg) except Exception as e: self.fail(traceback.format_exc()) def _assert_valid_saved_pipeline_runs(self, pipeline_run_save_path): with open(pipeline_run_save_path, 'r') as f: for pipeline_run_dict in list(utils.yaml_load_all(f)): try: pipeline_run_module.validate_pipeline_run(pipeline_run_dict) except Exception as e: self.fail(traceback.format_exc()) def _validate_previous_pipeline_run_ids(self, pipeline_run_save_path): ids = set() prev_ids = set() with open(pipeline_run_save_path, 'r') as f: for pipeline_run_dict in list(utils.yaml_load_all(f)): ids.add(pipeline_run_dict['id']) if 'previous_pipeline_run' in pipeline_run_dict: prev_ids.add(pipeline_run_dict['previous_pipeline_run']['id']) self.assertTrue( prev_ids.issubset(ids), 'Some previous pipeline run ids {} are not in the set of pipeline run ids {}'.format(prev_ids, ids) ) def test_fit_multi_input(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() def test_fit_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') output_csv_path = os.path.join(self.test_dir, 'output.csv') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--save', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '--output', output_csv_path, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11225, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=11225, outputs_path='output.csv') def test_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-no-problem-pipeline') output_csv_path = os.path.join(self.test_dir, 'output.csv') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--save', fitted_pipeline_path, ] self._call_cli_runtime_without_fail(arg) arg = [ '', 'runtime', 'produce', '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--output', output_csv_path, '--fitted-pipeline', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-no-problem-pipeline', 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11008, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=11008, outputs_path='output.csv') def test_fit_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') output_csv_path = os.path.join(self.test_dir, 'output.csv') arg = [ '', 'runtime', 'fit-produce', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--output', output_csv_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11008, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=11008, outputs_path='output.csv') def test_nonstandard_fit_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'semi-standard-pipeline.json'), '--save', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '--not-standard-pipeline', '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'outputs.1/data.csv', 'outputs.1/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=10710, outputs_path='outputs.0/data.csv') self._assert_nonstandard_output(outputs_name='outputs.1') def test_nonstandard_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'semi-standard-pipeline.json'), '--save', fitted_pipeline_path, '--not-standard-pipeline' ] self._call_cli_runtime_without_fail(arg) arg = [ '', 'runtime', 'produce', '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--fitted-pipeline', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'outputs.1/data.csv', 'outputs.1/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=12106, outputs_path='outputs.0/data.csv') self._assert_nonstandard_output(outputs_name='outputs.1') def test_nonstandard_fit_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-produce', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'semi-standard-pipeline.json'), '--expose-produced-outputs', self.test_dir, '--not-standard-pipeline', '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'outputs.0/data.csv', 'outputs.0/metadata.json', 'outputs.1/data.csv', 'outputs.1/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=12106, outputs_path='outputs.0/data.csv') self._assert_nonstandard_output(outputs_name='outputs.1') def test_fit_produce_multi_input(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-produce', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json', ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11008, outputs_path='outputs.0/data.csv') def test_fit_score(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-score', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml'), '--scores', os.path.join(self.test_dir, 'scores.csv'), '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(os.path.join(self.test_dir, 'scores.csv')) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0]]) def test_fit_score_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-score', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), # this argument has no effect '--metric', 'F1_MACRO', '--metric', 'ACCURACY', '--scores', os.path.join(self.test_dir, 'scores.csv'), '-O', pipeline_run_save_path, ] logging_records = self._call_cli_runtime_without_fail(arg) self.assertEqual(len(logging_records), 1) self.assertEqual(logging_records[0].msg, "Not all provided hyper-parameters for the scoring pipeline %(pipeline_id)s were used: %(unused_params)s") self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(os.path.join(self.test_dir, 'scores.csv')) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0]]) @staticmethod def _get_iris_dataset_path(): return os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json') @staticmethod def _get_iris_problem_path(): return os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json') @staticmethod def _get_random_forest_pipeline_path(): return os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml') @staticmethod def _get_no_split_data_pipeline_path(): return os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml') @staticmethod def _get_train_test_split_data_pipeline_path(): return os.path.join(PIPELINE_DIR, 'data-preparation-train-test-split.yml') def _get_pipeline_run_save_path(self): return os.path.join(self.test_dir, 'pipeline_run.yml') def _get_predictions_path(self): return os.path.join(self.test_dir, 'predictions.csv') def _get_scores_path(self): return os.path.join(self.test_dir, 'scores.csv') def _get_pipeline_rerun_save_path(self): return os.path.join(self.test_dir, 'pipeline_rerun.yml') def _get_rescores_path(self): return os.path.join(self.test_dir, 'rescores.csv') def _fit_iris_random_forest( self, *, predictions_path=None, fitted_pipeline_path=None, pipeline_run_save_path=None ): if pipeline_run_save_path is None: pipeline_run_save_path = self._get_pipeline_run_save_path() arg = [ '', 'runtime', 'fit', '--input', self._get_iris_dataset_path(), '--problem', self._get_iris_problem_path(), '--pipeline', self._get_random_forest_pipeline_path(), '-O', pipeline_run_save_path ] if predictions_path is not None: arg.append('--output') arg.append(predictions_path) if fitted_pipeline_path is not None: arg.append('--save') arg.append(fitted_pipeline_path) self._call_cli_runtime_without_fail(arg) def _fit_iris_random_classifier_without_problem(self, *, fitted_pipeline_path): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '-O', pipeline_run_save_path ] if fitted_pipeline_path is not None: arg.append('--save') arg.append(fitted_pipeline_path) self._call_cli_runtime_without_fail(arg) def test_fit(self): pipeline_run_save_path = self._get_pipeline_run_save_path() fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') self._fit_iris_random_forest( fitted_pipeline_path=fitted_pipeline_path, pipeline_run_save_path=pipeline_run_save_path ) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) self.assertTrue(os.path.isfile(pipeline_run_save_path)) def test_evaluate(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'evaluate', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml'), '--data-pipeline', os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml'), '--scores', scores_path, '--metric', 'ACCURACY', '--metric', 'F1_MACRO', '-O', pipeline_run_save_path ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed', 'fold']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0, 0], ['F1_MACRO', 1.0, 1.0, 0, 0]]) def test_evaluate_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'evaluate', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '--data-pipeline', os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), # this argument has no effect '--metric', 'ACCURACY', '--scores', scores_path, '-O', pipeline_run_save_path ] logging_records = self._call_cli_runtime_without_fail(arg) self.assertEqual(len(logging_records), 1) self.assertEqual(logging_records[0].msg, "Not all provided hyper-parameters for the scoring pipeline %(pipeline_id)s were used: %(unused_params)s") self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed', 'fold']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0, 0]]) def test_score(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') self._fit_iris_random_forest(fitted_pipeline_path=fitted_pipeline_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'score', '--fitted-pipeline', fitted_pipeline_path, '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--scores', scores_path, '--metric', 'F1_MACRO', '--metric', 'ACCURACY', '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self.assertTrue(os.path.isfile(scores_path), 'scores were not generated') dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['F1_MACRO', 1.0, 1.0, 0], ['ACCURACY', 1.0, 1.0, 0]]) def test_score_without_problem_without_metric(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') self._fit_iris_random_classifier_without_problem(fitted_pipeline_path=fitted_pipeline_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'score', '--fitted-pipeline', fitted_pipeline_path, '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), '--scores', scores_path, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self.assertTrue(os.path.isfile(scores_path), 'scores were not generated') dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0]]) def test_score_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') self._fit_iris_random_classifier_without_problem(fitted_pipeline_path=fitted_pipeline_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'score', '--fitted-pipeline', fitted_pipeline_path, '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), # this argument has no effect '--metric', 'ACCURACY', '--scores', scores_path, '-O', pipeline_run_save_path, ] logging_records = self._call_cli_runtime_without_fail(arg) self.assertEqual(len(logging_records), 1) self.assertEqual(logging_records[0].msg, "Not all provided hyper-parameters for the scoring pipeline %(pipeline_id)s were used: %(unused_params)s") self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self.assertTrue(os.path.isfile(scores_path), 'scores were not generated') dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0]]) def test_produce(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') self._fit_iris_random_forest(fitted_pipeline_path=fitted_pipeline_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) arg = [ '', 'runtime', 'produce', '--fitted-pipeline', fitted_pipeline_path, '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) def test_score_predictions(self): predictions_path = os.path.join(self.test_dir, 'predictions.csv') self._fit_iris_random_forest(predictions_path=predictions_path) self.assertTrue(os.path.isfile(predictions_path)) scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'score-predictions', '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--predictions', predictions_path, '--metric', 'ACCURACY', '--metric', 'F1_MACRO', '--scores', scores_path, ] self._call_cli_runtime_without_fail(arg) self.assertTrue(os.path.isfile(scores_path), 'scores were not generated') dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0], ['F1_MACRO', 1.0, 1.0]]) def test_sklearn_dataset_fit_produce(self): self._create_sklearn_iris_problem_doc() pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-produce', '--input', 'sklearn://iris', '--input', 'sklearn://iris', '--problem', os.path.join(self.test_dir, 'problemDoc.json'), '--test-input', 'sklearn://iris', '--test-input', 'sklearn://iris', '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self.assertEqual(utils.list_files(self.test_dir), [ 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'problemDoc.json', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_standard_output_metadata(prediction_type='numpy.int64') self._assert_prediction_sum(prediction_sum=10648, outputs_path='outputs.0/data.csv') def test_sklearn_dataset_fit_produce_without_problem(self): output_csv_path = os.path.join(self.test_dir, 'output.csv') pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') arg = [ '', 'runtime', 'fit-produce', '--input', 'sklearn://iris', '--test-input', 'sklearn://iris', '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '--save', fitted_pipeline_path, '--output', output_csv_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json', ]) self._assert_standard_output_metadata(prediction_type='numpy.int64') self._assert_prediction_sum(prediction_sum=10648, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=10648, outputs_path='output.csv') def _create_sklearn_iris_problem_doc(self): with open(os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), 'r', encoding='utf8') as problem_doc_file: problem_doc = json.load(problem_doc_file) problem_doc['inputs']['data'][0]['datasetID'] = 'sklearn://iris' with open(os.path.join(self.test_dir, 'problemDoc.json'), 'x', encoding='utf8') as problem_doc_file: json.dump(problem_doc, problem_doc_file) def test_sklearn_dataset_evaluate(self): self._create_sklearn_iris_problem_doc() pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'evaluate', '--input', 'sklearn://iris', '--problem', os.path.join(self.test_dir, 'problemDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml'), '--data-pipeline', os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml'), '--scores', scores_path, '--metric', 'ACCURACY', '--metric', 'F1_MACRO', '-O', pipeline_run_save_path ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed', 'fold']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0, 0], ['F1_MACRO', 1.0, 1.0, 0, 0]]) def test_sklearn_dataset_evaluate_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'evaluate', '--input', 'sklearn://iris', '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '--data-pipeline', os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), # this argument has no effect '--metric', 'ACCURACY', '--scores', scores_path, '-O', pipeline_run_save_path ] logging_records = self._call_cli_runtime_without_fail(arg) self.assertEqual(len(logging_records), 1) self.assertEqual(logging_records[0].msg, "Not all provided hyper-parameters for the scoring pipeline %(pipeline_id)s were used: %(unused_params)s") self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed', 'fold']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0, 0]]) def _assert_prediction_sum(self, prediction_sum, outputs_path): if prediction_sum is not None: with open(os.path.join(self.test_dir, outputs_path), 'r') as csv_file: self.assertEqual(sum([int(v) for v in list(csv_file)[1:]]), prediction_sum) def _assert_standard_output_metadata(self, outputs_name='outputs.0', prediction_type='str'): with open(os.path.join(self.test_dir, outputs_name, 'metadata.json'), 'r') as metadata_file: metadata = json.load(metadata_file) self.assertEqual( metadata, [ { "selector": [], "metadata": { "dimension": { "length": 150, "name": "rows", "semantic_types": ["https://metadata.datadrivendiscovery.org/types/TabularRow"], }, "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/container.json", "semantic_types": ["https://metadata.datadrivendiscovery.org/types/Table"], "structural_type": "d3m.container.pandas.DataFrame", }, }, { "selector": ["__ALL_ELEMENTS__"], "metadata": { "dimension": { "length": 1, "name": "columns", "semantic_types": ["https://metadata.datadrivendiscovery.org/types/TabularColumn"], } }, }, {"selector": ["__ALL_ELEMENTS__", 0], "metadata": {"name": "predictions", "structural_type": prediction_type}}, ], ) def _assert_nonstandard_output(self, outputs_name='outputs.1'): with open(os.path.join(self.test_dir, outputs_name, 'data.csv'), 'r') as csv_file: output_dataframe = pandas.read_csv(csv_file, index_col=False) learning_dataframe = pandas.read_csv( os.path.join(DATASET_DIR, 'iris_dataset_1/tables/learningData.csv'), index_col=False) self.assertTrue(learning_dataframe.equals(output_dataframe)) with open(os.path.join(self.test_dir, outputs_name, 'metadata.json'), 'r') as metadata_file: metadata = json.load(metadata_file) self.assertEqual( metadata, [ { "metadata": { "dimension": { "length": 150, "name": "rows", "semantic_types": [ "https://metadata.datadrivendiscovery.org/types/TabularRow" ] }, "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/container.json", "semantic_types": [ "https://metadata.datadrivendiscovery.org/types/Table" ], "structural_type": "d3m.container.pandas.DataFrame" }, "selector": [] }, { "metadata": { "dimension": { "length": 6, "name": "columns", "semantic_types": [ "https://metadata.datadrivendiscovery.org/types/TabularColumn" ] } }, "selector": [ "__ALL_ELEMENTS__" ] }, { "metadata": { "name": "d3mIndex", "semantic_types": [ "http://schema.org/Integer", "https://metadata.datadrivendiscovery.org/types/PrimaryKey" ], "structural_type": "str" }, "selector": [ "__ALL_ELEMENTS__", 0 ] }, { "metadata": { "name": "sepalLength", "semantic_types": [ "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/Attribute" ], "structural_type": "str" }, "selector": [ "__ALL_ELEMENTS__", 1 ] }, { "metadata": { "name": "sepalWidth", "semantic_types": [ "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/Attribute" ], "structural_type": "str" }, "selector": [ "__ALL_ELEMENTS__", 2 ] }, { "metadata": { "name": "petalLength", "semantic_types": [ "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/Attribute" ], "structural_type": "str" }, "selector": [ "__ALL_ELEMENTS__", 3 ] }, { "metadata": { "name": "petalWidth", "semantic_types": [ "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/Attribute" ], "structural_type": "str" }, "selector": [ "__ALL_ELEMENTS__", 4 ] }, { "metadata": { "name": "species", "semantic_types": [ "https://metadata.datadrivendiscovery.org/types/CategoricalData", "https://metadata.datadrivendiscovery.org/types/SuggestedTarget", "https://metadata.datadrivendiscovery.org/types/Attribute" ], "structural_type": "str" }, "selector": [ "__ALL_ELEMENTS__", 5 ] } ] ) def _assert_pipeline_runs_equal(self, pipeline_run_save_path1, pipeline_run_save_path2): with open(pipeline_run_save_path1, 'r') as f: pipeline_runs1 = list(utils.yaml_load_all(f)) with open(pipeline_run_save_path2, 'r') as f: pipeline_runs2 = list(utils.yaml_load_all(f)) self.assertEqual(len(pipeline_runs1), len(pipeline_runs2)) for pipeline_run1, pipeline_run2 in zip(pipeline_runs1, pipeline_runs2): self.assertTrue(pipeline_run_module.PipelineRun.json_structure_equals(pipeline_run1, pipeline_run2)) def test_pipeline_run_json_structure_equals(self): pipeline_run_save_path1 = os.path.join(self.test_dir, 'pipeline_run1.yml') self._fit_iris_random_forest(pipeline_run_save_path=pipeline_run_save_path1) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path1) pipeline_run_save_path2 = os.path.join(self.test_dir, 'pipeline_run2.yml') self._fit_iris_random_forest(pipeline_run_save_path=pipeline_run_save_path2) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path2) self._assert_pipeline_runs_equal(pipeline_run_save_path1, pipeline_run_save_path2) def _cache_pipeline_for_rerun(self, pipeline_path, cache_dir=None): """make pipeline searchable by id in test_dir""" with open(pipeline_path, 'r') as f: pipeline = utils.yaml_load(f) if cache_dir is None: cache_dir = self.test_dir temp_pipeline_path = os.path.join(cache_dir, pipeline['id'] + '.yml') with open(temp_pipeline_path, 'w') as f: utils.yaml_dump(pipeline, f) @staticmethod def _generate_seed(): return random.randint(2**31, 2**32-1) def test_fit_rerun(self): dataset_path = self._get_iris_dataset_path() problem_path = self._get_iris_problem_path() pipeline_path = self._get_random_forest_pipeline_path() pipeline_run_save_path = self._get_pipeline_run_save_path() problem = problem_module.get_problem(problem_path) inputs = [dataset_module.get_dataset(dataset_path)] with open(pipeline_path) as f: pipeline = pipeline_module.Pipeline.from_yaml(f) hyperparams = [{}, {}, {'n_estimators': 19}, {}] random_seed = self._generate_seed() with utils.silence(): fitted_pipeline, predictions, fit_result = runtime.fit( pipeline, inputs, problem_description=problem, hyperparams=hyperparams, random_seed=random_seed, context=metadata_base.Context.TESTING, ) with open(pipeline_run_save_path, 'w') as f: fit_result.pipeline_run.to_yaml(f) self._cache_pipeline_for_rerun(pipeline_path) pipeline_rerun_save_path = self._get_pipeline_rerun_save_path() rerun_arg = [ '', '--pipelines-path', self.test_dir, 'runtime', '--datasets', TEST_DATA_DIR, 'fit', '--input-run', pipeline_run_save_path, '--output-run', pipeline_rerun_save_path, ] self._call_cli_runtime_without_fail(rerun_arg) self._assert_valid_saved_pipeline_runs(pipeline_rerun_save_path) self._assert_pipeline_runs_equal(pipeline_run_save_path, pipeline_rerun_save_path) def test_produce_rerun(self): dataset_path = self._get_iris_dataset_path() problem_path = self._get_iris_problem_path() pipeline_path = self._get_random_forest_pipeline_path() pipeline_run_save_path = self._get_pipeline_run_save_path() fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') self._fit_iris_random_forest(fitted_pipeline_path=fitted_pipeline_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) arg = [ '', 'runtime', 'produce', '--fitted-pipeline', fitted_pipeline_path, '--test-input', dataset_path, '--output-run', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._cache_pipeline_for_rerun(pipeline_path) pipeline_rerun_save_path = self._get_pipeline_rerun_save_path() rerun_arg = [ '', '--pipelines-path', self.test_dir, 'runtime', '--datasets', TEST_DATA_DIR, 'produce', '--fitted-pipeline', fitted_pipeline_path, '--input-run', pipeline_run_save_path, '--output-run', pipeline_rerun_save_path, ] self._call_cli_runtime_without_fail(rerun_arg) self._assert_valid_saved_pipeline_runs(pipeline_rerun_save_path) self._assert_pipeline_runs_equal(pipeline_run_save_path, pipeline_rerun_save_path) def _assert_scores_equal(self, scores_path, rescores_path): scores = pandas.read_csv(scores_path) rescores = pandas.read_csv(rescores_path) self.assertTrue(scores.equals(rescores), '\n{}\n\n{}'.format(scores, rescores)) def _assert_scores_equal_pipeline_run(self, scores_path, pipeline_run_save_path): scores = pandas.read_csv(scores_path) scores.drop('fold', axis=1, inplace=True, errors='ignore') scores_no_seed = scores.drop('randomSeed', axis=1, errors='ignore') with open(pipeline_run_save_path) as f: # TODO: always use -1? pipeline_run = list(utils.yaml_load_all(f))[-1] self.assertEqual(pipeline_run['run']['phase'], metadata_base.PipelineRunPhase.PRODUCE.name) # TODO: clean up preprocessing? pipeline_run_scores_df = pandas.DataFrame(pipeline_run['run']['results']['scores']) # TODO: is it possible to make pipeline run schema more compatible with scores csv schema? pipeline_run_scores_df['metric'] = pipeline_run_scores_df['metric'].map(lambda cell: cell['metric']) pipeline_run_scores_df = pipeline_run_scores_df[scores_no_seed.columns.tolist()] pandas.testing.assert_frame_equal(scores_no_seed, pipeline_run_scores_df) self.assertEqual(scores['randomSeed'].iloc[0], pipeline_run['random_seed']) def test_score_rerun(self): dataset_path = self._get_iris_dataset_path() problem_path = self._get_iris_problem_path() pipeline_path = self._get_random_forest_pipeline_path() pipeline_run_save_path = self._get_pipeline_run_save_path() fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') scores_path = os.path.join(self.test_dir, 'scores.csv') random_seed = self._generate_seed() metrics = runtime.get_metrics_from_list(['ACCURACY', 'F1_MACRO']) scoring_params = {'add_normalized_scores': 'false'} scoring_random_seed = self._generate_seed() problem = problem_module.get_problem(problem_path) inputs = [dataset_module.get_dataset(dataset_path)] with open(pipeline_path) as f: pipeline = pipeline_module.Pipeline.from_yaml(f) with open(runtime.DEFAULT_SCORING_PIPELINE_PATH) as f: scoring_pipeline = pipeline_module.Pipeline.from_yaml(f) with utils.silence(): fitted_pipeline, predictions, fit_result = runtime.fit( pipeline, inputs, problem_description=problem, random_seed=random_seed, context=metadata_base.Context.TESTING, ) with open(fitted_pipeline_path, 'wb') as f: pickle.dump(fitted_pipeline, f) predictions, produce_result = runtime.produce(fitted_pipeline, inputs) scores, score_result = runtime.score( predictions, inputs, scoring_pipeline=scoring_pipeline, problem_description=problem, metrics=metrics, predictions_random_seed=random_seed, context=metadata_base.Context.TESTING, scoring_params=scoring_params, random_seed=scoring_random_seed ) self.assertFalse(score_result.has_error(), score_result.error) scores.to_csv(scores_path) runtime.combine_pipeline_runs( produce_result.pipeline_run, scoring_pipeline_run=score_result.pipeline_run, score_inputs=inputs, metrics=metrics, scores=scores ) with open(pipeline_run_save_path, 'w') as f: produce_result.pipeline_run.to_yaml(f) self.assertTrue(os.path.isfile(fitted_pipeline_path)) self.assertTrue(os.path.isfile(scores_path), 'scores were not generated') self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) dataframe =
pandas.read_csv(scores_path)
pandas.read_csv
import functools import itertools import warnings import imghdr import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import pytest from pandas.testing import assert_frame_equal, assert_series_equal from numpy.testing import assert_array_equal from seaborn._core.plot import Plot from seaborn._core.scales import Nominal, Continuous from seaborn._core.rules import categorical_order from seaborn._core.moves import Move from seaborn._marks.base import Mark from seaborn._stats.base import Stat from seaborn.external.version import Version assert_vector_equal = functools.partial( # TODO do we care about int/float dtype consistency? # Eventually most variables become floats ... but does it matter when? # (Or rather, does it matter if it happens too early?) assert_series_equal, check_names=False, check_dtype=False, ) def assert_gridspec_shape(ax, nrows=1, ncols=1): gs = ax.get_gridspec() if Version(mpl.__version__) < Version("3.2"): assert gs._nrows == nrows assert gs._ncols == ncols else: assert gs.nrows == nrows assert gs.ncols == ncols class MockMark(Mark): _grouping_props = ["color"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.passed_keys = [] self.passed_data = [] self.passed_axes = [] self.passed_scales = None self.passed_orient = None self.n_splits = 0 def _plot(self, split_gen, scales, orient): for keys, data, ax in split_gen(): self.n_splits += 1 self.passed_keys.append(keys) self.passed_data.append(data) self.passed_axes.append(ax) self.passed_scales = scales self.passed_orient = orient def _legend_artist(self, variables, value, scales): a = mpl.lines.Line2D([], []) a.variables = variables a.value = value return a class TestInit: def test_empty(self): p = Plot() assert p._data.source_data is None assert p._data.source_vars == {} def test_data_only(self, long_df): p = Plot(long_df) assert p._data.source_data is long_df assert p._data.source_vars == {} def test_df_and_named_variables(self, long_df): variables = {"x": "a", "y": "z"} p = Plot(long_df, **variables) for var, col in variables.items(): assert_vector_equal(p._data.frame[var], long_df[col]) assert p._data.source_data is long_df assert p._data.source_vars.keys() == variables.keys() def test_df_and_mixed_variables(self, long_df): variables = {"x": "a", "y": long_df["z"]} p = Plot(long_df, **variables) for var, col in variables.items(): if isinstance(col, str): assert_vector_equal(p._data.frame[var], long_df[col]) else: assert_vector_equal(p._data.frame[var], col) assert p._data.source_data is long_df assert p._data.source_vars.keys() == variables.keys() def test_vector_variables_only(self, long_df): variables = {"x": long_df["a"], "y": long_df["z"]} p = Plot(**variables) for var, col in variables.items(): assert_vector_equal(p._data.frame[var], col) assert p._data.source_data is None assert p._data.source_vars.keys() == variables.keys() def test_vector_variables_no_index(self, long_df): variables = {"x": long_df["a"].to_numpy(), "y": long_df["z"].to_list()} p = Plot(**variables) for var, col in variables.items(): assert_vector_equal(p._data.frame[var], pd.Series(col)) assert p._data.names[var] is None assert p._data.source_data is None assert p._data.source_vars.keys() == variables.keys() def test_data_only_named(self, long_df): p = Plot(data=long_df) assert p._data.source_data is long_df assert p._data.source_vars == {} def test_positional_and_named_data(self, long_df): err = "`data` given by both name and position" with pytest.raises(TypeError, match=err): Plot(long_df, data=long_df) @pytest.mark.parametrize("var", ["x", "y"]) def test_positional_and_named_xy(self, long_df, var): err = f"`{var}` given by both name and position" with pytest.raises(TypeError, match=err): Plot(long_df, "a", "b", **{var: "c"}) def test_positional_data_x_y(self, long_df): p = Plot(long_df, "a", "b") assert p._data.source_data is long_df assert list(p._data.source_vars) == ["x", "y"] def test_positional_x_y(self, long_df): p = Plot(long_df["a"], long_df["b"]) assert p._data.source_data is None assert list(p._data.source_vars) == ["x", "y"] def test_positional_data_x(self, long_df): p = Plot(long_df, "a") assert p._data.source_data is long_df assert list(p._data.source_vars) == ["x"] def test_positional_x(self, long_df): p = Plot(long_df["a"]) assert p._data.source_data is None assert list(p._data.source_vars) == ["x"] def test_positional_too_many(self, long_df): err = r"Plot\(\) accepts no more than 3 positional arguments \(data, x, y\)" with pytest.raises(TypeError, match=err): Plot(long_df, "x", "y", "z") def test_unknown_keywords(self, long_df): err = r"Plot\(\) got unexpected keyword argument\(s\): bad" with pytest.raises(TypeError, match=err): Plot(long_df, bad="x") class TestLayerAddition: def test_without_data(self, long_df): p = Plot(long_df, x="x", y="y").add(MockMark()).plot() layer, = p._layers assert_frame_equal(p._data.frame, layer["data"].frame, check_dtype=False) def test_with_new_variable_by_name(self, long_df): p = Plot(long_df, x="x").add(MockMark(), y="y").plot() layer, = p._layers assert layer["data"].frame.columns.to_list() == ["x", "y"] for var in "xy": assert_vector_equal(layer["data"].frame[var], long_df[var]) def test_with_new_variable_by_vector(self, long_df): p = Plot(long_df, x="x").add(MockMark(), y=long_df["y"]).plot() layer, = p._layers assert layer["data"].frame.columns.to_list() == ["x", "y"] for var in "xy": assert_vector_equal(layer["data"].frame[var], long_df[var]) def test_with_late_data_definition(self, long_df): p = Plot().add(MockMark(), data=long_df, x="x", y="y").plot() layer, = p._layers assert layer["data"].frame.columns.to_list() == ["x", "y"] for var in "xy": assert_vector_equal(layer["data"].frame[var], long_df[var]) def test_with_new_data_definition(self, long_df): long_df_sub = long_df.sample(frac=.5) p = Plot(long_df, x="x", y="y").add(MockMark(), data=long_df_sub).plot() layer, = p._layers assert layer["data"].frame.columns.to_list() == ["x", "y"] for var in "xy": assert_vector_equal( layer["data"].frame[var], long_df_sub[var].reindex(long_df.index) ) def test_drop_variable(self, long_df): p = Plot(long_df, x="x", y="y").add(MockMark(), y=None).plot() layer, = p._layers assert layer["data"].frame.columns.to_list() == ["x"] assert_vector_equal(layer["data"].frame["x"], long_df["x"], check_dtype=False) @pytest.mark.xfail(reason="Need decision on default stat") def test_stat_default(self): class MarkWithDefaultStat(Mark): default_stat = Stat p = Plot().add(MarkWithDefaultStat()) layer, = p._layers assert layer["stat"].__class__ is Stat def test_stat_nondefault(self): class MarkWithDefaultStat(Mark): default_stat = Stat class OtherMockStat(Stat): pass p = Plot().add(MarkWithDefaultStat(), OtherMockStat()) layer, = p._layers assert layer["stat"].__class__ is OtherMockStat @pytest.mark.parametrize( "arg,expected", [("x", "x"), ("y", "y"), ("v", "x"), ("h", "y")], ) def test_orient(self, arg, expected): class MockStatTrackOrient(Stat): def __call__(self, data, groupby, orient, scales): self.orient_at_call = orient return data class MockMoveTrackOrient(Move): def __call__(self, data, groupby, orient): self.orient_at_call = orient return data s = MockStatTrackOrient() m = MockMoveTrackOrient() Plot(x=[1, 2, 3], y=[1, 2, 3]).add(MockMark(), s, m, orient=arg).plot() assert s.orient_at_call == expected assert m.orient_at_call == expected def test_variable_list(self, long_df): p = Plot(long_df, x="x", y="y") assert p._variables == ["x", "y"] p = Plot(long_df).add(MockMark(), x="x", y="y") assert p._variables == ["x", "y"] p = Plot(long_df, y="x", color="a").add(MockMark(), x="y") assert p._variables == ["y", "color", "x"] p = Plot(long_df, x="x", y="y", color="a").add(MockMark(), color=None) assert p._variables == ["x", "y", "color"] p = ( Plot(long_df, x="x", y="y") .add(MockMark(), color="a") .add(MockMark(), alpha="s") ) assert p._variables == ["x", "y", "color", "alpha"] p = Plot(long_df, y="x").pair(x=["a", "b"]) assert p._variables == ["y", "x0", "x1"] def test_type_checks(self): p = Plot() with pytest.raises(TypeError, match="mark must be a Mark instance"): p.add(MockMark) class MockStat(Stat): pass with pytest.raises(TypeError, match="stat must be a Stat instance"): p.add(MockMark(), MockStat) class TestScaling: def test_inference(self, long_df): for col, scale_type in zip("zat", ["continuous", "nominal", "temporal"]): p = Plot(long_df, x=col, y=col).add(MockMark()).plot() for var in "xy": assert p._scales[var].scale_type == scale_type def test_inference_from_layer_data(self): p = Plot().add(MockMark(), x=["a", "b", "c"]).plot() assert p._scales["x"]("b") == 1 def test_inference_joins(self): p = ( Plot(y=pd.Series([1, 2, 3, 4])) .add(MockMark(), x=pd.Series([1, 2])) .add(MockMark(), x=pd.Series(["a", "b"], index=[2, 3])) .plot() ) assert p._scales["x"]("a") == 2 def test_inferred_categorical_converter(self): p = Plot(x=["b", "c", "a"]).add(MockMark()).plot() ax = p._figure.axes[0] assert ax.xaxis.convert_units("c") == 1 def test_explicit_categorical_converter(self): p = Plot(y=[2, 1, 3]).scale(y=Nominal()).add(MockMark()).plot() ax = p._figure.axes[0] assert ax.yaxis.convert_units("3") == 2 @pytest.mark.xfail(reason="Temporal auto-conversion not implemented") def test_categorical_as_datetime(self): dates = ["1970-01-03", "1970-01-02", "1970-01-04"] p = Plot(x=dates).scale(...).add(MockMark()).plot() p # TODO ... def test_faceted_log_scale(self): p = Plot(y=[1, 10]).facet(col=["a", "b"]).scale(y="log").plot() for ax in p._figure.axes: xfm = ax.yaxis.get_transform().transform assert_array_equal(xfm([1, 10, 100]), [0, 1, 2]) def test_paired_single_log_scale(self): x0, x1 = [1, 2, 3], [1, 10, 100] p = Plot().pair(x=[x0, x1]).scale(x1="log").plot() ax_lin, ax_log = p._figure.axes xfm_lin = ax_lin.xaxis.get_transform().transform assert_array_equal(xfm_lin([1, 10, 100]), [1, 10, 100]) xfm_log = ax_log.xaxis.get_transform().transform assert_array_equal(xfm_log([1, 10, 100]), [0, 1, 2]) @pytest.mark.xfail(reason="Custom log scale needs log name for consistency") def test_log_scale_name(self): p = Plot().scale(x="log").plot() ax = p._figure.axes[0] assert ax.get_xscale() == "log" assert ax.get_yscale() == "linear" def test_mark_data_log_transform_is_inverted(self, long_df): col = "z" m = MockMark() Plot(long_df, x=col).scale(x="log").add(m).plot() assert_vector_equal(m.passed_data[0]["x"], long_df[col]) def test_mark_data_log_transfrom_with_stat(self, long_df): class Mean(Stat): group_by_orient = True def __call__(self, data, groupby, orient, scales): other = {"x": "y", "y": "x"}[orient] return groupby.agg(data, {other: "mean"}) col = "z" grouper = "a" m = MockMark() s = Mean() Plot(long_df, x=grouper, y=col).scale(y="log").add(m, s).plot() expected = ( long_df[col] .pipe(np.log) .groupby(long_df[grouper], sort=False) .mean() .pipe(np.exp) .reset_index(drop=True) ) assert_vector_equal(m.passed_data[0]["y"], expected) def test_mark_data_from_categorical(self, long_df): col = "a" m = MockMark() Plot(long_df, x=col).add(m).plot() levels = categorical_order(long_df[col]) level_map = {x: float(i) for i, x in enumerate(levels)} assert_vector_equal(m.passed_data[0]["x"], long_df[col].map(level_map)) def test_mark_data_from_datetime(self, long_df): col = "t" m = MockMark() Plot(long_df, x=col).add(m).plot() expected = long_df[col].map(mpl.dates.date2num) if Version(mpl.__version__) < Version("3.3"): expected = expected + mpl.dates.date2num(np.datetime64('0000-12-31')) assert_vector_equal(m.passed_data[0]["x"], expected) def test_facet_categories(self): m = MockMark() p = Plot(x=["a", "b", "a", "c"]).facet(col=["x", "x", "y", "y"]).add(m).plot() ax1, ax2 = p._figure.axes assert len(ax1.get_xticks()) == 3 assert len(ax2.get_xticks()) == 3 assert_vector_equal(m.passed_data[0]["x"], pd.Series([0., 1.], [0, 1])) assert_vector_equal(m.passed_data[1]["x"], pd.Series([0., 2.], [2, 3])) def test_facet_categories_unshared(self): m = MockMark() p = ( Plot(x=["a", "b", "a", "c"]) .facet(col=["x", "x", "y", "y"]) .configure(sharex=False) .add(m) .plot() ) ax1, ax2 = p._figure.axes assert len(ax1.get_xticks()) == 2 assert len(ax2.get_xticks()) == 2 assert_vector_equal(m.passed_data[0]["x"], pd.Series([0., 1.], [0, 1])) assert_vector_equal(m.passed_data[1]["x"], pd.Series([0., 1.], [2, 3])) def test_facet_categories_single_dim_shared(self): data = [ ("a", 1, 1), ("b", 1, 1), ("a", 1, 2), ("c", 1, 2), ("b", 2, 1), ("d", 2, 1), ("e", 2, 2), ("e", 2, 1), ] df = pd.DataFrame(data, columns=["x", "row", "col"]).assign(y=1) m = MockMark() p = ( Plot(df, x="x") .facet(row="row", col="col") .add(m) .configure(sharex="row") .plot() ) axs = p._figure.axes for ax in axs: assert ax.get_xticks() == [0, 1, 2] assert_vector_equal(m.passed_data[0]["x"], pd.Series([0., 1.], [0, 1])) assert_vector_equal(m.passed_data[1]["x"], pd.Series([0., 2.], [2, 3])) assert_vector_equal(m.passed_data[2]["x"], pd.Series([0., 1., 2.], [4, 5, 7])) assert_vector_equal(m.passed_data[3]["x"], pd.Series([2.], [6])) def test_pair_categories(self): data = [("a", "a"), ("b", "c")] df = pd.DataFrame(data, columns=["x1", "x2"]).assign(y=1) m = MockMark() p = Plot(df, y="y").pair(x=["x1", "x2"]).add(m).plot() ax1, ax2 = p._figure.axes assert ax1.get_xticks() == [0, 1] assert ax2.get_xticks() == [0, 1] assert_vector_equal(m.passed_data[0]["x"], pd.Series([0., 1.], [0, 1])) assert_vector_equal(m.passed_data[1]["x"], pd.Series([0., 1.], [0, 1])) @pytest.mark.xfail( Version(mpl.__version__) < Version("3.4.0"), reason="Sharing paired categorical axes requires matplotlib>3.4.0" ) def test_pair_categories_shared(self): data = [("a", "a"), ("b", "c")] df = pd.DataFrame(data, columns=["x1", "x2"]).assign(y=1) m = MockMark() p = Plot(df, y="y").pair(x=["x1", "x2"]).add(m).configure(sharex=True).plot() for ax in p._figure.axes: assert ax.get_xticks() == [0, 1, 2] print(m.passed_data) assert_vector_equal(m.passed_data[0]["x"], pd.Series([0., 1.], [0, 1])) assert_vector_equal(m.passed_data[1]["x"], pd.Series([0., 2.], [0, 1])) def test_identity_mapping_linewidth(self): m = MockMark() x = y = [1, 2, 3, 4, 5] lw = pd.Series([.5, .1, .1, .9, 3]) Plot(x=x, y=y, linewidth=lw).scale(linewidth=None).add(m).plot() assert_vector_equal(m.passed_scales["linewidth"](lw), lw) def test_pair_single_coordinate_stat_orient(self, long_df): class MockStat(Stat): def __call__(self, data, groupby, orient, scales): self.orient = orient return data s = MockStat() Plot(long_df).pair(x=["x", "y"]).add(MockMark(), s).plot() assert s.orient == "x" def test_inferred_nominal_passed_to_stat(self): class MockStat(Stat): def __call__(self, data, groupby, orient, scales): self.scales = scales return data s = MockStat() y = ["a", "a", "b", "c"] Plot(y=y).add(MockMark(), s).plot() assert s.scales["y"].scale_type == "nominal" # TODO where should RGB consistency be enforced? @pytest.mark.xfail( reason="Correct output representation for color with identity scale undefined" ) def test_identity_mapping_color_strings(self): m = MockMark() x = y = [1, 2, 3] c = ["C0", "C2", "C1"] Plot(x=x, y=y, color=c).scale(color=None).add(m).plot() expected = mpl.colors.to_rgba_array(c)[:, :3] assert_array_equal(m.passed_scales["color"](c), expected) def test_identity_mapping_color_tuples(self): m = MockMark() x = y = [1, 2, 3] c = [(1, 0, 0), (0, 1, 0), (1, 0, 0)] Plot(x=x, y=y, color=c).scale(color=None).add(m).plot() expected = mpl.colors.to_rgba_array(c)[:, :3] assert_array_equal(m.passed_scales["color"](c), expected) @pytest.mark.xfail( reason="Need decision on what to do with scale defined for unused variable" ) def test_undefined_variable_raises(self): p = Plot(x=[1, 2, 3], color=["a", "b", "c"]).scale(y=Continuous()) err = r"No data found for variable\(s\) with explicit scale: {'y'}" with pytest.raises(RuntimeError, match=err): p.plot() class TestPlotting: def test_matplotlib_object_creation(self): p = Plot().plot() assert isinstance(p._figure, mpl.figure.Figure) for sub in p._subplots: assert isinstance(sub["ax"], mpl.axes.Axes) def test_empty(self): m = MockMark() Plot().plot() assert m.n_splits == 0 def test_single_split_single_layer(self, long_df): m = MockMark() p = Plot(long_df, x="f", y="z").add(m).plot() assert m.n_splits == 1 assert m.passed_keys[0] == {} assert m.passed_axes == [sub["ax"] for sub in p._subplots] for col in p._data.frame:
assert_series_equal(m.passed_data[0][col], p._data.frame[col])
pandas.testing.assert_series_equal
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, True), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), # (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), True), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), # (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), True), # (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_struct_dtype(obj, expect): # TODO: All inputs of interval types are currently disabled due to # inconsistent behavior of is_struct_dtype for interval types that will be # fixed as part of the array refactor. assert types.is_struct_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_decimal_dtype(obj, expect): assert types.is_decimal_dtype(obj) == expect @pytest.mark.parametrize( "obj", ( # Base Python objects. bool(), int(), float(), complex(), str(), "", r"", object(), # Base Python types. bool, int, float, complex, str, object, # NumPy types. np.bool_, np.int_, np.float64, np.complex128, np.str_, np.unicode_, np.datetime64, np.timedelta64, # NumPy scalars. np.bool_(), np.int_(), np.float64(), np.complex128(), np.str_(), np.unicode_(), np.datetime64(), np.timedelta64(), # NumPy dtype objects. np.dtype("bool"), np.dtype("int"), np.dtype("float"), np.dtype("complex"), np.dtype("str"), np.dtype("unicode"), np.dtype("datetime64"), np.dtype("timedelta64"), np.dtype("object"), # NumPy arrays. np.array([], dtype=np.bool_), np.array([], dtype=np.int_), np.array([], dtype=np.float64), np.array([], dtype=np.complex128), np.array([], dtype=np.str_), np.array([], dtype=np.unicode_), np.array([], dtype=np.datetime64), np.array([], dtype=np.timedelta64), np.array([], dtype=object), # Pandas dtypes. # TODO: pandas does not consider these to be categoricals. # pd.core.dtypes.dtypes.CategoricalDtypeType, # pd.CategoricalDtype, # Pandas objects. pd.Series(dtype="bool"), pd.Series(dtype="int"), pd.Series(dtype="float"), pd.Series(dtype="complex"), pd.Series(dtype="str"), pd.Series(dtype="unicode"), pd.Series(dtype="datetime64[s]"), pd.Series(dtype="timedelta64[s]"),
pd.Series(dtype="category")
pandas.Series
# ***************************************************************************** # © Copyright IBM Corp. 2018. All Rights Reserved. # # This program and the accompanying materials # are made available under the terms of the Apache V2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 # # ***************************************************************************** import datetime as dt import importlib import json import logging import time import warnings from collections import OrderedDict import numpy as np import pandas as pd from sqlalchemy import Column, Integer, String, DateTime, Float from sqlalchemy.sql.sqltypes import TIMESTAMP, VARCHAR, FLOAT, INTEGER import iotfunctions from . import db as db_module from .automation import (TimeSeriesGenerator, DateGenerator, MetricGenerator, CategoricalGenerator) from .exceptions import StageException from .pipeline import (CalcPipeline, DropNull, JobController, JobLogNull, Trace, AggregateItems) from .stages import (DataReader, DataWriter, DataWriterFile) from .util import (MemoryOptimizer, build_grouper, categorize_args, reset_df_index) logger = logging.getLogger(__name__) def retrieve_entity_type_metadata(raise_error=True, **kwargs): """ Get server metadata for entity type """ db = kwargs['_db'] # get kpi functions metadata meta = db.http_request(object_type='engineInput', object_name=kwargs['logical_name'], request='GET', raise_error=raise_error) try: meta = json.loads(meta) except (TypeError, json.JSONDecodeError): meta = None if meta is None or 'exception' in meta: raise RuntimeError(('API call to server did not retrieve valid entity ' ' type properties for %s.' % kwargs['logical_name'])) if meta['kpiDeclarations'] is None: meta['kpiDeclarations'] = [] logger.warning(('This entity type has no calculated kpis')) # cache function catalog metadata in the db object function_list = [x['functionName'] for x in meta['kpiDeclarations']] db.load_catalog(install_missing=True, function_list=function_list) # map server properties params = {} params['_entity_type_id'] = meta['entityTypeId'] params['_db_schema'] = meta['schemaName'] params['name'] = meta['metricsTableName'] params['_timestamp'] = meta['metricTimestampColumn'] params['_dimension_table_name'] = meta['dimensionsTable'] params['_data_items'] = meta['dataItems'] # constants c_meta = db.http_request(object_type='constants', object_name=kwargs['logical_name'], request='GET') try: c_meta = json.loads(c_meta) except (TypeError, json.JSONDecodeError): logger.debug(('API call to server did not retrieve valid entity type' ' properties. No properties set.')) else: for p in c_meta: key = p['name'] if isinstance(p['value'], dict): params[key] = p['value'].get('value', p['value']) else: params[key] = p['value'] logger.debug('Retrieved server constant %s with value %s', key, params[key]) params = {**kwargs, **params} return (params, meta) class EntityType(object): """ Data is organised around Entity Types. Entity Types have one or more physical database object for their data. When creating a new Entity Type, it will attempt to connect itself to a table of the same name in the database. If no table exists the Entity Type will create one. Entity types describe the payload of an AS job. A job is built by a JobController using functions metadata prepared by the Entity Type. Metadata prepared is: _functions: List of function objects _data_items: List of data items and all of their metadata such as their datatype. _granularities_dict: Dictionary keyed on granularity name. Contains a granularity object that provides access to granularity metadata such as the time level and other dimensions involved in the aggregation. _schedules_dict: Dictionary keyed on a schedule frequency containing other metadata about the operations to be run at this frequency, e.g. how many days should be backtracked when retrieving daat. Entity types may be initialized as client objects for local testing or may be loaded from the server. After initialization all of the above instance variables will be populated. The metadata looks the same regardless of whether the entity type was loaded from the server or initialized on the client. The logic to build the metadata is different though. Parameters ---------- name: str Name of the entity type. Use lower case. Will be used as the physical database table name so don't use database reserved works of special characters. db: Database object Contains the connection info for the database *args: Additional positional arguments are used to add the list of SQL Alchemy Column objects contained within this table. Similar to the style of a CREATE TABLE sql statement. There is no need to specify column names if you are using an existing database table as an entity type. **kwargs Additional keywork args. _timestamp: str Overide the timestamp column name from the default of 'evt_timestamp' """ is_entity_type = True is_local = False auto_create_table = True aggregate_complete_periods = True # align data for aggregation with time grain to avoid partial periods log_table = 'KPI_LOGGING' # deprecated, to be removed checkpoint_table = 'KPI_CHECKPOINT' # deprecated,to be removed chunk_size = None # use job controller default chunk default_backtrack = None trace_df_changes = True drop_existing = False # These two columns will be available in the dataframe of a pipeline _entity_id = 'deviceid' # identify the instance _timestamp_col = '_timestamp' # copy of the event timestamp from the index # This column will identify an instance in the index _df_index_entity_id = 'id' # when automatically creating a new dimension, use this suffix _auto_dim_suffix = '_auto_dim' # when looking for an automatically created numeric index it should be named: auto_index_name = '_auto_index_' # constants declared as part of an entity type definition ui_constants = None _functions = None # generator _scd_frequency = '2D' # deprecated. Use parameters on EntityDataGenerator _activity_frequency = '3D' # deprecated. Use parameters on EntityDataGenerator _start_entity_id = 73000 # deprecated. Use parameters on EntityDataGenerator _auto_entity_count = 5 # deprecated. Use parameters on EntityDataGenerator # pipeline work variables stages _dimension_table = None _scd_stages = None _custom_calendar = None # variabes that will be set when loading from the server _entity_type_id = None logical_name = None _timestamp = 'evt_timestamp' _dimension_table_name = None _db_connection_dbi = None _db_schema = None _data_items = None tenant_id = None _entity_filter_list = None _start_ts_override = None _end_ts_override = None _stages = None _schedules_dict = None _granularities_dict = None _input_set = None _output_list = None _invalid_stages = None _disabled_stages = None # processing defaults _pre_aggregate_time_grain = None # aggregate incoming data before processing _auto_read_from_ts_table = True # read new data from designated time series table for the entity _pre_agg_rules = None # pandas agg dictionary containing list of aggregates to apply for each item _pre_agg_outputs = None # dictionary containing list of output items names for each item _data_reader = DataReader _abort_on_fail = False _auto_save_trace = 30 save_trace_to_file = False drop_null_class = DropNull enable_downcast = False allow_projection_list_trim = True _write_usage = False # deprecated class variables (to be removed) _checkpoint_by_entity = True # manage a separate checkpoint for each entity instance _is_initial_transform = True _is_preload_complete = False def __init__(self, name, db, *args, **kwargs): logger.debug('Initializing new entity type using iotfunctions %s', iotfunctions.__version__) try: self.logical_name = kwargs.get('logical_name', None) if self.logical_name is None: self.logical_name = name except AttributeError: self.logical_name = name if db == None: name = 'None' elif db.db_type == 'db2': name = name.upper() else: name = name.lower() self.name = name self.description = kwargs.get('description', None) if self.description is None: self.description = '' else: del (kwargs['description']) self.activity_tables = {} self.scd = {} self.db = db if self.db is not None: self.tenant_id = self.db.tenant_id self._system_columns = [self._entity_id, self._timestamp_col, 'logicalinterface_id', 'devicetype', 'format', 'updated_utc', self._timestamp] self._stage_type_map = self.default_stage_type_map() self._custom_exclude_col_from_auto_drop_nulls = [] self._drop_all_null_rows = True if self._scd_stages is None: self._scd_stages = [] if self._data_items is None: self._data_items = [] if self._granularities_dict is None: self._granularities_dict = {} # additional params set from kwargs self.set_params(**kwargs) # Start a trace to record activity on the entity type self._trace = Trace(object_name=None, parent=self, db=db) if self._disabled_stages is None: self._disabled_stages = [] if self._invalid_stages is None: self._invalid_stages = [] if len(self._disabled_stages) > 0 or len(self._invalid_stages) > 0: self.trace_append(created_by=self, msg='Skipping disabled and invalid stages', log_method=logger.info, **{'skipped_disabled_stages': [s['functionName'] for s in self._disabled_stages], 'skipped_disabled_data_items': [s['output'] for s in self._disabled_stages], 'skipped_invalid_stages': [s['functionName'] for s in self._invalid_stages], 'skipped_invalid_data_items': [s['output'] for s in self._invalid_stages]}) # attach to time series table if self._db_schema is None: logger.warning(('No _db_schema specified in **kwargs. Using' 'default database schema.')) self._mandatory_columns = [self._timestamp, self._entity_id] # separate args into categories categories = [('constant', 'is_ui_control', None), ('granularity', 'is_granularity', None), ('function', 'is_function', None), ('column', None, Column)] categorized = categorize_args(categories, 'functions', *args) cols = list(categorized.get('column', [])) functions = list(categorized.get('function', [])) constants = list(categorized.get('constant', [])) grains = list(categorized.get('granularity', [])) if self.drop_existing and db is not None and not self.is_local: self.drop_tables() # create a database table if needed using cols if name is not None and db is not None and not self.is_local: try: self.table = self.db.get_table(self.name, self._db_schema) except KeyError: if self.auto_create_table: ts = db_module.TimeSeriesTable(self.name, self.db, *cols, **kwargs) self.table = ts.table # self.db.create() msg = 'Create table %s' % self.name logger.info(msg) else: msg = ('Database table %s not found. Unable to create' ' entity type instance. Provide a valid table name' ' or use the auto_create_table = True keyword arg' ' to create a table. ' % (self.name)) raise ValueError(msg) # populate the data items metadata from the supplied columns if isinstance(self._data_items, list) and len(self._data_items) == 0: self._data_items = self.build_item_metadata(self.table) else: logger.warning(( 'Created a logical entity type. It is not connected to a real database table, so it cannot perform any database operations.')) # add granularities for g in grains: logger.debug('Adding granularity to entity type: %s', g.name) self._granularities_dict[g.name] = g # add constants self.ui_constants = constants self.build_ui_constants() # _functions # functions may have been provided as kwarg and may be includes as args # compbine all if self._functions is None: self._functions = [] self._functions.extend(functions) if name is not None and db is not None and not self.is_local: db.entity_type_metadata[self.logical_name] = self logger.debug(('Initialized entity type %s'), str(self)) def add_activity_table(self, name, activities, *args, **kwargs): """ add an activity table for this entity type. parameters ---------- name: str table name activities: list of strs activity type codes: these identify the nature of the activity, e.g. PM is Preventative Maintenance *args: Column objects other columns describing the activity, e.g. materials_cost """ if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to add activity tables ') raise ValueError(msg) kwargs['_activities'] = activities kwargs['schema'] = self._db_schema # name = name.lower() if self.db.db_type == 'db2': name = name.upper() else: name = name.lower() table = db_module.ActivityTable(name, self.db, *args, **kwargs) try: sqltable = self.db.get_table(name, self._db_schema) except KeyError: table.create() self.activity_tables[name] = table def add_slowly_changing_dimension(self, property_name, datatype, **kwargs): """ add a slowly changing dimension table containing a single property for this entity type parameters ---------- property_name : str name of property, e.g. firmware_version (lower case, no database reserved words) datatype: sqlalchemy datatype """ if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to add slowly changing dimensions ') raise ValueError(msg) property_name = property_name.lower() name = '%s_scd_%s' % (self.name, property_name) kwargs['schema'] = self._db_schema if self.db.db_type == 'db2': name = name.upper() else: name = name.lower() table = db_module.SlowlyChangingDimension(name=name, database=self.db, property_name=property_name, datatype=datatype, **kwargs) try: self.db.get_table(name, self._db_schema) except KeyError: table.create() self.scd[property_name] = table def _add_scd_pipeline_stage(self, scd_lookup): self._scd_stages.append(scd_lookup) def build_agg_dict_from_meta_list(self, meta_list): agg_dict = OrderedDict() input_items = set() output_items = [] for f in meta_list: input_item = f['input'].get('source') output_item = f['output'].get('name') aggregate = f['functionName'] try: agg_dict[input_item].append(aggregate) except KeyError: agg_dict[input_item] = [aggregate] input_items.add(input_item) output_items.append(output_item) return (agg_dict, input_items, output_items) def build_arg_metadata(self, obj): """ Examine the metadata provided by build_ui() to understand more about the arguments to a function. Place the values of inputs and outputs into 2 dicts Return these two dicts in a tuple along with an output_meta dict that contains argument values and types Build the _input_set and _output list. These describe the set of data items required as inputs to a function and the list of data items produced by the function. """ name = obj.__class__.__name__ try: (inputs, outputs) = obj.build_ui() except (AttributeError, NotImplementedError) as e: try: fn_metadata = obj.metadata() inputs = fn_metadata.get('input', None) outputs = fn_metadata.get('output', None) except (AttributeError, KeyError) as ex: msg = ('Can\'t get metadata for function %s. Implement the' ' build_ui() method for this function. %s' % (name, str(e))) raise NotImplementedError(msg) input_args = {} # this is not used. Included only to maintain compatibility of return signature output_args = {} # this is not used. Included only to maintain compatibility of return signature output_meta = {} # this is not used. Included only to maintain compatibility of return signature output_list = [] # There are two ways to gather inputs to a function. # 1) from the arguments of the function # 2) from the an explicit list of items returned by the get_input_items # method try: input_set = set(obj.get_input_items()) except AttributeError: input_set = set() else: if len(input_set) > 0: logger.debug(('Function %s has explicit required input items ' ' delivered by the get_input_items() method: %s'), name, input_set) if not isinstance(inputs, list): raise TypeError(('Function registration metadata must be defined', ' using a list of objects derived from iotfunctions', ' BaseUIControl. Check metadata for %s' ' %s ' % (name, inputs))) if not isinstance(outputs, list): raise TypeError(('Function registration metadata must be defined', ' using a list of objects derived from iotfunctions', ' BaseUIControl. Check metadata for %s' ' %s ' % (name, outputs))) args = [] args.extend(inputs) args.extend(outputs) for a in args: try: # get arg name and type from UI object type_ = a.type_ arg = a.name except AttributeError as e: try: # get arg name and type from legacy dict type_ = a.get('type', None) arg = a.get('name', None) except AttributeError: type_ = None arg = None if type_ is None or arg is None: msg = ('Error while getting metadata from function. The inputs' ' and outputs of the function are not described correctly' ' using UIcontrols with a type_ %s and name %s' % (type_, arg)) raise TypeError(msg) arg_value = getattr(obj, arg) out_arg = None out_arg_value = None if type_ == 'DATA_ITEM': # the argument is an input that contains a data item or # list of data items if isinstance(arg_value, list): input_set |= set(arg_value) else: input_set.add(arg_value) logger.debug('Using input items %s for %s', arg_value, arg) elif type_ == 'OUTPUT_DATA_ITEM': # the arg is an output item or list of them out_arg = arg out_arg_value = arg_value # some inputs implicitly describe outputs try: out_arg = a.output_item except AttributeError: pass # no need to check legacy dict for this property as it was not supported in the legacy dict else: if out_arg is not None: out_arg_value = getattr(obj, out_arg) # process output args if out_arg is not None: if isinstance(out_arg_value, list): output_list.extend(out_arg_value) else: output_list.append(out_arg_value) logger.debug('Using output items %s for %s', out_arg_value, out_arg) # output_meta is present in the AS metadata structure, but not # currently produced for local functions return (input_args, output_args, output_meta, input_set, output_list) def build_ui_constants(self): """ Build attributes for each ui constants declared with the entity type """ if self.ui_constants is None: logger.debug('No constants declared in entity definition') self.ui_constants = [] params = {} for c in self.ui_constants: try: params[c.name] = c.default except AttributeError: logger.warning(('Cannot set value of parameter %s as it does' ' not have a default value'), c.name) self.set_params(**params) def build_flat_stage_list(self): """ Build a flat list of all function objects defined for entity type """ stages = [] for stage in self._functions: try: is_system = stage.is_system_function except AttributeError: is_system = False logger.warning(('Function %s has no is_system_function property.' ' This means it was not inherited from ' ' an iotfunctions base class. AS authors are' ' strongly encouraged to always inherit ' ' from iotfunctions base classes'), stage.__class__.__name__) if not is_system: stages.append(stage) return stages def build_granularities(self, grain_meta, freq_lookup): """ Convert AS granularity metadata to granularity objects. """ out = {} for g in grain_meta: grouper = [] freq = None entity_id = None if g['entityFirst']: grouper.append(pd.Grouper(key=self._entity_id)) entity_id = self._entity_id if g['frequency'] is not None: freq = (self.get_grain_freq(g['frequency'], freq_lookup, None)) if freq is None: raise ValueError(('Invalid frequency name %s. The frequency name' ' must exist in the frequency lookup %s' % (g['frequency'], freq_lookup))) # add a number to the frequency to make it compatible with pd.Timedelta if freq[0] not in ['1', '2', '3', '4', '5', '6', '7', '8', '9']: freq = '1' + freq grouper.append(pd.Grouper(key=self._timestamp, freq=freq)) custom_calendar = None custom_calendar_keys = [] dimensions = [] # differentiate between dimensions and custom calendar items for d in g['dataItems']: grouper.append(pd.Grouper(key=d)) if self._custom_calendar is not None: if d in self._custom_calendar._output_list: custom_calendar_keys.append(d) dimensions.append(d) granularity = Granularity(name=g['name'], grouper=grouper, dimensions=dimensions, entity_name=self.logical_name, timestamp=self._timestamp, entity_id=entity_id, custom_calendar_keys=custom_calendar_keys, freq=freq, custom_calendar=custom_calendar) out[g['name']] = granularity return out def build_item_metadata(self, table): """ Build a client generated version of AS server metadata from a sql alachemy table object. """ if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' cannot build item metadata from tables ') raise ValueError(msg) for col_name, col in list(table.c.items()): item = {} if col_name not in self.get_excluded_cols(): item['name'] = col_name item['type'] = 'METRIC' item['parentDataItem'] = None item['kpiFunctionDto'] = None item['columnName'] = col.name item['columnType'] = self.db.get_as_datatype(col) item['sourceTableName'] = self.name item['tags'] = [] item['transient'] = False self._data_items.append(item) return self._data_items def build_schedules(self, metadata): """ Build a dictionary of schedule metadata from the schedules contained within function definitions. The schedule dictionary is keyed on a pandas freq string. This frequency denotes the schedule interval. The dictionary contains a tuple (start_hour,start_minute,backtrack_days) Returns ------- tuple containing updated metadata and a dict of schedules Example ------- { '5min': [16,3,7] } 5 minute schedule interval with a start time of 4:03pm and backtrack of 7 days. """ freqs = {} for f in metadata: if f['schedule'] is not None: freq = f['schedule']['every'] start = time.strptime(f['schedule']['starting_at'], '%H:%M:%S') start_hour = start[3] start_min = start[4] backtrack = f['backtrack'] if backtrack is not None: backtrack_days = backtrack.get('days', 0) + (backtrack.get('hours', 0) / 24) + ( backtrack.get('minutes', 0) / 1440) else: backtrack_days = None existing_schedule = freqs.get(freq, None) if existing_schedule is None: f[freq] = (start_hour, start_min, backtrack_days) else: corrected_schedule = list(existing_schedule) if existing_schedule[0] > start_hour: corrected_schedule[0] = start_hour logger.warning(('There is a conflict in the schedule metadata.' ' Picked the earlier start hour of %s instead of %s' ' for schedule %s.' % (start_hour, corrected_schedule[0], freq))) if existing_schedule[1] > start_min: corrected_schedule[1] = start_min logger.warning(('There is a conflict in the schedule metadata.' ' Picked the earlier start minute of %s instead of %s' ' for schedule %s.' % (start_min, existing_schedule[1], freq))) if backtrack_days is not None: if existing_schedule[2] is None or existing_schedule[2] < backtrack_days: corrected_schedule[2] = backtrack_days logger.warning(('There is a conflict in the schedule metadata.' ' Picked the longer backtrack of %s instead of %s' ' for schedule %s.' % (backtrack_days, existing_schedule[2], freq))) f[freq] = tuple(corrected_schedule) freqs[freq] = f[freq] f['schedule'] = freq return freqs def classify_stages(self): """ Create a dictionary of stage objects. Dictionary is keyed by stage type and a granularity obj. It contains a list of stage objects. Stages are classified by timing of execution, ie: preload, get_data, transform, aggregate """ logger.debug('Classifying stages by timing of execution, ie: preload, get_data, transform, aggregate') stage_metadata = dict() active_granularities = set() # Add a data_reader stage. This will read entity data. if self._auto_read_from_ts_table: auto_reader = self._data_reader(name='read_entity_data', obj=self) stage_type = self.get_stage_type(auto_reader) granularity = None # input level stage_metadata[(stage_type, granularity)] = [auto_reader] auto_reader.schedule = None auto_reader._entity_type = self else: logger.debug(('Skipped auto read of payload data as' ' payload does not have _auto_read_from_ts_table' ' set to True')) # Build a stage for each function. for s in self._functions: # replace deprecated function obj = self.get_replacement(s) # add metadata to stage try: obj.name except AttributeError: obj.name = obj.__class__.__name__ try: obj._schedule except AttributeError: obj._schedule = None try: obj.granularity except AttributeError: obj.granularity = None # the stage needs to know what entity type it belongs to obj._entity_type = self # classify stage stage_type = self.get_stage_type(obj) granularity = obj.granularity if granularity is not None and isinstance(granularity, str): granularity = self._granularities_dict.get(granularity, False) if not granularity: msg = ('Cannot build stage metdata. The granularity metadata' ' is invalid. Granularity of function is %s. Valid ' ' granularities are %s' % (granularity, list(self._granularities_dict.keys()))) raise StageException(msg, obj.name) elif isinstance(granularity, Granularity): pass else: granularity = None try: # add to stage_type / granularity stage_metadata[(stage_type, granularity)].append(obj) except KeyError: # start a new stage_type / granularity stage_metadata[(stage_type, granularity)] = [obj] # Remember all active granularities if granularity is not None: active_granularities.add(granularity) # add metadata derived from function registration and function args # input set and output list are critical metadata for the dependency model # there are three ways to set them # 1) using the instance variables _input_set and _output_list # 2) using the methods get_input_set and get_output_list # 3) using the function's registration metadata if obj._input_set is not None: logger.debug('Input set was preset for function %s', obj.name) input_set = obj._input_set else: try: input_set = obj.get_input_set() except AttributeError: input_set = None if obj._output_list is not None: logger.debug('Output list set was preset for function %s', obj.name) output_list = obj._output_list else: try: output_list = obj.get_output_list() except AttributeError: output_list = None if input_set is None or output_list is None: # get the input set and output list from the function argument metadata (in_, out, out_meta, reg_input_set, reg_output_list) = self.build_arg_metadata(obj) if input_set is None: input_set = reg_input_set if output_list is None: output_list = reg_output_list # set the _input_set and _output_list obj._input_set = input_set obj._output_list = output_list # The stage may have metadata parameters that need to be # copied onto the entity type try: entity_metadata = obj._metadata_params except AttributeError: entity_metadata = {} logger.debug(('Function %s has no _metadata_params' ' property. This property allows the stage' ' to add properties to the entity type.' ' Using default of %s'), obj.name, entity_metadata) if entity_metadata is not None and entity_metadata: self.set_params(**entity_metadata) self.trace_append(created_by=obj, msg='Adding entity type properties from function', log_method=logger.debug, **entity_metadata) # The stage may be a special stage that should be added to # a special stages list, e.g. stages that have # the property is_scd_lookup = True should be added to the # _scd_stages list specials = {'is_scd_lookup': self._scd_stages} for function_prop, list_obj in list(specials.items()): try: is_function_prop = getattr(obj, function_prop) except AttributeError: is_function_prop = False if is_function_prop: list_obj.append(obj) # Add for each granularity without frequency two AggregateItem stages. The result columns of these stages # are used in the DataWriter when the aggregation results are pushed to the database for gran in active_granularities: if gran.freq is None: for func_name, output_name in {('max', DataWriter.ITEM_NAME_TIMESTAMP_MAX), ('min', DataWriter.ITEM_NAME_TIMESTAMP_MIN)}: new_stage = AggregateItems(input_items=[self._timestamp], aggregation_function=func_name, output_items=[output_name]) new_stage._entity_type = self new_stage.name = new_stage.__class__.__name__ new_stage._schedule = None new_stage.granularity = gran new_stage._input_set = {self._timestamp} new_stage._output_list = [output_name] stage_type = self.get_stage_type(new_stage) stage_metadata[(stage_type, gran)].append(new_stage) return stage_metadata def build_stage_metadata(self, *args): """ Make a new JobController payload from a list of function objects """ metadata = [] for f in args: # if function is deprecated it may have a replacement f = self.get_replacement(f) fn = {} try: name = f.name except AttributeError: name = f.__class__.__name__ fn['name'] = name fn['object_instance'] = f fn['description'] = f.__doc__ fn['functionName'] = f.__class__.__name__ fn['enabled'] = True fn['execStatus'] = False fn['schedule'] = None fn['backtrack'] = None fn['granularity'] = f.granularity (fn['input'], fn['output'], fn['outputMeta'], fn['input_set'], fn['output_list']) = self.build_arg_metadata( f) fn['inputMeta'] = None metadata.append(fn) logger.debug(('Added local function instance as job stage: %s'), fn) self._stages = self.build_stages(function_meta=metadata, granularities_dict=self._granularities_dict) return metadata def index_df(self, df): """ Create an index on the deviceid and the timestamp """ if self._df_index_entity_id is None: self._df_index_entity_id = self._entity_id if self._timestamp_col is None: self._timestamp_col = self._timestamp if df.index.names != [self._df_index_entity_id, self._timestamp]: try: df = df.set_index([self._df_index_entity_id, self._timestamp]) except KeyError: df = reset_df_index(df, auto_index_name=self.auto_index_name) try: df = df.set_index([self._df_index_entity_id, self._timestamp]) except KeyError: try: df[self._df_index_entity_id] = df[self._entity_id] df = df.set_index([self._df_index_entity_id, self._timestamp]) except KeyError: raise KeyError(('Error attempting to index time series' ' dataframe. Unable to locate index' ' columns: %s or %s, %s') % ( self._df_index_entity_id, self._entity_id, self._timestamp)) logger.debug(('Indexed dataframe on %s, %s'), self._df_index_entity_id, self._timestamp) else: logger.debug(('Found existing index on %s, %s.' 'No need to recreate index'), self._df_index_entity_id, self._timestamp) # create a dummy column for _entity_id if self._entity_id != self._df_index_entity_id: df[self._entity_id] = df.index.get_level_values(self._df_index_entity_id) # create a dummy column for _timestamp if self._timestamp != self._timestamp_col: df[self._timestamp_col] = df.index.get_level_values(self._timestamp) return df def cos_save(self): if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to save to cloud object storage ') raise ValueError(msg) name = ['entity_type', self.name] name = '.'.join(name) self.db.cos_save(self, name) @classmethod def default_stage_type_map(cls): """ Configure how properties of stages are used to set the stage type that is used by the job controller to decide how to process a stage """ return [('preload', 'is_preload'), ('get_data', 'is_data_source'), ('transform', 'is_transformer'), ('aggregate', 'is_data_aggregator'), ('simple_aggregate', 'is_simple_aggregator'), ('complex_aggregate', 'is_complex_aggregator'), ] def df_sort_timestamp(self, df): """ Sort a dataframe on the timestamp column. Returns a tuple containing the sorted dataframe and a column_name for the timestamp column. """ ts_col_name = self._timestamp # timestamp may be column or in index try: df.sort_values([ts_col_name], inplace=True) except KeyError: try: # legacy check for a redundant _timestamp alternative column df.sort_values([self._timestamp_col], inplace=True) ts_col_name = self._timestamp_col except KeyError: try: df.sort_index(level=[ts_col_name], inplace=True) except: raise return (df, ts_col_name) def drop_tables(self, recreate=False): """ Drop tables known to be associated with this entity type """ self.db.drop_table(self.name, schema=self._db_schema, recreate=recreate) self.drop_child_tables(recreate=recreate) def drop_child_tables(self, recreate=False): """ Drop all child tables """ if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to drop child tables ') raise ValueError(msg) if self._dimension_table_name is None: tables = [] else: tables = [self._dimension_table_name] tables.extend(self.activity_tables.values()) tables.extend(self.scd.values()) [self.db.drop_table(x, self._db_schema, recreate=recreate) for x in tables] msg = 'dropped tables %s' % tables logger.info(msg) def exec_local_pipeline(self, start_ts=None, end_ts=None, entities=None, **kw): """ Test the functions on an entity type Test will be run on local metadata. It will not use the server job log. Results will be written to file. """ params = {'data_writer': DataWriterFile, 'keep_alive_duration': None, 'save_trace_to_file': True, 'default_backtrack': 'checkpoint', 'trace_df_changes': True, '_abort_on_fail': True, 'job_log_class': JobLogNull, '_auto_save_trace': None, '_start_ts_override': start_ts, '_end_ts_override': end_ts, '_entity_filter_list': entities, '_production_mode': False} kw = {**params, **kw} job = JobController(payload=self, **kw) # propagate parameters to functions for f in self._functions: for key, value in list(kw.items()): setattr(f, key, value) job.execute() def get_attributes_dict(self): """ Produce a dictionary containing all attributes """ c = {} for att in dir(self): value = getattr(self, att) if not callable(value): c[att] = value return c def get_calc_pipeline(self, stages=None): """ Make a new CalcPipeline object. Reset processing variables. """ warnings.warn('get_calc_pipeline() is deprecated. Use build_job()', DeprecationWarning) self._scd_stages = [] self._custom_calendar = None self._is_initial_transform = True return CalcPipeline(stages=stages, entity_type=self) def get_function_replacement_metadata(self, meta): """ replace incoming function metadata for aggregate functions with metadata that will be used to build a DataAggregator """ replacement = {'Sum': 'sum', 'Minimum': 'min', 'Maximum': 'max', 'Mean': 'mean', 'Median': 'median', 'Count': 'count', 'DistinctCount': 'count_distinct', 'StandardDeviation': 'std', 'Variance': 'var', 'Product': 'product', 'First': 'first', 'Last': 'last'} name = meta.get('functionName', None) replacement_name = replacement.get(name, None) if replacement_name is not None: meta['functionName'] = replacement_name return (meta.get('granularity', None), meta) else: return (None, None) def get_local_column_lists_by_type(self, columns, known_categoricals_set=None): """ Examine a list of columns and poduce a tuple containing names of metric,dates,categoricals and others """ if known_categoricals_set is None: known_categoricals_set = set() metrics = [] dates = [] categoricals = [] others = [] if columns is None: columns = [] all_cols = set([x.name for x in columns]) # exclude known categoricals that are not present in table known_categoricals_set = known_categoricals_set.intersection(all_cols) for c in columns: data_type = c.type if isinstance(data_type, (FLOAT, Float, INTEGER, Integer)): metrics.append(c.name) elif db_module.DB2_DOUBLE is not None and isinstance(data_type, db_module.DB2_DOUBLE): metrics.append(c.name) elif isinstance(data_type, (VARCHAR, String)): categoricals.append(c.name) elif isinstance(data_type, (TIMESTAMP, DateTime)): dates.append(c.name) else: others.append(c.name) msg = 'Found column %s of unknown data type %s' % (c, data_type.__class__.__name__) logger.warning(msg) # reclassify categoricals that did were not correctly classified based on data type for c in known_categoricals_set: if c not in categoricals: categoricals.append(c) metrics = [x for x in metrics if x != c] dates = [x for x in dates if x != c] others = [x for x in others if x != c] return (metrics, dates, categoricals, others) def get_custom_calendar(self): return self._custom_calendar def get_data(self, start_ts=None, end_ts=None, entities=None, columns=None): """ Retrieve entity data at input grain or preaggregated """ if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to retrieve database data ') raise ValueError(msg) tw = {} # info to add to trace if entities is None: tw['entity_filter'] = 'all' else: tw['entity_filter'] = '%s entities' % len(entities) if self._pre_aggregate_time_grain is None: df = self.db.read_table(table_name=self.name, schema=self._db_schema, timestamp_col=self._timestamp, parse_dates=None, columns=columns, start_ts=start_ts, end_ts=end_ts, entities=entities, dimension=self._dimension_table_name) tw['pre-aggregeted'] = None else: (metrics, dates, categoricals, others) = self.db.get_column_lists_by_type(self.name, self._db_schema) if self._dimension_table_name is not None: categoricals.extend(self.db.get_column_names(self._dimension_table_name, self._db_schema)) if columns is None: columns = [] columns.extend(metrics) columns.extend(dates) columns.extend(categoricals) columns.extend(others) # make sure each column is in the aggregate dictionary # apply a default aggregate for each column not specified in the aggregation metadata if self._pre_agg_rules is None: self._pre_agg_rules = {} self._pre_agg_outputs = {} for c in columns: try: self._pre_agg_rules[c] except KeyError: if c not in [self._timestamp, self._entity_id]: if c in metrics: self._pre_agg_rules[c] = 'mean' self._pre_agg_outputs[c] = 'mean_%s' % c else: self._pre_agg_rules[c] = 'max' self._pre_agg_outputs[c] = 'max_%s' % c else: pass df = self.db.read_agg(table_name=self.name, schema=self._db_schema, groupby=[self._entity_id], timestamp=self._timestamp, time_grain=self._pre_aggregate_time_grain, agg_dict=self._pre_agg_rules, agg_outputs=self._pre_agg_outputs, start_ts=start_ts, end_ts=end_ts, entities=entities, dimension=self._dimension_table_name) tw['pre-aggregeted'] = self._pre_aggregate_time_grain tw['rows_retrieved'] = len(df.index) tw['start_ts'] = start_ts tw['end_ts'] = end_ts self.trace_append(created_by=self, msg='Retrieved entity timeseries data for %s' % self.name, **tw) # Optimizing the data frame size using downcasting if self.enable_downcast: memo = MemoryOptimizer() df = memo.downcastNumeric(df) try: df = self.index_df(df) except (AttributeError, KeyError): pass return df def get_data_items(self): """ Get the list of data items defined :return: list of dicts containting data item metadata """ return self._data_items def get_excluded_cols(self): """ Return a list of physical columns that should be excluded when returning the list of data items """ return ['logicalinterface_id', 'format', 'updated_utc', 'devicetype', 'eventtype'] def get_grain_freq(self, grain_name, lookup, default): """ Lookup a pandas frequency string from an AS granularity name """ for l in lookup: if grain_name == l['name']: return l['alias'] return default def get_output_items(self): """ Get a list of non calculated items: outputs from the time series table """ items = [x.get('columnName') for x in self._data_items if x.get('type') == 'METRIC' or x.get('type') == 'DIMENSION'] return items def get_log(self, rows=100): """ Get KPI execution log info. Returns a dataframe. """ if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to get log data ') raise ValueError(msg) query, log = self.db.query(self.log_table, self._db_schema) query = query.filter(log.c.entity_type == self.name).order_by(log.c.timestamp_utc.desc()).limit(rows) df = self.db.read_sql_query(query) return df def get_latest_log_entry(self): """ Get the most recent log entry. Returns dict. """ last = self.get_log(rows=1) last = last.to_dict('records')[0] return last def get_param(self, param, default=None): try: out = getattr(self, param) except AttributeError: out = default return out def get_end_ts_override(self): if self._end_ts_override is not None: if isinstance(self._end_ts_override, dt.datetime): return self._end_ts_override date_time_obj = dt.datetime.strptime(self._end_ts_override[0], '%Y-%m-%d %H:%M:%S') return date_time_obj return None def get_stage_type(self, stage): """ Examine the stage object to determine how it should be processed by the JobController Sets the stage type to the first valid entry in the stage map the stage map is a list of tuples containing a stage type and a boolean property name: example: [('get_data','is_data_source'), ('simple_aggregate','is_simple_aggregate')] if a stage has both an is_data_source = True and a is_simple_aggregate = True, the stage type will be returned as 'get_data' """ for (stage_type, prop) in self._stage_type_map: try: prop_value = getattr(stage, prop) except AttributeError: pass else: if prop_value: return stage_type raise TypeError(('Could not identify stage type for stage' ' %s from the stage map. Adjust the stage map' ' for the entity type or define an appropriate' ' is_<something> property on the class of the ' ' stage. Stage map is %s' % (stage.name, self._stage_type_map))) def get_start_ts_override(self): if self._start_ts_override is not None: if isinstance(self._start_ts_override, dt.datetime): date_time_obj = self._start_ts_override else: date_time_obj = dt.datetime.strptime(self._start_ts_override[0], '%Y-%m-%d %H:%M:%S') return date_time_obj return None def get_replacement(self, obj): """ Get replacement for deprecated function """ try: is_deprecated = obj.is_deprecated except AttributeError: is_deprecated = False if is_deprecated: try: obj = obj.get_replacement() except AttributeError: msg = ('Skipped deprecated function. The function' ' %s has no designated replacement. Provide a' ' replacement by implementing the get_replacement()' ' method or rework entity type to remove the reference' ' to the deprecated function' % obj.__class__.__name__) raise StageException(msg, obj.__class__.__name__) else: logger.debug('Entity Type has a reference to a deprecated' ' function. This function was automatically' ' replaced by %s', obj.__class__.__name__) return obj def generate_data(self, entities=None, days=0, seconds=300, freq='1min', scd_freq='1D', write=True, drop_existing=False, data_item_mean=None, data_item_sd=None, data_item_domain=None, columns=None, start_entity_id=None, auto_entity_count=None, datasource=None, datasourcemetrics=None): """ Generate random time series data for entities Parameters ---------- entities: list List of entity ids to genenerate data for days: number Number of days worth of data to generate (back from system date) seconds: number Number of seconds of worth of data to generate (back from system date) freq: str Pandas frequency string - interval of time between subsequent rows of data write: bool write generated data back to table with same name as entity drop_existing: bool drop existing time series, dimension, activity and scd table data_item_mean: dict mean values for generated data items. dict is keyed on data item name data_item_sd: dict std values for generated data items. dict is keyed on data item name data_item_domain: dict domains of values for categorical data items. dict is keyed on data item name datasource: dataframe dataframe as data source datasourcemetrics : list of strings list of relevant column for datasource """ if entities is None: if start_entity_id is None: start_entity_id = self._start_entity_id if auto_entity_count is None: auto_entity_count = self._auto_entity_count entities = [str(start_entity_id + x) for x in list(range(auto_entity_count))] if data_item_mean is None: data_item_mean = {} if data_item_sd is None: data_item_sd = {} if data_item_domain is None: data_item_domain = {} if drop_existing and self.db is not None: self.drop_tables(recreate=True) known_categoricals = set(data_item_domain.keys()) exclude_cols = ['deviceid', 'devicetype', 'format', 'updated_utc', 'logicalinterface_id', self._timestamp] if self.db is None or self.is_local: write = False msg = 'This is a local entity or entity with no database connection, test data will not be written' logger.debug(msg) (metrics, dates, categoricals, others) = self.get_local_column_lists_by_type(columns, known_categoricals_set=known_categoricals) else: (metrics, dates, categoricals, others) = self.db.get_column_lists_by_type(self.table, self._db_schema, exclude_cols=exclude_cols, known_categoricals_set=known_categoricals) msg = 'Generating data for %s with metrics %s and dimensions %s and dates %s' % ( self.name, metrics, categoricals, dates) logger.debug(msg) ts = TimeSeriesGenerator(metrics=metrics, ids=entities, days=days, seconds=seconds, freq=freq, categoricals=categoricals, dates=dates, timestamp=self._timestamp, domains=data_item_domain, datasource=datasource, datasourcemetrics=datasourcemetrics) ts.data_item_mean = data_item_mean ts.data_item_sd = data_item_sd ts.data_item_domain = data_item_domain df = ts.execute() dimension_table_exists = False try: dimension_table_exists = self.db.if_exists(table_name=self._dimension_table_name, schema=self._db_schema) except Exception: pass if self._dimension_table_name is not None and dimension_table_exists: self.generate_dimension_data(entities, write=write, data_item_mean=data_item_mean, data_item_sd=data_item_sd, data_item_domain=data_item_domain) if write and self.db is not None: for o in others: if o not in df.columns: df[o] = None df['logicalinterface_id'] = '' df['devicetype'] = self.logical_name df['format'] = '' df['updated_utc'] = dt.datetime.utcnow() self.db.write_frame(table_name=self.name, df=df, schema=self._db_schema, timestamp_col=self._timestamp) for (at_name, at_table) in list(self.activity_tables.items()): adf = self.generate_activity_data(table_name=at_name, activities=at_table._activities, entities=entities, days=days, seconds=seconds, write=write) msg = 'generated data for activity table %s' % at_name logger.debug(msg) for scd in list(self.scd.values()): sdf = self.generate_scd_data(scd_obj=scd, entities=entities, days=days, seconds=seconds, write=write, freq=scd_freq, domains=data_item_domain) msg = 'generated data for scd table %s' % scd.name logger.debug(msg) return df def generate_activity_data(self, table_name, activities, entities, days, seconds, write=True): if self.db is None: msg = ('Entity type has no db connection. Local entity types' ' are not allowed to generate activity data ') raise ValueError(msg) try: (metrics, dates, categoricals, others) = self.db.get_column_lists_by_type(table_name, self._db_schema, exclude_cols=[self._entity_id, 'start_date', 'end_date']) except KeyError: metrics = [] dates = [] categoricals = [] others = [] metrics.append('duration') categoricals.append('activity') ts = TimeSeriesGenerator(metrics=metrics, dates=dates, categoricals=categoricals, ids=entities, days=days, seconds=seconds, freq=self._activity_frequency) ts.set_domain('activity', activities) df = ts.execute() df['start_date'] = df[self._timestamp] duration = df['duration'].abs() df['end_date'] = df['start_date'] +
pd.to_timedelta(duration, unit='h')
pandas.to_timedelta
# enables access to directories/files import os # for handling data import numpy as np from numpy import array import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile # graphing import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter from matplotlib import colors from matplotlib.ticker import PercentFormatter import seaborn as sns # statistics from statsmodels.graphics.gofplots import qqplot from scipy import stats import scikit_posthocs as sp from scipy.stats import zscore from scipy.stats import ks_2samp from statistics import mean import statsmodels.api as sm from statsmodels.formula.api import ols from scipy import stats from scipy.stats import zscore from scipy.stats import ks_2samp from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison import scikit_posthocs as sp from statsmodels.stats.anova import AnovaRM from statsmodels.stats.libqsturng import psturng import re from ast import literal_eval import more_itertools import math from matplotlib import lines from matplotlib.offsetbox import AnchoredText import imgkit # machine learning from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from xgboost import XGBRegressor from sklearn.metrics import explained_variance_score, r2_score from sklearn.metrics import median_absolute_error from sklearn.model_selection import StratifiedShuffleSplit from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import KFold, GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import cross_val_score from sklearn import preprocessing import scipy.cluster.hierarchy as hac import matplotlib.gridspec as gridspec import random import six from sklearn.preprocessing import LabelEncoder from matplotlib import colors from matplotlib.ticker import PercentFormatter from matplotlib import lines from matplotlib.offsetbox import AnchoredText def generate_dictionary_for_telomere_length_data(patharg): """ USAGE: telomere_data_dict = generate_dictionary_for_telomere_length_data(directory) Where the directory contains images of files containing telomere length data in a predefined format. This function is written specifically for the Excel file templates that I use, and will provide in this repository, but could be altered for any format. The individual telomere lengths column is extracted, cleansed of missing values & DAPI-intensity values; outliers (3 std devs from mean of column) are removed; and the telomere length values are standardized to each other by use of fluorescent beads which calibrate according to inherent differences between microscope imaging sessions. The individual's ID & timepoint (from filename) (KEY) is associated with its respective individual telomere length data (VALUE) as a KEY:VALUE pair in the dictionary. The dictionary can then be looped over to initialize all timepoint data for that individual for analysis, i.e visualizations, statistics, etc. """ # initialize dictionary to hold our data dict_astro_individ_telos_dfs = {} # loop through directory to grab files for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(f'{file.name} telomere data acquisition in progress..') try: df = pd.read_excel(file) except: print(f'{file.name} File not found..') return -1 df.rename(columns={'Unnamed: 3':'Individ Telos'}, inplace=True) # these numbers correspond to rows containing information about the DAPI counterstain, NOT telomeres, so we drop DAPI_values_to_drop=[5, 192, 379, 566, 753, 940, 1127, 1314, 1501, 1688, 1875, 2062, 2249, 2436, 2623, 2810, 2997, 3184, 3371, 3558, 3745, 3932, 4119, 4306, 4493, 4680, 4867, 5054, 5241, 5428] # grabbing individual telomere length data from the file & dropping DAPI info individual_telos_lengths = (df['Individ Telos']) individual_telos_lengths = individual_telos_lengths.drop(labels=DAPI_values_to_drop) # first pass at generating synthetic data for github exposition; to initialize actual # data, comment out the line below, and uncomment the .iloc[] line # individual_telos_lengths = individual_telos_lengths.sample(2500, random_state=1) individual_telos_lengths = individual_telos_lengths.iloc[7:5611] # ensure the telomere measurements are a numeric data type, drop any missing values, # make data into a dataframe telos_str_toNaN = pd.to_numeric(individual_telos_lengths, errors='coerce') individual_telos_cleaned = telos_str_toNaN.dropna(axis=0, how='any') telos_df = individual_telos_cleaned.to_frame(name=None) # remove any telomere measurements that lie beyond 3 standard deviations of the mean # the data is relatively normal in shape, & this process removes about ~10-20 telos from ~5520 # modest loss, acceptable to help standardize telos_individ_df = telos_df[(np.abs(stats.zscore(telos_df)) < 3).all(axis=1)] # logic clauses for recognizing which astronaut ID is in the sample name # different astronauts were imaging at different times and thus associated with # different Cy3 calibrations for the microscope, thus data is standardized according to Cy3 if ('5163' in file.name) or ('1536' in file.name): telos_individ_df_cy3Cal = telos_individ_df.div(59.86) elif '2171' in file.name or '4419' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(80.5) elif '7673' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.11) elif '2479' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.18) elif '1261' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.16) else: telos_individ_df_cy3Cal = telos_individ_df # average of all cy3 calibrated control telo measurements (11 age matched controls) # telos_individ_df_cy3Cal = telos_individ_df_cy3Cal.div(116.1848153) file_name_trimmed = file.name.replace('.xlsx', '') dict_astro_individ_telos_dfs[file_name_trimmed] = telos_individ_df_cy3Cal print('Done collecting all astronaut telomere length excel files') return dict_astro_individ_telos_dfs def astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone, axsNUMtwo): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone,axsNUMtwo].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') axs[axsNUMone,axsNUMtwo].set_title(f"Histogram of {astroname}'s Telomeres") axs[axsNUMone,axsNUMtwo].set_xlabel('Bins of Individ. Telomeres') axs[axsNUMone,axsNUMtwo].set_ylabel('Freqs of Individ. Telomeres') axs[axsNUMone,axsNUMtwo].xaxis.set_major_locator(plt.MaxNLocator(12)) def astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') axs[axsNUMone].set_title(f'Histogram of Individual Telomeres for {astroname}') axs[axsNUMone].set_xlabel('Bins of Individ. Telomeres') axs[axsNUMone].set_ylabel('Freqs of Individ. Telomeres') axs[axsNUMone].xaxis.set_major_locator(plt.MaxNLocator(19)) def gen_missing_values_andimpute_or_randomsampledown(n_cells, telosPercell, astro_df, option=None): if astro_df.size > 5520: astro_dfsampled = astro_df.sample(5520) return astro_dfsampled if astro_df.size > 25 and astro_df.size <= 2760: missing_data_difference = abs( (n_cells * telosPercell) - astro_df.size ) rsampled = astro_df.sample(missing_data_difference, replace=True, random_state=28) concat_ed = pd.concat([rsampled, astro_df], sort=False) np.random.shuffle(concat_ed.to_numpy()) concat_ed.reset_index(drop=True, inplace=True) return concat_ed if astro_df.size > 25 and astro_df.size < 5520: missing_data_difference = abs( (n_cells * telosPercell) - astro_df.size ) if option == 'rsamp': rsampled = astro_df.sample(missing_data_difference, random_state=28) concat_ed = pd.concat([rsampled, astro_df], sort=False) np.random.shuffle(concat_ed.to_numpy()) concat_ed.reset_index(drop=True, inplace=True) return concat_ed else: return astro_df else: return astro_df def statistics_between_timepoints(astro_pre, astro_mid1, astro_mid2, astro_post, astro_prename, astro_mid1name, astro_mid2name, astro_postname, test): print( astro_prename + ' vs ' + astro_mid1name, test(astro_pre, astro_mid1), '\n', astro_prename + ' vs ' + astro_mid2name, test(astro_pre, astro_mid2),'\n', astro_mid1name + ' vs ' + astro_postname, test(astro_mid1, astro_post),'\n', astro_mid1name + ' vs ' + astro_mid2name, test(astro_mid1, astro_mid2),'\n', astro_mid2name + ' vs ' + astro_postname, test(astro_mid2, astro_post),'\n', astro_prename + ' vs ' + astro_postname, test(astro_pre, astro_post),'\n', ) def statistics_between_timepoints_prepost_only(astro_pre, astro_post, astro_prename, astro_postname): print(astro_prename + ' compared vs ' + astro_postname, stats.mannwhitneyu(astro_pre, astro_post),'\n', ) def get_astro_number_from_id(astro_id): astro_num = '' if astro_id == '5163': astro_num = 99 synth = 'synthetic 1' elif astro_id == '1536': astro_num = 1 synth = 'synthetic 2' elif astro_id == '7673': astro_num = 2 synth = 'synthetic 3' elif astro_id == '2479': astro_num = 3 synth = 'synthetic 4' elif astro_id == '2171': astro_num = 4 synth = 'synthetic 5' elif astro_id == '1261': astro_num = 5 synth = 'synthetic 7' elif astro_id == '3228': astro_num = 6 synth = 'synthetic 8' elif astro_id == '2381': astro_num = 98 synth = 'synthetic 9' elif astro_id == '4819': astro_num = 7 synth = 'synthetic 10' elif astro_id == '1062': astro_num = 8 synth = 'synthetic 11' elif astro_id == '2494': astro_num = 9 synth = 'synthetic 12' elif astro_id == '4419': astro_num = 1011 synth = 'synthetic 99' return astro_num, synth def relative_flight_timepoint(name_key): if 'L' in name_key: flight_status = 'Pre-Flight' elif 'FD' in name_key: flight_status = 'Mid-Flight' elif 'R' in name_key: flight_status = 'Post-Flight' return flight_status def quartile_cts_rel_to_df1(df1, df2): df1 = pd.DataFrame(df1) df2 = pd.DataFrame(df2) quartile_1 = df2[df2 <= df1.quantile(0.25)].count() quartile_2_3 = df2[(df2 > df1.quantile(0.25)) & (df2 < df1.quantile(0.75))].count() quartile_4 = df2[df2 >= df1.quantile(0.75)].count() return quartile_1.values, quartile_2_3.values, quartile_4.values def get_timepoint(name_key): timepoint_5_char = ['L-270', 'L-180', 'FD140', 'FD260', 'R+105', 'R+180', 'R+270'] timepoint_4_char = ['L-60', 'FD45', 'FD90', 'R+60'] timepoint_3_char = ['R+5', 'R+7'] for timepoint in timepoint_5_char: if timepoint in name_key: timepoint = name_key[-5:] return timepoint.strip() for timepoint in timepoint_4_char: if timepoint in name_key: timepoint = name_key[-4:] return timepoint.strip() for timepoint in timepoint_3_char: if timepoint in name_key: timepoint = name_key[-3:] return timepoint.strip() def make_quartiles_columns(astro_df): pos_1, pos_2, pos_3 = 6, 7, 8 astro_id, timepoint, flight, telo_data = 1, 2, 3, 4 for i, row in astro_df.iterrows(): astro_id_4digit = row[astro_id] if row[flight] == 'Pre-Flight' and row[timepoint] == 'L-270': preFlight_telos = row[telo_data] astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, preFlight_telos)) elif row[flight] == 'Pre-Flight' and row[timepoint] == 'L-180': if 'L-270' in list(astro_df[astro_df['astro id'] == astro_id_4digit]['timepoint']): astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) elif 'L-270' not in list(astro_df[astro_df['astro id'] == astro_id_4digit]['timepoint']): preFlight_telos = row[telo_data] astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, preFlight_telos)) elif row[flight] == 'Pre-Flight': astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) elif row[flight] == 'Mid-Flight': astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) elif row[flight] == 'Post-Flight': astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) else: print('unknown label in row[1] of the all patients df.. please check patient timepoint names') return astro_df def graphing_statistics_telomere_data(dict_astro_individ_telos_dfs): astro_list_of_IDs = ['5163', '2171', '1536', '7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062'] timepoint_series = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+180', 'R+270'] n=0 for idNO in astro_list_of_IDs: n+=1 # #initialize blank list of timepoints data = [[1, 0, 0, 0], [0]] emptydata = pd.DataFrame(data) astro_L270 = pd.DataFrame(data) astro_L180 = pd.DataFrame(data) astro_L60 = pd.DataFrame(data) astro_Mid1 = pd.DataFrame(data) astro_Mid2 = pd.DataFrame(data) astro_R7 = pd.DataFrame(data) astro_R60 = pd.DataFrame(data) astro_R180 = pd.DataFrame(data) astro_R270 = pd.DataFrame(data) astro_L270name = '' astro_L180name = '' astro_L60name = '' astro_Mid1name = '' astro_Mid2name = '' astro_R7name = '' astro_R60name = '' astro_R180name = '' astro_R270name = '' for j in timepoint_series: for i in dict_astro_individ_telos_dfs.keys(): if (idNO in i) and j == 'L-270' and ('L-270' in i): astro_L270 = dict_astro_individ_telos_dfs[i] astro_L270name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'L-180' and ('L-180' in i): astro_L180 = dict_astro_individ_telos_dfs[i] astro_L180name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'L-60' and ('L-60' in i): astro_L60 = dict_astro_individ_telos_dfs[i] astro_L60name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and (j == 'FD45' or j == 'FD90') and (j in i): astro_Mid1 = dict_astro_individ_telos_dfs[i] astro_Mid1name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and (j == 'FD140' or j == 'FD260') and (j in i): astro_Mid2 = dict_astro_individ_telos_dfs[i] astro_Mid2name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+7' and (j in i): astro_R7 = dict_astro_individ_telos_dfs[i] astro_R7name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+60' and (j in i): astro_R60 = dict_astro_individ_telos_dfs[i] astro_R60name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+180' and (j in i): astro_R180 = dict_astro_individ_telos_dfs[i] astro_R180name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+270' and (j in i): astro_R270 = dict_astro_individ_telos_dfs[i] astro_R270name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') else: continue if idNO == '5163' or idNO == '2171' or idNO == '1536': if (astro_L270.size > 25 or astro_L180.size > 25) and (astro_Mid1.size > 25 and astro_Mid2.size > 25 ) and (astro_R180.size > 25 or astro_R270.size > 25): n_cells = 30 astro_L270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_L270, 'rsamp') astro_L180 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_L180, 'rsamp') astro_Mid1 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_Mid1, 'rsamp') astro_Mid2 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_Mid2, 'rsamp') astro_R180 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_R180, 'rsamp') astro_R270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_R270, 'rsamp') n_bins = 30 fig, axs = plt.subplots(2,2, sharey=True, tight_layout=False, figsize = (16, 12)) if astro_L270name != '': if astro_R270name != '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L270, astro_L270, astro_L270name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L270, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L270, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R270, astro_L270, astro_R270name, 1, 1) # print('stats') # statistics_between_timepoints(astro_L270, astro_Mid1, astro_Mid2, astro_R270, # astro_L270name, astro_Mid1name, astro_Mid2name, astro_R270name) elif astro_R270name == '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L270, astro_L270, astro_L270name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L270, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L270, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R180, astro_L270, astro_R180name, 1, 1) # print('stats') # statistics_between_timepoints(astro_L270, astro_Mid1, astro_Mid2, astro_R180, # astro_L270name, astro_Mid1name, astro_Mid2name, astro_R180name) elif astro_L270name == '': if astro_R270name == '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L180, astro_L180, astro_L180name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L180, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L180, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R180, astro_L180, astro_R180name, 1, 1) # print('randomly sampled stats') # statistics_between_timepoints(astro_L180, astro_Mid1, astro_Mid2, astro_R180, # astro_L180name, astro_Mid1name, astro_Mid2name, astro_R180name) elif astro_R270name != '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L180, astro_L180, astro_L180name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L180, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L180, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R270, astro_L180, astro_R270name, 1, 1) # print('randomly sampled stats') # statistics_between_timepoints(astro_L180, astro_Mid1, astro_Mid2, astro_R270, # astro_L180name, astro_Mid1name, astro_Mid2name, astro_R270name) else: continue # plt.savefig('Final telomere histogram random sampling dso'+idNO+'.pdf') plt.show() if idNO in ['7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062']: if (astro_L270.size > 25) and (astro_R270.size > 25): n_cells = 30 # astro_L270name = f'synthetic astronaut {n} L+270' # astro_R270name = f'synthetic astronaut {n} R+270' astro_L270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_L270, 'rsamp') astro_R270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_R270, 'rsamp') n_bins = 30 fig, axs = plt.subplots(2, sharey=True, tight_layout=False, figsize = (12, 14)) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astro_L270, astro_L270, astro_L270name, 0) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astro_R270, astro_L270, astro_R270name, 1) # statistics_between_timepoints_prepost_only(astro_L270, astro_R270, astro_L270name, astro_R270name) else: continue # plt.savefig('Resampled telomere histogram dso'+idNO+'.pdf') plt.show() def grab_control_values_generate_dictionary(patharg): dict_mean_individ_telos_dfs = {} for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(file.name, 'telomere data acquisition in progress..') try: df = pd.read_excel(file) except: print('File not found..') return -1 df.rename(columns={'Unnamed: 3':'Mean Individ Telos'}, inplace=True) mean_values_of_individual_telomere_lengths = (df['Mean Individ Telos']) mean_values_of_individual_telomere_lengths = mean_values_of_individual_telomere_lengths.drop(labels=[5, 192, 379, 566, 753, 940, 1127, 1314, 1501, 1688, 1875, 2062, 2249, 2436, 2623, 2810, 2997, 3184, 3371, 3558, 3745, 3932, 4119, 4306, 4493, 4680, 4867, 5054, 5241, 5428]) mean_values_of_individual_telomere_lengths = mean_values_of_individual_telomere_lengths.iloc[7:5611] meantelos_str_toNaN = pd.to_numeric(mean_values_of_individual_telomere_lengths, errors='coerce') mean_individual_telos_cleaned = meantelos_str_toNaN.dropna(axis=0, how='any') mean_individ_df = mean_individual_telos_cleaned.to_frame(name=None) mean_individ_df = mean_individ_df[(np.abs(stats.zscore(mean_individ_df)) < 3).all(axis=1)] if '0397' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.285) elif '3907' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.179) elif '1826' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.143) elif '0100' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(59.86) elif '0912' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) elif '0646' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) else: mean_individ_df_cy3Cal = mean_individ_df file_name_trimmed = file.name.replace('.xlsx', '') mean_individ_df_cy3Cal = gen_missing_values_andimpute_or_randomsampledown(30, 184, mean_individ_df_cy3Cal, 'rsamp') dict_mean_individ_telos_dfs[file_name_trimmed] = mean_individ_df_cy3Cal print('data collection complete') return dict_mean_individ_telos_dfs def grab_control_telo_values_per_cell_generate_dictionary(patharg): dict_mean_individ_telos_dfs = {} for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(file.name, 'telomere data acquisition in progress..') try: df = pd.read_excel(file, skiprows=3) df = df.iloc[0:30, 12].to_frame() except: print('File not found..') return -1 mean_individ_df = df.dropna(axis=0, how='any') if '0397' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.285) elif '3907' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.179) elif '1826' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.143) elif '0100' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(59.86) elif '0912' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) elif '0646' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) else: mean_individ_df_cy3Cal = mean_individ_df file_name_trimmed = file.name.replace('.xlsx', '') mean_individ_df_cy3Cal = mean_individ_df_cy3Cal.div(116.1848153) dict_mean_individ_telos_dfs[file_name_trimmed] = mean_individ_df_cy3Cal print('data collection complete') return dict_mean_individ_telos_dfs def grab_astro_telo_values_per_cell_generate_dictionary(patharg): dict_astro_individ_telos_dfs = {} for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(f'{file.name} telomere data acquisition in progress..') try: df = pd.read_excel(file, skiprows=3) df = df.iloc[0:30, 12].to_frame() except: print(f'{file.name} File not found..') return -1 telos_individ_df = df.dropna(axis=0, how='any') if ('5163' in file.name) or ('1536' in file.name): telos_individ_df_cy3Cal = telos_individ_df.div(59.86) elif '2171' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(80.5) elif '7673' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.11) elif '2479' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.18) elif '1261' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.16) else: telos_individ_df_cy3Cal = telos_individ_df telos_individ_df_cy3Cal = telos_individ_df_cy3Cal.div(116.1848153) file_name_trimmed = file.name.replace('.xlsx', '') dict_astro_individ_telos_dfs[file_name_trimmed] = telos_individ_df_cy3Cal print('Done collecting all astronaut telomere length excel files') return dict_astro_individ_telos_dfs def raincloud_plot_astros_groups(x=None, y=None, data=None, groupby=None, iterable=None): group_df = data.groupby(groupby) for item in iterable: plot_df = group_df.get_group(item) if x == 'timepoint': #this line only needed for timepoint plot_df[x].cat.remove_unused_categories(inplace=True) ax = sns.set(font_scale=1) #bw = sigma ax = pt.RainCloud(x = x, y = y, data = plot_df, palette = "Set2", bw = .20, width_viol = .8, figsize = (8,6), move=0.21, orient = "h") plt.title(f'{item} telos', fontsize=16) def make_astronaut_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = gen_missing_values_andimpute_or_randomsampledown(30, 184, pd.Series(telo_value.values.reshape(-1,)), 'rsamp') data.append([astro_num, astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['astro number', 'astro id', 'timepoint', 'flight status', 'telo data', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df['Q1'] = 'telos preF Q1 <0.25' astro_df['Q2-3'] = 'telos preF Q2-3 >0.25 & <0.75' astro_df['Q4'] = 'telos preF Q4 >0.75' astro_df = astro_df.sort_values(['astro number', 'timepoint']).reset_index(drop=True) return astro_df def make_astronaut_cell_data_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = pd.Series(telo_value.values.reshape(-1,)) data.append([astro_num, astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['astro number', 'astro id', 'timepoint', 'flight status', 'telo data per cell', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df['Q1'] = 'telos preF Q1 <0.25' astro_df['Q2-3'] = 'telos preF Q2-3 >0.25 & <0.75' astro_df['Q4'] = 'telos preF Q4 >0.75' astro_df = astro_df.sort_values(['astro number', 'timepoint']).reset_index(drop=True) return astro_df def make_control_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] # astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = pd.Series(telo_value.values.reshape(-1,)) data.append([astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['control id', 'timepoint', 'flight status controls', 'telo data', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df = astro_df.sort_values(['control id', 'timepoint']).reset_index(drop=True) return astro_df def make_control_cell_data_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] # astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = pd.Series(telo_value.values.reshape(-1,)) data.append([astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['control id', 'timepoint', 'flight status controls', 'telo data per cell', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df = astro_df.sort_values(['control id', 'timepoint']).reset_index(drop=True) return astro_df def mid_split(row): if 'FD90' in row or 'FD45' in row: return 'Mid-Flight 1' elif 'FD140' in row or 'FD260' in row: return 'Mid-Flight 2' elif 'L' in row: return 'Pre-Flight' elif 'R' in row: return 'Post-Flight' def histogram_plot_groups(x=None, data=None, groupby=None, iterable=None): group_df = data.groupby(groupby) for item in iterable: plot_df = group_df.get_group(item) non_irrad = plot_df[plot_df['timepoint'] == '1 non irrad'][x] irrad_4_Gy = plot_df[plot_df['timepoint'] == '2 irrad @ 4 Gy'][x] three_B = plot_df[plot_df['timepoint'] == '3 B'][x] four_C = plot_df[plot_df['timepoint'] == '4 C'][x] n_bins = 70 fig, axs = plt.subplots(2, 2, sharey=True, tight_layout=False, figsize=(20, 13)) ax = sns.set_style(style="darkgrid",rc= {'patch.edgecolor': 'black'}) ax = sns.set(font_scale=1) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, non_irrad, non_irrad, f'patient #{item} 1 non rad', 0, 0) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, irrad_4_Gy, non_irrad, f'patient #{item} 2 irrad @ 4 Gy', 0, 1) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, three_B, non_irrad, f'patient #{item} 3 B', 1, 0) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, four_C, non_irrad, f'patient #{item} 4 C', 1, 1) def initialize_telo_data_1st_timepoint_variable(timepoint=None, df=None): if timepoint in list(df['timepoint'].unique()): variable = df[df['timepoint'] == str(timepoint)]['telo data exploded'] return variable elif timepoint not in list(df['timepoint'].unique()): variable = pd.DataFrame([[0,1],[0,1]]) return variable def initialize_telo_data_timepoint_or_blank(timepoint, df): if timepoint in list(df['timepoint'].unique()): timepoint_telo_data = df[df['timepoint'] == str(timepoint)]['telo data exploded'] name_id = str(df['astro id'].unique()[0]) name_timepoint = f' {timepoint}' name_total = 'dso' + name_id + name_timepoint return name_total, timepoint_telo_data elif timepoint not in list(df['timepoint'].unique()): timepoint_telo_data = pd.DataFrame([0,1],[0,1]) name = '' return name, timepoint_telo_data ######################################################################################################################## ######################################################################################################################## # FUNCTIONS FOR GRAPHING INDIVIDUAL TELOMERES ######################################################################################################################## ######################################################################################################################## def graph_four_histograms(quartile_ref, n_bins, df1, df2, df3, df4, name1, name2, name3, name4): n_bins = n_bins fig, axs = plt.subplots(2,2, sharey=True, sharex=True, constrained_layout=True, figsize = (8, 6)) sns.set_style(style="darkgrid",rc= {'patch.edgecolor': 'black'}) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) plt.grid(False) plt.rc('xtick',labelsize=16) plt.rc('ytick',labelsize=16) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df1, quartile_ref, name1, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df2, quartile_ref, name2, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df3, quartile_ref, name3, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df4, quartile_ref, name4, 1, 1) def graph_two_histograms(quartile_ref, n_bins, df1, df2, name1, name2, controls=None): n_bins = n_bins fig, axs = plt.subplots(2, sharey=True, constrained_layout=True, figsize = (8, 6)) sns.set_style(style="darkgrid",rc= {'patch.edgecolor': 'black'}) for ax in axs.flat: ax.label_outer() plt.rc('xtick',labelsize=16) plt.rc('ytick',labelsize=16) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, df1, quartile_ref, name1, 0) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, df2, quartile_ref, name2, 1) # csfont = {'fontname':'sans-serif'} # plt.suptitle(f"Individual Telomere Length Distributions at Pre and Post-Flight: {name1[0:8]}", # y=.95, fontsize=14, **csfont) # if controls == True: # csfont = {'fontname':'sans-serif'} # plt.suptitle(f"Individual Telomere Length Distributions at Pre and Post-Flight: All Control Samples", # y=.95, fontsize=14, **csfont) def astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone, axsNUMtwo): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone,axsNUMtwo].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') modified_astroname = astroname.replace('astro', '') axs[axsNUMone,axsNUMtwo].set_title(f"{modified_astroname}", fontsize=16,) font_axes=16 if axsNUMone == 0 and axsNUMtwo == 0: axs[axsNUMone,axsNUMtwo].set_ylabel("Individual Telomere Counts", fontsize=font_axes) if axsNUMone == 1 and axsNUMtwo == 0: axs[axsNUMone,axsNUMtwo].set_ylabel("Individual Telomere Counts", fontsize=font_axes) axs[axsNUMone,axsNUMtwo].set_xlabel("Bins of Individual Telomeres (RFI)", fontsize=font_axes) if axsNUMone == 1 and axsNUMtwo == 1: axs[axsNUMone,axsNUMtwo].set_xlabel("Bins of Individual Telomeres (RFI)", fontsize=font_axes) axs[axsNUMone,axsNUMtwo].xaxis.set_major_locator(plt.MaxNLocator(7)) def astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') axs[axsNUMone].set_title(f"{astroname}", fontsize=16,) font_axes=16 if axsNUMone == 0 or axsNUMone == 1: axs[axsNUMone].set_ylabel("Individual Telomere Counts", fontsize=font_axes) if axsNUMone == 1: axs[axsNUMone].set_xlabel("Bins of Individual Telomeres (RFI)", fontsize=font_axes) axs[axsNUMone].xaxis.set_major_locator(plt.MaxNLocator(7)) def make_histograms_colored_by_quartile_for_astronauts(exploded_telos_df=None, astro_ids=None, nbins=45): # astro_ids = ['5163', '2171', '1536', '7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062'] grouped_data = exploded_telos_df.groupby('astro id') # by looping through astronaut ids, we'll pull out their respective dataframes # once we have the astronauts respective dfs, we'll figure out the quartile df & for astro_id_num in astro_ids: if astro_id_num not in grouped_data.groups.keys(): break plot_df = grouped_data.get_group(astro_id_num) for timepoint in ['L-270', 'L-180']: first_timepoint = initialize_telo_data_1st_timepoint_variable(timepoint=timepoint, df=plot_df) if first_timepoint.size > 30: break quartile_ref = first_timepoint # okay, now we have the first timepoint as the reference for making quartile cutoffs! # now need to intialize other values! name_L270, astro_L270 = initialize_telo_data_timepoint_or_blank('L-270', plot_df) name_L180, astro_L180 = initialize_telo_data_timepoint_or_blank('L-180', plot_df) if '5163' == astro_id_num or '1536' == astro_id_num: name_Mid1, astro_Mid1 = initialize_telo_data_timepoint_or_blank('FD90', plot_df) name_Mid2, astro_Mid2 = initialize_telo_data_timepoint_or_blank('FD140', plot_df) if '2171' == astro_id_num: name_Mid1, astro_Mid1 = initialize_telo_data_timepoint_or_blank('FD45', plot_df) name_Mid2, astro_Mid2 = initialize_telo_data_timepoint_or_blank('FD260', plot_df) name_R180, astro_R180 = initialize_telo_data_timepoint_or_blank('R+180', plot_df) name_R270, astro_R270 = initialize_telo_data_timepoint_or_blank('R+270', plot_df) if ('5163' == astro_id_num) or ('2171' == astro_id_num) or ('1536' == astro_id_num): n_bins = n_bins if name_L270 != '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R270, name_L270, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R180, name_L270, name_Mid1, name_Mid2, name_R180) elif name_L270 == '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R270, name_L180, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R180, name_L180, name_Mid1, name_Mid2, name_R180) elif astro_id_num in ['7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062']: n_bins = 60 graph_two_histograms(quartile_ref, n_bins, astro_L270, astro_R270, name_L270, name_R270) plt.savefig(f'../individual telomere length histogram distributions/png/dso{astro_id_num} histogram of individual telomere length distributions.png', dpi=600) plt.savefig(f'../individual telomere length histogram distributions/svg/dso{astro_id_num} histogram of individual telomere length distributions.svg', format='svg', dpi=1500) def initialize_encoded_telo_data_timepoint_or_blank(timepoint, df): if timepoint in list(df['timepoint'].unique()): timepoint_telo_data = df[df['timepoint'] == str(timepoint)]['telo data exploded'] name_id = str(df['encoded astro id'].unique()[0]) name_timepoint = f' {timepoint}' name_total = 'astro ' + name_id + name_timepoint return name_total, timepoint_telo_data elif timepoint not in list(df['timepoint'].unique()): timepoint_telo_data = pd.DataFrame([0,1],[0,1]) name = '' return name, timepoint_telo_data def make_histograms_colored_by_quartile_for_encoded_astronauts(exploded_telos_df=None, astro_ids=None, n_bins=60, save=True): grouped_data = exploded_telos_df.groupby('encoded astro id') for astro_id_num in astro_ids: if astro_id_num not in grouped_data.groups.keys(): break plot_df = grouped_data.get_group(astro_id_num) for timepoint in ['L-270', 'L-180']: first_timepoint = initialize_telo_data_1st_timepoint_variable(timepoint=timepoint, df=plot_df) if first_timepoint.size > 30: break quartile_ref = first_timepoint name_L270, astro_L270 = initialize_encoded_telo_data_timepoint_or_blank('L-270', plot_df) name_L180, astro_L180 = initialize_encoded_telo_data_timepoint_or_blank('L-180', plot_df) if 'A' == astro_id_num or 'C' == astro_id_num: name_Mid1, astro_Mid1 = initialize_encoded_telo_data_timepoint_or_blank('FD90', plot_df) name_Mid2, astro_Mid2 = initialize_encoded_telo_data_timepoint_or_blank('FD140', plot_df) if 'B' == astro_id_num: name_Mid1, astro_Mid1 = initialize_encoded_telo_data_timepoint_or_blank('FD45', plot_df) name_Mid2, astro_Mid2 = initialize_encoded_telo_data_timepoint_or_blank('FD260', plot_df) name_R180, astro_R180 = initialize_encoded_telo_data_timepoint_or_blank('R+180', plot_df) name_R270, astro_R270 = initialize_encoded_telo_data_timepoint_or_blank('R+270', plot_df) if ('B' == astro_id_num) or ('A' == astro_id_num) or ('C' == astro_id_num): n_bins = n_bins if name_L270 != '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R270, name_L270, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R180, name_L270, name_Mid1, name_Mid2, name_R180) elif name_L270 == '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R270, name_L180, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R180, name_L180, name_Mid1, name_Mid2, name_R180) if save: plt.savefig(f'../MANUSCRIPT 2 ASTROS/figures/dso{astro_id_num} histogram of individual telomere length distributions.png', bbox_inches='tight', dpi=600) ######################################################################################################################## ######################################################################################################################## # FUNCTIONS FOR CORRELATING TELOMERES WITH ANALYTE DATA ######################################################################################################################## ######################################################################################################################## def select_astros_of_interest(analyte_df, telomere_df, astro_ids_of_interest, target): if 'astro id' in telomere_df.columns: telomere_df['astro id'] = telomere_df['astro id'].astype('str') if 'astro id' in analyte_df.columns: analyte_df['astro id'] = analyte_df['astro id'].astype('str') if 'sample type' in analyte_df.columns: analyte_df.drop('sample type', axis=1, inplace=True) # dropping unnecessary cols from telo df for col in ['astro number', 'timepoint']: if col in telomere_df.columns: telomere_df.drop([col], axis=1, inplace=True) trim_astro_df = telomere_df.copy() if 'all astros' in astro_ids_of_interest: # i.e as of 10/7/19 I only have n=4 (contains astro id col) & n=11 (no astro id) dataframes for analytes # I think when I received n=3 astros.. just type astro ids for astro_ids_of_interest, it will work properly # or.. if i receive n=11 dataframe with labeled astros.. # just rewrite this area to accept n=11 df w/ astro id col if 'astro id' in analyte_df.columns: (print("Possible error.. the astro id column is present.. all astros were requested but this df potentially" "contains less than all 11 astros.. drop astro id col and retry")) return else: # retain all astro ids selected_astros = trim_astro_df id_values = ['flight status'] elif 'all astros' not in astro_ids_of_interest: # subset astro ids of interest selected_astros = trim_astro_df[trim_astro_df['astro id'].isin(astro_ids_of_interest)].reset_index(drop=True) id_values = ['astro id', 'flight status'] return analyte_df, selected_astros, id_values def merge_analyte_telomere_data(analyte_df, selected_astros, id_values, telos_percent_change, target): # take mean telomere length values of all astronauts or per astros of interest & merge with analytes mean_selected_astros = selected_astros.groupby(id_values).agg('mean').reset_index() if telos_percent_change == 'yes': mean_selected_astros[target] = (mean_selected_astros[target] .apply(lambda row: make_telos_percent_change(row))) merge_analyte_df = analyte_df.merge(mean_selected_astros, on=id_values) # prepare to drop any columns w/ missing data indexer=['timepoint', target] for id_value in id_values: indexer.append(id_value) return merge_analyte_df, indexer def how_drop_missing_values(merge_analyte_df, how_drop_missing, indexer): # drop every analyte (columns) with missing data if how_drop_missing == 'by column': pivot_merge = (merge_analyte_df.pivot_table(index=indexer, columns='biochemistry analyte', values='measured analyte').reset_index()) pivot_merge.dropna(axis=1, inplace=True) cleaned_data = pivot_merge.melt(id_vars=indexer, var_name='biochemistry analyte', value_name='measured analyte').reset_index(drop=True) # drop missing data on per analyte/timepoint/astro (row) basis elif how_drop_missing == 'by melted row': cleaned_data = merge_analyte_df.dropna(axis=0) return cleaned_data def retain_flight_status(cleaned_data, retain_what_flight_status): # retaining analytes for which flight status if retain_what_flight_status == 'any': retained_data = cleaned_data elif bool(set(retain_what_flight_status) & set(['Pre-Flight', 'Mid-Flight', 'Post-Flight'])) == True: retained_data = cleaned_data[cleaned_data['flight status'].isin(retain_what_flight_status)].copy() elif retain_what_flight_status == 'require at least one per status': total_analytes = list(cleaned_data['biochemistry analyte'].unique()) analytes_3_unique_flight = [] groupby_analyte = cleaned_data.groupby('biochemistry analyte') for analyte in total_analytes: # make groups by analyte get_group_by_analyte = groupby_analyte.get_group(analyte) # look at unique flight status values per analyte g_f_s_t = list(get_group_by_analyte['flight status'].unique()) # if pre, mid, and post flight values in unique value list per analyte, then add this analyte to a list if 'Pre-Flight' in g_f_s_t and 'Mid-Flight' in g_f_s_t and 'Post-Flight' in g_f_s_t: analytes_3_unique_flight.append(analyte) # retain only analytes with at least one measurement per flight status analytes_only_3_unique_df = cleaned_data[cleaned_data['biochemistry analyte'].isin(analytes_3_unique_flight)].copy() return analytes_only_3_unique_df return retained_data def make_telos_percent_change(row): percent_chg_telos = ((row - 0.938117) / 0.938117) * 100 return percent_chg_telos def correlate_astro_analytes_telomeres_pipeline(analyte_df=None, telomere_df=None, target=None, astro_ids_of_interest=None, how_drop_missing=None, retain_what_flight_status=None, telos_percent_change='no'): """ High level fxn description Args: analyte_df (pandas dataframe): Contains either n=4 or n=11 biochemical analyte data in tidy data format. telomere_df (pandas dataframe): Must contain complete telomere length data in tidy data format. astro_ids_of_interest (str or list of str): Accepts either 'all astros' as str, whereby all astronaut data is used for correlating telo/analyte data, or a list of astro ids to subset data for analysis. how_drop_missing (str): Accepts either 'by column', which drops any analyte containing at least one missing value, or 'by melted row', which drops only single instances of missing values. retain_what_flight_status (str or list of tring): decides how to subset individual analytes based on what flight status labels they have Accepts: 'any', whereby no subselection is placed on analytes based on flight status, or: subset data by flight status (list of str) for all analytes as a GROUP i.e ['Pre-Flight'] or ['Pre-Flight', 'Post-Flight'] or: 'require at least one per status', where EACH analytes must have at least one measurement per flight status Returns: retained_data (pandas dataframe): Data subject to the processing steps described above. """ # selecting astros of interest & capturing id values for handling merges analyte_df, selected_astros, id_values = select_astros_of_interest(analyte_df, telomere_df, astro_ids_of_interest, target) # merging analyte & telomere data, capturing indexer for handling missing data merge_analyte_df, indexer = merge_analyte_telomere_data(analyte_df, selected_astros, id_values, telos_percent_change, target) # dropping missing values based on input cleaned_data = how_drop_missing_values(merge_analyte_df, how_drop_missing, indexer) # subsetting values based on flight status labels retained_data = retain_flight_status(cleaned_data, retain_what_flight_status) return retained_data def find_high_correlates_analytes_mean_telos(merged_analyte_blood_tidy_df, corr_cutoff, corr_loc=0, astro_ids=False, target=None): if astro_ids == False: corr_value_tests = [] grouped_by_analyte = merged_analyte_blood_tidy_df.groupby('biochemistry analyte') for group in list(merged_analyte_blood_tidy_df['biochemistry analyte'].unique()): corr_value = grouped_by_analyte.get_group(group).corr()[target][corr_loc] if abs(corr_value) > corr_cutoff: corr_value_tests.append([group, corr_value]) # print(f"{group}: {corr_value:.4f}") return corr_value_tests elif astro_ids == True: corr_value_requested = input('Please state index for correlation value in corr().. 0 or 1') corr_value_tests = [] astro_ids = list(merged_analyte_blood_tidy_df['astro id'].unique()) astro_id_group = merged_analyte_blood_tidy_df.groupby('astro id') for astro in astro_ids: individ_astro_df = astro_id_group.get_group(astro) analyte_grouped_by_individ = individ_astro_df.groupby('biochemistry analyte') analytes = list(individ_astro_df['biochemistry analyte'].unique()) for analyte in analytes: corr_value = analyte_grouped_by_individ.get_group(analyte).corr()[target][int(corr_value_requested)] corr_value_tests.append([astro, analyte, corr_value]) return corr_value_tests def plot_diverging_correlations(list_correlates=None, target_name=None, figsize=(11,7), dpi=600, color1='black', color2='green', fontsize=16, y_label_name='Blood biochemistry analytes', path_labels='', save=True): df = list_correlates.copy() x = df['correlation value'] df['colors'] = [color2 if x < 0 else color1 for x in df['correlation value']] df.sort_values('correlation value', inplace=True) df.reset_index(inplace=True, drop=True) plt.figure(figsize=figsize, dpi=dpi) plt.hlines(y=df.index, xmin=0, xmax=df['correlation value'], color=df['colors'], alpha=0.6, linewidth=7) # Decorations plt.yticks(df.index, df['biochemistry analyte'], fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.xlabel(target_name, fontsize=fontsize) plt.ylabel(y_label_name, fontsize=fontsize) plt.grid(linestyle='-', alpha=.2, color='black') plt.tight_layout() my_xticks = np.array([-1, -.5, 0, .5, 1]) plt.xticks(my_xticks[::1]) if save: plt.savefig(f'../MANUSCRIPT 11 ASTROS/figures/11 astros diverging bars {y_label_name} {target_name} {path_labels} n=11.png', dpi=dpi, bbox_inches='tight') def analyze_biochem_analytes_target(df=None, target=None, melt_biochem_df=None, merge_telomere_biochem_data=False, astro_ids_of_interest='all astros', parse_correlation_values=True, abs_value_corr=0.6, parse_corr_min=0, parse_corr_max=0.8, color1='black', color2='green', fontsize=16, figsize=(9,5), y_label_name='Blood biochemistry analytes', path_labels='', save=True): if merge_telomere_biochem_data == True: # merge analyte & telomere data merged_df = correlate_astro_analytes_telomeres_pipeline(analyte_df=melt_biochem_df, telomere_df=df, target=target, astro_ids_of_interest=astro_ids_of_interest, how_drop_missing='by melted row', retain_what_flight_status='require at least one per status', telos_percent_change='no') elif merge_telomere_biochem_data == False: merged_df = df.copy() # find highly correlated analytes corr_value_tests = find_high_correlates_analytes_mean_telos(merged_df, abs_value_corr, corr_loc=0, astro_ids=False, target=target) # turn correlated analytes/mean telomere length into dataframe blood_n11_high_corr_values = pd.DataFrame(corr_value_tests, columns=['biochemistry analyte', 'correlation value']) if parse_correlation_values: blood_n11_high_corr_values = blood_n11_high_corr_values[(blood_n11_high_corr_values['correlation value'] < parse_corr_min) | (blood_n11_high_corr_values['correlation value'] > parse_corr_max)].copy() # plot diverging bars correlates plot_diverging_correlations(list_correlates=blood_n11_high_corr_values, target_name=target, figsize=figsize, color1=color1, color2=color2, save=save, y_label_name=y_label_name, fontsize=fontsize, path_labels=path_labels) return merged_df def scipy_anova_post_hoc_tests(df=None, flight_status_col='flight status', target='telo data per cell', sig_test=stats.f_oneway, post_hoc=sp.posthoc_ttest): g_1 = df[df[flight_status_col] == 'Pre-Flight'][target] g_2 = df[df[flight_status_col] == 'Mid-Flight'][target] g_3 = df[df[flight_status_col] == 'Post-Flight'][target] statistic, p_value = sig_test(g_1, g_2, g_3) print(f'ONE WAY ANOVA for telomere length: {p_value}') # if anova detects sig diff, perform post-hoc tests if p_value <= 0.05: print('bonferroni') display(sp.posthoc_ttest(df, val_col=target, group_col=flight_status_col, equal_var=True, p_adjust=None)) def telos_scipy_anova_post_hoc_tests(df0=None, time_col='flight status', target='individual telomeres', sig_test=stats.f_oneway, post_hoc=None, repeated_measures=False): df = df0.copy() df.rename({'telo data per cell': 'telo_data_per_cell', 'flight status': 'flight_status', 'Mean Telomere Length (qPCR)': 'Mean_Telomere_Length_(qPCR)', 'Telomerase Activity (qPCR)': 'Telomerase Activity (qPCR)', 'astro id': 'astro_id'}, axis=1, inplace=True) if ' ' in time_col: time_col = time_col.replace(' ', '_') if ' ' in target: target = target.replace(' ', '_') if repeated_measures == False: g_1 = df[df[time_col] == 'Pre-Flight'][target] g_2 = df[df[time_col] == 'Mid-Flight'][target] g_3 = df[df[time_col] == 'Post-Flight'][target] statistic, p_value = sig_test(g_1, g_2, g_3) print(f'ONE WAY ANOVA for telomere length: {p_value}') elif repeated_measures: results = AnovaRM(df, target, 'astro_id', within=[time_col], aggregate_func='mean').fit() # pvalue p_value = results.anova_table['Pr > F'][0] print(f'REPEATED MEASURES ANOVA for telomere length: {p_value}') # if anova detects sig diff, perform post-hoc tests if p_value <= 0.05: mc = MultiComparison(df[target], df[time_col]) mc_results = mc.tukeyhsd() print(mc_results) res = mc_results print(f'TukeyHSD pvalues: {list(psturng(np.abs(res.meandiffs / res.std_pairs), len(res.groupsunique), res.df_total))}') # print('\nbonferroni pvalues') # display(sp.posthoc_ttest(df, val_col=target, group_col=time_col, equal_var=False, # p_adjust='bonferroni')) def id_encode_letters(row): if row == '1536': row = 'A' elif row == '2171': row = 'B' return row def eval_make_test_comparisons(df=None, timepoints=None, test=None, test_name=None, target='individual telos'): timepoints = list(df['timepoint'].unique()) timept_pairs = [] row = [] df_list = [] for timept in timepoints: df_list.append(df[df['timepoint'] == timept][target]) for iter1, df in zip(timepoints, df_list): for iter2, i in zip(timepoints, range(len(df_list))): pair1, pair2 = f"{iter1}:{iter2}", f"{iter2}:{iter1}" if iter1 != iter2 and pair1 not in timept_pairs and pair2 not in timept_pairs: stat, pvalue = test(df, df_list[i]) print(f'{test_name} | {iter1} vs {iter2} {pvalue}') timept_pairs.append(pair1) timept_pairs.append(pair2) row.append([test_name, iter1, iter2, pvalue]) return timept_pairs, row def make_post_flight_df_and_merge(astro_df=None, exploded_telos=None, timepoint=None): """ parse out mean telomere length & #s short/long telomeres from specific post-flight (R+7, R+60, ... R+270) timepoints and merge with exploded_telos dataframe for machine learning prep """ # parsing out post-flight data of interest timepoint_df = astro_df[astro_df['timepoint'] == timepoint].copy() for col in ['telo means', 'Q1', 'Q4']: timepoint_df.rename({col: f'{timepoint} {col}'}, axis=1, inplace=True) timepoint_df.drop(['astro number', 'timepoint', 'flight status'], axis=1, inplace=True) # extracting pre-flight individual telomere data only exploded_telos_pref = exploded_telos[exploded_telos['flight status'] == 'Pre-Flight'].copy() exploded_telos_pref.drop(['astro number', 'flight status'], axis=1, inplace=True) merge_df = exploded_telos_pref.merge(timepoint_df, on=['astro id']) return merge_df class make_features(BaseEstimator, TransformerMixin): def __init__(self, make_log_individ_telos=False, make_log_target=False): self.make_log_individ_telos = make_log_individ_telos self.make_log_target = make_log_target def fit(self, X, y=None): return self def create_log_individ_telos(self, X, y=None): X['individual telos'] = np.log1p(X['individual telos']) return X def create_log_target(self, X, y=None): X['4 C telo means'] = np.log1p(X['4 C telo means']) return X def transform(self, X, y=None): if self.make_log_individ_telos: X = self.create_log_individ_telos(X) if self.make_log_target: X = self.create_log_target(X) return X class make_dummies(BaseEstimator, TransformerMixin): def __init__(self, drop_first=True, cols_to_dummify=['timepoint'], how_dummify='encode'): self.drop_first = drop_first self.cols_to_dummify = cols_to_dummify self.how_dummify=how_dummify def fit(self, X, y=None): return self def transf_dummies(self, X, y=None): dummies = pd.get_dummies(X, drop_first=self.drop_first, columns=self.cols_to_dummify) return dummies def label_encode(self, X, y=None): label_encoder = preprocessing.LabelEncoder() X['encoded_timepoint'] = label_encoder.fit_transform(X[self.cols_to_dummify].values.ravel()) X.drop(['timepoint'], axis=1, inplace=True) return X def transform(self, X, y=None): if self.how_dummify == 'get_dummies': X = self.transf_dummies(X) elif self.how_dummify == 'encode': X = self.label_encode(X) return X class clean_data(BaseEstimator, TransformerMixin): def __init__(self, drop_astro_id=True, timepoint='R+7', target='telo means'): self.drop_astro_id = drop_astro_id self.timepoint_target = f'{timepoint} {target}' self.timepoint = timepoint self.target = target def fit(self, X, y=None): return self def transform(self, X, y=None): # enforcing col types cols = list(X.columns) for col in cols: if 'individual telomeres' in col or 'telo means' in col: X[col] = X[col].astype('float64') else: X[col] = X[col].astype('int64') if self.drop_astro_id: X.drop(['astro id'], axis=1, inplace=True) X.reset_index(drop=True, inplace=True) target_cols = ['telo means', 'Q1', 'Q4'] target_cols.remove(self.target) for item in target_cols: for col in X.columns: if item in col: X.drop([col], axis=1, inplace=True) # if 'telo means' in self.target: # X.drop([f'{timepoint} Q1', f'{timepoint} Q4'], axis=1, inplace=True) # elif 'Q1' in self.target: # X.drop([f'{timepoint} Q1', f'{timepoint} Q4'], axis=1, inplace=True) # X = X[['encoded_timepoint', 'individual telomeres', self.timepoint_target]].copy() return X def cv_score_fit_mae_test(train_set=None, test_set=None, target=None, model=None, cv=5, scoring='neg_mean_absolute_error', verbose=True): random.seed(888) row = [] features = [col for col in train_set.columns if col != target and col != 'astro id'] X_train = train_set[features].copy() X_test = test_set[features].copy() y_train = train_set[target].copy() y_test = test_set[target].copy() # cv scores = -1 * cross_val_score(model, X_train, y_train, cv=5, scoring=scoring) if verbose: print(f'MAE per CV fold: \n{scores} \n') print(f'MEAN of MAE all folds: {scores.mean()}') print(f'STD of MAE all folds: {scores.std()}\n') # fitting the model model.fit(X_train, y_train) # predict y_test from X_test - this is using the train/test split w/o shuff;ing predict_y_test = model.predict(X_test) if verbose: print(f"MAE of predict_y_test & y_test: {mean_absolute_error(y_test, predict_y_test)}") print(f'R2 between predict_y_test & y_test: {r2_score(y_test, predict_y_test)}') row.append(['XGBoost', features, target, round(scores.mean(), 4), round(scores.std(), 4), round(mean_absolute_error(y_test, predict_y_test), 4), round(r2_score(y_test, predict_y_test), 4)]) return model, row def myMetric(x, y): r = stats.pearsonr(x, y)[0] return 1 - r def plot_dendogram(Z, target=None, indexer=None): with plt.style.context('fivethirtyeight' ): plt.figure(figsize=(10, 2.5)) plt.title(f'Dendrogram of clusters by {target}', fontsize=22, fontweight='bold') plt.xlabel('astro IDs', fontsize=22, fontweight='bold') plt.ylabel('distance', fontsize=22, fontweight='bold') hac.dendrogram(Z, labels=indexer, leaf_rotation=90., # rotates the x axis labels leaf_font_size=15., ) # font size for the x axis labels plt.show() def plot_results2(timeSeries, D, cut_off_level, y_size, x_size, verbose, time, target): result = pd.Series(hac.fcluster(D, cut_off_level, criterion='maxclust')) if verbose: clusters = result.unique() fig = plt.subplots(figsize=(x_size, y_size)) mimg = math.ceil(cut_off_level/2.0) gs = gridspec.GridSpec(mimg,2, width_ratios=[1,1]) cluster_indexed = pd.concat([result, timeSeries.reset_index(drop=True)], axis=1) columns = list(cluster_indexed.columns[1:]) columns = ['clusters'] + columns cluster_indexed.columns = columns for ipic, c in enumerate(clusters): clustered = cluster_indexed[cluster_indexed['clusters'] == c].copy() print(ipic, "Cluster number %d has %d elements" % (c, len(clustered['astro id']))) melt = clustered.melt(id_vars=['astro id', 'clusters'], var_name=time,value_name=target) ax1 = plt.subplot(gs[ipic]) sns.lineplot(x=time, y=target, hue='astro id', data=melt, legend=False, ax=ax1) ax1.set_title((f'Cluster number {c}'), fontsize=15, fontweight='bold') plt.tight_layout() return result def cluster_data_return_df(df, target='inversions', time='timepoint', cut_off_n=4, metric=myMetric, method='single', y_size=6, x_size=10, verbose=True): df = df.copy() label_enc = LabelEncoder() labels = list(df[time]) encoded_labels = list(LabelEncoder().fit_transform(df[time])) cypher_dict = dict(zip(encoded_labels, labels)) df[time] = LabelEncoder().fit_transform(df[time]) df = df.pivot(index='astro id', columns=time, values=target).reset_index() # run the clustering cluster_Z = hac.linkage(df, method=method, metric=metric) if verbose: plot_dendogram(cluster_Z, target=target, indexer=df.index) # return df bearing cluster groups indexed_clusters = plot_results2(df, cluster_Z, cut_off_n, y_size, x_size, verbose, time, target) # concat clusters to original df and return ready_concat = df.reset_index(drop=True) clustered_index_df =
pd.concat([ready_concat, indexed_clusters], axis=1)
pandas.concat
import requests import urllib.request import urllib3 import datetime from bs4 import BeautifulSoup import pandas as pd import feedparser from datetime import date from datetime import datetime import re from warnings import warn _country = 'Canada' _src_cat = 'Government Website' _columns = ['start_date', 'country', 'region', 'subregion', 'source_url', 'source_category', 'source_title', 'source_full_text'] def _load_ontario(start_date=datetime(2020, 1, 1), end_date=datetime.today(), verbose=True): """ Parameters: - `start_date` datetime object, the date of the earliest news release to be retrieved. By default, only the releases published before Jan 1 2020 are retrieved - `end_date` datetime object, the date of the latest news release to be retrieved. By default, this is set to the current date - `verbose` boolean, whether or not the function should print updates Returns: a DataFrame containing news releases from the government of Ontario. """ # Start searching at `end_date` date end_str = end_date.strftime('%Y/%m/%d') start_str = start_date.strftime('%Y/%m/%d') base_url = 'https://news.ontario.ca/en/search?content_type=all&utf8=%E2%9C%93&date_range_end=' + end_str + '&date_range_start=' + start_str + '&date_select=desc&page=' region = 'Ontario' subregion = '' # Specific structure for news.contario.ca/archive rows = [] page = 1 while True: if verbose: print('Searching page ', page) target = base_url + str(page) response = requests.get(target) soup = BeautifulSoup(response.text, "html.parser") articles = soup.findAll('article') if len(articles) == 0: if verbose: print('No articles found.') return pd.DataFrame(rows, columns=_columns) for article in articles: smallersoup = BeautifulSoup(str(article), "html.parser") link = smallersoup.findAll('a')[0]['href'] title = smallersoup.findAll('a')[0].string pub_date = datetime.strptime(smallersoup.time.string.replace('.', ''), "%B %d, %Y %I:%M %p") if pub_date < start_date: return pd.DataFrame(rows, columns=_columns) if pub_date > end_date: # Articles that follow the `end_date` parameter are ignored continue response = requests.get(link) linksoup = BeautifulSoup(response.text, "html.parser") full_text = linksoup.article.text row = [pub_date, _country, region, subregion, link, _src_cat, title, full_text] rows.append(row) page += 1 def _load_manitoba(start_date=datetime(2020, 1, 1), end_date=datetime.today(), verbose=True): """ Parameters: - `start_date` datetime object, the date of the earliest news release to be retrieved. By default, only the releases published before Jan 1 2020 are retrieved. - `end_date` datetime object, the date of the latest news release to be retrieved. By default, this is set to the current date - `verbose` boolean, whether or not the function should print updates Returns: a DataFrame containing news releases from the government of Manitoba. """ month_start = datetime(start_date.year, start_date.month, 1) # If the date range does not begin on the start of the month it skips the month in its entirety. dates_between = pd.date_range(start=month_start, end=end_date, freq="MS") url_base = 'https://news.gov.mb.ca' # reversed to account for the most recent to least recent convention adopted when loading articles targets = reversed([url_base + '/news/index.html?month=' + str(date.month) + '&year=' + str(date.year) + '&day=01&bgnG=GO&d=' for date in dates_between]) region = 'Manitoba' subregion = '' rows = [] for target in targets: if verbose: print('Searching link', target) if target.startswith(url_base): response = requests.get(target) soup = BeautifulSoup(response.text, "html.parser") items = soup.findAll("div", {"class": "maincontent"}) smallersoup = BeautifulSoup(str(items), "html.parser") for article in smallersoup.findAll('h2'): a = article.a relative_link = a['href'] link = url_base + relative_link.split('..')[-1] title = a.string response = requests.get(link) linksoup = BeautifulSoup(response.text, "html.parser") date_text = linksoup.findAll("span", {"class": "article_date"})[0].string pub_date = datetime.strptime(date_text, '%B %d, %Y') if pub_date < start_date: return pd.DataFrame(rows, columns=_columns) if pub_date > end_date: # Articles that follow the `end_date` parameter are ignored continue full_text = linksoup.findAll("div", {"class": ""})[0].text row = [pub_date, _country, region, subregion, link, _src_cat, title, full_text] rows.append(row) return
pd.DataFrame(rows, columns=_columns)
pandas.DataFrame
import os from pathlib import Path import sys from time import strptime import path_config import requests from bs4 import BeautifulSoup import pandas as pd class EspnTournament(): def __init__(self) -> None: self.tournament_info = { "tournament_id":"", "tournament_name":"", "tournament_date":"", "tournament_purse":"", "win_total":"", "tournament_size":"", "winner_name":"", "winner_id":"", "season_id":"", } def __getitem__(self, i): return self.tournament_info[i] def set_all_w(self, w_name, w_id, w_total): self.tournament_info["winner_name"] = w_name self.tournament_info["winner_id"] = w_id self.tournament_info["win_total"] = w_total def set_all_missing(self): self.tournament_info["win_total"] = None self.tournament_info["tournament_size"] = None self.tournament_info["winner_name"] = None self.tournament_info["winner_id"] = None def get_tournament_id(self): return self.tournament_info["tournament_id"] def set_tournament_id(self, url): """Set tournament id from a url. Parameters ---------- url : str ESPN tournament url. Examples -------- >>> espn_t = EspnTournament() >>> t_url = "https://www.espn.com/golf/leaderboard?tournamentId=3802" >>> espn_t.set_tournament_id(t_url) """ t_id = url[url.rfind("=") + 1:] self.tournament_info["tournament_id"] = t_id def get_tournament_name(self): return self.tournament_info["tournament_name"] def set_tournament_name(self, tourn_meta): """Set tournament name from a tournament meta. Parameters ---------- tournament_meta : element.Tag child of Leaderboard__Header class to find tournament name. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_tournament_id(tourn_meta) """ tourn_name = tourn_meta.find("h1").text self.tournament_info["tournament_name"] = tourn_name def parse_espn_dates(self, date, identifier, b_identifier=True): """Parse for subset date of the original date Parameters ---------- date : str ESPN tournament date to parse. identifier : str Identifier to be searched for. b_identifier : bool, optional Flag to tell where subset search begins. Returns ------- str Parsed ESPN date. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.parse_espn_dates("Oct 5-8 2018", "-") "Oct 5" """ if b_identifier: if date.find(identifier) != -1: b_idx = date.find(identifier) # Should return month n_date = date[:b_idx].rstrip() return n_date else: # special case of only one date in link b_idx = date.find(",") n_date = date[:b_idx] return n_date else: if date.find(identifier) != -1: a_idx = date.find(identifier) # Should return day return date[a_idx: ] else: print("Did not find identifier in string for: ", date) def date_parser(self, date): """Reformat ESPN tournament date. Parameters ---------- date : str Date to parse. Returns ------- str Reformatted ESPN date. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.date_parser("Oct 5-8 2018") "10/5/2018" """ year = date[date.rfind(" ")+1:] month_and_day = self.parse_espn_dates(date, "-") day = self.parse_espn_dates(month_and_day, " ", b_identifier=False) day = day.lstrip() month = self.parse_espn_dates(month_and_day, " ", b_identifier=True) month_abr = month[:3] month_number = strptime(month_abr, "%b").tm_mon date_str = str(month_number) + "/" + day + "/" + year return date_str def get_date(self): return self.tournament_info["tournament_date"] def set_date(self, tourn_meta): """Set tournament date from a tournament meta. Parameters ---------- tourn_meta : element.Tag child of Leaderboard__Header class. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_date(tourn_meta) """ tourn_date = tourn_meta.find("span").text t_date = self.date_parser(tourn_date) self.tournament_info["tournament_date"] = t_date def get_tournament_purse(self): return self.tournament_info["tournament_purse"] def set_tournament_purse(self, tourn_header): """Set tournament purse from a tournament header. Parameters ---------- tourn_header : element.Tag Leaderboard__Header class. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_tournament_purse(tourn_header) """ purse_class = tourn_header.find("div", class_="n7 clr-gray-04").text # string find method purse_start = purse_class.find("$") + 1 if purse_class.find("D") != -1: purse_end = purse_class.find("D") purse = purse_class[purse_start:purse_end] else: purse = purse_class[purse_start:] purse = purse.replace(",", "") self.tournament_info["tournament_purse"] = purse def get_winning_score(self): return self.tournament_info["win_total"] def set_winning_score(self, t_body): """Set winning score total from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_winning_score(t_body) """ # tournament winner's total's data tourn_totals = t_body.find("td", class_="Table__TD") if tourn_totals: totals = tourn_totals.find_next_siblings() if len(totals) == 9: # selects 4 round (72 hole) total total = totals[-3].text self.tournament_info["win_total"] = total else: total = totals[-3].text if len(total) == 0: self.tournament_info["win_total"] = None else: self.tournament_info["win_total"] = total def get_tournament_size(self): return self.tournament_info["tournament_size"] def set_tournament_size(self, t_body): """Set tournament size from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_tournament_size(t_body) """ players = t_body.find_all("tr", class_="Table__TR Table__even") if players is not None: num_players = len(players) self.tournament_info["tournament_size"] = num_players def get_winner_name(self): return self.tournament_info["winner_name"] def set_winner_name(self, t_body): """Set winner name from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_winner_name(t_body) """ winner = t_body.find("a") if winner: name = winner.text self.tournament_info["winner_name"] = name else: self.tournament_info["winner_name"] = None def get_winner_id(self): return self.tournament_info["winner_id"] def set_winner_id(self, t_body): """Set winner id from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_winner_id(t_body) """ winner = t_body.find("a") if winner: winner_id = winner["href"] # substring start and end indexes start_winner = winner_id.find("id/") + 3 end_winner = winner_id.rfind("/") id = winner_id[start_winner:end_winner] self.tournament_info["winner_id"] = id else: self.tournament_info["winner_id"] = None def get_season_id(self): return self.tournament_info["season_id"] def set_season_id(self, s_id): """Set season identifier from s_id. Parameters ---------- s_id : int Season identifier to set. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_season_id(2018) """ self.tournament_info["season_id"] = s_id class EspnSeason(): def __init__(self, start, end=None) -> None: b_url = "https://www.espn.com/golf/schedule/_/season/" if end is not None: season_urls = [b_url + str(season) for season in range(start, end+1)] self.end = end else: season_urls = [f"{b_url}{start}"] self.end = None self.start = start self.season_urls = season_urls self.season_data = [] def retrieve_tournament_info(self, t_url, s_id): """Retrieve tournament information from tournament url and season id. Parameters ---------- t_url : str Tournament url to extract information. s_id : int Season identifier. Examples -------- >>> tournament_url = "https://www.espn.com/golf/leaderboard?tournamentId=3802" >>> espn_t.retrieve_tournament_info(tournament_url, 2017) """ espn_t = EspnTournament() with requests.Session() as session: page = session.get(t_url) if page.status_code == 200: soup = BeautifulSoup(page.content, "html.parser") header = soup.find("div", class_="Leaderboard__Header") mt4 = header.find_all("div", class_="mt4") tourn_meta = mt4[-1] espn_t.set_tournament_id(t_url) espn_t.set_tournament_name(tourn_meta) espn_t.set_date(tourn_meta) espn_t.set_tournament_purse(header) # Table's on webpage. index with -1 in case of playoff table tourn_tables = soup.select("div.ResponsiveTable") if tourn_tables: # win_total, tournamnet_size, winner_name, winner_id tourn_table = tourn_tables[-1] tourn_body = tourn_table.find("tbody", class_="Table__TBODY") espn_t.set_winning_score(tourn_body) espn_t.set_tournament_size(tourn_body) espn_t.set_winner_name(tourn_body) espn_t.set_winner_id(tourn_body) espn_t.set_season_id(s_id) if espn_t.get_tournament_id() == "2277": espn_t.set_all_w("<NAME>", "1037", "265") else: print(f"No div.ResponsiveTable, (Tournament {espn_t.get_tournament_id()} Cancelled)") espn_t.set_all_missing() espn_t.set_season_id(s_id) self.season_data.append(espn_t) def retrieve_season(self, season_url): """Retrieve season from season url. Parameters ---------- season_url : str Season url to extract information. Examples -------- >>> espn_s = EspnSeason(2018) >>> season_url = "https://www.espn.com/golf/schedule/_/season/2018" >>> espn_s.retrieve_season(season_url) """ with requests.Session() as session: page = session.get(season_url) if page.status_code == 200: soup = BeautifulSoup(page.content, "html.parser") season_table = soup.select("div.ResponsiveTable") if season_table is not None: season_body = season_table[0].find("tbody", class_="Table__TBODY") tournaments = season_body.find_all("div", class_="eventAndLocation__innerCell") if tournaments is not None: for tournament in tournaments: tournament_url = tournament.find("a") if tournament_url: t_url = tournament_url["href"] print(f"Fetching {t_url} data") season_id = season_url[season_url.rfind("/")+1 :] self.retrieve_tournament_info(t_url, season_id) else: print(f"Error retrieving page. page status code: {page.status_code}") def retrieve_all_seasons(self): """Retrieve all seasons set from constructor. Examples -------- >>> espn_s = EspnSeason(2018) >>> espn_s.retrieve_all_seasons() """ for season in self.season_urls: self.retrieve_season(season) def feed_season_data(self): """Feed all season data held. Returns ------- pd.DataFrame Season data in dataframe. Examples -------- >>> e_season = EspnSeason(2018) >>> e_season.retrieve_all_seasons() >>> df = e_season.feed_season_data() """ if self.season_data is not None: data = [tournament.tournament_info for tournament in self.season_data] df = pd.DataFrame(data) df["tournament_purse"] = pd.to_numeric(df["tournament_purse"], downcast="integer") df["win_total"] = pd.to_numeric(df["win_total"], downcast="integer") df["tournament_date"] = pd.to_datetime(df["tournament_date"]) df.sort_values(by=["tournament_date", "season_id"], inplace=True) if self.end is not None: f_name = f"espn_tournaments_{self.start}_{self.end}.csv" else: f_name = f"espn_tournaments_{self.start}.csv" file_path = Path(path_config.RAW_TOURNAMENTS, f_name) df.to_csv(file_path, index=False) return df class CleanTournaments(): def __init__(self, df) -> None: self.df = df self.cleaned_df =
pd.DataFrame()
pandas.DataFrame
from copy import deepcopy from handyspark.ml.base import HandyTransformers from handyspark.plot import histogram, boxplot, scatterplot, strat_scatterplot, strat_histogram,\ consolidate_plots, post_boxplot from handyspark.sql.pandas import HandyPandas from handyspark.sql.transform import _MAPPING, HandyTransform from handyspark.util import HandyException, dense_to_array, disassemble, ensure_list, check_columns, \ none2default import inspect from matplotlib.axes import Axes from collections import OrderedDict import matplotlib.pyplot as plt import numpy as np from operator import itemgetter, add import pandas as pd from pyspark.ml.stat import Correlation from pyspark.ml.feature import Bucketizer from pyspark.mllib.stat import Statistics from pyspark.sql import DataFrame, GroupedData, Window, functions as F, Column, Row from pyspark.ml.feature import VectorAssembler, StandardScaler, PCA from pyspark.ml.pipeline import Pipeline from scipy.stats import chi2 from scipy.linalg import inv def toHandy(self): """Converts Spark DataFrame into HandyFrame. """ return HandyFrame(self) def notHandy(self): return self DataFrame.toHandy = toHandy DataFrame.notHandy = notHandy def agg(f): f.__is_agg = True return f def inccol(f): f.__is_inccol = True return f class Handy(object): def __init__(self, df): self._df = df # classification self._is_classification = False self._nclasses = None self._classes = None # transformers self._imputed_values = {} self._fenced_values = {} # groups / strata self._group_cols = None self._strata = None self._strata_object = None self._strata_plot = None self._clear_stratification() self._safety_limit = 1000 self._safety = True self._update_types() def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): if k not in ['_df', '_strata_object', '_strata_plot']: setattr(result, k, deepcopy(v, memo)) return result def __getitem__(self, *args): if isinstance(args[0], tuple): args = args[0] item = args[0] n = 20 if len(args) > 1: n = args[1] if n is None: n = -1 if isinstance(item, int): idx = item + (len(self._group_cols) if self._group_cols is not None else 0) assert idx < len(self._df.columns), "Invalid column index {}".format(idx) item = list(self._df.columns)[idx] if isinstance(item, str): if self._group_cols is None or len(self._group_cols) == 0: res = self._take_array(item, n) if res.ndim > 1: res = res.tolist() res = pd.Series(res, name=item) if self._strata is not None: strata = list(map(lambda v: v[1].to_dict(), self.strata.iterrows())) if len(strata) == len(res): res = pd.concat([pd.DataFrame(strata), res], axis=1).set_index(self._strata).sort_index() return res else: check_columns(self._df, list(self._group_cols) + [item]) pdf = self._df.notHandy().select(list(self._group_cols) + [item]) if n != -1: pdf = pdf.limit(n) res = pdf.toPandas().set_index(list(self._group_cols)).sort_index()[item] return res @property def stages(self): return (len(list(filter(lambda v: '+' == v, map(lambda s: s.strip()[0], self._df.rdd.toDebugString().decode().split('\n'))))) + 1) @property def statistics_(self): return self._imputed_values @property def fences_(self): return self._fenced_values @property def is_classification(self): return self._is_classification @property def classes(self): return self._classes @property def nclasses(self): return self._nclasses @property def response(self): return self._response @property def ncols(self): return len(self._types) @property def nrows(self): return self._df.count() @property def shape(self): return (self.nrows, self.ncols) @property def strata(self): if self._strata is not None: return pd.DataFrame(data=self._strata_combinations, columns=self._strata) @property def strata_colnames(self): if self._strata is not None: return list(map(str, ensure_list(self._strata))) else: return [] def _stratify(self, strata): return HandyStrata(self, strata) def _clear_stratification(self): self._strata = None self._strata_object = None self._strata_plot = None self._strata_combinations = [] self._strata_raw_combinations = [] self._strata_clauses = [] self._strata_raw_clauses = [] self._n_cols = 1 self._n_rows = 1 def _set_stratification(self, strata, raw_combinations, raw_clauses, combinations, clauses): if strata is not None: assert len(combinations[0]) == len(strata), "Mismatched number of combinations and strata!" self._strata = strata self._strata_raw_combinations = raw_combinations self._strata_raw_clauses = raw_clauses self._strata_combinations = combinations self._strata_clauses = clauses self._n_cols = len(set(map(itemgetter(0), combinations))) try: self._n_rows = len(set(map(itemgetter(1), combinations))) except IndexError: self._n_rows = 1 def _build_strat_plot(self, n_rows, n_cols, **kwargs): fig, axs = plt.subplots(n_rows, n_cols, **kwargs) if n_rows == 1: axs = [axs] if n_cols == 1: axs = [axs] self._strata_plot = (fig, [ax for col in np.transpose(axs) for ax in col]) def _update_types(self): self._types = list(map(lambda t: (t.name, t.dataType.typeName()), self._df.schema.fields)) self._numerical = list(map(itemgetter(0), filter(lambda t: t[1] in ['byte', 'short', 'integer', 'long', 'float', 'double'], self._types))) self._continuous = list(map(itemgetter(0), filter(lambda t: t[1] in ['double', 'float'], self._types))) self._categorical = list(map(itemgetter(0), filter(lambda t: t[1] in ['byte', 'short', 'integer', 'long', 'boolan', 'string'], self._types))) self._array = list(map(itemgetter(0), filter(lambda t: t[1] in ['array', 'map'], self._types))) self._string = list(map(itemgetter(0), filter(lambda t: t[1] in ['string'], self._types))) def _take_array(self, colname, n): check_columns(self._df, colname) datatype = self._df.notHandy().select(colname).schema.fields[0].dataType.typeName() rdd = self._df.notHandy().select(colname).rdd.map(itemgetter(0)) if n == -1: data = rdd.collect() else: data = rdd.take(n) return np.array(data, dtype=_MAPPING.get(datatype, 'object')) def _value_counts(self, colnames, dropna=True, raw=False): colnames = ensure_list(colnames) strata = self.strata_colnames colnames = strata + colnames check_columns(self._df, colnames) data = self._df.notHandy().select(colnames) if dropna: data = data.dropna() values = (data.groupby(colnames).agg(F.count('*').alias('value_counts')) .toPandas().set_index(colnames).sort_index()['value_counts']) if not raw: for level, col in enumerate(ensure_list(self._strata)): if not isinstance(col, str): values.index.set_levels(pd.Index(col._clauses[1:-1]), level=level, inplace=True) values.index.set_names(col.colname, level=level, inplace=True) return values def _fillna(self, target, values): assert isinstance(target, DataFrame), "Target must be a DataFrame" items = values.items() for colname, v in items: if isinstance(v, dict): clauses = v.keys() whens = ' '.join(['WHEN (({clause}) AND (isnan({col}) OR isnull({col}))) THEN {quote}{filling}{quote}' .format(clause=clause, col=colname, filling=v[clause], quote='"' if isinstance(v[clause], str) else '') for clause in clauses]) else: whens = ('WHEN (isnan({col}) OR isnull({col})) THEN {quote}{filling}{quote}' .format(col=colname, filling=v, quote='"' if isinstance(v, str) else '')) expression = F.expr('CASE {expr} ELSE {col} END'.format(expr=whens, col=colname)) target = target.withColumn(colname, expression) return target def __stat_to_dict(self, colname, stat): if len(self._strata_clauses): if isinstance(stat, pd.Series): stat = stat.to_frame(colname) return {clause: stat.query(raw_clause)[colname].iloc[0] for clause, raw_clause in zip(self._strata_clauses, self._strata_raw_clauses)} else: return stat[colname] def _fill_values(self, continuous, categorical, strategy): values = {} colnames = list(map(itemgetter(0), filter(lambda t: t[1] == 'mean', zip(continuous, strategy)))) values.update(dict([(col, self.__stat_to_dict(col, self.mean(col))) for col in colnames])) colnames = list(map(itemgetter(0), filter(lambda t: t[1] == 'median', zip(continuous, strategy)))) values.update(dict([(col, self.__stat_to_dict(col, self.median(col))) for col in colnames])) values.update(dict([(col, self.__stat_to_dict(col, self.mode(col))) for col in categorical if col in self._categorical])) return values def __fill_self(self, continuous, categorical, strategy): continuous = ensure_list(continuous) categorical = ensure_list(categorical) check_columns(self._df, continuous + categorical) strategy = none2default(strategy, 'mean') if continuous == ['all']: continuous = self._continuous if categorical == ['all']: categorical = self._categorical if isinstance(strategy, (list, tuple)): assert len(continuous) == len(strategy), "There must be a strategy to each column." else: strategy = [strategy] * len(continuous) values = self._fill_values(continuous, categorical, strategy) self._imputed_values.update(values) res = HandyFrame(self._fillna(self._df, values), self) return res def _dense_to_array(self, colname, array_colname): check_columns(self._df, colname) res = dense_to_array(self._df.notHandy(), colname, array_colname) return HandyFrame(res, self) def _agg(self, name, func, colnames): colnames = none2default(colnames, self._df.columns) colnames = ensure_list(colnames) check_columns(self._df, self.strata_colnames + [col for col in colnames if not isinstance(col, Column)]) if func is None: func = getattr(F, name) res = (self._df.notHandy() .groupby(self.strata_colnames) .agg(*(func(col).alias(str(col)) for col in colnames if str(col) not in self.strata_colnames)) .toPandas()) if len(res) == 1: res = res.iloc[0] res.name = name return res def _calc_fences(self, colnames, k=1.5, precision=.01): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] strata = self.strata_colnames pdf = (self._df.notHandy() .groupby(strata) .agg(F.count(F.lit(1)).alias('nrows'), *[F.expr('approx_percentile({}, {}, {})'.format(c, q, 1./precision)).alias('{}_{}%'.format(c, int(q * 100))) for q in [.25, .50, .75] for c in colnames], *[F.mean(c).alias('{}_mean'.format(c)) for c in colnames]).toPandas()) for col in colnames: pdf.loc[:, '{}_iqr'.format(col)] = pdf.loc[:, '{}_75%'.format(col)] - pdf.loc[:, '{}_25%'.format(col)] pdf.loc[:, '{}_lfence'.format(col)] = pdf.loc[:, '{}_25%'.format(col)] - k * pdf.loc[:, '{}_iqr'.format(col)] pdf.loc[:, '{}_ufence'.format(col)] = pdf.loc[:, '{}_75%'.format(col)] + k * pdf.loc[:, '{}_iqr'.format(col)] return pdf def _calc_mahalanobis_distance(self, colnames, output_col='__mahalanobis'): """Computes Mahalanobis distance from origin """ sdf = self._df.notHandy() check_columns(sdf, colnames) # Builds pipeline to assemble feature columns and scale them assembler = VectorAssembler(inputCols=colnames, outputCol='__features') scaler = StandardScaler(inputCol='__features', outputCol='__scaled', withMean=True) pipeline = Pipeline(stages=[assembler, scaler]) features = pipeline.fit(sdf).transform(sdf) # Computes correlation between features and inverts it # Since we scaled the features, we can assume they have unit variance # and therefore, correlation and covariance matrices are the same! mat = Correlation.corr(features, '__scaled').head()[0].toArray() inv_mat = inv(mat) # Builds Pandas UDF to compute Mahalanobis distance from origin # sqrt((V - 0) * inv_M * (V - 0)) try: import pyarrow @F.pandas_udf('double') def pudf_mult(v): return v.apply(lambda v: np.sqrt(np.dot(np.dot(v, inv_mat), v))) except: @F.udf('double') def pudf_mult(v): return v.apply(lambda v: np.sqrt(np.dot(np.dot(v, inv_mat), v))) # Convert feature vector into array features = dense_to_array(features, '__scaled', '__array_scaled') # Computes Mahalanobis distance and flags as outliers all elements above critical value distance = (features .withColumn('__mahalanobis', pudf_mult('__array_scaled')) .drop('__features', '__scaled', '__array_scaled')) return distance def _set_mahalanobis_outliers(self, colnames, critical_value=.999, input_col='__mahalanobis', output_col='__outlier'): """Compares Mahalanobis distances to critical values using Chi-Squared distribution to identify possible outliers. """ distance = self._calc_mahalanobis_distance(colnames) # Computes critical value critical_value = chi2.ppf(critical_value, len(colnames)) # Computes Mahalanobis distance and flags as outliers all elements above critical value outlier = (distance.withColumn(output_col, F.col(input_col) > critical_value)) return outlier def _calc_bxp_stats(self, fences_df, colname, showfliers=False): strata = self.strata_colnames clauses = self._strata_raw_clauses if not len(clauses): clauses = [None] qnames = ['25%', '50%', '75%', 'mean', 'lfence', 'ufence'] col_summ = fences_df[strata + ['{}_{}'.format(colname, q) for q in qnames] + ['nrows']] col_summ.columns = strata + qnames + ['nrows'] if len(strata): col_summ = col_summ.set_index(strata) lfence, ufence = col_summ[['lfence']], col_summ[['ufence']] expression = None for clause in clauses: if clause is not None: partial = F.col(colname).between(lfence.query(clause).iloc[0, 0], ufence.query(clause).iloc[0, 0]) partial &= F.expr(clause) else: partial = F.col(colname).between(lfence.iloc[0, 0], ufence.iloc[0, 0]) if expression is None: expression = partial else: expression |= partial outlier = self._df.notHandy().withColumn('__{}_outlier'.format(colname), ~expression) minmax = (outlier .filter('not __{}_outlier'.format(colname)) .groupby(strata) .agg(F.min(colname).alias('min'), F.max(colname).alias('max')) .toPandas()) if len(strata): minmax = [minmax.query(clause).iloc[0][['min', 'max']].values for clause in clauses] else: minmax = [minmax.iloc[0][['min', 'max']].values] fliers_df = outlier.filter('__{}_outlier'.format(colname)) fliers_df = [fliers_df.filter(clause) for clause in clauses] if len(strata) else [fliers_df] fliers_count = [df.count() for df in fliers_df] if showfliers: fliers = [(df .select(F.abs(F.col(colname)).alias(colname)) .orderBy(F.desc(colname)) .limit(1000) .toPandas()[colname].values) for df in fliers_df] else: fliers = [[]] * len(clauses) stats = [] # each item corresponds to a different clause - all items belong to the same column nrows = [] for clause, whiskers, outliers in zip(clauses, minmax, fliers): summary = col_summ if clause is not None: summary = summary.query(clause) item = {'mean': summary['mean'].values[0], 'med': summary['50%'].values[0], 'q1': summary['25%'].values[0], 'q3': summary['75%'].values[0], 'whislo': whiskers[0], 'whishi': whiskers[1], 'fliers': outliers} stats.append(item) nrows.append(summary['nrows'].values[0]) if not len(nrows): nrows = summary['nrows'].values[0] return stats, fliers_count, nrows def set_response(self, colname): check_columns(self._df, colname) self._response = colname if colname is not None: if colname not in self._continuous: self._is_classification = True self._classes = self._df.notHandy().select(colname).rdd.map(itemgetter(0)).distinct().collect() self._nclasses = len(self._classes) return self def disassemble(self, colname, new_colnames=None): check_columns(self._df, colname) res = disassemble(self._df.notHandy(), colname, new_colnames) return HandyFrame(res, self) def to_metrics_RDD(self, prob_col, label): check_columns(self._df, [prob_col, label]) return self.disassemble(prob_col).select('{}_1'.format(prob_col), F.col(label).cast('double')).rdd.map(tuple) def corr(self, colnames=None, method='pearson'): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] if self._strata is not None: colnames = sorted([col for col in colnames if col not in self.strata_colnames]) correlations = Statistics.corr(self._df.notHandy().select(colnames).dropna().rdd.map(lambda row: row[0:]), method=method) pdf = pd.DataFrame(correlations, columns=colnames, index=colnames) return pdf def fill(self, *args, continuous=None, categorical=None, strategy=None): if len(args) and isinstance(args[0], DataFrame): return self._fillna(args[0], self._imputed_values) else: return self.__fill_self(continuous=continuous, categorical=categorical, strategy=strategy) @agg def isnull(self, ratio=False): def func(colname): return F.sum(F.isnull(colname).cast('int')).alias(colname) name = 'missing' if ratio: name += '(ratio)' missing = self._agg(name, func, self._df.columns) if ratio: nrows = self._agg('nrows', F.sum, F.lit(1)) if isinstance(missing, pd.Series): missing = missing / nrows["Column<b'1'>"] else: missing.iloc[:, 1:] = missing.iloc[:, 1:].values / nrows["Column<b'1'>"].values.reshape(-1, 1) if len(self.strata_colnames): missing = missing.set_index(self.strata_colnames).T.unstack() missing.name = name return missing @agg def nunique(self, colnames=None): res = self._agg('nunique', F.approx_count_distinct, colnames) if len(self.strata_colnames): res = res.set_index(self.strata_colnames).T.unstack() res.name = 'nunique' return res def outliers(self, colnames=None, ratio=False, method='tukey', **kwargs): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] res = None if method == 'tukey': outliers = [] try: k = float(kwargs['k']) except KeyError: k = 1.5 fences_df = self._calc_fences(colnames, k=k, precision=.01) index = fences_df[self.strata_colnames].set_index(self.strata_colnames).index \ if len(self.strata_colnames) else None for colname in colnames: stats, counts, nrows = self._calc_bxp_stats(fences_df, colname, showfliers=False) outliers.append(pd.Series(counts, index=index, name=colname)) if ratio: outliers[-1] /= nrows res = pd.DataFrame(outliers).unstack() if not len(self.strata_colnames): res = res.droplevel(0) name = 'outliers' if ratio: name += '(ratio)' res.name = name return res def get_outliers(self, colnames=None, critical_value=.999): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] outliers = self._set_mahalanobis_outliers(colnames, critical_value) df = outliers.filter('__outlier').orderBy(F.desc('__mahalanobis')).drop('__outlier', '__mahalanobis') return HandyFrame(df, self) def remove_outliers(self, colnames=None, critical_value=.999): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] outliers = self._set_mahalanobis_outliers(colnames, critical_value) df = outliers.filter('not __outlier').drop('__outlier', '__mahalanobis') return HandyFrame(df, self) def fence(self, colnames, k=1.5): colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] pdf = self._calc_fences(colnames, k=k) if len(self.strata_colnames): pdf = pdf.set_index(self.strata_colnames) df = self._df.notHandy() for colname in colnames: lfence, ufence = pdf.loc[:, ['{}_lfence'.format(colname)]], pdf.loc[:, ['{}_ufence'.format(colname)]] if len(self._strata_raw_clauses): whens1 = ' '.join(['WHEN ({clause}) THEN greatest({col}, {fence})'.format(clause=clause, col=colname, fence=lfence.query(clause).iloc[0, 0]) for clause in self._strata_raw_clauses]) whens2 = ' '.join(['WHEN ({clause}) THEN least({col}, {fence})'.format(clause=clause, col=colname, fence=ufence.query(clause).iloc[0, 0]) for clause in self._strata_raw_clauses]) expression1 = F.expr('CASE {} END'.format(whens1)) expression2 = F.expr('CASE {} END'.format(whens2)) self._fenced_values.update({colname: {clause: [lfence.query(clause).iloc[0, 0], ufence.query(clause).iloc[0, 0]] for clause in self._strata_clauses}}) else: self._fenced_values.update({colname: [lfence.iloc[0, 0], ufence.iloc[0, 0]]}) expression1 = F.expr('greatest({col}, {fence})'.format(col=colname, fence=lfence.iloc[0, 0])) expression2 = F.expr('least({col}, {fence})'.format(col=colname, fence=ufence.iloc[0, 0])) df = df.withColumn(colname, expression1).withColumn(colname, expression2) return HandyFrame(df.select(self._df.columns), self) @inccol def value_counts(self, colnames, dropna=True): return self._value_counts(colnames, dropna) @inccol def mode(self, colname): check_columns(self._df, [colname]) if self._strata is None: values = (self._df.notHandy().select(colname).dropna() .groupby(colname).agg(F.count('*').alias('mode')) .orderBy(F.desc('mode')).limit(1) .toPandas()[colname][0]) return pd.Series(values, index=[colname], name='mode') else: strata = self.strata_colnames colnames = strata + [colname] values = (self._df.notHandy().select(colnames).dropna() .groupby(colnames).agg(F.count('*').alias('mode')) .withColumn('order', F.row_number().over(Window.partitionBy(strata).orderBy(F.desc('mode')))) .filter('order == 1').drop('order') .toPandas().set_index(strata).sort_index()[colname]) values.name = 'mode' return values @inccol def entropy(self, colnames): colnames = ensure_list(colnames) check_columns(self._df, colnames) sdf = self._df.notHandy() n = sdf.count() entropy = [] for colname in colnames: if colname in self._categorical: res = (self._df .groupby(self.strata_colnames + [colname]) .agg(F.count('*').alias('value_counts')).withColumn('probability', F.col('value_counts') / n) .groupby(self.strata_colnames) .agg(F.sum(F.expr('-log2(probability) * probability')).alias(colname)) .safety_off() .cols[self.strata_colnames + [colname]][:]) if len(self.strata_colnames): res.set_index(self.strata_colnames, inplace=True) res = res.unstack() else: res = res[colname] res.index = [colname] else: res = pd.Series(None, index=[colname]) res.name = 'entropy' entropy.append(res) return pd.concat(entropy).sort_index() @inccol def mutual_info(self, colnames): def distribution(sdf, colnames): return sdf.groupby(colnames).agg(F.count('*').alias('__count')) check_columns(self._df, colnames) n = len(colnames) probs = [] sdf = self._df.notHandy() for i in range(n): probs.append(distribution(sdf, self.strata_colnames + [colnames[i]])) if len(self.strata_colnames): nrows = sdf.groupby(self.strata_colnames).agg(F.count('*').alias('__n')) else: nrows = sdf.count() entropies = self.entropy(colnames) res = [] for i in range(n): for j in range(i, n): if i == j: mi = pd.Series(entropies[colnames[i]], name='mi').to_frame() else: tdf = distribution(sdf, self.strata_colnames + [colnames[i], colnames[j]]) if len(self.strata_colnames): tdf = tdf.join(nrows, on=self.strata_colnames) else: tdf = tdf.withColumn('__n', F.lit(nrows)) tdf = tdf.join(probs[i].toDF(*self.strata_colnames, colnames[i], '__count0'), on=self.strata_colnames + [colnames[i]]) tdf = tdf.join(probs[j].toDF(*self.strata_colnames, colnames[j], '__count1'), on=self.strata_colnames + [colnames[j]]) mi = (tdf .groupby(self.strata_colnames) .agg(F.sum(F.expr('log2(__count * __n / (__count0 * __count1)) * __count / __n')).alias('mi')) .toPandas()) if len(self.strata_colnames): mi.set_index(self.strata_colnames, inplace=True) res.append(mi.assign(ci=colnames[j], cj=colnames[i])) res.append(mi.assign(ci=colnames[i], cj=colnames[j])) res = pd.concat(res).set_index(['ci', 'cj'], append=len(self.strata_colnames)).sort_index() res = pd.pivot_table(res, index=self.strata_colnames + ['ci'], columns=['cj']) res.index.names = self.strata_colnames + [''] res.columns = res.columns.droplevel(0).rename('') return res @agg def mean(self, colnames): return self._agg('mean', F.mean, colnames) @agg def min(self, colnames): return self._agg('min', F.min, colnames) @agg def max(self, colnames): return self._agg('max', F.max, colnames) @agg def percentile(self, colnames, perc=50, precision=.01): def func(c): return F.expr('approx_percentile({}, {}, {})'.format(c, perc/100., 1./precision)) try: name = {25: 'q1', 50: 'median', 75: 'q3'}[perc] except KeyError: name = 'percentile_{}'.format(perc) return self._agg(name, func, colnames) @agg def median(self, colnames, precision=.01): return self.percentile(colnames, 50, precision) @agg def stddev(self, colnames): return self._agg('stddev', F.stddev, colnames) @agg def var(self, colnames): return self._agg('var', F.stddev, colnames) ** 2 @agg def q1(self, colnames, precision=.01): return self.percentile(colnames, 25, precision) @agg def q3(self, colnames, precision=.01): return self.percentile(colnames, 75, precision) ### Boxplot functions def _strat_boxplot(self, colnames, **kwargs): n_rows = n_cols = 1 kwds = deepcopy(kwargs) for kw in ['showfliers', 'precision']: try: del kwds[kw] except KeyError: pass if isinstance(colnames, (tuple, list)) and (len(colnames) > 1): n_rows = self._n_rows n_cols = self._n_cols self._build_strat_plot(n_rows, n_cols, **kwds) return None @inccol def boxplot(self, colnames, ax=None, showfliers=True, k=1.5, precision=.01, **kwargs): colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] assert len(colnames), "Only numerical columns can be plot!" return boxplot(self._df, colnames, ax, showfliers, k, precision) def _post_boxplot(self, res): return post_boxplot(self._strata_plot[1], res) ### Scatterplot functions def _strat_scatterplot(self, colnames, **kwargs): self._build_strat_plot(self._n_rows, self._n_cols, **kwargs) return strat_scatterplot(self._df.notHandy(), colnames[0], colnames[1]) @inccol def scatterplot(self, colnames, ax=None, **kwargs): assert len(colnames) == 2, "There must be two columns to plot!" check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] assert len(colnames) == 2, "Both columns must be numerical!" return scatterplot(self._df, colnames[0], colnames[1], ax=ax) ### Histogram functions def _strat_hist(self, colname, bins=10, **kwargs): self._build_strat_plot(self._n_rows, self._n_cols, **kwargs) categorical = True if colname in self._continuous: categorical = False #res = strat_histogram(self._df.notHandy(), colname, bins, categorical) res = strat_histogram(self._df, colname, bins, categorical) self._strata_plot[0].suptitle('') plt.tight_layout() return res @inccol def hist(self, colname, bins=10, ax=None, **kwargs): # TO DO # include split per response/columns assert len(ensure_list(colname)) == 1, "Only single columns can be plot!" check_columns(self._df, colname) if colname in self._continuous: return histogram(self._df, colname, bins=bins, categorical=False, ax=ax) else: return histogram(self._df, colname, bins=bins, categorical=True, ax=ax) class HandyGrouped(GroupedData): def __init__(self, jgd, df, *args): self._jgd = jgd self._df = df self.sql_ctx = df.sql_ctx self._cols = args def agg(self, *exprs): df = super().agg(*exprs) handy = deepcopy(self._df._handy) handy._group_cols = self._cols return HandyFrame(df, handy) def __repr__(self): return "HandyGrouped[%s]" % (", ".join("%s" % c for c in self._group_cols)) class HandyFrame(DataFrame): """HandySpark version of DataFrame. Attributes ---------- cols: HandyColumns class to access pandas-like column based methods implemented in Spark pandas: HandyPandas class to access pandas-like column based methods through pandas UDFs transformers: HandyTransformers class to generate Handy transformers stages: integer number of stages in the execution plan response: string name of the response column is_classification: boolean True if response is a categorical variable classes: list list of classes for a classification problem nclasses: integer number of classes for a classification problem ncols: integer number of columns of the HandyFrame nrows: integer number of rows of the HandyFrame shape: tuple tuple representing dimensionality of the HandyFrame statistics_: dict imputation fill value for each feature If stratified, first level keys are filter clauses for stratification fences_: dict fence values for each feature If stratified, first level keys are filter clauses for stratification is_stratified: boolean True if HandyFrame was stratified values: ndarray Numpy representation of HandyFrame. Available methods: - notHandy: makes it a plain Spark dataframe - stratify: used to perform stratified operations - isnull: checks for missing values - fill: fills missing values - outliers: returns counts of outliers, columnwise, using Tukey's method - get_outliers: returns list of outliers using Mahalanobis distance - remove_outliers: filters out outliers using Mahalanobis distance - fence: fences outliers - set_safety_limit: defines new safety limit for collect operations - safety_off: disables safety limit for a single operation - assign: appends a new columns based on an expression - nunique: returns number of unique values in each column - set_response: sets column to be used as response / label - disassemble: turns a vector / array column into multiple columns - to_metrics_RDD: turns probability and label columns into a tuple RDD """ def __init__(self, df, handy=None): super().__init__(df._jdf, df.sql_ctx) if handy is None: handy = Handy(self) else: handy = deepcopy(handy) handy._df = self handy._update_types() self._handy = handy self._safety = self._handy._safety self._safety_limit = self._handy._safety_limit self.__overriden = ['collect', 'take'] self._strat_handy = None self._strat_index = None def __getattribute__(self, name): attr = object.__getattribute__(self, name) if hasattr(attr, '__call__') and name not in self.__overriden: def wrapper(*args, **kwargs): try: res = attr(*args, **kwargs) except HandyException as e: raise HandyException(str(e), summary=False) except Exception as e: raise HandyException(str(e), summary=True) if name != 'notHandy': if not isinstance(res, HandyFrame): if isinstance(res, DataFrame): res = HandyFrame(res, self._handy) if isinstance(res, GroupedData): res = HandyGrouped(res._jgd, res._df, *args) return res return wrapper else: return attr def __repr__(self): return "HandyFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) def _get_strata(self): plot = None object = None if self._strat_handy is not None: try: object = self._strat_handy._strata_object except AttributeError: pass if object is None: object = True try: plots = self._strat_handy._strata_plot[1] #if len(plots) > 1: # plot = plots[self._strat_index] plot = plots except (AttributeError, IndexError): pass return plot, object def _gen_row_ids(self, *args): # EXPERIMENTAL - DO NOT USE! return (self .sort(*args) .withColumn('_miid', F.monotonically_increasing_id()) .withColumn('_row_id', F.row_number().over(Window().orderBy(F.col('_miid')))) .drop('_miid')) def _loc(self, lower_bound, upper_bound): # EXPERIMENTAL - DO NOT USE! assert '_row_id' in self.columns, "Cannot use LOC without generating `row_id`s first!" clause = F.col('_row_id').between(lower_bound, upper_bound) return self.filter(clause) @property def cols(self): """Returns a class to access pandas-like column based methods implemented in Spark Available methods: - min - max - median - q1 - q3 - stddev - value_counts - mode - corr - nunique - hist - boxplot - scatterplot """ return HandyColumns(self, self._handy) @property def pandas(self): """Returns a class to access pandas-like column based methods through pandas UDFs Available methods: - betweeen / between_time - isin - isna / isnull - notna / notnull - abs - clip / clip_lower / clip_upper - replace - round / truncate - tz_convert / tz_localize """ return HandyPandas(self) @property def transformers(self): """Returns a class to generate Handy transformers Available transformers: - HandyImputer - HandyFencer """ return HandyTransformers(self) @property def stages(self): """Returns the number of stages in the execution plan. """ return self._handy.stages @property def response(self): """Returns the name of the response column. """ return self._handy.response @property def is_classification(self): """Returns True if response is a categorical variable. """ return self._handy.is_classification @property def classes(self): """Returns list of classes for a classification problem. """ return self._handy.classes @property def nclasses(self): """Returns the number of classes for a classification problem. """ return self._handy.nclasses @property def ncols(self): """Returns the number of columns of the HandyFrame. """ return self._handy.ncols @property def nrows(self): """Returns the number of rows of the HandyFrame. """ return self._handy.nrows @property def shape(self): """Return a tuple representing the dimensionality of the HandyFrame. """ return self._handy.shape @property def statistics_(self): """Returns dictionary with imputation fill value for each feature. If stratified, first level keys are filter clauses for stratification. """ return self._handy.statistics_ @property def fences_(self): """Returns dictionary with fence values for each feature. If stratified, first level keys are filter clauses for stratification. """ return self._handy.fences_ @property def values(self): """Numpy representation of HandyFrame. """ # safety limit will kick in, unless explicitly off before tdf = self if self._safety: tdf = tdf.limit(self._safety_limit) return np.array(tdf.rdd.map(tuple).collect()) def notHandy(self): """Converts HandyFrame back into Spark's DataFrame """ return DataFrame(self._jdf, self.sql_ctx) def set_safety_limit(self, limit): """Sets safety limit used for ``collect`` method. """ self._handy._safety_limit = limit self._safety_limit = limit def safety_off(self): """Disables safety limit for a single call of ``collect`` method. """ self._handy._safety = False self._safety = False return self def collect(self): """Returns all the records as a list of :class:`Row`. By default, its output is limited by the safety limit. To get original `collect` behavior, call ``safety_off`` method first. """ try: if self._safety: print('\nINFO: Safety is ON - returning up to {} instances.'.format(self._safety_limit)) return super().limit(self._safety_limit).collect() else: res = super().collect() self._safety = True return res except HandyException as e: raise HandyException(str(e), summary=False) except Exception as e: raise HandyException(str(e), summary=True) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. """ self._handy._safety = False res = super().take(num) self._handy._safety = True return res def stratify(self, strata): """Stratify the HandyFrame. Stratified operations should be more efficient than group by operations, as they rely on three iterative steps, namely: filtering the underlying HandyFrame, performing the operation and aggregating the results. """ strata = ensure_list(strata) check_columns(self, strata) return self._handy._stratify(strata) def transform(self, f, name=None, args=None, returnType=None): """INTERNAL USE """ return HandyTransform.transform(self, f, name=name, args=args, returnType=returnType) def apply(self, f, name=None, args=None, returnType=None): """INTERNAL USE """ return HandyTransform.apply(self, f, name=name, args=args, returnType=returnType) def assign(self, **kwargs): """Assign new columns to a HandyFrame, returning a new object (a copy) with all the original columns in addition to the new ones. Parameters ---------- kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. If the values are not callable, (e.g. a scalar, or string), they are simply assigned. Returns ------- df : HandyFrame A new HandyFrame with the new columns in addition to all the existing columns. """ return HandyTransform.assign(self, **kwargs) @agg def isnull(self, ratio=False): """Returns array with counts of missing value for each column in the HandyFrame. Parameters ---------- ratio: boolean, default False If True, returns ratios instead of absolute counts. Returns ------- counts: Series """ return self._handy.isnull(ratio) @agg def nunique(self): """Return Series with number of distinct observations for all columns. Parameters ---------- exact: boolean, optional If True, computes exact number of unique values, otherwise uses an approximation. Returns ------- nunique: Series """ return self._handy.nunique(self.columns) #, exact) @inccol def outliers(self, ratio=False, method='tukey', **kwargs): """Return Series with number of outlier observations according to the specified method for all columns. Parameters ---------- ratio: boolean, optional If True, returns proportion instead of counts. Default is True. method: string, optional Method used to detect outliers. Currently, only Tukey's method is supported. Default is tukey. Returns ------- outliers: Series """ return self._handy.outliers(self.columns, ratio=ratio, method=method, **kwargs) def get_outliers(self, colnames=None, critical_value=.999): """Returns HandyFrame containing all rows deemed as outliers using Mahalanobis distance and informed critical value. Parameters ---------- colnames: list of str, optional List of columns to be used for computing Mahalanobis distance. Default includes all numerical columns critical_value: float, optional Critical value for chi-squared distribution to classify outliers according to Mahalanobis distance. Default is .999 (99.9%). """ return self._handy.get_outliers(colnames, critical_value) def remove_outliers(self, colnames=None, critical_value=.999): """Returns HandyFrame containing only rows NOT deemed as outliers using Mahalanobis distance and informed critical value. Parameters ---------- colnames: list of str, optional List of columns to be used for computing Mahalanobis distance. Default includes all numerical columns critical_value: float, optional Critical value for chi-squared distribution to classify outliers according to Mahalanobis distance. Default is .999 (99.9%). """ return self._handy.remove_outliers(colnames, critical_value) def set_response(self, colname): """Sets column to be used as response in supervised learning algorithms. Parameters ---------- colname: string Returns ------- self """ check_columns(self, colname) return self._handy.set_response(colname) @inccol def fill(self, *args, categorical=None, continuous=None, strategy=None): """Fill NA/NaN values using the specified methods. The values used for imputation are kept in ``statistics_`` property and can later be used to generate a corresponding HandyImputer transformer. Parameters ---------- categorical: 'all' or list of string, optional List of categorical columns. These columns are filled with its coresponding modes (most common values). continuous: 'all' or list of string, optional List of continuous value columns. By default, these columns are filled with its corresponding means. If a same-sized list is provided in the ``strategy`` argument, it uses the corresponding straegy for each column. strategy: list of string, optional If informed, it must contain a strategy - either ``mean`` or ``median`` - for each one of the continuous columns. Returns ------- df : HandyFrame A new HandyFrame with filled missing values. """ return self._handy.fill(*args, continuous=continuous, categorical=categorical, strategy=strategy) @inccol def fence(self, colnames, k=1.5): """Caps outliers using lower and upper fences given by Tukey's method, using 1.5 times the interquartile range (IQR). The fence values used for capping outliers are kept in ``fences_`` property and can later be used to generate a corresponding HandyFencer transformer. For more information, check: https://en.wikipedia.org/wiki/Outlier#Tukey's_fences Parameters ---------- colnames: list of string Column names to apply fencing. k: float, optional Constant multiplier for the IQR. Default is 1.5 (corresponding to Tukey's outlier, use 3 for "far out" values) Returns ------- df : HandyFrame A new HandyFrame with capped outliers. """ return self._handy.fence(colnames, k=k) def disassemble(self, colname, new_colnames=None): """Disassembles a Vector or Array column into multiple columns. Parameters ---------- colname: string Column containing Vector or Array elements. new_colnames: list of string, optional Default is None, column names are generated using a sequentially generated suffix (e.g., _0, _1, etc.) for ``colname``. If informed, it must have as many column names as elements in the shortest vector/array of ``colname``. Returns ------- df : HandyFrame A new HandyFrame with the new disassembled columns in addition to all the existing columns. """ return self._handy.disassemble(colname, new_colnames) def to_metrics_RDD(self, prob_col='probability', label_col='label'): """Converts a DataFrame containing predicted probabilities and classification labels into a RDD suited for use with ``BinaryClassificationMetrics`` object. Parameters ---------- prob_col: string, optional Column containing Vectors of probabilities. Default is 'probability'. label_col: string, optional Column containing labels. Default is 'label'. Returns ------- rdd: RDD RDD of tuples (probability, label) """ return self._handy.to_metrics_RDD(prob_col, label_col) class Bucket(object): """Bucketizes a column of continuous values into equal sized bins to perform stratification. Parameters ---------- colname: string Column containing continuous values bins: integer Number of equal sized bins to map original values to. Returns ------- bucket: Bucket Bucket object to be used as column in stratification. """ def __init__(self, colname, bins=5): self._colname = colname self._bins = bins self._buckets = None self._clauses = None def __repr__(self): return 'Bucket_{}_{}'.format(self._colname, self._bins) @property def colname(self): return self._colname def _get_buckets(self, df): check_columns(df, self._colname) buckets = ([-float('inf')] + np.linspace(*df.agg(F.min(self._colname), F.max(self._colname)).rdd.map(tuple).collect()[0], self._bins + 1).tolist() + [float('inf')]) buckets[-2] += 1e-7 self._buckets = buckets return buckets def _get_clauses(self, buckets): clauses = [] clauses.append('{} < {:.4f}'.format(self._colname, buckets[1])) for b, e in zip(buckets[1:-2], buckets[2:-1]): clauses.append('{} >= {:.4f} and {} < {:.4f}'.format(self._colname, b, self._colname, e)) clauses[-1] = clauses[-1].replace('<', '<=') clauses.append('{} > {:.4f}'.format(self._colname, buckets[-2])) self._clauses = clauses return clauses class Quantile(Bucket): """Bucketizes a column of continuous values into quantiles to perform stratification. Parameters ---------- colname: string Column containing continuous values bins: integer Number of quantiles to map original values to. Returns ------- quantile: Quantile Quantile object to be used as column in stratification. """ def __repr__(self): return 'Quantile{}_{}'.format(self._colname, self._bins) def _get_buckets(self, df): buckets = ([-float('inf')] + df.approxQuantile(col=self._colname, probabilities=np.linspace(0, 1, self._bins + 1).tolist(), relativeError=0.01) + [float('inf')]) buckets[-2] += 1e-7 return buckets class HandyColumns(object): """HandyColumn(s) in a HandyFrame. Attributes ---------- numerical: list of string List of numerical columns (integer, float, double) categorical: list of string List of categorical columns (string, integer) continuous: list of string List of continous columns (float, double) string: list of string List of string columns (string) array: list of string List of array columns (array, map) """ def __init__(self, df, handy, strata=None): self._df = df self._handy = handy self._strata = strata self._colnames = None self.COLTYPES = {'continuous': self.continuous, 'categorical': self.categorical, 'numerical': self.numerical, 'string': self.string, 'array': self.array} def __getitem__(self, *args): if isinstance(args[0], tuple): args = args[0] item = args[0] if self._strata is None: if self._colnames is None: if item == slice(None, None, None): item = self._df.columns if isinstance(item, str): try: # try it as an alias item = self.COLTYPES[item] except KeyError: pass check_columns(self._df, item) self._colnames = item if isinstance(self._colnames, int): idx = self._colnames + (len(self._handy._group_cols) if self._handy._group_cols is not None else 0) assert idx < len(self._df.columns), "Invalid column index {}".format(idx) self._colnames = list(self._df.columns)[idx] return self else: try: n = item.stop if n is None: n = -1 except: n = 20 if isinstance(self._colnames, (tuple, list)): res = self._df.notHandy().select(self._colnames) if n == -1: if self._df._safety: print('\nINFO: Safety is ON - returning up to {} instances.'.format(self._df._safety_limit)) n = self._df._safety_limit if n != -1: res = res.limit(n) res = res.toPandas() self._handy._safety = True self._df._safety = True return res else: return self._handy.__getitem__(self._colnames, n) else: if self._colnames is None: if item == slice(None, None, None): item = self._df.columns if isinstance(item, str): try: # try it as an alias item = self.COLTYPES[item] except KeyError: pass self._strata._handycolumns = item return self._strata def __repr__(self): colnames = ensure_list(self._colnames) return "HandyColumns[%s]" % (", ".join("%s" % str(c) for c in colnames)) @property def numerical(self): """Returns list of numerical columns in the HandyFrame. """ return self._handy._numerical @property def categorical(self): """Returns list of categorical columns in the HandyFrame. """ return self._handy._categorical @property def continuous(self): """Returns list of continuous columns in the HandyFrame. """ return self._handy._continuous @property def string(self): """Returns list of string columns in the HandyFrame. """ return self._handy._string @property def array(self): """Returns list of array or map columns in the HandyFrame. """ return self._handy._array def mean(self): return self._handy.mean(self._colnames) def min(self): return self._handy.min(self._colnames) def max(self): return self._handy.max(self._colnames) def median(self, precision=.01): """Returns approximate median with given precision. Parameters ---------- precision: float, optional Default is 0.01 """ return self._handy.median(self._colnames, precision) def stddev(self): return self._handy.stddev(self._colnames) def var(self): return self._handy.var(self._colnames) def percentile(self, perc, precision=.01): """Returns approximate percentile with given precision. Parameters ---------- perc: integer Percentile to be computed precision: float, optional Default is 0.01 """ return self._handy.percentile(self._colnames, perc, precision) def q1(self, precision=.01): """Returns approximate first quartile with given precision. Parameters ---------- precision: float, optional Default is 0.01 """ return self._handy.q1(self._colnames, precision) def q3(self, precision=.01): """Returns approximate third quartile with given precision. Parameters ---------- precision: float, optional Default is 0.01 """ return self._handy.q3(self._colnames, precision) def _value_counts(self, dropna=True, raw=True): assert len(ensure_list(self._colnames)) == 1, "A single column must be selected!" return self._handy._value_counts(self._colnames, dropna, raw) def value_counts(self, dropna=True): """Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- dropna : boolean, default True Don't include counts of missing values. Returns ------- counts: Series """ assert len(ensure_list(self._colnames)) == 1, "A single column must be selected!" return self._handy.value_counts(self._colnames, dropna) def entropy(self): """Returns object containing entropy (base 2) of each column. Returns ------- entropy: Series """ return self._handy.entropy(self._colnames) def mutual_info(self): """Returns object containing matrix of mutual information between every pair of columns. Returns ------- mutual_info: pd.DataFrame """ return self._handy.mutual_info(self._colnames) def mode(self): """Returns same-type modal (most common) value for each column. Returns ------- mode: Series """ colnames = ensure_list(self._colnames) modes = [self._handy.mode(colname) for colname in colnames] if len(colnames) == 1: return modes[0] else: return
pd.concat(modes, axis=0)
pandas.concat
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import collections import numpy as np import re from numpy import array from statistics import mode import pandas as pd import warnings import copy from joblib import Memory from itertools import chain import ast import timeit from sklearn.neighbors import KNeighborsClassifier # 1 neighbors from sklearn.svm import SVC # 1 svm from sklearn.naive_bayes import GaussianNB # 1 naive bayes from sklearn.neural_network import MLPClassifier # 1 neural network from sklearn.linear_model import LogisticRegression # 1 linear model from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models from joblib import Parallel, delayed import multiprocessing from sklearn.pipeline import make_pipeline from sklearn import model_selection from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from imblearn.metrics import geometric_mean_score import umap from sklearn.metrics import classification_report from sklearn.preprocessing import scale import eli5 from eli5.sklearn import PermutationImportance from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import RFE from sklearn.decomposition import PCA from mlxtend.classifier import StackingCVClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit from scipy.spatial import procrustes # This block of code == for the connection between the server, the database, and the client (plus routing). # Access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def Reset(): global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global dataSpacePointsIDs dataSpacePointsIDs = [] global previousStateActive previousStateActive = [] global StanceTest StanceTest = False global status status = True global factors factors = [1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1] global KNNModelsCount global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount global keyData keyData = 0 KNNModelsCount = 0 SVCModelsCount = 576 GausNBModelsCount = 736 MLPModelsCount = 1236 LRModelsCount = 1356 LDAModelsCount = 1996 QDAModelsCount = 2196 RFModelsCount = 2446 ExtraTModelsCount = 2606 AdaBModelsCount = 2766 GradBModelsCount = 2926 global XData XData = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 5 # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] return 'The reset was done!' # Retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def RetrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global XData XData = [] global previousState previousState = [] global previousStateActive previousStateActive = [] global status status = True global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 # models global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels KNNModels = [] SVCModels = [] GausNBModels = [] MLPModels = [] LRModels = [] LDAModels = [] QDAModels = [] RFModels = [] ExtraTModels = [] AdaBModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() elif data['fileName'] == 'BiodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) DataSetSelection() return 'Everything is okay' def Convert(lst): it = iter(lst) res_dct = dict(zip(it, it)) return res_dct # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def SendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' # Sent data to client @app.route('/data/ClientRequest', methods=["GET", "POST"]) def CollectionData(): json.dumps(DataResultsRaw) response = { 'Collection': DataResultsRaw } return jsonify(response) def DataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' def callPreResults(): global XData global yData global target_names global impDataInst DataSpaceResMDS = FunMDS(XData) DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = DataSpaceResTSNE.tolist() DataSpaceUMAP = FunUMAP(XData) XDataJSONEntireSetRes = XData.to_json(orient='records') global preResults preResults = [] preResults.append(json.dumps(target_names)) # Position: 0 preResults.append(json.dumps(DataSpaceResMDS)) # Position: 1 preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2 preResults.append(json.dumps(yData)) # Position: 3 preResults.append(json.dumps(AllTargets)) # Position: 4 preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5 preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6 preResults.append(json.dumps(impDataInst)) # Position: 7 # Sending each model's results to frontend @app.route('/data/requestDataSpaceResults', methods=["GET", "POST"]) def SendDataSpaceResults(): global preResults callPreResults() response = { 'preDataResults': preResults, } return jsonify(response) # Main function if __name__ == '__main__': app.run() # Debugging and mirroring client @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): if app.debug: return requests.get('http://localhost:8080/{}'.format(path)).text return render_template("index.html") # This block of code is for server computations def column_index(df, query_cols): cols = df.columns.values sidx = np.argsort(cols) return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist() def class_feature_importance(X, Y, feature_importances): N, M = X.shape X = scale(X) out = {} for c in set(Y): out[c] = dict( zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances) ) return out @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/EnsembleMode', methods=["GET", "POST"]) def EnsembleMethod(): global crossValidation global RANDOM_SEED global XData RANDOM_SEED = 42 RetrievedStatus = request.get_data().decode('utf8').replace("'", '"') RetrievedStatus = json.loads(RetrievedStatus) modeMethod = RetrievedStatus['defaultModeMain'] if (modeMethod == 'blend'): crossValidation = ShuffleSplit(n_splits=1, test_size=.20, random_state=RANDOM_SEED) else: crossValidation = 5 return 'Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def RetrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] toggle = RetrievedModel['Toggle'] global crossValidation global XData global yData global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount # loop through the algorithms global allParametersPerformancePerModel start = timeit.default_timer() print('CVorTT', crossValidation) for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = 0 elif (eachAlgor) == 'SVC': clf = SVC(probability=True,random_state=RANDOM_SEED) params = {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']} AlgorithmsIDsEnd = SVCModelsCount elif (eachAlgor) == 'GauNB': clf = GaussianNB() params = {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))} AlgorithmsIDsEnd = GausNBModelsCount elif (eachAlgor) == 'MLP': clf = MLPClassifier(random_state=RANDOM_SEED) params = {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} AlgorithmsIDsEnd = MLPModelsCount elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} AlgorithmsIDsEnd = LRModelsCount elif (eachAlgor) == 'LDA': clf = LinearDiscriminantAnalysis() params = {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']} AlgorithmsIDsEnd = LDAModelsCount elif (eachAlgor) == 'QDA': clf = QuadraticDiscriminantAnalysis() params = {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))} AlgorithmsIDsEnd = QDAModelsCount elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = RFModelsCount elif (eachAlgor) == 'ExtraT': clf = ExtraTreesClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = ExtraTModelsCount elif (eachAlgor) == 'AdaB': clf = AdaBoostClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']} AlgorithmsIDsEnd = AdaBModelsCount else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} AlgorithmsIDsEnd = GradBModelsCount allParametersPerformancePerModel = GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossValidation) # New visualization - model space # header = "model_id,algorithm_id,mean_test_accuracy,mean_test_precision_micro,mean_test_precision_macro,mean_test_precision_weighted,mean_test_recall_micro,mean_test_recall_macro,mean_test_recall_weighted,mean_test_roc_auc_ovo_weighted,geometric_mean_score_micro,geometric_mean_score_macro,geometric_mean_score_weighted,matthews_corrcoef,f5_micro,f5_macro,f5_weighted,f1_micro,f1_macro,f1_weighted,f2_micro,f2_macro,f2_weighted,log_loss\n" # dataReceived = [] # counter = 0 # for indx, el in enumerate(allParametersPerformancePerModel): # dictFR = json.loads(el) # frame = pd.DataFrame.from_dict(dictFR) # for ind, elInside in frame.iterrows(): # counter = counter + 1 # dataReceived.append(str(counter)) # dataReceived.append(',') # dataReceived.append(str(indx+1)) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_accuracy'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_roc_auc_ovo_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['matthews_corrcoef'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['log_loss'])) # dataReceived.append("\n") # dataReceivedItems = ''.join(dataReceived) # csvString = header + dataReceivedItems # fw = open ("modelSpace.csv","w+",encoding="utf-8") # fw.write(csvString) # fw.close() # call the function that sends the results to the frontend stop = timeit.default_timer() print('Time GridSearch: ', stop - start) SendEachClassifiersPerformanceToVisualize() return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossVal): print('loop') # this is the grid we use to train the models grid = GridSearchCV( estimator=clf, param_grid=params, cv=crossVal, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities grid.fit(XData, yData) # process the results cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): modelsIDs.append(AlgorithmsIDsEnd+i) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersPerformancePerModel = parametersPerformancePerModel.to_json() parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(str(index)) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] PerClassMetric = [] perModelProb = [] perModelPrediction = [] resultsMicro = [] resultsMacro = [] resultsWeighted = [] resultsCorrCoef = [] resultsMicroBeta5 = [] resultsMacroBeta5 = [] resultsWeightedBeta5 = [] resultsMicroBeta1 = [] resultsMacroBeta1 = [] resultsWeightedBeta1 = [] resultsMicroBeta2 = [] resultsMacroBeta2 = [] resultsWeightedBeta2 = [] resultsLogLoss = [] resultsLogLossFinal = [] loop = 8 # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() #impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs) for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) if (toggle == 1): perm = PermutationImportance(clf, cv = None, refit = True, n_iter = 25).fit(XData, yData) permList.append(perm.feature_importances_) n_feats = XData.shape[1] PerFeatureAccuracy = [] for i in range(n_feats): scores = model_selection.cross_val_score(clf, XData.values[:, i].reshape(-1, 1), yData, cv=5) PerFeatureAccuracy.append(scores.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) else: permList.append(0) PerFeatureAccuracyAll.append(0) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) perModelPrediction.append(yPredict) # retrieve target names (class names) PerClassMetric.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True)) yPredictProb = clf.predict_proba(XData) yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro')) resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro')) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5)) resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5)) resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5)) resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1)) resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1)) resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1)) resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2)) resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2)) resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(loop,'geometric_mean_score_micro',resultsMicro) metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro) metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef) metrics.insert(loop+4,'f5_micro',resultsMicroBeta5) metrics.insert(loop+5,'f5_macro',resultsMacroBeta5) metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5) metrics.insert(loop+7,'f1_micro',resultsMicroBeta1) metrics.insert(loop+8,'f1_macro',resultsMacroBeta1) metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1) metrics.insert(loop+10,'f2_micro',resultsMicroBeta2) metrics.insert(loop+11,'f2_macro',resultsMacroBeta2) metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2) metrics.insert(loop+13,'log_loss',resultsLogLossFinal) perModelPredPandas = pd.DataFrame(perModelPrediction) perModelPredPandas = perModelPredPandas.to_json() perModelProbPandas = pd.DataFrame(perModelProb) perModelProbPandas = perModelProbPandas.to_json() PerClassMetricPandas = pd.DataFrame(PerClassMetric) del PerClassMetricPandas['accuracy'] del PerClassMetricPandas['macro avg'] del PerClassMetricPandas['weighted avg'] PerClassMetricPandas = PerClassMetricPandas.to_json() perm_imp_eli5PD = pd.DataFrame(permList) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=chi2, k='all') fit = bestfeatures.fit(XData,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(XData.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() # gather the results and send them back results.append(modelsIDs) # Position: 0 and so on results.append(parametersPerformancePerModel) # Position: 1 and so on results.append(PerClassMetricPandas) # Position: 2 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(featureScores) # Position: 5 and so on metrics = metrics.to_json() results.append(metrics) # Position: 6 and so on results.append(perModelProbPandas) # Position: 7 and so on results.append(json.dumps(perModelPredPandas)) # Position: 8 and so on return results # Sending each model's results to frontend @app.route('/data/PerformanceForEachModel', methods=["GET", "POST"]) def SendEachClassifiersPerformanceToVisualize(): response = { 'PerformancePerModel': allParametersPerformancePerModel, } return jsonify(response) def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: if (isinstance(num, float)): if np.isnan(num): pass else: final_list.append(float(num)) else: final_list.append(num) return final_list # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendBrushedParam', methods=["GET", "POST"]) def RetrieveModelsParam(): RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) counterKNN = 0 counterSVC = 0 counterGausNB = 0 counterMLP = 0 counterLR = 0 counterLDA = 0 counterQDA = 0 counterRF = 0 counterExtraT = 0 counterAdaB = 0 counterGradB = 0 global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels global algorithmsList algorithmsList = RetrieveModelsPar['algorithms'] for index, items in enumerate(algorithmsList): if (items == 'KNN'): counterKNN += 1 KNNModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'SVC'): counterSVC += 1 SVCModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'GauNB'): counterGausNB += 1 GausNBModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'MLP'): counterMLP += 1 MLPModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LR'): counterLR += 1 LRModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LDA'): counterLDA += 1 LDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'QDA'): counterQDA += 1 QDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'RF'): counterRF += 1 RFModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'ExtraT'): counterExtraT += 1 ExtraTModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'AdaB'): counterAdaB += 1 AdaBModels.append(int(RetrieveModelsPar['models'][index])) else: counterGradB += 1 GradBModels.append(int(RetrieveModelsPar['models'][index])) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] # this is if we want to change the factors before running the search #if (len(allParametersPerformancePerModel) == 0): # pass #else: global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew global metricsPerModel sumPerClassifierSel = [] sumPerClassifierSel = preProcsumPerMetric(factors) ModelSpaceMDSNew = [] ModelSpaceTSNENew = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) metricsPerModel = preProcMetricsAllAndSel() flagLocal = 0 countRemovals = 0 for l,el in enumerate(factors): if el == 0: loopThroughMetrics.drop(loopThroughMetrics.columns[[l-countRemovals]], axis=1, inplace=True) countRemovals = countRemovals + 1 flagLocal = 1 if flagLocal == 1: ModelSpaceMDSNew = FunMDS(loopThroughMetrics) ModelSpaceTSNENew = FunTsne(loopThroughMetrics) ModelSpaceTSNENew = ModelSpaceTSNENew.tolist() return 'Everything Okay' @app.route('/data/UpdateOverv', methods=["GET", "POST"]) def UpdateOverview(): ResultsUpdateOverview = [] ResultsUpdateOverview.append(sumPerClassifierSel) ResultsUpdateOverview.append(ModelSpaceMDSNew) ResultsUpdateOverview.append(ModelSpaceTSNENew) ResultsUpdateOverview.append(metricsPerModel) response = { 'Results': ResultsUpdateOverview } return jsonify(response) def PreprocessingMetrics(): dicKNN = json.loads(allParametersPerformancePerModel[6]) dicSVC = json.loads(allParametersPerformancePerModel[15]) dicGausNB = json.loads(allParametersPerformancePerModel[24]) dicMLP = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[42]) dicLDA = json.loads(allParametersPerformancePerModel[51]) dicQDA = json.loads(allParametersPerformancePerModel[60]) dicRF = json.loads(allParametersPerformancePerModel[69]) dicExtraT = json.loads(allParametersPerformancePerModel[78]) dicAdaB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[96]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatMetrics def PreprocessingPred(): dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return predictions def PreprocessingPredUpdate(Models): Models = json.loads(Models) ModelsList= [] for loop in Models['ClassifiersList']: ModelsList.append(loop) dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) listProbs = df_concatProbs.index.values.tolist() deletedElements = 0 for index, element in enumerate(listProbs): if element in ModelsList: index = index - deletedElements df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index]) deletedElements = deletedElements + 1 df_concatProbsCleared = df_concatProbs listIDsRemoved = df_concatProbsCleared.index.values.tolist() predictionsAll = PreprocessingPred() PredictionSpaceAll = FunMDS(predictionsAll) PredictionSpaceAllComb = [list(a) for a in zip(PredictionSpaceAll[0], PredictionSpaceAll[1])] predictionsSel = [] for column, content in df_concatProbsCleared.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsSel.append(el) PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])] mtx2PredFinal = [] mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb) a1, b1 = zip(*mtx2Pred) mtx2PredFinal.append(a1) mtx2PredFinal.append(b1) return [mtx2PredFinal,listIDsRemoved] def PreprocessingParam(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_params = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_params def PreprocessingParamSep(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] return [dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered] def preProcessPerClassM(): dicKNN = json.loads(allParametersPerformancePerModel[2]) dicSVC = json.loads(allParametersPerformancePerModel[11]) dicGausNB = json.loads(allParametersPerformancePerModel[20]) dicMLP = json.loads(allParametersPerformancePerModel[29]) dicLR = json.loads(allParametersPerformancePerModel[38]) dicLDA = json.loads(allParametersPerformancePerModel[47]) dicQDA = json.loads(allParametersPerformancePerModel[56]) dicRF = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[74]) dicAdaB = json.loads(allParametersPerformancePerModel[83]) dicGradB = json.loads(allParametersPerformancePerModel[92]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA =
pd.DataFrame.from_dict(dicQDA)
pandas.DataFrame.from_dict
# coding: utf-8 # --- # # _You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource._ # # --- # # Assignment 2 - Pandas Introduction # All questions are weighted the same in this assignment. # ## Part 1 # The following code loads the olympics dataset (olympics.csv), which was derrived from the Wikipedia entry on [All Time Olympic Games Medals](https://en.wikipedia.org/wiki/All-time_Olympic_Games_medal_table), and does some basic data cleaning. # # The columns are organized as # of Summer games, Summer medals, # of Winter games, Winter medals, total # number of games, total # of medals. Use this dataset to answer the questions below. # In[ ]: import pandas as pd df =
pd.read_csv('olympics.csv', index_col=0, skiprows=1)
pandas.read_csv
import sqlite3 import pandas as pd import numpy as np from pandas import Series, DataFrame #@Author: <NAME> #@Version: 1.0 #@Description: Function for show up the odds history for 2 team def getOddsHistoryByTeam(team1_id,team2_id): db_con = sqlite3.connect("database.sqlite") Liga_match_history =
pd.read_sql_query("select season,home_team_api_id,away_team_api_id,B365H,B365D,B365A from Match where home_team_api_id= %s and away_team_api_id= %s" % (team1_id,team2_id), db_con)
pandas.read_sql_query
import os import numpy as np import pandas as pd import shap import json from ngboost import NGBRegressor from ngboost.distns import Normal from ngboost.learners import default_tree_learner from ngboost.scores import MLE, LogScore from classes.inputs_gatherer import InputsGatherer class FeaturesAnalyzer: """ Given a dataset composed of features on the columns and days on the rows of a pandas df, this class computes the best features and their importance """ def __init__(self, inputs_gatherer, forecast_type, cfg, logger): """ Constructor :param inputs_gatherer: Inputs Gatherer :type inputs_gatherer: InputsGatherer :param forecast_type: Forecast type (MOR | EVE) :type forecast_type: str :param cfg: FTP parameters for the files exchange :type cfg: dict :param logger: Logger :type logger: Logger object """ # set the variables self.inputs_gatherer = inputs_gatherer self.forecast_type = forecast_type self.cfg = cfg self.logger = logger self.dataFrames = None self.output_folder_name = None self.current_name = None self.nan_features = None def dataset_creator(self): """ Build the datasets according to the instructions in the config file in the datasetSettings section """ self.inputs_gatherer.dataframe_builder_regions() def update_datasets(self, name, output_dfs, target_columns): """ Initialize folders and add metadata to container of datasets """ folder_path = self.inputs_gatherer.output_folder_creator(name) file_path_df = folder_path + folder_path.split(os.sep)[1] + '_dataset.csv' if not os.path.isfile(file_path_df): self.logger.error('File %s does not exist' % file_path_df) tmp_df =
pd.read_csv(file_path_df)
pandas.read_csv
# !/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Bruce_H_Cottman" __license__ = "MIT License" from typing import List, Union, Hashable # any, # Callable, # Dict, # , # Iterable, # Set, # Tuple, import numpy as np import pandas as pd import re import unicodedata # rom pandas.util._validators import validate_bool_kwarg from matplotlib import pyplot as plt import seaborn as sns import warnings # import pandas_flavor as pf warnings.filterwarnings("ignore") from sklearn.impute import SimpleImputer # paso import from paso.base import _Check_No_NA_Values, _array_to_string from paso.base import _dict_value, _check_non_optional_kw from paso.base import DataFrame_to_Xy, Xy_to_DataFrame from paso.base import pasoFunction, pasoDecorators, raise_PasoError from paso.base import _must_be_list_tuple_int, _merge_dicts from paso.base import register_DataFrame_method from loguru import logger class Imputers(pasoFunction): """ Class to impute NaM from dataset. Encoding and scaling and other data-set preprocessing should not be done here. description_file: project: HPKinetics/paso #[optional] verbose: True #[optional] inplace: True #[optional] kind: <strategy>: description: "most_frequent value of feature is used for all NaN values" genus: Imputer #[optional] type: all-types strategy: (list) _imputers_: substituting np.nan with strategy keywords. class global given below Note: Impute before other cleaning and encoding, These steps all expect that NaNs have been removed. Use method Cleaners.Values_to_nan() beforehand to change ant incatitot values to NaN. """ _imputer_type_supported_ = ("numeric", "all") _imputer_simple_stategies_ = { "median": "median", "mean": "mean", "most_frequent": "most_frequent", "random": "random", } _imputer_advanced_stategies_ = {"knn": "knn", "mice": "mice"} _imputers_ = _merge_dicts(_imputer_advanced_stategies_, _imputer_simple_stategies_) @pasoDecorators.InitWrap() def __init__(self, **kwargs) -> None: """ Keywords: description_file: Returns: instance of class imputer """ super().__init__() @staticmethod def imputers() -> List[str]: """ Parameters: None Returns: List of available class inputers names. """ return [k for k in Imputers._imputers_.keys()] @pasoDecorators.TTWrap(array=False, _Check_No_NAs=False) def transform( self, X: pd.DataFrame, verbose: bool = True, inplace: bool = True, features: List[str] = None, ) -> pd.DataFrame: """ method to transform dataset by imputing NaN values. Encoding and scaling and other data-set preprocessing should not be done here. Parameters: X: dataset Keywords: features: default: None None: do all features (columns) in X [a,b....z] do only features liseted inplace: True: mutate X, return X False: do no change X, return X.copy() type: any to be laced with np.NaN verbose: True: output False: silent Returns: X or X.copy - see inplace """ # todo pull datatypes automatically, just numericall and all?? # todo support other data types besides i.e. most_frequent can support # cat/object/string if na # todo incorporate this A Comparison of Six Methods for Missing Data Imputation # https://www.omicsonline.org/open-access/a-comparison-of-six-methods-for-missing-data-imputation-2155-6180-1000224.pdf # https://impyute.readthedocs.io/en/master/index.html # todo checking passed arguments types are correct # enforce order of method calls # currently support only one learner, very brittle parser if self.kind == {}: raise_PasoError( "keyword kind must be present at top level:{}:".format( self.ontology_kwargs ) ) if self.kind_name not in Imputers._imputers_: raise_PasoError( "no operation named: {} in imputers;: {}".format( self.kind_name, Imputers._imputers_.keys() ) ) if self.inplace: nX = X else: nX = X.copy() if features == None: features = nX.columns logger.warning( "\nKeyword arg:features: not passed. All features of dataset will be checked for imputation\n{}".format( features ) ) else: pass ## some of features not in columns if not len(set(features).difference(set(self.Xcolumns))) == 0: raise_PasoError( "\nfeature given {} not in \ndataset columns:{}".format( features, nX.columns ) ) self.imputer_name = self.kind_name # check each attirbute for all nand for feature in features: if nX[feature].nunique() <= 1: raise_PasoError( "Impute.transform: 1 or less unique values: {}.\n Remove this feature before calling Impute.".format( nX[feature].unique() ) ) if self.kind_name in Imputers._imputer_simple_stategies_: # assume target does not have missung values # todo handling target rows with missing values # with simple row elimination? The idea being you should not try to predict missing values? imputer = SimpleImputer(strategy=self.kind_name) imputer.fit(nX[features]) nX[features] = imputer.transform(nX[features]) elif self.kind_name in Imputers._imputer_advanced_stategies_: self.imputer = Imputers._imputer_advanced_stategies_[self.imputer_name]( **self.kind_name_kwargs ) y = None # todo fix _imputer_advanced_stategies_ self.imputer.fit(nX, y) self.imputer_type = self.type nX[features] = self.imputer.transform(nX[features]) return nX @register_DataFrame_method def paso_impute( X: pd.DataFrame, class_instance: Imputers, features: List[str] = None, inplace: bool = True, verbose: bool = True, ) -> pd.DataFrame: """ method to transform dataset by imputing NaN values. Encoding and scaling and other data-set preprocessing should not be done here. Parameters: X: dataset Keywords: class_instance: target: inplace: True: mutate X, return X False: do no change X, return X.copy() type: any to be laced with np.NaN verbose: True: output False: silent Returns: X or X.copy - see inplace """ if inplace: nX = X else: nX = X.copy() return class_instance.transform( nX, features=features, inplace=True, verbose=verbose ) class Cleaners(pasoFunction): """ The class of data cleaners. """ _statistics = [ "kurt", "mad", "max", "mean", "median", "min", "sem", "skew", "sum", "std", "var", "nunique", "all", ] col_name_NaN_ratio = "NaN_ratio" ####### 1 @register_DataFrame_method def paso_values_to_nan(*args, **kwargs) -> pd.DataFrame: return values_to_nan(*args, **kwargs) def values_to_nan( X: pd.DataFrame, values: List[str] = [], inplace: bool = True, verbose: bool = True ) -> pd.DataFrame: """ Different values can indicate, a value is missing. For example, - ``999`` could mean "did not answer" in some features. - ``NA`` could mean not-applicable for this feature/record. - ``-1`` could mean missing for this feature/record-1could mean missing for this feature/record`. and so on. Parameters: X: dataset values: inplace: True: 0mutate X, return X False: do no change X, return X.copy() verbose: True: output False: silent Returns: , X or X.copy - see inplace """ values = _must_be_list_tuple_int(values) if values == []: return X y = X.replace(to_replace=values, value=np.nan, inplace=inplace) if verbose: logger.info("Values_to_nan {}".format(str(values))) if inplace: return X else: return y # .reoplace accommplishes the inplace # ########## 2 @register_DataFrame_method def paso_calculate_NaN_ratio(*args, **kwargs) -> pd.DataFrame: return calculate_NaN_ratio(*args, **kwargs) def calculate_NaN_ratio( X: pd.DataFrame, axis=1, inplace: bool = True, verbose: bool = True ) -> [pd.DataFrame, pd.DataFrame]: """ For a row with a large ratio of missing values (an observation) renders it statistically irrelevant. However, the row is not removed. instead the nulls/total_feature_count is calculated for each row and a new feature ``NA_ratio``is added to the returned **pandas** DataFrame. Note: Detecting and correcting for missing and outlier (good or bad) values is an evolving area of research. Parameters: X: dataset Keywords: axis : {0 or ‘index’, 1 or ‘columns’} Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’). inplace: True: mutate X, return X False: do no change X, return X.copy() type: any to be laced with np.NaN verbose: True: output False: silent Returns: X or X.copy - see inplace Returns: axis = 0 pd.DataFrame n_row axis = 1 pd.DataFrame n_column """ total_row_count = X.shape[0] total_feature_count = X.shape[1] if verbose: logger.info("Calculate_NA_ratio") if axis == 1: features = X.columns column_mvr = pd.DataFrame(columns=features) for feature in features: r = 1 - X[feature].count() / total_row_count column_mvr.at[0, feature] = r if inplace: if axis == 0: X[Cleaners.col_name_NaN_ratio] = 1 - X.count(axis=1) / total_feature_count return X elif axis == 1: return column_mvr else: if axis == 0: y = copy.deepcopy(X) return y if axis == 1: return column_mvr ############## 3 @register_DataFrame_method def paso_delete_NA_Features(*args, **kwargs) -> pd.DataFrame: return delete_NA_Features(*args, **kwargs) def delete_NA_Features( X: pd.DataFrame, threshold: List = [], axis: int = 0, inplace: bool = True, verbose: bool = True, ) -> pd.DataFrame: if inplace: y = X else: y = X.copy() if axis == 0: # r_mvr, drop rows y = calculate_NaN_ratio(y, inplace=inplace, verbose=verbose, axis=axis) return y[y[Cleaners.col_name_NaN_ratio] < threshold] elif axis == 1: # drop features/columns column_mvr = calculate_NaN_ratio(y, inplace=inplace, verbose=verbose, axis=axis) for feature in y.columns: if column_mvr.at[0, feature] >= threshold: y.drop([feature], inplace=True, axis=1) return y else: raise_PasoError( "{} axis can be 0 ot 1 was:{}".format("column_missing_value_ratio", axis) ) ########## 4 @register_DataFrame_method def paso_delete_Duplicate_Features(*args, **kwargs) -> pd.DataFrame: return delete_Duplicate_Features(*args, **kwargs) def delete_Duplicate_Features( X: pd.DataFrame, features: List[str] = [], inplace: bool = True, verbose: bool = True, ) -> pd.DataFrame: """ If a feature has the same values by index as another feature then one of those features should be deleted. The duplicate feature is redundant and will have no predictive power.  Duplicate features are quite common as an enterprise's database or data lake ages and different data sources are added. Parameters: X: dataset Keywords: features: (default: None) None: do all NOT features (columns) in X [a,b....z] do only features listed inplace: True: mutate X, return X False: do no change X, return X.copy() type: any to be laced with np.NaN verbose: True: output False: silent Returns: X or X.copy - see inplace """ _Check_No_NA_Values(X) equal = {} for nth, f in enumerate(X.columns[0:-1]): if f in features: break # the twisted logic below is for speed. most values are ne for mth, g in enumerate(X.columns[nth + 1 :]): if (X[f].values != X[g].values).any(): pass elif g not in equal: equal[g] = 1 drop_list = list(equal.keys()) if len(drop_list) > 0: y = X.drop(columns=drop_list, inplace=True, index=1) if verbose: logger.info("Duplicate_Features_Removed: {}".format(str(drop_list))) if inplace: return X else: return y ########## 5 @register_DataFrame_method def paso_delete_Features_with_Single_Unique_Value(*args, **kwargs) -> pd.DataFrame: return delete_Features_with_Single_Unique_Value(*args, **kwargs) def delete_Features_with_Single_Unique_Value( X: pd.DataFrame, features: List[str] = [], inplace: bool = True, verbose: bool = True, ) -> pd.DataFrame: """ This method finds all the features which have only one unique value. The variation between values is zero. All these features are removed from the DataFrame as they have no predictive ability. Parameters: X: dataset Keywords: features: (default: None) None: do all NOT features (columns) in X [a,b....z] do only features listed inplace: , True: mutate X, return X False: do no change X, return X.copy() type: any to be laced with np.NaN verbose: True: output False: silent Returns: X or X.copy - see inplace """ _Check_No_NA_Values(X) efs = [] n = 0 for f in X.columns: if f in features: pass # weirdness where df has # 2 or more features with same name # len(df[f].squeeze().shape) == 1) and elif X[f].nunique() == 1: efs.append(f) n += 1 if n > 0: if verbose: logger.info("Eliminate_Single_Unique_Value_Features {}".format(str(efs))) for f in efs: y = X.drop(f, inplace=inplace, axis=1) if inplace: return X else: return y # 5nb. @register_DataFrame_method def paso_delete_Features_with_All_Unique_Values(*args, **kwargs) -> pd.DataFrame: return delete_Features_with_All_Unique_Values(*args, **kwargs) def delete_Features_with_All_Unique_Values( X: pd.DataFrame, features: List[str] = [], inplace: bool = True, verbose: bool = True, ) -> pd.DataFrame: """ This method finds all the features where every value is s unique value, whose unique count equals value count. All these features are removed from the DataFrame as they have no predictive ability. Parameters: X: dataset Keywords: features: (default: None) None: do all NOT features (columns) in X [a,b....z] do only features listed inplace: True: mutate X, return X False: do no change X, return X.copy() type: any to be laced with np.NaN verbose: True: output False: silent Returns: X or X.copy - see inplace Note: All NaN imputed or removed. """ _Check_No_NA_Values(X) efs = [] n = 0 for f in X.columns: if f in features: pass # weirdness where df has # 2 or more features with same name # len(df[f].squeeze().shape) == 1) and elif X[f].nunique() == X[f].count(): efs.append(f) n += 1 if n > 0: if verbose: logger.info("delete_Features_with_All_Unique_Values {}".format(str(efs))) for f in efs: y = X.drop(f, inplace=inplace, axis=1) if inplace: return X else: return y ########## 6.a @register_DataFrame_method def paso_statistics(*args, **kwargs) -> pd.DataFrame: return statistics(*args, **kwargs) def statistics() -> List[str]: """ List of all statistic terms available. The term "all" triggers calculation of all statistics. Returns: List[str] """ return [k for k in Cleaners._statistics] ############ 6.b @register_DataFrame_method def paso_feature_Statistics(*args, **kwargs) -> pd.DataFrame: return feature_Statistics(*args, **kwargs) def feature_Statistics( X: pd.DataFrame, statistics: str = "all", concat: bool = True, axis: int = 0, inplace: bool = True, verbose: bool = True, ) -> pd.DataFrame: # todo row statistics """ Calculate the statistics of each feature and returns a DataFrame where each row is that statistic. This method can be used as an diagnostic tool (concat = False) to decide if the sd or any other statistic is too small and thus will have low predictive power. It can also added onto the dataset (concat=True). When the target feature removed, each statistic helps desrcibe the distribution ot the feature (or row). This will only make sense for those features whose values are numeric. Parameters: X: dataset Keywords: statistics: Must be 'all'or a list of symbols in Cleaners._statistics concat: if concat is True, ten the statistics is concated to right (or bottom) of the DataFrame is returned axis : int {0 or ‘rows’, 1 or ‘columns’) Whether to calculate statistics for the rows (0) or columns (1). inplace: True: mutate X, return X False: do no change X, return df-stats verbose: True: output False: silent Returns: axis = 0 pd.DataFrame n_row (concat on right) axis = 1 pd.DataFrame n_column (concat on bottom) Note: All NaN values should be imputed or removed. Including target will cause leakage of ground truth into test. Statistics only make sense when all vales are scaled. """ # work around automated review complaint if inplace: y = X else: y = X.copy() _Check_No_NA_Values(X) _must_be_list_tuple_int(statistics) if "all" in statistics: statistics = Cleaners._statistics[:-1] tmp_statistics = [] for stat in statistics: if stat in Cleaners._statistics[:-1]: tmp_statistics.append(stat) else: raise_PasoError( "\n One of {}\n is unknown statistic from the list of accepted statistics\n{}".format( statistics, Cleaners._statistics[:-1] ) ) statistics = tmp_statistics if verbose: logger.info("Features_Statistics {}".format(statistics)) # by column stats if axis == 1: column_stats = pd.DataFrame() for stat in statistics: m = eval("X." + stat + "(axis=1)") column_stats = pd.concat([column_stats, m], axis=1) column_stats.columns = statistics if concat: return pd.concat([y, column_stats], axis=1) else: return column_stats # by row stats elif axis == 0: s =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon May 27 11:13:15 2019 @author: jkern """ from __future__ import division import pandas as pd import numpy as np from datetime import datetime import matplotlib.pyplot as plt def hydro(sim_years): ######################################################################### # This purpose of this script is to use synthetic streamflows at major California # reservoir sites to simulate daily hydropower production for the PG&E and SCE # zones of the California electricty market (CAISO), using parameters optimized # via a differential evolution algorithm. ######################################################################### # load California storage reservoir (ORCA) sites df_sites = pd.read_excel('CA_hydropower/sites.xlsx',sheet_name = 'ORCA',header=0) ORCA_sites = list(df_sites) # load upper generation amounts for each predicted hydropower dam (PG&E and SCE) upper_gen = pd.read_excel('CA_hydropower/upper.xlsx',header =0) # month-day calender calender = pd.read_excel('CA_hydropower/calender.xlsx',header=0) # load simulated full natural flows at each California storage reservoir (ORCA site) df_sim = pd.read_csv('Synthetic_streamflows/synthetic_streamflows_CA.csv',header=0,index_col=0) df_sim = df_sim.loc[0:(sim_years+3)*365,:] # load simulated outflows calculated by ORCA df_ORCA = pd.read_csv('ORCA_output.csv') outflow_sites = ['SHA_otf','ORO_otf','YRS_otf','FOL_otf','NML_otf','DNP_otf','EXC_otf','MIL_otf','ISB_otf','SUC_otf','KWH_otf','PFT_otf'] for i in range(0,len(df_ORCA)): for s in outflow_sites: df_sim.loc[i,s] = df_ORCA.loc[i,s] sim_years = sim_years+3 #Add month and day columns to the dataframe Month = [] Day = [] count = 0 for i in range(0,len(df_sim)): if count < 365: Month = np.append(Month,calender.loc[count,'Month']) Day = np.append(Day,calender.loc[count,'Day']) count = count + 1 else: count = 0 Month = np.append(Month,calender.loc[count,'Month']) Day = np.append(Day,calender.loc[count,'Day']) count = count + 1 df_sim['Month']=Month df_sim['Day']=Day # calculate simulated totals Sim_totals = [] for i in range(0,sim_years): sample = df_sim.loc[i*365:i*365+365,'ORO_fnf':'ISB_fnf'] total = np.sum(np.sum(sample)) Sim_totals = np.append(Sim_totals,total) # load historical full natural flows for 2001, 2005, 2010 and 2011 df_hist = pd.read_excel('CA_hydropower/hist_reservoir_inflows.xlsx',header=0) Hist_totals = [] Hist_years = [2001,2005,2010,2011] for i in Hist_years: sample = df_hist[df_hist['year'] == i] sample = sample.loc[:,'ORO_fnf':'ISB_fnf'] total = np.sum(np.sum(sample)) Hist_totals = np.append(Hist_totals,total) # find most similar historical year for each simulated year Rule_list=[] for i in range(0,sim_years): Difference=abs(Sim_totals[i]- Hist_totals) #Select which rule to use for n in range(0,len(Hist_years)): if Difference[n]==np.min(Difference): Rule=n Rule_list.append(Rule) # PGE hydro projects PGE_names = pd.read_excel('CA_hydropower/sites.xlsx',sheet_name ='PGE',header=0) PGE_dams = list(PGE_names.loc[:,'Balch 1':]) PGE_Storage=[PGE_dams[3],PGE_dams[7],PGE_dams[8],PGE_dams[9]] PGE_No_Data_Dams=[PGE_dams[2],PGE_dams[4],PGE_dams[10],PGE_dams[11],PGE_dams[15],PGE_dams[16],PGE_dams[17],PGE_dams[26],PGE_dams[30],PGE_dams[38],PGE_dams[39],PGE_dams[55],PGE_dams[60],PGE_dams[65]] ## SCE hydro projects SCE_names = pd.read_excel('CA_hydropower/sites.xlsx',sheet_name ='SCE',header=0) SCE_dams = list(SCE_names.loc[:,'Big_Creek_1 ':]) SCE_No_Data_Dams=[SCE_dams[7],SCE_dams[8],SCE_dams[12]] #Simulate all the PGE inflow dams check_unused = [] PGE_name_list = [] SCE_name_list = [] for name in PGE_dams: est_power = [] for year in range(0,sim_years): if name in PGE_No_Data_Dams: pass elif name in PGE_Storage: # which operating rule to use? Rule=Rule_list[year] File_name='CA_hydropower/A1.0_FNF_Storage_Rule_' + str(name) +'.txt' Temp_Rule=
pd.read_csv(File_name,delimiter=' ',header=None)
pandas.read_csv
import gsum as gm import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.patches import Patch from sklearn.gaussian_process.kernels import RBF, WhiteKernel from stats_utils import * from matter import * import seaborn as sns import time from os import path mpl.rcParams['text.usetex'] = True mpl.rcParams['figure.dpi'] = 150 mpl.rcParams['font.family'] = 'serif' mpl.rc('savefig', transparent=False, bbox='tight', pad_inches=0.05, format='pdf') df = pd.read_csv('../data/all_matter_data.csv') # Convert differences to total prediction at each MBPT order mbpt_orders = ['Kin', 'MBPT_HF', 'MBPT_2', 'MBPT_3', 'MBPT_4'] df[mbpt_orders] = df[mbpt_orders].apply(np.cumsum, axis=1) # 'total' is now unnecessary. Remove it. df.pop('total') orders = np.array([0, 2, 3, 4]) # body = 'NN-only' body = 'NN+3N' Lambda = 450 info_list = [] from itertools import product for body, Lambda in product(['NN+3N', 'NN-only'], [450, 500]): fits = {450: [1, 7], 500: [4, 10]} train1 = slice(None, None, 5) valid1 = slice(2, None, 5) # valid1 = np.array([i % 5 != 0 for i in range(len())]) [fit_n2lo, fit_n3lo] = fits[Lambda] savefigs = True Lb = 600 breakdown_min = 300 breakdown_max = 1000 breakdown_num = 100 Lb_vals = np.linspace(breakdown_min, breakdown_max, breakdown_num) Lb_logprior_vals = Lb_logprior(Lb_vals) ls_min = 0.1 ls_max = 1.5 ls_num = 50 ls_vals = np.linspace(ls_min, ls_max, ls_num) # ls_min = ls_max = ls_num = ls_vals = None nugget = 1e-4 kernel1 = RBF(length_scale=1, length_scale_bounds=(5e-2, 4)) + \ WhiteKernel(noise_level=nugget, noise_level_bounds='fixed') # kernel1 = RBF(length_scale=1, length_scale_bounds=(1e-2, 100)) + \ # WhiteKernel(noise_level=nugget, noise_level_bounds='fixed') kernel1_theta = kernel1.theta ref1 = 16 hyperparams = dict( center=0, disp=0, df=1, scale=1 ) mask_fit = np.isin(df['fit'], fits[Lambda]) | np.isnan(df['fit']) mask1 = \ (df['Body'] == body) & \ mask_fit & \ (df['Lambda'] == Lambda) # df_fit = df[mask_fit] df_n = df[mask1 & (df['x'] == 0)] df_s = df[mask1 & (df['x'] == 0.5)] kf_n = df_n[df_n['OrderEFT'] == 'LO']['kf'].values kf_s = df_s[df_s['OrderEFT'] == 'LO']['kf'].values density = df_n[df_n['OrderEFT'] == 'LO']['n'].values kf_d = kf_n.copy() # valid1 = np.arange(len(kf_n)) % 5 != 0 Kf_n = kf_n[:, None] Kf_s = kf_s[:, None] Kf_d = kf_d[:, None] y1_n = np.array([df_n[df_n['OrderEFT'] == order]['MBPT_4'].values for order in df_n['OrderEFT'].unique()]).T y1_s = np.array([df_s[df_s['OrderEFT'] == order]['MBPT_4'].values for order in df_s['OrderEFT'].unique()]).T y1_d = y1_n - y1_s fig_path = 'new_figures' analysis_n = MatterConvergenceAnalysis( X=Kf_n, y=y1_n, orders=orders, train=train1, valid=valid1, ref=ref1, ratio='kf', density=density, kernel=kernel1, system='neutron', fit_n2lo=fit_n2lo, fit_n3lo=fit_n3lo, Lambda=Lambda, body=body, savefigs=savefigs, fig_path=fig_path, **hyperparams ) analysis_s = MatterConvergenceAnalysis( X=Kf_s, y=y1_s, orders=orders, train=train1, valid=valid1, ref=ref1, ratio='kf', density=density, kernel=kernel1, system='symmetric', fit_n2lo=fit_n2lo, fit_n3lo=fit_n3lo, Lambda=Lambda, body=body, savefigs=savefigs, fig_path=fig_path, **hyperparams ) analysis_d = MatterConvergenceAnalysis( X=Kf_d, y=y1_d, orders=orders, train=train1, valid=valid1, ref=ref1, ratio='kf', density=density, kernel=kernel1, system='difference', fit_n2lo=fit_n2lo, fit_n3lo=fit_n3lo, Lambda=Lambda, body=body, savefigs=savefigs, fig_path=fig_path, **hyperparams ) t_start = time.time() analysis_n.setup_posteriors( breakdown_min=breakdown_min, breakdown_max=breakdown_max, breakdown_num=breakdown_num, ls_min=ls_min, ls_max=ls_max, ls_num=ls_num, max_idx=[2, 3], logprior=None ) analysis_s.setup_posteriors( breakdown_min=breakdown_min, breakdown_max=breakdown_max, breakdown_num=breakdown_num, ls_min=ls_min, ls_max=ls_max, ls_num=ls_num, max_idx=[2, 3], logprior=None ) analysis_d.setup_posteriors( breakdown_min=breakdown_min, breakdown_max=breakdown_max, breakdown_num=breakdown_num, ls_min=ls_min, ls_max=ls_max, ls_num=ls_num, max_idx=[2, 3], logprior=None ) print(time.time() - t_start) df_Lb_pdf_all = analysis_n.df_breakdown.copy() df_Lb_pdf_all['pdf'] = analysis_n.df_breakdown['pdf'] * analysis_s.df_breakdown['pdf'] * analysis_d.df_breakdown['pdf'] df_Lb_pdf_all['system'] = 'All' def dict_to_str(d): s = '' for key, value in d.items(): s += f'{key}-{value}_' s = s.replace('.', 'p') return s[:-1] fig, ax = plt.subplots(figsize=(3.4, 4.4)) df_Lb_pdf = pd.concat([analysis_n.df_breakdown, analysis_s.df_breakdown, analysis_d.df_breakdown, df_Lb_pdf_all]) ax = pdfplot( x=r'$\Lambda_b$ (MeV)', y='system', pdf='pdf', data=df_Lb_pdf, hue='Order', order=[r'$E/N$', r'$E/A$', r'$S_2$', 'All'], hue_order=[r'N$^2$LO', r'N$^3$LO'], cut=1e-2, linewidth=1, palette="coolwarm", saturation=1., ax=ax, margin=0.3, ) ax.set_xlim(0, 1200) ax.set_xticks([0, 300, 600, 900, 1200]) ax.grid(axis='x') ax.set_axisbelow(True) if savefigs: name = analysis_n.figure_name( 'Lb_pdfs_', breakdown=(breakdown_min, breakdown_max, breakdown_num), include_system=False, ls=(ls_min, ls_max, ls_num), ) fig.savefig( name ) info = analysis_n.model_info() name = path.relpath(name, analysis_n.fig_path) info['name'] = name info_list.append(info) df_ls_pdf =
pd.concat([analysis_n.df_ls, analysis_s.df_ls, analysis_d.df_ls])
pandas.concat
#!/usr/bin/env python # # Script for 5' assignment of 5'P-Seq data # input is BAM file must contain NH tag # reads with the tag NH:i:1 only included # output 1: raw counts in *_iv.h5 - single indexed # output 2: normalised RPM in _idx_iv.h5 - double indexed # __author__ = "<NAME>" __copyright__ = "Copyright 2020" __version__ = "0.1.2" __email__ = "<EMAIL>" __status__ = "beta" import re import sys import pysam import argparse import pandas as pd from collections import Counter parser = argparse.ArgumentParser(description="five prime assinment of 5'P-Seq data" ) parser.add_argument('-i', type=str, help='aligned_sorted.bam') args = parser.parse_args() sys.stderr.write("\n\ -i input : {}\n\n".format(args.i)) usage = 'python fivePassignment.py -i aligned_sorted.bam"' if args.i==None: sys.exit("\n usage:\n\t{}\n".format(usage)) raw_out = False # bool # output file name from infilename f = re.sub(r'_sorted.bam', '', re.sub(r'.*\/', '', args.i)) outf_raw_hdf = "{}_raw_iv.h5".format(f) outf_rpm_hdf = "{}_rpm_iv.h5".format(f) outf_idx_hdf = "{}_idx_iv.h5".format(f) def yeastChr(): # Ordered yeast Chr list short names from ensembl return ['I','II','III','IV','V','VI','VII','VIII','IX','X','XI','XII','XIII','XIV','XV','XVI','Mito'] def update_df(df, Chr, strand): df.fillna(0, inplace=True) columns = list(df.columns) columns = ["Chr", "Position", "Strand"] + columns df["Chr"] = Chr df["Strand"] = strand df["Position"] = df.index return df[columns] def restructurate_hd5(infile, outfile, close_outfile=True): """ infile.h5 keys - "/For_raw", "/Rev_raw", ... outfile.h2 keys - "/For_raw/I", "/For_raw/II", ... etc "Position" is set to index :param infile: :param outfile: :return: reindexed 2 level hdf """ # open inp_HDF inp__h5 = pd.HDFStore(infile, "r") outp_h5 =
pd.HDFStore(outfile, complevel=5, complib="zlib", mode="w")
pandas.HDFStore
import os import requests from time import sleep, time import pandas as pd from polygon import RESTClient from dotenv import load_dotenv, find_dotenv from FileOps import FileReader, FileWriter from TimeMachine import TimeTraveller from Constants import PathFinder import Constants as C class MarketData: def __init__(self): load_dotenv(find_dotenv('config.env')) self.writer = FileWriter() self.reader = FileReader() self.finder = PathFinder() self.traveller = TimeTraveller() self.provider = 'iexcloud' def get_indexer(self, s1, s2): return list(s1.intersection(s2)) def try_again(self, func, **kwargs): retries = (kwargs['retries'] if 'retries' in kwargs else C.DEFAULT_RETRIES) delay = (kwargs['delay'] if 'delay' in kwargs else C.DEFAULT_DELAY) func_args = {k: v for k, v in kwargs.items() if k not in { 'retries', 'delay'}} for retry in range(retries): try: return func(**func_args) except Exception as e: if retry == retries - 1: raise e else: sleep(delay) def get_symbols(self): # get cached list of symbols symbols_path = self.finder.get_symbols_path() return list(self.reader.load_csv(symbols_path)[C.SYMBOL]) def get_dividends(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_dividends_path(symbol, self.provider)) filtered = self.reader.data_in_timeframe(df, C.EX, timeframe) return filtered def standardize(self, df, full_mapping, filename, columns, default): mapping = {k: v for k, v in full_mapping.items() if k in df} df = df[list(mapping)].rename(columns=mapping) time_col, val_cols = columns[0], columns[1:] if time_col in df and set(val_cols).issubset(df.columns): df = self.reader.update_df( filename, df, time_col).sort_values(by=[time_col]) # since time col is pd.datetime, # consider converting to YYYY-MM-DD str format for val_col in val_cols: df[val_col] = df[val_col].apply( lambda val: float(val) if val else default) return df def standardize_dividends(self, symbol, df): full_mapping = dict( zip( ['exDate', 'paymentDate', 'declaredDate', 'amount'], [C.EX, C.PAY, C.DEC, C.DIV] ) ) filename = self.finder.get_dividends_path(symbol, self.provider) return self.standardize( df, full_mapping, filename, [C.EX, C.DIV], 0 ) def save_dividends(self, **kwargs): # given a symbol, save its dividend history symbol = kwargs['symbol'] filename = self.finder.get_dividends_path(symbol, self.provider) if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_dividends(**kwargs), C.EX, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def get_splits(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_splits_path(symbol, self.provider)) filtered = self.reader.data_in_timeframe(df, C.EX, timeframe) return filtered def standardize_splits(self, symbol, df): full_mapping = dict( zip( ['exDate', 'paymentDate', 'declaredDate', 'ratio'], [C.EX, C.PAY, C.DEC, C.RATIO] ) ) filename = self.finder.get_splits_path(symbol, self.provider) return self.standardize( df, full_mapping, filename, [C.EX, C.RATIO], 1 ) def save_splits(self, **kwargs): # given a symbol, save its splits history symbol = kwargs['symbol'] filename = self.finder.get_splits_path(symbol, self.provider) if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_splits(**kwargs), C.EX, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_ohlc(self, symbol, df, filename=None): full_mapping = dict( zip( ['date', 'open', 'high', 'low', 'close', 'volume', 'average', 'trades'], [C.TIME, C.OPEN, C.HIGH, C.LOW, C.CLOSE, C.VOL, C.AVG, C.TRADES] ) ) filename = filename or self.finder.get_ohlc_path(symbol, self.provider) df = self.standardize( df, full_mapping, filename, [C.TIME, C.OPEN, C.HIGH, C.LOW, C.CLOSE], 0 ) for col in [C.VOL, C.TRADES]: if col in df: df[col] = df[col].apply( lambda val: 0 if pd.isnull(val) else int(val)) return df def get_ohlc(self, symbol, timeframe='max'): df = self.reader.load_csv( self.finder.get_ohlc_path(symbol, self.provider)) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe) return filtered def save_ohlc(self, **kwargs): symbol = kwargs['symbol'] filename = self.finder.get_ohlc_path(symbol, self.provider) if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_ohlc(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def get_social_sentiment(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_sentiment_path(symbol)) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.POS, C.NEG]] return filtered def get_social_volume(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_sentiment_path(symbol)) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.VOL, C.DELTA]] return filtered def save_social_sentiment(self, **kwargs): # # given a symbol, save its sentiment data symbol = kwargs['symbol'] filename = self.finder.get_sentiment_path(symbol) if os.path.exists(filename): os.remove(filename) sen_df = self.reader.update_df( filename, self.get_social_sentiment(**kwargs), C.TIME) sen_df = sen_df[self.get_indexer( {C.TIME, C.POS, C.NEG}, sen_df.columns)] vol_df = self.reader.update_df( filename, self.get_social_volume(**kwargs), C.TIME) vol_df = vol_df[self.get_indexer( {C.TIME, C.VOL, C.DELTA}, vol_df.columns)] if sen_df.empty and not vol_df.empty: df = vol_df elif not sen_df.empty and vol_df.empty: df = sen_df elif not sen_df.empty and not vol_df.empty: df = sen_df.merge(vol_df, how="outer", on=C.TIME) else: return self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_sentiment(self, symbol, df): full_mapping = dict( zip( ['timestamp', 'bullish', 'bearish'], [C.TIME, C.POS, C.NEG] ) ) filename = self.finder.get_sentiment_path(symbol, self.provider) df = self.standardize( df, full_mapping, filename, [C.TIME, C.POS, C.NEG], 0 ) return df[self.get_indexer({C.TIME, C.POS, C.NEG}, df.columns)] def standardize_volume(self, symbol, df): full_mapping = dict( zip( ['timestamp', 'volume_score', 'volume_change'], [C.TIME, C.VOL, C.DELTA] ) ) filename = self.finder.get_sentiment_path(symbol, self.provider) df = self.standardize( df, full_mapping, filename, [C.TIME, C.VOL, C.DELTA], 0 ) return df[self.get_indexer({C.TIME, C.VOL, C.DELTA}, df.columns)] def get_intraday(self, symbol, min=1, timeframe='max', extra_hrs=False): # implement way to transform 1 min dataset to 5 min data # or 30 or 60 should be flexible soln # implement way to only get market hours # given a symbol, return a cached dataframe dates = self.traveller.dates_in_range(timeframe) for date in dates: df = self.reader.load_csv( self.finder.get_intraday_path(symbol, date, self.provider)) yield self.reader.data_in_timeframe(df, C.TIME, timeframe) def save_intraday(self, **kwargs): symbol = kwargs['symbol'] dfs = self.get_intraday(**kwargs) filenames = [] for df in dfs: date = df[C.TIME].iloc[0].strftime(C.DATE_FMT) filename = self.finder.get_intraday_path( symbol, date, self.provider) if os.path.exists(filename): os.remove(filename) save_fmt = f'{C.DATE_FMT} {C.TIME_FMT}' df = self.reader.update_df( filename, df, C.TIME, save_fmt) self.writer.update_csv(filename, df) if os.path.exists(filename): filenames.append(filename) return filenames def get_unemployment_rate(self, timeframe='max'): # given a timeframe, return a cached dataframe df = self.reader.load_csv( self.finder.get_unemployment_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe) return filtered def standardize_unemployment(self, df): full_mapping = dict( zip( ['time', 'value'], [C.TIME, C.UN_RATE] ) ) filename = self.finder.get_unemployment_path() return self.standardize( df, full_mapping, filename, [C.TIME, C.UN_RATE], 0 ) def save_unemployment_rate(self, **kwargs): # given a symbol, save its dividend history filename = self.finder.get_unemployment_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_unemployment_rate(**kwargs), C.TIME, '%Y-%m') self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_s2f_ratio(self, df): full_mapping = dict( zip( ['t', 'o.daysTillHalving', 'o.ratio'], [C.TIME, C.HALVING, C.RATIO] ) ) filename = self.finder.get_s2f_path() df = self.standardize( df, full_mapping, filename, [C.TIME, C.HALVING, C.RATIO], 0 ) return df[self.get_indexer({C.TIME, C.HALVING, C.RATIO}, df.columns)] def get_s2f_ratio(self, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_s2f_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.HALVING, C.RATIO]] return filtered def save_s2f_ratio(self, **kwargs): # # given a symbol, save its s2f data filename = self.finder.get_s2f_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_s2f_ratio(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_diff_ribbon(self, df): full_mapping = dict( zip( ['t', 'o.ma9', 'o.ma14', 'o.ma25', 'o.ma40', 'o.ma60', 'o.ma90', 'o.ma128', 'o.ma200'], [C.TIME] + C.MAs ) ) filename = self.finder.get_diff_ribbon_path() df = self.standardize( df, full_mapping, filename, [C.TIME] + C.MAs, 0 ) return df[self.get_indexer(set([C.TIME] + C.MAs), df.columns)] def get_diff_ribbon(self, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_diff_ribbon_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME] + C.MAs] return filtered def save_diff_ribbon(self, **kwargs): # # given a symbol, save its s2f data filename = self.finder.get_diff_ribbon_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_diff_ribbon(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_sopr(self, df): full_mapping = dict( zip( ['t', 'v'], [C.TIME, C.SOPR] ) ) filename = self.finder.get_diff_ribbon_path() df = self.standardize( df, full_mapping, filename, [C.TIME, C.SOPR], 1 ) return df[self.get_indexer({C.TIME, C.SOPR}, df.columns)] def get_sopr(self, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_sopr_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.SOPR]] return filtered def save_sopr(self, **kwargs): # # given a symbol, save its s2f data filename = self.finder.get_sopr_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_sopr(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename # def handle_request(self, url, err_msg): class IEXCloud(MarketData): def __init__(self, test=False): super().__init__() self.version = 'v1' self.provider = 'iexcloud' if test: self.base = 'https://sandbox.iexapis.com' self.token = os.environ['IEXCLOUD_SANDBOX'] else: self.base = 'https://cloud.iexapis.com' self.token = os.environ['IEXCLOUD'] def get_dividends(self, **kwargs): # given a symbol, return the dividend history def _get_dividends(symbol, timeframe='3m'): category = 'stock' dataset = 'dividends' parts = [ self.base, self.version, category, symbol.lower(), dataset, timeframe ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) empty = pd.DataFrame() if response.ok: data = [datum for datum in response.json() if datum['flag'] == 'Cash' and datum['currency'] == 'USD'] else: raise Exception( f'Invalid response from IEX for {symbol} dividends.') if data == []: return empty df = self.standardize_dividends(symbol, pd.DataFrame(data)) return self.reader.data_in_timeframe(df, C.EX, timeframe) return self.try_again(func=_get_dividends, **kwargs) def get_splits(self, **kwargs): # given a symbol, return the stock splits def _get_splits(symbol, timeframe='3m'): category = 'stock' dataset = 'splits' parts = [ self.base, self.version, category, symbol.lower(), dataset, timeframe ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) empty = pd.DataFrame() if response.ok: data = response.json() else: raise Exception( f'Invalid response from IEX for {symbol} splits.') if data == []: return empty df = self.standardize_splits(symbol,
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib import rc sns.set() datasets = {'cub200': 'CUB200-2011', 'mini-imagenet': 'mini-ImageNet', 'cifar-fs': 'CIFAR-FS'} line_styles = [':', '--', '-', '-.'] class ApproximateAccuracy(object): def __init__(self, data_file_path: str): self.data_file_path = data_file_path def at_radii(self, radii: np.ndarray) -> np.ndarray: df =
pd.read_csv(self.data_file_path, delimiter="\t")
pandas.read_csv
import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from application import model_builder def test_validate_types_numeric_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [3, 4, 5] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = new_expect["Some Feature"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Numeric"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_numeric_string_converts_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [3, 4, 5] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = ["3", "4", "5"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Numeric"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_numeric_string_converts_throws_error(): # Arrange df = pd.DataFrame() df["Some Feature"] = ["3d", "4d", "5d"] df["Answer"] = [1, 2, 3] fields = [["Some Feature", "Numeric"], ["Answer", "Response Variable"]] # Act and Assert with pytest.raises(ValueError): model_builder.validate_types(df, fields) def test_validate_types_percentage_converts_throws_value_error(): # Arrange df = pd.DataFrame() df["Some Feature"] = ["0.3s c", "0.4", "0.5"] df["Answer"] = [1, 2, 3] fields = [["Some Feature", "Percentage"], ["Answer", "Response Variable"]] # Act and Assert with pytest.raises(ValueError): model_builder.validate_types(df, fields) def test_validate_types_percentage_converts_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [30.0, 40.0, 50.0] new_expect["Some Feature 2"] = [30.0, 40.0, 50.0] new_expect["Some Feature 3"] = [30.0, 40.0, 50.0] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = [0.3, 0.4, 0.5] df["Some Feature 2"] = ["0.3%", "0.4 %", " 0.5 %"] df["Some Feature 3"] = ["30", "40", " 50"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Percentage"], ["Some Feature 2", "Percentage"], ["Some Feature 3", "Percentage"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_money_converts_throws_value_error(): # Arrange df = pd.DataFrame() df["Some Feature"] = ["0.3s$", "$0.4", "0.5"] df["Answer"] = [1, 2, 3] fields = [["Some Feature", "Money"], ["Answer", "Response Variable"]] # Act and Assert with pytest.raises(ValueError): model_builder.validate_types(df, fields) def test_validate_types_percentage_converts_success(): # Arrange df = pd.DataFrame() new_expect = pd.DataFrame() new_expect["Some Feature"] = [30.0, 40.0, 50.0] new_expect["Some Feature 2"] = [30.0, 40.0, 50.0] new_expect["Some Feature 3"] = [50000, 40000.0, 50000] new_expect["Answer"] = [1, 2, 3] df["Some Feature"] = [30, 40, 50] df["Some Feature 2"] = ["$30", "$ 40 ", " $50 "] df["Some Feature 3"] = ["$50,000", "40000", " 50,000"] df["Answer"] = new_expect["Answer"] fields = [["Some Feature", "Money"], ["Some Feature 2", "Money"], ["Some Feature 3", "Money"], ["Answer", "Response Variable"]] # Act x = model_builder.validate_types(df, fields) # Assert assert_frame_equal(x, new_expect, check_dtype=False) def test_validate_types_value_set_success(): # Arrange df = pd.DataFrame() new_expect =
pd.DataFrame()
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from functools import partial from typing import Any, Callable, Dict, Tuple, Union import numpy as np import pandas as pd from flask_babel import gettext as _ from pandas import DataFrame, NamedAgg, Timestamp from superset.exceptions import InvalidPostProcessingError NUMPY_FUNCTIONS = { "average": np.average, "argmin": np.argmin, "argmax": np.argmax, "count": np.ma.count, "count_nonzero": np.count_nonzero, "cumsum": np.cumsum, "cumprod": np.cumprod, "max": np.max, "mean": np.mean, "median": np.median, "nansum": np.nansum, "nanmin": np.nanmin, "nanmax": np.nanmax, "nanmean": np.nanmean, "nanmedian": np.nanmedian, "nanpercentile": np.nanpercentile, "min": np.min, "percentile": np.percentile, "prod": np.prod, "product": np.product, "std": np.std, "sum": np.sum, "var": np.var, } DENYLIST_ROLLING_FUNCTIONS = ( "count", "corr", "cov", "kurt", "max", "mean", "median", "min", "std", "skew", "sum", "var", "quantile", ) ALLOWLIST_CUMULATIVE_FUNCTIONS = ( "cummax", "cummin", "cumprod", "cumsum", ) PROPHET_TIME_GRAIN_MAP = { "PT1S": "S", "PT1M": "min", "PT5M": "5min", "PT10M": "10min", "PT15M": "15min", "PT30M": "30min", "PT1H": "H", "P1D": "D", "P1W": "W", "P1M": "M", "P3M": "Q", "P1Y": "A", "1969-12-28T00:00:00Z/P1W": "W-SUN", "1969-12-29T00:00:00Z/P1W": "W-MON", "P1W/1970-01-03T00:00:00Z": "W-SAT", "P1W/1970-01-04T00:00:00Z": "W-SUN", } RESAMPLE_METHOD = ("asfreq", "bfill", "ffill", "linear", "median", "mean", "sum") FLAT_COLUMN_SEPARATOR = ", " def _flatten_column_after_pivot( column: Union[float, Timestamp, str, Tuple[str, ...]], aggregates: Dict[str, Dict[str, Any]], ) -> str: """ Function for flattening column names into a single string. This step is necessary to be able to properly serialize a DataFrame. If the column is a string, return element unchanged. For multi-element columns, join column elements with a comma, with the exception of pivots made with a single aggregate, in which case the aggregate column name is omitted. :param column: single element from `DataFrame.columns` :param aggregates: aggregates :return: """ if not isinstance(column, tuple): column = (column,) if len(aggregates) == 1 and len(column) > 1: # drop aggregate for single aggregate pivots with multiple groupings # from column name (aggregates always come first in column name) column = column[1:] return FLAT_COLUMN_SEPARATOR.join([str(col) for col in column]) def _is_multi_index_on_columns(df: DataFrame) -> bool: return isinstance(df.columns, pd.MultiIndex) def validate_column_args(*argnames: str) -> Callable[..., Any]: def wrapper(func: Callable[..., Any]) -> Callable[..., Any]: def wrapped(df: DataFrame, **options: Any) -> Any: if _is_multi_index_on_columns(df): # MultiIndex column validate first level columns = df.columns.get_level_values(0) else: columns = df.columns.tolist() for name in argnames: if name in options and not all( elem in columns for elem in options.get(name) or [] ): raise InvalidPostProcessingError( _("Referenced columns not available in DataFrame.") ) return func(df, **options) return wrapped return wrapper def _get_aggregate_funcs( df: DataFrame, aggregates: Dict[str, Dict[str, Any]], ) -> Dict[str, NamedAgg]: """ Converts a set of aggregate config objects into functions that pandas can use as aggregators. Currently only numpy aggregators are supported. :param df: DataFrame on which to perform aggregate operation. :param aggregates: Mapping from column name to aggregate config. :return: Mapping from metric name to function that takes a single input argument. """ agg_funcs: Dict[str, NamedAgg] = {} for name, agg_obj in aggregates.items(): column = agg_obj.get("column", name) if column not in df: raise InvalidPostProcessingError( _( "Column referenced by aggregate is undefined: %(column)s", column=column, ) ) if "operator" not in agg_obj: raise InvalidPostProcessingError( _( "Operator undefined for aggregator: %(name)s", name=name, ) ) operator = agg_obj["operator"] if callable(operator): aggfunc = operator else: func = NUMPY_FUNCTIONS.get(operator) if not func: raise InvalidPostProcessingError( _( "Invalid numpy function: %(operator)s", operator=operator, ) ) options = agg_obj.get("options", {}) aggfunc = partial(func, **options) agg_funcs[name] = NamedAgg(column=column, aggfunc=aggfunc) return agg_funcs def _append_columns( base_df: DataFrame, append_df: DataFrame, columns: Dict[str, str] ) -> DataFrame: """ Function for adding columns from one DataFrame to another DataFrame. Calls the assign method, which overwrites the original column in `base_df` if the column already exists, and appends the column if the name is not defined. Note that! this is a memory-intensive operation. :param base_df: DataFrame which to use as the base :param append_df: DataFrame from which to select data. :param columns: columns on which to append, mapping source column to target column. For instance, `{'y': 'y'}` will replace the values in column `y` in `base_df` with the values in `y` in `append_df`, while `{'y': 'y2'}` will add a column `y2` to `base_df` based on values in column `y` in `append_df`, leaving the original column `y` in `base_df` unchanged. :return: new DataFrame with combined data from `base_df` and `append_df` """ if all(key == value for key, value in columns.items()): # make sure to return a new DataFrame instead of changing the `base_df`. _base_df = base_df.copy() _base_df.loc[:, columns.keys()] = append_df return _base_df append_df = append_df.rename(columns=columns) return
pd.concat([base_df, append_df], axis="columns")
pandas.concat
# -*- coding: utf-8 -*- import pandas as pd from collections import defaultdict import operator def makeGen(row): return min(row[al], row[al+1]) + max(row[al], row[al+1]) ################################################################################# #kapa kazein A ################################################################################## AB1 = pd.read_table('/home/jana/Genotipi/Genotipi_DATA/Genotipi_latest/Rjava/IDBv03/BetaLGB1.ped', header=None, sep=" ") BetaLGB = pd.DataFrame({'ID': list(AB1[1]) }) cols = len(AB1.columns) AB1 = AB1[[1] + range(6,cols)] #tukaj združi sosednja dva alela v genotipe for al in [i for i in range(6,cols) if i % 2 == 0]: AB1.loc[:,str(al)+'g'] = AB1.apply(makeGen, axis=1) #tukaj pridobi napogostejši genotip def countOcc_max(alleles): Count = defaultdict() for geno in unique(alleles): if geno != '00': Count[geno] = alleles.count(geno) return max(Count.iteritems(), key=operator.itemgetter(1))[0] AB1.loc[:, 'finalGeno'] = "" for row in AB1.index: AB1['finalGeno'][row] = next(x for x in (list(AB1.ix[row][genoCol])) if x != '00') genoCol.append(str(al) + 'g') AB1.rename(columns={1:'ID', 'finalGeno':'AB1'}, inplace=True) BetaLGB = pd.merge(BetaLGB, AB1[['ID','AB1']], on='ID') ########################################################################## #Kappa-CSN AB SNP2 ########################################################################## AB2 = pd.read_table('/home/jana/Genotipi/Genotipi_DATA/Genotipi_latest/Rjava/IDBv03/BetaLGB2.ped', header=None, sep=" ") cols = len(AB2.columns) AB2 = AB2[[1] + range(6,cols)] #tukaj združi sosednja dva alela v genotipe genoCol = [] for al in [i for i in range(6,cols) if i % 2 == 0]: AB2.loc[:,str(al)+'g'] = AB2.apply(makeGen, axis=1) genoCol.append(str(al) + 'g') #tukaj pridobi napogostejši genotip AB2.loc[:, 'finalGeno'] = "" for row in AB2.index: try: AB2['finalGeno'][row] = next(x for x in (list(AB2.ix[row][genoCol])) if x != '00' ) except: AB2['finalGeno'][row] = '00' AB2.rename(columns={1:'ID', 'finalGeno':'AB2'}, inplace=True) BetaLGB =
pd.merge(BetaLGB, AB2[['ID','AB2']], on='ID')
pandas.merge
from __future__ import print_function import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.sandbox.regression.predstd import wls_prediction_std from sklearn.metrics import mean_squared_error import math import sys def rmse(predictions, targets): return np.sqrt(np.mean((predictions-targets)**2)) train_interval = sys.argv[1].split(',') train_begin = int(train_interval[0]) train_end = int(train_interval[1]) test_interval = sys.argv[2].split(',') test_begin = int(test_interval[0]) test_end = int(test_interval[1]) REGRESSION_PLOTS_FOLDER = "plots/regression/" with open("results/regression/stdout_" + str(train_begin) + "_" + str(test_end) + ".txt", 'w') as f: sys.stdout = f print("Train = [", train_begin, ",", train_end, "]") print("Test = [", test_begin, ",", test_end, "]") train = { "params": [], "targets": [] } test = { "params": [], "targets": [] } with open("data/btc_dataset_sample.csv", "r") as btc_dataset: header = btc_dataset.readline() count = 0 for line in btc_dataset.readlines(): line = line.replace('\n', '') values = line.split(';') if count >= train_begin and count <= train_end: train["params"].append(values[:-1]) train["targets"].append(values[-1]) elif count >= test_begin and count <= test_end: test["params"].append(values[:-1]) test["targets"].append(values[-1]) count += 1 params = np.array(train["params"], dtype=np.float32) targets = np.array(train["targets"], dtype=np.float32) res = sm.OLS(targets, params).fit() print(res.summary()) # Training plot # fig, ax = plt.subplots(figsize=(8,6)) # ax.plot(targets, 'o', label="data") # ax.plot(res.fittedvalues, 'r--.', label="OLS") # ax.legend(loc='best') # fig.suptitle("training " + str(train_begin) + "-" + str(train_end)) # fig.savefig(REGRESSION_PLOTS_FOLDER + "train" + str(train_begin) + "_" + str(train_end) + "_" + str(test_begin) + "_" + str(train_end)) params = np.array(test["params"], dtype=np.float32) targets = np.array(test["targets"], dtype=np.float32) predicted = res.predict(params) fig, ax = plt.subplots(figsize=(8,6)) ax.plot(targets, 'o', label="data") ax.plot(predicted, 'r--.', label="OLS") ax.legend(loc='best') fig.suptitle("OLS Regression Test " + str(test_begin) + "-" + str(test_end)) fig.savefig(REGRESSION_PLOTS_FOLDER + "test_" + str(train_begin) + "_" + str(test_end)) # Errors errs = [] var_errs = [] for i in range(len(targets)): errs.append(abs(predicted[i] - targets[i])/ targets[i]) var_errs.append((predicted[i] - targets[i - 1]) - (targets[i] - targets[i - 1]) / (targets[i] - targets[i - 1])) print("RMSE = ", rmse(predicted, targets)) print("Abs Error: ", sum(errs) / len(errs)) err_df = pd.DataFrame(errs) err_df.plot(title="Percentage error " + str(test_begin) + "-" + str(test_end)) plt.savefig(REGRESSION_PLOTS_FOLDER + "error_" + str(train_begin) + "_" + str(test_end)) var_err_df =
pd.DataFrame(var_errs)
pandas.DataFrame
from datetime import datetime import pytest from pytz import utc import pandas._testing as tm from pandas.tseries.holiday import ( MO, SA, AbstractHolidayCalendar, DateOffset, EasterMonday, GoodFriday, Holiday, HolidayCalendarFactory, Timestamp, USColumbusDay, USLaborDay, USMartinLutherKingJr, USMemorialDay, USPresidentsDay, USThanksgivingDay, get_calendar, next_monday, ) def _check_holiday_results(holiday, start, end, expected): """ Check that the dates for a given holiday match in date and timezone. Parameters ---------- holiday : Holiday The holiday to check. start : datetime-like The start date of range in which to collect dates for a given holiday. end : datetime-like The end date of range in which to collect dates for a given holiday. expected : list The list of dates we expect to get. """ assert list(holiday.dates(start, end)) == expected # Verify that timezone info is preserved. assert list( holiday.dates(utc.localize(Timestamp(start)), utc.localize(Timestamp(end))) ) == [utc.localize(dt) for dt in expected] @pytest.mark.parametrize( "holiday,start_date,end_date,expected", [ ( USMemorialDay, datetime(2011, 1, 1), datetime(2020, 12, 31), [ datetime(2011, 5, 30), datetime(2012, 5, 28), datetime(2013, 5, 27), datetime(2014, 5, 26), datetime(2015, 5, 25), datetime(2016, 5, 30), datetime(2017, 5, 29), datetime(2018, 5, 28), datetime(2019, 5, 27), datetime(2020, 5, 25), ], ), ( Holiday("July 4th Eve", month=7, day=3), "2001-01-01", "2003-03-03", [Timestamp("2001-07-03 00:00:00"), Timestamp("2002-07-03 00:00:00")], ), ( Holiday("July 4th Eve", month=7, day=3, days_of_week=(0, 1, 2, 3)), "2001-01-01", "2008-03-03", [ Timestamp("2001-07-03 00:00:00"), Timestamp("2002-07-03 00:00:00"), Timestamp("2003-07-03 00:00:00"), Timestamp("2006-07-03 00:00:00"), Timestamp("2007-07-03 00:00:00"), ], ), ( EasterMonday, datetime(2011, 1, 1), datetime(2020, 12, 31), [ Timestamp("2011-04-25 00:00:00"), Timestamp("2012-04-09 00:00:00"), Timestamp("2013-04-01 00:00:00"), Timestamp("2014-04-21 00:00:00"), Timestamp("2015-04-06 00:00:00"), Timestamp("2016-03-28 00:00:00"), Timestamp("2017-04-17 00:00:00"), Timestamp("2018-04-02 00:00:00"), Timestamp("2019-04-22 00:00:00"), Timestamp("2020-04-13 00:00:00"), ], ), ( GoodFriday, datetime(2011, 1, 1), datetime(2020, 12, 31), [ Timestamp("2011-04-22 00:00:00"), Timestamp("2012-04-06 00:00:00"), Timestamp("2013-03-29 00:00:00"), Timestamp("2014-04-18 00:00:00"), Timestamp("2015-04-03 00:00:00"),
Timestamp("2016-03-25 00:00:00")
pandas.tseries.holiday.Timestamp