prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- """ Created on Wed Jan 8 01:59:54 2020 @author: iagorosa """ #%matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.model_selection import train_test_split from scipy import stats from sklearn.preprocessing import MinMaxScaler from sklearn_extensions.extreme_learning_machines.elm import ELMRegressor import scipy.stats as scs from statsmodels.stats.diagnostic import lilliefors import pylab as pl import seaborn as sns #%% dados=
pd.read_csv('housing.csv',sep=',',header=0)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 import nose import numpy as np from numpy import nan import pandas as pd from distutils.version import LooseVersion from pandas import (Index, Series, DataFrame, Panel, isnull, date_range, period_range) from pandas.core.index import MultiIndex import pandas.core.common as com from pandas.compat import range, zip from pandas import compat from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_panel_equal, assert_equal) import pandas.util.testing as tm def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: raise nose.SkipTest('scipy.interpolate.pchip missing') # ---------------------------------------------------------------------- # Generic types test cases class Generic(object): _multiprocess_can_split_ = True def setUp(self): pass @property def _ndim(self): return self._typ._AXIS_LEN def _axes(self): """ return the axes for my object typ """ return self._typ._AXIS_ORDERS def _construct(self, shape, value=None, dtype=None, **kwargs): """ construct an object for the given shape if value is specified use that if its a scalar if value is an array, repeat it as needed """ if isinstance(shape, int): shape = tuple([shape] * self._ndim) if value is not None: if np.isscalar(value): if value == 'empty': arr = None # remove the info axis kwargs.pop(self._typ._info_axis_name, None) else: arr = np.empty(shape, dtype=dtype) arr.fill(value) else: fshape = np.prod(shape) arr = value.ravel() new_shape = fshape / arr.shape[0] if fshape % arr.shape[0] != 0: raise Exception("invalid value passed in _construct") arr = np.repeat(arr, new_shape).reshape(shape) else: arr = np.random.randn(*shape) return self._typ(arr, dtype=dtype, **kwargs) def _compare(self, result, expected): self._comparator(result, expected) def test_rename(self): # single axis for axis in self._axes(): kwargs = {axis: list('ABCD')} obj = self._construct(4, **kwargs) # no values passed # self.assertRaises(Exception, o.rename(str.lower)) # rename a single axis result = obj.rename(**{axis: str.lower}) expected = obj.copy() setattr(expected, axis, list('abcd')) self._compare(result, expected) # multiple axes at once def test_get_numeric_data(self): n = 4 kwargs = {} for i in range(self._ndim): kwargs[self._typ._AXIS_NAMES[i]] = list(range(n)) # get the numeric data o = self._construct(n, **kwargs) result = o._get_numeric_data() self._compare(result, o) # non-inclusion result = o._get_bool_data() expected = self._construct(n, value='empty', **kwargs) self._compare(result, expected) # get the bool data arr = np.array([True, True, False, True]) o = self._construct(n, value=arr, **kwargs) result = o._get_numeric_data() self._compare(result, o) # _get_numeric_data is includes _get_bool_data, so can't test for # non-inclusion def test_get_default(self): # GH 7725 d0 = "a", "b", "c", "d" d1 = np.arange(4, dtype='int64') others = "e", 10 for data, index in ((d0, d1), (d1, d0)): s = Series(data, index=index) for i, d in zip(index, data): self.assertEqual(s.get(i), d) self.assertEqual(s.get(i, d), d) self.assertEqual(s.get(i, "z"), d) for other in others: self.assertEqual(s.get(other, "z"), "z") self.assertEqual(s.get(other, other), other) def test_nonzero(self): # GH 4633 # look at the boolean/nonzero behavior for objects obj = self._construct(shape=4) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) obj = self._construct(shape=4, value=1) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) obj = self._construct(shape=4, value=np.nan) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) # empty obj = self._construct(shape=0) self.assertRaises(ValueError, lambda: bool(obj)) # invalid behaviors obj1 = self._construct(shape=4, value=1) obj2 = self._construct(shape=4, value=1) def f(): if obj1: com.pprint_thing("this works and shouldn't") self.assertRaises(ValueError, f) self.assertRaises(ValueError, lambda: obj1 and obj2) self.assertRaises(ValueError, lambda: obj1 or obj2) self.assertRaises(ValueError, lambda: not obj1) def test_numpy_1_7_compat_numeric_methods(self): # GH 4435 # numpy in 1.7 tries to pass addtional arguments to pandas functions o = self._construct(shape=4) for op in ['min', 'max', 'max', 'var', 'std', 'prod', 'sum', 'cumsum', 'cumprod', 'median', 'skew', 'kurt', 'compound', 'cummax', 'cummin', 'all', 'any']: f = getattr(np, op, None) if f is not None: f(o) def test_downcast(self): # test close downcasting o = self._construct(shape=4, value=9, dtype=np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) o = self._construct(shape=4, value=9.) expected = o.astype(np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, expected) o = self._construct(shape=4, value=9.5) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) # are close o = self._construct(shape=4, value=9.000000000005) result = o.copy() result._data = o._data.downcast(dtypes='infer') expected = o.astype(np.int64) self._compare(result, expected) def test_constructor_compound_dtypes(self): # GH 5191 # compound dtypes should raise not-implementederror def f(dtype): return self._construct(shape=3, dtype=dtype) self.assertRaises(NotImplementedError, f, [("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) # these work (though results may be unexpected) f('int64') f('float64') f('M8[ns]') def check_metadata(self, x, y=None): for m in x._metadata: v = getattr(x, m, None) if y is None: self.assertIsNone(v) else: self.assertEqual(v, getattr(y, m, None)) def test_metadata_propagation(self): # check that the metadata matches up on the resulting ops o = self._construct(shape=3) o.name = 'foo' o2 = self._construct(shape=3) o2.name = 'bar' # TODO # Once panel can do non-trivial combine operations # (currently there is an a raise in the Panel arith_ops to prevent # this, though it actually does work) # can remove all of these try: except: blocks on the actual operations # ---------- # preserving # ---------- # simple ops with scalars for op in ['__add__', '__sub__', '__truediv__', '__mul__']: result = getattr(o, op)(1) self.check_metadata(o, result) # ops with like for op in ['__add__', '__sub__', '__truediv__', '__mul__']: try: result = getattr(o, op)(o) self.check_metadata(o, result) except (ValueError, AttributeError): pass # simple boolean for op in ['__eq__', '__le__', '__ge__']: v1 = getattr(o, op)(o) self.check_metadata(o, v1) try: self.check_metadata(o, v1 & v1) except (ValueError): pass try: self.check_metadata(o, v1 | v1) except (ValueError): pass # combine_first try: result = o.combine_first(o2) self.check_metadata(o, result) except (AttributeError): pass # --------------------------- # non-preserving (by default) # --------------------------- # add non-like try: result = o + o2 self.check_metadata(result) except (ValueError, AttributeError): pass # simple boolean for op in ['__eq__', '__le__', '__ge__']: # this is a name matching op v1 = getattr(o, op)(o) v2 = getattr(o, op)(o2) self.check_metadata(v2) try: self.check_metadata(v1 & v2) except (ValueError): pass try: self.check_metadata(v1 | v2) except (ValueError): pass def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex]: axis = o._get_axis_name(0) setattr(o, axis, index(len(getattr(o, axis)))) # Panel + dims try: o.head() except (NotImplementedError): raise nose.SkipTest('not implemented on {0}'.format( o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[0:0]) self._compare(o.tail(0), o.iloc[0:0]) # bounded self._compare(o.head(len(o) + 1), o) self._compare(o.tail(len(o) + 1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7)) def test_sample(self): # Fixes issue: 2419 o = self._construct(shape=10) ### # Check behavior of random_state argument ### # Check for stability when receives seed or random state -- run 10 # times. for test in range(10): seed = np.random.randint(0, 100) self._compare( o.sample(n=4, random_state=seed), o.sample(n=4, random_state=seed)) self._compare( o.sample(frac=0.7, random_state=seed), o.sample( frac=0.7, random_state=seed)) self._compare( o.sample(n=4, random_state=np.random.RandomState(test)), o.sample(n=4, random_state=np.random.RandomState(test))) self._compare( o.sample(frac=0.7, random_state=np.random.RandomState(test)), o.sample(frac=0.7, random_state=np.random.RandomState(test))) # Check for error when random_state argument invalid. with tm.assertRaises(ValueError): o.sample(random_state='astring!') ### # Check behavior of `frac` and `N` ### # Giving both frac and N throws error with tm.assertRaises(ValueError): o.sample(n=3, frac=0.3) # Check that raises right error for negative lengths with tm.assertRaises(ValueError): o.sample(n=-3) with tm.assertRaises(ValueError): o.sample(frac=-0.3) # Make sure float values of `n` give error with tm.assertRaises(ValueError): o.sample(n=3.2) # Check lengths are right self.assertTrue(len(o.sample(n=4) == 4)) self.assertTrue(len(o.sample(frac=0.34) == 3)) self.assertTrue(len(o.sample(frac=0.36) == 4)) ### # Check weights ### # Weight length must be right with tm.assertRaises(ValueError): o.sample(n=3, weights=[0, 1]) with tm.assertRaises(ValueError): bad_weights = [0.5] * 11 o.sample(n=3, weights=bad_weights) with tm.assertRaises(ValueError): bad_weight_series = Series([0, 0, 0.2]) o.sample(n=4, weights=bad_weight_series) # Check won't accept negative weights with tm.assertRaises(ValueError): bad_weights = [-0.1] * 10 o.sample(n=3, weights=bad_weights) # Check inf and -inf throw errors: with tm.assertRaises(ValueError): weights_with_inf = [0.1] * 10 weights_with_inf[0] = np.inf o.sample(n=3, weights=weights_with_inf) with tm.assertRaises(ValueError): weights_with_ninf = [0.1] * 10 weights_with_ninf[0] = -np.inf o.sample(n=3, weights=weights_with_ninf) # All zeros raises errors zero_weights = [0] * 10 with tm.assertRaises(ValueError): o.sample(n=3, weights=zero_weights) # All missing weights nan_weights = [np.nan] * 10 with tm.assertRaises(ValueError): o.sample(n=3, weights=nan_weights) # A few dataframe test with degenerate weights. easy_weight_list = [0] * 10 easy_weight_list[5] = 1 df = pd.DataFrame({'col1': range(10, 20), 'col2': range(20, 30), 'colString': ['a'] * 10, 'easyweights': easy_weight_list}) sample1 = df.sample(n=1, weights='easyweights') assert_frame_equal(sample1, df.iloc[5:6]) # Ensure proper error if string given as weight for Series, panel, or # DataFrame with axis = 1. s = Series(range(10)) with tm.assertRaises(ValueError): s.sample(n=3, weights='weight_column') panel = pd.Panel(items=[0, 1, 2], major_axis=[2, 3, 4], minor_axis=[3, 4, 5]) with tm.assertRaises(ValueError): panel.sample(n=1, weights='weight_column') with tm.assertRaises(ValueError): df.sample(n=1, weights='weight_column', axis=1) # Check weighting key error with tm.assertRaises(KeyError): df.sample(n=3, weights='not_a_real_column_name') # Check np.nan are replaced by zeros. weights_with_nan = [np.nan] * 10 weights_with_nan[5] = 0.5 self._compare( o.sample(n=1, axis=0, weights=weights_with_nan), o.iloc[5:6]) # Check None are also replaced by zeros. weights_with_None = [None] * 10 weights_with_None[5] = 0.5 self._compare( o.sample(n=1, axis=0, weights=weights_with_None), o.iloc[5:6]) # Check that re-normalizes weights that don't sum to one. weights_less_than_1 = [0] * 10 weights_less_than_1[0] = 0.5 tm.assert_frame_equal( df.sample(n=1, weights=weights_less_than_1), df.iloc[:1]) ### # Test axis argument ### # Test axis argument df = pd.DataFrame({'col1': range(10), 'col2': ['a'] * 10}) second_column_weight = [0, 1] assert_frame_equal( df.sample(n=1, axis=1, weights=second_column_weight), df[['col2']]) # Different axis arg types assert_frame_equal(df.sample(n=1, axis='columns', weights=second_column_weight), df[['col2']]) weight = [0] * 10 weight[5] = 0.5 assert_frame_equal(df.sample(n=1, axis='rows', weights=weight), df.iloc[5:6]) assert_frame_equal(df.sample(n=1, axis='index', weights=weight), df.iloc[5:6]) # Check out of range axis values with tm.assertRaises(ValueError): df.sample(n=1, axis=2) with tm.assertRaises(ValueError): df.sample(n=1, axis='not_a_name') with tm.assertRaises(ValueError): s = pd.Series(range(10)) s.sample(n=1, axis=1) # Test weight length compared to correct axis with tm.assertRaises(ValueError): df.sample(n=1, axis=1, weights=[0.5] * 10) # Check weights with axis = 1 easy_weight_list = [0] * 3 easy_weight_list[2] = 1 df = pd.DataFrame({'col1': range(10, 20), 'col2': range(20, 30), 'colString': ['a'] * 10}) sample1 = df.sample(n=1, axis=1, weights=easy_weight_list) assert_frame_equal(sample1, df[['colString']]) # Test default axes p = pd.Panel(items=['a', 'b', 'c'], major_axis=[2, 4, 6], minor_axis=[1, 3, 5]) assert_panel_equal( p.sample(n=3, random_state=42), p.sample(n=3, axis=1, random_state=42)) assert_frame_equal( df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42)) # Test that function aligns weights with frame df = DataFrame( {'col1': [5, 6, 7], 'col2': ['a', 'b', 'c'], }, index=[9, 5, 3]) s = Series([1, 0, 0], index=[3, 5, 9]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s)) # Weights have index values to be dropped because not in # sampled DataFrame s2 = Series([0.001, 0, 10000], index=[3, 5, 10]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s2)) # Weights have empty values to be filed with zeros s3 = Series([0.01, 0], index=[3, 5]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s3)) # No overlap in weight and sampled DataFrame indices s4 = Series([1, 0], index=[1, 2]) with tm.assertRaises(ValueError): df.sample(1, weights=s4) def test_size_compat(self): # GH8846 # size property should be defined o = self._construct(shape=10) self.assertTrue(o.size == np.prod(o.shape)) self.assertTrue(o.size == 10 ** len(o.axes)) def test_split_compat(self): # xref GH8846 o = self._construct(shape=10) self.assertTrue(len(np.array_split(o, 5)) == 5) self.assertTrue(len(np.array_split(o, 2)) == 2) def test_unexpected_keyword(self): # GH8597 from pandas.util.testing import assertRaisesRegexp df = DataFrame(np.random.randn(5, 2), columns=['jim', 'joe']) ca = pd.Categorical([0, 0, 2, 2, 3, np.nan]) ts = df['joe'].copy() ts[2] = np.nan with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.drop('joe', axis=1, in_place=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.reindex([1, 0], inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ca.fillna(0, inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ts.fillna(0, in_place=True) class TestSeries(tm.TestCase, Generic): _typ = Series _comparator = lambda self, x, y: assert_series_equal(x, y) def setUp(self): self.ts = tm.makeTimeSeries() # Was at top level in test_series self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' def test_rename_mi(self): s = Series([11, 21, 31], index=MultiIndex.from_tuples( [("A", x) for x in ["a", "B", "c"]])) s.rename(str.lower) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = Series([1, 2, 3]) result = o._get_numeric_data() self._compare(result, o) o = Series([1, '2', 3.]) result = o._get_numeric_data() expected = Series([], dtype=object, index=pd.Index([], dtype=object)) self._compare(result, expected) o = Series([True, False, True]) result = o._get_numeric_data() self._compare(result, o) o = Series([True, False, True]) result = o._get_bool_data() self._compare(result, o) o = Series(date_range('20130101', periods=3)) result = o._get_numeric_data() expected = Series([], dtype='M8[ns]', index=pd.Index([], dtype=object)) self._compare(result, expected) def test_nonzero_single_element(self): # allow single item via bool method s = Series([True]) self.assertTrue(s.bool()) s = Series([False]) self.assertFalse(s.bool()) # single item nan to raise for s in [Series([np.nan]), Series([pd.NaT]), Series([True]), Series([False])]: self.assertRaises(ValueError, lambda: bool(s)) for s in [Series([np.nan]), Series([pd.NaT])]: self.assertRaises(ValueError, lambda: s.bool()) # multiple bool are still an error for s in [Series([True, True]), Series([False, False])]: self.assertRaises(ValueError, lambda: bool(s)) self.assertRaises(ValueError, lambda: s.bool()) # single non-bool are an error for s in [Series([1]), Series([0]), Series(['a']), Series([0.0])]: self.assertRaises(ValueError, lambda: bool(s)) self.assertRaises(ValueError, lambda: s.bool()) def test_metadata_propagation_indiv(self): # check that the metadata matches up on the resulting ops o = Series(range(3), range(3)) o.name = 'foo' o2 = Series(range(3), range(3)) o2.name = 'bar' result = o.T self.check_metadata(o, result) # resample ts = Series(np.random.rand(1000), index=date_range('20130101', periods=1000, freq='s'), name='foo') result = ts.resample('1T').mean() self.check_metadata(ts, result) result = ts.resample('1T').min() self.check_metadata(ts, result) result = ts.resample('1T').apply(lambda x: x.sum()) self.check_metadata(ts, result) _metadata = Series._metadata _finalize = Series.__finalize__ Series._metadata = ['name', 'filename'] o.filename = 'foo' o2.filename = 'bar' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'concat' and name == 'filename': value = '+'.join([getattr( o, name) for o in other.objs if getattr(o, name, None) ]) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self Series.__finalize__ = finalize result = pd.concat([o, o2]) self.assertEqual(result.filename, 'foo+bar') self.assertIsNone(result.name) # reset Series._metadata = _metadata Series.__finalize__ = _finalize def test_interpolate(self): ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method='linear') self.assert_numpy_array_equal(linear_interp, ts) ord_ts = Series([d.toordinal() for d in self.ts.index], index=self.ts.index).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method='time') self.assert_numpy_array_equal(time_interp, ord_ts) # try time interpolation on a non-TimeSeries # Only raises ValueError if there are NaNs. non_ts = self.series.copy() non_ts[0] = np.NaN self.assertRaises(ValueError, non_ts.interpolate, method='time') def test_interp_regression(self): tm._skip_if_no_scipy() _skip_if_no_pchip() ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method='pchip') # does not blow up, GH5977 interp_s[49:51] def test_interpolate_corners(self): s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(), s) tm._skip_if_no_scipy() s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(method='polynomial', order=1), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(method='polynomial', order=1), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method='index') expected = s.copy() bad = isnull(expected.values) good = ~bad expected = Series(np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]) assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method='values') assert_series_equal(other_result, result) assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) with tm.assertRaises(ValueError): s.interpolate(method='time') # New interpolation tests def test_nan_interpolate(self): s = Series([0, 1, np.nan, 3]) result = s.interpolate() expected = Series([0., 1., 2., 3.]) assert_series_equal(result, expected) tm._skip_if_no_scipy() result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9]) assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list('abcd')) result = s.interpolate() expected = Series([0., 1., 2., 2.], index=list('abcd')) assert_series_equal(result, expected) def test_interp_quad(self): tm._skip_if_no_scipy() sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method='quadratic') expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4]) assert_series_equal(result, expected) def test_interp_scipy_basic(self): tm._skip_if_no_scipy() s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1., 3., 7.5, 12., 18.5, 25.]) result = s.interpolate(method='slinear') assert_series_equal(result, expected) result = s.interpolate(method='slinear', downcast='infer') assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='nearest') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='nearest', downcast='infer') assert_series_equal(result, expected) # zero expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='zero') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='zero', downcast='infer') assert_series_equal(result, expected) # quadratic expected = Series([1, 3., 6.769231, 12., 18.230769, 25.]) result = s.interpolate(method='quadratic') assert_series_equal(result, expected) result = s.interpolate(method='quadratic', downcast='infer') assert_series_equal(result, expected) # cubic expected = Series([1., 3., 6.8, 12., 18.2, 25.]) result = s.interpolate(method='cubic') assert_series_equal(result, expected) def test_interp_limit(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1., 3., 5., 7., np.nan, 11.]) result = s.interpolate(method='linear', limit=2) assert_series_equal(result, expected) def test_interp_limit_forward(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) # Provide 'forward' (the default) explicitly here. expected = Series([1., 3., 5., 7., np.nan, 11.]) result = s.interpolate(method='linear', limit=2, limit_direction='forward') assert_series_equal(result, expected) result = s.interpolate(method='linear', limit=2, limit_direction='FORWARD') assert_series_equal(result, expected) def test_interp_limit_bad_direction(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) self.assertRaises(ValueError, s.interpolate, method='linear', limit=2, limit_direction='abc') # raises an error even if no limit is specified. self.assertRaises(ValueError, s.interpolate, method='linear', limit_direction='abc') def test_interp_limit_direction(self): # These tests are for issue #9218 -- fill NaNs in both directions. s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1., 3., np.nan, 7., 9., 11.]) result = s.interpolate(method='linear', limit=2, limit_direction='backward') assert_series_equal(result, expected) expected = Series([1., 3., 5., np.nan, 9., 11.]) result = s.interpolate(method='linear', limit=1, limit_direction='both') assert_series_equal(result, expected) # Check that this works on a longer series of nans. s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan]) expected = Series([1., 3., 4., 5., 6., 7., 9., 10., 11., 12., 12.]) result = s.interpolate(method='linear', limit=2, limit_direction='both') assert_series_equal(result, expected) expected = Series([1., 3., 4., np.nan, 6., 7., 9., 10., 11., 12., 12.]) result = s.interpolate(method='linear', limit=1, limit_direction='both') assert_series_equal(result, expected) def test_interp_limit_to_ends(self): # These test are for issue #10420 -- flow back to beginning. s = Series([np.nan, np.nan, 5, 7, 9, np.nan]) expected = Series([5., 5., 5., 7., 9., np.nan]) result = s.interpolate(method='linear', limit=2, limit_direction='backward') assert_series_equal(result, expected) expected = Series([5., 5., 5., 7., 9., 9.]) result = s.interpolate(method='linear', limit=2, limit_direction='both') assert_series_equal(result, expected) def test_interp_limit_before_ends(self): # These test are for issue #11115 -- limit ends properly. s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan]) expected = Series([np.nan, np.nan, 5., 7., 7., np.nan]) result = s.interpolate(method='linear', limit=1, limit_direction='forward') assert_series_equal(result, expected) expected = Series([np.nan, 5., 5., 7., np.nan, np.nan]) result = s.interpolate(method='linear', limit=1, limit_direction='backward') assert_series_equal(result, expected) expected = Series([np.nan, 5., 5., 7., 7., np.nan]) result = s.interpolate(method='linear', limit=1, limit_direction='both') assert_series_equal(result, expected) def test_interp_all_good(self): # scipy tm._skip_if_no_scipy() s = Series([1, 2, 3]) result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, s) # non-scipy result = s.interpolate() assert_series_equal(result, s) def test_interp_multiIndex(self): idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')]) s = Series([1, 2, np.nan], index=idx) expected = s.copy() expected.loc[2] = 2 result = s.interpolate() assert_series_equal(result, expected) tm._skip_if_no_scipy() with
tm.assertRaises(ValueError)
pandas.util.testing.assertRaises
import pytest # relative import # NOTE: run via cmd: pytest package/tests/ (in project root dir) from .. import functions # alternate import # NOTE: run via cmd: pytest . (in tests dir) #import sys #sys.path.append("..") #import functions import pandas as pd from typing import List def test_add(): input_x: int = 2 input_y: int = 2 output: int = 4 actual = functions.add(input_x, input_y) assert output == actual def test_sub(): input_x: int = 10 input_y: int = 5 output: int = 5 actual = functions.sub(input_x, input_y) assert output == actual def test_add_type(): input_x: int = 10 input_y: int = 5 actual = functions.sub(input_x, input_y) assert isinstance(actual, int) def test_create_df(): input_a: List[int] = [1,2,3] input_b: List[int] = [4,5,6] output: pd.DataFrame = pd.DataFrame( { "A" : [1,2,3], "B" : [4,5,6], } ) actual = functions.create_df(input_a, input_b) assert
pd.DataFrame.equals(output, actual)
pandas.DataFrame.equals
import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal, assert_series_equal from woodwork.logical_types import ( Boolean, Categorical, Double, Integer, NaturalLanguage, ) from evalml.pipelines.components import TargetImputer def test_target_imputer_no_y(X_y_binary): X, y = X_y_binary imputer = TargetImputer() assert imputer.fit_transform(None, None) == (None, None) imputer = TargetImputer() imputer.fit(None, None) assert imputer.transform(None, None) == (None, None) def test_target_imputer_with_X(): X = pd.DataFrame({"some col": [1, 3, np.nan]}) y = pd.Series([np.nan, 1, 3]) imputer = TargetImputer(impute_strategy="median") y_expected = pd.Series([2, 1, 3]) X_expected = pd.DataFrame({"some col": [1, 3, np.nan]}) X_t, y_t = imputer.fit_transform(X, y) assert_series_equal(y_expected, y_t, check_dtype=False) assert_frame_equal(X_expected, X_t, check_dtype=False) def test_target_imputer_median(): y = pd.Series([np.nan, 1, 10, 10, 6]) imputer = TargetImputer(impute_strategy="median") y_expected = pd.Series([8, 1, 10, 10, 6]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_mean(): y = pd.Series([np.nan, 2, 0]) imputer = TargetImputer(impute_strategy="mean") y_expected = pd.Series([1, 2, 0]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "fill_value, y, y_expected", [ (None, pd.Series([np.nan, 0, 5]), pd.Series([0, 0, 5])), ( None, pd.Series([np.nan, "a", "b"]), pd.Series(["missing_value", "a", "b"]).astype("category"), ), (3, pd.Series([np.nan, 0, 5]), pd.Series([3, 0, 5])), (3, pd.Series([np.nan, "a", "b"]), pd.Series([3, "a", "b"]).astype("category")), ], ) def test_target_imputer_constant(fill_value, y, y_expected): imputer = TargetImputer(impute_strategy="constant", fill_value=fill_value) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_most_frequent(): y = pd.Series([np.nan, "a", "b"]) imputer = TargetImputer(impute_strategy="most_frequent") y_expected = pd.Series(["a", "a", "b"]).astype("category") _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) y = pd.Series([np.nan, 1, 1, 2]) imputer = TargetImputer(impute_strategy="most_frequent") y_expected = pd.Series([1, 1, 1, 2]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_col_with_non_numeric_with_numeric_strategy(): y = pd.Series([np.nan, "a", "b"]) imputer = TargetImputer(impute_strategy="mean") with pytest.raises( ValueError, match="Cannot use mean strategy with non-numeric data" ): imputer.fit_transform(None, y) with pytest.raises( ValueError, match="Cannot use mean strategy with non-numeric data" ): imputer.fit(None, y) imputer = TargetImputer(impute_strategy="median") with pytest.raises( ValueError, match="Cannot use median strategy with non-numeric data" ): imputer.fit_transform(None, y) with pytest.raises( ValueError, match="Cannot use median strategy with non-numeric data" ): imputer.fit(None, y) @pytest.mark.parametrize("data_type", ["pd", "ww"]) def test_target_imputer_all_bool_return_original(data_type, make_data_type): y = pd.Series([True, True, False, True, True], dtype=bool) y = make_data_type(data_type, y) y_expected = pd.Series([True, True, False, True, True], dtype=bool) imputer = TargetImputer() imputer.fit(None, y) _, y_t = imputer.transform(None, y) assert_series_equal(y_expected, y_t) @pytest.mark.parametrize("data_type", ["pd", "ww"]) def test_target_imputer_boolean_dtype(data_type, make_data_type): y = pd.Series([True, np.nan, False, np.nan, True], dtype="category") y_expected = pd.Series([True, True, False, True, True], dtype="category") y = make_data_type(data_type, y) imputer = TargetImputer() imputer.fit(None, y) _, y_t = imputer.transform(None, y) assert_series_equal(y_expected, y_t) def test_target_imputer_fit_transform_all_nan_empty(): y = pd.Series([np.nan, np.nan]) imputer = TargetImputer() imputer.fit(None, y) with pytest.raises(RuntimeError, match="Transformed data is empty"): imputer.transform(None, y) imputer = TargetImputer() with pytest.raises(RuntimeError, match="Transformed data is empty"): imputer.fit_transform(None, y) def test_target_imputer_numpy_input(): y = np.array([np.nan, 0, 2]) imputer = TargetImputer(impute_strategy="mean") y_expected = np.array([1, 0, 2]) _, y_t = imputer.fit_transform(None, y) assert np.allclose(y_expected, y_t) np.testing.assert_almost_equal(y, np.array([np.nan, 0, 2])) def test_target_imputer_does_not_reset_index(): y = pd.Series(np.arange(10)) y[5] = np.nan assert y.index.tolist() == list(range(10)) y.drop(0, inplace=True) pd.testing.assert_series_equal( pd.Series( [1, 2, 3, 4, np.nan, 6, 7, 8, 9], dtype=float, index=list(range(1, 10)) ), y, ) imputer = TargetImputer(impute_strategy="mean") imputer.fit(None, y=y) _, y_t = imputer.transform(None, y) pd.testing.assert_series_equal( pd.Series([1.0, 2, 3, 4, 5, 6, 7, 8, 9], dtype=float, index=list(range(1, 10))), y_t, ) @pytest.mark.parametrize( "y, y_expected", [ (pd.Series([1, 0, 5, None]), pd.Series([1, 0, 5, 2])), (pd.Series([0.1, 0.0, 0.5, None]), pd.Series([0.1, 0.0, 0.5, 0.2])), ], ) def test_target_imputer_with_none(y, y_expected): imputer = TargetImputer(impute_strategy="mean") _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "y, y_expected", [ ( pd.Series(["b", "a", "a", None], dtype="category"), pd.Series(["b", "a", "a", "a"], dtype="category"), ), ( pd.Series([True, None, False, True], dtype="category"), pd.Series([True, True, False, True], dtype="category"), ), (
pd.Series(["b", "a", "a", None])
pandas.Series
""" This module implements the intermediates computation for plot(df) function. """ # pylint: disable=too-many-lines from collections import defaultdict from typing import Any, DefaultDict, Dict, List, Optional, Tuple, Union, cast import dask import dask.array as da import dask.dataframe as dd import numpy as np import pandas as pd from dask.array.stats import kurtosis, skew from nltk.stem import PorterStemmer, WordNetLemmatizer from scipy.stats import gaussian_kde from ...assets.english_stopwords import english_stopwords from ...errors import UnreachableError from ..dtypes import ( Continuous, DateTime, DType, DTypeDef, Nominal, detect_dtype, drop_null, is_dtype, ) from ..intermediate import Intermediate from ..utils import to_dask __all__ = ["compute"] # Dictionary for mapping the time unit to its formatting. Each entry is of the # form unit:(unit code for pd.Grouper freq parameter, pandas to_period strftime # formatting for line charts, pandas to_period strftime formatting for box plot, # label format). DTMAP = { "year": ("Y", "%Y", "%Y", "Year"), "quarter": ("Q", "Q%q %Y", "Q%q %Y", "Quarter"), "month": ("M", "%B %Y", "%b %Y", "Month"), "week": ("W-SAT", "%d %B, %Y", "%d %b, %Y", "Week of"), "day": ("D", "%d %B, %Y", "%d %b, %Y", "Date"), "hour": ("H", "%d %B, %Y, %I %p", "%d %b, %Y, %I %p", "Hour"), "minute": ("T", "%d %B, %Y, %I:%M %p", "%d %b, %Y, %I:%M %p", "Minute"), "second": ("S", "%d %B, %Y, %I:%M:%S %p", "%d %b, %Y, %I:%M:%S %p", "Second"), } def compute( df: Union[pd.DataFrame, dd.DataFrame], x: Optional[str] = None, y: Optional[str] = None, z: Optional[str] = None, *, bins: int = 10, ngroups: int = 10, largest: bool = True, nsubgroups: int = 5, timeunit: str = "auto", agg: str = "mean", sample_size: int = 1000, top_words: int = 30, stopword: bool = True, lemmatize: bool = False, stem: bool = False, value_range: Optional[Tuple[float, float]] = None, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Parameters ---------- df Dataframe from which plots are to be generated x: Optional[str], default None A valid column name from the dataframe y: Optional[str], default None A valid column name from the dataframe z: Optional[str], default None A valid column name from the dataframe bins: int, default 10 For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups: int, default 10 When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest: bool, default True If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. nsubgroups: int, default 5 If x and y are categorical columns, ngroups refers to how many groups to show from column x, and nsubgroups refers to how many subgroups to show from column y in each group in column x. timeunit: str, default "auto" Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. agg: str, default "mean" Specify the aggregate to use when aggregating over a numeric column sample_size: int, default 1000 Sample size for the scatter plot top_words: int, default 30 Specify the amount of words to show in the wordcloud and word frequency bar chart stopword: bool, default True Eliminate the stopwords in the text data for plotting wordcloud and word frequency bar chart lemmatize: bool, default False Lemmatize the words in the text data for plotting wordcloud and word frequency bar chart stem: bool, default False Apply Potter Stem on the text data for plotting wordcloud and word frequency bar chart value_range: Optional[Tuple[float, float]], default None The lower and upper bounds on the range of a numerical column. Applies when column x is specified and column y is unspecified. dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-locals df = to_dask(df) if not any((x, y, z)): return compute_overview(df, bins, ngroups, largest, timeunit, dtype) if sum(v is None for v in (x, y, z)) == 2: col: str = cast(str, x or y or z) return compute_univariate( df, col, bins, ngroups, largest, timeunit, top_words, stopword, lemmatize, stem, value_range, dtype, ) if sum(v is None for v in (x, y, z)) == 1: x, y = (v for v in (x, y, z) if v is not None) return compute_bivariate( df, x, y, bins, ngroups, largest, nsubgroups, timeunit, agg, sample_size, dtype, ) if x is not None and y is not None and z is not None: return compute_trivariate(df, x, y, z, ngroups, largest, timeunit, agg, dtype) return Intermediate() def compute_overview( df: dd.DataFrame, bins: int, ngroups: int, largest: bool, timeunit: str, dtype: Optional[DTypeDef] = None, ) -> Intermediate: # pylint: disable=too-many-arguments,too-many-locals """ Compute functions for plot(df) Parameters ---------- df Dataframe from which plots are to be generated bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # extract the first rows for checking if a column contains a mutable type first_rows: pd.DataFrame = df.head() # dd.DataFrame.head triggers a (small) data read datas: List[Any] = [] dtype_cnts: DefaultDict[str, int] = defaultdict(int) col_names_dtypes: List[Tuple[str, DType]] = [] for column in df.columns: srs = df[column] column_dtype = detect_dtype(srs, dtype) if is_dtype(column_dtype, Nominal()): # cast the column as string type if it contains a mutable type try: first_rows[column].apply(hash) except TypeError: srs = df[column] = srs.dropna().astype(str) # bar chart datas.append(calc_bar(srs, ngroups, largest)) col_names_dtypes.append((column, Nominal())) dtype_cnts["Categorical"] += 1 elif is_dtype(column_dtype, Continuous()): # histogram hist = da.histogram(drop_null(srs), bins=bins, range=[srs.min(), srs.max()]) datas.append(hist) col_names_dtypes.append((column, Continuous())) dtype_cnts["Numerical"] += 1 elif is_dtype(column_dtype, DateTime()): datas.append(dask.delayed(calc_line_dt)(df[[column]], timeunit)) col_names_dtypes.append((column, DateTime())) dtype_cnts["DateTime"] += 1 else: raise UnreachableError stats = calc_stats(df, dtype_cnts) datas, stats = dask.compute(datas, stats) data = [(col, dtp, dat) for (col, dtp), dat in zip(col_names_dtypes, datas)] return Intermediate(data=data, stats=stats, visual_type="distribution_grid",) def compute_univariate( df: dd.DataFrame, x: str, bins: int, ngroups: int, largest: bool, timeunit: str, top_words: int, stopword: bool = True, lemmatize: bool = False, stem: bool = False, value_range: Optional[Tuple[float, float]] = None, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Compute functions for plot(df, x) Parameters ---------- df Dataframe from which plots are to be generated x A valid column name from the dataframe bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. top_words: int, default 30 Specify the amount of words to show in the wordcloud and word frequency bar chart stopword: bool, default True Eliminate the stopwords in the text data for plotting wordcloud and word frequency bar chart lemmatize: bool, default False Lemmatize the words in the text data for plotting wordcloud and word frequency bar chart stem: bool, default False Apply Potter Stem on the text data for plotting wordcloud and word frequency bar chart value_range The lower and upper bounds on the range of a numerical column. Applies when column x is specified and column y is unspecified. dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-locals, too-many-arguments col_dtype = detect_dtype(df[x], dtype) if is_dtype(col_dtype, Nominal()): # extract the column df_x = df[x] # calculate the total rows nrows = df_x.shape[0] # cast the column as string type if it contains a mutable type if df_x.head().apply(lambda x: hasattr(x, "__hash__")).any(): # drop_null() will not work if the column conatains a mutable type df_x = df_x.dropna().astype(str) # drop null values df_x = drop_null(df_x) # calc_word_freq() returns the frequency of words (for the word cloud and word # frequency bar chart) and the total number of words word_data = calc_word_freq(df_x, top_words, stopword, lemmatize, stem) # calc_cat_stats() computes all the categorical stats including the length # histogram. calc_bar_pie() does the calculations for the bar and pie charts # NOTE this dictionary could be returned to create_report without # calling the subsequent compute cat_data = { "stats": calc_cat_stats(df_x, nrows, bins), "bar_pie": calc_bar_pie(df_x, ngroups, largest), "word_data": word_data, } cat_data = dask.compute(cat_data)[0] return Intermediate( col=x, stats=cat_data["stats"], bar_pie=cat_data["bar_pie"], word_data=cat_data["word_data"], visual_type="categorical_column", ) elif is_dtype(col_dtype, Continuous()): # calculate the total number of rows then drop the missing values nrows = df.shape[0] df_x = drop_null(df[x]) if value_range is not None: df_x = df_x[df_x.between(*value_range)] # TODO perhaps we should not use to_dask() on the entire # initial dataframe and instead only use the column of data # df_x = df_x.repartition(partition_size="100MB") # calculate numerical statistics and extract the min and max num_stats = calc_num_stats(df_x, nrows) minv, maxv = num_stats["min"], num_stats["max"] # NOTE this dictionary could be returned to create_report without # calling the subsequent compute num_data = { "hist": da.histogram(df_x, bins=bins, range=[minv, maxv]), "kde": calc_kde(df_x, bins, minv, maxv), "box_data": calc_box_new(df_x, num_stats["qntls"]), "stats": num_stats, } num_data = dask.compute(num_data)[0] return Intermediate( col=x, hist=num_data["hist"], kde=num_data["kde"], box_data=num_data["box_data"], stats=num_data["stats"], visual_type="numerical_column", ) elif is_dtype(col_dtype, DateTime()): data_dt: List[Any] = [] # line chart data_dt.append(dask.delayed(calc_line_dt)(df[[x]], timeunit)) # stats data_dt.append(dask.delayed(calc_stats_dt)(df[x])) data, statsdata_dt = dask.compute(*data_dt) return Intermediate( col=x, data=data, stats=statsdata_dt, visual_type="datetime_column", ) else: raise UnreachableError def compute_bivariate( df: dd.DataFrame, x: str, y: str, bins: int, ngroups: int, largest: bool, nsubgroups: int, timeunit: str, agg: str, sample_size: int, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Compute functions for plot(df, x, y) Parameters ---------- df Dataframe from which plots are to be generated x A valid column name from the dataframe y A valid column name from the dataframe bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. nsubgroups If x and y are categorical columns, ngroups refers to how many groups to show from column x, and nsubgroups refers to how many subgroups to show from column y in each group in column x. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. agg Specify the aggregate to use when aggregating over a numeric column sample_size Sample size for the scatter plot dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-arguments,too-many-locals xtype = detect_dtype(df[x], dtype) ytype = detect_dtype(df[y], dtype) if ( is_dtype(xtype, Nominal()) and is_dtype(ytype, Continuous()) or is_dtype(xtype, Continuous()) and is_dtype(ytype, Nominal()) ): x, y = (x, y) if is_dtype(xtype, Nominal()) else (y, x) df = drop_null(df[[x, y]]) df[x] = df[x].apply(str, meta=(x, str)) # box plot per group boxdata = calc_box(df, bins, ngroups, largest, dtype) # histogram per group hisdata = calc_hist_by_group(df, bins, ngroups, largest) return Intermediate( x=x, y=y, boxdata=boxdata, histdata=hisdata, visual_type="cat_and_num_cols", ) elif ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Continuous()) or is_dtype(xtype, Continuous()) and is_dtype(ytype, DateTime()) ): x, y = (x, y) if is_dtype(xtype, DateTime()) else (y, x) df = drop_null(df[[x, y]]) dtnum: List[Any] = [] # line chart dtnum.append(dask.delayed(calc_line_dt)(df, timeunit, agg)) # box plot dtnum.append(dask.delayed(calc_box_dt)(df, timeunit)) dtnum = dask.compute(*dtnum) return Intermediate( x=x, y=y, linedata=dtnum[0], boxdata=dtnum[1], visual_type="dt_and_num_cols", ) elif ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Nominal()) or is_dtype(xtype, Nominal()) and is_dtype(ytype, DateTime()) ): x, y = (x, y) if is_dtype(xtype, DateTime()) else (y, x) df = drop_null(df[[x, y]]) df[y] = df[y].apply(str, meta=(y, str)) dtcat: List[Any] = [] # line chart dtcat.append( dask.delayed(calc_line_dt)(df, timeunit, ngroups=ngroups, largest=largest) ) # stacked bar chart dtcat.append(dask.delayed(calc_stacked_dt)(df, timeunit, ngroups, largest)) dtcat = dask.compute(*dtcat) return Intermediate( x=x, y=y, linedata=dtcat[0], stackdata=dtcat[1], visual_type="dt_and_cat_cols", ) elif is_dtype(xtype, Nominal()) and is_dtype(ytype, Nominal()): df = drop_null(df[[x, y]]) df[x] = df[x].apply(str, meta=(x, str)) df[y] = df[y].apply(str, meta=(y, str)) # nested bar chart nesteddata = calc_nested(df, ngroups, nsubgroups) # stacked bar chart stackdata = calc_stacked(df, ngroups, nsubgroups) # heat map heatmapdata = calc_heatmap(df, ngroups, nsubgroups) return Intermediate( x=x, y=y, nesteddata=nesteddata, stackdata=stackdata, heatmapdata=heatmapdata, visual_type="two_cat_cols", ) elif is_dtype(xtype, Continuous()) and is_dtype(ytype, Continuous()): df = drop_null(df[[x, y]]) # scatter plot scatdata = calc_scatter(df, sample_size) # hexbin plot hexbindata = df.compute() # box plot boxdata = calc_box(df, bins) return Intermediate( x=x, y=y, scatdata=scatdata, boxdata=boxdata, hexbindata=hexbindata, spl_sz=sample_size, visual_type="two_num_cols", ) else: raise UnreachableError def compute_trivariate( df: dd.DataFrame, x: str, y: str, z: str, ngroups: int, largest: bool, timeunit: str, agg: str, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Compute functions for plot(df, x, y, z) Parameters ---------- df Dataframe from which plots are to be generated x A valid column name from the dataframe y A valid column name from the dataframe z A valid column name from the dataframe bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. agg Specify the aggregate to use when aggregating over a numeric column dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-arguments xtype = detect_dtype(df[x], dtype) ytype = detect_dtype(df[y], dtype) ztype = detect_dtype(df[z], dtype) if ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Nominal()) and is_dtype(ztype, Continuous()) ): y, z = z, y elif ( is_dtype(xtype, Continuous()) and is_dtype(ytype, DateTime()) and is_dtype(ztype, Nominal()) ): x, y = y, x elif ( is_dtype(xtype, Continuous()) and is_dtype(ytype, Nominal()) and is_dtype(ztype, DateTime()) ): x, y, z = z, x, y elif ( is_dtype(xtype, Nominal()) and is_dtype(ytype, DateTime()) and is_dtype(ztype, Continuous()) ): x, y, z = y, z, x elif ( is_dtype(xtype, Nominal()) and is_dtype(ytype, Continuous()) and is_dtype(ztype, DateTime()) ): x, z = z, x assert ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Continuous()) and is_dtype(ztype, Nominal()) ), "x, y, and z must be one each of type datetime, numerical, and categorical" df = drop_null(df[[x, y, z]]) df[z] = df[z].apply(str, meta=(z, str)) # line chart data = dask.compute(dask.delayed(calc_line_dt)(df, timeunit, agg, ngroups, largest)) return Intermediate( x=x, y=y, z=z, agg=agg, data=data[0], visual_type="dt_cat_num_cols", ) def calc_line_dt( df: dd.DataFrame, unit: str, agg: Optional[str] = None, ngroups: Optional[int] = None, largest: Optional[bool] = None, ) -> Union[ Tuple[pd.DataFrame, Dict[str, int], str], Tuple[pd.DataFrame, str, float], Tuple[pd.DataFrame, str], ]: """ Calculate a line or multiline chart with date on the x axis. If df contains one datetime column, it will make a line chart of the frequency of values. If df contains a datetime and categorical column, it will compute the frequency of each categorical value in each time group. If df contains a datetime and numerical column, it will compute the aggregate of the numerical column grouped by the time groups. If df contains a datetime, categorical, and numerical column, it will compute the aggregate of the numerical column for values in the categorical column grouped by time. Parameters ---------- df A dataframe unit The unit of time over which to group the values agg Aggregate to use for the numerical column ngroups Number of groups for the categorical column largest Use the largest or smallest groups in the categorical column """ # pylint: disable=too-many-locals x = df.columns[0] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 100) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError grouper = pd.Grouper(key=x, freq=DTMAP[unit][0]) # for grouping the time values # multiline charts if ngroups and largest: hist_dict: Dict[str, Tuple[np.ndarray, np.ndarray, List[str]]] = dict() hist_lst: List[Tuple[np.ndarray, np.ndarray, List[str]]] = list() agg = ( "freq" if agg is None else agg ) # default agg if unspecified for notational concision # categorical column for grouping over, each resulting group is a line in the chart grpby_col = df.columns[1] if len(df.columns) == 2 else df.columns[2] df, grp_cnt_stats, largest_grps = _calc_groups(df, grpby_col, ngroups, largest) groups = df.groupby([grpby_col]) for grp in largest_grps: srs = groups.get_group(grp) # calculate the frequencies or aggregate value in each time group if len(df.columns) == 3: dfr = srs.groupby(grouper)[df.columns[1]].agg(agg).reset_index() else: dfr = srs[x].to_frame().groupby(grouper).size().reset_index() dfr.columns = [x, agg] # if grouping by week, make the label for the week the beginning Sunday dfr[x] = dfr[x] - pd.to_timedelta(6, unit="d") if unit == "week" else dfr[x] # format the label dfr["lbl"] = dfr[x].dt.to_period("S").dt.strftime(DTMAP[unit][1]) hist_lst.append((list(dfr[agg]), list(dfr[x]), list(dfr["lbl"]))) hist_lst = dask.compute(*hist_lst) for elem in zip(largest_grps, hist_lst): hist_dict[elem[0]] = elem[1] return hist_dict, grp_cnt_stats, DTMAP[unit][3] # single line charts if agg is None: # frequency of datetime column miss_pct = round(df[x].isna().sum() / len(df) * 100, 1) dfr = drop_null(df).groupby(grouper).size().reset_index() dfr.columns = [x, "freq"] dfr["pct"] = dfr["freq"] / len(df) * 100 else: # aggregate over a second column dfr = df.groupby(grouper)[df.columns[1]].agg(agg).reset_index() dfr.columns = [x, agg] dfr[x] = dfr[x] - pd.to_timedelta(6, unit="d") if unit == "week" else dfr[x] dfr["lbl"] = dfr[x].dt.to_period("S").dt.strftime(DTMAP[unit][1]) return (dfr, DTMAP[unit][3], miss_pct) if agg is None else (dfr, DTMAP[unit][3]) def calc_box_dt( df: dd.DataFrame, unit: str ) -> Tuple[pd.DataFrame, List[str], List[float], str]: """ Calculate a box plot with date on the x axis. Parameters ---------- df A dataframe with one datetime and one numerical column unit The unit of time over which to group the values """ x, y = df.columns[0], df.columns[1] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 10) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError grps = df.groupby(pd.Grouper(key=x, freq=DTMAP[unit][0])) # time groups # box plot for the values in each time group df = pd.concat([_calc_box_stats(g[1][y], g[0], True) for g in grps], axis=1,) df = df.append(pd.Series({c: i + 1 for i, c in enumerate(df.columns)}, name="x",)).T # If grouping by week, make the label for the week the beginning Sunday df.index = df.index - pd.to_timedelta(6, unit="d") if unit == "week" else df.index df.index.name = "grp" df = df.reset_index() df["grp"] = df["grp"].dt.to_period("S").dt.strftime(DTMAP[unit][2]) df["x0"], df["x1"] = df["x"] - 0.8, df["x"] - 0.2 # width of whiskers for plotting outx, outy = _calc_box_otlrs(df) return df, outx, outy, DTMAP[unit][3] def calc_stacked_dt( df: dd.DataFrame, unit: str, ngroups: int, largest: bool, ) -> Tuple[pd.DataFrame, Dict[str, int], str]: """ Calculate a stacked bar chart with date on the x axis Parameters ---------- df A dataframe with one datetime and one categorical column unit The unit of time over which to group the values ngroups Number of groups for the categorical column largest Use the largest or smallest groups in the categorical column """ # pylint: disable=too-many-locals x, y = df.columns[0], df.columns[1] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 10) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError # get the largest groups df_grps, grp_cnt_stats, _ = _calc_groups(df, y, ngroups, largest) grouper = (pd.Grouper(key=x, freq=DTMAP[unit][0]),) # time grouper # pivot table of counts with date groups as index and categorical values as column names dfr = pd.pivot_table( df_grps, index=grouper, columns=y, aggfunc=len, fill_value=0, ).rename_axis(None) # if more than ngroups categorical values, aggregate the smallest groups into "Others" if grp_cnt_stats[f"{y}_ttl"] > grp_cnt_stats[f"{y}_shw"]: grp_cnts = df.groupby(pd.Grouper(key=x, freq=DTMAP[unit][0])).size() dfr["Others"] = grp_cnts - dfr.sum(axis=1) dfr.index = ( # If grouping by week, make the label for the week the beginning Sunday dfr.index - pd.to_timedelta(6, unit="d") if unit == "week" else dfr.index ) dfr.index = dfr.index.to_period("S").strftime(DTMAP[unit][2]) # format labels return dfr, grp_cnt_stats, DTMAP[unit][3] def calc_bar( srs: dd.Series, ngroups: int, largest: bool ) -> Tuple[dd.DataFrame, dd.core.Scalar, dd.core.Scalar]: """ Calculates the counts of categorical values, the total number of categorical values, and the number of non-null cells required for a bar chart in plot(df). Parameters ---------- srs One categorical column ngroups Number of groups to return largest If true, show the groups with the largest count, else show the groups with the smallest count """ # drop null values srs_present = drop_null(srs) # number of present (not null) values npresent = srs_present.shape[0] # counts of unique values in the series grps = srs_present.value_counts(sort=False) # total number of groups ttl_grps = grps.shape[0] # select the largest or smallest groups fnl_grp_cnts = grps.nlargest(ngroups) if largest else grps.nsmallest(ngroups) return fnl_grp_cnts.to_frame(), ttl_grps, npresent def calc_bar_pie( srs: dd.Series, ngroups: int, largest: bool ) -> Tuple[dd.DataFrame, dd.core.Scalar]: """ Calculates the counts of categorical values and the total number of categorical values required for the bar and pie charts in plot(df, x). Parameters ---------- srs One categorical column ngroups Number of groups to return largest If true, show the groups with the largest count, else show the groups with the smallest count """ # counts of unique values in the series grps = srs.value_counts(sort=False) # total number of groups ttl_grps = grps.shape[0] # select the largest or smallest groups fnl_grp_cnts = grps.nlargest(ngroups) if largest else grps.nsmallest(ngroups) return fnl_grp_cnts.to_frame(), ttl_grps def calc_word_freq( srs: dd.Series, top_words: int = 30, stopword: bool = True, lemmatize: bool = False, stem: bool = False, ) -> Tuple[dd.Series, dd.core.Scalar]: """ Parse a categorical column of text data into words, and then compute the frequency distribution of words and the total number of words. Parameters ---------- srs One categorical column top_words Number of highest frequency words to show in the wordcloud and word frequency bar chart stopword If True, remove stop words, else keep them lemmatize If True, lemmatize the words before computing the word frequencies, else don't stem If True, extract the stem of the words before computing the word frequencies, else don't """ # pylint: disable=unnecessary-lambda if stopword: # use a regex to replace stop words with empty string srs = srs.str.replace(r"\b(?:{})\b".format("|".join(english_stopwords)), "") # replace all non-alphanumeric characters with an empty string, and convert to lowercase srs = srs.str.replace(r"[^\w+ ]", "").str.lower() # split each string on whitespace into words then apply "explode()" to "stack" all # the words into a series # NOTE this is slow. One possibly better solution: after .split(), count the words # immediately rather than create a new series with .explode() and apply # .value_counts() srs = srs.str.split().explode() # lemmatize and stem if lemmatize or stem: srs = srs.dropna() if lemmatize: lem = WordNetLemmatizer() srs = srs.apply(lambda x: lem.lemmatize(x), meta=(srs.name, "object")) if stem: porter = PorterStemmer() srs = srs.apply(lambda x: porter.stem(x), meta=(srs.name, "object")) # counts of words, excludes null values word_cnts = srs.value_counts(sort=False) # total number of words nwords = word_cnts.sum() # words with the highest frequency fnl_word_cnts = word_cnts.nlargest(n=top_words) return fnl_word_cnts, nwords def calc_kde( srs: dd.Series, bins: int, minv: float, maxv: float, ) -> Tuple[Tuple[da.core.Array, da.core.Array], np.ndarray]: """ Calculate a density histogram and its corresponding kernel density estimate over a given series. The kernel is Gaussian. Parameters ---------- data One numerical column over which to compute the histogram and kde bins Number of bins to use in the histogram """ # compute the density histogram hist = da.histogram(srs, bins=bins, range=[minv, maxv], density=True) # probability density function for the series # NOTE gaussian_kde triggers a .compute() try: kde = gaussian_kde( srs.map_partitions(lambda x: x.sample(min(1000, x.shape[0])), meta=srs) ) except np.linalg.LinAlgError: kde = None return hist, kde def calc_box_new(srs: dd.Series, qntls: dd.Series) -> Dict[str, Any]: """ Calculate the data required for a box plot Parameters ---------- srs One numerical column from which to compute the box plot data qntls Quantiles from the normal Q-Q plot """ # box plot stats # inter-quartile range # TODO figure out how to extract a scalar from a Dask series without using a function like sum() qrtl1 = qntls.loc[0.25].sum() qrtl3 = qntls.loc[0.75].sum() iqr = qrtl3 - qrtl1 srs_iqr = srs[srs.between(qrtl1 - 1.5 * iqr, qrtl3 + 1.5 * iqr)] # outliers otlrs = srs[~srs.between(qrtl1 - 1.5 * iqr, qrtl3 + 1.5 * iqr)] # randomly sample at most 100 outliers from each partition without replacement otlrs = otlrs.map_partitions(lambda x: x.sample(min(100, x.shape[0])), meta=otlrs) box_data = { "grp": srs.name, "q1": qrtl1, "q2": qntls.loc[0.5].sum(), "q3": qrtl3, "lw": srs_iqr.min(), "uw": srs_iqr.max(), "otlrs": otlrs.values, "x": 1, # x, x0, and x1 are for plotting the box plot with bokeh "x0": 0.2, "x1": 0.8, } return box_data def calc_stats( df: dd.DataFrame, dtype_cnts: Dict[str, int] ) -> Dict[str, Union[int, dd.core.Scalar, Dict[str, int]]]: """ Calculate the statistics for plot(df) from a DataFrame Parameters ---------- df a DataFrame dtype_cnts a dictionary that contains the count for each type """ stats = { "nrows": df.shape[0], "ncols": df.shape[1], "npresent_cells": df.count().sum(), "nrows_wo_dups": df.drop_duplicates().shape[0], "mem_use": df.memory_usage(deep=True).sum(), "dtype_cnts": dtype_cnts, } return stats def calc_num_stats(srs: dd.Series, nrows: dd.core.Scalar,) -> Dict[str, Any]: """ Calculate statistics for a numerical column Parameters ---------- srs a numerical column nrows number of rows in the column before dropping null values """ stats = { "nrows": nrows, "npresent": srs.shape[0], "nunique": srs.nunique(), "ninfinite": ((srs == np.inf) | (srs == -np.inf)).sum(), "nzero": (srs == 0).sum(), "min": srs.min(), "max": srs.max(), "qntls": srs.quantile(np.linspace(0.01, 0.99, 99)), "mean": srs.mean(), "std": srs.std(), "skew": skew(srs), "kurt": kurtosis(srs), "mem_use": srs.memory_usage(), } return stats def calc_cat_stats( srs: dd.Series, nrows: int, bins: int, ) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]: """ Calculate stats for a categorical column Parameters ---------- srs a categorical column nrows number of rows before dropping null values bins number of bins for the category length frequency histogram """ # overview stats stats = { "nrows": nrows, "npresent": srs.shape[0], "nunique": srs.nunique(), "mem_use": srs.memory_usage(), "first_rows": srs.loc[:4], } # length stats lengths = srs.str.len() minv, maxv = lengths.min(), lengths.max() hist = da.histogram(lengths.values, bins=bins, range=[minv, maxv]) length_stats = { "Mean": lengths.mean(), "Median": lengths.quantile(0.5), "Minimum": minv, "Maximum": maxv, "hist": hist, } # letter stats letter_stats = { "Count": srs.str.count(r"[a-zA-Z]").sum(), "Lowercase Letter": srs.str.count(r"[a-z]").sum(), "Space Separator": srs.str.count(r"[ ]").sum(), "Uppercase Letter": srs.str.count(r"[A-Z]").sum(), "Dash Punctuation": srs.str.count(r"[-]").sum(), "Decimal Number": srs.str.count(r"[0-9]").sum(), } return stats, length_stats, letter_stats def calc_box( df: dd.DataFrame, bins: int, ngroups: int = 10, largest: bool = True, dtype: Optional[DTypeDef] = None, ) -> Tuple[pd.DataFrame, List[str], List[float], Optional[Dict[str, int]]]: """ Compute a box plot over either 1) the values in one column 2) the values corresponding to groups in another column 3) the values corresponding to binning another column Parameters ---------- df Dataframe with one or two columns bins Number of bins to use if df has two numerical columns ngroups Number of groups to show if df has a categorical and numerical column largest When calculating a box plot per group, select the largest or smallest groups dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() Returns ------- Tuple[pd.DataFrame, List[str], List[float], Dict[str, int]] The box plot statistics in a dataframe, a list of the outlier groups and another list of the outlier values, a dictionary logging the sampled group output """ # pylint: disable=too-many-locals grp_cnt_stats = None # to inform the user of sampled output x = df.columns[0] if len(df.columns) == 1: df = _calc_box_stats(df[x], x) else: y = df.columns[1] if is_dtype(detect_dtype(df[x], dtype), Continuous()) and is_dtype( detect_dtype(df[y], dtype), Continuous() ): minv, maxv, cnt = dask.compute(df[x].min(), df[x].max(), df[x].nunique()) bins = cnt if cnt < bins else bins endpts = np.linspace(minv, maxv, num=bins + 1) # calculate a box plot over each bin df = dd.concat( [ _calc_box_stats( df[(df[x] >= endpts[i]) & (df[x] < endpts[i + 1])][y], f"[{endpts[i]},{endpts[i + 1]})", ) if i != len(endpts) - 2 else _calc_box_stats( df[(df[x] >= endpts[i]) & (df[x] <= endpts[i + 1])][y], f"[{endpts[i]},{endpts[i + 1]}]", ) for i in range(len(endpts) - 1) ], axis=1, ).compute() endpts_df = pd.DataFrame( [endpts[:-1], endpts[1:]], ["lb", "ub"], df.columns ) df = pd.concat([df, endpts_df], axis=0) else: df, grp_cnt_stats, largest_grps = _calc_groups(df, x, ngroups, largest) # calculate a box plot over each group df = dd.concat( [_calc_box_stats(df[df[x] == grp][y], grp) for grp in largest_grps], axis=1, ).compute() df = df.append(pd.Series({c: i + 1 for i, c in enumerate(df.columns)}, name="x",)).T df.index.name = "grp" df = df.reset_index() df["x0"], df["x1"] = df["x"] - 0.8, df["x"] - 0.2 # width of whiskers for plotting outx, outy = _calc_box_otlrs(df) return df, outx, outy, grp_cnt_stats def calc_hist_by_group( df: dd.DataFrame, bins: int, ngroups: int, largest: bool ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Compute a histogram over the values corresponding to the groups in another column Parameters ---------- df Dataframe with one categorical and one numerical column bins Number of bins to use in the histogram ngroups Number of groups to show from the categorical column largest Select the largest or smallest groups Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The histograms in a dataframe and a dictionary logging the sampled group output """ # pylint: disable=too-many-locals hist_dict: Dict[str, Tuple[np.ndarray, np.ndarray, List[str]]] = dict() hist_lst: List[Tuple[np.ndarray, np.ndarray, List[str]]] = list() df, grp_cnt_stats, largest_grps = _calc_groups(df, df.columns[0], ngroups, largest) # create a histogram for each group groups = df.groupby([df.columns[0]]) minv, maxv = dask.compute(df[df.columns[1]].min(), df[df.columns[1]].max()) for grp in largest_grps: grp_srs = groups.get_group(grp)[df.columns[1]] hist_arr, bins_arr = da.histogram(grp_srs, range=[minv, maxv], bins=bins) intervals = _format_bin_intervals(bins_arr) hist_lst.append((hist_arr, bins_arr, intervals)) hist_lst = dask.compute(*hist_lst) for elem in zip(largest_grps, hist_lst): hist_dict[elem[0]] = elem[1] return hist_dict, grp_cnt_stats def calc_scatter(df: dd.DataFrame, sample_size: int) -> pd.DataFrame: """ Extracts the points to use in a scatter plot Parameters ---------- df Dataframe with two numerical columns sample_size the number of points to randomly sample in the scatter plot Returns ------- pd.DataFrame A dataframe containing the scatter points """ if len(df) > sample_size: df = df.sample(frac=sample_size / len(df)) return df.compute() def calc_nested( df: dd.DataFrame, ngroups: int, nsubgroups: int, ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Calculate a nested bar chart of the counts of two columns Parameters ---------- df Dataframe with two categorical columns ngroups Number of groups to show from the first column nsubgroups Number of subgroups (from the second column) to show in each group Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The bar chart counts in a dataframe and a dictionary logging the sampled group output """ x, y = df.columns[0], df.columns[1] df, grp_cnt_stats, _ = _calc_groups(df, x, ngroups) df2 = df.groupby([x, y]).size().reset_index() max_subcol_cnt = df2.groupby(x).size().max().compute() df2.columns = [x, y, "cnt"] df_res = ( df2.groupby(x)[[y, "cnt"]] .apply( lambda x: x.nlargest(n=nsubgroups, columns="cnt"), meta=({y: "f8", "cnt": "i8"}), ) .reset_index() .compute() ) df_res["grp_names"] = list(zip(df_res[x], df_res[y])) df_res = df_res.drop([x, "level_1", y], axis=1) grp_cnt_stats[f"{y}_ttl"] = max_subcol_cnt grp_cnt_stats[f"{y}_shw"] = min(max_subcol_cnt, nsubgroups) return df_res, grp_cnt_stats def calc_stacked( df: dd.DataFrame, ngroups: int, nsubgroups: int, ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Calculate a stacked bar chart of the counts of two columns Parameters ---------- df two categorical columns ngroups number of groups to show from the first column nsubgroups number of subgroups (from the second column) to show in each group Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The bar chart counts in a dataframe and a dictionary logging the sampled group output """ x, y = df.columns[0], df.columns[1] df, grp_cnt_stats, largest_grps = _calc_groups(df, x, ngroups) fin_df =
pd.DataFrame()
pandas.DataFrame
import os import sys sys.path.append('../') from load_paths import load_box_paths from processing_helpers import * import pandas as pd import matplotlib.pyplot as plt import datetime as dt import seaborn as sns import numpy as np import matplotlib.dates as mdates import datetime #sns.set(color_codes=True) import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 import statistics as st sns.set_style('whitegrid', {'axes.linewidth' : 0.5}) from statsmodels.distributions.empirical_distribution import ECDF import scipy import gc import sys import re mpl.rcParams['pdf.fonttype'] = 42 today = dt.datetime.today() #datetoday = date(today.year, today.month, today.day) from processing_helpers import * datapath, projectpath, wdir, exe_dir, git_dir = load_box_paths() def load_sim_data(exp_name, input_wdir=None, input_sim_output_path=None, column_list=None): input_wdir = input_wdir or wdir sim_output_path_base = os.path.join(input_wdir, 'simulation_output', exp_name) sim_output_path = input_sim_output_path or sim_output_path_base df = pd.read_csv(os.path.join(sim_output_path, 'trajectoriesDat.csv'), usecols=column_list) return df first_date = dt.datetime(day=6,month=9,year=2020) column_list = ['scen_num', 'run_num', 'campus_quarantine_pop', 'campus_isolation_pop', 'detection_rate_official'] #'reopening_multiplier_4' def get_probs(exp_name): trajectories = load_sim_data(exp_name, column_list=column_list) #pd.read_csv('trajectoriesDat_200814_1.csv', usecols=column_list) #filedate = get_latest_filedate() qi_path=os.path.join(datapath, 'covid_modeling_northwestern', '201118_QI_tracking.csv') qi = pd.read_csv(qi_path) tests = pd.read_csv(os.path.join(datapath, 'covid_modeling_northwestern', 'Depersonalized_Test_Result.csv')) idx1 = pd.date_range(first_date, pd.to_datetime(np.max(tests['ORDER_DATE']))) tests['result'] = [str(d).lower() for d in tests['RESULT'].values] tests_campus_pos = tests[(tests['UNDERGRAD_FLAG'] == 'Undergrad') & (tests['result'] == 'detected')] positive_daily = tests_campus_pos.groupby('ORDER_DATE').agg({'ORDER_ID': pd.Series.nunique}) positive_daily['specimen_date'] =
pd.to_datetime(positive_daily.index)
pandas.to_datetime
''' Preprocessing Tranformers Based on sci-kit's API By <NAME> Created on June 12, 2017 ''' import copy import pandas as pd import numpy as np import transforms3d as t3d import scipy.ndimage.filters as filters from sklearn.base import BaseEstimator, TransformerMixin from analysis.pymo.rotation_tools import Rotation, euler2expmap, euler2expmap2, expmap2euler, euler_reorder, unroll from analysis.pymo.Quaternions import Quaternions from analysis.pymo.Pivots import Pivots class MocapParameterizer(BaseEstimator, TransformerMixin): def __init__(self, param_type = 'euler'): ''' param_type = {'euler', 'quat', 'expmap', 'position', 'expmap2pos'} ''' self.param_type = param_type def fit(self, X, y=None): return self def transform(self, X, y=None): print("MocapParameterizer: " + self.param_type) if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._to_expmap(X) elif self.param_type == 'quat': return X elif self.param_type == 'position': return self._to_pos(X) elif self.param_type == 'expmap2pos': return self._expmap_to_pos(X) else: raise 'param types: euler, quat, expmap, position, expmap2pos' # return X def inverse_transform(self, X, copy=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._expmap_to_euler(X) elif self.param_type == 'quat': raise 'quat2euler is not supported' elif self.param_type == 'position': # raise 'positions 2 eulers is not supported' print('positions 2 eulers is not supported') return X else: raise 'param types: euler, quat, expmap, position' def _to_pos(self, X): '''Converts joints rotations in Euler angles to joint positions''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=euler_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] rot_order = track.skeleton[joint]['order'] #print("rot_order:" + joint + " :" + rot_order) # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = np.zeros((euler_df.shape[0], 3)) rot_order = "XYZ" else: euler_values = np.pi/180.0*np.transpose(np.array([track.values['%s_%srotation'%(joint, rot_order[0])], track.values['%s_%srotation'%(joint, rot_order[1])], track.values['%s_%srotation'%(joint, rot_order[2])]])) if pc.shape[1] < 3: pos_values = np.asarray([[0,0,0] for f in pc.iterrows()]) else: pos_values =np.asarray([[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()]) quats = Quaternions.from_euler(np.asarray(euler_values), order=rot_order.lower(), world=False) tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] if track.root_name == joint: tree_data[joint][0] = quats#rotmats # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets']) tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = tree_data[parent][0]*quats# np.matmul(rotmats, tree_data[parent][0]) # add the position channel to the offset and store it in k, for every frame i k = pos_values + np.asarray(track.skeleton[joint]['offsets']) # multiply k to the rotmat of the parent for every frame i q = tree_data[parent][0]*k #np.matmul(k.reshape(k.shape[0],1,3), tree_data[parent][0]) # add q to the position of the parent, for every frame i tree_data[joint][1] = tree_data[parent][1] + q #q.reshape(k.shape[0],3) + tree_data[parent][1] # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _expmap2rot(self, expmap): theta = np.linalg.norm(expmap, axis=1, keepdims=True) nz = np.nonzero(theta)[0] expmap[nz,:] = expmap[nz,:]/theta[nz] nrows=expmap.shape[0] x = expmap[:,0] y = expmap[:,1] z = expmap[:,2] s = np.sin(theta*0.5).reshape(nrows) c = np.cos(theta*0.5).reshape(nrows) rotmats = np.zeros((nrows, 3, 3)) rotmats[:,0,0] = 2*(x*x-1)*s*s+1 rotmats[:,0,1] = 2*x*y*s*s-2*z*c*s rotmats[:,0,2] = 2*x*z*s*s+2*y*c*s rotmats[:,1,0] = 2*x*y*s*s+2*z*c*s rotmats[:,1,1] = 2*(y*y-1)*s*s+1 rotmats[:,1,2] = 2*y*z*s*s-2*x*c*s rotmats[:,2,0] = 2*x*z*s*s-2*y*c*s rotmats[:,2,1] = 2*y*z*s*s+2*x*c*s rotmats[:,2,2] = 2*(z*z-1)*s*s+1 return rotmats def _expmap_to_pos(self, X): '''Converts joints rotations in expmap notation to joint positions''' Q = [] for track in X: channels = [] titles = [] exp_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=exp_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] if 'Nub' not in joint: r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint expmap = r.values #expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] else: expmap = np.zeros((exp_df.shape[0], 3)) # Convert the eulers to rotation matrices #rotmats = np.asarray([Rotation(f, 'expmap').rotmat for f in expmap]) #angs = np.linalg.norm(expmap,axis=1, keepdims=True) rotmats = self._expmap2rot(expmap) tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] pos_values = np.zeros((exp_df.shape[0], 3)) if track.root_name == joint: tree_data[joint][0] = rotmats # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets']) tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = np.matmul(rotmats, tree_data[parent][0]) # add the position channel to the offset and store it in k, for every frame i k = pos_values + track.skeleton[joint]['offsets'] # multiply k to the rotmat of the parent for every frame i q = np.matmul(k.reshape(k.shape[0],1,3), tree_data[parent][0]) # add q to the position of the parent, for every frame i tree_data[joint][1] = q.reshape(k.shape[0],3) + tree_data[parent][1] # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=tree_data[joint][1][:,0], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=tree_data[joint][1][:,1], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=tree_data[joint][1][:,2], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _to_expmap(self, X): '''Converts Euler angles to Exponential Maps''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep exp_df = euler_df.copy()# pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame #rxp = '%s_Xposition'%track.root_name #ryp = '%s_Yposition'%track.root_name #rzp = '%s_Zposition'%track.root_name #exp_df[rxp] = pd.Series(data=euler_df[rxp], index=exp_df.index) #exp_df[ryp] = pd.Series(data=euler_df[ryp], index=exp_df.index) #exp_df[rzp] = pd.Series(data=euler_df[rzp], index=exp_df.index) # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: #print(joint) r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint rot_order = track.skeleton[joint]['order'] r1_col = '%s_%srotation'%(joint, rot_order[0]) r2_col = '%s_%srotation'%(joint, rot_order[1]) r3_col = '%s_%srotation'%(joint, rot_order[2]) exp_df.drop([r1_col, r2_col, r3_col], axis=1, inplace=True) euler = [[f[1][r1_col], f[1][r2_col], f[1][r3_col]] for f in r.iterrows()] #exps = [Rotation(f, 'euler', from_deg=True, order=rot_order).to_expmap() for f in euler] # Convert the eulers to exp maps exps = unroll(np.array([euler2expmap(f, rot_order, True) for f in euler])) # Convert the exp maps to eulers # exps = np.array([euler2expmap(f, rot_order, True) for f in euler]) # Convert the exp maps to eulers #exps = euler2expmap2(euler, rot_order, True) # Convert the eulers to exp maps # Create the corresponding columns in the new DataFrame exp_df.insert(loc=0, column='%s_gamma'%joint, value=pd.Series(data=[e[2] for e in exps], index=exp_df.index)) exp_df.insert(loc=0, column='%s_beta'%joint, value=pd.Series(data=[e[1] for e in exps], index=exp_df.index)) exp_df.insert(loc=0, column='%s_alpha'%joint, value=pd.Series(data=[e[0] for e in exps], index=exp_df.index)) #print(exp_df.columns) new_track = track.clone() new_track.values = exp_df Q.append(new_track) return Q def _expmap_to_euler(self, X): Q = [] for track in X: channels = [] titles = [] exp_df = track.values # Create a new DataFrame to store the exponential map rep #euler_df = pd.DataFrame(index=exp_df.index) euler_df = exp_df.copy() # Copy the root positions into the new DataFrame #rxp = '%s_Xposition'%track.root_name #ryp = '%s_Yposition'%track.root_name #rzp = '%s_Zposition'%track.root_name #euler_df[rxp] = pd.Series(data=exp_df[rxp], index=euler_df.index) #euler_df[ryp] = pd.Series(data=exp_df[ryp], index=euler_df.index) #euler_df[rzp] = pd.Series(data=exp_df[rzp], index=euler_df.index) # List the columns that contain rotation channels exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint euler_df.drop(['%s_alpha'%joint, '%s_beta'%joint, '%s_gamma'%joint], axis=1, inplace=True) expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order rot_order = track.skeleton[joint]['order'] #euler_rots = [Rotation(f, 'expmap').to_euler(True, rot_order) for f in expmap] # Convert the exp maps to eulers euler_rots = [expmap2euler(f, rot_order, True) for f in expmap] # Convert the exp maps to eulers # Create the corresponding columns in the new DataFrame euler_df['%s_%srotation'%(joint, rot_order[0])] = pd.Series(data=[e[0] for e in euler_rots], index=euler_df.index) euler_df['%s_%srotation'%(joint, rot_order[1])] = pd.Series(data=[e[1] for e in euler_rots], index=euler_df.index) euler_df['%s_%srotation'%(joint, rot_order[2])] = pd.Series(data=[e[2] for e in euler_rots], index=euler_df.index) new_track = track.clone() new_track.values = euler_df Q.append(new_track) return Q class Mirror(BaseEstimator, TransformerMixin): def __init__(self, axis="X", append=True): """ Mirrors the data """ self.axis = axis self.append = append def fit(self, X, y=None): return self def transform(self, X, y=None): print("Mirror: " + self.axis) Q = [] if self.append: for track in X: Q.append(track) for track in X: channels = [] titles = [] if self.axis == "X": signs = np.array([1,-1,-1]) if self.axis == "Y": signs = np.array([-1,1,-1]) if self.axis == "Z": signs = np.array([-1,-1,1]) euler_df = track.values # Create a new DataFrame to store the exponential map rep new_df = pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name new_df[rxp] =
pd.Series(data=-signs[0]*euler_df[rxp], index=new_df.index)
pandas.Series
import pandas as pd import geopandas as gpd from os import listdir, rename, path, remove, mkdir from os.path import isfile, join, getsize, exists from netCDF4 import Dataset import time import numpy as np import sys import calendar import datetime as dt import re from socket import timeout import subprocess from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.pyplot as plt import urllib import requests, json from requests.auth import HTTPBasicAuth import xmltodict import pandas as pd import geopandas as gpd from shapely import wkt ''' Module: s5p_no2_tools.py ============================================================================================ Disclaimer: The code is for demonstration purposes only. Users are responsible to check for accuracy and revise to fit their objective. nc_to_df adapted from read_tropomi_no2_and_dump_ascii.py by <NAME>, 2015 of NASA ARSET Purpose of original code: To print all SDS from an TROPOMI file Modified by <NAME> & <NAME>, May 10 2019 to read TROPOMI data Modified by <NAME>, May 8, 2020 to as steps 1 and 2 of pipeline to process TROPOMI NO2 data ============================================================================================ ''' def create_project(project_name='default'): """ Purpose: Create project subfolder Parameters: project_name (string): subfolder to create Returns: project_name (string) """ if not exists(project_name): try: mkdir(project_name) except OSError: print (f"Creation of the directory {project_name} failed.") return '' else: print (f"Successfully created the directory {project_name}.") return project_name else: print(f"Directory {project_name} exists.") return project_name def get_place_boundingbox(place_gdf, buffer): """ Purpose: Determine the bounding box of a place GeoDataFrame (polygon) Parameters: place_gdf (GeoDataFrame): place GeoDataFrame to get bounding box for. This should be a Level 0 polygon from GADM. buffer (int): buffer in miles to add to place geometry Returns: bbox (GeoDataFrame): GeoDataFrame containing the bounding box as geometry """ bbox = gpd.GeoDataFrame(geometry=place_gdf['geometry'].buffer(buffer).envelope, crs=place_gdf.crs)\ .reset_index() return bbox def filter_swath_set(swath_set_gdf, place_gdf): """ Purpose: Reduce the number of swaths based on place constraint. Parameters: swath_set_gdf (GeoDataFrame): A GeoDataFrame output from sending a query to the sentinel_api_query() function. This GeoDataFrame contains a geometry for the swath. This geometry should contain the place_gdf geometry below. place_gdf (GeoDataFrame): A GeoDataFrame that should be contained within the swath_set_gdf geometry. Returns: filtered_gdf (GeoDataFrame): A subset of swath_set_gdf representing geometries that contain the place_gdf geometry. """ filtered_gdf = gpd.sjoin(swath_set_gdf, place_gdf, how='right', op='contains').reset_index() filtered_gdf = filtered_gdf.drop(columns=['level_0','index_left','index']) return filtered_gdf def geometry_to_wkt(place_gdf): """ Purpose: Sentinel 5P Data Access hub requires a constraining polygon filter to retrieve a smaller number of satellite image swaths. Parameters: place_gdf (GeoDataFrame): Target place for obtaining NO2 levels. Place GDF should be a simple, GADM level 0 polygon. Returns: wkt_string (string): string containing polygon vertices in WKT format """ # get geometry convex hull and simplify geometry = place_gdf.reset_index()['geometry'].convex_hull.simplify(tolerance=0.05) # convert to WKT wkt_string = wkt.dumps(geometry[0]) return wkt_string def date_from_week(weekstring='2019-W01'): d = weekstring r = dt.datetime.strptime(d + '-1', "%Y-W%W-%w") return r def add_days(start, numDays=1): end = start + dt.timedelta(days=numDays) startDate = start.strftime("%Y-%m-%d") endDate = end.strftime("%Y-%m-%d") return [startDate, endDate] def nc_to_df(ncfile): """ Purpose: This converts a TROPOMI NO2 file to a Pandas DataFrame. Notes: This was adapted from read_tropomi_no2_and_dump_ascii.py by <NAME>, 2015 of NASA ARSET. Parameters: ncfile: NetCD4 file from Copernicus S5P Open Data Hub Returns: dataframe: data from NetCD4 file """ try: f = open(ncfile, 'r') except OSError: print('cannot open', ncfile) df = pd.DataFrame() # read the data if 'NO2___' in ncfile and 'S5P' in ncfile: tic = time.perf_counter() FILENAME = ncfile print(ncfile+' is a TROPOMI NO2 file.') #this is how you access the data tree in an NetCD4 file SDS_NAME='nitrogendioxide_tropospheric_column' file = Dataset(ncfile,'r') grp='PRODUCT' ds=file grp='PRODUCT' lat= ds.groups[grp].variables['latitude'][0][:][:] lon= ds.groups[grp].variables['longitude'][0][:][:] data= ds.groups[grp].variables[SDS_NAME] #get necessary attributes fv=data._FillValue #get scan time and turn it into a vector scan_time= ds.groups[grp].variables['time_utc'] # scan_time=geolocation['Time'][:].ravel() year = np.zeros(lat.shape) mth = np.zeros(lat.shape) doy = np.zeros(lat.shape) hr = np.zeros(lat.shape) mn = np.zeros(lat.shape) sec = np.zeros(lat.shape) strdatetime = np.zeros(lat.shape) for i in range(0,lat.shape[0]): t = scan_time[0][i].split('.')[0] t1 = t.replace('T',' ') t2 = dt.datetime.strptime(t,'%Y-%m-%dT%H:%M:%S') t3 = t2.strftime("%s") #y = t2.year #m = t2.month #d = t2.day #h = t2.hour #m = t2.minute #s = t2.second #year[i][:] = y #mth[i][:] = m #doy[i][:] = d #hr[i][:] = h #mn[i][:] = m #sec[i][:] = s strdatetime[i][:] = t3 vlist = list(file[grp].variables.keys()) #df['Year'] = year.ravel() #df['Month'] = mth.ravel() #df['Day'] = doy.ravel() #df['Hour'] = hr.ravel() #df['Minute'] = mn.ravel() #df['Second'] = sec.ravel() df['UnixTimestamp'] = strdatetime.ravel() df['DateTime'] = pd.to_datetime(df['UnixTimestamp'], unit='s') df[['Date','Time']] = df['DateTime'].astype(str).str.split(' ',expand=True) # This for loop saves all of the SDS in the dictionary at the top # (dependent on file type) to the array (with titles) for i in range(0,len(vlist)): SDS_NAME=vlist[(i)] # The name of the sds to read #get current SDS data, or exit program if the SDS is not found in the file #try: sds=ds.groups[grp].variables[SDS_NAME] if len(sds.shape) == 3: print(SDS_NAME,sds.shape) # get attributes for current SDS if 'qa' in SDS_NAME: scale=sds.scale_factor else: scale = 1.0 fv=sds._FillValue # get SDS data as a vector data=sds[:].ravel() # The next few lines change fill value/missing value to NaN so # that we can multiply valid values by the scale factor, # then back to fill values for saving data=data.astype(float) data=(data)*scale data[np.isnan(data)]=fv data[data==float(fv)]=np.nan df[SDS_NAME] = data toc = time.perf_counter() elapsed_time = toc-tic print("Processed "+ncfile+" in "+str(elapsed_time/60)+" minutes") else: raise NameError('Not a TROPOMI NO2 file name.') return df def polygon_filter(input_df, filter_gdf): """ Purpose: This removes records from the TROPOMI NO2 Pandas DataFrame that is not found within the filter polygons Parameters: input_df: Pandas DataFrame containing NO2 data coming from nc_to_df() filter_gdf: GeoPandas GeoDataFrame containing geometries to constrain NO2 records. Be sure to create the spatial index for filter_gdf to speed up sjoin operation. You can do this by calling filter_gdf.sindex before feeding filter_gdf into: polygon_filter(input_df=input_df, filter_gdf=filter_gdf) Returns: geodataframe: Filtered GeoPandas GeoDataFrame """ print('To speed up the polygon_filter() operation, did you create the spatial index for filter_gdf?') tic = time.perf_counter() output_gdf = pd.DataFrame() print('Processing input dataframe...') crs = filter_gdf.crs # 1. Convert input_df to gdf gdf1 = gpd.GeoDataFrame(input_df, geometry=gpd.points_from_xy(input_df.longitude, input_df.latitude),crs=crs) print('Original NO2 DataFrame length:', len(gdf1)) # 2. Find out intersection between African Countries GeoDataFrames (geometry) and # NO2 GeoDataFrames using Geopandas sjoin (as GeoDataFrame, gdf2) sjoin_gdf = gpd.sjoin(gdf1, filter_gdf, how='inner', op='intersects') print('Filtered NO2 GeoDataFrame length:', len(sjoin_gdf)) toc = time.perf_counter() elapsed_time = toc-tic print("Processed NO2 DataFrame sjoin in "+str(elapsed_time/60)+" minutes") return sjoin_gdf def get_filename_from_cd(cd): """ Purpose: Get filename from content-disposition (cd) Parameters: cd (string): content-disposition Returns: fname[0] (string): filename """ if not cd: return None fname = re.findall('filename=(.+)', cd) if len(fname) == 0: return None return fname[0] def download_nc_file(url, auth, savedir, logging, refresh): """ Purpose: Download NetCD4 files from URL Parameters: url: string, download url obtained from Sentinel 5P Open Data Hub search results auth: dictionary of '<PASSWORD>' and 'password' savedir: string, path to save NetCD4 files logging: boolean, turn logging on or off refresh: boolean, overwrite previously downloaded files (helps save time if False) Returns: filename: string filename of NetCD4 file """ user = auth['user'] password = auth['password'] filename = 'temp.nc' logfile = 'nc.log' try: refresh=refresh headers = { 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 \ (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36', } tic = time.perf_counter() with open(savedir+'/'+filename, 'wb') as f: response = requests.get(url, auth=(user, password), stream=True, headers=headers) filename0 = get_filename_from_cd(response.headers.get('content-disposition')).replace('"','') if path.exists(savedir+'/'+filename0): print('File '+filename0+' exists.') if refresh==False: filename0_size = getsize(savedir+'/'+filename0) print('Filename size:', filename0_size,' bytes') if filename0_size > 0: remove(savedir+'/'+filename) return filename0 print('Downloading '+filename0+'...') total = response.headers.get('content-length') if total is None: f.write(response.content) else: downloaded = 0 total = int(total) for data in response.iter_content(chunk_size=max(int(total/1000), 1024*1024)): downloaded += len(data) f.write(data) done = int(50*downloaded/total) sys.stdout.write('\r[{}{}]'.format('█' * done, '.' * (50-done))) sys.stdout.flush() if logging==True: with open(logfile, 'a+') as l: # Move read cursor to the start of file. l.seek(0) # If file is not empty then append '\n' data = l.read(100) if len(data) > 0 : l.write("\n") # Append text at the end of file l.write(filename0) sys.stdout.write('\n') rename(savedir+'/'+filename, savedir+'/'+filename0) toc = time.perf_counter() elapsed_time = toc-tic print('Success: Saved '+filename0+' to '+savedir+'.') print('Download time, seconds: '+str(elapsed_time)) delays = [7, 4, 6, 2, 10, 15, 19, 23] delay = np.random.choice(delays) print('Delaying for '+str(delay)+' seconds...') time.sleep(delay) return filename0 except: print('Something went wrong.') def batch_download_nc_files(auth, savedir, url_file, numfiles, logging, refresh): """ Purpose: For batch downloading nc files from the Copernicus S5P Data Access Hub Parameters: auth (dict): authentication dictionary, {'user':'myusername', 'password':'<PASSWORD>'} savedir (string): directory used to save NetCD4 files url_file (string): file containing NetCD4 download URLS numfiles (int) logging (bool) refresh (bool) Returns: df (DataFrame) """ savedir=savedir url_file = url_file df =
pd.read_csv(url_file)
pandas.read_csv
import json import requests import pandas as pd from datetime import datetime, timedelta def get_data(state): url = "http://sjc.salvar.cemaden.gov.br/resources/graficos/interativo/getJson2.php" querystring = {'uf': state} headers = { 'cache-control': 'no-cache', # 'postman-token': '<PASSWORD>' } response = requests.request( 'GET', url, headers=headers, params=querystring) data_df = json.loads(response.text) df = pd.DataFrame(data_df) #!Filter df['date'] = pd.to_datetime( df['datahoraUltimovalor'], format='%d/%m/%y %H:%M', errors='ignore').dt.tz_localize('UTC') date_now = pd.to_datetime( datetime.utcnow()-timedelta(minutes=20)) df = df[df['date'] >=
pd.Timestamp(date_now, tz="UTC")
pandas.Timestamp
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd # In[2]: df = pd.read_csv('processed.csv.gz') # In[3]: df.head() # In[4]: df.info() # In[5]: df = df.drop(columns=df.columns[0]) # In[6]: df.head() # In[7]: df.groupby('vaderSentimentLabel').size() # In[8]: import matplotlib.pyplot as plt # In[9]: df.groupby('vaderSentimentLabel').count().plot.bar() plt.show() # In[10]: df.groupby('ratingSentimentLabel').size() # In[11]: df.groupby('ratingSentimentLabel').count().plot.bar() plt.show() # In[12]: df.groupby('ratingSentiment').size() # In[13]: positive_vader_sentiments = df[df.ratingSentiment == 2] positive_string = [] for s in positive_vader_sentiments.cleanReview: positive_string.append(s) positive_string = pd.Series(positive_string).str.cat(sep=' ') # In[14]: from wordcloud import WordCloud wordcloud = WordCloud(width=2000,height=1000,max_font_size=200).generate(positive_string) plt.imshow(wordcloud,interpolation='bilinear') plt.show() # In[15]: for s in positive_vader_sentiments.cleanReview[:20]: if 'side effect' in s: print(s) # In[16]: negative_vader_sentiments = df[df.ratingSentiment == 1] negative_string = [] for s in negative_vader_sentiments.cleanReview: negative_string.append(s) negative_string = pd.Series(negative_string).str.cat(sep=' ') # In[17]: from wordcloud import WordCloud wordcloud = WordCloud(width=2000,height=1000,max_font_size=200).generate(negative_string) plt.imshow(wordcloud,interpolation='bilinear') plt.axis('off') plt.show() # In[18]: neutral_vader_sentiments = df[df.ratingSentiment == 0] neutral_string = [] for s in neutral_vader_sentiments.cleanReview: neutral_string.append(s) neutral_string = pd.Series(neutral_string).str.cat(sep=' ') # In[19]: from wordcloud import WordCloud wordcloud = WordCloud(width=2000,height=1000,max_font_size=200).generate(neutral_string) plt.imshow(wordcloud,interpolation='bilinear') plt.axis('off') plt.show() # In[20]: for s in neutral_vader_sentiments.cleanReview[:20]: if 'side effect' in s: print(s) # In[21]: from sklearn.feature_extraction.text import TfidfVectorizer # In[22]: tfidf = TfidfVectorizer(stop_words='english',ngram_range=(1,2)) features = tfidf.fit_transform(df.cleanReview) labels = df.vaderSentiment # In[23]: features.shape # In[24]: from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB # In[25]: x_train,x_test,y_train,y_test = train_test_split(df['cleanReview'],df['ratingSentimentLabel'],random_state=0) # In[26]: from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler # In[27]: models = [RandomForestClassifier(n_estimators=200,max_depth=3,random_state=0),LinearSVC(),MultinomialNB(),LogisticRegression(random_state=0,solver='lbfgs',max_iter=2000,multi_class='auto')] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model,features,labels,scoring='accuracy',cv=CV) for fold_idx,accuracy in enumerate(accuracies): entries.append((model_name,fold_idx,accuracy)) cv_df =
pd.DataFrame(entries,columns=['model_name','fold_idx','accuracy'])
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( Index, Interval, IntervalIndex, Timedelta, Timestamp, date_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray @pytest.fixture( params=[ (Index([0, 2, 4]), Index([1, 3, 5])), (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])), (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)), (date_range("20170101", periods=3), date_range("20170102", periods=3)), ( date_range("20170101", periods=3, tz="US/Eastern"), date_range("20170102", periods=3, tz="US/Eastern"), ), ], ids=lambda x: str(x[0].dtype), ) def left_right_dtypes(request): """ Fixture for building an IntervalArray from various dtypes """ return request.param class TestAttributes: @pytest.mark.parametrize( "left, right", [ (0, 1), (Timedelta("0 days"), Timedelta("1 day")), (Timestamp("2018-01-01"), Timestamp("2018-01-02")), ( Timestamp("2018-01-01", tz="US/Eastern"), Timestamp("2018-01-02", tz="US/Eastern"), ), ], ) @pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex]) def test_is_empty(self, constructor, left, right, closed): # GH27219 tuples = [(left, left), (left, right), np.nan] expected = np.array([closed != "both", False, False]) result = constructor.from_tuples(tuples, closed=closed).is_empty tm.assert_numpy_array_equal(result, expected) class TestMethods: @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"]) def test_set_closed(self, closed, new_closed): # GH 21670 array = IntervalArray.from_breaks(range(10), closed=closed) result = array.set_closed(new_closed) expected = IntervalArray.from_breaks(range(10), closed=new_closed) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "other", [
Interval(0, 1, closed="right")
pandas.Interval
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2022/5/16 18:36 Desc: 新股和风险警示股 新浪-行情中心-沪深股市-次新股 http://vip.stock.finance.sina.com.cn/mkt/#new_stock 东方财富网-行情中心-沪深个股-风险警示板 http://quote.eastmoney.com/center/gridlist.html#st_board """ import math import pandas as pd import requests def stock_zh_a_st_em() -> pd.DataFrame: """ 东方财富网-行情中心-沪深个股-风险警示板 http://quote.eastmoney.com/center/gridlist.html#st_board :return: 风险警示板 :rtype: pandas.DataFrame """ url = 'http://40.push2.eastmoney.com/api/qt/clist/get' params = { 'pn': '1', 'pz': '2000', 'po': '1', 'np': '1', 'ut': 'bd1d9ddb04089700cf9c27f6f7426281', 'fltt': '2', 'invt': '2', 'fid': 'f3', 'fs': 'm:0 f:4,m:1 f:4', 'fields': 'f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152', '_': '1631107510188', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']['diff']) temp_df.reset_index(inplace=True) temp_df['index'] = range(1, len(temp_df)+1) temp_df.columns = [ '序号', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '换手率', '市盈率-动态', '量比', '_', '代码', '_', '名称', '最高', '最低', '今开', '昨收', '_', '_', '_', '市净率', '_', '_', '_', '_', '_', '_', '_', '_', '_', ] temp_df = temp_df[[ '序号', '代码', '名称', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '最高', '最低', '今开', '昨收', '量比', '换手率', '市盈率-动态', '市净率', ]] temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce") temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors="coerce") temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额'], errors="coerce") temp_df['成交量'] = pd.to_numeric(temp_df['成交量'], errors="coerce") temp_df['成交额'] = pd.to_numeric(temp_df['成交额'], errors="coerce") temp_df['振幅'] = pd.t
o_numeric(temp_df['振幅'], errors="coerce")
pandas.to_numeric
import matplotlib.pyplot as pl import anndata as ad import pandas as pd import numpy as np import scanpy as sc import scvelo as scv from scipy.sparse import issparse import matplotlib.gridspec as gridspec from scipy.stats import gaussian_kde, spearmanr, pearsonr from goatools.obo_parser import GODag from goatools.anno.genetogo_reader import Gene2GoReader from goatools.goea.go_enrichment_ns import GOEnrichmentStudyNS import seaborn as sns import re import os import gzip import mygene from csv import Sniffer signatures_path_= os.path.join(os.path.dirname(os.path.realpath(__file__)), 'metadata/') def get_genefamily_percentage(adata, key='MT-', start=True, name='mito'): keys = key if isinstance(key, list) else [key, '____ignore____'] if start: family_genes = np.logical_or(*[adata.var_names.str.startswith(k) for k in keys]) else: family_genes = np.logical_or(*[adata.var_names.str.endswith(k) for k in keys]) if issparse(adata.X): adata.obs['percent_'+name] = np.sum( adata[:, family_genes].X, axis=1).A1 / np.sum(adata.X, axis=1).A1 else: adata.obs['percent_'+name] = np.sum( adata[:, family_genes].X, axis=1) / np.sum(adata.X, axis=1) def get_mito_percentage(adata, species='human'): key = 'MT-' if species == 'human' else 'mt-' get_genefamily_percentage(adata, key=key, start=True, name='mito') def get_ribo_percentage(adata, species='human'): key = specify_genes(['RPS', 'RPL'], species=species) get_genefamily_percentage(adata, key=key, start=True, name='ribo') def get_hemo_percentage(adata, species='human'): key = specify_genes(['HBA', 'HBB'], species=species) get_genefamily_percentage(adata, key=key, start=True, name='hemo') def score_cell_cycle(adata, signatures_path=signatures_path_, species='human'): adatas = adata if isinstance(adata, list) else [adata] for i in range(len(adatas)): adata = adatas[i] # score cell cycle # cc score with genes from Kowalczyk, <NAME>., et al. “Single-Cell RNA-Seq Reveals Changes in Cell Cycle and Differentiation Programs upon Aging of Hematopoietic Stem Cells.” Genome Research, vol. 25, no. 12, 2015, pp. 1860–72, doi:10.1101/gr.192237.115. cell_cycle_genes = [x.strip() for x in open(signatures_path+'/regev_lab_cell_cycle_genes.txt')] cell_cycle_genes = [x for x in cell_cycle_genes if x in adata.var_names] # Split into 2 lists s_genes = cell_cycle_genes[:43] g2m_genes = cell_cycle_genes[43:] # score sc.tl.score_genes_cell_cycle(adata, s_genes=s_genes, g2m_genes=g2m_genes) adatas[i] = adata return adatas[0] if len(adatas)==1 else adatas def score_smillie_str_epi_imm(adata, signatures_path=signatures_path_, species='human'): tab=pd.read_excel(signatures_path+'/colonoid_cancer_uhlitz_markers_revised.xlsx', skiprows=1, index_col=0) score_genes(adata, np.array(tab.index[tab['Epithelial']==1].values, dtype='str'), score_name='epi_score', species=species) score_genes(adata, np.array(tab.index[tab['Stromal']==1].values, dtype='str'), score_name='str_score', species=species) score_genes(adata, np.array(tab.index[tab['Immune']==1].values, dtype='str'), score_name='imm_score', species=species) def score_tumor_immune_cells(adata, signatures_path=signatures_path_, species='human'): # ImSigGenes immune tumor signatures tab=pd.read_excel(signatures_path+'/ImSigGenes_immunetumor.xlsx', skiprows=2, index_col=1) annot = dict() for ct in pd.unique(tab.Signature): annot[ct] = tab[tab.Signature==ct].index.values for ct in annot.keys(): score_genes(adata, annot[ct], score_name=ct, species=species) def calc_qc_scvelo(adata): adatas = adata if isinstance(adata, list) else [adata] for adata in adatas: # obs qc adata.obs['ucounts'] = rsum(adata.layers['unspliced'], axis=1) adata.obs['scounts'] = rsum(adata.layers['spliced'], axis=1) adata.obs['ufeatures'] = rsum(adata.layers['unspliced']>0, axis=1) adata.obs['sfeatures'] = rsum(adata.layers['spliced']>0, axis=1) # var qc adata.var['ucounts'] = rsum(adata.layers['unspliced'], axis=0) adata.var['scounts'] = rsum(adata.layers['spliced'], axis=0) adata.var['ucells'] = rsum(adata.layers['unspliced']>0, axis=0) adata.var['scells'] = rsum(adata.layers['spliced']>0, axis=0) def calc_qc(adata, extended_genesets=False, species='detect'): adatas = adata if isinstance(adata, list) else [adata] for adata in adatas: # qc counts adata.obs['ncounts'] = rsum(adata.X, axis=1) adata.obs['ngenes'] = rsum(adata.X>0, axis=1) adata.var['ncounts'] = rsum(adata.X, axis=0) adata.var['ncells'] = rsum(adata.X>0, axis=0) species = detect_organism(adata) if species == 'detect' else species # gene modules # mitochondrial genes get_mito_percentage(adata, species) # ribosomal genes get_ribo_percentage(adata, species) # hemoglobin genes get_hemo_percentage(adata, species) if extended_genesets: if species is not 'human': raise ValueError(species,' species is not known. Pls do not use extended_genesets=True.') # interferon genes, immune response get_genefamily_percentage(adata, key='IFIT', start=True, name='ifit') # Cell adhesion molecules genes get_genefamily_percentage(adata, key='CAM', start=False, name='cam') # HLA genes encode MHC I and MHC II get_genefamily_percentage(adata, key='HLA-', start=True, name='hla') # genome specific sometimes!!! # S100 genes, saw them often in organoids get_genefamily_percentage(adata, key='S100', start=True, name='s100') # FOX genes, TFs get_genefamily_percentage(adata, key='FOX', start=True, name='fox') # Heat shock protein genes get_genefamily_percentage(adata, key='HSP', start=True, name='heatshock') # ABC transporter genes, can lead to multi-drug resistance in cancer get_genefamily_percentage(adata, key='ABC', start=True, name='abc') def specify_genes(genes, species='human'): genes = genes if isinstance(genes, list) else list(genes) if isinstance(genes, np.ndarray) else [genes] if species is 'human': return [x.upper() for x in genes] elif species is 'mouse': return [x.capitalize() for x in genes] else: raise ValueError('Species '+species+' not known.') def score_genes(adata, gene_list, score_name, species='human', **kwargs): gene_list_ = specify_genes(gene_list, species=species) sc.tl.score_genes(adata, gene_list_, score_name=score_name) def score_hallmarks(adata, subset='organoid', signatures_path=signatures_path_, species='human'): sc.settings.verbosity = 0 # subset can be a list of hallmarks, 'organoid' (), 'CRC' (~18) or 'all' (50 scores) tab = pd.read_csv(signatures_path + 'h.all.v6.2.symbols.gmt', sep='\t', index_col=0, header=None).drop(1, axis=1).T hallsigs={hallmark : tab[hallmark][~pd.isna(tab[hallmark])].values for hallmark in tab.columns} if isinstance(subset, list): selection = subset elif subset == 'organoid': selection = ['HALLMARK_DNA_REPAIR', 'HALLMARK_WNT_BETA_CATENIN_SIGNALING', 'HALLMARK_APOPTOSIS'] elif subset == 'CRC': # TODO this list is bugged, some entries do not exist selection = ['HALLMARK_DNA_REPAIR', 'HALLMARK_WNT_BETA_CATENIN_SIGNALING', 'HALLMARK_APOPTOSIS', 'HALLMARK_NOTCH_SIGNALING', 'HALLMARK_TNFA_SIGNALING_VIA_NFKB', 'HALLMARK_HYPOXIA', 'HALLMARK_TGF_BETA_SIGNALING', 'HALLMARK_MITOTIC_SPINDLE', 'HALLMARK_MTORC1_SIGNALING', 'HALLMARK_PI3K_AKT_MTOR_SIGNALING', 'HALLMARK_PROTEIN_SECRETION' 'HALLMARK_G2M_CHECKPOINT', 'HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION', 'HALLMARK_OXIDATIVE_PHOSPHORYLATION', 'HALLMARK_P53_PATHWAY', 'HALLMARK_ANGIOGENESIS', 'HALLMARK_KRAS_SIGNALING_UP', 'HALLMARK_KRAS_SIGNALING_DN', 'HALLMARK_GLYCOLYSIS'] elif subset == 'all': selection = hallsigs.keys() else: raise ValueError('Please select a valid subset of hallmark to use. You can also choose "all".') for hm in selection: score_genes(adata, hallsigs[hm], score_name=hm, species=species) def lin_corr_adata(adata, x, keys, method='spearman'): """Linearly correlates features (genes/obs_keys) of adata with a given array. Computes pearson linear correlation (r and p value) for each selected feature with the given values in x. ---------- adata: An adata object. x: numeric numpy array For example x = adata.obsm['X_diffmap'][:,1] or another gene's expression. keys: Either a list of genes or a list of adata.obs.columns. method: Either 'spearman' or 'pearson'. Returns ------- df: A pandas DataFrame The dataframe has genes as index and columns pearson_r and pearson_p. It is sorted by correlation coefficient (pearson_r). """ # input keys may be list or str, make list keys = [keys] if isinstance(keys, str) else keys # select correlation method if method == 'spearman': correlate = spearmanr elif method == 'pearsonr': correlate = pearsonr else: raise ValueError(f'Method {method} not valid (pearson or spearman only).') # feature set if all(np.isin(keys, adata.obs.columns)): feature_type = 'obs_keys' Y = adata.obs[keys].values elif any(np.isin(keys, adata.var_names)): feature_type = 'genes' Y = adata.X.A if issparse(adata.X) else adata.X else: raise ValueError('Keys must be list of genes or adata.obs keys.') # linearly correlated lincors = [] for i, key in enumerate(keys): y = Y[:, i] r, p = correlate(x, y) lincors.append([key, r, p]) # format result as pandas.DataFrame df = pd.DataFrame(lincors, columns=[feature_type, f'{method}_r', f'{method}_p']).set_index(feature_type) df = df.sort_values(f'{method}_r', ascending=False) # sort by correlation return df def kde_trajectory(adata, key, groupby, velocity=False, rug_keys=[], component=1, figsize=[15,5], n_convolve=10, ax=None, show=True, n_eval=200, range_percs=[0,100], linewidth=4, rug_alpha=0.1, n=19, ylim=30, scale=8): X = adata.obsm['X_'+key] if 'X_'+key in adata.obsm.keys() else adata.obsm[key] if key in adata.obsm.keys() else adata.obs[key] X = X[:, component] if len(X.shape)>1 else X if velocity: V = adata.obsm['velocity_'+key] if 'velocity_'+key in adata.obsm.keys() else adata.obsm[key] if key in adata.obsm.keys() else adata.obs[key] V = V[:, component] if len(V.shape)>1 else V ax = pl.figure(figsize=figsize).gca() if ax is None else ax xmin = np.percentile(X, range_percs[0]) xmax = np.percentile(X, range_percs[1]) ev = np.linspace(xmin, xmax, n_eval) # plot density per group for i, cond in enumerate(np.sort(pd.unique(adata.obs[groupby]))): mask = adata.obs[groupby] == cond kernel = gaussian_kde(X[mask]) ax.plot(ev, kernel(ev), label=cond, linewidth=linewidth, color=adata.uns[groupby+'_colors'][i]) if velocity: # arrow projections edges = np.linspace(ev[0], ev[-1], n) bins = [(edges[k]<X) & (X<edges[k+1]) for k in range(n-1)] in_bin = bins[2] xs = np.array([np.mean(X[mask & in_bin]) for in_bin in bins]) ys = np.array([np.mean(kernel(X[mask & in_bin])) for in_bin in bins]) vs = np.array([np.mean(V[mask & in_bin]) if y>ylim else 0 for y, in_bin in zip(ys, bins)]) vs = vs / np.max(np.abs(vs)) # pl.plot(X[mask & in_bin], kernel(X[mask & in_bin]), label=cond, linewidth=linewidth, color='red') # pl.quiver(X[mask & in_bin], kernel(X[mask & in_bin]), V[mask & in_bin], 0) ix = np.abs(vs) > 0 ax.quiver(xs[ix], ys[ix], vs[ix], 0 , zorder=100, scale_units='width', scale=scale, color=adata.uns[groupby+'_colors'][i]) # plot categorical annotations as rug rug_y = ax.get_ylim()[1]/10 rug_keys = rug_keys if isinstance(rug_keys, list) else [rug_keys] for i, rug in enumerate(rug_keys): for j, cond in enumerate(np.sort(pd.unique(adata.obs[rug]))): mask = (adata.obs[rug] == cond) & (X>xmin) & (X<xmax) plot = ax.plot(X[mask], np.zeros(np.sum(mask)) - rug_y * (i+1), '|', color=adata.uns[rug+'_colors'][j], ms=10, alpha=rug_alpha) ax.set_xticks([]) ax.set_xlabel(key + ' component '+str(component)) ax.set_ylabel(f'Cell density (KDE) by {groupby}') ax.set_yticks(ax.get_yticks()[ax.get_yticks()>=0]) ax.axhline(y=0, c='k') ax.legend() if show: pl.show() else: return def diffusion_analysis_(adata, groupby, species='human', component=1, corr_cutoff=0.1, figsize=[10,8], range_percs=[3,97], velocity_mode=None, show=True): """Performs a diffusion analysis on adata for a specific diffusion component. velocity_mode may be None, 'on density', 'average' or , 'single' ---------- adata: An adata object. Returns ------- None """ ckey = 'DC'+str(component) add_velocity_subplot = velocity_mode!=None and velocity_mode!='on density' # set layout fig = pl.figure(constrained_layout=True, figsize=figsize) widths = [1, 1, 1] n_rows = 3 + add_velocity_subplot heights = [1] * n_rows spec = fig.add_gridspec(ncols=3, nrows=n_rows, width_ratios=widths, height_ratios=heights) ax0 = fig.add_subplot(spec[0, :]) kde_trajectory(adata, key='diffmap', groupby=groupby, range_percs=range_percs, ax=ax0, show=False, component=component, velocity=velocity_mode=='on density' ) ax0.set_xlabel('diffusion pseudotime') ax0.set_ylabel('cell density') def add_annotation(row, keys, fig, df, name): n_top=8 ax_0 = fig.add_subplot(spec[row, 0]) ax_1 = fig.add_subplot(spec[row, 1], sharey=ax_0) ax_2 = fig.add_subplot(spec[row, 2], sharey=ax_0) ax_0.set_axis_off() ax_2.set_axis_off() # Arrows ax_0.annotate('', xy=(.4, 1), xytext=(.6, 1), arrowprops=dict(facecolor='black', shrink=0.05), rotation=90) ax_2.annotate('', xy=(.6, 1), xytext=(.4, 1), arrowprops=dict(facecolor='black', shrink=0.05), rotation=90) # Texts neg_df = df['spearman_r'][df['spearman_r']<-corr_cutoff].iloc[::-1][:n_top] pos_df = df['spearman_r'][df['spearman_r']>corr_cutoff][:n_top] for i, hallmark in enumerate(neg_df.index): ax_0.text(0.5, .8 - i/len(hallmarks), hallmark.replace('HALLMARK_','').replace('_',' '), ha='center', va='center') for i, hallmark in enumerate(pos_df.index): ax_2.text(0.5, .8 - i/len(hallmarks), hallmark.replace('HALLMARK_','').replace('_',' '), ha='center', va='center') # Barplot ax_1.barh([.8- i/10 for i in range(len(neg_df))], neg_df.values, align='center', height=0.08, color='tab:blue') ax_1.barh([.8- i/10 for i in range(len(pos_df))], pos_df.values, align='center', height=0.08, color='tab:red') ax_1.spines['right'].set_visible(False) ax_1.spines['left'].set_visible(False) ax_1.spines['top'].set_visible(False) ax_1.set_yticks([]) m = np.max(np.abs(df['spearman_r'])) ax_1.set_xlim([-m,m]) ax_1.set_xlabel(f'correlation between diffusion axis \n and {name} expression \n (spearman R)') ax_1.set_ylim([0,1]) ### Pathways # aggregate hallmarks dfs = [] hallmarks = ['HALLMARK_ANGIOGENESIS', 'HALLMARK_APOPTOSIS', 'HALLMARK_COAGULATION', 'HALLMARK_COMPLEMENT', 'HALLMARK_IL2_STAT5_SIGNALING', 'HALLMARK_INFLAMMATORY_RESPONSE', 'HALLMARK_INTERFERON_ALPHA_RESPONSE', 'HALLMARK_INTERFERON_GAMMA_RESPONSE', 'HALLMARK_PI3K_AKT_MTOR_SIGNALING', 'HALLMARK_TGF_BETA_SIGNALING', 'HALLMARK_XENOBIOTIC_METABOLISM'] if not all(np.isin(hallmarks, adata.obs.keys())): score_hallmarks(adata, species=species, subset=hallmarks) df_hallmarks = lin_corr_adata(adata, adata.obsm['X_diffmap'][:, component], hallmarks) df_hallmarks = df_hallmarks[~pd.isna(df_hallmarks.spearman_r)] add_annotation(-2, hallmarks, fig, df_hallmarks, 'signature score') ### Genes df_genes = lin_corr_adata(adata, adata.obsm['X_diffmap'][:, component], adata.var_names) df_genes = df_genes[~pd.isna(df_genes.spearman_r)] add_annotation(-1, hallmarks, fig, df_genes, 'gene') ### velocities if add_velocity_subplot: ax1 = fig.add_subplot(spec[1, :], sharex=ax0) groups = list(adata.obs[groupby].cat.categories) colors = adata.uns[f'{groupby}_colors'] x = adata.obsm['X_diffmap'][:, component] v = adata.obsm['velocity_diffmap'][:, component] mask0 = (x>np.percentile(x, range_percs[0])) & (x<np.percentile(x, range_percs[1])) if velocity_mode=='single': for i, group in enumerate(groups): mask = (adata.obs[groupby] == group) & mask0 ax1.quiver(x[mask], np.random.uniform(1-i, -i, x.shape)[mask], v[mask], np.zeros_like(v)[mask], color=colors[i], scale=0.4, edgecolor='k', linewidth = .5) ax1.set_ylabel(f'RNA velocity\nby {groupby}') else: from scipy.interpolate import interp1d n_evals = 10 xint=np.linspace(np.percentile(x, range_percs[0]), np.percentile(x, range_percs[1]), n_evals) for i, group in enumerate(groups): mask = (adata.obs[groupby] == group) & mask0 f = interp1d(x[mask], v[mask]) x_int = xint[(xint >= np.min(x[mask])) & (xint <= np.max(x[mask]))] v_int = f(x_int) # Normalize v_absmax = np.max(np.abs(v_int)) x_segment = (x_int[1] - x_int[0]) / (n_evals/5) v_int = v_int * x_segment / v_absmax ax1.quiver(x_int, i * np.ones_like(x_int), v_int, np.zeros_like(v_int), headwidth=4, color=colors[i], edgecolor='k', linewidth = .5, angles='xy', scale_units='xy', scale=1) ax1.set_ylim(-1, len(groups)) ax1.set_ylabel(f'Average RNA velocity\nby {groupby}') ax1.set_yticks([]) # pl.suptitle('Neutrophil cell density on diffusion pseudotime') if show: pl.show() def identify_barcode_overlap(df1, df2, key1, key2, reg1='[ACGT]+-', reg2='[ACGT]+-', kick=-1, plot=True): # clear index x1 = np.array([re.findall(reg1, txt)[0][:kick] for txt in df1.index]) x2 = np.array([re.findall(reg2, txt)[0][:kick] for txt in df2.index]) # count co-occurences of barcodes by key categories c1 = pd.unique(df1[key1]) c2 =
pd.unique(df2[key2])
pandas.unique
# coding: utf8 import torch import numpy as np import os import warnings import pandas as pd from time import time import logging from torch.nn.modules.loss import _Loss import torch.nn.functional as F from sklearn.utils import column_or_1d import scipy.sparse as sp from clinicadl.tools.deep_learning.iotools import check_and_clean from clinicadl.tools.deep_learning import EarlyStopping, save_checkpoint ##################### # CNN train / test # ##################### def train(model, train_loader, valid_loader, criterion, optimizer, resume, log_dir, model_dir, options, logger=None): """ Function used to train a CNN. The best model and checkpoint will be found in the 'best_model_dir' of options.output_dir. Args: model: (Module) CNN to be trained train_loader: (DataLoader) wrapper of the training dataset valid_loader: (DataLoader) wrapper of the validation dataset criterion: (loss) function to calculate the loss optimizer: (torch.optim) optimizer linked to model parameters resume: (bool) if True, a begun job is resumed log_dir: (str) path to the folder containing the logs model_dir: (str) path to the folder containing the models weights and biases options: (Namespace) ensemble of other options given to the main script. logger: (logging object) writer to stdout and stderr """ from tensorboardX import SummaryWriter from time import time if logger is None: logger = logging columns = ['epoch', 'iteration', 'time', 'balanced_accuracy_train', 'loss_train', 'balanced_accuracy_valid', 'loss_valid'] if hasattr(model, "variational") and model.variational: columns += ["kl_loss_train", "kl_loss_valid"] filename = os.path.join(os.path.dirname(log_dir), 'training.tsv') if not resume: check_and_clean(model_dir) check_and_clean(log_dir) results_df = pd.DataFrame(columns=columns) with open(filename, 'w') as f: results_df.to_csv(f, index=False, sep='\t') options.beginning_epoch = 0 else: if not os.path.exists(filename): raise ValueError('The training.tsv file of the resumed experiment does not exist.') truncated_tsv = pd.read_csv(filename, sep='\t') truncated_tsv.set_index(['epoch', 'iteration'], inplace=True) truncated_tsv.drop(options.beginning_epoch, level=0, inplace=True) truncated_tsv.to_csv(filename, index=True, sep='\t') # Create writers writer_train = SummaryWriter(os.path.join(log_dir, 'train')) writer_valid = SummaryWriter(os.path.join(log_dir, 'validation')) # Initialize variables best_valid_accuracy = -1.0 best_valid_loss = np.inf epoch = options.beginning_epoch model.train() # set the model to training mode train_loader.dataset.train() early_stopping = EarlyStopping('min', min_delta=options.tolerance, patience=options.patience) mean_loss_valid = None t_beginning = time() while epoch < options.epochs and not early_stopping.step(mean_loss_valid): logger.info("Beginning epoch %i." % epoch) model.zero_grad() evaluation_flag = True step_flag = True tend = time() total_time = 0 for i, data in enumerate(train_loader, 0): t0 = time() total_time = total_time + t0 - tend if options.gpu: imgs, labels = data['image'].cuda(), data['label'].cuda() else: imgs, labels = data['image'], data['label'] if hasattr(model, "variational") and model.variational: z, mu, std, train_output = model(imgs) kl_loss = kl_divergence(z, mu, std) loss = criterion(train_output, labels) + kl_loss else: train_output = model(imgs) loss = criterion(train_output, labels) # Back propagation loss.backward() del imgs, labels if (i + 1) % options.accumulation_steps == 0: step_flag = False optimizer.step() optimizer.zero_grad() del loss # Evaluate the model only when no gradients are accumulated if options.evaluation_steps != 0 and (i + 1) % options.evaluation_steps == 0: evaluation_flag = False _, results_train = test(model, train_loader, options.gpu, criterion) mean_loss_train = results_train["total_loss"] / (len(train_loader) * train_loader.batch_size) _, results_valid = test(model, valid_loader, options.gpu, criterion) mean_loss_valid = results_valid["total_loss"] / (len(valid_loader) * valid_loader.batch_size) model.train() train_loader.dataset.train() global_step = i + epoch * len(train_loader) writer_train.add_scalar('balanced_accuracy', results_train["balanced_accuracy"], global_step) writer_train.add_scalar('loss', mean_loss_train, global_step) writer_valid.add_scalar('balanced_accuracy', results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('loss', mean_loss_valid, global_step) logger.info("%s level training accuracy is %f at the end of iteration %d" % (options.mode, results_train["balanced_accuracy"], i)) logger.info("%s level validation accuracy is %f at the end of iteration %d" % (options.mode, results_valid["balanced_accuracy"], i)) t_current = time() - t_beginning row = [epoch, i, t_current, results_train["balanced_accuracy"], mean_loss_train, results_valid["balanced_accuracy"], mean_loss_valid] if hasattr(model, "variational") and model.variational: row += [results_train["total_kl_loss"] / (len(train_loader) * train_loader.batch_size), results_valid["total_kl_loss"] / (len(valid_loader) * valid_loader.batch_size)] row_df =
pd.DataFrame([row], columns=columns)
pandas.DataFrame
from urllib.request import urlopen from http.cookiejar import CookieJar from io import StringIO from app.extensions import cache from app.api.constants import PERMIT_HOLDER_CACHE, DORMANT_WELLS_CACHE, LIABILITY_PER_WELL_CACHE, TIMEOUT_15_MINUTES, TIMEOUT_60_MINUTES, TIMEOUT_12_HOURS, TIMEOUT_1_YEAR from flask import Flask, current_app from threading import Thread import requests import urllib import pandas as pd import pyarrow as pa import time from .ogc_data_constants import PERMIT_HOLDER_CSV_DATA, DORMANT_WELLS_CSV_DATA, LIABILITY_PER_WELL_CSV_DATA # TODO: Stick into environment variables PERMIT_HOLDER_CSV = 'http://reports.bcogc.ca/ogc/f?p=200:201:14073940726161:CSV::::' DORMANT_WELLS_CSV = 'https://reports.bcogc.ca/ogc/f?p=200:81:9680316354055:CSV::::' LIABILITY_PER_WELL_CSV = 'https://reports.bcogc.ca/ogc/f?p=200:10:10256707131131:CSV::::' session = requests.session() def refreshOGCdata(app, cache_key, csv_url, process): with app.app_context(): serializer = pa.default_serialization_context() data = cache.get(cache_key) expiry_token = cache.get(cache_key + '_EXPIRY_TOKEN') if not expiry_token: current_app.logger.debug(f'OGC DATA SERVICE - {cache_key} - Cached data not found.') # set 15 minute token to mitigate multiple threads requesting data at the same time cache.set(cache_key + '_EXPIRY_TOKEN', True, timeout=TIMEOUT_15_MINUTES) else: current_app.logger.debug(f'OGC DATA SERVICE - {cache_key} - Cached data up to date.') return try: cookieProcessor = urllib.request.HTTPCookieProcessor() opener = urllib.request.build_opener(cookieProcessor) response = session.get(csv_url) df = pd.read_table(StringIO(response.text), sep=",") df = process(df) updated_from_web = True current_app.logger.debug( f'OGC DATA SERVICE - {cache_key} - Successful get from OGC reporting.') df = process(df) except: # on error, if we don't have data in the cache initialize it from static content if not data: current_app.logger.debug( f'OGC DATA SERVICE - {cache_key} - Falling back to static content.') if cache_key is PERMIT_HOLDER_CACHE: df = pd.read_table(StringIO(PERMIT_HOLDER_CSV_DATA), sep=",") if cache_key is DORMANT_WELLS_CACHE: df = pd.read_table(StringIO(DORMANT_WELLS_CSV_DATA), sep=",") if cache_key is LIABILITY_PER_WELL_CACHE: df = pd.read_table(StringIO(LIABILITY_PER_WELL_CSV_DATA), sep=",") df = process(df) row_count = df.shape[0] # only update cache if there is a good dataset if row_count > 1: current_app.logger.debug(f'OGC DATA SERVICE - {cache_key} - Updating cached data.') cache.set( cache_key, serializer.serialize(df).to_buffer().to_pybytes(), timeout=TIMEOUT_1_YEAR) if updated_from_web: cache.set(cache_key + '_EXPIRY_TOKEN', True, timeout=TIMEOUT_60_MINUTES) else: current_app.logger.warning( f'OGC DATA SERVICE - {cache_key} - FAILED TO RETRIEVE UPDATED DATA') class OGCDataService(): @classmethod def refreshAllData(cls): cls.getPermitHoldersDataFrame() cls.getDormantWellsDataFrame() cls.getLiabilityPerWellDataFrame() @classmethod def getOGCdataframe(cls, cache_key, csv_url, process): serializer = pa.default_serialization_context() data = cache.get(cache_key) app = current_app._get_current_object() #if empty dataset refresh data synchronously, otherwise refresh in the background and continue if not data: df = refreshOGCdata(app, cache_key, csv_url, process) else: thread = Thread( target=refreshOGCdata, args=( app, cache_key, csv_url, process, )) thread.daemon = True thread.start() #update data and return data = cache.get(cache_key) if data: df = serializer.deserialize(data) return df @classmethod def getPermitHoldersDataFrame(cls): def process(df): df.columns = [ 'operator_id', 'organization_name', 'phone_num', 'address_line_1', 'address_line_2', 'city', 'province', 'postal_code', 'country' ] return df return cls.getOGCdataframe(PERMIT_HOLDER_CACHE, PERMIT_HOLDER_CSV, process) @classmethod def getDormantWellsDataFrame(cls): def process(df): df.columns = [ 'operator_name', 'operator_id', 'well_auth_number', 'well_name', 'dormant_status', 'current_status', 'well_dormancy_date', 'site_dormancy_date', 'site_dormancy_type', 'site_dormant_status', 'surface_location', 'field', 'abandonment_date', 'last_spud_date', 'last_rig_rels_date', 'last_completion_date', 'last_active_production_year', 'last_active_inj_display_year', 'wellsite_dormancy_declaration_date', 'multi_well' ] df['well_dormancy_date'] = pd.to_datetime( df['well_dormancy_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if pd.notnull(x) else None) df['site_dormancy_date'] = pd.to_datetime( df['site_dormancy_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if pd.notnull(x) else None) df['abandonment_date'] = pd.to_datetime( df['abandonment_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if pd.notnull(x) else None) df['last_spud_date'] = pd.to_datetime( df['last_spud_date'], errors='coerce').apply(lambda x: x.strftime('%Y-%m-%d') if
pd.notnull(x)
pandas.notnull
""" GLM fitting utilities based on NeuroGLM by <NAME>, <NAME>: https://github.com/pillowlab/neuroGLM <NAME> International Brain Lab, 2020 """ from warnings import warn, catch_warnings import numpy as np from numpy.linalg.linalg import LinAlgError import pandas as pd from brainbox.processing import bincount2D from sklearn.linear_model import PoissonRegressor import scipy.sparse as sp import numba as nb from numpy.matlib import repmat from scipy.optimize import minimize from scipy.special import xlogy from tqdm import tqdm import torch from brainbox.modeling.poissonGLM import PoissonGLM class NeuralGLM: """ Generalized Linear Model which seeks to describe spiking activity as the output of a poisson process. Uses sklearn's GLM methods under the hood while providing useful routines for dealing with neural data """ def __init__(self, trialsdf, spk_times, spk_clu, vartypes, train=0.8, blocktrain=False, binwidth=0.02, mintrials=100, subset=False): """ Construct GLM object using information about all trials, and the relevant spike times. Only ingests data, and further object methods must be called to describe kernels, gain terms, etc. as components of the model. Parameters ---------- trialsdf: pandas.DataFrame DataFrame of trials in which each row contains all desired covariates of the model. e.g. contrast, stimulus type, etc. Not all columns will necessarily be fit. If a continuous covariate (e.g. wheel position, pupil diameter) is included, each entry of the column must be a nSamples x 2 array with samples in the first column and timestamps (relative to trial start) in the second position. *Must have \'trial_start\' and \'trial_end\' parameters which are times, in seconds.* spk_times: numpy.array of floats 1-D array of times at which spiking events were detected, in seconds. spk_clu: numpy.array of integers 1-D array of same shape as spk_times, with integer cluster IDs identifying which cluster a spike time belonged to. vartypes: dict Dict with column names in trialsdf as keys, values are the type of covariate the column contains. e.g. {'stimOn_times': 'timing', 'wheel', 'continuous', 'correct': 'value'} Valid values are: 'timing' : A timestamp relative to trial start (e.g. stimulus onset) 'continuous' : A continuous covariate sampled throughout the trial (e.g. eye pos) 'value' : A single value for the given trial (e.g. contrast or difficulty) train: float Float in (0, 1] indicating proportion of data to use for training GLM vs testing (using the NeuralGLM.score method). Trials to keep will be randomly sampled. binwidth: float Width, in seconds, of the bins which will be used to count spikes. Defaults to 20ms. mintrials: int Minimum number of trials in which neurons fired a spike in order to be fit. Defaults to 100 trials. subset: bool Whether or not to perform model subsetting, in which the model is built iteratively from only the mean rate, up. This allows comparison of D^2 scores for sub-models which incorporate only some parameters, to see which regressors actually improve explainability. Default to False. Returns ------- glm: object GLM object with methods for adding regressors and fitting """ # Data checks # if not all([name in vartypes for name in trialsdf.columns]): raise KeyError("Some columns were not described in vartypes") if not all([value in ('timing', 'continuous', 'value') for value in vartypes.values()]): raise ValueError("Invalid values were passed in vartypes") if not len(spk_times) == len(spk_clu): raise IndexError("Spike times and cluster IDs are not same length") if not isinstance(train, float) and not train == 1: raise TypeError('train must be a float between 0 and 1') if not ((train > 0) & (train <= 1)): raise ValueError('train must be between 0 and 1') # Filter out cells which don't meet the criteria for minimum spiking, while doing trial # assignment self.vartypes = vartypes self.vartypes['duration'] = 'value' trialsdf = trialsdf.copy() # Make sure we don't modify the original dataframe clu_ids = np.unique(spk_clu) trbounds = trialsdf[['trial_start', 'trial_end']] # Get the start/end of trials # Initialize a Cells x Trials bool array to easily see how many trials a clu spiked trialspiking = np.zeros((trialsdf.index.max() + 1, clu_ids.max() + 1), dtype=bool) # Empty trial duration value to use later trialsdf['duration'] = np.nan # Iterate through each trial, and store the relevant spikes for that trial into a dict # Along with the cluster labels. This makes binning spikes and accessing spikes easier. spks = {} clu = {} st_endlast = 0 timingvars = [col for col in trialsdf.columns if vartypes[col] == 'timing'] for i, (start, end) in trbounds.iterrows(): if any(np.isnan((start, end))): warn(f"NaN values found in trial start or end at trial number {i}. " "Discarding trial.") trialsdf.drop(i, inplace=True) continue st_startind = np.searchsorted(spk_times[st_endlast:], start) + st_endlast st_endind = np.searchsorted(spk_times[st_endlast:], end, side='right') + st_endlast st_endlast = st_endind trial_clu = np.unique(spk_clu[st_startind:st_endind]) trialspiking[i, trial_clu] = True spks[i] = spk_times[st_startind:st_endind] - start clu[i] = spk_clu[st_startind:st_endind] for col in timingvars: trialsdf.at[i, col] = np.round(trialsdf.at[i, col] - start, decimals=5) trialsdf.at[i, 'duration'] = end - start # Break the data into test and train sections for cross-validation if train == 1: print('Training fraction set to 1. Training on all data.') traininds = trialsdf.index testinds = trialsdf.index elif blocktrain: trainlen = int(np.floor(len(trialsdf) * train)) traininds = trialsdf.index[:trainlen] testinds = trialsdf.index[trainlen:] else: trainlen = int(np.floor(len(trialsdf) * train)) traininds = sorted(np.random.choice(trialsdf.index, trainlen, replace=False)) testinds = trialsdf.index[~trialsdf.index.isin(traininds)] # Set model parameters to begin with self.spikes = spks self.clu = clu self.clu_ids = np.argwhere(np.sum(trialspiking, axis=0) > mintrials) self.binwidth = binwidth self.covar = {} self.trialsdf = trialsdf self.traininds = traininds self.testinds = testinds self.compiled = False self.subset = subset if len(self.clu_ids) == 0: raise UserWarning('No neuron fired a spike in a minimum number.') # Bin spikes self._bin_spike_trains() return def _bin_spike_trains(self): """ Bins spike times passed to class at instantiation. Will not bin spike trains which did not meet the criteria for minimum number of spiking trials. Must be run before the NeuralGLM.fit() method is called. """ spkarrs = [] arrdiffs = [] for i in self.trialsdf.index: duration = self.trialsdf.loc[i, 'duration'] durmod = duration % self.binwidth if durmod > (self.binwidth / 2): duration = duration - (self.binwidth / 2) if len(self.spikes[i]) == 0: arr = np.zeros((self.binf(duration), len(self.clu_ids))) spkarrs.append(arr) continue spks = self.spikes[i] clu = self.clu[i] arr = bincount2D(spks, clu, xbin=self.binwidth, ybin=self.clu_ids, xlim=[0, duration])[0] arrdiffs.append(arr.shape[1] - self.binf(duration)) spkarrs.append(arr.T) y = np.vstack(spkarrs) if hasattr(self, 'dm'): assert y.shape[0] == self.dm.shape[0], "Oh shit. Indexing error." self.binnedspikes = y return def add_covariate_timing(self, covlabel, eventname, bases, offset=0, deltaval=None, cond=None, desc=''): """ Convenience wrapper for adding timing event regressors to the GLM. Automatically generates a one-hot vector for each trial as the regressor and adds the appropriate data structure to the model. Parameters ---------- covlabel : str Label which the covariate will use. Can be accessed via dot syntax of the instance usually. eventname : str Label of the column in trialsdf which has the event timing for each trial. bases : numpy.array nTB x nB array, i.e. number of time bins for the bases functions by number of bases. Each column in the array is used together to describe the response of a unit to that timing event. offset : float, seconds Offset of bases functions relative to timing event. Negative values will ensure that deltaval : None, str, or pandas series, optional Values of the kronecker delta function peak used to encode the event. If a string, the column in trialsdf with that label will be used. If a pandas series with indexes matching trialsdf, corresponding elements of the series will be the delta funtion val. If None (default) height is 1. cond : None, list, or fun, optional Condition which to apply this covariate. Can either be a list of trial indices, or a function which takes in rows of the trialsdf and returns booleans. desc : str, optional Additional information about the covariate, if desired. by default '' """ if covlabel in self.covar: raise AttributeError(f'Covariate {covlabel} already exists in model.') if self.compiled: warn('Design matrix was already compiled once. Be sure to compile again if adding' ' additional covariates.') if deltaval is None: gainmod = False elif isinstance(deltaval, pd.Series): gainmod = True elif isinstance(deltaval, str) and deltaval in self.trialsdf.columns: gainmod = True deltaval = self.trialsdf[deltaval] else: raise TypeError(f'deltaval must be None or pandas series. {type(deltaval)} ' 'was passed instead.') if eventname not in self.vartypes: raise ValueError('Event name specified not found in trialsdf') elif self.vartypes[eventname] != 'timing': raise TypeError(f'Column {eventname} in trialsdf is not registered as a timing') vecsizes = self.trialsdf['duration'].apply(self.binf) stiminds = self.trialsdf[eventname].apply(self.binf) stimvecs = [] for i in self.trialsdf.index: vec = np.zeros(vecsizes[i]) if gainmod: vec[stiminds[i]] = deltaval[i] else: vec[stiminds[i]] = 1 stimvecs.append(vec.reshape(-1, 1)) regressor = pd.Series(stimvecs, index=self.trialsdf.index) self.add_covariate(covlabel, regressor, bases, offset, cond, desc) return def add_covariate_boxcar(self, covlabel, boxstart, boxend, cond=None, height=None, desc=''): if covlabel in self.covar: raise AttributeError(f'Covariate {covlabel} already exists in model.') if self.compiled: warn('Design matrix was already compiled once. Be sure to compile again if adding' ' additional covariates.') if boxstart not in self.trialsdf.columns or boxend not in self.trialsdf.columns: raise KeyError('boxstart or boxend not found in trialsdf columns.') if self.vartypes[boxstart] != 'timing': raise TypeError(f'Column {boxstart} in trialsdf is not registered as a timing. ' 'boxstart and boxend need to refer to timining events in trialsdf.') if self.vartypes[boxend] != 'timing': raise TypeError(f'Column {boxend} in trialsdf is not registered as a timing. ' 'boxstart and boxend need to refer to timining events in trialsdf.') if isinstance(height, str): if height in self.trialsdf.columns: height = self.trialsdf[height] else: raise KeyError(f'{height} is str not in columns of trialsdf') elif isinstance(height, pd.Series): if not all(height.index == self.trialsdf.index): raise IndexError('Indices of height series does not match trialsdf.') elif height is None: height = pd.Series(np.ones(len(self.trialsdf.index)), index=self.trialsdf.index) vecsizes = self.trialsdf['duration'].apply(self.binf) stind = self.trialsdf[boxstart].apply(self.binf) endind = self.trialsdf[boxend].apply(self.binf) stimvecs = [] for i in self.trialsdf.index: bxcar = np.zeros(vecsizes[i]) bxcar[stind[i]:endind[i] + 1] = height[i] stimvecs.append(bxcar) regressor = pd.Series(stimvecs, index=self.trialsdf.index) self.add_covariate(covlabel, regressor, None, cond, desc) return def add_covariate_raw(self, covlabel, raw, cond=None, desc=''): stimlens = self.trialsdf.duration.apply(self.binf) if isinstance(raw, str): if raw not in self.trialsdf.columns: raise KeyError(f'String {raw} not found in columns of trialsdf. Strings must' 'refer to valid column names.') covseries = self.trialsdf[raw] if np.any(covseries.apply(len) != stimlens): raise IndexError(f'Some array shapes in {raw} do not match binned duration.') self.add_covariate(covlabel, covseries, None, cond=cond) if callable(raw): try: covseries = self.trialsdf.apply(raw, axis=1) except Exception: raise TypeError('Function for raw covariate generation did not run properly.' 'Make sure that the function passed takes in rows of trialsdf.') if np.any(covseries.apply(len) != stimlens): raise IndexError(f'Some array shapes in {raw} do not match binned duration.') self.add_covariate(covlabel, covseries, None, cond=cond) if isinstance(raw, pd.Series): if np.any(raw.index != self.trialsdf.index): raise IndexError('Indices of raw do not match indices of trialsdf.') if np.any(raw.apply(len) != stimlens): raise IndexError(f'Some array shapes in {raw} do not match binned duration.') self.add_covariate(covlabel, raw, None, cond=cond) def add_covariate(self, covlabel, regressor, bases, offset=0, cond=None, desc=''): """ Parent function to add covariates to model object. Takes a regressor in the form of a pandas Series object, a T x M array of M bases, and stores them for use in the design matrix generation. Parameters ---------- covlabel : str Label for the covariate being added. Will be exposed, if possible, through (instance).(covlabel) attribute. regressor : pandas.Series Series in which each element is the value(s) of a regressor for a trial at that index. These will be convolved with the bases functions (if provided) to produce the components of the design matrix. *Regressor must be (T / dt) x 1 array for each trial* bases : numpy.array or None T x M array of M basis functions over T timesteps. Columns will be convolved with the elements of `regressor` to produce elements of the design matrix. If None, it is assumed a raw regressor is being used. offset : int, optional Offset of the regressor from the bases during convolution. Negative values indicate that the firing of the unit will be , by default 0 cond : list or func, optional Condition for which to apply covariate. Either a list of trials which the covariate applies to, or a function of the form f(dataframerow) which returns a boolean, by default None desc : str, optional Description of the covariate for reference purposes, by default '' (empty) """ if covlabel in self.covar: raise AttributeError(f'Covariate {covlabel} already exists in model.') if self.compiled: warn('Design matrix was already compiled once. Be sure to compile again if adding' ' additional covariates.') # Test for mismatch in length of regressor vs trials mismatch = np.zeros(len(self.trialsdf.index), dtype=bool) for i in self.trialsdf.index: currtr = self.trialsdf.loc[i] nT = self.binf(currtr.duration) if regressor.loc[i].shape[0] != nT: mismatch[i] = True if np.any(mismatch): raise ValueError('Length mismatch between regressor and trial on trials' f'{np.argwhere(mismatch)}.') # Initialize containers for the covariate dicts if not hasattr(self, 'currcol'): self.currcol = 0 if callable(cond): cond = self.trialsdf.index[self.trialsdf.apply(cond, axis=1)].to_numpy() if not all(regressor.index == self.trialsdf.index): raise IndexError('Indices of regressor and trials dataframes do not match.') cov = {'description': desc, 'bases': bases, 'valid_trials': cond if cond is not None else self.trialsdf.index, 'offset': offset, 'regressor': regressor, 'dmcol_idx': np.arange(self.currcol, self.currcol + bases.shape[1]) if bases is not None else self.currcol} if bases is None: self.currcol += 1 else: self.currcol += bases.shape[1] self.covar[covlabel] = cov return def compile_design_matrix(self, dense=True): """ Compiles design matrix for the current experiment based on the covariates which were added with the various NeuralGLM.add_covariate methods available. Can optionally compile a sparse design matrix using the scipy.sparse package, however that method may take longer depending on the degree of sparseness. Parameters ---------- dense : bool, optional Whether or not to compute a dense design matrix or a sparse one, by default True """ covars = self.covar # Go trial by trial and compose smaller design matrices miniDMs = [] rowtrials = [] for i, trial in self.trialsdf.iterrows(): nT = self.binf(trial.duration) miniX = np.zeros((nT, self.currcol)) rowlabs = np.ones((nT, 1), dtype=int) * i for cov in covars.values(): sidx = cov['dmcol_idx'] # Optionally use cond to filter out which trials to apply certain regressors, if i not in cov['valid_trials']: continue stim = cov['regressor'][i] # Convolve Kernel or basis function with stimulus or regressor if cov['bases'] is None: miniX[:, sidx] = stim else: if len(stim.shape) == 1: stim = stim.reshape(-1, 1) miniX[:, sidx] = convbasis(stim, cov['bases'], self.binf(cov['offset'])) # Sparsify convolved result and store in miniDMs if dense: miniDMs.append(miniX) else: miniDMs.append(sp.lil_matrix(miniX)) rowtrials.append(rowlabs) if dense: dm = np.vstack(miniDMs) else: dm = sp.vstack(miniDMs).to_csc() trlabels = np.vstack(rowtrials) if hasattr(self, 'binnedspikes'): assert self.binnedspikes.shape[0] == dm.shape[0], "Oh shit. Indexing error." self.dm = dm self.trlabels = trlabels # self.dm = np.roll(dm, -1, axis=0) # Fix weird +1 offset bug in design matrix self.compiled = True return def _fit_sklearn(self, dm, binned, alpha, cells=None, retvar=False, noncovwarn=True): """ Fit a GLM using scikit-learn implementation of PoissonRegressor. Uses a regularization strength parameter alpha, which is the strength of ridge regularization term. When alpha is set to 0, this *should* in theory be the same as _fit_minimize, but in practice it is not and seems to exhibit some regularization still. Parameters ---------- dm : numpy.ndarray Design matrix, in which rows are observations and columns are regressor values. Should NOT contain a bias column for the intercept. Scikit-learn handles that. binned : numpy.ndarray Vector of observed spike counts which we seek to predict. Must be of the same length as dm.shape[0] alpha : float Regularization strength, applied as multiplicative constant on ridge regularization. cells : list List of cells which should be fit. If None is passed, will default to fitting all cells in clu_ids variances : bool Whether or not to return variances on parameters in dm. """ if cells is None: cells = self.clu_ids.flatten() coefs = pd.Series(index=cells, name='coefficients', dtype=object) intercepts = pd.Series(index=cells, name='intercepts') variances = pd.Series(index=cells, name='variances', dtype=object) nonconverged = [] for cell in tqdm(cells, 'Fitting units:', leave=False): cell_idx = np.argwhere(self.clu_ids == cell)[0, 0] cellbinned = binned[:, cell_idx] with catch_warnings(record=True) as w: fitobj = PoissonRegressor(alpha=alpha, max_iter=300).fit(dm, cellbinned) if len(w) != 0: nonconverged.append(cell) wts = np.concatenate([[fitobj.intercept_], fitobj.coef_], axis=0) biasdm = np.pad(dm.copy(), ((0, 0), (1, 0)), 'constant', constant_values=1) if retvar: wvar = np.diag(np.linalg.inv(dd_neglog(wts, biasdm, cellbinned))) else: wvar = np.ones((wts.shape[0], wts.shape[0])) * np.nan coefs.at[cell] = fitobj.coef_ variances.at[cell] = wvar[1:] intercepts.at[cell] = fitobj.intercept_ if noncovwarn: if len(nonconverged) != 0: warn(f'Fitting did not converge for some units: {nonconverged}') return coefs, intercepts, variances def _fit_pytorch(self, dm, binned, cells=None, retvar=False, epochs=500, optim='adam', lr=1.0): """ Fit the GLM using PyTorch on GPU(s). Regularization has not been applied yet. Parameters ---------- dm : numpy.ndarray Design matrix, in which rows are observations and columns are regressor values. First column must be a bias column of ones. binned : numpy.ndarray Vector of observed spike counts which we seek to predict. Must be of the same length as dm.shape[0] cells : list List of cells which should be fit. If None is passed, will default to fitting all cells in clu_ids variances : bool Whether or not to return variances on parameters in dm. epochs : int The number of epochs to train the model optim : string The name of optimization method in pytorch lr : float Learning rate for the optimizer """ if cells is None: cells = self.clu_ids.flatten() coefs = pd.Series(index=cells, name='coefficients', dtype=object) intercepts =
pd.Series(index=cells, name='intercepts')
pandas.Series
""" Run relational network evaluation. """ import collections import itertools import json from logging import Logger import matplotlib.pyplot as plt import numpy as np import os import pickle import pandas as pd from typing import Dict, List, Tuple from typing_extensions import Literal import rdkit from rdkit import Chem from rdkit.Chem import rdmolops import rdkit.Chem.Draw from rdkit.Chem.Draw import rdMolDraw2D import seaborn as sns from sklearn.model_selection import train_test_split # noinspection PyPackageRequirements from tap import Tap import torch from tqdm import tqdm from conformation.batch import Batch from conformation.dataloader import DataLoader from conformation.dataset import GraphDataset from conformation.relational_utils import load_relational_checkpoint from conformation.run_relational_training import Args as RelationalTrainArgs from conformation.utils import param_count class Args(Tap): """ System arguments. """ data_path: str # Path to metadata file uid_path: str # Path to uid dictionary binary_dict_path: str # Path to uid-binary dictionary checkpoint_path: str # Directory of checkpoint to load saved model save_dir: str # Directory for logger batch_size: int = 10 # Batch size dataset: Literal["train", "val", "test"] = "test" # Which dataset to evaluate cuda: bool = False # Cuda availability distance_analysis: bool = False # Whether or not to print selective bond/edge information distance_analysis_lo: float = 1.0 # Lower distance analysis bound distance_analysis_hi: float = 2.0 # Upper distance analysis bound error_threshold: float = 0.05 # Decimal percentage corresponding to lower/upper error cutoffs for plotting def simple_plot(array_x: np.ndarray, array_y: np.ndarray, x_label: str, y_label: str, save_path: str, size: float = 0.5, x_lim: Tuple = None, y_lim: Tuple = None, color: str = "b") -> None: """ Plot one array against another. :param array_x: Data measured on the x-axis. :param array_y: Data measured on the y-axis. :param x_label: x-axis label. :param y_label: y-axis label. :param save_path: Name to save figure as. :param size: Marker size. :param x_lim: x-axis limits. :param y_lim: y-axis limits. :param color: Color. :return: None. """ sns.set_style("dark") fig = sns.jointplot(array_x, array_y, xlim=x_lim, ylim=y_lim, s=size, color=color).set_axis_labels(x_label, y_label) fig.savefig(save_path) plt.close() def double_axis_plot(array_x: np.ndarray, array_y_1: np.ndarray, array_y_2: np.ndarray, title: str, x_label: str, y_label_1: str, y_label_2: str, save_path: str, color_1: str = 'tab:red', color_2: str = 'tab:blue', style: str = 'o', size: float = 0.5, x_lim: Tuple = None, y_lim_1: Tuple = None, y_lim_2: Tuple = None) -> None: """ Plot one array against two others using two separate y-axes. :param array_x: Data measured on the x-axis. :param array_y_1: Data measured on the left y-axis. :param array_y_2: Data measured on the right y-axis. :param title: Plot title. :param x_label: x-axis label. :param y_label_1: Left y-axis label. :param y_label_2: Right y-axis label. :param save_path: Name to save figure as. :param color_1: Color of left axis info. :param color_2: Color of right axis info. :param style: Plot style. :param size: Marker size. :param x_lim: x-axis limits. :param y_lim_1: Left y-axis limits. :param y_lim_2: Right y-axis limits. :return: None. """ sns.set() fig, ax1 = plt.subplots() color = color_1 ax1.set_xlabel(x_label) ax1.set_ylabel(y_label_1, color=color) ax1.plot(array_x, array_y_1, style, color=color, markersize=size) ax1.tick_params(axis='y', labelcolor=color) ax1.set_ylim(y_lim_1) ax1.set_xlim(x_lim) ax2 = ax1.twinx() color = color_2 ax2.set_ylabel(y_label_2, color=color) ax2.plot(array_x, array_y_2, style, color=color, markersize=size) ax2.tick_params(axis='y', labelcolor=color) ax2.set_ylim(y_lim_2) fig.tight_layout() plt.title(title) plt.savefig(save_path, bbox_inches='tight') fig.clf() plt.close(fig) def tensor_to_list(tensor: torch.Tensor, destination_list: List) -> None: """ Transfer data from 1D tensor to list. :param tensor: Tensor containing data. :param destination_list: List. :return: None """ for i in range(tensor.shape[0]): destination_list.append(tensor[i]) def path_and_bond_extraction(batch: Batch, uid_dict: Dict, binary_dict: Dict, shortest_paths: List, bond_types: List, triplet_types: List, carbon_carbon_ring_types: List, carbon_carbon_non_ring_types, carbon_carbon_chain_types: List, carbon_carbon_no_chain_types: List, carbon_carbon_aromatic_types: List, carbon_carbon_non_aromatic_types: List, carbon_carbon_quadruplet_types: List, carbon_carbon_non_ring_molecules: List) -> None: """ Compute shortest path, bond type information for each edge and add to relevant lists. :param batch: Data batch. :param uid_dict: uid-smiles dictionary. :param binary_dict: uid-binary dictionary. :param shortest_paths: List containing shortest path lengths. :param bond_types: List containing bond types (pars of atoms, not actual molecular bond types) for edges. :param triplet_types: List containing bond types for "bonds" with shortest path length 2. :param carbon_carbon_ring_types: List containing bond types for CC "bonds" in a ring. :param carbon_carbon_non_ring_types: List containing bond types for CC "bonds" not in a ring. :param carbon_carbon_chain_types: List containing bond types for CC "bonds" in a linear chain. :param carbon_carbon_no_chain_types: List containing bond types for CC "bonds" not in a linear chain. :param carbon_carbon_aromatic_types: List containing bond types for CC "bonds" in aromatic rings. :param carbon_carbon_non_aromatic_types: List containing bond types for CC "bonds" in non-aromatic rings. :param carbon_carbon_quadruplet_types: List containing bond types for "bonds" with shortest path length 3. :param carbon_carbon_non_ring_molecules: List of molecules corresponding to CC no ring "bonds". :return: None. """ for i in range(batch.uid.shape[0]): # noinspection PyUnresolvedReferences uid = batch.uid[i].item() smiles = uid_dict[uid] # noinspection PyUnresolvedReferences mol = Chem.Mol(open(binary_dict[uid], "rb").read()) # Acquire the SMILES string with Hs removed corresponding to this molecule. Then, create a new molecule # from this string, add Hs, and then use this molecule for drawing. Drawing in this way will generate # an automated 2D conformation that has nothing to do with the conformation of the original molecule, but that # is easy for viewing. In order to visualize a 2D representation of the actual molecule from the binary, # Use the molecule from the binary file directly. mol = Chem.AddHs(Chem.MolFromSmiles(Chem.MolToSmiles(Chem.RemoveHs(mol)))) for m, n in itertools.combinations(list(np.arange(mol.GetNumAtoms())), 2): shortest_paths.append(len(rdmolops.GetShortestPath(mol, int(m), int(n))) - 1) atom_a = str(mol.GetAtoms()[int(m)].GetSymbol()) atom_b = str(mol.GetAtoms()[int(n)].GetSymbol()) path_len = len(rdmolops.GetShortestPath(mol, int(m), int(n))) - 1 key = ''.join(sorted([atom_a, atom_b])) + str(path_len) bond_types.append(key) if path_len == 2: atom_intermediate = mol.GetAtoms()[rdmolops.GetShortestPath(mol, int(m), int(n))[1]].GetSymbol() key = sorted([atom_a, atom_b])[0] + atom_intermediate + sorted([atom_a, atom_b])[1] triplet_types.append(key) else: triplet_types.append(None) # Determine if two Carbons are part of the same ring, and if so, what is the ring size if atom_a == atom_b == "C": ring_info = list(mol.GetRingInfo().AtomRings()) atom_a_idx = mol.GetAtoms()[int(m)].GetIdx() atom_b_idx = mol.GetAtoms()[int(n)].GetIdx() membership = [atom_a_idx in r and atom_b_idx in r for r in ring_info] if sum(membership) > 0: key = ''.join(sorted([atom_a, atom_b])) + str(path_len) + "-ring" carbon_carbon_ring_types.append(key) carbon_carbon_non_ring_types.append(None) carbon_carbon_non_ring_molecules.append(None) if mol.GetAtoms()[int(m)].GetIsAromatic() and mol.GetAtoms()[int(n)].GetIsAromatic(): key = ''.join(sorted([atom_a, atom_b])) + str(path_len) + "-aromatic" carbon_carbon_aromatic_types.append(key) carbon_carbon_non_aromatic_types.append(None) else: key = ''.join(sorted([atom_a, atom_b])) + str(path_len) + "-non-aromatic" carbon_carbon_aromatic_types.append(None) carbon_carbon_non_aromatic_types.append(key) else: key = ''.join(sorted([atom_a, atom_b])) + str(path_len) + "-non-ring" carbon_carbon_ring_types.append(None) carbon_carbon_non_ring_types.append(key) carbon_carbon_non_ring_molecules.append([mol, m, n, uid, smiles]) carbon_carbon_aromatic_types.append(None) carbon_carbon_non_aromatic_types.append(None) path = rdmolops.GetShortestPath(mol, int(m), int(n)) all_carbon = True for j in range(len(path)): atom_type = mol.GetAtoms()[path[j]].GetSymbol() if atom_type != "C": all_carbon = False if all_carbon: key = ''.join(sorted([atom_a, atom_b])) + str(path_len) + "-chain" carbon_carbon_chain_types.append(key) carbon_carbon_no_chain_types.append(None) else: key = ''.join(sorted([atom_a, atom_b])) + str(path_len) + "-non-chain" carbon_carbon_chain_types.append(None) carbon_carbon_no_chain_types.append(key) if path_len == 3: atom_intermediate_1 = mol.GetAtoms()[rdmolops.GetShortestPath(mol, int(m), int(n))[1]].GetSymbol() atom_intermediate_2 = mol.GetAtoms()[rdmolops.GetShortestPath(mol, int(m), int(n))[2]].GetSymbol() intermediates = sorted([atom_intermediate_1, atom_intermediate_2]) key = atom_a + intermediates[0] + intermediates[1] + atom_b carbon_carbon_quadruplet_types.append(key) else: carbon_carbon_quadruplet_types.append(None) else: carbon_carbon_ring_types.append(None) carbon_carbon_non_ring_types.append(None) carbon_carbon_non_ring_molecules.append(None) carbon_carbon_chain_types.append(None) carbon_carbon_no_chain_types.append(None) carbon_carbon_aromatic_types.append(None) carbon_carbon_non_aromatic_types.append(None) carbon_carbon_quadruplet_types.append(None) def create_bond_dictionary(types: List, dictionary: Dict, *args: np.ndarray) -> None: """ Create a dictionary from a list of keys and values. :param types: List of keys. :param dictionary: Dictionary object. :param args: Lists of values. :return: None """ # Fill dictionary for i in range(len(types)): if types[i] is not None: values = [] for val in args: values += [val[i]] if types[i] in dictionary: dictionary[types[i]].append(values) else: dictionary[types[i]] = [values] # Turn value lists into numpy arrays for key in dictionary: dictionary[key] = np.array(dictionary[key]) def pair_bar_plots(list_1: List, list_2: List, save_name_1: str, save_name_2: str, args: Args, y_lim: Tuple[float, float] = None) -> None: """ Plot pair of bar plots. :param list_1: One list of data. :param list_2: Another list of data. :param save_name_1: Plot save name 1. :param save_name_2: Plot save name 2. :param y_lim: Shared y_lim values. :param args: System arguments. :return: None """ counter = collections.Counter(list_1) counter_keys_1 = [] counter_values_1 = [] for key, value in counter.items(): counter_keys_1.append(key) counter_values_1.append(value / len(list_1)) counter = collections.Counter(list_2) counter_keys_2 = [] counter_values_2 = [] for key, value in counter.items(): counter_keys_2.append(key) counter_values_2.append(value / len(list_2)) total_keys = set(counter_keys_1 + counter_keys_2) for i in total_keys: if i not in counter_keys_1: counter_keys_1.append(i) counter_values_1.append(0.0) if i not in counter_keys_2: counter_keys_2.append(i) counter_values_2.append(0.0) counter_keys_sorted = list(np.array(counter_keys_1)[np.argsort(counter_keys_1)]) counter_values_sorted = list(np.array(counter_values_1)[np.argsort(counter_keys_1)]) df = pd.DataFrame({"groups": counter_keys_sorted, "percent": counter_values_sorted}) ax = sns.barplot(x="groups", y="percent", data=df) if y_lim is not None: ax.set_ylim(y_lim) ax.figure.savefig(os.path.join(args.save_dir, save_name_1)) plt.close() counter_keys_sorted = list(np.array(counter_keys_2)[np.argsort(counter_keys_2)]) counter_values_sorted = list(np.array(counter_values_2)[np.argsort(counter_keys_2)]) df =
pd.DataFrame({"groups": counter_keys_sorted, "percent": counter_values_sorted})
pandas.DataFrame
import pandas as pd def write_excel(excel_path:str, plans_dict): with pd.ExcelWriter(excel_path) as writer: target_name_list = list(plans_dict.keys()) for target_name in target_name_list: target_plans = plans_dict[target_name]["plans"] target_count = plans_dict[target_name]["count"] head_df =
pd.DataFrame({"目标产物": [target_name], "产量/s": [target_count]})
pandas.DataFrame
import pandas as pd import numpy as np import pickle import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('diabetes.csv') df df.shape df.info() df.describe() print(df['Outcome'].value_counts()) o = df['Outcome'].value_counts().plot(kind="bar") # 0 Non-Diabetic # 1 Diabetic #Correlation between all the features before cleaning plt.figure(figsize=(12,10)) # seaborn has an easy method to showcase heatmap p = sns.heatmap(df.corr(), annot=True,cmap ='RdYlGn') df.groupby('Outcome').mean() df.isnull().sum() df = df.rename(columns={'DiabetesPedigreeFunction': 'DPF'}) df_copy = df.copy(deep=True) df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] = df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']].replace(0,np.NaN) # Showing the Count of NANs print(df_copy.isnull().sum()) df_copy['Glucose'].fillna(df_copy['Glucose'].mean(), inplace = True) df_copy['BloodPressure'].fillna(df_copy['BloodPressure'].mean(), inplace = True) df_copy['SkinThickness'].fillna(df_copy['SkinThickness'].mean(), inplace = True) df_copy['Insulin'].fillna(df_copy['Insulin'].median(), inplace = True) df_copy['BMI'].fillna(df_copy['BMI'].median(), inplace = True) # separating the data and labels X = df.drop(columns = 'Outcome', axis=1) Y = df['Outcome'] print(X.head()) print(Y.head()) from sklearn.model_selection import train_test_split X = df.drop(columns='Outcome') y = df['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.35) from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=205) classifier.fit(X_train, y_train) #Getting the accuracy score for Random Forest from sklearn.metrics import accuracy_score # accuracy score on the training data X_train_prediction = classifier.predict(X_train) training_data_accuracy = accuracy_score(X_train_prediction, y_train) print('Accuracy score of the training data : ', training_data_accuracy) # accuracy score on the test data X_test_prediction = classifier.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, y_test) print('Accuracy score of the test data : ', test_data_accuracy) classifier.feature_importances_ (
pd.Series(classifier.feature_importances_, index=X.columns)
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(
is_integer_dtype(left['baz'])
pandas.types.common.is_integer_dtype
''' Nota: Los precios se indican para todas las propiedades. Sin embargo, las edades están disponibles sólo para individuos y no para empresas. Las filas que incluyen empresas (no tienen un valor de edad) son automáticamente ignoradas en todas las medidas de ''' import pandas as pd import matplotlib.pyplot as plt import numpy as np import sidetable from IPython.display import display import tkinter as tk from pandastable import Table, TableModel '''Cargamos la data''' df = pd.read_csv('./semana_3/sabado/bienes_raices.csv') ''' Limpiamos datos con espacio vacios y elimnamos todo valor en nulo ''' df = df.replace(' ',pd.NA) df = df.dropna(subset=['edad_compra']) ''' Cambiamos el tipo de dato object a numerico ''' df['edad_compra'] =
pd.to_numeric(df['edad_compra'])
pandas.to_numeric
from datetime import datetime import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import plotly.graph_objs as go # Get Data confirmed =
pd.read_csv( 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')
pandas.read_csv
#!/usr/bin/python # coding=utf-8 import numpy as np from scipy.interpolate import Rbf import matplotlib.pyplot as plt import sys from math import pi, sqrt, degrees, acos import os import pandas as pd import warnings from scipy.constants import physical_constants from shapely.geometry import LineString, Point m_p = physical_constants['proton mass'][0] def isnamedtupleinstance(x): """ :param x: :return: """ t = type(x) b = t.__bases__ if len(b) != 1 or b[0] != tuple: return False f = getattr(t, '_fields', None) if not isinstance(f, tuple): return False return all(type(n) == str for n in f) def iterate_namedtuple(object, df): if isnamedtupleinstance(object): for key, item in object._asdict().items(): if isnamedtupleinstance(item): iterate_namedtuple(item, df) else: df[key] = pd.Series(item.flatten(), name=key) else: pass return df # isclose is included in python3.5+, so you can delete this if the code ever gets ported into python3.5+ def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def print_progress(iteration, total, prefix='', suffix='', decimals=0, bar_length=50): """creates a progress bar Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) bar_length - Optional : character length of bar (Int) """ str_format = "{0:." + str(decimals) + "f}" percents = str_format.format(100 * ((iteration + 1) / float(total))) filled_length = int(round(bar_length * (iteration + 1) / float(total))) bar = '█' * filled_length + '-' * (bar_length - filled_length) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)) def calc_cell_pts(neut): sys.setrecursionlimit(100000) def loop(neut, oldcell, curcell, cellscomplete, xcoords, ycoords): beta[curcell, :neut.nSides[curcell]] = np.cumsum( np.roll(neut.angles[curcell, :neut.nSides[curcell]], 1) - 180) + 180 # if first cell: if oldcell == 0 and curcell == 0: # rotate cell by theta0 value (specified) beta[curcell, :neut.nSides[curcell]] = beta[curcell, :neut.nSides[curcell]] + neut.cell1_theta0 x_comp = np.cos(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] y_comp = np.sin(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] xcoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(x_comp), 1) + neut.cell1_ctr_x ycoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(y_comp), 1) + neut.cell1_ctr_y # for all other cells: else: # adjust all values in beta for current cell such that the side shared # with oldcell has the same beta as the oldcell side oldcell_beta = beta[oldcell, :][np.where(neut.adjCell[oldcell, :] == curcell)][0] delta_beta = beta[curcell, np.where(neut.adjCell[curcell, :] == oldcell)] + 180 - oldcell_beta beta[curcell, :neut.nSides[curcell]] = beta[curcell, :neut.nSides[curcell]] - delta_beta # calculate non-shifted x- and y- coordinates x_comp = np.cos(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] y_comp = np.sin(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] xcoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(x_comp), 1) # xcoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] ycoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(y_comp), 1) # ycoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] cur_in_old = np.where(neut.adjCell[oldcell, :] == curcell)[0][0] old_in_cur = np.where(neut.adjCell[curcell, :] == oldcell)[0][0] mdpt_old_x = (xcoords[oldcell, cur_in_old] + np.roll(xcoords[oldcell, :], -1)[cur_in_old]) / 2 mdpt_old_y = (ycoords[oldcell, cur_in_old] + np.roll(ycoords[oldcell, :], -1)[cur_in_old]) / 2 mdpt_cur_x = (xcoords[curcell, old_in_cur] + np.roll(xcoords[curcell, :], -1)[old_in_cur]) / 2 mdpt_cur_y = (ycoords[curcell, old_in_cur] + np.roll(ycoords[curcell, :], -1)[old_in_cur]) / 2 xshift = mdpt_old_x - mdpt_cur_x yshift = mdpt_old_y - mdpt_cur_y xcoords[curcell, :] = xcoords[curcell, :] + xshift # xcoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] ycoords[curcell, :] = ycoords[curcell, :] + yshift # ycoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] # continue looping through adjacent cells for j, newcell in enumerate(neut.adjCell[curcell, :neut.nSides[curcell]]): # if the cell under consideration is a normal cell (>3 sides) and not complete, then move into that cell and continue if neut.nSides[newcell] >= 3 and cellscomplete[newcell] == 0: cellscomplete[newcell] = 1 loop(neut, curcell, newcell, cellscomplete, xcoords, ycoords) return xcoords, ycoords xcoords = np.zeros(neut.adjCell.shape) ycoords = np.zeros(neut.adjCell.shape) beta = np.zeros(neut.adjCell.shape) # beta is the angle of each side with respect to the +x axis. ## Add initial cell to the list of cells that are complete cellscomplete = np.zeros(neut.nCells) cellscomplete[0] = 1 xs, ys = loop(neut, 0, 0, cellscomplete, xcoords, ycoords) return xs, ys class NeutpyTools: def __init__(self, neut=None): # get vertices in R, Z geometry self.xs, self.ys = self.calc_cell_pts(neut) # localize densities, ionization rates, and a few other parameters that might be needed. self.n_n_slow = neut.nn.s self.n_n_thermal = neut.nn.t self.n_n_total = neut.nn.tot self.izn_rate_slow = neut.izn_rate.s self.izn_rate_thermal = neut.izn_rate.t self.izn_rate_total = neut.izn_rate.tot self.flux_in_s = neut.flux.inc.s self.flux_in_t = neut.flux.inc.t self.flux_in_tot = self.flux_in_s + self.flux_in_t self.flux_out_s = neut.flux.out.s self.flux_out_t = neut.flux.out.t self.flux_out_tot = self.flux_out_s + self.flux_out_t self.create_flux_outfile() self.create_cell_outfile() flux_s_xcomp, flux_s_ycomp, flux_s_mag = self.calc_flow('slow', norm=True) flux_t_xcomp, flux_t_ycomp, flux_t_mag = self.calc_flow('thermal', norm=True) flux_tot_xcomp, flux_tot_ycomp, flux_tot_mag = self.calc_flow('total', norm=True) self.vars = {} self.vars['n_n_slow'] = neut.nn.s self.vars['n_n_thermal'] = neut.nn.t self.vars['n_n_total'] = neut.nn.tot self.vars['flux_s_xcomp'] = flux_s_xcomp self.vars['flux_s_ycomp'] = flux_s_ycomp self.vars['flux_s_mag'] = flux_s_mag self.vars['flux_t_xcomp'] = flux_t_xcomp self.vars['flux_t_ycomp'] = flux_t_ycomp self.vars['flux_t_mag'] = flux_t_mag self.vars['flux_tot_xcomp'] = flux_tot_xcomp self.vars['flux_tot_ycomp'] = flux_tot_ycomp self.vars['flux_tot_mag'] = flux_tot_mag print('attempting to start plot_cell_vals') self.plot_cell_vals() def create_cell_outfile(self): df = pd.DataFrame() df['R'] = pd.Series(np.mean(self.xs, axis=1), name='R') df['Z'] = pd.Series(np.mean(self.ys, axis=1), name='Z') df['n_n_slow'] = pd.Series(self.n_n_slow, name='n_n_slow') df['n_n_thermal'] = pd.Series(self.n_n_thermal, name='n_n_thermal') df['n_n_total'] =
pd.Series(self.n_n_total, name='n_n_total')
pandas.Series
from pysam import VariantFile, AlignmentFile import pandas as pd import os import seaborn as sns import matplotlib.pyplot as plt import numpy as np import networkx as nx from itertools import combinations from sklearn.cluster import AgglomerativeClustering from scipy.cluster.hierarchy import dendrogram import skbio from tqdm import tqdm from covid_bronx.quality import fasta_files, sam_files, variant_files from plot_helper import Plotter coverage_levels = pd.read_csv("data/processed/sequencing/coverage.csv", index_col=0)['0'] passed = coverage_levels[coverage_levels>=.95].index reinfection_samples = { "data/final/reinfection/output/sample_barcode01" : "AECOM-123", "data/final/reinfection/output/sample_barcode02" : "AECOM-124", "data/final/reinfection/output/sample_barcode03" : "AECOM-125", "data/final/reinfection/output/sample_barcode04" : "AECOM-126", "data/final/reinfection/output/sample_barcode05" : "AECOM-127", "data/final/reinfection/output/sample_barcode06" : "AECOM-128", "data/final/reinfection/output/sample_barcode07" : "AECOM-129", "data/final/reinfection/output/sample_barcode08" : "AECOM-130", "data/final/reinfection/output/sample_barcode09" : "AECOM-131", "data/final/reinfection2b/output/sample_barcode01" : "AECOM-103", "data/final/reinfection2b/output/sample_barcode02" : "AECOM-104", "data/final/reinfection2b/output/sample_barcode03" : "AECOM-105", "data/final/reinfection2b/output/sample_barcode04" : "AECOM-106", "data/final/reinfection2b/output/sample_barcode05" : "AECOM-107", "data/final/reinfection2b/output/sample_barcode06" : "AECOM-108", "data/final/reinfection2b/output/sample_barcode07" : "AECOM-109", "data/final/reinfection2b/output/sample_barcode08" : "AECOM-110", "data/final/reinfection2b/output/sample_barcode09" : "AECOM-111", "data/final/reinfection2b/output/sample_barcode10" : "AECOM-112", "data/final/reinfection2b/output/sample_barcode11" : "AECOM-113", "data/final/reinfection2b/output/sample_barcode12" : "AECOM-114", "data/final/reinfection2b/output/sample_barcode13" : "AECOM-115", "data/final/reinfection2b/output/sample_barcode14" : "AECOM-116", "data/final/reinfection2b/output/sample_barcode15" : "AECOM-117", "data/final/reinfection2b/output/sample_barcode16" : "AECOM-118", "data/final/reinfection2b/output/sample_barcode17" : "AECOM-119", "data/final/reinfection2b/output/sample_barcode18" : "AECOM-120", "data/final/reinfection2b/output/sample_barcode19" : "AECOM-121", "data/final/reinfection2b/output/sample_barcode20" : "AECOM-122", "data/final/reinfection2b/output/sample_barcode21" : "AECOM-126b", } vardf_all = [] all_samples = reinfection_samples num_samples = len(all_samples) base = "data/final/reinfection/output/" # sam_files = {**sam_files, **{x: base + x + '.primertrimmed.rg.sorted.bam' for x in reinfection_samples}} # fasta_files = {**fasta_files, **{x: base + x + '.consensus.fasta' for x in reinfection_samples}} # variant_files = {**variant_files, **{x: base + x + '.merged.vcf' for x in reinfection_samples}} for filename, sample_id in tqdm(all_samples.items()): # Get reads to assess depth sam_filename = filename + '.primertrimmed.rg.sorted.bam' fasta_filename = filename + '.consensus.fasta' variant_filename = filename + '.merged.vcf' alignments = AlignmentFile(sam_filename).fetch() consensus = list(skbio.read(fasta_filename, format="fasta"))[0] coverage = np.zeros(29903) for alignment in alignments: coverage[alignment.positions] += 1 # Get variants variants = VariantFile(variant_filename) vardf_all.extend([ { **{ key: value for key, value in var.info.items() }, **{ "sample_id": sample_id, "position": var.pos, "quality": var.qual, "reference": var.ref, "alternates": var.alts, "depth": coverage[var.pos], }, } for var in variants.fetch() ]) vardf_all = pd.DataFrame(vardf_all).set_index("sample_id") vardf_all['score'] = vardf_all['quality'] / vardf_all['depth'] vardf = vardf_all[vardf_all['score']>3] # Filter out variants that are not high quality x = [i for i in range(30000)] y = [0 for _ in x] y_ = [sum(vardf['position']==i)/num_samples for i in x] coocurrence =
pd.crosstab(index=vardf.index, columns=vardf['position'])
pandas.crosstab
import sys import warnings from bisect import bisect_left, bisect_right from collections import Counter from pathlib import Path from textwrap import dedent import allel import dask import dask.array as da import ipinfo import numba import numpy as np import pandas as pd import xarray as xr import zarr from tqdm.auto import tqdm from tqdm.dask import TqdmCallback try: # noinspection PyPackageRequirements from google import colab except ImportError: colab = None import malariagen_data from . import veff from .util import ( DIM_ALLELE, DIM_PLOIDY, DIM_SAMPLE, DIM_VARIANT, CacheMiss, LoggingHelper, Region, da_compress, da_from_zarr, dask_compress_dataset, hash_params, init_filesystem, init_zarr_store, jitter, locate_region, read_gff3, resolve_region, type_error, unpack_gff3_attributes, xarray_concat, ) # silence dask performance warnings dask.config.set(**{"array.slicing.split_large_chunks": False}) PUBLIC_RELEASES = ("3.0",) GCS_URL = "gs://vo_agam_release/" GENESET_GFF3_PATH = ( "reference/genome/agamp4/Anopheles-gambiae-PEST_BASEFEATURES_AgamP4.12.gff3.gz" ) GENOME_FASTA_PATH = ( "reference/genome/agamp4/Anopheles-gambiae-PEST_CHROMOSOMES_AgamP4.fa" ) GENOME_FAI_PATH = ( "reference/genome/agamp4/Anopheles-gambiae-PEST_CHROMOSOMES_AgamP4.fa.fai" ) GENOME_ZARR_PATH = ( "reference/genome/agamp4/Anopheles-gambiae-PEST_CHROMOSOMES_AgamP4.zarr" ) # DEFAULT_SPECIES_ANALYSIS = "aim_20200422" DEFAULT_SPECIES_ANALYSIS = "aim_20220528" DEFAULT_SITE_FILTERS_ANALYSIS = "dt_20200416" DEFAULT_COHORTS_ANALYSIS = "20211101" CONTIGS = "2R", "2L", "3R", "3L", "X" DEFAULT_GENOME_PLOT_WIDTH = 800 # width in px for bokeh genome plots DEFAULT_GENES_TRACK_HEIGHT = 120 # height in px for bokeh genes track plots DEFAULT_MAX_COVERAGE_VARIANCE = 0.2 AA_CHANGE_QUERY = ( "effect in ['NON_SYNONYMOUS_CODING', 'START_LOST', 'STOP_LOST', 'STOP_GAINED']" ) # Note regarding release identifiers and storage paths. Within the # data storage, we have used path segments like "v3", "v3.1", "v3.2", # etc., to separate data from different releases. There is an inconsistency # in this convention, because the "v3" should have been "v3.0". To # make the API more consistent, we would like to use consistent release # identifiers like "3.0", "3.1", "3.2", etc., as parameter values and # when release identifiers are added to returned dataframes. In order to # achieve this, below we define two functions that allow mapping between # these consistent release identifiers, and the less consistent release # storage path segments. def _release_to_path(release): """Compatibility function, allows us to use release identifiers like "3.0" and "3.1" in the public API, and map these internally into storage path segments.""" if release == "3.0": # special case return "v3" elif release.startswith("3."): return f"v{release}" else: raise ValueError(f"Invalid release: {release!r}") def _path_to_release(path): """Compatibility function, allows us to use release identifiers like "3.0" and "3.1" in the public API, and map these internally into storage path segments.""" if path == "v3": return "3.0" elif path.startswith("v3."): return path[1:] else: raise RuntimeError(f"Unexpected release path: {path!r}") class Ag3: """Provides access to data from Ag3.x releases. Parameters ---------- url : str Base path to data. Give "gs://vo_agam_release/" to use Google Cloud Storage, or a local path on your file system if data have been downloaded. cohorts_analysis : str Cohort analysis version. species_analysis : {"aim_20200422", "pca_20200422"}, optional Species analysis version. site_filters_analysis : str, optional Site filters analysis version. bokeh_output_notebook : bool, optional If True (default), configure bokeh to output plots to the notebook. results_cache : str, optional Path to directory on local file system to save results. log : str or stream, optional File path or stream output for logging messages. debug : bool, optional Set to True to enable debug level logging. show_progress : bool, optional If True, show a progress bar during longer-running computations. check_location : bool, optional If True, use ipinfo to check the location of the client system. **kwargs Passed through to fsspec when setting up file system access. Examples -------- Access data from Google Cloud Storage (default): >>> import malariagen_data >>> ag3 = malariagen_data.Ag3() Access data downloaded to a local file system: >>> ag3 = malariagen_data.Ag3("/local/path/to/vo_agam_release/") Access data from Google Cloud Storage, with caching on the local file system in a directory named "gcs_cache": >>> ag3 = malariagen_data.Ag3( ... "simplecache::gs://vo_agam_release", ... simplecache=dict(cache_storage="gcs_cache"), ... ) Set up caching of some longer-running computations on the local file system, in a directory named "results_cache": >>> ag3 = malariagen_data.Ag3(results_cache="results_cache") """ contigs = CONTIGS def __init__( self, url=GCS_URL, cohorts_analysis=DEFAULT_COHORTS_ANALYSIS, species_analysis=DEFAULT_SPECIES_ANALYSIS, site_filters_analysis=DEFAULT_SITE_FILTERS_ANALYSIS, bokeh_output_notebook=True, results_cache=None, log=sys.stdout, debug=False, show_progress=True, check_location=True, **kwargs, ): self._url = url self._pre = kwargs.pop("pre", False) self._cohorts_analysis = cohorts_analysis self._species_analysis = species_analysis self._site_filters_analysis = site_filters_analysis self._debug = debug self._show_progress = show_progress # set up logging self._log = LoggingHelper(name=__name__, out=log, debug=debug) # set up filesystem self._fs, self._base_path = init_filesystem(url, **kwargs) # set up caches self._cache_releases = None self._cache_sample_sets = dict() self._cache_sample_set_to_release = None self._cache_general_metadata = dict() self._cache_species_calls = dict() self._cache_site_filters = dict() self._cache_snp_sites = None self._cache_snp_genotypes = dict() self._cache_genome = None self._cache_annotator = None self._cache_geneset = dict() self._cache_cross_metadata = None self._cache_site_annotations = None self._cache_cnv_hmm = dict() self._cache_cnv_coverage_calls = dict() self._cache_cnv_discordant_read_calls = dict() self._cache_haplotypes = dict() self._cache_haplotype_sites = dict() self._cache_cohort_metadata = dict() self._cache_sample_metadata = dict() self._cache_aim_variants = dict() if results_cache is not None: results_cache = Path(results_cache).expanduser().resolve() results_cache.mkdir(parents=True, exist_ok=True) self._results_cache = results_cache # get bokeh to output plots to the notebook - this is a common gotcha, # users forget to do this and wonder why bokeh plots don't show if bokeh_output_notebook: import bokeh.io as bkio bkio.output_notebook(hide_banner=True) # Occasionally, colab will allocate a VM outside the US, e.g., in # Europe or Asia. Because the MalariaGEN data GCS bucket is located # in the US, this is usually bad for performance, because of # increased latency and lower bandwidth. Add a check for this and # issue a warning if not in the US. client_details = None if check_location: try: client_details = ipinfo.getHandler().getDetails() if GCS_URL in url and colab and client_details.country != "US": warnings.warn( dedent( """ Your currently allocated Google Colab VM is not located in the US. This usually means that data access will be substantially slower. If possible, select "Runtime > Factory reset runtime" from the menu to request a new VM and try again. """ ) ) except OSError: pass self._client_details = client_details @property def _client_location(self): details = self._client_details if details is not None: region = details.region country = details.country location = f"{region}, {country}" if colab: location += " (colab)" elif hasattr(details, "hostname"): hostname = details.hostname if hostname.endswith("googleusercontent.com"): location += " (Google Cloud)" else: location = "unknown" return location def __repr__(self): text = ( f"<MalariaGEN Ag3 API client>\n" f"Storage URL : {self._url}\n" f"Data releases available : {', '.join(self.releases)}\n" f"Results cache : {self._results_cache}\n" f"Cohorts analysis : {self._cohorts_analysis}\n" f"Species analysis : {self._species_analysis}\n" f"Site filters analysis : {self._site_filters_analysis}\n" f"Software version : malariagen_data {malariagen_data.__version__}\n" f"Client location : {self._client_location}\n" f"---\n" f"Please note that data are subject to terms of use,\n" f"for more information see https://www.malariagen.net/data\n" f"or contact <EMAIL>. For API documentation see \n" f"https://malariagen.github.io/vector-data/ag3/api.html" ) return text def _repr_html_(self): html = f""" <table class="malariagen-ag3"> <thead> <tr> <th style="text-align: left" colspan="2">MalariaGEN Ag3 API client</th> </tr> <tr><td colspan="2" style="text-align: left"> Please note that data are subject to terms of use, for more information see <a href="https://www.malariagen.net/data"> the MalariaGEN website</a> or contact <EMAIL>. See also the <a href="https://malariagen.github.io/vector-data/ag3/api.html">Ag3 API docs</a>. </td></tr> </thead> <tbody> <tr> <th style="text-align: left"> Storage URL </th> <td>{self._url}</td> </tr> <tr> <th style="text-align: left"> Data releases available </th> <td>{', '.join(self.releases)}</td> </tr> <tr> <th style="text-align: left"> Results cache </th> <td>{self._results_cache}</td> </tr> <tr> <th style="text-align: left"> Cohorts analysis </th> <td>{self._cohorts_analysis}</td> </tr> <tr> <th style="text-align: left"> Species analysis </th> <td>{self._species_analysis}</td> </tr> <tr> <th style="text-align: left"> Site filters analysis </th> <td>{self._site_filters_analysis}</td> </tr> <tr> <th style="text-align: left"> Software version </th> <td>malariagen_data {malariagen_data.__version__}</td> </tr> <tr> <th style="text-align: left"> Client location </th> <td>{self._client_location}</td> </tr> </tbody> </table> """ return html def _progress(self, iterable, **kwargs): # progress doesn't mix well with debug logging disable = self._debug or not self._show_progress return tqdm(iterable, disable=disable, **kwargs) def _dask_progress(self, **kwargs): disable = not self._show_progress return TqdmCallback(disable=disable, **kwargs) @property def releases(self): """The releases for which data are available at the given storage location.""" if self._cache_releases is None: if self._pre: # Here we discover which releases are available, by listing the storage # directory and examining the subdirectories. This may include "pre-releases" # where data may be incomplete. sub_dirs = [p.split("/")[-1] for p in self._fs.ls(self._base_path)] releases = tuple( sorted( [ _path_to_release(d) for d in sub_dirs if d.startswith("v3") and self._fs.exists(f"{self._base_path}/{d}/manifest.tsv") ] ) ) if len(releases) == 0: raise ValueError("No releases found.") self._cache_releases = releases else: self._cache_releases = PUBLIC_RELEASES return self._cache_releases def _read_sample_sets(self, *, release): """Read the manifest of sample sets for a given release.""" release_path = _release_to_path(release) path = f"{self._base_path}/{release_path}/manifest.tsv" with self._fs.open(path) as f: df = pd.read_csv(f, sep="\t", na_values="") df["release"] = release return df def sample_sets(self, release=None): """Access a dataframe of sample sets. Parameters ---------- release : str, optional Release identifier. Give "3.0" to access the Ag1000G phase 3 data release. Returns ------- df : pandas.DataFrame A dataframe of sample sets, one row per sample set. """ if release is None: # retrieve sample sets from all available releases release = self.releases if isinstance(release, str): # retrieve sample sets for a single release if release not in self.releases: raise ValueError(f"Release not available: {release!r}") try: df = self._cache_sample_sets[release] except KeyError: df = self._read_sample_sets(release=release) self._cache_sample_sets[release] = df elif isinstance(release, (list, tuple)): # check no duplicates counter = Counter(release) for k, v in counter.items(): if v > 1: raise ValueError(f"Duplicate values: {k!r}.") # retrieve sample sets from multiple releases df = pd.concat( [self.sample_sets(release=r) for r in release], axis=0, ignore_index=True, ) else: raise TypeError return df.copy() @property def v3_wild(self): """Legacy, convenience property to access sample sets from the 3.0 release, excluding the lab crosses.""" return [ x for x in self.sample_sets(release="3.0")["sample_set"].tolist() if x != "AG1000G-X" ] def _lookup_release(self, *, sample_set): """Find which release a sample set was included in.""" if self._cache_sample_set_to_release is None: df_sample_sets = self.sample_sets().set_index("sample_set") self._cache_sample_set_to_release = df_sample_sets["release"].to_dict() try: return self._cache_sample_set_to_release[sample_set] except KeyError: raise ValueError(f"No release found for sample set {sample_set!r}") def _read_general_metadata(self, *, sample_set): """Read metadata for a single sample set.""" try: df = self._cache_general_metadata[sample_set] except KeyError: release = self._lookup_release(sample_set=sample_set) release_path = _release_to_path(release) path = f"{self._base_path}/{release_path}/metadata/general/{sample_set}/samples.meta.csv" with self._fs.open(path) as f: df = pd.read_csv(f, na_values="") # ensure all column names are lower case df.columns = [c.lower() for c in df.columns] # add a couple of columns for convenience df["sample_set"] = sample_set df["release"] = release self._cache_general_metadata[sample_set] = df return df.copy() def _read_species_calls(self, *, sample_set): """Read species calls for a single sample set.""" key = sample_set try: df = self._cache_species_calls[key] except KeyError: release = self._lookup_release(sample_set=sample_set) release_path = _release_to_path(release) path_prefix = f"{self._base_path}/{release_path}/metadata" if self._species_analysis == "aim_20220528": path = f"{path_prefix}/species_calls_aim_20220528/{sample_set}/samples.species_aim.csv" dtype = { "aim_species_gambcolu_arabiensis": object, "aim_species_gambiae_coluzzii": object, "aim_species": object, } elif self._species_analysis == "aim_20200422": # TODO this is legacy, deprecate at some point path = f"{path_prefix}/species_calls_20200422/{sample_set}/samples.species_aim.csv" dtype = { "species_gambcolu_arabiensis": object, "species_gambiae_coluzzii": object, } elif self._species_analysis == "pca_20200422": # TODO this is legacy, deprecate at some point path = f"{path_prefix}/species_calls_20200422/{sample_set}/samples.species_pca.csv" dtype = { "species_gambcolu_arabiensis": object, "species_gambiae_coluzzii": object, } else: raise ValueError( f"Unknown species calling analysis: {self._species_analysis!r}" ) with self._fs.open(path) as f: df = pd.read_csv( f, na_values=["", "NA"], # ensure correct dtype even where all values are missing dtype=dtype, ) # add a single species call column, for convenience def consolidate_species(s): species_gambcolu_arabiensis = s["species_gambcolu_arabiensis"] species_gambiae_coluzzii = s["species_gambiae_coluzzii"] if species_gambcolu_arabiensis == "arabiensis": return "arabiensis" elif species_gambcolu_arabiensis == "intermediate": return "intermediate_arabiensis_gambiae" elif species_gambcolu_arabiensis == "gamb_colu": # look at gambiae_vs_coluzzii if species_gambiae_coluzzii == "gambiae": return "gambiae" elif species_gambiae_coluzzii == "coluzzii": return "coluzzii" elif species_gambiae_coluzzii == "intermediate": return "intermediate_gambiae_coluzzii" else: # some individuals, e.g., crosses, have a missing species call return np.nan if self._species_analysis == "aim_20200422": # TODO this is legacy, deprecate at some point df["species"] = df.apply(consolidate_species, axis=1) # normalise column prefixes df = df.rename( columns={ "aim_fraction_arab": "aim_species_fraction_arab", "aim_fraction_colu": "aim_species_fraction_colu", "species_gambcolu_arabiensis": "aim_species_gambcolu_arabiensis", "species_gambiae_coluzzii": "aim_species_gambiae_coluzzii", "species": "aim_species", } ) elif self._species_analysis == "pca_20200422": # TODO this is legacy, deprecate at some point df["species"] = df.apply(consolidate_species, axis=1) # normalise column prefixes df = df.rename( # normalise column prefixes columns={ "PC1": "pca_species_PC1", "PC2": "pca_species_PC2", "species_gambcolu_arabiensis": "pca_species_gambcolu_arabiensis", "species_gambiae_coluzzii": "pca_species_gambiae_coluzzii", "species": "pca_species", } ) # ensure all column names are lower case df.columns = [c.lower() for c in df.columns] self._cache_species_calls[key] = df return df.copy() def _prep_sample_sets_arg(self, *, sample_sets): """Common handling for the `sample_sets` parameter. For convenience, we allow this to be a single sample set, or a list of sample sets, or a release identifier, or a list of release identifiers.""" if sample_sets is None: # all available sample sets sample_sets = self.sample_sets()["sample_set"].tolist() elif isinstance(sample_sets, str): if sample_sets.startswith("3."): # convenience, can use a release identifier to denote all sample sets in a release sample_sets = self.sample_sets(release=sample_sets)[ "sample_set" ].tolist() else: # single sample set, normalise to always return a list sample_sets = [sample_sets] elif isinstance(sample_sets, (list, tuple)): # list or tuple of sample sets or releases prepped_sample_sets = [] for s in sample_sets: # make a recursive call to handle the case where s is a release identifier sp = self._prep_sample_sets_arg(sample_sets=s) # make sure we end up with a flat list of sample sets if isinstance(sp, str): prepped_sample_sets.append(sp) else: prepped_sample_sets.extend(sp) sample_sets = prepped_sample_sets else: raise TypeError( f"Invalid type for sample_sets parameter; expected str, list or tuple; found: {sample_sets!r}" ) # check all sample sets selected at most once counter = Counter(sample_sets) for k, v in counter.items(): if v > 1: raise ValueError( f"Bad value for sample_sets parameter, {k:!r} selected more than once." ) return sample_sets def species_calls(self, sample_sets=None): """Access species calls for one or more sample sets. Parameters ---------- sample_sets : str or list of str, optional Can be a sample set identifier (e.g., "AG1000G-AO") or a list of sample set identifiers (e.g., ["AG1000G-BF-A", "AG1000G-BF-B"] or a release identifier (e.g., "3.0") or a list of release identifiers. Returns ------- df : pandas.DataFrame A dataframe of species calls for one or more sample sets, one row per sample. """ sample_sets = self._prep_sample_sets_arg(sample_sets=sample_sets) # concatenate multiple sample sets dfs = [self._read_species_calls(sample_set=s) for s in sample_sets] df = pd.concat(dfs, axis=0, ignore_index=True) return df def _sample_metadata(self, *, sample_set): df = self._read_general_metadata(sample_set=sample_set) df_species = self._read_species_calls(sample_set=sample_set) df = df.merge(df_species, on="sample_id", sort=False) df_cohorts = self._read_cohort_metadata(sample_set=sample_set) df = df.merge(df_cohorts, on="sample_id", sort=False) return df def sample_metadata( self, sample_sets=None, sample_query=None, ): """Access sample metadata for one or more sample sets. Parameters ---------- sample_sets : str or list of str, optional Can be a sample set identifier (e.g., "AG1000G-AO") or a list of sample set identifiers (e.g., ["AG1000G-BF-A", "AG1000G-BF-B"]) or a release identifier (e.g., "3.0") or a list of release identifiers. sample_query : str, optional A pandas query string which will be evaluated against the sample metadata e.g., "taxon == 'coluzzii' and country == 'Burkina Faso'". Returns ------- df_samples : pandas.DataFrame A dataframe of sample metadata, one row per sample. """ sample_sets = self._prep_sample_sets_arg(sample_sets=sample_sets) cache_key = tuple(sample_sets) try: df_samples = self._cache_sample_metadata[cache_key] except KeyError: # concatenate multiple sample sets dfs = [] # there can be some delay here due to network latency, so show progress sample_sets_iterator = self._progress( sample_sets, desc="Load sample metadata" ) for s in sample_sets_iterator: df = self._sample_metadata(sample_set=s) dfs.append(df) df_samples =
pd.concat(dfs, axis=0, ignore_index=True)
pandas.concat
# Copyright © 2019 <NAME> """ Test for the ``preprocess._aggregate_columns._difference`` module. """ from pandas import DataFrame from pandas.util.testing import assert_frame_equal import unittest # Tests for: from ...clean_variables import VariableCleaner class PreprocessConstantDifferenceTests(unittest.TestCase): """ Tests for the ``preprocess._aggregate_columns._difference`` module. Assert final data frames match expectations. """ @staticmethod def test_clean_difference_ints_0(): """Test subtracting 0 from a column.""" _input = DataFrame({"A": [1, 2, 3]}) _expected = DataFrame({"A": [1, 2, 3]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_ints_1(): """Test subtracting 1 from a column.""" _input = DataFrame({"A": [1, 2, 3]}) _expected = DataFrame({"A": [0, 1, 2]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 1}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_floats_0(): """Test subtracting 0.0 from a column.""" _input = DataFrame({"A": [1.0, 2.0, 3.0]}) _expected = DataFrame({"A": [1.0, 2.0, 3.0]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 0.0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_floats_negative_1(): """Test subtracting -1.0 from a column.""" _input = DataFrame({"A": [1.0, 2.0, 3.0]}) _expected = DataFrame({"A": [2.0, 3.0, 4.0]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": -1.0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) class PreprocessVariableDifferenceTests(unittest.TestCase): """ Tests for the ``preprocess._aggregate_columns._difference`` module with column subtraction. """ @staticmethod def test_clean_difference_int_column(): """Test subtracting the right column from the left.""" _input = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}) _expected = DataFrame({"A": [-1, -1, -1], "B": [2, 3, 4]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_right_string_column(): """Test subtracting the right column from the left. Right column has strings.""" _input = DataFrame({"A": [1, 2, 3], "B": ["2", "3", "4"]}) _expected = DataFrame({"A": [-1.0, -1.0, -1.0], "B": ["2", "3", "4"]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_left_string_column(): """Test subtracting the right column from the left. Left column has strings.""" _input = DataFrame({"A": ["1", "2", "3"], "B": [2, 3, 4]}) _expected = DataFrame({"A": [-1.0, -1.0, -1.0], "B": [2, 3, 4]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_both_string_column(): """Test subtracting the right column from the left. Both left and right have strings.""" _input = DataFrame({"A": ["1", "2", "3"], "B": ["2", "3", "4"]}) _expected =
DataFrame({"A": [-1.0, -1.0, -1.0], "B": ["2", "3", "4"]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 8 20:59:11 2017 @author: changyaochen """ import pandas as pd import os import bokeh.plotting as bkp import bokeh.models as bkm from bokeh.resources import CDN from bokeh.embed import file_html from bokeh.models import ( GMapPlot, GMapOptions, ColumnDataSource, Circle, PanTool, WheelZoomTool, BoxSelectTool, Range1d ) from .config import google_map_api_key def plot_income_pop(output='income'): """ for informative purpose, showing either the income or population by census block """ dname = os.path.dirname(os.path.abspath(__file__)) project_folder = '/'.join(dname.split('/')[:-1]) + '/NYC_bikeshare' df = pd.read_csv(project_folder + '/data/NYC_income_population_lite.csv') # ======== preparing the plot ======= map_options = GMapOptions( lat=40.75, lng=-73.95, map_type="roadmap", zoom=12) plot = GMapPlot( x_range=Range1d(), y_range=Range1d(), map_options=map_options, api_key=google_map_api_key ) plot.title.text = 'Income and population by station' # plot.api_key = google_map_api_key source1 = bkp.ColumnDataSource( data=dict(lat=df['centroid_lat'], long=df['centroid_long'], income_plot=df['median_income'] / 10000, income=df['median_income'], pop_plot=df['Population'] / 500, pop=df['Population'])) if output == 'income': circle1 = Circle(x='long', y='lat', fill_color='red', fill_alpha=0.7, line_alpha=0, size='income_plot') plot.add_glyph(source1, circle1) plot.add_tools(PanTool(), WheelZoomTool(), BoxSelectTool()) hover = bkm.HoverTool(tooltips=[('income', '@income{$0,0}')]) plot.title.text = 'Median input. Data source: US Census' plot.add_tools(hover) bokeh_map = file_html(plot, CDN, "bokeh") print('return the plot!') # return plot return bokeh_map elif output == 'pop': circle1 = Circle(x='long', y='lat', fill_color='blue', fill_alpha=0.7, line_alpha=0, size='pop_plot') plot.add_glyph(source1, circle1) plot.add_tools(PanTool(), WheelZoomTool(), BoxSelectTool()) hover = bkm.HoverTool(tooltips=[('population', '@pop')]) plot.title.text = 'Population. Data source: US Census' plot.add_tools(hover) bokeh_html = file_html(plot, CDN, "bokeh") # return plot return bokeh_html else: raise return def plot_destination(start_station, end_neighborhoods, N=3): """ plot the top N most probable end neighborhoods """ dname = os.path.dirname(os.path.abspath(__file__)) project_folder = '/'.join(dname.split('/')[:-1]) + '/NYC_bikeshare' df = pd.read_csv(project_folder + '/data/NYC_neighborhoods.csv') df_for_plot = pd.DataFrame(end_neighborhoods) df_for_plot = pd.merge(df_for_plot, df, left_on='name', right_on='neighborhood', how='left') # lat_centroid = df_for_plot['latitude'].mean() # long_centroid = df_for_plot['longitude'].mean() df_station =
pd.read_csv(project_folder + '/data/NYC_bike_stations_v1.csv')
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict(OrderedDict([('A', [1, 2]), ('B', [4, 5])]), orient='index', columns=['one', 'two']) expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'], columns=['one', 'two']) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), orient='columns', columns=['one', 'two']) with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), columns=['one', 'two']) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) assert df.columns[0] == 'x' tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) pytest.raises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) assert df.columns[0] == 'x' # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index = Index(['a', 'b']) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) assert df1.columns[0] == 'x' tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) assert df2.columns[0] == 0 tm.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self): index = list(self.frame.index[:5]) columns = list(self.frame.columns[:3]) result = DataFrame(self.frame._data, index=index, columns=columns) tm.assert_index_equal(result.index, Index(index)) tm.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self): items = [(c, self.frame[c]) for c in self.frame.columns] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, self.frame) # pass some columns with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items, columns=['C', 'B', 'A']) tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']]) # orient='index' row_items = [(idx, self.mixed_frame.xs(idx)) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert recons['A'].dtype == np.float64 msg = "Must pass columns with orient='index'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items(row_items, orient='index') # orient='index', but thar be tuples arr = construct_1d_object_array_from_listlike( [('bar', 'baz')] * len(self.mixed_frame)) self.mixed_frame['foo'] = arr row_items = [(idx, list(self.mixed_frame.xs(idx))) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert isinstance(recons['foo'][0], tuple) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three']) xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'], columns=['one', 'two', 'three']) tm.assert_frame_equal(rs, xp) def test_constructor_from_items_scalars(self): # GH 17312 msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 4)]) msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'], orient='index') def test_from_items_deprecation(self): # GH 17320 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], columns=['col1', 'col2', 'col3'], orient='index') def test_constructor_mix_series_nonseries(self): df = DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])}, columns=['A', 'B']) tm.assert_frame_equal(df, self.frame.loc[:, ['A', 'B']]) msg = 'does not match index length' with pytest.raises(ValueError, match=msg): DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=['a', 'a']) edf = DataFrame([[8, 5]]) edf.columns = ['a', 'a'] tm.assert_frame_equal(df, edf) idf = DataFrame.from_records([(8, 5)], columns=['a', 'a']) tm.assert_frame_equal(idf, edf) pytest.raises(ValueError, DataFrame.from_dict, OrderedDict([('b', 8), ('a', 5), ('a', 6)])) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5') tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('float64'), df.index, df.columns)) df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'), df.index, df.columns)) df = DataFrame('a', index=[1, 2], columns=['a', 'c']) tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']], dtype=object), index=[1, 2], columns=['a', 'c'])) pytest.raises(ValueError, DataFrame, 'a', [1, 2]) pytest.raises(ValueError, DataFrame, 'a', columns=['a', 'c']) msg = 'incompatible data and dtype' with pytest.raises(TypeError, match=msg): DataFrame('a', [1, 2], ['a', 'c'], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # single item df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime(2001, 1, 2, 0, 0)}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, datetime64name: 2, objectname: 2}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array(1., dtype=floatname), intname: np.array(1, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() expected = {objectname: 1} if intname == 'int64': expected['int64'] = 2 else: expected['int64'] = 1 expected[intname] = 1 if floatname == 'float64': expected['float64'] = 2 else: expected['float64'] = 1 expected[floatname] = 1 result = result.sort_index() expected = Series(expected).sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array([1.] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() result = result.sort_index() tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) assert datetime_s.dtype == 'M8[ns]' df = DataFrame({'datetime_s': datetime_s}) result = df.get_dtype_counts() expected = Series({datetime64name: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame({'datetimes': datetimes, 'dates': dates}) result = df.get_dtype_counts() expected = Series({datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone('US/Eastern') dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({'End Date': dt}, index=[0]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) df = DataFrame([{'End Date': dt}]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) df = DataFrame({'value': dr}) assert df.iat[0, 0].tz is None dr = date_range('20130101', periods=3, tz='UTC') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'UTC' dr = date_range('20130101', periods=3, tz='US/Eastern') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'US/Eastern' # GH 7822 # preserver an index with a tz on dict construction i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern') expected = DataFrame( {'a': i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df['a'] = i tm.assert_frame_equal(df, expected) df = DataFrame({'a': i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range('1/1/2011', periods=5, freq='10s') df = DataFrame({'a': i, 'b': i_no_tz}) expected = DataFrame({'a': i.to_series(keep_tz=True) .reset_index(drop=True), 'b': i_no_tz}) tm.assert_frame_equal(df, expected) def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None])]: result = DataFrame(arr).get_dtype_counts() expected = Series({'datetime64[ns]': 1}) tm.assert_series_equal(result, expected) def test_constructor_for_list_with_dtypes(self): # TODO(wesm): unused intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int64': 5}) df = DataFrame([np.array(np.arange(5), dtype='int32') for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int32': 5}) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame([1., 2.]) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1, 2]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1., 2.]}) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1.}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) # with object list df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3], 'c': list('abcd'), 'd': [datetime(2000, 1, 1) for i in range(4)], 'e': [1., 2, 4., 7]}) result = df.get_dtype_counts() expected = Series( {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self): cop = DataFrame(self.frame, copy=True) cop['A'] = 5 assert (cop['A'] == 5).all() assert not (self.frame['A'] == 5).all() def test_constructor_ndarray_copy(self): df = DataFrame(self.frame.values) self.frame.values[5] = 5 assert (df.values[5] == 5).all() df = DataFrame(self.frame.values, copy=True) self.frame.values[6] = 6 assert not (df.values[6] == 6).all() def test_constructor_series_copy(self): series = self.frame._series df = DataFrame({'A': series['A']}) df['A'][:] = 5 assert not (series['A'] == 5).all() def test_constructor_with_nas(self): # GH 5016 # na's in indices def check(df): for i in range(len(df.columns)): df.iloc[:, i] indexer = np.arange(len(df.columns))[isna(df.columns)] # No NaN found -> error if len(indexer) == 0: def f(): df.loc[:, np.nan] pytest.raises(TypeError, f) # single nan should result in Series elif len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should result in DataFrame else: tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) # GH 21428 (non-unique columns) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) assert d['a'].dtype == np.object_ assert not d['a'][1] def test_constructor_categorical(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([Categorical(list('abc')), Categorical(list('abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) pytest.raises(ValueError, lambda: DataFrame([Categorical(list('abc')), Categorical(list('abdefg'))])) # ndim > 1 pytest.raises(NotImplementedError, lambda: Categorical(np.array([list('abcd')]))) def test_constructor_categorical_series(self): items = [1, 2, 3, 1] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) items = ["a", "b", "c", "a"] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=('i4,f4,a10')) arr[:] = [(1, 2., 'Hello'), (2, 3., "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index='f1') # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert 'index' not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=['a', 'b', 'c', 'd']) assert np.isnan(df['c'][0]) def test_from_records_iterator(self): arr = np.array([(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5., 5., 6, 6), (7., 7., 8, 8)], dtype=[('x', np.float64), ('u', np.float32), ('y', np.int64), ('z', np.int32)]) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame({'x': np.array([1.0, 3.0], dtype=np.float64), 'u': np.array([1.0, 3.0], dtype=np.float32), 'y': np.array([2, 4], dtype=np.int64), 'z': np.array([2, 4], dtype=np.int32)}) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5., 6), (7., 8)] df = DataFrame.from_records(iter(arr), columns=['x', 'y'], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=['x', 'y']), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield (i, letters[i % len(letters)], i / length) columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in tuple_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield [i, letters[i % len(letters)], i / length] columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in list_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ['a', 'b', 'c'] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index='a') # noqa assert columns == original_columns def test_from_records_decimal(self): from decimal import Decimal tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)] df = DataFrame.from_records(tuples, columns=['a']) assert df['a'].dtype == object df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True) assert df['a'].dtype == np.float64 assert np.isnan(df['a'].values[-1]) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return {'order_id': order_id, 'quantity': np.random.randint(1, 10), 'price': np.random.randint(1, 10)} documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({'order_id': 10, 'quantity': 5}) result = DataFrame.from_records(documents, index='order_id') assert result.index.name == 'order_id' # MultiIndex result = DataFrame.from_records(documents, index=['order_id', 'quantity']) assert result.index.names == ('order_id', 'quantity') def test_from_records_misc_brokenness(self): # #2179 data = {1: ['foo'], 2: ['bar']} result = DataFrame.from_records(data, columns=['a', 'b']) exp = DataFrame(data, columns=['a', 'b']) tm.assert_frame_equal(result, exp) # overlap in index/index_names data = {'a': [1, 2, 3], 'b': [4, 5, 6]} result = DataFrame.from_records(data, index=['a', 'b', 'c']) exp = DataFrame(data, index=['a', 'b', 'c']) tm.assert_frame_equal(result, exp) # GH 2623 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) # test col upconverts to obj df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts() expected = Series({'datetime64[ns]': 1, 'object': 1}) rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 1]) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts().sort_index() expected = Series({'datetime64[ns]': 1, 'int64': 1}) tm.assert_series_equal(results, expected) def test_from_records_empty(self): # 3562 result = DataFrame.from_records([], columns=['a', 'b', 'c']) expected = DataFrame(columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) result = DataFrame.from_records([], columns=['a', 'b', 'b']) expected = DataFrame(columns=['a', 'b', 'b']) tm.assert_frame_equal(result, expected) def test_from_records_empty_with_nonempty_fields_gh3682(self): a = np.array([(1, 2)], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(a, index='id') tm.assert_index_equal(df.index, Index([1], name='id')) assert df.index.name == 'id' tm.assert_index_equal(df.columns, Index(['value'])) b = np.array([], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(b, index='id') tm.assert_index_equal(df.index, Index([], name='id')) assert df.index.name == 'id' def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH 6140 expected = DataFrame({'EXPIRY': [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[ns]')] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[m]')] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in compat.iteritems(blocks): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = (DataFrame.from_records(tuples, columns=columns) .reindex(columns=df.columns)) # created recarray and with to_records recarray (have dtype info) result2 = (DataFrame.from_records(recarray, columns=columns) .reindex(columns=df.columns)) result3 = (DataFrame.from_records(recarray2, columns=columns) .reindex(columns=df.columns)) # list of tupels (no dtype info) result4 = (DataFrame.from_records(lists, columns=columns) .reindex(columns=df.columns)) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, pd.Index(lrange(8))) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index('C'), columns.index('E1')] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result['C'], df['C']) tm.assert_series_equal(result['E1'], df['E1'].astype('float64')) # empty case result = DataFrame.from_records([], columns=['foo', 'bar', 'baz']) assert len(result) == 0 tm.assert_index_equal(result.columns, pd.Index(['foo', 'bar', 'baz'])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) asdict = {x: y for x, y in compat.iteritems(df)} asdict2 = {x: y.values for x, y in compat.iteritems(df)} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records( asdict).reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict, columns=columns) .reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict2, columns=columns) .reindex(columns=df.columns)) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) # should pass df1 = DataFrame.from_records(df, index=['C']) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index='C') tm.assert_index_equal(df1.index, Index(df.C)) # should fail pytest.raises(ValueError, DataFrame.from_records, df, index=[2]) pytest.raises(KeyError, DataFrame.from_records, df, index=2) def test_from_records_non_tuple(self): class Record(object): def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = lmap(tuple, recs) result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # #2633 result = DataFrame.from_records([], index='foo', columns=['foo', 'bar']) expected = Index(['bar']) assert len(result) == 0 assert result.index.name == 'foo' tm.assert_index_equal(result.columns, expected) def test_to_frame_with_falsey_names(self): # GH 16114 result = Series(name=0).to_frame().dtypes expected = Series({0: np.float64}) tm.assert_series_equal(result, expected) result = DataFrame(Series(name=0)).dtypes tm.assert_series_equal(result, expected) @pytest.mark.parametrize('dtype', [None, 'uint8', 'category']) def test_constructor_range_dtype(self, dtype): # GH 16804 expected = DataFrame({'A': [0, 1, 2, 3, 4]}, dtype=dtype or 'int64') result = DataFrame({'A': range(5)}, dtype=dtype) tm.assert_frame_equal(result, expected) def test_frame_from_list_subclass(self): # GH21226 class List(list): pass expected = DataFrame([[1, 2, 3], [4, 5, 6]]) result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])])) tm.assert_frame_equal(result, expected) class TestDataFrameConstructorWithDatetimeTZ(TestData): def test_from_dict(self): # 8260 # support datetime64 with tz idx = Index(date_range('20130101', periods=3, tz='US/Eastern'), name='foo') dr = date_range('20130110', periods=3) # construction df = DataFrame({'A': idx, 'B': dr}) assert df['A'].dtype, 'M8[ns, US/Eastern' assert df['A'].name == 'A' tm.assert_series_equal(df['A'], Series(idx, name='A')) tm.assert_series_equal(df['B'], Series(dr, name='B')) def test_from_index(self): # from index idx2 = date_range('20130101', periods=3, tz='US/Eastern', name='foo') df2 = DataFrame(idx2) tm.assert_series_equal(df2['foo'], Series(idx2, name='foo')) df2 = DataFrame(Series(idx2)) tm.assert_series_equal(df2['foo'], Series(idx2, name='foo')) idx2 = date_range('20130101', periods=3, tz='US/Eastern') df2 = DataFrame(idx2) tm.assert_series_equal(df2[0], Series(idx2, name=0)) df2 = DataFrame(Series(idx2)) tm.assert_series_equal(df2[0], Series(idx2, name=0)) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) assert d['B'].isna().all() def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_timeseries_column(self): # GH19157 dr = date_range(start='20130101T10:00:00', periods=3, freq='T', tz='US/Eastern') result = DataFrame(dr, columns=['timestamps']) expected = DataFrame({'timestamps': [ Timestamp('20130101T10:00:00', tz='US/Eastern'), Timestamp('20130101T10:01:00', tz='US/Eastern'), Timestamp('20130101T10:02:00', tz='US/Eastern')]}) tm.assert_frame_equal(result, expected) def test_nested_dict_construction(self): # GH22227 columns = ['Nevada', 'Ohio'] pop = {'Nevada': {2001: 2.4, 2002: 2.9}, 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}} result = pd.DataFrame(pop, index=[2001, 2002, 2003], columns=columns) expected = pd.DataFrame( [(2.4, 1.7), (2.9, 3.6), (np.nan, np.nan)], columns=columns, index=
pd.Index([2001, 2002, 2003])
pandas.Index
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with
tm.assertRaisesRegexp(TypeError, msg)
pandas.util.testing.assertRaisesRegexp
import os import zipfile import csv import pandas as pd import requests import json from itertools import islice import sklearn.preprocessing from lightfm.data import Dataset import numpy as np from lightfm import LightFM, lightfm from lightfm.evaluation import auc_score from scipy import sparse from sklearn.metrics.pairwise import cosine_similarity # ********************************************************************* def create_item_dict(df, id_col, name_col,author_col): ''' Function to create an item dictionary based on their item_id and item name Required Input - - df = Pandas dataframe with Item information - id_col = Column name containing unique identifier for an item - name_col = Column name containing name of the item Expected Output - item_dict = Dictionary type output containing item_id as key and item_name as value ''' item_dict = {} for i in range(df.shape[0]): item_dict[(df.loc[i, id_col])] = df.loc[i, name_col] +' : '+df.loc[i, author_col] return item_dict # ***************************************************************************************** def create_interaction_matrix(df, user_col, item_col, rating_col, norm=False, threshold=None): ''' Function to create an interaction matrix dataframe from transactional type interactions Required Input - - df = Pandas DataFrame containing user-item interactions - user_col = column name containing user's identifier - item_col = column name containing item's identifier - rating col = column name containing user feedback on interaction with a given item - norm (optional) = True if a normalization of ratings is needed - threshold (required if norm = True) = value above which the rating is favorable Expected output - - Pandas dataframe with user-item interactions ready to be fed in a recommendation algorithm ''' interactions = df.groupby([user_col, item_col])[rating_col] \ .sum().unstack().reset_index(). \ fillna(0).set_index(user_col) if norm: interactions = interactions.applymap(lambda x: 1 if x > threshold else 0) return interactions # ************************************************************************************ def create_item_emdedding_distance_matrix(model, interactions): ''' Function to create item-item distance embedding matrix Required Input - - model = Trained matrix factorization model - interactions = dataset used for training the model Expected Output - - item_emdedding_distance_matrix = Pandas dataframe containing cosine distance matrix b/w items ''' df_item_norm_sparse = sparse.csr_matrix(model.item_embeddings) similarities = cosine_similarity(df_item_norm_sparse) item_emdedding_distance_matrix = pd.DataFrame(similarities) item_emdedding_distance_matrix.columns = interactions.columns item_emdedding_distance_matrix.index = interactions.columns return item_emdedding_distance_matrix # ***************************************************************************** def item_item_recommendation(item_emdedding_distance_matrix, item_id, item_dict, n_items=10, show=True): ''' Function to create item-item recommendation Required Input - - item_emdedding_distance_matrix = Pandas dataframe containing cosine distance matrix b/w items - item_id = item ID for which we need to generate recommended items - item_dict = Dictionary type input containing item_id as key and item_name as value - n_items = Number of items needed as an output Expected Output - - recommended_items = List of recommended items ''' recommended_items = list(pd.Series(item_emdedding_distance_matrix.loc[item_id, :]. \ sort_values(ascending=False).head(n_items + 1). \ index[1:n_items + 1])) if show == True: print("Item of interest :{0}".format(item_dict[item_id])) print("Item similar to the above item:") counter = 1 for i in recommended_items: print(str(counter) + '- ' + item_dict[i]) counter += 1 return recommended_items def create_item_emdedding_distance_matrix(model, interactions): ''' Function to create item-item distance embedding matrix Required Input - - model = Trained matrix factorization model - interactions = dataset used for training the model Expected Output - - item_emdedding_distance_matrix = Pandas dataframe containing cosine distance matrix b/w items ''' df_item_norm_sparse = sparse.csr_matrix(model.item_embeddings) similarities = cosine_similarity(df_item_norm_sparse) item_emdedding_distance_matrix =
pd.DataFrame(similarities)
pandas.DataFrame
from __future__ import unicode_literals import csv import pandas as pd import numpy import sys import os from gtfspy.gtfs import GTFS from gtfspy.util import wgs84_distance def get_spatial_bounds(gtfs, as_dict=False): """ Parameters ---------- gtfs Returns ------- min_lon: float max_lon: float min_lat: float max_lat: float """ stats = get_stats(gtfs) lon_min = stats['lon_min'] lon_max = stats['lon_max'] lat_min = stats['lat_min'] lat_max = stats['lat_max'] if as_dict: return {'lon_min': lon_min, 'lon_max': lon_max, 'lat_min': lat_min, 'lat_max': lat_max} else: return lon_min, lon_max, lat_min, lat_max def get_percentile_stop_bounds(gtfs, percentile): stops = gtfs.get_table("stops") percentile = min(percentile, 100 - percentile) lat_min = numpy.percentile(stops['lat'].values, percentile) lat_max = numpy.percentile(stops['lat'].values, 100 - percentile) lon_min = numpy.percentile(stops['lon'].values, percentile) lon_max = numpy.percentile(stops['lon'].values, 100 - percentile) return lon_min, lon_max, lat_min, lat_max def get_median_lat_lon_of_stops(gtfs): """ Get median latitude AND longitude of stops Parameters ---------- gtfs: GTFS Returns ------- median_lat : float median_lon : float """ stops = gtfs.get_table("stops") median_lat = numpy.percentile(stops['lat'].values, 50) median_lon = numpy.percentile(stops['lon'].values, 50) return median_lat, median_lon def get_centroid_of_stops(gtfs): """ Get mean latitude AND longitude of stops Parameters ---------- gtfs: GTFS Returns ------- mean_lat : float mean_lon : float """ stops = gtfs.get_table("stops") mean_lat = numpy.mean(stops['lat'].values) mean_lon = numpy.mean(stops['lon'].values) return mean_lat, mean_lon def write_stats_as_csv(gtfs, path_to_csv, re_write=False): """ Writes data from get_stats to csv file Parameters ---------- gtfs: GTFS path_to_csv: str filepath to the csv file to be generated re_write: insted of appending, create a new one. """ stats_dict = get_stats(gtfs) # check if file exist if re_write: os.remove(path_to_csv) #if not os.path.isfile(path_to_csv): # is_new = True #else: # is_new = False is_new = True mode = 'r' if os.path.exists(path_to_csv) else 'w+' with open(path_to_csv, mode) as csvfile: for line in csvfile: if line: is_new = False else: is_new = True with open(path_to_csv, 'a') as csvfile: if (sys.version_info > (3, 0)): delimiter = u"," else: delimiter = b"," statswriter = csv.writer(csvfile, delimiter=delimiter) # write column names if if is_new: statswriter.writerow([key for key in sorted(stats_dict.keys())]) row_to_write = [] # write stats row sorted by column name for key in sorted(stats_dict.keys()): row_to_write.append(stats_dict[key]) statswriter.writerow(row_to_write) def get_stats(gtfs): """ Get basic statistics of the GTFS data. Parameters ---------- gtfs: GTFS Returns ------- stats: dict A dictionary of various statistics. Keys should be strings, values should be inputtable to a database (int, date, str, ...) (but not a list) """ stats = {} # Basic table counts for table in ['agencies', 'routes', 'stops', 'stop_times', 'trips', 'calendar', 'shapes', 'calendar_dates', 'days', 'stop_distances', 'frequencies', 'feed_info', 'transfers']: stats["n_" + table] = gtfs.get_row_count(table) # Agency names agencies = gtfs.get_table("agencies") stats["agencies"] = "_".join(agencies['name'].values) # Stop lat/lon range stops = gtfs.get_table("stops") lats = stops['lat'].values lons = stops['lon'].values percentiles = [0, 10, 50, 90, 100] try: lat_percentiles = numpy.percentile(lats, percentiles) except IndexError: lat_percentiles = [None] * 5 lat_min, lat_10, lat_median, lat_90, lat_max = lat_percentiles stats["lat_min"] = lat_min stats["lat_10"] = lat_10 stats["lat_median"] = lat_median stats["lat_90"] = lat_90 stats["lat_max"] = lat_max try: lon_percentiles = numpy.percentile(lons, percentiles) except IndexError: lon_percentiles = [None] * 5 lon_min, lon_10, lon_median, lon_90, lon_max = lon_percentiles stats["lon_min"] = lon_min stats["lon_10"] = lon_10 stats["lon_median"] = lon_median stats["lon_90"] = lon_90 stats["lon_max"] = lon_max if len(lats) > 0: stats["height_km"] = wgs84_distance(lat_min, lon_median, lat_max, lon_median) / 1000. stats["width_km"] = wgs84_distance(lon_min, lat_median, lon_max, lat_median) / 1000. else: stats["height_km"] = None stats["width_km"] = None first_day_start_ut, last_day_start_ut = gtfs.get_day_start_ut_span() stats["start_time_ut"] = first_day_start_ut if last_day_start_ut is None: stats["end_time_ut"] = None else: # 28 (instead of 24) comes from the GTFS stANDard stats["end_time_ut"] = last_day_start_ut + 28 * 3600 stats["start_date"] = gtfs.get_min_date() stats["end_date"] = gtfs.get_max_date() # Maximum activity day max_activity_date = gtfs.execute_custom_query( 'SELECT count(*), date ' 'FROM days ' 'GROUP BY date ' 'ORDER BY count(*) DESC, date ' 'LIMIT 1;').fetchone() if max_activity_date: stats["max_activity_date"] = max_activity_date[1] max_activity_hour = gtfs.get_cursor().execute( 'SELECT count(*), arr_time_hour FROM day_stop_times ' 'WHERE date=? GROUP BY arr_time_hour ' 'ORDER BY count(*) DESC;', (stats["max_activity_date"],)).fetchone() if max_activity_hour: stats["max_activity_hour"] = max_activity_hour[1] else: stats["max_activity_hour"] = None # Fleet size estimate: considering each line separately if max_activity_date and max_activity_hour: fleet_size_estimates = _fleet_size_estimate(gtfs, stats['max_activity_hour'], stats['max_activity_date']) stats.update(fleet_size_estimates) # Compute simple distributions of various columns that have a finite range of values. # Commented lines refer to values that are not imported yet, ? stats['routes__type__dist'] = _distribution(gtfs, 'routes', 'type') # stats['stop_times__pickup_type__dist'] = _distribution(gtfs, 'stop_times', 'pickup_type') # stats['stop_times__drop_off_type__dist'] = _distribution(gtfs, 'stop_times', 'drop_off_type') # stats['stop_times__timepoint__dist'] = _distribution(gtfs, 'stop_times', 'timepoint') stats['calendar_dates__exception_type__dist'] = _distribution(gtfs, 'calendar_dates', 'exception_type') stats['frequencies__exact_times__dist'] = _distribution(gtfs, 'frequencies', 'exact_times') stats['transfers__transfer_type__dist'] = _distribution(gtfs, 'transfers', 'transfer_type') stats['agencies__lang__dist'] = _distribution(gtfs, 'agencies', 'lang') stats['stops__location_type__dist'] = _distribution(gtfs, 'stops', 'location_type') # stats['stops__wheelchair_boarding__dist'] = _distribution(gtfs, 'stops', 'wheelchair_boarding') # stats['trips__wheelchair_accessible__dist'] = _distribution(gtfs, 'trips', 'wheelchair_accessible') # stats['trips__bikes_allowed__dist'] = _distribution(gtfs, 'trips', 'bikes_allowed') # stats[''] = _distribution(gtfs, '', '') stats = _feed_calendar_span(gtfs, stats) return stats def _distribution(gtfs, table, column): """Count occurrences of values AND return it as a string. Example return value: '1:5 2:15'""" cur = gtfs.conn.cursor() cur.execute('SELECT {column}, count(*) ' 'FROM {table} GROUP BY {column} ' 'ORDER BY {column}'.format(column=column, table=table)) return ' '.join('%s:%s' % (t, c) for t, c in cur) def _fleet_size_estimate(gtfs, hour, date): """ Calculates fleet size estimates by two separate formula: 1. Considering all routes separately with no interlining and doing a deficit calculation at every terminal 2. By looking at the maximum number of vehicles in simultaneous movement Parameters ---------- gtfs: GTFS hour: int date: ? Returns ------- results: dict a dict with keys: fleet_size_route_based fleet_size_max_movement """ results = {} fleet_size_list = [] cur = gtfs.conn.cursor() rows = cur.execute( 'SELECT type, max(vehicles) ' 'FROM (' 'SELECT type, direction_id, sum(vehicles) as vehicles ' 'FROM ' '(' 'SELECT trips.route_I, trips.direction_id, routes.route_id, name, type, count(*) as vehicles, cycle_time_min ' 'FROM trips, routes, days, ' '(' 'SELECT first_trip.route_I, first_trip.direction_id, first_trip_start_time, first_trip_end_time, ' 'MIN(start_time_ds) as return_trip_start_time, end_time_ds as return_trip_end_time, ' '(end_time_ds - first_trip_start_time)/60 as cycle_time_min ' 'FROM ' 'trips, ' '(SELECT route_I, direction_id, MIN(start_time_ds) as first_trip_start_time, ' 'end_time_ds as first_trip_end_time ' 'FROM trips, days ' 'WHERE trips.trip_I=days.trip_I AND start_time_ds >= ? * 3600 ' 'AND start_time_ds <= (? + 1) * 3600 AND date = ? ' 'GROUP BY route_I, direction_id) first_trip ' 'WHERE first_trip.route_I = trips.route_I ' 'AND first_trip.direction_id != trips.direction_id ' 'AND start_time_ds >= first_trip_end_time ' 'GROUP BY trips.route_I, trips.direction_id' ') return_trip ' 'WHERE trips.trip_I=days.trip_I AND trips.route_I= routes.route_I ' 'AND date = ? AND trips.route_I = return_trip.route_I ' 'AND trips.direction_id = return_trip.direction_id ' 'AND start_time_ds >= first_trip_start_time ' 'AND start_time_ds < return_trip_end_time ' 'GROUP BY trips.route_I, trips.direction_id ' 'ORDER BY type, name, vehicles desc' ') cycle_times ' 'GROUP BY direction_id, type' ') vehicles_type ' 'GROUP BY type;', (hour, hour, date, date)) for row in rows: fleet_size_list.append(str(row[0]) + ':' + str(row[1])) results['fleet_size_route_based'] = " ".join(fleet_size_list) # Fleet size estimate: maximum number of vehicles in movement fleet_size_list = [] fleet_size_dict = {} if hour: for minute in range(hour * 3600, (hour + 1) * 3600, 60): rows = gtfs.conn.cursor().execute( 'SELECT type, count(*) ' 'FROM trips, routes, days ' 'WHERE trips.route_I = routes.route_I ' 'AND trips.trip_I=days.trip_I ' 'AND start_time_ds <= ? ' 'AND end_time_ds > ? + 60 ' 'AND date = ? ' 'GROUP BY type;', (minute, minute, date)) for row in rows: if fleet_size_dict.get(row[0], 0) < row[1]: fleet_size_dict[row[0]] = row[1] for key in fleet_size_dict.keys(): fleet_size_list.append(str(key) + ':' + str(fleet_size_dict[key])) results["fleet_size_max_movement"] = ' '.join(fleet_size_list) return results def _n_gtfs_sources(gtfs): n_gtfs_sources = gtfs.execute_custom_query( "SELECT value FROM metadata WHERE key = 'n_gtfs_sources';").fetchone() if not n_gtfs_sources: n_gtfs_sources = [1] return n_gtfs_sources def _feed_calendar_span(gtfs, stats): """ Computes the temporal coverage of each source feed Parameters ---------- gtfs: gtfspy.GTFS object stats: dict where to append the stats Returns ------- stats: dict """ n_feeds = _n_gtfs_sources(gtfs)[0] max_start = None min_end = None if n_feeds > 1: for i in range(n_feeds): feed_key = "feed_" + str(i) + "_" start_key = feed_key + "calendar_start" end_key = feed_key + "calendar_end" calendar_span = gtfs.conn.cursor().execute( 'SELECT min(date), max(date) FROM trips, days ' 'WHERE trips.trip_I = days.trip_I AND trip_id LIKE ?;', (feed_key + '%',)).fetchone() stats[start_key] = calendar_span[0] stats[end_key] = calendar_span[1] if calendar_span[0] is not None and calendar_span[1] is not None: if not max_start and not min_end: max_start = calendar_span[0] min_end = calendar_span[1] else: if gtfs.get_day_start_ut(calendar_span[0]) > gtfs.get_day_start_ut(max_start): max_start = calendar_span[0] if gtfs.get_day_start_ut(calendar_span[1]) < gtfs.get_day_start_ut(min_end): min_end = calendar_span[1] stats["latest_feed_start_date"] = max_start stats["earliest_feed_end_date"] = min_end else: stats["latest_feed_start_date"] = stats["start_date"] stats["earliest_feed_end_date"] = stats["end_date"] return stats def update_stats(gtfs): """ Computes stats AND stores them into the underlying gtfs object (i.e. database). Parameters ---------- gtfs: GTFS """ stats = get_stats(gtfs) gtfs.update_stats(stats) def trip_stats(gtfs, results_by_mode=False): """ Parameters ---------- gtfs: GTFS results_by_mode: bool Returns ------- if results_by_mode is False: q_result: pandas.DataFrame if results_by_mode is True: q_results: dict a dict with the following keys: [ADD HERE] """ conn = gtfs.conn conn.create_function("find_distance", 4, wgs84_distance) cur = conn.cursor() # this query calculates the distance and travel time for each complete trip # stop_data_df = pd.read_sql_query(query, self.conn, params=params) query = 'SELECT ' \ 'startstop.trip_I AS trip_I, ' \ 'type, ' \ 'sum(CAST(find_distance(startstop.lat, startstop.lon, endstop.lat, endstop.lon) AS INT)) as total_distance, ' \ 'sum(endstop.arr_time_ds - startstop.arr_time_ds) as total_traveltime ' \ 'FROM ' \ '(SELECT * FROM stop_times, stops WHERE stop_times.stop_I = stops.stop_I) startstop, ' \ '(SELECT * FROM stop_times, stops WHERE stop_times.stop_I = stops.stop_I) endstop, ' \ 'trips, ' \ 'routes ' \ 'WHERE ' \ 'startstop.trip_I = endstop.trip_I ' \ 'AND startstop.seq + 1 = endstop.seq ' \ 'AND startstop.trip_I = trips.trip_I ' \ 'AND trips.route_I = routes.route_I ' \ 'GROUP BY startstop.trip_I' q_result =
pd.read_sql_query(query, conn)
pandas.read_sql_query
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.center(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.center(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) result = values.str.split('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.split('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.split('_', expand=False) tm.assert_series_equal(result, exp) # regex split values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.split('[,_]') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) def test_rsplit(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.rsplit('__') tm.assert_series_equal(result, exp) result = values.str.rsplit('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.rsplit('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.rsplit('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.rsplit('_', expand=False) tm.assert_series_equal(result, exp) # regex split is not supported by rsplit values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.rsplit('[,_]') exp = Series([[u('a,b_c')], [u('c_d,e')], NA, [u('f,g,h')]]) tm.assert_series_equal(result, exp) # setting max number of splits, make sure it's from reverse values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_', n=1) exp = Series([['a_b', 'c'], ['c_d', 'e'], NA, ['f_g', 'h']]) tm.assert_series_equal(result, exp) def test_split_noargs(self): # #1859 s = Series(['<NAME>', '<NAME>']) result = s.str.split() expected = ['Travis', 'Oliphant'] assert result[1] == expected result = s.str.rsplit() assert result[1] == expected def test_split_maxsplit(self): # re.split 0, str.split -1 s = Series(['bd asdf jfg', 'kjasdflqw asdfnfk']) result = s.str.split(n=-1) xp = s.str.split() tm.assert_series_equal(result, xp) result = s.str.split(n=0) tm.assert_series_equal(result, xp) xp = s.str.split('asdf') result = s.str.split('asdf', n=0) tm.assert_series_equal(result, xp) result = s.str.split('asdf', n=-1) tm.assert_series_equal(result, xp) def test_split_no_pat_with_nonzero_n(self): s = Series(['split once', 'split once too!']) result = s.str.split(n=1) expected = Series({0: ['split', 'once'], 1: ['split', 'once too!']}) tm.assert_series_equal(expected, result, check_index_type=False) def test_split_to_dataframe(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.split('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_unequal_splits', 'one_of_these_things_is_not']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'one'], 1: ['unequal', 'of'], 2: ['splits', 'these'], 3: [NA, 'things'], 4: [NA, 'is'], 5: [NA, 'not']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) with tm.assert_raises_regex(ValueError, "expand must be"): s.str.split('_', expand="not_a_boolean") def test_split_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.split('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_unequal_splits', 'one_of_these_things_is_not']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'unequal', 'splits', NA, NA, NA ), ('one', 'of', 'these', 'things', 'is', 'not')]) tm.assert_index_equal(result, exp) assert result.nlevels == 6 with tm.assert_raises_regex(ValueError, "expand must be"): idx.str.split('_', expand="not_a_boolean") def test_rsplit_to_dataframe_expand(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=2) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=1) exp = DataFrame({0: ['some_equal', 'with_no'], 1: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) def test_rsplit_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.rsplit('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True, n=1) exp = MultiIndex.from_tuples([('some_equal', 'splits'), ('with_no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 2 def test_split_nan_expand(self): # gh-18450 s = Series(["foo,bar,baz", NA]) result = s.str.split(",", expand=True) exp = DataFrame([["foo", "bar", "baz"], [NA, NA, NA]]) tm.assert_frame_equal(result, exp) # check that these are actually np.nan and not None # TODO see GH 18463 # tm.assert_frame_equal does not differentiate assert all(np.isnan(x) for x in result.iloc[1]) def test_split_with_name(self): # GH 12617 # should preserve name s = Series(['a,b', 'c,d'], name='xxx') res = s.str.split(',') exp = Series([['a', 'b'], ['c', 'd']], name='xxx') tm.assert_series_equal(res, exp) res = s.str.split(',', expand=True) exp = DataFrame([['a', 'b'], ['c', 'd']]) tm.assert_frame_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.split(',') exp = Index([['a', 'b'], ['c', 'd']], name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) res = idx.str.split(',', expand=True) exp = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')]) assert res.nlevels == 2 tm.assert_index_equal(res, exp) def test_partition_series(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([('a', '_', 'b_c'), ('c', '_', 'd_e'), NA, ('f', '_', 'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('a_b', '_', 'c'), ('c_d', '_', 'e'), NA, ('f_g', '_', 'h')]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.partition('__', expand=False) exp = Series([('a', '__', 'b__c'), ('c', '__', 'd__e'), NA, ('f', '__', 'g__h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('__', expand=False) exp = Series([('a__b', '__', 'c'), ('c__d', '__', 'e'), NA, ('f__g', '__', 'h')]) tm.assert_series_equal(result, exp) # None values = Series(['a b c', 'c d e', NA, 'f g h']) result = values.str.partition(expand=False) exp = Series([('a', ' ', 'b c'), ('c', ' ', 'd e'), NA, ('f', ' ', 'g h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition(expand=False) exp = Series([('a b', ' ', 'c'), ('c d', ' ', 'e'), NA, ('f g', ' ', 'h')]) tm.assert_series_equal(result, exp) # Not splited values = Series(['abc', 'cde', NA, 'fgh']) result = values.str.partition('_', expand=False) exp = Series([('abc', '', ''), ('cde', '', ''), NA, ('fgh', '', '')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('', '', 'abc'), ('', '', 'cde'), NA, ('', '', 'fgh')]) tm.assert_series_equal(result, exp) # unicode values = Series([u'a_b_c', u'c_d_e', NA, u'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([(u'a', u'_', u'b_c'), (u'c', u'_', u'd_e'), NA, (u'f', u'_', u'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([(u'a_b', u'_', u'c'), (u'c_d', u'_', u'e'), NA, (u'f_g', u'_', u'h')]) tm.assert_series_equal(result, exp) # compare to standard lib values = Series(['A_B_C', 'B_C_D', 'E_F_G', 'EFGHEF']) result = values.str.partition('_', expand=False).tolist() assert result == [v.partition('_') for v in values] result = values.str.rpartition('_', expand=False).tolist() assert result == [v.rpartition('_') for v in values] def test_partition_index(self): values = Index(['a_b_c', 'c_d_e', 'f_g_h']) result = values.str.partition('_', expand=False) exp = Index(np.array([('a', '_', 'b_c'), ('c', '_', 'd_e'), ('f', '_', 'g_h')])) tm.assert_index_equal(result, exp) assert result.nlevels == 1 result = values.str.rpartition('_', expand=False) exp = Index(np.array([('a_b', '_', 'c'), ('c_d', '_', 'e'), ( 'f_g', '_', 'h')])) tm.assert_index_equal(result, exp) assert result.nlevels == 1 result = values.str.partition('_') exp = Index([('a', '_', 'b_c'), ('c', '_', 'd_e'), ('f', '_', 'g_h')]) tm.assert_index_equal(result, exp) assert isinstance(result, MultiIndex) assert result.nlevels == 3 result = values.str.rpartition('_') exp = Index([('a_b', '_', 'c'), ('c_d', '_', 'e'), ('f_g', '_', 'h')]) tm.assert_index_equal(result, exp) assert isinstance(result, MultiIndex) assert result.nlevels == 3 def test_partition_to_dataframe(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_') exp = DataFrame({0: ['a', 'c', np.nan, 'f'], 1: ['_', '_', np.nan, '_'], 2: ['b_c', 'd_e', np.nan, 'g_h']}) tm.assert_frame_equal(result, exp) result = values.str.rpartition('_') exp = DataFrame({0: ['a_b', 'c_d', np.nan, 'f_g'], 1: ['_', '_', np.nan, '_'], 2: ['c', 'e', np.nan, 'h']}) tm.assert_frame_equal(result, exp) values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=True) exp = DataFrame({0: ['a', 'c', np.nan, 'f'], 1: ['_', '_', np.nan, '_'], 2: ['b_c', 'd_e', np.nan, 'g_h']}) tm.assert_frame_equal(result, exp) result = values.str.rpartition('_', expand=True) exp = DataFrame({0: ['a_b', 'c_d', np.nan, 'f_g'], 1: ['_', '_', np.nan, '_'], 2: ['c', 'e', np.nan, 'h']}) tm.assert_frame_equal(result, exp) def test_partition_with_name(self): # GH 12617 s = Series(['a,b', 'c,d'], name='xxx') res = s.str.partition(',') exp = DataFrame({0: ['a', 'c'], 1: [',', ','], 2: ['b', 'd']}) tm.assert_frame_equal(res, exp) # should preserve name res = s.str.partition(',', expand=False) exp = Series([('a', ',', 'b'), ('c', ',', 'd')], name='xxx') tm.assert_series_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.partition(',') exp = MultiIndex.from_tuples([('a', ',', 'b'), ('c', ',', 'd')]) assert res.nlevels == 3 tm.assert_index_equal(res, exp) # should preserve name res = idx.str.partition(',', expand=False) exp = Index(np.array([('a', ',', 'b'), ('c', ',', 'd')]), name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) def test_pipe_failures(self): # #2119 s = Series(['A|B|C']) result = s.str.split('|') exp = Series([['A', 'B', 'C']]) tm.assert_series_equal(result, exp) result = s.str.replace('|', ' ') exp = Series(['A B C']) tm.assert_series_equal(result, exp) def test_slice(self): values = Series(['aafootwo', 'aabartwo', NA, 'aabazqux']) result = values.str.slice(2, 5) exp = Series(['foo', 'bar', NA, 'baz']) tm.assert_series_equal(result, exp) for start, stop, step in [(0, 3, -1), (None, None, -1), (3, 10, 2), (3, 0, -1)]: try: result = values.str.slice(start, stop, step) expected = Series([s[start:stop:step] if not isna(s) else NA for s in values]) tm.assert_series_equal(result, expected) except: print('failed on %s:%s:%s' % (start, stop, step)) raise # mixed mixed = Series(['aafootwo', NA, 'aabartwo', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.slice(2, 5) xp = Series(['foo', NA, 'bar', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.slice(2, 5, -1) xp = Series(['oof', NA, 'rab', NA, NA, NA, NA, NA]) # unicode values = Series([u('aafootwo'), u('aabartwo'), NA, u('aabazqux')]) result = values.str.slice(2, 5) exp = Series([u('foo'), u('bar'), NA, u('baz')]) tm.assert_series_equal(result, exp) result = values.str.slice(0, -1, 2) exp = Series([u('afow'), u('abrw'), NA, u('abzu')]) tm.assert_series_equal(result, exp) def test_slice_replace(self): values = Series(['short', 'a bit longer', 'evenlongerthanthat', '', NA ]) exp = Series(['shrt', 'a it longer', 'evnlongerthanthat', '', NA]) result = values.str.slice_replace(2, 3) tm.assert_series_equal(result, exp) exp = Series(['shzrt', 'a zit longer', 'evznlongerthanthat', 'z', NA]) result = values.str.slice_replace(2, 3, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA ]) result = values.str.slice_replace(2, 2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA ]) result = values.str.slice_replace(2, 1, 'z') tm.assert_series_equal(result, exp) exp = Series(['shorz', 'a bit longez', 'evenlongerthanthaz', 'z', NA]) result = values.str.slice_replace(-1, None, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'zer', 'zat', 'z', NA]) result = values.str.slice_replace(None, -2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shortz', 'a bit znger', 'evenlozerthanthat', 'z', NA]) result = values.str.slice_replace(6, 8, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'a zit longer', 'evenlongzerthanthat', 'z', NA]) result = values.str.slice_replace(-10, 3, 'z') tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip(self): values = Series([' aa ', ' bb \n', NA, 'cc ']) result = values.str.strip() exp = Series(['aa', 'bb', NA, 'cc']) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series(['aa ', 'bb \n', NA, 'cc ']) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([' aa', ' bb', NA, 'cc']) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_mixed(self): # mixed mixed = Series([' aa ', NA, ' bb \t\n', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.strip() xp = Series(['aa', NA, 'bb', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.lstrip() xp = Series(['aa ', NA, 'bb \t\n', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rstrip() xp = Series([' aa', NA, ' bb', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) def test_strip_lstrip_rstrip_unicode(self): # unicode values = Series([u(' aa '), u(' bb \n'), NA, u('cc ')]) result = values.str.strip() exp = Series([u('aa'), u('bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series([u('aa '), u('bb \n'), NA, u('cc ')]) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([u(' aa'), u(' bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_args(self): values = Series(['xxABCxx', 'xx BNSD', 'LDFJH xx']) rs = values.str.strip('x') xp = Series(['ABC', ' BNSD', 'LDFJH ']) assert_series_equal(rs, xp) rs = values.str.lstrip('x') xp = Series(['ABCxx', ' BNSD', 'LDFJH xx']) assert_series_equal(rs, xp) rs = values.str.rstrip('x') xp = Series(['xxABC', 'xx BNSD', 'LDFJH ']) assert_series_equal(rs, xp) def test_strip_lstrip_rstrip_args_unicode(self): values = Series([u('xxABCxx'), u('xx BNSD'), u('LDFJH xx')]) rs = values.str.strip(u('x')) xp = Series(['ABC', ' BNSD', 'LDFJH ']) assert_series_equal(rs, xp) rs = values.str.lstrip(u('x')) xp = Series(['ABCxx', ' BNSD', 'LDFJH xx']) assert_series_equal(rs, xp) rs = values.str.rstrip(u('x')) xp = Series(['xxABC', 'xx BNSD', 'LDFJH ']) assert_series_equal(rs, xp) def test_wrap(self): # test values are: two words less than width, two words equal to width, # two words greater than width, one word less than width, one word # equal to width, one word greater than width, multiple tokens with # trailing whitespace equal to width values = Series([u('hello world'), u('hello world!'), u( 'hello world!!'), u('abcdefabcde'), u('abcdefabcdef'), u( 'abcdefabcdefa'), u('ab ab ab ab '), u('ab ab ab ab a'), u( '\t')]) # expected values xp = Series([u('hello world'), u('hello world!'), u('hello\nworld!!'), u('abcdefabcde'), u('abcdefabcdef'), u('abcdefabcdef\na'), u('ab ab ab ab'), u('ab ab ab ab\na'), u('')]) rs = values.str.wrap(12, break_long_words=True) assert_series_equal(rs, xp) # test with pre and post whitespace (non-unicode), NaN, and non-ascii # Unicode values = Series([' pre ', np.nan, u('\xac\u20ac\U00008000 abadcafe') ]) xp = Series([' pre', NA, u('\xac\u20ac\U00008000 ab\nadcafe')]) rs = values.str.wrap(6) assert_series_equal(rs, xp) def test_get(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.get(1) expected = Series(['b', 'd', np.nan, 'g']) tm.assert_series_equal(result, expected) # mixed mixed = Series(['a_b_c', NA, 'c_d_e', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.split('_').str.get(1) xp = Series(['b', NA, 'd', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.get(1) expected = Series([u('b'), u('d'), np.nan, u('g')]) tm.assert_series_equal(result, expected) # bounds testing values = Series(['1_2_3_4_5', '6_7_8_9_10', '11_12']) # positive index result = values.str.split('_').str.get(2) expected = Series(['3', '8', np.nan]) tm.assert_series_equal(result, expected) # negative index result = values.str.split('_').str.get(-3) expected = Series(['3', '8', np.nan]) tm.assert_series_equal(result, expected) def test_more_contains(self): # PR #1179 s = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', NA, 'CABA', 'dog', 'cat']) result = s.str.contains('a') expected = Series([False, False, False, True, True, False, np.nan, False, False, True]) assert_series_equal(result, expected) result = s.str.contains('a', case=False) expected = Series([True, False, False, True, True, False, np.nan, True, False, True]) assert_series_equal(result, expected) result = s.str.contains('Aa') expected = Series([False, False, False, True, False, False, np.nan, False, False, False]) assert_series_equal(result, expected) result = s.str.contains('ba') expected = Series([False, False, False, True, False, False, np.nan, False, False, False]) assert_series_equal(result, expected) result = s.str.contains('ba', case=False) expected = Series([False, False, False, True, True, False, np.nan, True, False, False]) assert_series_equal(result, expected) def test_contains_nan(self): # PR #14171 s = Series([np.nan, np.nan, np.nan], dtype=np.object_) result = s.str.contains('foo', na=False) expected = Series([False, False, False], dtype=np.bool_) assert_series_equal(result, expected) result = s.str.contains('foo', na=True) expected = Series([True, True, True], dtype=np.bool_) assert_series_equal(result, expected) result = s.str.contains('foo', na="foo") expected = Series(["foo", "foo", "foo"], dtype=np.object_) assert_series_equal(result, expected) result = s.str.contains('foo') expected = Series([np.nan, np.nan, np.nan], dtype=np.object_) assert_series_equal(result, expected) def test_more_replace(self): # PR #1179 s = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', NA, 'CABA', 'dog', 'cat']) result = s.str.replace('A', 'YYY') expected = Series(['YYY', 'B', 'C', 'YYYaba', 'Baca', '', NA, 'CYYYBYYY', 'dog', 'cat']) assert_series_equal(result, expected) result = s.str.replace('A', 'YYY', case=False) expected = Series(['YYY', 'B', 'C', 'YYYYYYbYYY', 'BYYYcYYY', '', NA, 'CYYYBYYY', 'dog', 'cYYYt']) assert_series_equal(result, expected) result = s.str.replace('^.a|dog', 'XX-XX ', case=False) expected = Series(['A', 'B', 'C', 'XX-XX ba', 'XX-XX ca', '', NA, 'XX-XX BA', 'XX-XX ', 'XX-XX t']) assert_series_equal(result, expected) def test_string_slice_get_syntax(self): s = Series(['YYY', 'B', 'C', 'YYYYYYbYYY', 'BYYYcYYY', NA, 'CYYYBYYY', 'dog', 'cYYYt']) result = s.str[0] expected = s.str.get(0) assert_series_equal(result, expected) result = s.str[:3] expected = s.str.slice(stop=3) assert_series_equal(result, expected) result = s.str[2::-1] expected = s.str.slice(start=2, step=-1) assert_series_equal(result, expected) def test_string_slice_out_of_bounds(self): s = Series([(1, 2), (1, ), (3, 4, 5)]) result = s.str[1] expected = Series([2, np.nan, 4])
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import os import numpy as np import pandas as pd from datetime import datetime from data_management import * from et_models import * from gs_models import * lai_file = '/mnt/m/Original_data/FLUXNET/lai-combined-1/lai-combined-1-MCD15A3H-006-results.csv' sites_params = pd.read_csv( '../../DATA/EEGS/sel2_sites_params.csv') pft_params = pd.read_csv( '../../DATA/EEGS/selected_pft_params.csv') data_directory = '/mnt/m/Original_data/FLUXNET/FLUXNET2015_2020dl/unzipped' def insert_LAI(df, site_0, df_p): df_lai = pd.read_csv(lai_file) site = site_0 while site.endswith('R'): site = site[:-1] if site=='IT-Ro1': df_lai = df_lai[(df_lai['siteID']=='IT-Ro2') & (df_lai['MCD15A3H_006_FparLai_QC_MODLAND_Description']=='Good quality (main algorithm with or without saturation)') & (df_lai['MCD15A3H_006_FparLai_QC_CloudState_Description']=='Significant clouds NOT present (clear)') & (df_lai['MCD15A3H_006_FparExtra_QC_Aerosol_Description']=='No or low atmospheric aerosol levels detected') & (df_lai['MCD15A3H_006_FparLai_QC_SCF_QC_Description']=='Main (RT) method used, best result possible (no saturation)') ] else: df_lai = df_lai[(df_lai['siteID'] == site) & (df_lai['MCD15A3H_006_FparLai_QC_MODLAND_Description']=='Good quality (main algorithm with or without saturation)') & (df_lai['MCD15A3H_006_FparLai_QC_CloudState_Description']=='Significant clouds NOT present (clear)') & (df_lai['MCD15A3H_006_FparExtra_QC_Aerosol_Description']=='No or low atmospheric aerosol levels detected') &(df_lai['MCD15A3H_006_FparLai_QC_SCF_QC_Description']=='Main (RT) method used, best result possible (no saturation)') ] lai = df_lai['MCD15A3H_006_Lai_500m'].values date = [datetime.strptime(dt, '%m/%d/%Y') for dt in df_lai['Date'].values] df_lai =
pd.DataFrame({'LAI': lai}, index=date)
pandas.DataFrame
from sklearn.metrics import confusion_matrix, f1_score, roc_curve, auc import numpy as np import pandas as pd class analysis: """ Functions: _getComplexParams _getSimpleParams _getF1 _getROC _loadLog """ def __init__(self): pass def __reset(self, reset): if reset: self._getComplexParams(abs=True) self._getSimpleParams() else: try: self.dfComplex_ except: self._getComplexParams(abs=True) try: self.dfSimple_ except: self._getSimpleParams() def _applyCut(self, param, pMin=None, pMax=None, prob=0.5, reset=False): """ Function for cutting observations that don't meet the given constraints. Note that pMin or pMax cannot be used at the same time. To call: _applyCut(param, pMin=None, pMax=None, prob=0.5, reset=False) Parameters: param (string) column name in data frame. pMin minimum cutoff pMax maximum cutoff prob threshold probability for classifying complex reset revert to original data frame before cutting Postcondition: Observations that don't satisfy the constrains are removed from the complex data frame. If param == 'sig', then the cuts are also applied to the data frame for simple sources. """ # =================================================== # Reset check and verify data frames exist. # =================================================== self.__reset(reset) # =================================================== # Remove the complex sources that don't # satisfy the condition # =================================================== loc1 = self.dfComplex_[param] < pMin if pMin else self.dfComplex_[param] > pMax self.dfComplex_.drop(self.dfComplex_.index[loc1], inplace=True) # =================================================== # If noise, remove the simple sources # =================================================== if param == 'sig': loc2 = self.dfSimple_['sig'] < pMin if pMin else self.dfSimple_['sig'] > pMax self.dfSimple_.drop(self.dfSimple_.index[loc2], inplace=True) # =================================================== # Update the parameter dataframe # =================================================== self._getParams(prob=prob) def _getParams(self, prob=0.5, reset=True): """ Function for getting the parameters associated with plotting. To call: _getParams(prob=0.5) Parameters: prob threshold probabality for complex Postcondition: The source label, as well as the model's predicted probability that the source is complex and the predicted label using the threshold probability are stored in the data frame self.dfParams_ """ # =================================================== # Reset check and verify data frames exist. # =================================================== self.__reset(reset) # =================================================== # Get the prediction probabilities # =================================================== probComplex = self.dfComplex_['prob'].values probSimplex = self.dfSimple_['prob'].values # =================================================== # Create a data frame for storing # =================================================== Sprob = pd.Series(np.concatenate((probComplex, probSimplex)), name='prob') label = pd.Series(np.concatenate((len(probComplex)*[1], len(probSimplex)*[0])), name='label') Spred = pd.Series(np.where(Sprob > prob, 1, 0), name='pred') self.dfParams_ = pd.concat([Sprob, Spred, label], axis=1) def _getComplexParams(self, abs=True): """ Function for extracting the data associated with the second component of the complex source. To call: _getComplexParams(abs) Parameters: abs Take the absolute value of the difference Postcondition: The flux of the second component, the difference in phases and depth between the two components, and the noise value are stored in the data frame "self.dfComplex_" The model's predicted probability that the source is complex is also stored. """ # =================================================== # Determine which sources are complex # =================================================== loc = np.where(self.testLabel_ == 1)[0] # =================================================== # Retrieve the model's prediction that # the complex source is complex # =================================================== prob = self.testProb_[loc] # =================================================== # Extract the flux of the second component # =================================================== flux = self.testFlux_[loc] flux = np.asarray([f[1] for f in flux]) # =================================================== # Compute the difference in phases # =================================================== chi = self.testChi_[loc] chi = np.asarray([c[1] - c[0] for c in chi]) if abs: chi = np.abs(chi) # =================================================== # Compute the difference in Faraday depths # =================================================== depth = self.testDepth_[loc] depth = np.asarray([d[1] - d[0] for d in depth]) if abs: depth = np.abs(depth) # =================================================== # Retrieve the noise parameter # =================================================== sig = self.testSig_[loc] # =================================================== # Convert to pandas series # =================================================== chi = pd.Series(chi, name='chi') depth = pd.Series(depth, name='depth') flux = pd.Series(flux, name='flux') prob = pd.Series(prob, name='prob') sig = pd.Series(sig, name="sig") loc = pd.Series(loc, name='indx') # =================================================== # Store the results in a dataframe # =================================================== self.dfComplex_ = pd.concat([chi, depth, flux, prob, sig, loc], axis=1) def _getSimpleParams(self): """ Function for extracting the data associated with the simple sources. To call: _getSimpleParams() Parameters: None Postcondition: """ # =================================================== # Determine which sources are complex # =================================================== loc = np.where(self.testLabel_ == 0)[0] # =================================================== # Retrieve the model's prediction that # the complex source is complex # =================================================== prob = self.testProb_[loc] # =================================================== # Extract the flux # =================================================== flux = self.testFlux_[loc] # =================================================== # Extract the phase # =================================================== chi = self.testChi_[loc] # =================================================== # Extract the Faraday depth # =================================================== depth = self.testDepth_[loc] # =================================================== # Retrieve the noise parameter # =================================================== sig = self.testSig_[loc] # =================================================== # Convert to pandas series # =================================================== chi = pd.Series(chi, name='chi') depth = pd.Series(depth, name='depth') flux = pd.Series(flux, name='flux') prob = pd.Series(prob, name='prob') sig = pd.Series(sig, name="sig") loc =
pd.Series(loc, name='indx')
pandas.Series
from pathlib import Path import pandas as pd from graphviz import Digraph def plot_open_and_closed_tickets(times: pd.DataFrame) -> None: """ Plots the open and closed tickets per day :param times: Dataframe with the durations for each work item :return: """ resample_period = 'D' # We’re going to resample the dataframe per day open_per_day = times.resample(resample_period, on='start').work_item.count().rename('open_tickets_per_day') is_closed = times.end.notnull() closed_per_day = times.loc[is_closed] \ .resample(resample_period, on='end') \ .work_item.count() \ .rename('closed_tickets_per_day') tickets_df = (
pd.concat([open_per_day, closed_per_day], axis=1)
pandas.concat
import numpy as np import pandas as pd from powersimdata.design.mimic_grid import mimic_generation_capacity from powersimdata.input.grid import Grid from powersimdata.network.model import area_to_loadzone from powersimdata.scenario.scenario import Scenario def _check_solar_fraction(solar_fraction): """Checks that the solar_fraction is between 0 and 1, or is None. :param float scale_fraction: desired solar fraction for new capacity. :raises TypeError: if type is not int, float, or None. :raises ValueError: if value is not between 0 and 1. """ if solar_fraction is None: pass elif isinstance(solar_fraction, (int, float)): if not (0 <= solar_fraction <= 1): raise ValueError("solar_fraction must be between 0 and 1") else: raise TypeError("solar_fraction must be int/float or None") def _apply_zone_scale_factor_to_ct(ct, fuel, zone_id, scale_factor): """Applies a zone scaling factor to a change table, creating internal change table structure as necessary. New keys are added, existing keys are multiplied. :param dict ct: a dictionary of scale factors, with structure matching ct from powersimdata.input.change_table.ChangeTable. :param str fuel: the fuel to be scaled. :param int zone_id: the zone_id to be scaled. :param int/float scale_factor: how much the zone should be scaled up by. """ if fuel not in ct: ct[fuel] = {} if "zone_id" not in ct[fuel]: ct[fuel]["zone_id"] = {} if zone_id not in ct[fuel]["zone_id"]: ct[fuel]["zone_id"][zone_id] = scale_factor else: ct[fuel]["zone_id"][zone_id] *= scale_factor def load_targets_from_csv(filename, drop_ignored=True): """Interprets a CSV file as a set of targets, ensuring that required columns are present, and filling in default values for optional columns. :param str filename: filepath to targets csv. :param bool drop_ignored: if True, drop all ignored columns from output. :return: (*pandas.DataFrame*) -- DataFrame of targets from csv file :raises TypeError: if filename is not a string :raises ValueError: if one or more required columns is missing. """ # Constants mandatory_columns = { "region_name", "ce_target_fraction", } optional_column_defaults = { "allowed_resources": "solar, wind", "external_ce_addl_historical_amount": 0, "solar_percentage": np.nan, "area_type": np.nan, } # Validate input if not isinstance(filename, str): raise TypeError("filename must be a str") # Interpret as object so that we can fillna() with a mixed-type dict raw_targets = pd.read_csv(filename).astype(object) raw_columns = set(raw_targets.columns) if not mandatory_columns <= raw_columns: missing_columns = mandatory_columns - raw_columns raise ValueError(f'Missing columns: {", ".join(missing_columns)}') raw_targets.set_index("region_name", inplace=True) # Report which columns are used vs. unused ignored_columns = raw_columns - mandatory_columns - optional_column_defaults.keys() print(f"ignoring: {ignored_columns}") if drop_ignored: raw_targets.drop(ignored_columns, axis=1, inplace=True) for column in optional_column_defaults.keys(): # Fill optional columns that are missing entirely if column not in raw_columns: raw_targets[column] = np.nan # Fill any empty cells within optional columns raw_targets.fillna(value=optional_column_defaults, inplace=True) return raw_targets def _make_zonename2target(grid, targets): """Creates a dictionary of {zone_name: target_name} pairs. :param powersimdata.input.grid.Grid grid: Grid instance defining the set of zones. :param pandas.DataFrame targets: a dataframe used to look up constituent zones. :return: (*dict*) -- a dictionary of {zone_name: target_name} pairs. :raises ValueError: if a zone is not present in any target areas, or if a zone is present in more than one target area. """ grid_model = grid.grid_model target_zones = { target_name: area_to_loadzone(grid_model, target_name) if pd.isnull(targets.loc[target_name, "area_type"]) else area_to_loadzone( grid_model, target_name, targets.loc[target_name, "area_type"] ) for target_name in targets.index.tolist() } # Check for any collisions zone_sets = target_zones.values() if len(set.union(*zone_sets)) != sum([len(t) for t in zone_sets]): zone_sets_list = [zone for _set in zone_sets for zone in _set] duplicates = {zone for zone in zone_sets_list if zone_sets_list.count(zone) > 1} error_areas = { zone: {area for area, zone_set in target_zones.items() if zone in zone_set} for zone in duplicates } error_msgs = [f"{k} within: {', '.join(v)}" for k, v in error_areas.items()] raise ValueError(f"Zone(s) within multiple area! {'; '.join(error_msgs)}") zonename2target = {} for target_name, zone_set in target_zones.items(): # Filter out parts of states not in the interconnect(s) in this Grid filtered_zone_set = zone_set & set(grid.zone2id.keys()) zonename2target.update({zone: target_name for zone in filtered_zone_set}) untargetted_zones = set(grid.zone2id.keys()) - set(zonename2target.keys()) if len(untargetted_zones) > 0: err_msg = f"Targets do not cover all load zones. Missing: {untargetted_zones}" raise ValueError(err_msg) return zonename2target def _get_scenario_length(scenario): """Get the number of hours in a scenario. :param powersimdata.scenario.scenario.Scenario scenario: A Scenario instance. :return: (*int*) -- the number of hours in the scenario. """ if not isinstance(scenario, Scenario): raise TypeError("next_scenario must be a Scenario object") if scenario.state.name == "create": start_ts = pd.Timestamp(scenario.state.builder.start_date) end_ts = pd.Timestamp(scenario.state.builder.end_date) else: start_ts = pd.Timestamp(scenario.info["start_date"]) end_ts = pd.Timestamp(scenario.info["end_date"]) num_hours = (end_ts - start_ts) / pd.Timedelta(hours=1) + 1 return num_hours def add_resource_data_to_targets(input_targets, scenario, calculate_curtailment=False): """Add resource data to targets. This data includes: previous capacity, previous generation, previous capacity factor (with and without curtailment), and previous curtailment. :param pandas.DataFrame input_targets: table includeing target names, used to summarize resource data. :param powersimdata.scenario.scenario.Scenario scenario: A Scenario instance. :return: (*pandas.DataFrame*) -- DataFrame of targets including resource data. """ targets = input_targets.copy() grid = scenario.state.get_grid() plant = grid.plant curtailment_types = ["hydro", "solar", "wind"] scenario_length = _get_scenario_length(scenario) # Map each zone in the grid to a target zonename2target = _make_zonename2target(grid, targets) plant["target_area"] = [zonename2target[z] for z in plant["zone_name"]] # Summarize important values by target area & type groupby_cols = [plant.target_area, plant.type] # Capacity capacity_groupby = plant.Pmax.groupby(groupby_cols) capacity_by_target_type = capacity_groupby.sum().unstack(fill_value=0) # Generated energy pg_groupby = scenario.state.get_pg().sum().groupby(groupby_cols) summed_generation = pg_groupby.sum().unstack(fill_value=0) # Calculate capacity factors possible_energy = scenario_length * capacity_by_target_type[curtailment_types] capacity_factor = summed_generation[curtailment_types] / possible_energy if calculate_curtailment: # Calculate: curtailment, no_curtailment_cap_factor # Hydro and solar are straightforward hydro_plant_sum = scenario.state.get_hydro().sum() hydro_plant_targets = plant[plant.type == "hydro"].target_area hydro_potential_by_target = hydro_plant_sum.groupby(hydro_plant_targets).sum() solar_plant_sum = scenario.state.get_solar().sum() solar_plant_targets = plant[plant.type == "solar"].target_area solar_potential_by_target = solar_plant_sum.groupby(solar_plant_targets).sum() # Wind is a little tricker because get_wind() returns 'wind' and 'wind_offshore' onshore_wind_plants = plant[plant.type == "wind"].index onshore_wind_plant_sum = scenario.state.get_wind().sum()[onshore_wind_plants] wind_plant_targets = plant[plant.type == "wind"].target_area wind_potential_by_target = onshore_wind_plant_sum.groupby( wind_plant_targets ).sum() potentials_series = [ hydro_potential_by_target, solar_potential_by_target, wind_potential_by_target, ] potential = pd.concat(potentials_series, axis=1) curtailment = ( potential - summed_generation[curtailment_types] ) / possible_energy no_curtailment_cap_factor = potential / possible_energy # Now add these calculations to the DataFrame total_capacity = capacity_by_target_type.sum() nonzero_capacity_resources = total_capacity[total_capacity > 0].index.tolist() for r in nonzero_capacity_resources: targets[f"{r}.prev_capacity"] = capacity_by_target_type[r] targets[f"{r}.prev_generation"] = summed_generation[r] if r in curtailment_types: targets[f"{r}.prev_cap_factor"] = capacity_factor[r] targets[f"{r}.addl_curtailment"] = 0 if calculate_curtailment: targets[f"{r}.no_curtailment_cap_factor"] = no_curtailment_cap_factor[r] targets[f"{r}.curtailment"] = curtailment[r] return targets def add_demand_to_targets(input_targets, scenario): """Add demand data to targets. :param pandas.DataFrame input_targets: table including target names, used to summarize demand. :param powersimdata.scenario.scenario.Scenario scenario: A Scenario instance. :return: (*pandas.DataFrame*) -- DataFrame of targets including demand data. """ grid = scenario.state.get_grid() targets = input_targets.copy() zonename2target = _make_zonename2target(grid, targets) zoneid2target = {grid.zone2id[z]: target for z, target in zonename2target.items()} summed_demand = scenario.state.get_demand().sum().to_frame() summed_demand["target"] = [zoneid2target[id] for id in summed_demand.index] targets["demand"] = summed_demand.groupby("target").sum() return targets def add_shortfall_to_targets(input_targets): """Add shortfall data to targets. :param pandas.DataFrame input_targets: table with demand, prev_generation, and ce_target_fraction. :return: (*pandas.DataFrame*) -- DataFrame of targets including shortfall data. """ targets = input_targets.copy() allowed_resources_dict = targets.allowed_resources.to_dict() allowed_sets = { target: {resource.strip() for resource in allowed.split(",")} for target, allowed in allowed_resources_dict.items() } # Detect if there are allowed resources that aren't in the grid, and add them all_allowed = set().union(*allowed_sets.values()) for resource in all_allowed: if f"{resource}.prev_generation" not in targets.columns: targets[f"{resource}.prev_generation"] = 0 targets["prev_ce_generation"] = targets.apply( lambda x: sum([x[f"{r}.prev_generation"] for r in allowed_sets[x.name]]), axis=1 ) targets["ce_target"] = targets.demand * targets.ce_target_fraction total_ce_generation = ( targets.prev_ce_generation + targets.external_ce_addl_historical_amount ) raw_shortfall = targets.ce_target - total_ce_generation targets["ce_shortfall"] = raw_shortfall.clip(lower=0) targets["ce_overgeneration"] = (-1 * raw_shortfall).clip(lower=0) return targets def calculate_overall_shortfall(targets, method, normalized=False): """Calculates overall shortfall. :param pandas.DataFrame targets: table of targets. :param str method: shortfall calculation method ("independent" or "collaborative"). :param bool normalized: whether to normalize by total demand. :return: (*float*) -- overall shortfall, either in MWh or normalized by total demand. """ if not isinstance(targets, pd.DataFrame): raise TypeError("targets must be a pandas DataFrame") if "ce_shortfall" not in targets.columns: raise ValueError("targets missing shortfall, see add_shortfall_to_targets()") if not isinstance(normalized, bool): raise TypeError("normalized must be bool") allowed_methods = {"independent", "collaborative"} if method == "collaborative": participating_targets = targets[targets.ce_target > 0] summed_shortfall = participating_targets.ce_shortfall.sum() summed_overgeneration = participating_targets.ce_overgeneration.sum() overall_shortfall = summed_shortfall - summed_overgeneration elif method == "independent": overall_shortfall = targets.ce_shortfall.sum() else: raise ValueError(f"method must be one of: {allowed_methods}") if normalized: return overall_shortfall / targets.demand.sum() else: return overall_shortfall def add_new_capacities_independent( input_targets, scenario_length, addl_curtailment=None ): """Calculates new capacities based on an Independent strategy. :param pandas.DataFrame input_targets: table of targets. :param int scenario_length: number of hours in new scenario. :param pandas.DataFrame/None addl_curtailment: additional expected curtailment by target/resource. If None, assumed zero for all targets/resources. :return: (*pandas.DataFrame*) -- targets dataframe with next capacities added. """ def calculate_added_capacity(target): if
pd.isnull(target["solar_percentage"])
pandas.isnull
from datetime import datetime, timedelta from math import isnan import logging import os import pandas as pd data = [ {'Stock Symbol': 'TEA', 'Type': 'Common', 'Last Dividend': 0, 'Fixed Dividend': '', 'Par Value': 100}, {'Stock Symbol': 'POP', 'Type': 'Common', 'Last Dividend': 8, 'Fixed Dividend': '', 'Par Value': 100}, {'Stock Symbol': 'ALE', 'Type': 'Common', 'Last Dividend': 23, 'Fixed Dividend': '', 'Par Value': 60}, {'Stock Symbol': 'GIN', 'Type': 'Preferred', 'Last Dividend': 8, 'Fixed Dividend': 0.02, 'Par Value': 100}, {'Stock Symbol': 'JOE', 'Type': 'Common', 'Last Dividend': 13, 'Fixed Dividend': '', 'Par Value': 250}] trade_book = [] logging.basicConfig(filename=os.path.join(os.path.split(os.getcwd())[0], "stock.log"), format='%(asctime)s | %(message)s', filemode='w') logger = logging.getLogger() logger.setLevel(logging.DEBUG) class Stock_Exchange(object): """ Sample stock exchange class """ def __init__(self): self.df = pd.DataFrame(data) def calculate_dividend(self, price, stock_symbol): """ Calculates Dividend Yield for stock symbol using its given price. :param price: Price of the stock :type price: Integer :param stock_symbol: Stock Symbol :type stock_symbol: String :returns: Dividend yield """ logger.debug(' ************** Calculate Dividend ************** ') div_yield = 0.0 calc_type = self.df[(self.df['Stock Symbol'] == stock_symbol)]['Type'] last_dividend = self.df[(self.df['Stock Symbol'] == stock_symbol)]['Last Dividend'] fixed_dividend = self.df[(self.df['Stock Symbol'] == stock_symbol)]['Fixed Dividend'] par_val = self.df[(self.df['Stock Symbol'] == stock_symbol)]['Par Value'] if price > 0: if str(calc_type.iloc[0]) == 'Preferred': if not isnan(fixed_dividend): div_yield = (float(float(fixed_dividend)) * float(par_val))/price else: div_yield = float(last_dividend)/price logger.info("For price %s and stock symbol %s dividend yield is %s" %(price, stock_symbol, div_yield)) return div_yield def calculate_pe(self, price, stock_symbol): """ Calculates P/E ratio :param price: Price of the stock :type price: Integer :param stock_symbol: Stock Symbol :type stock_symbol: String :returns: P/E Ratio """ logger.debug(' ************** Calculate P/E Ratio ************** ') pe_ratio = 0 last = self.df[(self.df['Stock Symbol'] == stock_symbol)]['Last Dividend'] if float(last) > 0: pe_ratio = price/float(last) logger.info("For price %s and stock symbol %s P/E Ratio is %s" %(price, stock_symbol, pe_ratio)) return pe_ratio def register_trade(self, price, stock_symbol, quantity, trade_type): """ Registers new trade information :param price: Price of the stock :type price: Integer :param stock_symbol: Stock Symbol :type stock_symbol: String :param quantity: Quantity :type quantity: Integer :param trade_type: Trade type-Buy or Sell :type trade_type: String """ logger.debug(' ************** Register Trade ************** ') trade_book.append([stock_symbol, price, quantity, trade_type, datetime.now()]) logger.info("New trade registered for stock symbol %s with trade type %s is %s" %(stock_symbol, trade_type, trade_book)) def volume_weight_stock_price(self, stock_symbol): """ Calculates volume weighted stock price :param stock_symbol: Stock Symbol :type stock_symbol: String :returns: Volume Weighted Stock Price """ logger.debug(' ************** Calculate Volume weight stock price ************** ') vol_weighted_stock_price = 0 self.df =
pd.DataFrame(trade_book)
pandas.DataFrame
import argparse import os from collections import defaultdict import re import itertools import pandas from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans import numpy as np import matplotlib.pyplot as plt def results_to_csv(results_dir, out): results = defaultdict(lambda: defaultdict(lambda: 0)) for filename in os.listdir(results_dir): if filename.endswith(".asan.log"): key = "ASan" elif filename.endswith(".binary-asan.log"): key = "BASan" else: key = "Valgrind Memcheck" fullpath = os.path.join(results_dir, filename) with open(fullpath, encoding="ISO-8859-1") as fd: data = fd.read().split("\n")[-9:] keys2 = ["Total", "True Positive", "False Negative", "Total", "True Negative", "False Positive", "Timeout Vuln", "Timeout Safe"] for idx, line in enumerate(data): if not line: continue value = int(line.split(": ")[1].strip()) results[key][keys2[idx]] += value df = pandas.DataFrame.from_dict(results) df = df.reset_index() df['index'] = pandas.Categorical( df['index'], ["Total", "True Positive", "True Negative", "False Positive", "False Negative", "Timeout Vuln", "Timeout Safe"]) df = df.sort_values('index').set_index('index').rename_axis(None) csvf = out + ".csv" with open(csvf, 'w') as fd: fd.write(df.to_csv()) def deep_analyze(results_dir, out): #plt.rcParams['font.size'] = 1 results = defaultdict(set) counts = defaultdict(lambda: defaultdict(lambda: 0)) all_cwes = set() for filename in os.listdir(results_dir): if filename.endswith(".asan.log"): key = "ASan" elif filename.endswith(".binary-asan.log"): key = "BASan" else: key = "Valgrind Memcheck" fullpath = os.path.join(results_dir, filename) with open(fullpath, encoding="ISO-8859-1") as fd: data = fd.read().split("\n") data = set(data) for line in data: if not line.startswith("CWE"): continue if "failed" in line and "bad" in line: cwes = tuple(re.findall(r"(CWE[0-9]+)", line)) results[key].add(cwes) counts[key][cwes] += 1 all_cwes.update(cwes) print(all_cwes) xlabels = ["CWE121", "CWE122", "CWE124", "CWE126", "CWE127"] ylabels = list(sorted(all_cwes.difference(xlabels))) all_cwes = list(sorted(all_cwes)) points = defaultdict(lambda: [[], []]) annotations = defaultdict(list) keyys = {'ASan': +0.1, 'BASan': -0.1, 'Valgrind Memcheck': 0} keyxs = {'ASan': -0.1, 'BASan': -0.1, 'Valgrind Memcheck': 0.1} for key, failed in results.items(): for tags in failed: if not tags: continue tag0 = xlabels.index(tags[0]) if len(tags) > 1: tag1 = ylabels.index(tags[1]) + 1 else: tag1 = 0 x = tag0 + keyxs[key] y = tag1 + keyys[key] #x = 0.20 * np.random.random() + (tag0) #y = 0.20 * np.random.random() + (tag1) points[key][0].append(x) points[key][1].append(y) annotations[key].append(counts[key][tags]) colors = { 'ASan': '#1b9e77', 'BASan': '#d95f02', 'Valgrind Memcheck': '#7570b3'} fig = plt.figure() ax = fig.add_subplot(111) print(annotations) plt.scatter( points["ASan"][1], points["ASan"][0], c=colors["ASan"], alpha=1.0, marker="+") plt.scatter( points["BASan"][1], points["BASan"][0], c=colors["BASan"], alpha=1.0, marker="x") plt.scatter( points["Valgrind Memcheck"][1], points["Valgrind Memcheck"][0], c=colors["Valgrind Memcheck"], alpha=1.0, marker="^") plt.plot([], c=colors["ASan"], marker="+", label="ASan") plt.plot([], c=colors["BASan"], marker="x", label="BASan") plt.plot([], c=colors["Valgrind Memcheck"], marker="^", label="Valgrind Memcheck") plt.legend() for key, values in points.items(): for idx in range(len(values[0])): tx = values[1][idx] + keyys[key] ty = values[0][idx] + keyxs[key] if keyys[key] < 0: tx -= 0.1 else: tx -= 0.04 if keyxs[key] < 0: ty -= 0.05 plt.annotate( annotations[key][idx], (values[1][idx], values[0][idx]), xytext=(tx, ty), fontsize=6, color=colors[key]) xlabels = [x[3:] for x in xlabels] ylabels = [y[3:] for y in ylabels] plt.yticks(range(0, len(xlabels)), xlabels, rotation=0) plt.xticks(range(0, len(ylabels) + 1), ['N/A'] + ylabels) plt.ylim(-0.5, len(xlabels)) plt.xlim(-1, len(ylabels) + 1.5) ax.set_ylabel("Primary CWE-ID (What/Where)") ax.set_xlabel("Secondary CWE-ID (How)") plt.tight_layout() plt.savefig(out + "-scatter.pdf") #for k1, k2 in itertools.combinations(results.keys(), 2): #print( #"{} & {}".format(k1, k2), #results[k1].intersection(results[k2]) #) def results_to_latex(out): csvf = out + ".csv" df =
pandas.read_csv(csvf)
pandas.read_csv
import time import numpy as np import pandas as pd from collections import defaultdict from joblib import effective_n_jobs from typing import List, Dict from anndata import AnnData from sklearn.model_selection import train_test_split from sklearn.cluster import KMeans # from xgboost import XGBClassifier from lightgbm import LGBMClassifier from pegasus.io import read_input import logging from .. import decorators as pg_deco logger = logging.getLogger("pegasus") @pg_deco.TimeLogger() def find_markers( data: AnnData, label_attr: str, de_key: str = "de_res", n_jobs: int = -1, min_gain: float = 1.0, random_state: int = 0, remove_ribo: bool = False, ) -> Dict[str, Dict[str, List[str]]]: """Find markers using gradient boosting method. Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix with rows for cells and columns for genes. label_attr: ``str`` Cluster labels used for finding markers. Must exist in ``data.obs``. de_key: ``str``, optional, default: ``"de_res"`` Keyword of DE analysis result stored in ``data.varm``. n_jobs: ``int``, optional, default: ``-1`` Number of threads to used. If ``-1``, use all available threads. min_gain: ``float``, optional, default: ``1.0`` Only report genes with a feature importance score (in gain) of at least ``min_gain``. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. remove_ribo: ``bool``, optional, default: ``False`` If ``True``, remove ribosomal genes with either RPL or RPS as prefixes. Returns ------- markers: ``Dict[str, Dict[str, List[str]]]`` A Python dictionary containing marker information in structure ``dict[cluster_id]['up' or 'down'][dataframe]``. Examples -------- >>> marker_dict = pg.find_markers(adata, label_attr = 'leiden_labels') """ n_jobs = effective_n_jobs(n_jobs) if remove_ribo: data = data[ :, np.vectorize(lambda x: not x.startswith("RPL") and not x.startswith("RPS"))( data.var_names ), ] X_train, X_test, y_train, y_test = train_test_split( data.X, data.obs[label_attr], test_size=0.1, random_state=random_state, stratify=data.obs[label_attr], ) # start = time.time() # xgb = XGBClassifier(n_jobs = n_jobs, n_gpus = 0) # xgb.fit(X_train, y_train, eval_set = [(X_train, y_train), (X_test, y_test)], eval_metric = 'merror') # # print(xgb.evals_result()) # end = time.time() # print("XGBoost used {:.2f}s to train.".format(end - start)) start_lgb = time.time() lgb = LGBMClassifier(n_jobs=n_jobs, metric="multi_error", importance_type="gain") lgb.fit( X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], early_stopping_rounds=1, ) end_lgb = time.time() logger.info("LightGBM used {:.2f}s to train.".format(end_lgb - start_lgb)) ntot = (lgb.feature_importances_ >= min_gain).sum() ords = np.argsort(lgb.feature_importances_)[::-1][:ntot] log_exprs = [ x for x in data.varm[de_key].dtype.names if x.startswith("mean_logExpr:") ] labels = [x.rpartition(":")[2] for x in log_exprs] titles = [("down", "down_gain"), ("weak", "weak_gain"), ("strong", "strong_gain")] markers = defaultdict(lambda: defaultdict(list)) kmeans = KMeans(n_clusters=3, random_state=random_state) for gene_id in ords: gene_symbol = data.var_names[gene_id] mydat = [[x] for x in data.varm[de_key][log_exprs][gene_id]] kmeans.fit(mydat) kmeans_label_mode = pd.Series(kmeans.labels_).mode()[0] for i, kmeans_label in enumerate(np.argsort(kmeans.cluster_centers_[:, 0])): if kmeans_label != kmeans_label_mode: for pos in (kmeans.labels_ == kmeans_label).nonzero()[0]: clust_label = labels[pos] markers[clust_label][titles[i][0]].append(gene_symbol) markers[clust_label][titles[i][1]].append( "{:.2f}".format(lgb.feature_importances_[gene_id]) ) return markers def run_find_markers( input_h5ad_file: str, output_file: str, label_attr: str, de_key: str = "de_res", n_jobs: int = -1, min_gain: float = 1.0, random_state: int = 0, remove_ribo: bool = False, ) -> None: """ For command line use. """ import xlsxwriter from natsort import natsorted data = read_input(input_h5ad_file) markers = find_markers( data, label_attr, de_key=de_key, n_jobs=n_jobs, min_gain=min_gain, random_state=random_state, remove_ribo=remove_ribo, ) keywords = [("strong", "strong_gain"), ("weak", "weak_gain"), ("down", "down_gain")] writer =
pd.ExcelWriter(output_file, engine="xlsxwriter")
pandas.ExcelWriter
# -*- coding: utf-8 -*- import pandas as pd import re import unicodedata import urllib import os.path import glob import yaml """ This script imports the updated 2020 titles for goals, targets, and indicators. In keeping with past imports, the id numbers (eg, 1.1.1, 1.1, etc) are stripped from the beginnings of the titles. Titles: Currently the titles are translated (at the UN level) into Arabic, Chinese, Spanish, French, English, and Russian; however the Arabic translations are only available as a PDF, which is more difficult to parse with a script (and so are being skipped). """ def sdg_number_from_text(text): """ This parses a string of text and pulls out the SDG number. Possible formats of return value are: '1', '1.1', '1.1.1' """ if pd.isnull(text): return None matches = re.findall(r'(\d+)(\.\w+)?(\.\w+)?', text) if len(matches) > 0: match = ''.join(matches[0]) # Sanity checks. match_parts = match.split('.') # In these cases, a missing space causes the first word # of the indicator title to appear as an extension of the # third id part. if len(match_parts) == 3 and len(match_parts[2]) > 2: match_2_replacement = '' for character in match_parts[2]: if character.isnumeric() or character.islower(): match_2_replacement += character else: break if match_2_replacement != '' and match_2_replacement != match_parts[2]: match = match_parts[0] + '.' + match_parts[1] + '.' + match_2_replacement return match else: return None def sdg_goal_is_valid(text): if text is None: return False parts = text.split('.') if len(parts) > 1: return False if not text.isnumeric(): return False if int(text) > 17: return False return True def sdg_indicator_is_valid(text): if text is None: return False parts = text.split('.') if len(parts) != 3: return False return True def sdg_target_is_valid(text): if text is None: return False parts = text.split('.') if len(parts) != 2: return False return True def sdg_text_without_number(text, number): """ This simply removes a number from some text. """ normalized = unicodedata.normalize("NFKD", str(text)) # Remove the number and everything before it. parts = normalized.split(number) if len(parts) == 2: return parts[1].lstrip('.').strip() else: return normalized def clean_indicator_title(title): last = title[-1] if last == 'i': return title[:-1] if last.isnumeric(): last_word = title.split(' ')[-1] last_word = last_word.split('-')[-1] last_word = last_word.split('–')[-1] last_word = last_word.split('‐')[-1] last_word = last_word.split('+B')[-1] if not last_word.isnumeric(): print('Found a footnote: ' + title) return title[:-1] return title def clean_target_title(title): last = title[-1] if last.isnumeric() and last != '0': return title[:-1] return title def clean_goal_title(title): last = title[-1] if last.isnumeric(): return title[:-1] return title def main(): global_goals = {} global_targets = {} global_indicators = {} # First, the titles. title_spreadsheets = { 'en': 'https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202020%20review_English.xlsx', 'zh-Hans': 'https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202020%20review_Chinese.xlsx', 'es': 'https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202020%20review_Spanish.xlsx', 'fr': 'https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202020%20review_French.xlsx', 'ru': 'https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202020%20review_Russian.xlsx' } for language in title_spreadsheets: global_goals[language] = {} global_targets[language] = {} global_indicators[language] = {} spreadsheet_url = title_spreadsheets[language] import_options = { 'header': None, 'names': ['target', 'indicator'], 'usecols': [1, 2], 'skiprows': [0, 1, 2], 'skipfooter': 6, #'encoding': 'utf-8', } df =
pd.read_excel(spreadsheet_url, **import_options)
pandas.read_excel
from itertools import chain import operator import numpy as np import pytest from pandas.core.dtypes.common import is_number from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm from pandas.core.groupby.base import maybe_normalize_deprecated_kernels from pandas.tests.apply.common import ( frame_transform_kernels, series_transform_kernels, ) @pytest.mark.parametrize("func", ["sum", "mean", "min", "max", "std"]) @pytest.mark.parametrize( "args,kwds", [ pytest.param([], {}, id="no_args_or_kwds"), pytest.param([1], {}, id="axis_from_args"), pytest.param([], {"axis": 1}, id="axis_from_kwds"), pytest.param([], {"numeric_only": True}, id="optional_kwds"), pytest.param([1, True], {"numeric_only": True}, id="args_and_kwds"), ], ) @pytest.mark.parametrize("how", ["agg", "apply"]) def test_apply_with_string_funcs(request, float_frame, func, args, kwds, how): if len(args) > 1 and how == "agg": request.node.add_marker( pytest.mark.xfail( raises=TypeError, reason="agg/apply signature mismatch - agg passes 2nd " "argument to func", ) ) result = getattr(float_frame, how)(func, *args, **kwds) expected = getattr(float_frame, func)(*args, **kwds) tm.assert_series_equal(result, expected) def test_with_string_args(datetime_series): for arg in ["sum", "mean", "min", "max", "std"]: result = datetime_series.apply(arg) expected = getattr(datetime_series, arg)() assert result == expected @pytest.mark.parametrize("op", ["mean", "median", "std", "var"]) @pytest.mark.parametrize("how", ["agg", "apply"]) def test_apply_np_reducer(float_frame, op, how): # GH 39116 float_frame = DataFrame({"a": [1, 2], "b": [3, 4]}) result = getattr(float_frame, how)(op) # pandas ddof defaults to 1, numpy to 0 kwargs = {"ddof": 1} if op in ("std", "var") else {} expected = Series( getattr(np, op)(float_frame, axis=0, **kwargs), index=float_frame.columns ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "op", ["abs", "ceil", "cos", "cumsum", "exp", "log", "sqrt", "square"] ) @pytest.mark.parametrize("how", ["transform", "apply"]) def test_apply_np_transformer(float_frame, op, how): # GH 39116 # float_frame will _usually_ have negative values, which will # trigger the warning here, but let's put one in just to be sure float_frame.iloc[0, 0] = -1.0 warn = None if op in ["log", "sqrt"]: warn = RuntimeWarning with tm.assert_produces_warning(warn): result = getattr(float_frame, how)(op) expected = getattr(np, op)(float_frame) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "series, func, expected", chain( tm.get_cython_table_params( Series(dtype=np.float64), [ ("sum", 0), ("max", np.nan), ("min", np.nan), ("all", True), ("any", False), ("mean", np.nan), ("prod", 1), ("std", np.nan), ("var", np.nan), ("median", np.nan), ], ), tm.get_cython_table_params( Series([np.nan, 1, 2, 3]), [ ("sum", 6), ("max", 3), ("min", 1), ("all", True), ("any", True), ("mean", 2), ("prod", 6), ("std", 1), ("var", 1), ("median", 2), ], ), tm.get_cython_table_params( Series("a b c".split()), [ ("sum", "abc"), ("max", "c"), ("min", "a"), ("all", True), ("any", True), ], ), ), ) def test_agg_cython_table_series(series, func, expected): # GH21224 # test reducing functions in # pandas.core.base.SelectionMixin._cython_table result = series.agg(func) if is_number(expected): assert np.isclose(result, expected, equal_nan=True) else: assert result == expected @pytest.mark.parametrize( "series, func, expected", chain( tm.get_cython_table_params( Series(dtype=np.float64), [ ("cumprod", Series([], Index([]), dtype=np.float64)), ("cumsum", Series([], Index([]), dtype=np.float64)), ], ), tm.get_cython_table_params( Series([np.nan, 1, 2, 3]), [ ("cumprod",
Series([np.nan, 1, 2, 6])
pandas.Series
import pandas as pd import numpy as np import math from statistics import mean from sklearn.decomposition import PCA from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error, mean_squared_log_error import os root_path = os.path.dirname(os.path.abspath('__file__')) # root_path = os.path.abspath(os.path.join(root_path,os.path.pardir)) from metrics_ import PPTS,mean_absolute_percentage_error def read_two_stage(station,decomposer,predict_pattern,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\"+predict_pattern+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+predict_pattern+"\\" predictions = pd.DataFrame() time_cost=[] for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) if j==1: records = data['test_y'][0:120] test_pred=data['test_pred'][0:120] time_cost.append(data['time_cost'][0]) test_pred=test_pred.reset_index(drop=True) predictions = pd.concat([predictions,test_pred],axis=1) predictions = predictions.mean(axis=1) records = records.values.flatten() predictions = predictions.values.flatten() r2=r2_score(y_true=records,y_pred=predictions) nrmse=math.sqrt(mean_squared_error(y_true=records,y_pred=predictions))/(sum(records)/len(predictions)) mae=mean_absolute_error(y_true=records,y_pred=predictions) mape=mean_absolute_percentage_error(y_true=records,y_pred=predictions) ppts=PPTS(y_true=records,y_pred=predictions,gamma=5) time_cost=mean(time_cost) return records,predictions,r2,nrmse,mae,mape,ppts,time_cost def read_two_stage_traindev_test(station,decomposer,predict_pattern,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\"+predict_pattern+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+predict_pattern+"\\" test_predss = pd.DataFrame() dev_predss = pd.DataFrame() time_cost=[] for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) if j==1: test_y = data['test_y'][0:120] dev_y = data['dev_y'][0:120] dev_pred=data['dev_pred'][0:120] test_pred=data['test_pred'][0:120] time_cost.append(data['time_cost'][0]) dev_pred=dev_pred.reset_index(drop=True) test_pred=test_pred.reset_index(drop=True) test_predss = pd.concat([test_predss,test_pred],axis=1) dev_predss = pd.concat([dev_predss,dev_pred],axis=1) test_predss = test_predss.mean(axis=1) dev_predss = dev_predss.mean(axis=1) test_y = test_y.values.flatten() dev_y = dev_y.values.flatten() test_predss = test_predss.values.flatten() dev_predss = dev_predss.values.flatten() test_nse=r2_score(y_true=test_y,y_pred=test_predss) test_nrmse=math.sqrt(mean_squared_error(y_true=test_y,y_pred=test_predss))/(sum(test_y)/len(test_predss)) test_mae=mean_absolute_error(y_true=test_y,y_pred=test_predss) test_mape=mean_absolute_percentage_error(y_true=test_y,y_pred=test_predss) test_ppts=PPTS(y_true=test_y,y_pred=test_predss,gamma=5) dev_nse=r2_score(y_true=dev_y,y_pred=dev_predss) dev_nrmse=math.sqrt(mean_squared_error(y_true=dev_y,y_pred=dev_predss))/(sum(dev_y)/len(dev_predss)) dev_mae=mean_absolute_error(y_true=dev_y,y_pred=dev_predss) dev_mape=mean_absolute_percentage_error(y_true=dev_y,y_pred=dev_predss) dev_ppts=PPTS(y_true=dev_y,y_pred=dev_predss,gamma=5) metrics_dict={ "dev_nse":dev_nse, "dev_nrmse":dev_nrmse, "dev_mae":dev_mae, "dev_mape":dev_mape, "dev_ppts":dev_ppts, "test_nse":test_nse, "test_nrmse":test_nrmse, "test_mae":test_mae, "test_mape":test_mape, "test_ppts":test_ppts, "time_cost":time_cost, } time_cost=mean(time_cost) return dev_y,dev_predss,test_y,test_predss,metrics_dict def read_two_stage_max(station,decomposer,predict_pattern,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\"+predict_pattern+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+predict_pattern+"\\" predictions = pd.DataFrame() time_cost=[] r2list=[] for j in range(1,11): model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) r2list.append(data['test_r2'][0]) print("one-month NSE LIST:{}".format(r2list)) max_id = r2list.index(max(r2list)) print("one-month max id:{}".format(max_id)) model_name = station+"_"+decomposer+"_esvr_"+predict_pattern+"_seed"+str(max_id+1)+".csv" data = pd.read_csv(model_path+model_name) records = data['test_y'][0:120] test_pred=data['test_pred'][0:120] records = records.values.flatten() predictions = test_pred.values.flatten() r2=data['test_r2'][0] nrmse=data['test_nrmse'][0] mae=data['test_mae'][0] mape=data['test_mape'][0] ppts=data['test_ppts'][0] time_cost=data['time_cost'][0] return records,predictions,r2,nrmse,mae,mape,ppts,time_cost def read_pure_esvr(station): model_path = root_path+"\\"+station+"\\projects\\esvr\\" predictions = pd.DataFrame() time_cost=[] for j in range(1,11): model_name = station+"_esvr_seed"+str(j)+".csv" data = pd.read_csv(model_path+model_name) if j==1: records = data['test_y'][0:120] test_pred=data['test_pred'][0:120] time_cost.append(data['time_cost'][0]) test_pred=test_pred.reset_index(drop=True) predictions = pd.concat([predictions,test_pred],axis=1) predictions = predictions.mean(axis=1) records = records.values.flatten() predictions = predictions.values.flatten() r2=r2_score(y_true=records,y_pred=predictions) nrmse=math.sqrt(mean_squared_error(y_true=records,y_pred=predictions))/(sum(records)/len(records)) mae=mean_absolute_error(y_true=records,y_pred=predictions) mape=mean_absolute_percentage_error(y_true=records,y_pred=predictions) ppts=PPTS(y_true=records,y_pred=predictions,gamma=5) time_cost=mean(time_cost) return records,predictions,r2,nrmse,mae,mape,ppts,time_cost def read_pca_metrics(station,decomposer,start_component,stop_component,wavelet_level="db10-2"): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\data\\"+wavelet_level+"\\one_step_1_month_forecast\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\data\\one_step_1_month_forecast\\" train = pd.read_csv(model_path+"minmax_unsample_train.csv") dev = pd.read_csv(model_path+"minmax_unsample_dev.csv") test = pd.read_csv(model_path+"minmax_unsample_test.csv") norm_id=pd.read_csv(model_path+"norm_unsample_id.csv") sMax = (norm_id['series_max']).values sMin = (norm_id['series_min']).values # Conncat the training, development and testing samples samples = pd.concat([train,dev,test],axis=0) samples = samples.reset_index(drop=True) # Renormalized the entire samples samples = np.multiply(samples + 1,sMax - sMin) / 2 + sMin y = samples['Y'] X = samples.drop('Y',axis=1) pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("n_components_pca_mle:{}".format(n_components_pca_mle)) mle = X.shape[1]-n_components_pca_mle nrmse=[] r2=[] mae=[] mape=[] ppts=[] for i in range(start_component,stop_component+1): if decomposer=="dwt": model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\"+wavelet_level+"\\one_step_1_month_forecast_with_pca_"+str(i)+"\\" else: model_path = root_path+"\\"+station+"_"+decomposer+"\\projects\\esvr\\one_step_1_month_forecast_with_pca_"+str(i)+"\\" # averaging the trained svr with different seed test_pred_df =
pd.DataFrame()
pandas.DataFrame
import os import gc import time import pandas as pd from tqdm import tqdm from copy import deepcopy import matplotlib.pyplot as plt import torch from torch.utils.data import Dataset from joblib import Parallel, delayed from sklearn.model_selection import train_test_split from src.utils.transform import * import warnings warnings.filterwarnings("ignore") class SynthesizedDatabaseCreator(object): """ """ def __init__(self, example_number, synthesized_path_name, image_dims): self.IMAGE_DIMS = image_dims self.number_points = example_number self.cpu_count = 4 self.synthesized_path_name = synthesized_path_name def add_pattern(cur_x, add_x): if cur_x == 1 and add_x == 2: return add_x else: return cur_x self.add_pattern = np.vectorize(add_pattern) def load_template_map(image_dim): template_path = 'input/template_wafer_map.pkl' template = pd.read_pickle(template_path) template = cv2.resize(template.waferMap.copy(), dsize=(image_dim[0], image_dim[1]), interpolation=cv2.INTER_NEAREST) # 2 - паттерн # 1 - фон # 0 - область, где нет ничего template[template == 2] = 1 return template self.template_map = load_template_map(self.IMAGE_DIMS) def sawtooth_line(self, XC_, YC_, L0_, angle_, pattern_type, line_count=1, lam_poisson=0.2, save=False, add_patterns=[None]): size = XC_.shape[0] synthesized_base = [None] * size for n in tqdm(range(size)): step = n template = deepcopy(self.template_map) if add_patterns[0]: for pattern in add_patterns: for img_pattern in pattern: template = self.add_pattern(template, img_pattern) COLOR_SCALE = 2 for repeate in range(line_count): if repeate: step = random.randint(0, size - 1) # иниицализация параметров прямой L0 = L0_[step] XC = XC_[step] YC = YC_[step] angle = angle_[step] # параметры уравнения def delta_(x, y): return int(math.sqrt(x ** 2 + y ** 2)) delta = np.vectorize(delta_) L = L0 - np.sum(delta(XC, YC)[1:]) N = 200 x0, y0 = 0, 0 # кусочное построение пилообразной прямой for i in range(XC.shape[0]): # случайное удлинение или укорочение отрезка rand = random.randint(-1, 0) scale = 0.4 t = np.linspace(0, L // (line_count + rand * scale), N) xc = XC[i] yc = YC[i] X = np.cos(angle[i]) * t + xc + x0 Y = np.sin(angle[i]) * t + yc + y0 X_ = np.around(X) Y_ = np.around(Y) x_prev, y_prev = x0, y0 x_first, y_first = 0, 0 for j in range(X_.shape[0]): x = int(X_[j]) y = int(Y_[j]) if j == 0: # первая точка прямой x_first, y_first = x, y try: if template[x, y] == 1: template[x, y] = COLOR_SCALE x0, y0 = x, y except IndexError: break # сшивка прямых if i != 0: # уравнение прямой сшивки k = (y_prev - y_first) / (x_prev - x_first + 1e-06) b = y_first - k * x_first X = np.linspace(x_prev, x_first, 20) Y = k * X + b X_ = np.around(X) Y_ = np.around(Y) for j in range(X_.shape[0]): x = int(X_[j]) y = int(Y_[j]) try: if template[x, y] == 1: template[x, y] = COLOR_SCALE except IndexError: break synthesized_base[n] = [template, pattern_type] # для презентации if save: path = 'output/test_classes/{}'.format(pattern_type) try: os.mkdir(path) except OSError: pass plt.imshow(template, cmap='inferno') name = '/{}{}.jpg'.format(pattern_type, n) plt.savefig(path + name) return pd.DataFrame(synthesized_base, columns=['waferMap', 'failureType']) @staticmethod def add_noise(template, pattern_type, lam_poisson=0.2, dilate_time=1): # расширение по соседу is_dilate = random.randint(-1, 1) if is_dilate == 1 or pattern_type == 'scratch': kernel1 = np.ones((3, 3), np.uint8) kernel2 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) count_iter = random.randint(1, dilate_time) template = cv2.dilate(template, kernel2, iterations=count_iter) template = cv2.morphologyEx(template, cv2.MORPH_CLOSE, kernel2) # внесем шум noise_img = template.copy() mask = np.random.randint(0, 2, size=noise_img.shape).astype(np.bool) mask[noise_img == 0] = False r = np.random.poisson(lam=lam_poisson, size=noise_img.shape) # нормировка на величину шума r[r == 0] = 1 r[r > 2] = 2 noise_img[mask] = r[mask] # расширение # kernel = np.ones((3, 3), np.uint8) kernel = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) noise_img = cv2.morphologyEx(noise_img, cv2.MORPH_CLOSE, kernel) # if pattern_type != 'scratch': # noise_img = cv2.erode(noise_img, kernel, iterations=1) return noise_img def generator_scratch(self, mode=0, plot=False, line_count=1, add_patterns=[None], is_noised=False): print('[INFO] Create scratches') # число синтезированных карт N_POINTS = self.number_points // 2 line_part = 5 # сегментов в одной линии # суммарная длина отрезка L0 = np.random.randint(0.2 * self.IMAGE_DIMS[0], 0.45 * self.IMAGE_DIMS[0], size=N_POINTS) # X координата старта прямой xc = [np.random.randint(0.2 * self.IMAGE_DIMS[0], 0.5 * self.IMAGE_DIMS[0], size=N_POINTS)] for _ in range(line_part - 1): # смещение по x для старта следующей прямой delta_xc = np.random.randint(0.01 * self.IMAGE_DIMS[0], 0.02 * self.IMAGE_DIMS[0] + 2, size=N_POINTS) np.random.shuffle(delta_xc) xc.append(delta_xc) # merge под формат генератора xc = np.array(xc).T np.random.shuffle(xc) # Y координата старта прямой yc = [np.random.randint(0.3 * self.IMAGE_DIMS[0], 0.7 * self.IMAGE_DIMS[0], size=N_POINTS)] for _ in range(line_part - 1): # смещение по x для старта следующей прямой delta_yc = np.random.randint(0.01 * self.IMAGE_DIMS[0], 0.02 * self.IMAGE_DIMS[0] + 2, size=N_POINTS) np.random.shuffle(delta_yc) yc.append(delta_yc) # merge под формат генератора yc = np.array(yc).T np.random.shuffle(yc) # углы наклона для каждого отрезка angle = [np.random.randint(-50, 50, size=N_POINTS) * np.pi / 180] for _ in range(line_part - 1): part_angle = np.random.randint(30, 40, size=N_POINTS) * np.pi / 180 * np.sign(angle[0]) angle.append(part_angle) angle = np.array(angle).T np.random.shuffle(angle) df_scratch_curved = None if mode == 0: # генератор параллельный n_workers = self.cpu_count results = Parallel(n_workers)( delayed(self.sawtooth_line)(xc[i::n_workers], yc[i::n_workers], L0[i::n_workers], angle[i::n_workers], pattern_type='Scratch', line_count=line_count, add_patterns=add_patterns) for i in range(n_workers)) df_scratch_curved = results[0] for i in range(1, len(results)): df_scratch_curved = pd.concat((df_scratch_curved, results[i]), sort=False) if is_noised: df_scratch_curved.waferMap = df_scratch_curved.waferMap.map(lambda wafer_map: self.add_noise(wafer_map, pattern_type='scratch', lam_poisson=0.3)) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(15, 10)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_scratch_curved.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_scratch_curved def create_rings(self, XC, YC, R_, PHI, N, pattern_type, lam_poisson=1.2, save=False, add_patterns=[None]): color_scale = 2 size = XC.shape[0] synthesized_base = [None] * size for n in tqdm(range(size)): # тестовый полигон template = deepcopy(self.template_map) if add_patterns[0]: for pattern in add_patterns: for img_pattern in pattern: template = self.add_pattern(template, img_pattern) # параметры кольца phi = np.linspace(PHI[n][0], PHI[n][1], N[n]) r = np.linspace(R_[n][0], R_[n][1], N[n]) xc = XC[n] yc = YC[n] # синтез сетки R, Fi = np.meshgrid(r, phi) X = R * (np.cos(Fi)) + xc Y = R * (np.sin(Fi)) + yc X_ = np.around(X) Y_ = np.around(Y) # индексы для полигона points = [] for i in range(X_.shape[0]): for j in range(X_.shape[1]): x = X_[i, j] y = Y_[i, j] points.append((x, y)) for idx in points: i, j = idx i = int(round(i)) j = int(round(j)) try: if template[i, j] == 1: template[i, j] = color_scale except IndexError: break synthesized_base[n] = [template, pattern_type] # для презентации if save: path = 'output/test_classes/{}'.format(pattern_type) try: os.mkdir(path) except OSError: pass plt.imshow(template, cmap='inferno') name = '/{}{}.jpg'.format(pattern_type, n) plt.savefig(path + name) return pd.DataFrame(synthesized_base, columns=['waferMap', 'failureType']) def generator_donut(self, mode=0, plot=False, add_patterns=None, is_noised=False): print('[INFO] Create donuts') # число синтезированных карт N_POINTS = self.number_points PHI = None for i in range(4): # угол старта для сектора phi1 = np.random.uniform(0 + 95 * i, 30 + 95 * i, size=N_POINTS // 4) * np.pi / 180 # угол конца для сектора phi2 = np.random.uniform(180 + 90 * i, 360 * (i + 1), size=N_POINTS // 4) * np.pi / 180 phi = np.vstack((phi1, phi2)) # merge под формат генератора phi = np.array([[phi[0, j], phi[1, j]] for j in range(phi.shape[1])]) if i == 0: PHI = phi else: PHI = np.vstack((PHI, phi)) # радиус внутреннего круга r1 = np.random.randint(0.15 * self.IMAGE_DIMS[0], 0.3 * self.IMAGE_DIMS[0], size=N_POINTS) # радиус внешнего круга r2 = np.random.randint(0.33 * self.IMAGE_DIMS[0], 0.4 * self.IMAGE_DIMS[0], size=N_POINTS) r = np.vstack((r1, r2)) # merge под формат генератора r = np.array([[r[0, i], r[1, i]] for i in range(r.shape[1])]) # X координата старта прямой XC = np.random.randint(0.45 * self.IMAGE_DIMS[0], 0.55 * self.IMAGE_DIMS[0], size=N_POINTS) # Y координата старта прямой YC = np.random.randint(0.45 * self.IMAGE_DIMS[0], 0.55 * self.IMAGE_DIMS[0], size=N_POINTS) # интесивность N = np.random.randint(200, 210, size=N_POINTS) df_donut = None if mode == 0: # генератор параллельный n_workers = self.cpu_count results = Parallel(n_workers)( delayed(self.create_rings)(XC[i::n_workers], YC[i::n_workers], r[i::n_workers], PHI[i::n_workers], N[i::n_workers], pattern_type='Donut', add_patterns=add_patterns) for i in range(n_workers)) df_donut = results[0] for i in range(1, len(results)): df_donut = pd.concat((df_donut, results[i]), sort=False) if is_noised: df_donut.waferMap = df_donut.waferMap.map(lambda wafer_map: self.add_noise(wafer_map, pattern_type='donut', lam_poisson=0.9, dilate_time=4)) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_donut.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_donut def generator_loc(self, mode=0, plot=False, add_patterns=[None], is_noised=True): print('[INFO] Create loc') # число синтезированных карт N_POINTS = self.number_points PHI = None for i in range(4): # угол старта для сектора phi1 = np.random.uniform(95 * i, 55 + 90 * i, size=N_POINTS // 4) * np.pi / 180 # угол конца для сектора phi2 = np.random.uniform(65 + 90 * i, 95 * (i + 1), size=N_POINTS // 4) * np.pi / 180 phi = np.vstack((phi1, phi2)) # merge под формат генератора phi = np.array([[phi[0, j], phi[1, j]] for j in range(phi.shape[1])]) if i == 0: PHI = phi else: PHI = np.vstack((PHI, phi)) # радиус внутреннего круга r1 = np.random.randint(0.1 * self.IMAGE_DIMS[0], 0.2 * self.IMAGE_DIMS[0], size=N_POINTS) # радиус внешнего круга r2 = np.random.randint(0.2 * self.IMAGE_DIMS[0], 0.25 * self.IMAGE_DIMS[0], size=N_POINTS) r = np.vstack((r1, r2)) # merge под формат генератора r = np.array([[r[0, i], r[1, i]] for i in range(r.shape[1])]) # X координата старта прямой XC = np.random.randint(0.45 * self.IMAGE_DIMS[0], 0.55 * self.IMAGE_DIMS[0], size=N_POINTS) # Y координата старта прямой YC = np.random.randint(0.45 * self.IMAGE_DIMS[0], 0.55 * self.IMAGE_DIMS[0], size=N_POINTS) # интесивность N = np.random.randint(200, 210, size=N_POINTS) df_loc = None if mode == 1: # генератор для презенташки df_loc = self.create_rings(XC, YC, r, PHI, N, pattern_type='Loc', save=True) elif mode == 0: # генератор параллельный n_workers = self.cpu_count results = Parallel(n_workers)( delayed(self.create_rings)(XC[i::n_workers], YC[i::n_workers], r[i::n_workers], PHI[i::n_workers], N[i::n_workers], pattern_type='Loc', add_patterns=add_patterns) for i in range(n_workers)) df_loc = results[0] for i in range(1, len(results)): df_loc = pd.concat((df_loc, results[i]), sort=False) if is_noised: df_loc.waferMap = df_loc.waferMap.map(lambda wafer_map: self.add_noise(wafer_map, pattern_type='scratch', lam_poisson=0.3)) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_loc.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_loc def generator_center(self, mode=0, plot=False, add_patterns=[None], is_noised=True): print('[INFO] Create center') # число синтезированных карт N_POINTS = self.number_points PHI = None for i in range(4): # угол старта для сектора phi1 = np.random.uniform(95 * i, 10 + 90 * i, size=N_POINTS // 4) * np.pi / 180 # угол конца для сектора phi2 = np.random.uniform(45 + 90 * i, 95 * (i + 1), size=N_POINTS // 4) * np.pi / 180 phi = np.vstack((phi1, phi2)) # merge под формат генератора phi = np.array([[phi[0, j], phi[1, j]] for j in range(phi.shape[1])]) if i == 0: PHI = phi else: PHI = np.vstack((PHI, phi)) # радиус внутреннего круга r1 = np.random.randint(0.0 * self.IMAGE_DIMS[0], 0.05 * self.IMAGE_DIMS[0], size=N_POINTS) # радиус внешнего круга r2 = np.random.randint(0.12 * self.IMAGE_DIMS[0], 0.23 * self.IMAGE_DIMS[0], size=N_POINTS) r = np.vstack((r1, r2)) # merge под формат генератора r = np.array([[r[0, i], r[1, i]] for i in range(r.shape[1])]) # X координата старта прямой XC = np.random.randint(0.48 * self.IMAGE_DIMS[0], 0.5 * self.IMAGE_DIMS[0], size=N_POINTS) # Y координата старта прямой YC = np.random.randint(0.48 * self.IMAGE_DIMS[0], 0.5 * self.IMAGE_DIMS[0], size=N_POINTS) # интесивность N = np.random.randint(200, 210, size=N_POINTS) if mode == 1: # генератор для презенташки df_center = self.create_rings(XC, YC, r, PHI, N, pattern_type='Center', save=True) elif mode == 0: # генератор параллельный n_workers = self.cpu_count results = Parallel(n_workers)( delayed(self.create_rings)(XC[i::n_workers], YC[i::n_workers], r[i::n_workers], PHI[i::n_workers], N[i::n_workers], pattern_type='Center', add_patterns=add_patterns) for i in range(n_workers)) df_center = results[0] for i in range(1, len(results)): df_center = pd.concat((df_center, results[i]), sort=False) if is_noised: df_center.waferMap = df_center.waferMap.map(lambda wafer_map: self.add_noise(wafer_map, pattern_type='scratch', lam_poisson=0.3)) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_center.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_center def generator_edge_ring(self, mode=0, plot=False, add_patterns=[None], is_noised=True): print('[INFO] Create edge_ring') # число синтезированных карт N_POINTS = self.number_points PHI = None for i in range(4): # угол старта для сектора phi1 = np.random.uniform(0 + 90 * i, 30 + 90 * i, size=N_POINTS // 4) * np.pi / 180 # угол конца для сектора phi2 = np.random.uniform(320 + 90 * i, 360 * (i + 1), size=N_POINTS // 4) * np.pi / 180 phi = np.vstack((phi1, phi2)) # merge под формат генератора phi = np.array([[phi[0, j], phi[1, j]] for j in range(phi.shape[1])]) if i == 0: PHI = phi else: PHI = np.vstack((PHI, phi)) center = 0.5 * self.IMAGE_DIMS[0] r1 = np.random.randint(center - 4, center - 3, size=N_POINTS) r2 = np.random.randint(center, center + 1, size=N_POINTS) r = np.vstack((r1, r2)) r = np.array([[r[0, i], r[1, i]] for i in range(r.shape[1])]) # X координата старта прямой XC = np.random.randint(center - 2, center, size=N_POINTS) # Y координата старта прямой YC = np.random.randint(center - 2, center, size=N_POINTS) # интесивность N = np.random.randint(200, 210, size=N_POINTS) df_edge_ring = None if mode == 1: # генератор для презенташки df_edge_ring = self.create_rings(XC, YC, r, PHI, N, pattern_type='Edge-Ring', save=True) elif mode == 0: # генератор параллельный n_workers = self.cpu_count results = Parallel(n_workers)( delayed(self.create_rings)(XC[i::n_workers], YC[i::n_workers], r[i::n_workers], PHI[i::n_workers], N[i::n_workers], pattern_type='Edge-Ring', add_patterns=add_patterns) for i in range(n_workers)) df_edge_ring = results[0] for i in range(1, len(results)): df_edge_ring = pd.concat((df_edge_ring, results[i]), sort=False) if is_noised: df_edge_ring.waferMap = df_edge_ring.waferMap.map(lambda wafer_map: self.add_noise(wafer_map, pattern_type='scratch', lam_poisson=0.3)) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_edge_ring.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_edge_ring def generator_edge_loc(self, mode=0, plot=False, add_patterns=[None], is_noised=True): print('[INFO] Create edge_loc') # число синтезированных карт N_POINTS = self.number_points PHI = None for i in range(4): # угол старта для сектора phi1 = np.random.uniform(15 + 90 * i, 25 + 90 * i, size=N_POINTS // 4) * np.pi / 180 # угол конца для сектора phi2 = np.random.uniform(55 + 90 * i, 115 + 90 * i, size=N_POINTS // 4) * np.pi / 180 phi = np.vstack((phi1, phi2)) # merge под формат генератора phi = np.array([[phi[0, j], phi[1, j]] for j in range(phi.shape[1])]) if i == 0: PHI = phi else: PHI = np.vstack((PHI, phi)) center = 0.5 * self.IMAGE_DIMS[0] r1 = np.random.randint(center - 5, center - 3, size=N_POINTS) r2 = np.random.randint(center, center + 1, size=N_POINTS) r = np.vstack((r1, r2)) r = np.array([[r[0, i], r[1, i]] for i in range(r.shape[1])]) # X координата старта прямой XC = np.random.randint(center - 2, center - 1, size=N_POINTS) # Y координата старта прямой YC = np.random.randint(center - 2, center - 1, size=N_POINTS) # интесивность N = np.random.randint(200, 210, size=N_POINTS) df_edge_loc = None if mode == 1: # генератор для презенташки df_edge_loc = self.create_rings(XC, YC, r, PHI, N, pattern_type='Edge-Loc', save=True) elif mode == 0: # генератор параллельный n_workers = self.cpu_count results = Parallel(n_workers)( delayed(self.create_rings)(XC[i::n_workers], YC[i::n_workers], r[i::n_workers], PHI[i::n_workers], N[i::n_workers], pattern_type='Edge-Loc', add_patterns=add_patterns) for i in range(n_workers)) df_edge_loc = results[0] for i in range(1, len(results)): df_edge_loc = pd.concat((df_edge_loc, results[i]), sort=False) if is_noised: df_edge_loc.waferMap = df_edge_loc.waferMap.map(lambda wafer_map: self.add_noise(wafer_map, pattern_type='scratch', lam_poisson=0.3)) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_edge_loc.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_edge_loc def create_near_full(self, capacity, pattern_type, lam_poisson=1.2, save=False): synthesized_base = [None] * capacity for step in range(capacity): # тестовый полигон template = deepcopy(self.template_map) # внесем шум noise_img = deepcopy(template) mask = np.random.randint(0, 2, size=noise_img.shape).astype(np.bool) mask[noise_img == 0] = False r = np.random.poisson(lam=lam_poisson, size=noise_img.shape) # нормировка на шумы # r = np.around(r//np.max(r)) r[r == 0] = 1 r[r == 1] = 2 r[r > 2] = 1 noise_img[mask] = r[mask] # сверткой расширим kernel = np.ones((3, 3), np.uint8) kernel = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) noise_img = cv2.morphologyEx(noise_img, cv2.MORPH_CLOSE, kernel) noise_img = cv2.erode(noise_img, kernel, iterations=1) synthesized_base[step] = [noise_img, pattern_type] # для презенташки if save: path = 'output/test_classes/{}'.format(pattern_type) try: os.mkdir(path) except OSError: pass plt.imshow(noise_img, cmap='inferno') name = '/{}{}.jpg'.format(pattern_type, step) plt.savefig(path + name) return pd.DataFrame(synthesized_base, columns=['waferMap', 'failureType']) def generator_near_full(self, plot=False): print('[INFO] Create near_full') # число синтезированных карт N_POINTS = self.number_points df_near_full = self.create_near_full(N_POINTS, pattern_type='Near-full', lam_poisson=1.3) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, idx in enumerate(sample_idx): ax[i].imshow(df_near_full.waferMap.values[idx], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_near_full def create_random(self, capacity, pattern_type, lam_poisson=1.2, save=False): synthesized_base = [None] * capacity for step in tqdm(range(capacity)): # тестовый полигон template = deepcopy(self.template_map) # внесем шум noise_img = deepcopy(template) mask = np.random.randint(0, 2, size=noise_img.shape).astype(np.bool) mask[noise_img == 0] = False r = np.random.poisson(lam=lam_poisson, size=noise_img.shape) # нормировка на шумы # r = np.around(r//np.max(r)) r[r == 0] = 1 r[r > 2] = 2 noise_img[mask] = r[mask] # сверткой расширим kernel = np.ones((3, 3), np.uint8) kernel = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) noise_img = cv2.morphologyEx(noise_img, cv2.MORPH_CLOSE, kernel) noise_img = cv2.erode(noise_img, kernel, iterations=1) synthesized_base[step] = [noise_img, pattern_type] # для презенташки if save: path = 'output/test_classes/{}'.format(pattern_type) try: os.mkdir(path) except OSError: pass plt.imshow(noise_img, cmap='inferno') name = '/{}{}.jpg'.format(pattern_type, step) plt.savefig(path + name) return pd.DataFrame(synthesized_base, columns=['waferMap', 'failureType']) def generator_random(self, plot=False): print('[INFO] Create random') # число синтезированных карт N_POINTS = self.number_points df_random = self.create_random(N_POINTS, pattern_type='none', lam_poisson=2.1) if plot: fig, ax = plt.subplots(nrows=10, ncols=10, figsize=(10, 8)) ax = ax.ravel(order='C') sample_idx = np.random.choice(N_POINTS, 100) for i, id in enumerate(sample_idx): ax[i].imshow(df_random.waferMap.values[id], cmap='inferno') ax[i].axis('off') fig.suptitle('Synthesized scratches') plt.show() else: gc.collect() return df_random def create_synthesized_database(self, classes, is_noised): df_scratch_curved = [self.generator_scratch(mode=0, plot=False, line_count=i+1, add_patterns=[None], is_noised=is_noised) for i in range(2)] df_scratch = pd.concat(df_scratch_curved, ignore_index=True) df_donut = self.generator_donut(mode=0, plot=False, add_patterns=[None], is_noised=is_noised) df_loc = self.generator_loc(mode=0, plot=False, add_patterns=[None], is_noised=is_noised) df_center = self.generator_center(mode=0, plot=False, add_patterns=[None], is_noised=is_noised) df_edge_ring = self.generator_edge_ring(mode=0, plot=False, add_patterns=[None], is_noised=is_noised) df_edge_loc = self.generator_edge_loc(mode=0, plot=False, add_patterns=[None], is_noised=is_noised) df_random = self.generator_random(plot=False) data = [df_center, df_donut, df_loc, df_scratch, df_edge_ring, df_edge_loc, df_random ] df = pd.concat(data[:classes], sort=False) mapping_type = {'Center': 0, 'Donut': 1, 'Loc': 2, 'Scratch': 3, 'Edge-Ring': 4, 'Edge-Loc': 5, 'none': 6 } mapping_type = dict(list(iter(mapping_type.items()))[:classes]) df['failureNum'] = df.failureType df = df.replace({'failureNum': mapping_type}) df.to_pickle('input/' + self.synthesized_path_name) return True class TrainingDatabaseCreator(object): """ """ def __init__(self, database_only_patterns_path): self.full_database_path = 'input/LSWMD.pkl' self.database_only_patterns_path = 'input/' + database_only_patterns_path self.IMAGE_DIMS = (1, 96, 96) def read_full_data(self, synthesized_path_name=None): """ :param synthesized_path_name: :return: """ print('[INFO] Reading databases...') start_time = time.time() try: full_real_database = pd.read_pickle(self.database_only_patterns_path) except FileNotFoundError: print('[INFO] Prepared full database not found\n' 'Loading full database...' f'Create {self.database_only_patterns_path} database') full_real_database = pd.read_pickle(self.full_database_path) mapping_type = {'Center': 0, 'Donut': 1, 'Loc': 2, 'Scratch': 3, 'Edge-Ring': 4, 'Edge-Loc': 5, 'none': 6, 'Near-full': 7, 'Random': 8} full_real_database['failureNum'] = full_real_database.failureType full_real_database = full_real_database.replace({'failureNum': mapping_type}) full_real_database = full_real_database[(full_real_database['failureNum'] >= 0) & (full_real_database['failureNum'] <= 5)] full_real_database = full_real_database.reset_index() full_real_database = full_real_database.drop(labels=['dieSize', 'lotName', 'waferIndex', 'trianTestLabel', 'index'], axis=1) ###################### # Get fixed size of maps out_map = [] out_class = [] dim_size = 40 for index, row in full_real_database.iterrows(): waf_map = row.waferMap waf_type = row.failureType if waf_map.shape[0] > dim_size and waf_map.shape[1] > dim_size: out_map += [waf_map] out_class += [waf_type[0][0]] database = pd.DataFrame(data=np.vstack((out_map, out_class)).T, columns=['waferMap', 'failureType']) database['failureNum'] = database.failureType database = database.replace({'failureNum': mapping_type}) full_real_database = database database.to_pickle(self.database_only_patterns_path) synthesized_database = None if synthesized_path_name: synthesized_database = pd.read_pickle('input/' + synthesized_path_name) else: print('[INFO] Synthesized database not found') print('reserved time: {:.2f}s'.format(time.time() - start_time)) return full_real_database, synthesized_database def make_training_database(self, synthesized_path_name, failure_types_ratio): full_real_database, synthesized_database = self.read_full_data(synthesized_path_name) print('[INFO] Making train/test/val databases...') start_time = time.time() try: synthesized_database['failureType'] = synthesized_database['failureType'].map(lambda label: label) except TypeError: print('Please, enter a path of the synthesized database') return None full_real_database['waferMap'] = full_real_database['waferMap'].map(lambda waf_map: cv2.resize(waf_map, dsize=(self.IMAGE_DIMS[1], self.IMAGE_DIMS[1]), interpolation=cv2.INTER_NEAREST)) training_database = synthesized_database testing_database = None for failure_type in failure_types_ratio: train_real, test_real = train_test_split(full_real_database[full_real_database.failureType == failure_type], train_size=failure_types_ratio[failure_type], random_state=42, shuffle=True) training_database =
pd.concat([training_database, train_real], sort=False)
pandas.concat
import numpy as np import pandas as pd import indicators import config import util import sys from pathlib import Path def get_algo_dataset(choose_set_num: int): """run_set = ['goldman', 'index', '^BVSP', '^TWII', '^IXIC', 'index_sampled'] Returns df_list, date_range, trend_list, stocks """ # Do not change run_set order. The order is hardcoded into below code run_set = ['goldman', 'index', '^BVSP', '^TWII', '^IXIC', 'index_sampled'] choose_set = run_set[choose_set_num] df_list = [] date_range = [] trend_list = [] stocks = [] ### For GS stocks: 'GGSIX', 'GOIIX', 'GIPIX' if choose_set == run_set[0]: # Must be same order stocks = ['GGSIX', 'GOIIX', 'GIPIX'] folder = ['growth', 'growth_income', 'balanced'] for i, stock in enumerate(stocks): df=pd.read_csv('data/goldman/portfolio/{}/{}.csv'.format(folder[i],stock), usecols=config.column_names, parse_dates=['Date']) df = df[df['Close'] > 0].reset_index(drop=True) df['returns'] = indicators.day_gain(df, 'Close').dropna() df_list.append(df) start = '1/1/2016' end = '31/12/2018' # date_range = df_list[0][(df_list[0]['Date'] >= df_list[1].iloc[0]['Date']) & (df_list[0]['Date'] >= df_list[2].iloc[0]['Date'])]['Date'].tolist() date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) ### For Index stocks: '^BVSP', '^TWII', '^IXIC' elif choose_set == run_set[1]: stocks = ['^BVSP', '^TWII', '^IXIC'] high_risk_df = pd.read_csv('data/indexes/{}.csv'.format('^BVSP'), usecols=config.column_names, parse_dates=['Date']) high_risk_df = high_risk_df[high_risk_df['Close'] > 0].reset_index(drop=True) high_risk_df['returns'] = indicators.day_gain(high_risk_df, 'Close').dropna() med_risk_df = pd.read_csv('data/indexes/{}.csv'.format('^TWII'), usecols=config.column_names, parse_dates=['Date']) med_risk_df = med_risk_df[med_risk_df['Close'] > 0].reset_index(drop=True) med_risk_df['returns'] = indicators.day_gain(med_risk_df, 'Close').dropna() low_risk_df = pd.read_csv('data/indexes/{}.csv'.format('^IXIC'), parse_dates=['Date']) # IXIC dates are reversed low_risk_df = low_risk_df.reindex(index=low_risk_df.index[::-1]) low_risk_df = low_risk_df[low_risk_df['Close'] > 0].reset_index(drop=True) low_risk_df['returns'] = indicators.day_gain(low_risk_df, 'Close').dropna() df_list = [high_risk_df, med_risk_df, low_risk_df] start = '1/1/2014' end = '31/12/2018' # date_range = high_risk_df[(high_risk_df['Date'] >= med_risk_df.iloc[0]['Date']) & (high_risk_df['Date'] >= low_risk_df.iloc[0]['Date'])]['Date'].tolist() date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) elif choose_set == run_set[2] or choose_set == run_set[3] or choose_set == run_set[4]: stocks =[] folder ='' if choose_set == run_set[2]: stocks = ['EQTL3.SA', 'ITSA4.SA', 'PETR3.SA'] folder = '^BVSP' elif choose_set==run_set[3]: stocks = ['1326.TW', '2882.TW', '3008.TW'] folder = '^TWII' elif choose_set==run_set[4]: stocks = ['TSLA', 'IBKC', 'FEYE'] folder = '^IXIC' else: print('An error occured in fetching the data for algo stocks.') for stock in stocks: df=pd.read_csv('data/algo/{}/{}.csv'.format(folder,stock), usecols=config.column_names, parse_dates=['Date']) df = df[df['Close'] > 0].reset_index(drop=True) df['returns'] = indicators.day_gain(df, 'Close').dropna() df_list.append(df) start = '1/1/2014' end = '31/12/2018' date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) elif choose_set == run_set[5]: stocks =['^BVSP', '^TWII', '^IXIC'] for stock in stocks: df=pd.read_csv('data/algo/{}/daily_price.csv'.format(stock), parse_dates=['Date']) df = df[df['Close'] > 0].reset_index(drop=True) df['returns'] = indicators.day_gain(df, 'Close').dropna() df_list.append(df) start = '1/1/2014' end = '31/12/2018' date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) return df_list, date_range, trend_list, stocks def get_algo_results(choose_set_num: int, asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, cal_avg_nav=False): """Returns the change list and final asset value """ change_list = [] average_asset = 0 if cal_avg_nav: if choose_set_num == 0: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [8.0, 8.0, 4.0], [5.0, 6.0, 5.0], [5.0, 2.0, 3.0], [0.22948733470032123, 0.8909251765940478, -0.20656673058505381], [-1.7417846430478365, -0.4628863373977188, 1.5419043896500977], 0.14266550931364091) # [21.0, 6.0, 5.0], [2.0, 2.0, 6.0], [27.0, 12.0, 3.0], [3.125115822639779, -2.561089882241202, -1.4940972093691949], [1.2063367792987396, 1.4663555035726752, -0.2846560129041551], 0.1614246940280476) elif choose_set_num == 1: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [5.0, 5.0, 6.0], [5.0, 6.0, 6.0], [19.0, 5.0, 8.0], [1.8954915289833882, -1.450482294216655, 1.125418440357023], [-2.3676311336976132, -1.8970317071693157, 0.23699516374694385], 0.046795990258734835) [8.0, 14.0, 11.0], [11.0, 11.0, 2.0], [15.0, 10.0, 2.0], [1.363647435463774, 2.716953337278016, -4.324164482875698], [-1.7062595953617727, 2.5105760118208957, -4.060094673509836], 0.07240419552333409) elif choose_set_num == 2: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [4.0, 2.0, 4.0], [4.0, 8.0, 9.0], [6.0, 4.0, 7.0], [0.6078976284270344, 1.2577097768694967, 2.0213163271738006], [-2.566918900257593, 2.90468608230902, -1.7097040021899894], 0.07797085783765784) [3.0, 3.0, 13.0], [11.0, 5.0, 9.0], [8.0, 4.0, 18.0], [0.06083023158629253, 0.5601483772918827, 1.9569019466459423], [-1.3881334364246258, 2.8163651325079524, 0.9492765355184316], 0.15511606897450375) elif choose_set_num == 3: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [3.0, 9.0, 4.0], [4.0, 14.0, 3.0], [2.0, 2.0, 16.0], [0.30059198706758106, 1.0952845039110184, 1.8392867588452613], [2.771352403174757, -1.3669589385046343, -2.3406274217770866], 0.17345428438145236) elif choose_set_num == 4: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [9.0, 7.0, 9.0], [4.0, 3.0, 7.0], [6.0, 5.0, 15.0], [0.9351583394555885, 1.3754760765507819, 2.348134831028588], [-2.471478593919233, 1.379869639191209, 4.95188889034387], 0.1444277817979811) # [8.0, 11.0, 2.0], [6.0, 8.0, 6.0], [7.0, 8.0, 12.0], [1.1255518400058317, -0.36346414388153225, -1.0247284676654485], [-0.6274220138552453, -1.1083765565671055, 0.00449200835519481], 0.13718457807344167) [2.0, 5.0, 11.0], [4.0, 2.0, 2.0], [7.0, 5.0, 5.0], [0.2774502065258735, 0.16677941009065034, -0.45385907412444926], [-0.2098008442952385, 1.289022800463935, 2.003346238448586], 0.15779763053682244) elif choose_set_num == 5: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [7.0, 12.0, 3.0], [2.0, 7.0, 2.0], [13.0, 3.0, 8.0], [2.522702769828708, -0.5707216899389504, 0.8348229423350395], [-1.7493395408023145, 1.0817636863501934, 0.8232680695157204], 0.1963583867900387) [4.0, 6.0, 3.0], [2.0, 4.0, 7.0], [14.0, 2.0, 5.0], [1.3929077534652725, 0.18393055682065484, 2.6440755858307075], [-1.601189152927202, 1.3377505947800103, -1.9787536808104849], 0.13726920065461523) else: print('ERROR! Wrong choose_set_num') return average_asset, asset_list, portfolio_comp else: if choose_set_num == 0: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [8.0, 8.0, 4.0], [5.0, 6.0, 5.0], [5.0, 2.0, 3.0], [0.22948733470032123, 0.8909251765940478, -0.20656673058505381], [-1.7417846430478365, -0.4628863373977188, 1.5419043896500977], 0.14266550931364091) # [21.0, 6.0, 5.0], [2.0, 2.0, 6.0], [27.0, 12.0, 3.0], [3.125115822639779, -2.561089882241202, -1.4940972093691949], [1.2063367792987396, 1.4663555035726752, -0.2846560129041551], 0.1614246940280476) elif choose_set_num == 1: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [5.0, 5.0, 6.0], [5.0, 6.0, 6.0], [19.0, 5.0, 8.0], [1.8954915289833882, -1.450482294216655, 1.125418440357023], [-2.3676311336976132, -1.8970317071693157, 0.23699516374694385], 0.046795990258734835) [8.0, 14.0, 11.0], [11.0, 11.0, 2.0], [15.0, 10.0, 2.0], [1.363647435463774, 2.716953337278016, -4.324164482875698], [-1.7062595953617727, 2.5105760118208957, -4.060094673509836], 0.07240419552333409) elif choose_set_num == 2: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [4.0, 2.0, 4.0], [4.0, 8.0, 9.0], [6.0, 4.0, 7.0], [0.6078976284270344, 1.2577097768694967, 2.0213163271738006], [-2.566918900257593, 2.90468608230902, -1.7097040021899894], 0.07797085783765784) [3.0, 3.0, 13.0], [11.0, 5.0, 9.0], [8.0, 4.0, 18.0], [0.06083023158629253, 0.5601483772918827, 1.9569019466459423], [-1.3881334364246258, 2.8163651325079524, 0.9492765355184316], 0.15511606897450375) elif choose_set_num == 3: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [3.0, 9.0, 4.0], [4.0, 14.0, 3.0], [2.0, 2.0, 16.0], [0.30059198706758106, 1.0952845039110184, 1.8392867588452613], [2.771352403174757, -1.3669589385046343, -2.3406274217770866], 0.17345428438145236) elif choose_set_num == 4: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [9.0, 7.0, 9.0], [4.0, 3.0, 7.0], [6.0, 5.0, 15.0], [0.9351583394555885, 1.3754760765507819, 2.348134831028588], [-2.471478593919233, 1.379869639191209, 4.95188889034387], 0.1444277817979811) # [8.0, 11.0, 2.0], [6.0, 8.0, 6.0], [7.0, 8.0, 12.0], [1.1255518400058317, -0.36346414388153225, -1.0247284676654485], [-0.6274220138552453, -1.1083765565671055, 0.00449200835519481], 0.13718457807344167) [2.0, 5.0, 11.0], [4.0, 2.0, 2.0], [7.0, 5.0, 5.0], [0.2774502065258735, 0.16677941009065034, -0.45385907412444926], [-0.2098008442952385, 1.289022800463935, 2.003346238448586], 0.15779763053682244) elif choose_set_num == 5: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [7.0, 12.0, 3.0], [2.0, 7.0, 2.0], [13.0, 3.0, 8.0], [2.522702769828708, -0.5707216899389504, 0.8348229423350395], [-1.7493395408023145, 1.0817636863501934, 0.8232680695157204], 0.1963583867900387) [4.0, 6.0, 3.0], [2.0, 4.0, 7.0], [14.0, 2.0, 5.0], [1.3929077534652725, 0.18393055682065484, 2.6440755858307075], [-1.601189152927202, 1.3377505947800103, -1.9787536808104849], 0.13726920065461523) else: print('ERROR! Wrong choose_set_num') return change_list, asset_list, portfolio_comp def gen_algo_data(run_set: list, choose_set_num: int, save_algo_data=False, save_passive=False, save_sub_folder='', is_rl_data=False, base_rates=[], portfolio_comp=[]): df_list, date_range, trend_list, stocks = util.get_algo_dataset(choose_set_num) # this is an afterthought if base_rates == []: base_rates = [0.2, 0.2, 0.2] if portfolio_comp == []: portfolio_comp = [base_rates[i] + [0.4/3, 0.4/3, 0.4/3][i] for i in range(len(base_rates))] asset_list = [100000, 100000, 100000] change_list = [] # print('Initial portfolio composition: {}'.format(portfolio_comp)) change_list,_,_ = util.get_algo_results(choose_set_num, asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list) print('Reallocated {} times'.format(len([i for i in change_list if i[0]]))) # print([i[1] for i in change_list if i[0]]) nav_daily_dates_list = [] nav_daily_composition_list = [[], [], []] nav_daily_net_list = [] daily_price_list = [] asset_list = [100000, 100000, 100000] nav_daily_adjust_list = [i[0] for i in change_list] j = 0 last_trade_date = date_range[0] for date in date_range: # Generate daily NAV value for visualisation high_risk_date = df_list[0][df_list[0]['Date'] == date] med_risk_date = df_list[1][df_list[1]['Date'] == date] low_risk_date = df_list[2][df_list[2]['Date'] == date] if not (high_risk_date.empty or med_risk_date.empty or low_risk_date.empty): current_nav_list = [] if not change_list[j][0]: for i in range(len(portfolio_comp)): previous_close_price = df_list[i][df_list[i]['Date'] == last_trade_date]['Close'].values[0] current_close_price = df_list[i][df_list[i]['Date'] == date]['Close'].values[0] current_nav_list.append(asset_list[i] * current_close_price / previous_close_price) else: for i in range(len(portfolio_comp)): asset_list[i] = change_list[j][1][i] current_nav_list.append(asset_list[i]) last_trade_date = change_list[j][2] nav_daily_dates_list.append(date) for i in range(len(portfolio_comp)): nav_daily_composition_list[i].append(current_nav_list[i]) daily_price_list.append(sum(current_nav_list)/300000 *100) nav_daily_net_list.append(sum(current_nav_list)) j+=1 # Note that we are using the Laspeyres Price Index for calculation daily_price_df =
pd.DataFrame({'Date': nav_daily_dates_list, 'Close': daily_price_list})
pandas.DataFrame
def telco_churn(quantile=.5): '''Returns dataset in format x, [y1, y2]. This dataset is useful for demonstrating multi-output model or for experimenting with reduction strategy creation. The data is from hyperparameter optimization experiment with Kaggle telco churn dataset. x: features y1: val_loss y2: val_f1score quantile is for transforming the otherwise continuous y variables into labels so that higher value is stronger. If set to 0 then original continuous will be returned.''' import wrangle import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/autonomio/examples/master/telco_churn/telco_churn_for_sensitivity.csv') df = df.drop(['val_acc', 'loss', 'f1score', 'acc', 'round_epochs'], 1) for col in df.iloc[:, 2:].columns: df = wrangle.col_to_multilabel(df, col) df = wrangle.df_rename_cols(df) if quantile > 0: y1 = (df.C0 < df.C0.quantile(quantile)).astype(int).values y2 = (df.C1 > df.C1.quantile(quantile)).astype(int).values else: y1 = df.C0.values y2 = df.C1.values x = df.drop(['C0', 'C1'], 1).values return x, [y1, y2] def icu_mortality(samples=None): import pandas as pd base = 'https://raw.githubusercontent.com/autonomio/datasets/master/autonomio-datasets/' df = pd.read_csv(base + 'icu_mortality.csv') df = df.dropna(thresh=3580, axis=1) df = df.dropna() df = df.sample(frac=1).head(samples) y = df['hospitalmortality'].astype(int).values x = df.drop('hospitalmortality', axis=1).values return x, y def titanic(): import pandas as pd base = 'https://raw.githubusercontent.com/autonomio/datasets/master/autonomio-datasets/' df = pd.read_csv(base + 'titanic.csv') y = df.survived.values x = df[['age', 'sibsp', 'parch']] cols = ['class', 'embark_town', 'who', 'deck', 'sex'] for col in cols: x = pd.merge(x, pd.get_dummies(df[col]), left_index=True, right_index=True) x = x.values print('BE CAREFUL, this dataset has nan values.') return x, y def iris(): import pandas as pd from tensorflow.keras.utils import to_categorical base = 'https://raw.githubusercontent.com/autonomio/datasets/master/autonomio-datasets/' df =
pd.read_csv(base + 'iris.csv')
pandas.read_csv
import numpy as np import pandas as pd from scipy.stats import entropy import logging from itertools import combinations logger = logging.getLogger(__name__) def filter_opinions(perspectives, opinions): """Return opinions for selected perspectives Parameters: perspectives : list of strings list of strings containing names of perspectives to return opinions for opinions : dict of opinions (pandas DataFrames) Returns: dict of opinions (pandas DataFrames) Dictionary containing opinions for the selected perspectives """ filtered = {} for persp in perspectives: filtered[persp] = opinions[persp].copy() return filtered def contrastive_opinions(query, topics, opinions, nks): """Returns a DataFrame containing contrastive opinions for the query. Implements contrastive opinion modeling as specified in [Fang et al., 2012] equation 1. The resulting probability distributions over words are normalized, in order to facilitate mutual comparisons. Example usage: co = contrastive_opinions('mishandeling') print print_topic(co[0]) Parameters: query : str The word contrastive opinions should be calculated for. topics : pandas DataFrame DataFrame containg the topics opinions : dict of pandas DataFrames Dictionary containing a pandas DataFrame for every perspective nks : numpy ndarray numpy array containing nks counts Returns: pandas DataFrame The index of the DataFrame contains the opinion words and the columns represent the perspectives. """ # TODO: fix case when word not in topicDictionary logger.debug('calculating contrastive opinions') opinion_words = list(opinions[opinions.keys()[0]].index) result = [] for p, opinion in opinions.iteritems(): c_opinion = opinion * topics.loc[query] * nks[-1] c_opinion = np.sum(c_opinion, axis=1) c_opinion /= np.sum(c_opinion) result.append(pd.Series(c_opinion, index=opinion_words, name=p)) return
pd.concat(result, axis=1, keys=[s.name for s in result])
pandas.concat
from itertools import product as it_product from typing import List, Dict import numpy as np import os import pandas as pd from scipy.stats import spearmanr, wilcoxon from provided_code.constants_class import ModelParameters from provided_code.data_loader import DataLoader from provided_code.dose_evaluation_class import EvaluateDose from provided_code.general_functions import get_paths, get_predictions_to_optimize def consolidate_data_for_analysis(cs: ModelParameters, force_new_consolidate: bool = False) \ -> [pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: """ Consolidated data of all reference plans, dose predictions, and KBP plans. This may take about an hour to run, but only needs to be run once for a given set of experiments. Args: cs: A constants object. force_new_consolidate: Flag that will force consolidating data, which will overwrite previous data that was consolidated in previous iterations. Returns: df_dose_error: Summary of dose error df_dvh_metrics: Summary of DVH metric performance (can be converted to DVH error later) df_clinical_criteria: Summary of clinical criteria performance df_ref_dvh_metrics: Summary of reference dose DVH metrics df_ref_clinical_criteria: Summary of reference dose clinical criteria performance df_objective_data: The data from the objective functions (e.g., weights, objective function values) df_solve_time: The time it took to solve models """ # Run consolidate_data_for_analysis when new predictions or plans consolidate_data_paths = {'dose': f'{cs.results_data_dir}/dose_error_df.csv', 'dvh': f'{cs.results_data_dir}/dvh_metric_df.csv', 'clinical_criteria': f'{cs.results_data_dir}/clinical_criteria_df.csv', 'ref_dvh': f'{cs.results_data_dir}/reference_metrics.csv', 'ref_clinical_criteria': f'{cs.results_data_dir}/reference_criteria.csv', 'weights': f'{cs.results_data_dir}/weights_df.csv', 'solve_time': f'{cs.results_data_dir}/solve_time_df.csv' } # Check if consolidated data already exists no_consolidated_date = False for p in consolidate_data_paths.values(): if not os.path.isfile(p): print(p) no_consolidated_date = True os.makedirs(cs.results_data_dir, exist_ok=True) # Make dir for results # Consolidate data if it doesn't exist yet or force flag is True if no_consolidated_date or force_new_consolidate: # Prepare strings for data that will be evaluated predictions_to_optimize, prediction_names = get_predictions_to_optimize(cs) patient_names = os.listdir(cs.reference_data_dir) hold_out_plan_paths = get_paths(cs.reference_data_dir, ext='') # list of paths used for held out testing # Evaluate dose metrics patient_data_loader = DataLoader(hold_out_plan_paths, mode_name='evaluation') # Set data loader dose_evaluator_sample = EvaluateDose(patient_data_loader) # Make reference dose DVH metrics and clinical criteria dose_evaluator_sample.make_metrics() dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_dose_metric_df').to_csv( consolidate_data_paths['ref_dvh']) dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_criteria_df').to_csv( consolidate_data_paths['ref_clinical_criteria']) # Initialize DataFrames for all scores and errors optimizer_names = os.listdir(cs.plans_dir) # Get names of all optimizers dose_error_index_dict, dvh_metric_index_dict = make_error_and_metric_indices(patient_names, dose_evaluator_sample, optimizer_names) df_dose_error_indices = pd.MultiIndex.from_product(**dose_error_index_dict) df_dvh_error_indices = pd.MultiIndex.from_arrays(**dvh_metric_index_dict) # Make DataFrames df_dose_error = pd.DataFrame(columns=prediction_names, index=df_dose_error_indices) df_solve_time = pd.DataFrame(columns=prediction_names, index=df_dose_error_indices) df_dvh_metrics = pd.DataFrame(columns=prediction_names, index=df_dvh_error_indices) df_clinical_criteria = pd.DataFrame(columns=prediction_names, index=df_dvh_error_indices) weights_list = [] weight_columns = [] # Iterate through each prediction in the list of prediction_names for prediction in prediction_names: # Make a dataloader that loads predicted dose distributions prediction_paths = get_paths(f'{cs.prediction_dir}/{prediction}', ext='csv') prediction_dose_loader = DataLoader(prediction_paths, mode_name='predicted_dose') # Set prediction loader # Evaluate predictions and plans with respect to ground truth dose_evaluator = EvaluateDose(patient_data_loader, prediction_dose_loader) populate_error_dfs(dose_evaluator, df_dose_error, df_dvh_metrics, df_clinical_criteria, prediction, 'Prediction') # Make dataloader for plan dose distributions for opt_name in optimizer_names: print(opt_name) # Get the paths of all optimized plans for prediction cs.get_optimization_directories(prediction, opt_name) weights_list, weight_columns = populate_weights_df(cs, weights_list) populate_solve_time_df(cs, df_solve_time) # Make data loader to load plan doses plan_paths = get_paths(cs.plan_dose_from_pred_dir, ext='csv') # List of all plan dose paths plan_dose_loader = DataLoader(plan_paths, mode_name='predicted_dose') # Set plan dose loader plan_evaluator = EvaluateDose(patient_data_loader, plan_dose_loader) # Make evaluation object # Ignore prediction name if no data exists, o/w populate DataFrames if not patient_data_loader.file_paths_list: print('No patient information was given to calculate metrics') else: # Evaluate prediction errors populate_error_dfs(plan_evaluator, df_dose_error, df_dvh_metrics, df_clinical_criteria, prediction, opt_name) # Clean up weights weights_df = pd.DataFrame(weights_list, columns=weight_columns) weights_df.set_index(['Objective', 'Structure', 'Patients', 'Dose_type', 'Prediction'], inplace=True) weights_df = weights_df.unstack('Prediction') # Save dose and DVH error DataFrames df_dose_error.to_csv(consolidate_data_paths['dose']) df_dvh_metrics.to_csv(consolidate_data_paths['dvh']) df_clinical_criteria.to_csv(consolidate_data_paths['clinical_criteria']) weights_df.to_csv(consolidate_data_paths['weights']) df_solve_time.to_csv(consolidate_data_paths['solve_time']) # Loads the DataFrames that contain consolidated data df_dose_error = pd.read_csv(consolidate_data_paths['dose'], index_col=[0, 1]) df_dvh_metrics = pd.read_csv(consolidate_data_paths['dvh'], index_col=[0, 1, 2, 3]) df_clinical_criteria = pd.read_csv(consolidate_data_paths['clinical_criteria'], index_col=[0, 1, 2, 3]) df_ref_dvh_metrics = pd.read_csv(consolidate_data_paths['ref_dvh'], index_col=[0, 1, 2, 3], squeeze=True) df_ref_dvh_metrics.index.set_names(df_dvh_metrics.index.names, inplace=True) df_ref_clinical_criteria = pd.read_csv(consolidate_data_paths['ref_clinical_criteria'], index_col=[0, 1, 2, 3], squeeze=True) df_ref_clinical_criteria.index.set_names(df_clinical_criteria.index.names, inplace=True) df_objective_data = pd.read_csv(consolidate_data_paths['weights'], index_col=[0, 1, 2, 3], header=[0, 1]) df_solve_time = pd.read_csv(consolidate_data_paths['solve_time'], index_col=[0, 1]).drop('Prediction', axis=0, level=0) # Adjust DVH metric signs to reflect direction of "better" df_dvh_metrics.loc[:, :, ['D_95', 'D_99'], :] *= -1 df_clinical_criteria.loc[:, :, ['D_95', 'D_99'], :] *= -1 df_ref_dvh_metrics.loc[:, :, ['D_95', 'D_99'], :] *= -1 df_ref_clinical_criteria.loc[:, :, ['D_95', 'D_99'], :] *= -1 return df_dose_error, df_dvh_metrics, df_clinical_criteria, df_ref_dvh_metrics, df_ref_clinical_criteria, df_objective_data, df_solve_time def make_error_and_metric_indices(patient_names: List[str], dose_evaluator_sample: EvaluateDose, optimizers: List[str]) \ -> [Dict, Dict]: """ Initialize the data frame indices for the dose error and DVH metric DataFrames Args: patient_names: list of patient names/identifiers dose_evaluator_sample: A sample of the dose evaluator object that will be used during the processing stage optimizers: list of optimizer names Returns: dose_error_dict: Dictionaries with stored indices (dose type, patients) for dose error dvh_metric_dict: Dictionaries with stored indices (dose types, patients) for DVH metrics """ iterables = [['Prediction', *optimizers], patient_names, dose_evaluator_sample.metric_difference_df.columns] iterables_with_tuple = list(it_product(*iterables)) iterables_new = [] for i in iterables_with_tuple: iterables_new.append((i[0], i[1], i[2][0], i[2][1])) dose_error_indices = [iterables[0], iterables[1]] dvh_metric_indices = list(zip(*iterables_new)) # Set names dose_error_dict = {'iterables': dose_error_indices, 'names': ["Dose_type", "Patients"]} dvh_metric_dict = {'arrays': dvh_metric_indices, 'names': ["Dose_type", "Patients", "Metric", "Structure"]} return dose_error_dict, dvh_metric_dict def populate_error_dfs(evaluator: EvaluateDose, df_dose_error: pd.DataFrame, df_dvh_metrics: pd.DataFrame, df_clinical_criteria: pd.DataFrame, prediction_name: str, dose_type: str): """ Populates the DataFrames that summarize Args: evaluator: An EvaluateDose Object that will be summarized df_dose_error: The DataFrame that contains dose errors df_dvh_metrics: The DataFrame that contains DVH metrics df_clinical_criteria: THe DataFrame that contains clinical criteria performace prediction_name: The name of the prediction model dose_type: The type of dose (e.g., reference, prediction, optimization model) """ # Evaluate prediction errors evaluator.make_metrics() # Save collection of dose errors dose_indices = evaluator.dose_score_vec.index df_dose_error.loc[(dose_type, dose_indices), prediction_name] = evaluator.dose_score_vec[dose_indices].values # Populate the DVH errors evaluated_dvh_metrics = evaluator.melt_dvh_metrics(dose_type) df_dvh_metrics.loc[evaluated_dvh_metrics.index, prediction_name] = evaluated_dvh_metrics.values # Populate clinical criteria metrics evaluated_clinical_criteria = evaluator.melt_dvh_metrics(dose_type, dose_metrics_att='new_criteria_metric_df') df_clinical_criteria.loc[evaluated_clinical_criteria.index, prediction_name] = evaluated_clinical_criteria.values def populate_weights_df(cs: ModelParameters, weights_list) -> [List, List]: """ Populated a list (weights_list) with data related to cost function (e.g., structure, objective function values) Args: cs: Constant object weights_list: List of weights that will be populated Returns: weights_list: List of populated weights weights_list_column_headers: Column headers for list """ # Initialize information for plan weights plan_weights_paths = get_paths(cs.plan_weights_from_pred_dir, ext='csv') plan_weights_loader = DataLoader(plan_weights_paths, mode_name='plan_weights') weights_list_column_headers = [] # Load weight info for each patient for batch_idx in range(plan_weights_loader.number_of_batches()): data_batch = plan_weights_loader.get_batch(batch_idx) pt_id = data_batch['patient_list'][0] plan_weights = data_batch['plan_weights'][0] # Separate objective function from structure roi_criteria_pairs = plan_weights.apply(lambda x: pd.Series(x['Objective'].split(' ', 1)), axis=1) plan_weights['Structure'] = roi_criteria_pairs[0] plan_weights['Objective'] = roi_criteria_pairs[1] # Adjust plan weights DataFrame with plan/patient data plan_weights['Patients'] = pt_id plan_weights['Dose_type'] = cs.opt_name plan_weights['Prediction'] = cs.prediction_name # Extend weight data to weight list weights_list.extend(plan_weights.values.tolist()) weights_list_column_headers = plan_weights.columns.to_list() return weights_list, weights_list_column_headers def populate_solve_time_df(cs: ModelParameters, df_solve_time: pd.DataFrame): """ Populated a DataFrame (df_solve_time) with data related to solve time and plan (optimization) gap Args: cs: Constants object df_solve_time: DataFrame with solve time information """ # Initialize plan gap/solve time information plan_gap_paths = get_paths(cs.plan_gap_from_pred_dir, ext='csv') plan_gap_loader = DataLoader(plan_gap_paths, mode_name='plan_gap') # Load solve time/gap for each patient for batch_idx in range(plan_gap_loader.number_of_batches()): data_batch = plan_gap_loader.get_batch(batch_idx) pt_id = data_batch['patient_list'][0] plan_gap = data_batch['plan_gap'][0] # Populate summary dataframe with time/gap info df_solve_time.loc[(cs.opt_name, pt_id), cs.prediction_name] = plan_gap['solve time'] def summarize_scores(cs: ModelParameters, df_errors: pd.DataFrame, name: str, level=0) -> pd.DataFrame: """ Args: cs: Model constants df_errors: DataFrame of errors that can be converted into a score by taking average for every prediction/opt name: Name of score that will be generated level: Level of df_errors that average is calculated over Returns: ranked_scores: """ # Calculate scores score = round(df_errors.mean(axis=0, level=level), 3) score = score.loc[cs.optimization_short_hands_dict.keys()] rank = score.rank(axis=1) # Set order based on prediction rank sorted_scores = score.sort_values(by='Prediction', axis=1).columns # Rename index prior to concatenating the data score.index = score.index.map(lambda x: f'{x} {name.lower()} score') rank.index = rank.index.map(lambda x: f'{x} {name.lower()} rank') # Concat scores and rank, ordered based on prediction rank ranked_scores =
pd.concat((score[sorted_scores], rank[sorted_scores]))
pandas.concat
#!/usr/bin/env python3 # ############################################################################# # Sylvain @ GIS / Biopolis / Singapore # <NAME> <<EMAIL>> # Started on 2019-12-17 # Reads Binning Project # # ############################################################################# # # # About reports from Kraken2 # import os import os.path as osp # import ete3.ncbi_taxonomy import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.metrics import auc from plot_me.bio import ncbi, get_list_rank from plot_me.tools import PATHS pd.set_option('precision', 5) # ncbi = ete3.ncbi_taxonomy.NCBITaxa() class Report: kraken_cols = ["per_clade_covered", "reads_clade_covered", "reads_direct_taxo", "rank", "taxon", "scientific_name"] line_style = ['-.', '--', ':'] obj_counter = 0 def __init__(self, title, folder, nb_reads=None): self.obj_id = Report.obj_counter Report.obj_counter += 1 self.title = title self.folder = folder self.nb_reads = nb_reads self.nb_assigned = None self.report = None self.all_reports = None self.thresholds = None self.recall = None self.precision = None self.auc = None def load_full(self, filename): """Load and filter to species only""" self.report = pd.read_csv(osp.join(self.folder, filename), sep="\t", names=self.kraken_cols) self.nb_reads = self.report[self.report.taxon <= 1].reads_clade_covered.sum() self.report = self.report[self.report["rank"] == "S"][["reads_clade_covered", "taxon"]].groupby(["taxon"]).sum() # self.report["cluster"] = "full" self.report.rename(columns={"reads_clade_covered": "full_DB"}, inplace=True) self.assigned_reads() def load_multi(self, list_files): """ Reports should have an identifier <.bin-x.> to identify them """ reports_bins = [] bins = [] list_total_nb_reads = [] for file_name in list_files: tmp_df = pd.read_csv(osp.join(self.folder, file_name), sep="\t", names=self.kraken_cols) list_total_nb_reads.append(tmp_df[tmp_df.taxon <= 1].reads_clade_covered.sum()) tmp_df["cluster"] = file_name.split(".bin-")[1].split(".")[0] reports_bins.append(tmp_df) print(self.title, list_total_nb_reads) self.nb_reads = sum(list_total_nb_reads) report_bins = pd.concat(reports_bins, ignore_index=True) report_selected = report_bins[report_bins["rank"] == "S"][["reads_clade_covered", "taxon", "cluster"]] # todo: losing the cluster provenance by summing everything :/ aggregated = report_selected.groupby(["taxon"]).sum() aggregated.rename(columns={"reads_clade_covered": self.title}, inplace=True) # aggregated.sort_values("reads_clade_covered", ascending=False, inplace=True) self.report = aggregated self.assigned_reads() def load_gt(self, file_path): gt_tmp = pd.read_pickle(file_path) gt_counting = pd.DataFrame(gt_tmp.taxon.value_counts()) gt_counting.rename(columns={"taxon": "ground_truth"}, inplace=True) gt_counting["taxon"] = get_list_rank(gt_counting.index) self.report = gt_counting.groupby(["taxon"]).sum() self.assigned_reads() # self.report["cluster"] = "gt" def assigned_reads(self): self.nb_assigned = int(self.report.iloc[:, 0].sum()) def normalize(self): self.report.iloc[:, 0] /= self.nb_assigned def prec_recall(self, gt_species): """ Get a set containing the species present. change to ratio instead of absolute number after working on the report """ # print(self.title) # Floor the numbers by multiplying by 'rounding', then floor with numpy, then dividing again. rounding = 10 ** 5 thresholds = ((self.report.iloc[:, 0] * rounding).apply(np.floor) / rounding).unique() thresholds.sort() data = [] for i, threshold in enumerate(thresholds): found = set(self.report[self.report.iloc[:, 0] >= threshold].index) tp = len(set.intersection(found, gt_species)) fn = len(gt_species) - tp fp = len(found) - tp data.append((threshold, tp, fn, fp,)) df_auc = pd.DataFrame(data, columns=["threshold", "tp", "fn", "fp"]) df_auc["recall"] = df_auc.tp / (df_auc.tp + df_auc.fn) df_auc["precision"] = df_auc.tp / (df_auc.tp + df_auc.fp) df_auc[["recall", "precision"]] = df_auc[["recall", "precision"]].fillna(0) # Extend the last precision to 0 recall, as we don't have abundance threshold down to 0% df_auc.loc[df_auc.index.max() + 1] = df_auc.iloc[-1] df_auc.recall.iloc[-1] = 0 self.df_auc = df_auc self.thresholds = thresholds self.recall = df_auc["recall"].tolist() self.precision = df_auc["precision"].tolist() self.auc = auc(self.recall, self.precision) def plot_pr(self, nb=5, total=10, string_gt=""): # todo: thicker line, dotted line ratio = (total - nb) / total label = f"auc={self.auc:.3f}, ({self.nb_assigned}/{self.nb_reads}) : {self.title}" plt.plot(self.recall, self.precision, # alpha=0.7, linewidth=2 + 3 * ratio, linestyle=self.line_style[self.obj_id % len(self.line_style)], marker='+', markersize=10 + 4 * ratio, markeredgewidth=1 + 2 * ratio, label=label) # Change line style so see them despite overlaying each other self.legend = label def __repr__(self): return f"Report from {self.title} DB classification, {self.folder}" class ReportsAnalysis: def __init__(self, folder, string_full, string_bins, path_ground_truth): """ string* are matching string to find the full and bin reports """ self.folder = folder self.string_full = string_full self.string_bins = string_bins self.path_ground_truth = path_ground_truth self.path_report_full = "" self.path_report_bins = "" self.selected_r = None self.gt = None self.gt_stats = None self.reports = {} self.nb_reads = None self.gt_species = None self.auc = None self._recall = {} self._precision = {} @property def report(self): if self.selected_r is None: self.selected_r = 0 if self.selected_r in self.reports.keys(): return self.reports[self.selected_r] else: return None @property def recall(self): if self.selected_r not in self._recall.keys(): return None else: return self._recall[self.selected_r] @property def precision(self): if self.selected_r not in self._precision.keys(): return None else: return self._precision[self.selected_r] def load_gt(self): self.gt =
pd.read_pickle(self.path_ground_truth)
pandas.read_pickle
# Copyright (c) 2020, NVIDIA CORPORATION. import operator import re from string import ascii_letters, digits import numpy as np import pandas as pd import pytest import cudf from cudf.tests.utils import ( DATETIME_TYPES, NUMERIC_TYPES, TIMEDELTA_TYPES, assert_eq, assert_exceptions_equal, ) def _series_na_data(): return [ pd.Series([0, 1, 2, np.nan, 4, None, 6]), pd.Series( [0, 1, 2, np.nan, 4, None, 6], index=["q", "w", "e", "r", "t", "y", "u"], name="a", ), pd.Series([0, 1, 2, 3, 4]), pd.Series(["a", "b", "u", "h", "d"]), pd.Series([None, None, np.nan, None, np.inf, -np.inf]), pd.Series([]), pd.Series( [pd.NaT, pd.Timestamp("1939-05-27"), pd.Timestamp("1940-04-25")] ), pd.Series([np.nan]), pd.Series([None]), pd.Series(["a", "b", "", "c", None, "e"]), ] @pytest.mark.parametrize( "data", [ {"a": 1, "b": 2, "c": 24, "d": 1010}, {"a": 1}, {1: "a", 2: "b", 24: "c", 1010: "d"}, {1: "a"}, ], ) def test_series_init_dict(data): pandas_series = pd.Series(data) cudf_series = cudf.Series(data) assert_eq(pandas_series, cudf_series) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3], "b": [2, 3, 5], "c": [24, 12212, 22233], "d": [1010, 101010, 1111], }, {"a": [1]}, ], ) def test_series_init_dict_lists(data): assert_eq(pd.Series(data), cudf.Series(data)) @pytest.mark.parametrize( "data", [ [1, 2, 3, 4], [1.0, 12.221, 12.34, 13.324, 324.3242], [-10, -1111, 100, 11, 133], ], ) @pytest.mark.parametrize( "others", [ [10, 11, 12, 13], [0.1, 0.002, 324.2332, 0.2342], [-10, -1111, 100, 11, 133], ], ) @pytest.mark.parametrize("ignore_index", [True, False]) def test_series_append_basic(data, others, ignore_index): psr = pd.Series(data) gsr = cudf.Series(data) other_ps = pd.Series(others) other_gs = cudf.Series(others) expected = psr.append(other_ps, ignore_index=ignore_index) actual = gsr.append(other_gs, ignore_index=ignore_index) assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ [ "abc", "def", "this is a string", "this is another string", "a", "b", "c", ], ["a"], ], ) @pytest.mark.parametrize( "others", [ [ "abc", "def", "this is a string", "this is another string", "a", "b", "c", ], ["a"], ["1", "2", "3", "4", "5"], ["+", "-", "!", "_", "="], ], ) @pytest.mark.parametrize("ignore_index", [True, False]) def test_series_append_basic_str(data, others, ignore_index): psr =
pd.Series(data)
pandas.Series
# Copyright (C) 2018 GuQiangJs. https://github.com/GuQiangJS # Licensed under Apache License 2.0 <see LICENSE file> import datetime import unittest import numpy as np import pandas as pd from finance_datareader_py.sina import SinaQuoteReader from finance_datareader_py.sina import get_cpi from finance_datareader_py.sina import get_dividends from finance_datareader_py.sina import get_gold_and_foreign_exchange_reserves from finance_datareader_py.sina import get_measure_of_money_supply from finance_datareader_py.sina import get_ppi from finance_datareader_py.sina import get_required_reserve_ratio class sina_TestCase(unittest.TestCase): def test_get_dividends(self): df1, df2 = get_dividends('000541') self.assertIsNotNone(df1) self.assertFalse(df1.empty) self.assertIsNotNone(df2) self.assertFalse(df2.empty) print(df1) print('------------') print(df2) dt = datetime.date(2018, 5, 5) df1 = df1.loc[df1['公告日期'] == dt] self.assertEqual(np.float64(3.29), df1.at[0, '派息(税前)(元)']) self.assertTrue(pd.isna(df1.at[0, '红股上市日'])) self.assertEqual(pd.Timestamp(2018, 5, 10), df1.at[0, '股权登记日']) self.assertEqual(np.float64(1), df1.at[0, '转增(股)']) self.assertEqual(np.float64(0), df1.at[0, '送股(股)']) self.assertEqual(pd.Timestamp(2018, 5, 11), df1.at[0, '除权除息日']) dt = datetime.date(1994, 12, 24) df2 = df2.loc[df2['公告日期'] == dt] self.assertEqual(np.float64(2), df2.at[0, '配股方案(每10股配股股数)']) self.assertEqual(np.float64(8), df2.at[0, '配股价格(元)']) self.assertEqual(np.float64(115755000), df2.at[0, '基准股本(万股)']) self.assertEqual(pd.Timestamp(1995, 1, 4), df2.at[0, '除权日']) self.assertEqual(pd.Timestamp(1995, 1, 3), df2.at[0, '股权登记日']) self.assertEqual(
pd.Timestamp(1995, 1, 16)
pandas.Timestamp
# coding: utf-8 # --- # # _You are currently looking at **version 1.2** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-social-network-analysis/resources/yPcBs) course resource._ # # --- # # Assignment 4 # In[3]: import networkx as nx import pandas as pd import numpy as np import pickle # --- # # ## Part 1 - Random Graph Identification # # For the first part of this assignment you will analyze randomly generated graphs and determine which algorithm created them. # In[4]: P1_Graphs = pickle.load(open('A4_graphs','rb')) P1_Graphs # <br> # `P1_Graphs` is a list containing 5 networkx graphs. Each of these graphs were generated by one of three possible algorithms: # * Preferential Attachment (`'PA'`) # * Small World with low probability of rewiring (`'SW_L'`) # * Small World with high probability of rewiring (`'SW_H'`) # # Anaylze each of the 5 graphs and determine which of the three algorithms generated the graph. # # *The `graph_identification` function should return a list of length 5 where each element in the list is either `'PA'`, `'SW_L'`, or `'SW_H'`.* # In[5]: def degree_distribution(G): degrees = G.degree() degree_values = sorted(set(degrees.values())) histogram = [list(degrees.values()).count(i) / float(nx.number_of_nodes(G)) for i in degree_values] return histogram # In[6]: degree_distribution(P1_Graphs[2]) # In[7]: nx.average_clustering(P1_Graphs[1]) # In[9]: nx.average_shortest_path_length(P1_Graphs[1]) # In[10]: for G in P1_Graphs: print(nx.average_clustering(G), nx.average_shortest_path_length(G), len(degree_distribution(G))) # In[11]: def graph_identification(): methods = [] for G in P1_Graphs: clustering = nx.average_clustering(G) shortest_path = nx.average_shortest_path_length(G) degree_hist = degree_distribution(G) if len(degree_hist) > 10: methods.append('PA') elif clustering < 0.1: methods.append('SW_H') else: methods.append('SW_L') return methods # In[12]: graph_identification() # --- # # ## Part 2 - Company Emails # # For the second part of this assignment you will be working with a company's email network where each node corresponds to a person at the company, and each edge indicates that at least one email has been sent between two people. # # The network also contains the node attributes `Department` and `ManagementSalary`. # # `Department` indicates the department in the company which the person belongs to, and `ManagementSalary` indicates whether that person is receiving a management position salary. # In[13]: G = nx.read_gpickle('email_prediction.txt') print(nx.info(G)) # In[14]: G.nodes(data = True)[:10] # ### Part 2A - Salary Prediction # # Using network `G`, identify the people in the network with missing values for the node attribute `ManagementSalary` and predict whether or not these individuals are receiving a management position salary. # # To accomplish this, you will need to create a matrix of node features using networkx, train a sklearn classifier on nodes that have `ManagementSalary` data, and predict a probability of the node receiving a management salary for nodes where `ManagementSalary` is missing. # # # # Your predictions will need to be given as the probability that the corresponding employee is receiving a management position salary. # # The evaluation metric for this assignment is the Area Under the ROC Curve (AUC). # # Your grade will be based on the AUC score computed for your classifier. A model which with an AUC of 0.88 or higher will receive full points, and with an AUC of 0.82 or higher will pass (get 80% of the full points). # # Using your trained classifier, return a series of length 252 with the data being the probability of receiving management salary, and the index being the node id. # # Example: # # 1 1.0 # 2 0.0 # 5 0.8 # 8 1.0 # ... # 996 0.7 # 1000 0.5 # 1001 0.0 # Length: 252, dtype: float64 # In[15]: G.nodes(data = True)[0][1] # In[16]: from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler def salary_predictions(): def is_management(node): managementSalary = node[1]['ManagementSalary'] if managementSalary == 0: return 0 elif managementSalary == 1: return 1 else: return None df = pd.DataFrame(index=G.nodes()) df['clustering'] = pd.Series(nx.clustering(G)) df['degree'] = pd.Series(G.degree()) df['degree_centrality'] = pd.Series(nx.degree_centrality(G)) df['closeness'] = pd.Series(nx.closeness_centrality(G, normalized=True)) df['betweeness'] = pd.Series(nx.betweenness_centrality(G, normalized=True)) df['pr'] = pd.Series(nx.pagerank(G)) df['is_management'] = pd.Series([is_management(node) for node in G.nodes(data=True)]) df_train = df[~pd.isnull(df['is_management'])] df_test = df[pd.isnull(df['is_management'])] features = ['clustering', 'degree', 'degree_centrality', 'closeness', 'betweeness', 'pr'] X_train = df_train[features] Y_train = df_train['is_management'] X_test = df_test[features] scaler = MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) clf = MLPClassifier(hidden_layer_sizes = [10, 5], alpha = 5, random_state = 0, solver='lbfgs', verbose=0) clf.fit(X_train_scaled, Y_train) test_proba = clf.predict_proba(X_test_scaled)[:, 1] return pd.Series(test_proba,X_test.index) # prediction = salary_predictions() # In[17]: salary_predictions() # ### Part 2B - New Connections Prediction # # For the last part of this assignment, you will predict future connections between employees of the network. The future connections information has been loaded into the variable `future_connections`. The index is a tuple indicating a pair of nodes that currently do not have a connection, and the `Future Connection` column indicates if an edge between those two nodes will exist in the future, where a value of 1.0 indicates a future connection. # In[18]: future_connections = pd.read_csv('Future_Connections.csv', index_col=0, converters={0: eval}) future_connections.head(10) # Using network `G` and `future_connections`, identify the edges in `future_connections` with missing values and predict whether or not these edges will have a future connection. # # To accomplish this, you will need to create a matrix of features for the edges found in `future_connections` using networkx, train a sklearn classifier on those edges in `future_connections` that have `Future Connection` data, and predict a probability of the edge being a future connection for those edges in `future_connections` where `Future Connection` is missing. # # # # Your predictions will need to be given as the probability of the corresponding edge being a future connection. # # The evaluation metric for this assignment is the Area Under the ROC Curve (AUC). # # Your grade will be based on the AUC score computed for your classifier. A model which with an AUC of 0.88 or higher will receive full points, and with an AUC of 0.82 or higher will pass (get 80% of the full points). # # Using your trained classifier, return a series of length 122112 with the data being the probability of the edge being a future connection, and the index being the edge as represented by a tuple of nodes. # # Example: # # (107, 348) 0.35 # (542, 751) 0.40 # (20, 426) 0.55 # (50, 989) 0.35 # ... # (939, 940) 0.15 # (555, 905) 0.35 # (75, 101) 0.65 # Length: 122112, dtype: float64 # In[19]: future_connections.head() # In[20]: G.node[1] # In[22]: from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler def new_connections_predictions(): for node in G.nodes(): G.node[node]['community'] = G.node[node]['Department'] preferential_attachment = list(nx.preferential_attachment(G)) df = pd.DataFrame(index=[(x[0], x[1]) for x in preferential_attachment]) df['preferential_attachment'] = [x[2] for x in preferential_attachment] cn_soundarajan_hopcroft = list(nx.cn_soundarajan_hopcroft(G)) df_cn_soundarajan_hopcroft = pd.DataFrame(index=[(x[0], x[1]) for x in cn_soundarajan_hopcroft]) df_cn_soundarajan_hopcroft['cn_soundarajan_hopcroft'] = [x[2] for x in cn_soundarajan_hopcroft] df = df.join(df_cn_soundarajan_hopcroft,how='outer') df['cn_soundarajan_hopcroft'] = df['cn_soundarajan_hopcroft'].fillna(value=0) df['resource_allocation_index'] = [x[2] for x in list(nx.resource_allocation_index(G))] df['jaccard_coefficient'] = [x[2] for x in list(nx.jaccard_coefficient(G))] df = future_connections.join(df,how='outer') df_train = df[~pd.isnull(df['Future Connection'])] df_test = df[pd.isnull(df['Future Connection'])] features = ['cn_soundarajan_hopcroft', 'preferential_attachment', 'resource_allocation_index', 'jaccard_coefficient'] X_train = df_train[features] Y_train = df_train['Future Connection'] X_test = df_test[features] scaler = MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) clf = MLPClassifier(hidden_layer_sizes = [10, 5], alpha = 5, random_state = 0, solver='lbfgs', verbose=0) clf.fit(X_train_scaled, Y_train) test_proba = clf.predict_proba(X_test_scaled)[:, 1] predictions =
pd.Series(test_proba,X_test.index)
pandas.Series
import requests import pandas as pd import numpy as np import configparser from datetime import timedelta, datetime from dateutil import relativedelta, parser, rrule from dateutil.rrule import WEEKLY class whoop_login: '''A class object to allow a user to login and store their authorization code, then perform pulls using the code in order to access different types of data''' def __init__(self, auth_code=None, whoop_id=None,current_datetime=datetime.utcnow()): self.auth_code=auth_code self.whoop_id=whoop_id self.current_datetime=current_datetime self.start_datetime=None self.all_data=None self.all_activities=None self.sport_dict=None self.all_sleep=None self.all_sleep_events=None def pull_api(self, url,df=False): auth_code=self.auth_code headers={'authorization':auth_code} pull=requests.get(url,headers=headers) if pull.status_code==200 and len(pull.content)>1: if df: d=pd.json_normalize(pull.json()) return d else: return pull.json() else: return "no response" def pull_sleep_main(self,sleep_id): athlete_id=self.whoop_id sleep=self.pull_api('https://api-7.whoop.com/users/{}/sleeps/{}'.format(athlete_id,sleep_id)) main_df=pd.json_normalize(sleep) return main_df def pull_sleep_events(self,sleep_id): athlete_id=self.whoop_id sleep=self.pull_api('https://api-7.whoop.com/users/{}/sleeps/{}'.format(athlete_id,sleep_id)) events_df=pd.json_normalize(sleep['events']) events_df['id']=sleep_id return events_df def get_authorization(self,user_ini): ''' Function to get the authorization token and user id. This must be completed before a user can query the api ''' config=configparser.ConfigParser() config.read(user_ini) username=config['whoop']['username'] password=config['whoop']['password'] headers={ "username": username, "password": password, "grant_type": "password", "issueRefresh": False} auth = requests.post("https://api-7.whoop.com/oauth/token", json=headers) if auth.status_code==200: content=auth.json() user_id=content['user']['id'] token=content['access_token'] start_time=content['user']['profile']['createdAt'] self.whoop_id=user_id self.auth_code='bearer ' + token self.start_datetime=start_time print("Authentication successful") else: print("Authentication failed - please double check your credentials") def get_keydata_all(self): ''' This function returns a dataframe of WHOOP metrics for each day of WHOOP membership. In the resulting dataframe, each day is a row and contains strain, recovery, and sleep information ''' if self.start_datetime: if self.all_data is not None: ## All data already pulled return self.all_data else: start_date=parser.isoparse(self.start_datetime).replace(tzinfo=None) end_time='T23:59:59.999Z' start_time='T00:00:00.000Z' intervals=rrule.rrule(freq=WEEKLY,interval=1,until=self.current_datetime, dtstart=start_date) date_range=[[d.strftime('%Y-%m-%d') + start_time, (d+relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d') + end_time] for d in intervals] all_data=pd.DataFrame() for dates in date_range: cycle_url='https://api-7.whoop.com/users/{}/cycles?end={}&start={}'.format(self.whoop_id, dates[1], dates[0]) data=self.pull_api(cycle_url,df=True) all_data=pd.concat([all_data,data]) all_data.reset_index(drop=True,inplace=True) ## fixing the day column so it's not a list all_data['days']=all_data['days'].map(lambda d: d[0]) all_data.rename(columns={"days":'day'},inplace=True) ## Putting all time into minutes instead of milliseconds sleep_cols=['qualityDuration','needBreakdown.baseline','needBreakdown.debt','needBreakdown.naps', 'needBreakdown.strain','needBreakdown.total'] for sleep_col in sleep_cols: all_data['sleep.' + sleep_col]=all_data['sleep.' + sleep_col].astype(float).apply(lambda x: np.nan if np.isnan(x) else x/60000) ## Making nap variable all_data['nap_duration']=all_data['sleep.naps'].apply(lambda x: x[0]['qualityDuration']/60000 if len(x)==1 else( sum([y['qualityDuration'] for y in x if y['qualityDuration'] is not None])/60000 if len(x)>1 else 0)) all_data.drop(['sleep.naps'],axis=1,inplace=True) ## dropping duplicates subsetting because of list columns all_data.drop_duplicates(subset=['day','sleep.id'],inplace=True) self.all_data=all_data return all_data else: print("Please run the authorization function first") def get_activities_all(self): ''' Activity data is pulled through the get_keydata functions so if the data pull is present, this function just transforms the activity column into a dataframe of activities, where each activity is a row. If it has not been pulled, this function runs the key data function then returns the activity dataframe''' if self.sport_dict: sport_dict=self.sport_dict else: sports=self.pull_api('https://api-7.whoop.com/sports') sport_dict={sport['id']:sport['name'] for sport in sports} self.sport_dict=self.sport_dict if self.start_datetime: ## process activity data if self.all_data is not None: ## use existing data=self.all_data else: ## pull all data to process activities data=self.get_keydata_all() ## now process activities data act_data=pd.json_normalize(data[data['strain.workouts'].apply(len)>0]['strain.workouts'].apply(lambda x: x[0])) act_data[['during.upper','during.lower']]=act_data[['during.upper','during.lower']].apply(pd.to_datetime) act_data['total_minutes']=act_data.apply(lambda x: (x['during.upper']-x['during.lower']).total_seconds()/60.0,axis=1) for z in range(0,6): act_data['zone{}_minutes'.format(z+1)]=act_data['zones'].apply(lambda x: x[z]/60000.) act_data['sport_name']=act_data.sportId.apply(lambda x: sport_dict[x]) act_data['day']=act_data['during.lower'].dt.strftime('%Y-%m-%d') act_data.drop(['zones','during.bounds'],axis=1,inplace=True) act_data.drop_duplicates(inplace=True) self.all_activities=act_data return act_data else: print("Please run the authorization function first") def get_sleep_all(self): ''' This function returns all sleep metrics in a data frame, for the duration of user's WHOOP membership. Each row in the data frame represents one night of sleep ''' if self.auth_code: if self.all_data is not None: ## use existing data=self.all_data else: ## pull timeframe data data=self.get_keydata_all() ## getting all the sleep ids if self.all_sleep is not None: ## All sleep data already pulled return self.all_sleep else: sleep_ids=data['sleep.id'].values.tolist() sleep_list=[int(x) for x in sleep_ids if pd.isna(x)==False] all_sleep=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Huawei Technologies Co., Ltd. 2020-2021. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless REQUIRED by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """main function to convert user scripts""" import os import pandas as pd import util_global from conver_by_ast import conver_ast from file_op import mkdir from file_op import mkdir_and_copyfile from file_op import write_report_terminator from file_op import abs_join from file_op import get_api_statistic from file_op import adjust_index from util import check_path_length from util import log_warning def conver(): """The entry point to convert Tensorflow script""" print("Begin conver, input file: " + util_global.get_value('input') + '\n') out_path = util_global.get_value('output') dst_path = os.path.split(util_global.get_value('input').rstrip('\\/'))[-1] dst_path_new = dst_path + util_global.get_value('timestap') conver_path = os.walk(util_global.get_value('input')) report_dir = util_global.get_value('report') mkdir(report_dir) report_xlsx = os.path.join(report_dir, 'api_analysis_report.xlsx') util_global.set_value('generate_dir_report',
pd.DataFrame()
pandas.DataFrame
# This script is designed to build your sheet # MUST HAVE A SERVICE ACCOUNT SET UP IN ORDER FOR THIS TO WORK # The service account '.json' must also be present # This script assumes the LoginData.csv and Service account JSON are colated with the script # Please note, as of v2.1.2 this will NOT generate the charts present in the example file import gspread from oauth2client.service_account import ServiceAccountCredentials import pandas as pd login_data =
pd.read_csv('LoginData.csv')
pandas.read_csv
# -*- coding: utf-8 -*- import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import time import pulp pkg_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.insert(0, pkg_path) from VarianceConstraints import VarianceConstraints # noqa: E402 _test_link = r'https://web.stanford.edu/~hastie/CASI_files/DATA/' def test_data(n_obs=None, n_vars=None): try: data =
pd.read_csv('leukemia_big.csv')
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # ## Explore one-hit vs. two-hit samples in expression space # In[1]: from pathlib import Path import pickle as pkl import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import sys; sys.path.append('..') import config as cfg from data_utilities import load_cnv_data get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[2]: # park et al. geneset info park_loss_data = cfg.data_dir / 'park_loss_df.tsv' park_gain_data = cfg.data_dir / 'park_gain_df.tsv' # park et al. significant gene info park_loss_sig_data = cfg.data_dir / 'park_loss_df_sig_only.tsv' park_gain_sig_data = cfg.data_dir / 'park_gain_df_sig_only.tsv' # park et al. gene/cancer type predictions park_preds_dir = cfg.data_dir / 'park_genes_all_preds' # mutation and copy number data pancancer_pickle = Path('/home/jake/research/mpmp/data/pancancer_data.pkl') # gene expression/rppa data files data_type = 'gene expression' subset_feats = 10000 gene_expression_data_file = Path( '/home/jake/research/mpmp/data/tcga_expression_matrix_processed.tsv.gz' ) rppa_data_file = Path( '/home/jake/research/mpmp/data/tcga_rppa_matrix_processed.tsv' ) # ### Load mutation info # # For now, just use binary mutation status from the pancancer repo. In the future we could pull more granular info from MC3, but it would take some engineering of `1_get_mutation_counts` to do this for lots of genes. # In[3]: park_loss_df = pd.read_csv(park_loss_data, sep='\t', index_col=0) park_loss_df.head() # In[4]: park_gain_df = pd.read_csv(park_gain_data, sep='\t', index_col=0) park_gain_df.head() # In[5]: with open(pancancer_pickle, 'rb') as f: pancancer_data = pkl.load(f) # In[6]: # get (binary) mutation data # 1 = observed non-silent mutation in this gene for this sample, 0 otherwise mutation_df = pancancer_data[1] print(mutation_df.shape) mutation_df.iloc[:5, :5] # ### Load copy number info # # Get copy loss/gain info directly from GISTIC "thresholded" output. This should be the same as (or very similar to) what the Park et al. study uses. # In[7]: sample_freeze_df = pancancer_data[0] copy_samples = set(sample_freeze_df.SAMPLE_BARCODE) print(len(copy_samples)) # In[8]: copy_loss_df, copy_gain_df = load_cnv_data( cfg.data_dir / 'pancan_GISTIC_threshold.tsv', copy_samples ) print(copy_loss_df.shape) copy_loss_df.iloc[:5, :5] # In[9]: print(copy_gain_df.shape) copy_gain_df.iloc[:5, :5] # In[10]: sample_freeze_df.head() # ### Load expression data # # We'll also standardize each feature, and subset to the top features by mean absolute deviation if `subset_feats` is set. # In[11]: if data_type == 'gene expression': exp_df = pd.read_csv(gene_expression_data_file, sep='\t', index_col=0) elif data_type == 'rppa': exp_df =
pd.read_csv(rppa_data_file, sep='\t', index_col=0)
pandas.read_csv
import argparse import os import random import warnings import numpy as np import pandas as pd import pyloudnorm as pyln import soundfile as sf from tqdm import tqdm # Global parameters # eps secures log and division EPS = 1e-10 # max amplitude in sources and mixtures MAX_AMP = 0.9 # In LibriSpeech all the sources are at 16K Hz RATE = 16000 # We will randomize loudness between this range MIN_LOUDNESS = -33 MAX_LOUDNESS = -25 # A random seed is used for reproducibility random.seed(72) # Command line arguments parser = argparse.ArgumentParser() parser.add_argument('--librispeech_dir', type=str, required=True, help='Path to librispeech root directory') parser.add_argument('--librispeech_md_dir', type=str, required=True, help='Path to librispeech metadata directory') parser.add_argument('--wham_dir', type=str, required=True, help='Path to wham root directory') parser.add_argument('--wham_md_dir', type=str, required=True, help='Path to wham metadata directory') parser.add_argument('--metadata_outdir', type=str, default=None, help='Where librimix metadata files will be stored.') parser.add_argument('--n_src', type=int, required=True, help='Number of sources desired to create the mixture') def main(args): librispeech_dir = args.librispeech_dir librispeech_md_dir = args.librispeech_md_dir wham_dir = args.wham_dir wham_md_dir = args.wham_md_dir n_src = args.n_src # Create Librimix metadata directory md_dir = args.metadata_outdir if md_dir is None: root = os.path.dirname(librispeech_dir) md_dir = os.path.join(root, f'LibriMix/metadata') os.makedirs(md_dir, exist_ok=True) create_librimix_metadata(librispeech_dir, librispeech_md_dir, wham_dir, wham_md_dir, md_dir, n_src) def create_librimix_metadata(librispeech_dir, librispeech_md_dir, wham_dir, wham_md_dir, md_dir, n_src): """ Generate LibriMix metadata according to LibriSpeech metadata """ # Dataset name dataset = f'libri{n_src}mix' # List metadata files in LibriSpeech librispeech_md_files = os.listdir(librispeech_md_dir) # List metadata files in wham_noise wham_md_files = os.listdir(wham_md_dir) # If you wish to ignore some metadata files add their name here # Example : to_be_ignored = ['dev-other.csv'] to_be_ignored = [] check_already_generated(md_dir, dataset, to_be_ignored, librispeech_md_files) # Go through each metadata file and create metadata accordingly for librispeech_md_file in librispeech_md_files: if not librispeech_md_file.endswith('.csv'): print(f"{librispeech_md_file} is not a csv file, continue.") continue # Get the name of the corresponding noise md file try: wham_md_file = [f for f in wham_md_files if f.startswith(librispeech_md_file.split('-')[0])][0] except IndexError: print('Wham metadata are missing you can either generate the ' 'missing wham files or add the librispeech metadata to ' 'to_be_ignored list') break # Open .csv files from LibriSpeech librispeech_md = pd.read_csv(os.path.join( librispeech_md_dir, librispeech_md_file), engine='python') # Open .csv files from wham_noise wham_md = pd.read_csv(os.path.join( wham_md_dir, wham_md_file), engine='python') # Filenames save_path = os.path.join(md_dir, '_'.join([dataset, librispeech_md_file])) info_name = '_'.join([dataset, librispeech_md_file.strip('.csv'), 'info']) + '.csv' info_save_path = os.path.join(md_dir, info_name) print(f"Creating {os.path.basename(save_path)} file in {md_dir}") # Create dataframe mixtures_md, mixtures_info = create_librimix_df( librispeech_md, librispeech_dir, wham_md, wham_dir, n_src) # Round number of files mixtures_md = mixtures_md[:len(mixtures_md) // 100 * 100] mixtures_info = mixtures_info[:len(mixtures_info) // 100 * 100] # Save csv files mixtures_md.to_csv(save_path, index=False) mixtures_info.to_csv(info_save_path, index=False) def check_already_generated(md_dir, dataset, to_be_ignored, librispeech_md_files): # Check if the metadata files in LibriSpeech already have been used already_generated = os.listdir(md_dir) for generated in already_generated: if generated.startswith(f"{dataset}") and 'info' not in generated: if 'train-100' in generated: to_be_ignored.append('train-clean-100.csv') elif 'train-360' in generated: to_be_ignored.append('train-clean-360.csv') elif 'dev' in generated: to_be_ignored.append('dev-clean.csv') elif 'test' in generated: to_be_ignored.append('test-clean.csv') print(f"{generated} already exists in " f"{md_dir} it won't be overwritten") for element in to_be_ignored: librispeech_md_files.remove(element) def create_librimix_df(librispeech_md_file, librispeech_dir, wham_md_file, wham_dir, n_src): """ Generate librimix dataframe from a LibriSpeech and wha md file""" # Create a dataframe that will be used to generate sources and mixtures mixtures_md =
pd.DataFrame(columns=['mixture_ID'])
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np from datetime import datetime import folium from streamlit_folium import folium_static from folium.plugins import MarkerCluster import plotly.express as px st.set_page_config(layout='wide') st.title('House Rocket Company') st.markdown('Welcome to House Rocket Data Analysis.') @st.cache(allow_output_mutation=True) def get_data(path_of_data): data_raw = pd.read_csv(path_of_data) return data_raw def set_feature(data): # add new features data['price_m2'] = data['price'] / (data['sqft_lot'] / 10.764) return data def overview_data(data): data_r = data.copy() data['date'] = pd.to_datetime(data['date']) f_attributes = st.sidebar.multiselect('Columns', data.columns) f_zipcode = st.sidebar.multiselect('Zipcode', data['zipcode'].unique()) st.title('Data Overview') if (f_zipcode != []) and (f_attributes != []): data = data.loc[data['zipcode'].isin(f_zipcode), f_attributes] elif (f_zipcode != []) and (f_attributes == []): data = data.loc[data['zipcode'].isin(f_zipcode), :] elif (f_zipcode == []) and (f_attributes != []): data = data.loc[:, f_attributes] else: data = data.loc[:, :] st.dataframe(data) c1, c2 = st.columns((2, 1)) # Average df1 = data_r[['id', 'zipcode']].groupby('zipcode').count().reset_index() df2 = data_r[['price', 'zipcode']].groupby('zipcode').mean().reset_index() df3 = data_r[['sqft_living', 'zipcode']].groupby('zipcode').mean().reset_index() df4 = data_r[['price_m2', 'zipcode']].groupby('zipcode').mean().reset_index() # Merge m1 = pd.merge(df1, df2, on='zipcode', how='inner') m2 = pd.merge(m1, df3, on='zipcode', how='inner') df_new = pd.merge(m2, df4, on='zipcode', how='inner') df_new.columns = ['zipcode', 'total_houses', 'm_price', 'm_sqft_living', 'm_price_m2'] c1.header('Per Zipcode') c1.dataframe(df_new.head(10), height=600) # Descriptive Statistic num_attributes = data_r.select_dtypes(include=['int64', 'float']) media = pd.DataFrame(num_attributes.apply(np.mean)) mediana = pd.DataFrame(num_attributes.apply(np.median)) std = pd.DataFrame(num_attributes.apply(np.std)) max_ = pd.DataFrame(num_attributes.apply(np.max)) min_ = pd.DataFrame(num_attributes.apply(np.min)) df_descriptive =
pd.concat([media, mediana, max_, min_, std], axis=1)
pandas.concat
# Regression and classification plugins based on CatBoost import pandas as pd import numpy as np import os.path import sklearn.metrics from sklearn.model_selection import train_test_split from sklearn.metrics import ( mean_squared_error, mean_absolute_error, median_absolute_error, accuracy_score, precision_score, recall_score, classification_report, confusion_matrix, ) import catboost from catboost import CatBoostClassifier, CatBoostRegressor from analitico.utilities import time_ms import analitico.pandas import analitico.schema from analitico.schema import generate_schema, ANALITICO_TYPE_CATEGORY, ANALITICO_TYPE_INTEGER, ANALITICO_TYPE_FLOAT from .interfaces import ( IAlgorithmPlugin, PluginError, plugin, ALGORITHM_TYPE_REGRESSION, ALGORITHM_TYPE_BINARY_CLASSICATION, ALGORITHM_TYPE_MULTICLASS_CLASSIFICATION, ) ## ## CatBoostPlugin ## @plugin class CatBoostPlugin(IAlgorithmPlugin): """ Base class for CatBoost regressor and classifier plugins """ results = None class Meta(IAlgorithmPlugin.Meta): name = "analitico.plugin.CatBoostPlugin" algorithms = [ ALGORITHM_TYPE_REGRESSION, ALGORITHM_TYPE_BINARY_CLASSICATION, ALGORITHM_TYPE_MULTICLASS_CLASSIFICATION, ] def create_model(self, results): """ Creates actual CatBoostClassifier or CatBoostRegressor model """ iterations = self.get_attribute("parameters.iterations", 50) learning_rate = self.get_attribute("parameters.learning_rate", 1) depth = self.get_attribute("parameters.depth", 8) if results: results["parameters"]["iterations"] = iterations results["parameters"]["learning_rate"] = learning_rate results["parameters"]["depth"] = depth algo = results.get("algorithm", ALGORITHM_TYPE_REGRESSION) if algo == ALGORITHM_TYPE_REGRESSION: return CatBoostRegressor(iterations=iterations, learning_rate=learning_rate, depth=depth) elif algo == ALGORITHM_TYPE_BINARY_CLASSICATION: # task_type="GPU", # runtime will pick up the GPU even if we don't specify it here return CatBoostClassifier( iterations=iterations, learning_rate=learning_rate, depth=depth, loss_function="Logloss" ) elif algo == ALGORITHM_TYPE_MULTICLASS_CLASSIFICATION: return CatBoostClassifier( iterations=iterations, learning_rate=learning_rate, depth=depth, loss_function="MultiClass" ) else: raise PluginError("CatBoostPlugin.create_model - can't handle algorithm type: %s", results["algorithm"]) def get_categorical_idx(self, df): """ Return indexes of the columns that should be considered categorical for the purpose of catboost training """ categorical_idx = [] for i, column in enumerate(df.columns): if analitico.schema.get_column_type(df, column) is analitico.schema.ANALITICO_TYPE_CATEGORY: categorical_idx.append(i) df[column].replace(np.nan, "", regex=True, inplace=True) self.factory.debug("%3d %s (%s/categorical)", i, column, df[column].dtype.name) else: self.factory.debug("%3d %s (%s)", i, column, df[column].dtype.name) return categorical_idx def validate_schema(self, train_df, test_df): """ Checks training and test dataframes to make sure they have matching schemas """ train_schema = generate_schema(train_df) if test_df: test_schema = generate_schema(test_df) train_columns = train_schema["columns"] test_columns = test_schema["columns"] if len(train_columns) != len(test_columns): msg = "{} - training data has {} columns while test data has {} columns".format( self.name, len(train_columns), len(test_columns) ) raise PluginError(msg) for i in range(0, len(train_columns)): if train_columns[i]["name"] != test_columns[i]["name"]: msg = "{} - column {} of train '{}' and test '{}' have different names".format( self.name, i, train_columns[i]["name"], test_columns[i]["name"] ) raise PluginError(msg) if train_columns[i]["type"] != test_columns[i]["type"]: msg = "{} - column {} of train '{}' and test '{}' have different names".format( self.name, i, train_columns[i]["type"], test_columns[i]["type"] ) raise PluginError(msg) return train_schema def score_training( self, model: catboost.CatBoost, test_df: pd.DataFrame, test_pool: catboost.Pool, test_labels: pd.DataFrame, results: dict, ): """ Scores the results of this training """ for key, value in model.get_params().items(): results["parameters"][key] = value results["scores"]["best_iteration"] = model.get_best_iteration() best_score = model.get_best_score() try: best_score["training"] = best_score.pop("learn") best_score["validation"] = best_score.pop("validation_0") except KeyError: pass results["scores"]["best_score"] = best_score # result for each evaluation epoch evals_result = model.get_evals_result() try: evals_result["training"] = evals_result.pop("learn") evals_result["validation"] = evals_result.pop("validation_0") except KeyError: pass results["scores"]["iterations"] = evals_result # catboost can tell which features weigh more heavily on the predictions self.info("features importance:") features_importance = results["scores"]["features_importance"] = {} for label, importance in model.get_feature_importance(prettified=True): features_importance[label] = round(importance, 5) self.info("%24s: %8.4f", label, importance) # make the prediction using the resulting model # output test set with predictions # after moving label to the end for easier reading test_predictions = model.predict(test_pool) label = test_labels.name test_df[label] = test_labels cols = list(test_df.columns.values) cols.pop(cols.index(label)) test_df = test_df[cols + [label]] test_df["prediction"] = test_predictions test_df = analitico.pandas.pd_sample(test_df, 200) # just sampling artifacts_path = self.factory.get_artifacts_directory() test_df.to_csv(os.path.join(artifacts_path, "test.csv")) def score_regressor_training(self, model, test_df, test_pool, test_labels, results): test_preds = model.predict(test_pool) results["scores"]["median_abs_error"] = round(median_absolute_error(test_preds, test_labels), 5) results["scores"]["mean_abs_error"] = round(mean_absolute_error(test_preds, test_labels), 5) results["scores"]["sqrt_mean_squared_error"] = round(np.sqrt(mean_squared_error(test_preds, test_labels)), 5) def score_classifier_training(self, model, test_df, test_pool, test_labels, results): """ Scores the results of this training for the CatBoostClassifier model """ # There are many metrics available: # https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics scores = results["scores"] train_classes = results["data"]["classes"] # the classes (actual strings) train_classes_codes = list(range(0, len(train_classes))) # the codes, eg: 0, 1, 2... test_true = list(test_labels) # test true labels test_preds = model.predict(test_pool, prediction_type="Class") # prediction for each test sample test_probs = model.predict_proba(test_pool, verbose=True) # probability for each class for each sample # Log loss, aka logistic loss or cross-entropy loss. scores["log_loss"] = round(sklearn.metrics.log_loss(test_true, test_probs, labels=train_classes_codes), 5) # In multilabel classification, this function computes subset accuracy: # the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true. scores["accuracy_score"] = round(accuracy_score(test_true, test_preds), 5) # The precision is the ratio tp / (tp + fp) where tp is the number of true positives # and fp the number of false positives. The precision is intuitively the ability # of the classifier not to label as positive a sample that is negative. # The best value is 1 and the worst value is 0. scores["precision_score_micro"] = round(precision_score(test_true, test_preds, average="micro"), 5) scores["precision_score_macro"] = round(precision_score(test_true, test_preds, average="macro"), 5) scores["precision_score_weighted"] = round(precision_score(test_true, test_preds, average="weighted"), 5) # The recall is the ratio tp / (tp + fn) where tp is the number of true positives # and fn the number of false negatives. The recall is intuitively the ability # of the classifier to find all the positive samples. scores["recall_score_micro"] = round(recall_score(test_true, test_preds, average="micro"), 5) scores["recall_score_macro"] = round(recall_score(test_true, test_preds, average="macro"), 5) scores["recall_score_weighted"] = round(recall_score(test_true, test_preds, average="weighted"), 5) self.info("log_loss: %f", scores["log_loss"]) self.info("accuracy_score: %f", scores["accuracy_score"]) self.info("precision_score_micro: %f", scores["precision_score_micro"]) self.info("precision_score_macro: %f", scores["precision_score_macro"]) # complete classification report and confusion matrix # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html#sklearn.metrics.classification_report # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn.metrics.confusion_matrix scores["classification_report"] = classification_report( test_true, test_preds, target_names=train_classes, output_dict=True ) scores["confusion_matrix"] = confusion_matrix(test_true, test_preds).tolist() def train(self, train, test, results, *args, **kwargs): """ Train with algorithm and given data to produce a trained model """ try: assert isinstance(train, pd.DataFrame) and len(train.columns) > 1 train_df = train test_df = test # if not specified the prediction target will be the last column of the dataset label = self.get_attribute("data.label") if not label: label = train_df.columns[len(train_df.columns) - 1] results["data"]["label"] = label # choose between regression, binary classification and multiclass classification label_type = analitico.schema.get_column_type(train_df, label) self.info("label: %s", label) self.info("label_type: %s", label_type) if label_type == analitico.schema.ANALITICO_TYPE_CATEGORY: label_classes = list(train_df[label].cat.categories) results["data"]["classes"] = label_classes train_df[label] = train_df[label].cat.codes results["algorithm"] = ( ALGORITHM_TYPE_BINARY_CLASSICATION if len(label_classes) == 2 else ALGORITHM_TYPE_MULTICLASS_CLASSIFICATION ) self.info("classes: %s", label_classes) else: results["algorithm"] = ALGORITHM_TYPE_REGRESSION self.info("algorithm: %s", results["algorithm"]) # remove rows with missing label from training and test sets train_rows = len(train_df) train_df = train_df.dropna(subset=[label]) if len(train_df) < train_rows: self.warning("Training data has %s rows without '%s' label", train_rows - len(train_df), label) if test_df: test_rows = len(test_df) test_df = test_df.dropna(subset=[label]) if len(test_df) < test_rows: self.warning("Test data has %s rows without '%s' label", test_rows - len(test_df), label) # make sure schemas match train_schema = self.validate_schema(train_df, test_df) # shortened training was requested? tail = self.get_attribute("parameters.tail", 0) if tail > 0: self.info("Tail: %d, cutting training data", tail) train_df = train_df.tail(tail).copy() # create test set from training set if not provided if not test_df: # decide how to create test set from settings variable # https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html chronological = self.get_attribute("data.chronological", False) test_size = self.get_attribute("parameters.test_size", 0.20) results["data"]["chronological"] = chronological results["parameters"]["test_size"] = test_size if chronological: # test set if from the last rows (chronological order) self.info("Test set split: chronological") test_rows = int(len(train_df) * test_size) test_df = train_df[-test_rows:] train_df = train_df[:-test_rows] else: # test set if from a random assortment of rows self.info("Test set split: random") train_df, test_df, = train_test_split(train_df, test_size=test_size, random_state=42) self.info("training: %d rows", len(train_df)) self.info("testing: %d rows", len(test_df)) # validate data types for column in train_schema["columns"]: if column["type"] not in ("integer", "float", "boolean", "category"): self.warning( "Column '%s' of type '%s' is incompatible and will be dropped", column["name"], column["type"] ) train_df = train_df.drop(column["name"], axis=1) test_df = test_df.drop(column["name"], axis=1) # save schema after dropping unused columns results["data"]["schema"] = generate_schema(train_df) results["data"]["source_records"] = len(train) results["data"]["training_records"] = len(train_df) results["data"]["test_records"] = len(test_df) results["data"]["dropped_records"] = len(train) - len(train_df) - len(test_df) # save some training data for debugging artifacts_path = self.factory.get_artifacts_directory() self.info("artifacts_path: %s", artifacts_path) samples_df = analitico.pandas.pd_sample(train_df, 200) samples_path = os.path.join(artifacts_path, "training-samples.json") samples_df.to_json(samples_path, orient="records") self.info("saved: %s (%d bytes)", samples_path, os.path.getsize(samples_path)) samples_path = os.path.join(artifacts_path, "training-samples.csv") samples_df.to_csv(samples_path) self.info("saved: %s (%d bytes)", samples_path, os.path.getsize(samples_path)) # split data and labels train_labels = train_df[label] train_df = train_df.drop([label], axis=1) test_labels = test_df[label] test_df = test_df.drop([label], axis=1) # indexes of columns that should be considered categorical categorical_idx = self.get_categorical_idx(train_df) train_pool = catboost.Pool(train_df, train_labels, cat_features=categorical_idx) test_pool = catboost.Pool(test_df, test_labels, cat_features=categorical_idx) # create regressor or classificator then train training_on = time_ms() model = self.create_model(results) model.fit(train_pool, eval_set=test_pool) results["performance"]["training_ms"] = time_ms(training_on) # score test set, add related metrics to results self.score_training(model, test_df, test_pool, test_labels, results) if results["algorithm"] == ALGORITHM_TYPE_REGRESSION: self.score_regressor_training(model, test_df, test_pool, test_labels, results) else: self.score_classifier_training(model, test_df, test_pool, test_labels, results) # save model file and training results model_path = os.path.join(artifacts_path, "model.cbm") model.save_model(model_path) results["scores"]["model_size"] = os.path.getsize(model_path) self.info("saved: %s (%d bytes)", model_path, os.path.getsize(model_path)) return results except Exception as exc: self.exception("CatBoostPlugin - error while training: %s", str(exc), exception=exc) def predict(self, data, training, results, *args, **kwargs): """ Return predictions from trained model """ # data should already come in as pd.DataFrame but it's just a dictionary we convert it if not isinstance(data, pd.DataFrame): data =
pd.DataFrame.from_dict(data, orient="columns")
pandas.DataFrame.from_dict
from utils.model import Perceptron from utils.all_utils import prepare_data,save_model,save_plot import pandas as pd import numpy as np def main(data,eta,epochs,filename,plot_filename): df =
pd.DataFrame(data)
pandas.DataFrame
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=
Index(["q", "x", "y", "z"])
pandas.Index
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals # NOQA import plottool as pt import utool as ut from ibeis.algo.verif import vsone from ibeis.scripts._thesis_helpers import DBInputs from ibeis.scripts.thesis import Sampler # NOQA from ibeis.scripts._thesis_helpers import Tabular, upper_one, ave_str from ibeis.scripts._thesis_helpers import dbname_to_species_nice from ibeis.scripts._thesis_helpers import TMP_RC, W, H, DPI from ibeis.algo.graph.state import POSTV, NEGTV, INCMP, UNREV # NOQA import numpy as np # NOQA import pandas as pd import ubelt as ub # NOQA import itertools as it import matplotlib as mpl from os.path import basename, join, splitext, exists # NOQA import ibeis.constants as const import vtool as vt from ibeis.algo.graph.state import POSTV, NEGTV, INCMP, UNREV, UNKWN # NOQA (print, rrr, profile) = ut.inject2(__name__) CLF = 'VAMP' LNBNN = 'LNBNN' def turk_pz(): import ibeis ibs = ibeis.opendb('GZ_Master1') infr = ibeis.AnnotInference(ibs, aids='all') infr.reset_feedback('staging', apply=True) infr.relabel_using_reviews(rectify=True) # infr.apply_nondynamic_update() print(ut.repr4(infr.status())) infr.ibeis_delta_info() infr.match_state_delta() infr.get_ibeis_name_delta() infr.relabel_using_reviews(rectify=True) infr.write_ibeis_annotmatch_feedback() infr.write_ibeis_name_assignment() pass @ut.reloadable_class class GraphExpt(DBInputs): """ TODO: - [ ] Experimental analysis of duration of each phase and state of graph. - [ ] Experimental analysis of phase 3, including how far we can get with automatic decision making and do we discover new merges? If there are potential merges, can we run phase iii with exactly the same ordering as before: ordering by probability for automatically decidable and then by positive probability for others. This should work for phase 3 and therefore allow a clean combination of the three phases and our termination criteria. I just thought of this so don't really have it written cleanly above. - [ ] Experimental analysis of choice of automatic decision thresholds. by lowering the threshold we increase the risk of mistakes. Each mistake costs some number of manual reviews (perhaps 2-3), but if the frequency of errors is low then we could be saving ourselves a lot of manual reviews. \item OTHER SPECIES CommandLine: python -m ibeis GraphExpt.measure all PZ_MTEST Ignore: >>> from ibeis.scripts.postdoc import * >>> self = GraphExpt('PZ_MTEST') >>> self._precollect() >>> self._setup() """ base_dpath = ut.truepath('~/Desktop/graph_expt') def _precollect(self): if self.ibs is None: _GraphExpt = ut.fix_super_reload(GraphExpt, self) super(_GraphExpt, self)._precollect() # Split data into a training and testing test ibs = self.ibs annots = ibs.annots(self.aids_pool) names = list(annots.group_items(annots.nids).values()) ut.shuffle(names, rng=321) train_names, test_names = names[0::2], names[1::2] train_aids, test_aids = map(ut.flatten, (train_names, test_names)) self.test_train = train_aids, test_aids params = {} self.pblm = vsone.OneVsOneProblem.from_aids( ibs, train_aids, **params) # ut.get_nonconflicting_path(dpath, suffix='_old') self.const_dials = { # 'oracle_accuracy' : (0.98, 1.0), # 'oracle_accuracy' : (0.98, .98), 'oracle_accuracy' : (0.99, .99), 'k_redun' : 2, 'max_outer_loops' : np.inf, # 'max_outer_loops' : 1, } config = ut.dict_union(self.const_dials) cfg_prefix = '{}_{}'.format(len(test_aids), len(train_aids)) self._setup_links(cfg_prefix, config) def _setup(self): """ python -m ibeis GraphExpt._setup Example: >>> from ibeis.scripts.postdoc import * >>> #self = GraphExpt('GZ_Master1') >>> self = GraphExpt('PZ_MTEST') >>> self = GraphExpt('PZ_Master1') >>> self._setup() """ self._precollect() train_aids, test_aids = self.test_train task_key = 'match_state' pblm = self.pblm data_key = pblm.default_data_key clf_key = pblm.default_clf_key pblm.eval_data_keys = [data_key] pblm.setup(with_simple=False) pblm.learn_evaluation_classifiers() res = pblm.task_combo_res[task_key][clf_key][data_key] # pblm.report_evaluation() # TODO: need more principled way of selecting thresholds # graph_thresh = res.get_pos_threshes('fpr', 0.01) graph_thresh = res.get_pos_threshes('fpr', 0.001) # rankclf_thresh = res.get_pos_threshes(fpr=0.01) # Load or create the deploy classifiers clf_dpath = ut.ensuredir((self.dpath, 'clf')) classifiers = pblm.ensure_deploy_classifiers(dpath=clf_dpath) sim_params = { 'test_aids': test_aids, 'train_aids': train_aids, 'classifiers': classifiers, 'graph_thresh': graph_thresh, # 'rankclf_thresh': rankclf_thresh, 'const_dials': self.const_dials, } self.pblm = pblm self.sim_params = sim_params return sim_params def measure_all(self): self.measure_graphsim() @profile def measure_graphsim(self): """ CommandLine: python -m ibeis GraphExpt.measure graphsim GZ_Master1 1 Ignore: >>> from ibeis.scripts.postdoc import * >>> #self = GraphExpt('PZ_MTEST') >>> #self = GraphExpt('GZ_Master1') >>> self = GraphExpt.measure('graphsim', 'PZ_Master1') >>> self = GraphExpt.measure('graphsim', 'GZ_Master1') >>> self = GraphExpt.measure('graphsim', 'PZ_MTEST') """ import ibeis self.ensure_setup() ibs = self.ibs sim_params = self.sim_params classifiers = sim_params['classifiers'] test_aids = sim_params['test_aids'] graph_thresh = sim_params['graph_thresh'] const_dials = sim_params['const_dials'] sim_results = {} verbose = 1 # ---------- # Graph test dials1 = ut.dict_union(const_dials, { 'name' : 'graph', 'enable_inference' : True, 'match_state_thresh' : graph_thresh, }) infr1 = ibeis.AnnotInference(ibs=ibs, aids=test_aids, autoinit=True, verbose=verbose) infr1.enable_auto_prioritize_nonpos = True infr1.params['refresh.window'] = 20 infr1.params['refresh.thresh'] = 0.052 infr1.params['refresh.patience'] = 72 infr1.params['redun.enforce_pos'] = True infr1.params['redun.enforce_neg'] = True infr1.init_simulation(classifiers=classifiers, **dials1) infr1.init_test_mode() infr1.reset(state='empty') # if False: # infr = infr1 # infr.init_refresh() # n_prioritized = infr.refresh_candidate_edges() # gen = infr.lnbnn_priority_gen(use_refresh=True) # next(gen) # edge = (25, 118) list(infr1.main_gen()) # infr1.main_loop() sim_results['graph'] = self._collect_sim_results(infr1, dials1) # ------------ # Dump experiment output to disk expt_name = 'graphsim' self.expt_results[expt_name] = sim_results ut.ensuredir(self.dpath) ut.save_data(join(self.dpath, expt_name + '.pkl'), sim_results) def _collect_sim_results(self, infr, dials): pred_confusion = pd.DataFrame(infr.test_state['confusion']) pred_confusion.index.name = 'real' pred_confusion.columns.name = 'pred' print('Edge confusion') print(pred_confusion) expt_data = { 'real_ccs': list(infr.nid_to_gt_cc.values()), 'pred_ccs': list(infr.pos_graph.connected_components()), 'graph': infr.graph.copy(), 'dials': dials, 'refresh_thresh': infr.refresh._prob_any_remain_thresh, 'metrics': infr.metrics_list, } return expt_data def draw_graphsim(self): """ CommandLine: python -m ibeis GraphExpt.measure graphsim GZ_Master1 python -m ibeis GraphExpt.draw graphsim GZ_Master1 --diskshow python -m ibeis GraphExpt.draw graphsim PZ_MTEST --diskshow python -m ibeis GraphExpt.draw graphsim GZ_Master1 --diskshow python -m ibeis GraphExpt.draw graphsim PZ_Master1 --diskshow Ignore: >>> from ibeis.scripts.postdoc import * >>> self = GraphExpt('GZ_Master1') >>> self = GraphExpt('PZ_MTEST') """ sim_results = self.ensure_results('graphsim') metric_nice = { 'n_errors': '# errors', 'n_manual': '# manual reviews', 'frac_mistake_aids': 'fraction error annots', 'merge_remain': 'fraction of merges remain', } # keys = ['ranking', 'rank+clf', 'graph'] # keycols = ['red', 'orange', 'b'] keys = ['graph'] keycols = ['b'] colors = ut.dzip(keys, keycols) dfs = {k: pd.DataFrame(v['metrics']) for k, v in sim_results.items()} n_aids = sim_results['graph']['graph'].number_of_nodes() df = dfs['graph'] df['frac_mistake_aids'] = df.n_mistake_aids / n_aids # mdf = pd.concat(dfs.values(), keys=dfs.keys()) import xarray as xr panel = xr.concat( [xr.DataArray(df, dims=('ts', 'metric')) for df in dfs.values()], dim=pd.Index(list(dfs.keys()), name='key') ) xmax = panel.sel(metric='n_manual').values.max() xpad = (1.01 * xmax) - xmax pnum_ = pt.make_pnum_nextgen(nSubplots=2) mpl.rcParams.update(TMP_RC) fnum = 1 pt.figure(fnum=fnum, pnum=pnum_()) ax = pt.gca() xkey, ykey = 'n_manual', 'merge_remain' datas = panel.sel(metric=[xkey, ykey]) for key in keys: ax.plot(*datas.sel(key=key).values.T, label=key, color=colors[key]) ax.set_ylim(0, 1) ax.set_xlim(-xpad, xmax + xpad) ax.set_xlabel(metric_nice[xkey]) ax.set_ylabel(metric_nice[ykey]) ax.legend() pt.figure(fnum=fnum, pnum=pnum_()) ax = pt.gca() xkey, ykey = 'n_manual', 'frac_mistake_aids' datas = panel.sel(metric=[xkey, ykey]) for key in keys: ax.plot(*datas.sel(key=key).values.T, label=key, color=colors[key]) ax.set_ylim(0, datas.T[1].max() * 1.01) ax.set_xlim(-xpad, xmax + xpad) ax.set_xlabel(metric_nice[xkey]) ax.set_ylabel(metric_nice[ykey]) ax.legend() fig = pt.gcf() # NOQA fig.set_size_inches([W, H * .75]) pt.adjust_subplots(wspace=.25, fig=fig) fpath = join(self.dpath, 'simulation.png') vt.imwrite(fpath, pt.render_figure_to_image(fig, dpi=DPI)) if ut.get_argflag('--diskshow'): ut.startfile(fpath) def draw_graphsim2(self): """ CommandLine: python -m ibeis GraphExpt.draw graphsim2 --db PZ_MTEST --diskshow python -m ibeis GraphExpt.draw graphsim2 GZ_Master1 --diskshow python -m ibeis GraphExpt.draw graphsim2 PZ_Master1 --diskshow Example: >>> from ibeis.scripts.thesis import * >>> dbname = ut.get_argval('--db', default='GZ_Master1') >>> self = GraphExpt(dbname) >>> self.draw_graphsim2() >>> ut.show_if_requested() """ mpl.rcParams.update(TMP_RC) sim_results = self.ensure_results('graphsim') expt_data = sim_results['graph'] metrics_df = pd.DataFrame.from_dict(expt_data['metrics']) # n_aids = sim_results['graph']['graph'].number_of_nodes() # metrics_df['frac_mistake_aids'] = metrics_df.n_mistake_aids / n_aids fnum = 1 # NOQA default_flags = { 'phase': True, 'pred': False, 'user': True, 'real': True, 'error': 0, 'recover': 1, } def plot_intervals(flags, color=None, low=0, high=1): ax = pt.gca() idxs = np.where(flags)[0] ranges = ut.group_consecutives(idxs) bounds = [(min(a), max(a)) for a in ranges if len(a) > 0] xdata_ = xdata.values xs, ys = [xdata_[0]], [low] for a, b in bounds: x1, x2 = xdata_[a], xdata_[b] # if x1 == x2: x1 -= .5 x2 += .5 xs.extend([x1, x1, x2, x2]) ys.extend([low, high, high, low]) xs.append(xdata_[-1]) ys.append(low) ax.fill_between(xs, ys, low, alpha=.6, color=color) def overlay_actions(ymax=1, kw=None): """ Draws indicators that detail the algorithm state at given timestamps. """ phase = metrics_df['phase'].map( lambda x: x.split('_')[0]) is_correct = metrics_df['test_action'].map( lambda x: x.startswith('correct')).values recovering = metrics_df['recovering'].values is_auto = metrics_df['user_id'].map( lambda x: x.startswith('algo:')).values ppos = metrics_df['pred_decision'].map( lambda x: x == POSTV).values rpos = metrics_df['true_decision'].map( lambda x: x == POSTV).values # ymax = max(metrics_df['n_errors']) if kw is None: kw = default_flags num = sum(kw.values()) steps = np.linspace(0, 1, num + 1) * ymax i = -1 def stacked_interval(data, color, i): plot_intervals(data, color, low=steps[i], high=steps[i + 1]) if kw.get('user', False): i += 1 pt.absolute_text((.2, steps[i:i + 2].mean()), 'user(algo=gold,manual=blue)') stacked_interval(is_auto, 'gold', i) stacked_interval(~is_auto, 'blue', i) if kw.get('pred', False): i += 1 pt.absolute_text((.2, steps[i:i + 2].mean()), 'pred_pos') stacked_interval(ppos, 'aqua', low=steps[i], high=steps[i + 1]) # stacked_interval(~ppos, 'salmon', i) if kw.get('real', False): i += 1 pt.absolute_text((.2, steps[i:i + 2].mean()), 'real_merge') stacked_interval(rpos, 'lime', i) # stacked_interval(~ppos, 'salmon', i) if kw.get('error', False): i += 1 pt.absolute_text((.2, steps[i:i + 2].mean()), 'is_error') # stacked_interval(is_correct, 'blue', low=steps[i], high=steps[i + 1]) stacked_interval(~is_correct, 'red', i) if kw.get('recover', False): i += 1 pt.absolute_text((.2, steps[i:i + 2].mean()), 'is_recovering') stacked_interval(recovering, 'orange', i) if kw.get('phase', False): i += 1 pt.absolute_text((.2, steps[i:i + 2].mean()), 'phase(1=yellow, 2=aqua, 3=pink)') stacked_interval(phase == 'ranking', 'yellow', i) stacked_interval(phase == 'posredun', 'aqua', i) stacked_interval(phase == 'negredun', 'pink', i) # stacked_interval(phase == 'ranking', 'red', i) # stacked_interval(phase == 'posredun', 'green', i) # stacked_interval(phase == 'negredun', 'blue', i) def accuracy_plot(xdata, xlabel): ydatas = ut.odict([ ('Graph', metrics_df['merge_remain']), ]) pt.multi_plot( xdata, ydatas, marker='', markersize=1, xlabel=xlabel, ylabel='fraction of merge remaining', ymin=0, rcParams=TMP_RC, use_legend=True, fnum=1, pnum=pnum_(), ) def error_plot(xdata, xlabel): # ykeys = ['n_errors'] ykeys = ['frac_mistake_aids'] pt.multi_plot( xdata, metrics_df[ykeys].values.T, xlabel=xlabel, ylabel='fraction error annots', marker='', markersize=1, ymin=0, rcParams=TMP_RC, fnum=1, pnum=pnum_(), use_legend=False, ) def refresh_plot(xdata, xlabel): pt.multi_plot( xdata, [metrics_df['pprob_any']], label_list=['P(C=1)'], xlabel=xlabel, ylabel='refresh criteria', marker='', ymin=0, ymax=1, rcParams=TMP_RC, fnum=1, pnum=pnum_(), use_legend=False, ) ax = pt.gca() thresh = expt_data['refresh_thresh'] ax.plot([min(xdata), max(xdata)], [thresh, thresh], '-g', label='refresh thresh') ax.legend() def error_breakdown_plot(xdata, xlabel): ykeys = ['n_fn', 'n_fp'] pt.multi_plot( xdata, metrics_df[ykeys].values.T, label_list=ykeys, xlabel=xlabel, ylabel='# of errors', marker='x', markersize=1, ymin=0, rcParams=TMP_RC, ymax=max(metrics_df['n_errors']), fnum=1, pnum=pnum_(), use_legend=True, ) def neg_redun_plot(xdata, xlabel): n_pred = len(sim_results['graph']['pred_ccs']) z = (n_pred * (n_pred - 1)) / 2 metrics_df['p_neg_redun'] = metrics_df['n_neg_redun'] / z metrics_df['p_neg_redun1'] = metrics_df['n_neg_redun1'] / z ykeys = ['p_neg_redun', 'p_neg_redun1'] pt.multi_plot( xdata, metrics_df[ykeys].values.T, label_list=ykeys, xlabel=xlabel, ylabel='% neg-redun-meta-edges', marker='x', markersize=1, ymin=0, rcParams=TMP_RC, ymax=max(metrics_df['p_neg_redun1']), fnum=1, pnum=pnum_(), use_legend=True, ) pnum_ = pt.make_pnum_nextgen(nRows=2, nSubplots=6) # --- ROW 1 --- xdata = metrics_df['n_decision'] xlabel = '# decisions' accuracy_plot(xdata, xlabel) # overlay_actions(1) error_plot(xdata, xlabel) overlay_actions(max(metrics_df['frac_mistake_aids'])) # overlay_actions(max(metrics_df['n_errors'])) # refresh_plot(xdata, xlabel) # overlay_actions(1, {'phase': True}) # error_breakdown_plot(xdata, xlabel) neg_redun_plot(xdata, xlabel) # --- ROW 2 --- xdata = metrics_df['n_manual'] xlabel = '# manual reviews' accuracy_plot(xdata, xlabel) # overlay_actions(1) error_plot(xdata, xlabel) overlay_actions(max(metrics_df['frac_mistake_aids'])) # overlay_actions(max(metrics_df['n_errors'])) # refresh_plot(xdata, xlabel) # overlay_actions(1, {'phase': True}) # error_breakdown_plot(xdata, xlabel) neg_redun_plot(xdata, xlabel) # fpath = join(self.dpath, expt_name + '2' + '.png') # fig = pt.gcf() # NOQA # fig.set_size_inches([W * 1.5, H * 1.1]) # vt.imwrite(fpath, pt.render_figure_to_image(fig, dpi=DPI)) # if ut.get_argflag('--diskshow'): # ut.startfile(fpath) # fig.save_fig # if 1: # pt.figure(fnum=fnum, pnum=(2, 2, 4)) # overlay_actions(ymax=1) pt.set_figtitle(self.dbname) fig = pt.gcf() # NOQA fig.set_size_inches([W * 2, H * 2.5]) fig.suptitle(self.dbname) pt.adjust_subplots(hspace=.25, wspace=.25, fig=fig) fpath = join(self.dpath, 'graphsim2.png') fig.savefig(fpath, dpi=DPI) # vt.imwrite(fpath, pt.render_figure_to_image(fig, dpi=DPI)) if ut.get_argflag('--diskshow'): ut.startfile(fpath) def draw_match_states(): import ibeis infr = ibeis.AnnotInference('PZ_Master1', 'all') if infr.ibs.dbname == 'PZ_Master1': # [UUID('0cb1ebf5-2a4f-4b80-b172-1b449b8370cf'), # UUID('cd644b73-7978-4a5f-b570-09bb631daa75')] chosen = { POSTV: (17095, 17225), NEGTV: (3966, 5080), INCMP: (3197, 8455), } else: infr.reset_feedback('staging') chosen = { POSTV: list(infr.pos_graph.edges())[0], NEGTV: list(infr.neg_graph.edges())[0], INCMP: list(infr.incmp_graph.edges())[0], } import plottool as pt import vtool as vt for key, edge in chosen.items(): match = infr._make_matches_from([edge], config={ 'match_config': {'ratio_thresh': .7}})[0] with pt.RenderingContext(dpi=300) as ctx: match.show(heatmask=True, show_ell=False, show_ori=False, show_lines=False) vt.imwrite('matchstate_' + key + '.jpg', ctx.image) def entropy_potential(infr, u, v, decision): """ Returns the number of edges this edge would invalidate from ibeis.algo.graph import demo infr = demo.demodata_infr(pcc_sizes=[5, 2, 4, 2, 2, 1, 1, 1]) infr.refresh_candidate_edges() infr.params['redun.neg'] = 1 infr.params['redun.pos'] = 1 infr.apply_nondynamic_update() ut.qtensure() infr.show(show_cand=True, groupby='name_label') u, v = 1, 7 decision = 'positive' """ nid1, nid2 = infr.pos_graph.node_labels(u, v) # Cases for K=1 if decision == 'positive' and nid1 == nid2: # The actual reduction is the number previously needed to make the cc # k-edge-connected vs how many its needs now. # In the same CC does nothing # (unless k > 1, in which case check edge connectivity) return 0 elif decision == 'positive' and nid1 != nid2: # Between two PCCs reduces the number of PCCs by one n_ccs = infr.pos_graph.number_of_components() # Find needed negative redundency when appart if infr.neg_redun_metagraph.has_node(nid1): neg_redun_set1 = set(infr.neg_redun_metagraph.neighbors(nid1)) else: neg_redun_set1 = set() if infr.neg_redun_metagraph.has_node(nid2): neg_redun_set2 = set(infr.neg_redun_metagraph.neighbors(nid2)) else: neg_redun_set2 = set() # The number of negative edges needed before we place this edge # is the number of PCCs that each PCC doesnt have a negative edge to # yet n_neg_need1 = (n_ccs - len(neg_redun_set1) - 1) n_neg_need2 = (n_ccs - len(neg_redun_set2) - 1) n_neg_need_before = n_neg_need1 + n_neg_need2 # After we join them we take the union of their negative redundancy # (really we should check if it changes after) # and this is now the new number of negative edges that would be needed neg_redun_after = neg_redun_set1.union(neg_redun_set2) - {nid1, nid2} n_neg_need_after = (n_ccs - 2) - len(neg_redun_after) neg_entropy = n_neg_need_before - n_neg_need_after # NOQA def _find_good_match_states(infr, ibs, edges): pos_edges = list(infr.pos_graph.edges()) timedelta = ibs.get_annot_pair_timedelta(*zip(*edges)) edges = ut.take(pos_edges, ut.argsort(timedelta))[::-1] wgt = infr.qt_edge_reviewer(edges) neg_edges = ut.shuffle(list(infr.neg_graph.edges())) wgt = infr.qt_edge_reviewer(neg_edges) if infr.incomp_graph.number_of_edges() > 0: incmp_edges = list(infr.incomp_graph.edges()) if False: ibs = infr.ibs # a1, a2 = map(ibs.annots, zip(*incmp_edges)) # q1 = np.array(ut.replace_nones(a1.qual, np.nan)) # q2 = np.array(ut.replace_nones(a2.qual, np.nan)) # edges = ut.compress(incmp_edges, # ((q1 > 3) | np.isnan(q1)) & # ((q2 > 3) | np.isnan(q2))) # a = ibs.annots(asarray=True) # flags = [t is not None and 'right' == t for t in a.viewpoint_code] # r = a.compress(flags) # flags = [q is not None and q > 4 for q in r.qual] rights = ibs.filter_annots_general(view='right', minqual='excellent', require_quality=True, require_viewpoint=True) lefts = ibs.filter_annots_general(view='left', minqual='excellent', require_quality=True, require_viewpoint=True) if False: edges = list(infr._make_rankings(3197, rights)) wgt = infr.qt_edge_reviewer(edges) edges = list(ut.random_product((rights, lefts), num=10, rng=0)) wgt = infr.qt_edge_reviewer(edges) for edge in incmp_edges: match = infr._make_matches_from([edge])[0] # infr._debug_edge_gt(edge) def prepare_cdfs(cdfs, labels): cdfs = vt.pad_vstack(cdfs, fill_value=1) # Sort so the best is on top sortx = np.lexsort(cdfs.T[::-1])[::-1] cdfs = cdfs[sortx] labels = ut.take(labels, sortx) return cdfs, labels def plot_cmcs(cdfs, labels, fnum=1, pnum=(1, 1, 1), ymin=.4): cdfs, labels = prepare_cdfs(cdfs, labels) # Truncte to 20 ranks num_ranks = min(cdfs.shape[-1], 20) xdata = np.arange(1, num_ranks + 1) cdfs_trunc = cdfs[:, 0:num_ranks] label_list = ['%6.3f%% - %s' % (cdf[0] * 100, lbl) for cdf, lbl in zip(cdfs_trunc, labels)] # ymin = .4 num_yticks = (10 - int(ymin * 10)) + 1 pt.multi_plot( xdata, cdfs_trunc, label_list=label_list, xlabel='rank', ylabel='match probability', use_legend=True, legend_loc='lower right', num_yticks=num_yticks, ymax=1, ymin=ymin, ypad=.005, xmin=.9, num_xticks=5, xmax=num_ranks + 1 - .5, pnum=pnum, fnum=fnum, rcParams=TMP_RC, ) return pt.gcf() @ut.reloadable_class class VerifierExpt(DBInputs): """ Collect data from experiments to visualize python -m ibeis VerifierExpt.measure all PZ_Master1.GZ_Master1,GIRM_Master1,MantaMatcher,RotanTurtles,humpbacks_fb,LF_ALL python -m ibeis VerifierExpt.measure all GIRM_Master1,PZ_Master1,LF_ALL python -m ibeis VerifierExpt.measure all LF_ALL python -m ibeis VerifierExpt.measure all PZ_Master1 python -m ibeis VerifierExpt.measure all MantaMatcher python -m ibeis VerifierExpt.draw all MantaMatcher python -m ibeis VerifierExpt.draw rerank PZ_Master1 python -m ibeis VerifierExpt.measure all RotanTurtles python -m ibeis VerifierExpt.draw all RotanTurtles Ignore: >>> from ibeis.scripts.postdoc import * >>> fpath = ut.glob(ut.truepath('~/Desktop/mtest_plots'), '*.pkl')[0] >>> self = ut.load_data(fpath) """ # base_dpath = ut.truepath('~/Desktop/pair_expts') base_dpath = ut.truepath('~/latex/crall-iccvw-2017/figures') agg_dbnames = [ 'PZ_Master1', 'GZ_Master1', # 'LF_ALL', 'MantaMatcher', 'RotanTurtles', 'humpbacks_fb', 'GIRM_Master1', ] task_nice_lookup = { 'match_state': const.EVIDENCE_DECISION.CODE_TO_NICE, 'photobomb_state': { 'pb': 'Photobomb', 'notpb': 'Not Photobomb', } } def _setup(self, quick=False): r""" CommandLine: python -m ibeis VerifierExpt._setup --db GZ_Master1 python -m ibeis VerifierExpt._setup --db PZ_Master1 --eval python -m ibeis VerifierExpt._setup --db PZ_MTEST python -m ibeis VerifierExpt._setup --db PZ_PB_RF_TRAIN python -m ibeis VerifierExpt.measure_all --db PZ_PB_RF_TRAIN python -m ibeis VerifierExpt.measure all GZ_Master1 python -m ibeis VerifierExpt.measure all RotanTurtles --show Example: >>> from ibeis.scripts.postdoc import * >>> dbname = ut.get_argval('--db', default='GZ_Master1') >>> self = VerifierExpt(dbname) >>> self._setup() Ignore: from ibeis.scripts.postdoc import * self = VerifierExpt('PZ_Master1') from ibeis.scripts.postdoc import * self = VerifierExpt('PZ_PB_RF_TRAIN') from ibeis.scripts.postdoc import * self = VerifierExpt('LF_ALL') self = VerifierExpt('RotanTurtles') task = pblm.samples.subtasks['match_state'] ind_df = task.indicator_df dist = ibs.get_annotedge_viewdist(ind_df.index.tolist()) np.all(ind_df[dist > 1]['notcomp']) self.ibs.print_annot_stats(aids, prefix='P') """ self._precollect() print('VerifierExpt _setup()') ibs = self.ibs aids = self.aids_pool # pblm = vsone.OneVsOneProblem.from_aids(ibs, aids, sample_method='random') pblm = vsone.OneVsOneProblem.from_aids( ibs, aids, sample_method='lnbnn+random', # sample_method='random', n_splits=10, ) data_key = 'learn(sum)' # tests without global features # data_key = 'learn(sum,glob)' # tests with global features # data_key = pblm.default_data_key # same as learn(sum,glob) clf_key = pblm.default_clf_key pblm.eval_task_keys = ['match_state'] # test with and without globals pblm.eval_data_keys = ['learn(sum)', 'learn(sum,glob)'] # pblm.eval_data_keys = [data_key] pblm.eval_clf_keys = [clf_key] ibs = pblm.infr.ibs # pblm.samples.print_info() species_code = ibs.get_database_species(pblm.infr.aids)[0] if species_code == 'zebra_plains': species = 'Plains Zebras' if species_code == 'zebra_grevys': species = 'Grévy\'s Zebras' else: species = species_code self.pblm = pblm self.species = species self.data_key = data_key self.clf_key = clf_key if quick: return pblm.setup_evaluation(with_simple=True) pblm.report_evaluation() self.eval_task_keys = pblm.eval_task_keys cfg_prefix = '{}'.format(len(pblm.samples)) config = pblm.hyper_params self._setup_links(cfg_prefix, config) print('Finished setup') @classmethod def agg_dbstats(VerifierExpt): """ CommandLine: python -m ibeis VerifierExpt.agg_dbstats python -m ibeis VerifierExpt.measure_dbstats Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.postdoc import * # NOQA >>> result = VerifierExpt.agg_dbstats() >>> print(result) """ dfs = [] for dbname in VerifierExpt.agg_dbnames: self = VerifierExpt(dbname) info = self.ensure_results('dbstats', nocompute=False) sample_info = self.ensure_results('sample_info', nocompute=False) # info = self.measure_dbstats() outinfo = info['outinfo'] task = sample_info['subtasks']['match_state'] y_ind = task.indicator_df outinfo['Positive'] = (y_ind[POSTV]).sum() outinfo['Negative'] = (y_ind[NEGTV]).sum() outinfo['Incomparable'] = (y_ind[INCMP]).sum() if outinfo['Database'] == 'mantas': outinfo['Database'] = 'manta rays' dfs.append(outinfo) # labels.append(self.species_nice.capitalize()) df = pd.DataFrame(dfs) print('df =\n{!r}'.format(df)) df = df.set_index('Database') df.index.name = None tabular = Tabular(df, colfmt='numeric') tabular.theadify = 16 enc_text = tabular.as_tabular() print(enc_text) ut.write_to(join(VerifierExpt.base_dpath, 'agg-dbstats.tex'), enc_text) _ = ut.render_latex(enc_text, dpath=self.base_dpath, fname='agg-dbstats', preamb_extra=['\\usepackage{makecell}']) _ # ut.startfile(_) @classmethod def agg_results(VerifierExpt, task_key): """ python -m ibeis VerifierExpt.agg_results python -m ibeis VerifierExpt.agg_results --link link-paper-final GZ_Master1,LF_ALL,MantaMatcher,RotanTurtles,humpbacks_fb,GIRM_Master1 Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.postdoc import * # NOQA >>> task_key = 'match_state' >>> result = VerifierExpt.agg_results(task_key) >>> print(result) """ VerifierExpt.agg_dbstats() dbnames = VerifierExpt.agg_dbnames all_results = ut.odict([]) for dbname in VerifierExpt.agg_dbnames: self = VerifierExpt(dbname) info = self.ensure_results('all') all_results[dbname] = info rerank_results = ut.odict([]) for dbname in VerifierExpt.agg_dbnames: self = VerifierExpt(dbname) info = self.ensure_results('rerank') rerank_results[dbname] = info rank_curves = ub.AutoOrderedDict() rank1_cmc_table = pd.DataFrame(columns=[LNBNN, CLF]) rank5_cmc_table = pd.DataFrame(columns=[LNBNN, CLF]) n_dbs = len(all_results) color_cycle = mpl.rcParams['axes.prop_cycle'].by_key()['color'][:n_dbs] color_cycle = ['r', 'b', 'purple', 'orange', 'deeppink', 'g'] markers = pt.distinct_markers(n_dbs) dbprops = ub.AutoDict() for n, dbname in enumerate(dbnames): dbprops[dbname]['color'] = color_cycle[n] dbprops[dbname]['marker'] = markers[n] def highlight_metric(metric, data1, data2): # Highlight the bigger one for each metric for d1, d2 in it.permutations([data1, data2], 2): text = '{:.3f}'.format(d1[metric]) if d1[metric] >= d2[metric]: d1[metric + '_tex'] = '\\mathbf{' + text + '}' d1[metric + '_text'] = text + '*' else: d1[metric + '_tex'] = text d1[metric + '_text'] = text for dbname in dbnames: results = all_results[dbname] data_key = results['data_key'] clf_key = results['clf_key'] lnbnn_data = results['lnbnn_data'] task_combo_res = results['task_combo_res'] res = task_combo_res[task_key][clf_key][data_key] nice = dbname_to_species_nice(dbname) # ranking results results = rerank_results[dbname] cdfs, infos = list(zip(*results)) lnbnn_cdf, clf_cdf = cdfs cdfs = { CLF: clf_cdf, LNBNN: lnbnn_cdf, } rank1_cmc_table.loc[nice, LNBNN] = lnbnn_cdf[0] rank1_cmc_table.loc[nice, CLF] = clf_cdf[0] rank5_cmc_table.loc[nice, LNBNN] = lnbnn_cdf[4] rank5_cmc_table.loc[nice, CLF] = clf_cdf[4] # Check the ROC for only things in the top of the LNBNN ranked lists # nums = [1, 2, 3, 4, 5, 10, 20, np.inf] nums = [1, 5, np.inf] for num in nums: ranks = lnbnn_data['rank_lnbnn_1vM'].values sub_data = lnbnn_data[ranks <= num] scores = sub_data['score_lnbnn_1vM'].values y = sub_data[POSTV].values probs = res.probs_df[POSTV].loc[sub_data.index].values cfsm_vsm = vt.ConfusionMetrics().fit(scores, y) cfsm_clf = vt.ConfusionMetrics().fit(probs, y) algo_confusions = { LNBNN: cfsm_vsm, CLF: cfsm_clf } datas = [] for algo in {LNBNN, CLF}: cfms = algo_confusions[algo] data = { 'dbname': dbname, 'species': nice, 'fpr': cfms.fpr, 'tpr': cfms.tpr, 'auc': cfms.auc, 'cmc0': cdfs[algo][0], 'cmc': cdfs[algo], 'color': dbprops[dbname]['color'], 'marker': dbprops[dbname]['marker'], 'tpr@fpr=0': cfms.get_metric_at_metric( 'tpr', 'fpr', 0, tiebreaker='minthresh'), 'thresh@fpr=0': cfms.get_metric_at_metric( 'thresh', 'fpr', 0, tiebreaker='minthresh'), } rank_curves[num][algo][dbname] = data datas.append(data) # Highlight the bigger one for each metric highlight_metric('auc', *datas) highlight_metric('tpr@fpr=0', *datas) highlight_metric('cmc0', *datas) rank_auc_tables = ut.ddict(lambda: pd.DataFrame(columns=[LNBNN, CLF])) rank_tpr_tables = ut.ddict(lambda: pd.DataFrame(columns=[LNBNN, CLF])) rank_tpr_thresh_tables = ut.ddict(lambda: pd.DataFrame(columns=[LNBNN, CLF])) for num in rank_curves.keys(): rank_auc_df = rank_auc_tables[num] rank_auc_df.index.name = 'AUC@rank<={}'.format(num) rank_tpr_df = rank_tpr_tables[num] rank_tpr_df.index.name = 'tpr@fpr=0&rank<={}'.format(num) rank_thesh_df = rank_tpr_thresh_tables[num] rank_thesh_df.index.name = 'thresh@fpr=0&rank<={}'.format(num) for algo in rank_curves[num].keys(): for dbname in rank_curves[num][algo].keys(): data = rank_curves[num][algo][dbname] nice = data['species'] rank_auc_df.loc[nice, algo] = data['auc'] rank_tpr_df.loc[nice, algo] = data['tpr@fpr=0'] rank_thesh_df.loc[nice, algo] = data['thresh@fpr=0'] from utool.experimental.pandas_highlight import to_string_monkey nums = [1] for rank in nums: print('-----') print('AUC at rank = {!r}'.format(rank)) rank_auc_df = rank_auc_tables[rank] print(to_string_monkey(rank_auc_df, 'all')) print('===============') for rank in nums: print('-----') print('TPR at rank = {!r}'.format(rank)) rank_tpr_df = rank_tpr_tables[rank] print(to_string_monkey(rank_tpr_df, 'all')) def _bf_best(df): df = df.copy() for rx in range(len(df)): col = df.iloc[rx] for cx in ut.argmax(col.values, multi=True): val = df.iloc[rx, cx] df.iloc[rx, cx] = '\\mathbf{{{:.3f}}}'.format(val) return df if True: # Tables rank1_auc_table = rank_auc_tables[1] rank1_tpr_table = rank_tpr_tables[1] # all_stats = pd.concat(ut.emap(_bf_best, [auc_table, rank1_cmc_table, rank5_cmc_table]), axis=1) column_parts = [ ('Rank $1$ AUC', rank1_auc_table), ('Rank $1$ TPR', rank1_tpr_table), ('Pos. @ Rank $1$', rank1_cmc_table), ] all_stats = pd.concat(ut.emap( _bf_best, ut.take_column(column_parts, 1)), axis=1) all_stats.index.name = None colfmt = 'l|' + '|'.join(['rr'] * len(column_parts)) multi_header = ( [None] + [(2, 'c|', name) for name in ut.take_column(column_parts, 0)[0:-1]] + [(2, 'c', name) for name in ut.take_column(column_parts, 0)[-1:]] ) from ibeis.scripts import _thesis_helpers tabular = _thesis_helpers.Tabular( all_stats, colfmt=colfmt, escape=False) tabular.add_multicolumn_header(multi_header) tabular.precision = 3 tex_text = tabular.as_tabular() # HACKS import re num_pat = ut.named_field('num', '[0-9]*\.?[0-9]*') tex_text = re.sub(re.escape('\\mathbf{$') + num_pat + re.escape('$}'), '$\\mathbf{' + ut.bref_field('num') + '}$', tex_text) print(tex_text) # tex_text = tex_text.replace('\\mathbf{$', '$\\mathbf{') # tex_text = tex_text.replace('$}', '}$') ut.write_to(join(VerifierExpt.base_dpath, 'agg-results-all.tex'), tex_text) _ = ut.render_latex(tex_text, dpath=VerifierExpt.base_dpath, fname='agg-results-all', preamb_extra=['\\usepackage{makecell}']) # ut.startfile(_) if True: # Tables rank1_auc_table = rank_auc_tables[1] rank1_tpr_table = rank_tpr_tables[1] print('\nrank1_auc_table =\n{}'.format(to_string_monkey(rank1_auc_table, 'all'))) print('\nrank1_tpr_table =\n{}'.format(to_string_monkey(rank1_tpr_table, 'all'))) print('\nrank1_cmc_table =\n{}'.format(to_string_monkey(rank1_cmc_table, 'all'))) # Tables rank1_auc_table = rank_auc_tables[1] rank1_tpr_table = rank_tpr_tables[1] # all_stats = pd.concat(ut.emap(_bf_best, [auc_table, rank1_cmc_table, rank5_cmc_table]), axis=1) column_parts = [ ('Rank $1$ AUC', rank1_auc_table), # ('Rank $1$ TPR', rank1_tpr_table), ('Pos. @ Rank $1$', rank1_cmc_table), ] all_stats = pd.concat(ut.emap( _bf_best, ut.take_column(column_parts, 1)), axis=1) all_stats.index.name = None colfmt = 'l|' + '|'.join(['rr'] * len(column_parts)) multi_header = ( [None] + [(2, 'c|', name) for name in ut.take_column(column_parts, 0)[0:-1]] + [(2, 'c', name) for name in ut.take_column(column_parts, 0)[-1:]] ) from ibeis.scripts import _thesis_helpers tabular = _thesis_helpers.Tabular( all_stats, colfmt=colfmt, escape=False) tabular.add_multicolumn_header(multi_header) tabular.precision = 3 tex_text = tabular.as_tabular() # HACKS import re num_pat = ut.named_field('num', '[0-9]*\.?[0-9]*') tex_text = re.sub(re.escape('\\mathbf{$') + num_pat + re.escape('$}'), '$\\mathbf{' + ut.bref_field('num') + '}$', tex_text) print(tex_text) print(tex_text) # tex_text = tex_text.replace('\\mathbf{$', '$\\mathbf{') # tex_text = tex_text.replace('$}', '}$') ut.write_to(join(VerifierExpt.base_dpath, 'agg-results.tex'), tex_text) _ = ut.render_latex(tex_text, dpath=VerifierExpt.base_dpath, fname='agg-results', preamb_extra=['\\usepackage{makecell}']) _ # ut.startfile(_) method = 2 if method == 2: mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.unicode'] = True # mpl.rcParams['axes.labelsize'] = 12 mpl.rcParams['legend.fontsize'] = 12 mpl.rcParams['xtick.color'] = 'k' mpl.rcParams['ytick.color'] = 'k' mpl.rcParams['axes.labelcolor'] = 'k' # mpl.rcParams['text.color'] = 'k' nums = [1, np.inf] nums = [1] for num in nums: chunked_dbnames = list(ub.chunks(dbnames, 2)) for fnum, dbname_chunk in enumerate(chunked_dbnames, start=1): fig = pt.figure(fnum=fnum) # NOQA fig.clf() ax = pt.gca() for dbname in dbname_chunk: data1 = rank_curves[num][CLF][dbname] data2 = rank_curves[num][LNBNN][dbname] data1['label'] = 'TPR=${tpr}$ {algo} {species}'.format( algo=CLF, tpr=data1['tpr@fpr=0_tex'], species=data1['species']) data1['ls'] = '-' data1['chunk_marker'] = '^' data1['color'] = dbprops[dbname]['color'] data2['label'] = 'TPR=${tpr}$ {algo} {species}'.format( algo=LNBNN, tpr=data2['tpr@fpr=0_tex'], species=data2['species']) data2['ls'] = '--' data2['chunk_marker'] = 'v' data2['color'] = dbprops[dbname]['color'] for d in [data1, data2]: ax.plot(d['fpr'], d['tpr'], d['ls'], color=d['color'], zorder=10) for d in [data1, data2]: ax.plot(0, d['tpr@fpr=0'], d['ls'], marker=d['chunk_marker'], markeredgecolor='k', markersize=8, # fillstyle='none', color=d['color'], label=d['label'], zorder=100) ax.set_xlabel('false positive rate') ax.set_ylabel('true positive rate') ax.set_ylim(0, 1) ax.set_xlim(-.05, .5) # ax.set_title('ROC with ranks $<= {}$'.format(num)) ax.legend(loc='lower right') pt.adjust_subplots(top=.8, bottom=.2, left=.12, right=.9) fig.set_size_inches([W * .7, H]) fname = 'agg_roc_rank_{}_chunk_{}_{}.png'.format(num, fnum, task_key) fig_fpath = join(str(VerifierExpt.base_dpath), fname) vt.imwrite(fig_fpath, pt.render_figure_to_image(fig, dpi=DPI)) chunked_dbnames = list(ub.chunks(dbnames, 2)) for fnum, dbname_chunk in enumerate(chunked_dbnames, start=1): fig = pt.figure(fnum=fnum) # NOQA fig.clf() ax = pt.gca() for dbname in dbname_chunk: data1 = rank_curves[num][CLF][dbname] data2 = rank_curves[num][LNBNN][dbname] data1['label'] = 'pos@rank1=${cmc0}$ {algo} {species}'.format( algo=CLF, cmc0=data1['cmc0_tex'], species=data1['species']) data1['ls'] = '-' data1['chunk_marker'] = '^' data1['color'] = dbprops[dbname]['color'] data2['label'] = 'pos@rank1=${cmc0}$ {algo} {species}'.format( algo=LNBNN, cmc0=data2['cmc0_tex'], species=data2['species']) data2['ls'] = '--' data2['chunk_marker'] = 'v' data2['color'] = dbprops[dbname]['color'] for d in [data1, data2]: ax.plot(d['fpr'], d['tpr'], d['ls'], color=d['color']) for d in [data1, data2]: ax.plot(d['cmc'], d['ls'], # marker=d['chunk_marker'], # markeredgecolor='k', # markersize=8, # fillstyle='none', color=d['color'], label=d['label']) ax.set_xlabel('rank') ax.set_ylabel('match probability') ax.set_ylim(0, 1) ax.set_xlim(1, 20) ax.set_xticks([1, 5, 10, 15, 20]) # ax.set_title('ROC with ranks $<= {}$'.format(num)) ax.legend(loc='lower right') pt.adjust_subplots(top=.8, bottom=.2, left=.12, right=.9) fig.set_size_inches([W * .7, H]) fname = 'agg_cmc_chunk_{}_{}.png'.format(fnum, task_key) fig_fpath = join(str(VerifierExpt.base_dpath), fname) vt.imwrite(fig_fpath, pt.render_figure_to_image(fig, dpi=DPI)) if method == 1: # Does going from rank 1 to rank inf generally improve deltas? # -rank_tpr_tables[np.inf].diff(axis=1) - -rank_tpr_tables[1].diff(axis=1) mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.unicode'] = True # mpl.rcParams['axes.labelsize'] = 12 mpl.rcParams['legend.fontsize'] = 12 mpl.rcParams['xtick.color'] = 'k' mpl.rcParams['ytick.color'] = 'k' mpl.rcParams['axes.labelcolor'] = 'k' # mpl.rcParams['text.color'] = 'k' def method1_roc(roc_curves, algo, other): ax = pt.gca() for dbname in dbnames: data = roc_curves[algo][dbname] ax.plot(data['fpr'], data['tpr'], color=data['color']) for dbname in dbnames: data = roc_curves[algo][dbname] other_data = roc_curves[other][dbname] other_tpr = other_data['tpr@fpr=0'] species = data['species'] tpr = data['tpr@fpr=0'] tpr_text = '{:.3f}'.format(tpr) if tpr >= other_tpr: if mpl.rcParams['text.usetex']: tpr_text = '\\mathbf{' + tpr_text + '}' else: tpr_text = tpr_text + '*' label = 'TPR=${tpr}$ {species}'.format( tpr=tpr_text, species=species) ax.plot(0, data['tpr@fpr=0'], marker=data['marker'], label=label, color=data['color']) if algo: algo = algo.rstrip() + ' ' algo = '' ax.set_xlabel(algo + 'false positive rate') ax.set_ylabel('true positive rate') ax.set_ylim(0, 1) ax.set_xlim(-.005, .5) # ax.set_title('%s ROC for %s' % (target_class.title(), self.species)) ax.legend(loc='lower right') pt.adjust_subplots(top=.8, bottom=.2, left=.12, right=.9) fig.set_size_inches([W * .7, H]) nums = [1, np.inf] # nums = [1] for num in nums: algos = {CLF, LNBNN} for fnum, algo in enumerate(algos, start=1): roc_curves = rank_curves[num] other = next(iter(algos - {algo})) fig = pt.figure(fnum=fnum) # NOQA method1_roc(roc_curves, algo, other) fname = 'agg_roc_rank_{}_{}_{}.png'.format(num, algo, task_key) fig_fpath = join(str(VerifierExpt.base_dpath), fname) vt.imwrite(fig_fpath, pt.render_figure_to_image(fig, dpi=DPI)) # ------------- mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.unicode'] = True mpl.rcParams['xtick.color'] = 'k' mpl.rcParams['ytick.color'] = 'k' mpl.rcParams['axes.labelcolor'] = 'k' mpl.rcParams['text.color'] = 'k' def method1_cmc(cmc_curves): ax = pt.gca() color_cycle = mpl.rcParams['axes.prop_cycle'].by_key()['color'] markers = pt.distinct_markers(len(cmc_curves)) for data, marker, color in zip(cmc_curves.values(), markers, color_cycle): species = data['species'] if mpl.rcParams['text.usetex']: cmc0_text = data['cmc0_tex'] label = 'pos@rank1=${}$ {species}'.format( cmc0_text, species=species) else: cmc0_text = data['cmc0_text'] label = 'pos@rank1={} {species}'.format( cmc0_text, species=species) ranks = np.arange(1, len(data['cmc']) + 1) ax.plot(ranks, data['cmc'], marker=marker, color=color, label=label) ax.set_xlabel('rank') ax.set_ylabel('match probability') ax.set_ylim(0, 1) ax.set_xlim(1, 20) ax.set_xticks([1, 5, 10, 15, 20]) # ax.set_title('%s ROC for %s' % (target_class.title(), self.species)) ax.legend(loc='lower right') pt.adjust_subplots(top=.8, bottom=.2, left=.12, right=.9) fig.set_size_inches([W * .7, H]) fig = pt.figure(fnum=1) # NOQA # num doesnt actually matter here num = 1 cmc_curves = rank_curves[num][CLF] method1_cmc(cmc_curves) fname = 'agg_cmc_clf_{}.png'.format(task_key) fig_fpath = join(str(VerifierExpt.base_dpath), fname) vt.imwrite(fig_fpath, pt.render_figure_to_image(fig, dpi=DPI)) fig = pt.figure(fnum=2) # NOQA cmc_curves = rank_curves[num][LNBNN] method1_cmc(cmc_curves) fname = 'agg_cmc_lnbnn_{}.png'.format(task_key) fig_fpath = join(str(VerifierExpt.base_dpath), fname) vt.imwrite(fig_fpath, pt.render_figure_to_image(fig, dpi=DPI)) if True: # Agg metrics agg_y_pred = [] agg_y_true = [] agg_sample_weight = [] agg_class_names = None for dbname, results in all_results.items(): task_combo_res = results['task_combo_res'] res = task_combo_res[task_key][clf_key][data_key] res.augment_if_needed() y_true = res.y_test_enc incmp_enc = ut.aslist(res.class_names).index(INCMP) if sum(y_true == incmp_enc) < 500: continue # Find auto thresholds print('-----') print('dbname = {!r}'.format(dbname)) for k in range(res.y_test_bin.shape[1]): class_k_truth = res.y_test_bin.T[k] class_k_probs = res.clf_probs.T[k] cfms_ovr = vt.ConfusionMetrics().fit(class_k_probs, class_k_truth) # auc = sklearn.metrics.roc_auc_score(class_k_truth, class_k_probs) state = res.class_names[k] # for state, cfms_ovr in res.confusions_ovr(): if state == POSTV: continue tpr = cfms_ovr.get_metric_at_metric( 'tpr', 'fpr', 0, tiebreaker='minthresh') # thresh = cfsm_scores_rank.get_metric_at_metric( # 'thresh', 'fpr', 0, tiebreaker='minthresh') print('state = {!r}'.format(state)) print('tpr = {:.3f}'.format(tpr)) print('+--') print('-----') # aggregate results y_pred = res.clf_probs.argmax(axis=1) agg_y_true.extend(y_true.tolist()) agg_y_pred.extend(y_pred.tolist()) agg_sample_weight.extend(res.sample_weight.tolist()) assert (agg_class_names is None or agg_class_names == res.class_names), ( 'classes are inconsistent') agg_class_names = res.class_names from ibeis.algo.verif import sklearn_utils agg_report = sklearn_utils.classification_report2( agg_y_true, agg_y_pred, agg_class_names, agg_sample_weight, verbose=False) metric_df = agg_report['metrics'] confusion_df = agg_report['confusion'] # multiclass_mcc = agg_report['mcc'] # df.loc['combined', 'MCC'] = multiclass_mcc multiclass_mcc = agg_report['mcc'] metric_df.loc['combined', 'mcc'] = multiclass_mcc print(metric_df) print(confusion_df) dpath = str(self.base_dpath) confusion_fname = 'agg_confusion_{}'.format(task_key) metrics_fname = 'agg_eval_metrics_{}'.format(task_key) # df = self.task_confusion[task_key] df = confusion_df.copy() df = df.rename_axis(self.task_nice_lookup[task_key], 0) df = df.rename_axis(self.task_nice_lookup[task_key], 1) df.columns.name = None df.index.name = 'Real' colfmt = '|l|' + 'r' * (len(df) - 1) + '|l|' tabular = Tabular(df, colfmt=colfmt, hline=True) tabular.groupxs = [list(range(len(df) - 1)), [len(df) - 1]] tabular.add_multicolumn_header([None, (3, 'c|', 'Predicted'), None]) latex_str = tabular.as_tabular() sum_pred = df.index[-1] sum_real = df.columns[-1] latex_str = latex_str.replace(sum_pred, r'$\sum$ predicted') latex_str = latex_str.replace(sum_real, r'$\sum$ real') confusion_tex = ut.align(latex_str, '&', pos=None) print(confusion_tex) ut.render_latex(confusion_tex, dpath=self.base_dpath, fname=confusion_fname) df = metric_df # df = self.task_metrics[task_key] df = df.rename_axis(self.task_nice_lookup[task_key], 0) df = df.rename_axis({'mcc': 'MCC'}, 1) df = df.rename_axis({'combined': 'Combined'}, 1) df = df.drop(['markedness', 'bookmaker', 'fpr'], axis=1) df.index.name = None df.columns.name = None df['support'] = df['support'].astype(np.int) df.columns = ut.emap(upper_one, df.columns) import re tabular = Tabular(df, colfmt='numeric') top, header, mid, bot = tabular.as_parts() lines = mid[0].split('\n') newmid = [lines[0:-1], lines[-1:]] tabular.parts = (top, header, newmid, bot) latex_str = tabular.as_tabular() latex_str = re.sub(' -0.00 ', ' 0.00 ', latex_str) metrics_tex = latex_str print(metrics_tex) confusion_tex = confusion_tex.replace('Incomparable', 'Incomp.') confusion_tex = confusion_tex.replace('predicted', 'pred') metrics_tex = metrics_tex.replace('Incomparable', 'Incomp.') ut.write_to(join(dpath, confusion_fname + '.tex'), confusion_tex) ut.write_to(join(dpath, metrics_fname + '.tex'), metrics_tex) ut.render_latex(confusion_tex, dpath=dpath, fname=confusion_fname) ut.render_latex(metrics_tex, dpath=dpath, fname=metrics_fname) old_cmc = rank1_cmc_table[LNBNN] new_cmc = rank1_cmc_table[CLF] cmc_diff = new_cmc - old_cmc cmc_change = cmc_diff / old_cmc improved = cmc_diff > 0 print('{} / {} datasets saw CMC improvement'.format(sum(improved), len(cmc_diff))) print('CMC average absolute diff: {}'.format(cmc_diff.mean())) print('CMC average percent change: {}'.format(cmc_change.mean())) print('Average AUC:\n{}'.format(rank1_auc_table.mean(axis=0))) print('Average TPR:\n{}'.format(rank1_tpr_table.mean(axis=0))) old_tpr = rank1_tpr_table[LNBNN] new_tpr = rank1_tpr_table[CLF] tpr_diff = new_tpr - old_tpr tpr_change = tpr_diff / old_tpr improved = tpr_diff > 0 print('{} / {} datasets saw TPR improvement'.format(sum(improved), len(tpr_diff))) print('TPR average absolute diff: {}'.format(tpr_diff.mean())) print('TPR average percent change: {}'.format(tpr_change.mean())) @profile def measure_dbstats(self): """ python -m ibeis VerifierExpt.measure dbstats GZ_Master1 python -m ibeis VerifierExpt.measure dbstats PZ_Master1 python -m ibeis VerifierExpt.measure dbstats MantaMatcher python -m ibeis VerifierExpt.measure dbstats RotanTurtles Ignore: >>> from ibeis.scripts.postdoc import * >>> #self = VerifierExpt('GZ_Master1') >>> self = VerifierExpt('MantaMatcher') """ if self.ibs is None: self._precollect() ibs = self.ibs # self.ibs.print_annot_stats(self.aids_pool) # encattr = 'static_encounter' encattr = 'encounter_text' # encattr = 'aids' annots = ibs.annots(self.aids_pool) encounters = annots.group2(getattr(annots, encattr)) nids = ut.take_column(encounters.nids, 0) nid_to_enc = ut.group_items(encounters, nids) single_encs = {nid: e for nid, e in nid_to_enc.items() if len(e) == 1} multi_encs = {nid: self.ibs._annot_groups(e) for nid, e in nid_to_enc.items() if len(e) > 1} multi_annots = ibs.annots(ut.flatten(ut.flatten(multi_encs.values()))) single_annots = ibs.annots(ut.flatten(ut.flatten(single_encs.values()))) def annot_stats(annots, encattr): encounters = annots.group2(getattr(annots, encattr)) nid_to_enc = ut.group_items( encounters, ut.take_column(encounters.nids, 0)) nid_to_nenc = ut.map_vals(len, nid_to_enc) n_enc_per_name = list(nid_to_nenc.values()) n_annot_per_enc = ut.lmap(len, encounters) enc_deltas = [] for encs_ in nid_to_enc.values(): times = [np.mean(a.image_unixtimes_asfloat) for a in encs_] for tup in ut.combinations(times, 2): delta = max(tup) - min(tup) enc_deltas.append(delta) # pass # delta = times.max() - times.min() # enc_deltas.append(delta) annot_info = ut.odict() annot_info['n_names'] = len(nid_to_enc) annot_info['n_annots'] = len(annots) annot_info['n_encs'] = len(encounters) annot_info['enc_time_deltas'] = ut.get_stats(enc_deltas) annot_info['n_enc_per_name'] = ut.get_stats(n_enc_per_name) annot_info['n_annot_per_enc'] = ut.get_stats(n_annot_per_enc) # print(ut.repr4(annot_info, si=True, nl=1, precision=2)) return annot_info enc_info = ut.odict() enc_info['all'] = annot_stats(annots, encattr) del enc_info['all']['enc_time_deltas'] enc_info['multi'] = annot_stats(multi_annots, encattr) enc_info['single'] = annot_stats(single_annots, encattr) del enc_info['single']['n_encs'] del enc_info['single']['n_enc_per_name'] del enc_info['single']['enc_time_deltas'] qual_info = ut.dict_hist(annots.quality_texts) qual_info['None'] = qual_info.pop('UNKNOWN', 0) qual_info['None'] += qual_info.pop(None, 0) view_info = ut.dict_hist(annots.viewpoint_code) view_info['None'] = view_info.pop('unknown', 0) view_info['None'] += view_info.pop(None, 0) info = ut.odict([]) info['species_nice'] = self.species_nice info['enc'] = enc_info info['qual'] = qual_info info['view'] = view_info print('Annotation Pool DBStats') print(ut.repr4(info, si=True, nl=3, precision=2)) def _ave_str2(d): try: return ave_str(*ut.take(d, ['mean', 'std'])) except Exception: return 0 outinfo = ut.odict([ ('Database', info['species_nice']), ('Annots', enc_info['all']['n_annots']), ('Names (singleton)', enc_info['single']['n_names']), ('Names (resighted)', enc_info['multi']['n_names']), ('Enc per name (resighted)', _ave_str2(enc_info['multi']['n_enc_per_name'])), ('Annots per encounter', _ave_str2(enc_info['all']['n_annot_per_enc'])), ]) info['outinfo'] = outinfo df = pd.DataFrame([outinfo]) df = df.set_index('Database') df.index.name = None df.index = ut.emap(upper_one, df.index) tabular = Tabular(df, colfmt='numeric') tabular.theadify = 16 enc_text = tabular.as_tabular() print(enc_text) # ut.render_latex(enc_text, dpath=self.dpath, fname='dbstats', # preamb_extra=['\\usepackage{makecell}']) # ut.startfile(_) # expt_name = ut.get_stack_frame().f_code.co_name.replace('measure_', '') expt_name = 'dbstats' self.expt_results[expt_name] = info ut.ensuredir(self.dpath) ut.save_data(join(self.dpath, expt_name + '.pkl'), info) return info def measure_all(self): r""" CommandLine: python -m ibeis VerifierExpt.measure all GZ_Master1,MantaMatcher,RotanTurtles,LF_ALL python -m ibeis VerifierExpt.measure all GZ_Master1 Ignore: from ibeis.scripts.postdoc import * self = VerifierExpt('PZ_MTEST') self.measure_all() """ self._setup() pblm = self.pblm expt_name = 'sample_info' results = { 'graph': pblm.infr.graph, 'aid_pool': self.aids_pool, 'pblm_aids': pblm.infr.aids, 'encoded_labels2d': pblm.samples.encoded_2d(), 'subtasks': pblm.samples.subtasks, 'multihist': pblm.samples.make_histogram(), } self.expt_results[expt_name] = results ut.save_data(join(str(self.dpath), expt_name + '.pkl'), results) # importance = { # task_key: pblm.feature_importance(task_key=task_key) # for task_key in pblm.eval_task_keys # } task = pblm.samples['match_state'] scores = pblm.samples.simple_scores['score_lnbnn_1vM'] lnbnn_ranks = pblm.samples.simple_scores['rank_lnbnn_1vM'] y = task.indicator_df[task.default_class_name] lnbnn_data = pd.concat([scores, lnbnn_ranks, y], axis=1) results = { 'lnbnn_data': lnbnn_data, 'task_combo_res': self.pblm.task_combo_res, # 'importance': importance, 'data_key': self.data_key, 'clf_key': self.clf_key, } expt_name = 'all' self.expt_results[expt_name] = results ut.save_data(join(str(self.dpath), expt_name + '.pkl'), results) task_key = 'match_state' self.measure_hard_cases(task_key) self.measure_dbstats() self.measure_rerank() if ut.get_argflag('--draw'): self.draw_all() def draw_all(self): r""" CommandLine: python -m ibeis VerifierExpt.draw_all --db PZ_MTEST python -m ibeis VerifierExpt.draw_all --db PZ_PB_RF_TRAIN python -m ibeis VerifierExpt.draw_all --db GZ_Master1 python -m ibeis VerifierExpt.draw_all --db PZ_Master1 Example: >>> from ibeis.scripts.postdoc import * >>> dbname = ut.get_argval('--db', default='PZ_MTEST') >>> dbnames = ut.get_argval('--dbs', type_=list, default=[dbname]) >>> for dbname in dbnames: >>> print('dbname = %r' % (dbname,)) >>> self = VerifierExpt(dbname) >>> self.draw_all() """ results = self.ensure_results('all') eval_task_keys = set(results['task_combo_res'].keys()) print('eval_task_keys = {!r}'.format(eval_task_keys)) task_key = 'match_state' if ut.get_argflag('--cases'): self.draw_hard_cases(task_key) self.write_sample_info() self.draw_roc(task_key) self.draw_rerank() self.write_metrics(task_key) self.draw_class_score_hist() self.draw_mcc_thresh(task_key) def draw_roc(self, task_key='match_state'): """ python -m ibeis VerifierExpt.draw roc GZ_Master1 photobomb_state python -m ibeis VerifierExpt.draw roc GZ_Master1 match_state python -m ibeis VerifierExpt.draw roc PZ_MTEST """ mpl.rcParams.update(TMP_RC) results = self.ensure_results('all') data_key = results['data_key'] clf_key = results['clf_key'] task_combo_res = results['task_combo_res'] lnbnn_data = results['lnbnn_data'] task_key = 'match_state' scores = lnbnn_data['score_lnbnn_1vM'].values y = lnbnn_data[POSTV].values # task_key = 'match_state' target_class = POSTV res = task_combo_res[task_key][clf_key][data_key] cfsm_vsm = vt.ConfusionMetrics().fit(scores, y) cfsm_clf = res.confusions(target_class) roc_curves = [ {'label': LNBNN, 'fpr': cfsm_vsm.fpr, 'tpr': cfsm_vsm.tpr, 'auc': cfsm_vsm.auc}, {'label': CLF, 'fpr': cfsm_clf.fpr, 'tpr': cfsm_clf.tpr, 'auc': cfsm_clf.auc}, ] rank_clf_roc_curve = ut.ddict(list) rank_lnbnn_roc_curve = ut.ddict(list) roc_info_lines = [] # Check the ROC for only things in the top of the LNBNN ranked lists if True: rank_auc_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib matplotlib.rcParams['lines.linewidth'] = 3 import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import RandomForestRegressor from sklearn.decomposition import PCA from scipy.cluster import hierarchy from scipy.cluster.hierarchy import dendrogram, linkage, fcluster, set_link_color_palette from scipy.spatial.distance import pdist def compute_feature_importance(resistance_data, run_RF=False): """Predict resistance profiles from expression profiles and raise important genes for the Random Forest regression. When run_RF=False, the already filtered expression data is used.""" if run_RF: expression = pd.read_excel('./PATH_TO_TABLES3/Table S3. Transcriptome data of evolved strains.xlsx', index_col=0, skiprows=1) X = expression.T.iloc[:-4, :] # exclude the parent strains from the feature matrix X y = resistance_data.reindex(X.index) # Random Forest regression using hyperparameters defined by grid search RF_reg = RandomForestRegressor(n_estimators=300, max_depth=18, random_state=42) RF_reg.fit(X, y) df = expression.iloc[np.argsort(RF_reg.feature_importances_)[::-1],:].T # sort genes based on its importance df.to_pickle('./filtered_expression.pkl') else: df = pd.read_pickle('./data/filtered_expression.pkl') return df def create_dendrogram(df_pca, plot_figure=False): """Hierarchical clustering in the supervised PCA space.""" linked = linkage(pdist(df_pca[:-4],metric='euclidean'), 'ward', optimal_ordering=False) leave_array = hierarchy.leaves_list(linked) leave_array = leave_array[leave_array<192] strain_names = df_pca.index.tolist()[:-4] strain_h = [strain_names[leave_array[i]] for i in range(len(leave_array))] hierarchy2 = fcluster(linked, t=15, criterion='maxclust') # cluster number is set to 15 if plot_figure: color_list = ['#035ea2']*11 hierarchy.set_link_color_palette(color_list) plt.figure(figsize=(40,3)) ax = plt.axes() dn = dendrogram(linked,color_threshold=4.4835,labels=df_pca.index[:-4],#distance_sort='descending', above_threshold_color='grey',leaf_rotation=90,get_leaves=True,distance_sort=True, leaf_font_size=8 ) plt.yticks([]) for j,strain_ in enumerate(strain_h): plt.text((j+0.15)/len(strain_h),-0.008,s=strain_,fontsize=13, color ='black', transform=ax.transAxes,verticalalignment='top',rotation=90, weight='normal') plt.axis('off') #plt.savefig('FigS3_A.pdf', dpi=400, bbox_inches='tight') plt.show() return strain_h, hierarchy2 def plot_resistance(resistance_data, strain_h): # hierarchical clustering of stresses custom_cmap = sns.diverging_palette(252,18,s=99,l=52,sep=10,center='light',as_cmap=True) # sorting of strains based on the hierarchical clustering in the supervised PCA space stress_order = list(np.load('./data/stress_list_MAGE_order.npy')) # order of stresses based on mutant strain analysis cl_resistance = resistance_data.reindex(strain_h).T cl_resistance = cl_resistance.reindex(stress_order) fig = plt.figure(figsize=(40,14)) ax = plt.axes() mic_map = ax.imshow(cl_resistance, aspect=1.36, cmap=custom_cmap, clim=(-3,3)) cb = fig.colorbar(mic_map, extend='both', orientation='horizontal',ticks=[-3,3],aspect=3, shrink=0.04,use_gridspec=False,anchor=(0.855,1.45)) cb.ax.set_xticklabels(cb.ax.get_xticklabels(), fontsize=25) for j,stress_ in enumerate(stress_order): plt.text(-0.005, (len(stress_order)-j-0.8)/len(stress_order), s=stress_,fontsize=13, color ='black', transform=ax.transAxes, horizontalalignment='right', weight='normal') plt.xlim(-0.5,191.6) plt.axis('off') for j,strain_ in enumerate(strain_h): plt.text((j+0.15)/len(strain_h), -0.005, s=strain_, fontsize=10, color ='black', transform=ax.transAxes,verticalalignment='top',rotation=90, weight='normal') #plt.savefig('Fig3_C.pdf', dpi=400, bbox_inches='tight') plt.show() resistance_data =
pd.read_csv('./data/resistance_norm.csv', index_col=0)
pandas.read_csv
import threading import time import numpy as np from brainflow.board_shim import BoardShim, BrainFlowInputParams, BoardIds import pandas as pd import tkinter as tk from tkinter import filedialog from queue import Queue from threading import Thread import streamlit as st from streamlit.scriptrunner import add_script_run_ctx class Client(): def __init__(self, datatype): self.params = BrainFlowInputParams() self.params.serial_port = 'com3' self.params.board_id = 0 self.board = BoardShim(0, self.params) self.datatype = datatype self.file_path = None self.fake_matrix = None self.df = None self.fake_df = None self.times_to_go_over = 0 def collect_data(self, datatype): if datatype == 'real': start_real = Real(self) start_real.collect_data_live() else: start_fake = Fake(self) self.file_path = start_fake.choose_file() self.fake_matrix = start_fake.read_file() self.times_to_go_over = start_fake.passes_calc() return self.fake_matrix, self.times_to_go_over def real_data_collection(self): start_real = Real(self) m = start_real.read_data() for i in range(10): time.sleep(1) d = start_real.read_data() m = np.append(m, d, axis=1) return m class Real(Client): pass def start_stream(self): self.board.prepare_session() self.board.start_stream() def read_data(self): data = self.board.get_board_data() return data def stop_stream(self): self.board.stop_stream() self.board.release_session() class Fake(Client): def choose_file(self): root = tk.Tk() root.withdraw() self.file_path = filedialog.askopenfilename() return self.file_path def read_file(self): self.df = pd.read_csv(self.file_path, sep=" ", header=None, names=["samples", "channel 1", "channel 2", "channel 3", "channel 4", "channel 5"]) return self.df def passes_calc(self): rows = len(self.df.index) self.times_to_go_over = int(np.floor(rows / 256)) return self.times_to_go_over def the_data(datatype, out_q): if datatype == 'real': start_real = Real(datatype) start_real.start_stream() counter = 0 time.sleep(1) while counter < 600: d = start_real.read_data() A = pd.DataFrame(d) A = A.transpose() out_q.put(A) counter += 1 if datatype == 'fake': fake_matrix = Client(datatype) the_fake_matrix, passes = fake_matrix.collect_data(datatype) time.sleep(1) for i in range(passes): temp_df = the_fake_matrix[i * 256:i * 256 + 256] out_q.put(temp_df) def get_all_queue_result(queue): result_list = [] while not queue.empty(): result_list.append(queue.get()) return result_list def testing_queue(in_q, all_data): while True: time.sleep(5) temporary_df = pd.DataFrame() for i in range(in_q.qsize()): temporary_df = pd.concat([temporary_df, in_q.get()]) all_data =
pd.concat([all_data, temporary_df], axis=0)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import pandas as pd import sqlite3 as sql def eda_preprocessing(): #database= "AIAP/data/score.db" database = "data/score.db" connection =sql.connect(database) query = '''SELECT * FROM score''' df =
pd.read_sql_query(query,connection)
pandas.read_sql_query
# coding: utf-8 # # Finding Donors for *CharityML* # CharityML is a fictitious charity organization located in the heart of Silicon Valley that was established to provide financial support for people eager to learn machine learning. After nearly 32,000 letters were sent to people in the community, CharityML determined that every donation they received came from someone that was making more than $50,000 annually. To expand their potential donor base, CharityML has decided to send letters to residents of California, but to only those most likely to donate to the charity. With nearly 15 million working Californians, CharityML has brought you on board to help build an algorithm to best identify potential donors and reduce overhead cost of sending mail. Your goal will be evaluate and optimize several different supervised learners to determine which algorithm will provide the highest donation yield while also reducing the total number of letters being sent. # ## Credits # # This notebook is a part of my learning path based on [Data Scientist Nanodegree Program](https://eu.udacity.com/course/data-scientist-nanodegree--nd025) enrollment. # ## Getting Started # # In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features. # # The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Census+Income). The datset was donated by <NAME> and <NAME>, after being published in the article _"Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid"_. You can find the article by <NAME> [online](https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf). The data we investigate here consists of small changes to the original dataset, such as removing the `'fnlwgt'` feature and records with missing or ill-formatted entries. # ---- # ## Exploring the Data # Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, `'income'`, will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database. # In[2]: # Import libraries necessary for this project import numpy as np import pandas as pd from time import time from IPython.display import display # Allows the use of display() for DataFrames # Import supplementary visualization code visuals.py import scripts.visuals as vs # Pretty display for notebooks get_ipython().run_line_magic('matplotlib', 'inline') # Load the Census dataset data = pd.read_csv("../../data/census.csv") # Success - Display the first record display(data.head(n=1)) # ### Implementation: Data Exploration # A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000. In the code cell below, you will need to compute the following: # - The total number of records, `'n_records'` # - The number of individuals making more than \$50,000 annually, `'n_greater_50k'`. # - The number of individuals making at most \$50,000 annually, `'n_at_most_50k'`. # - The percentage of individuals making more than \$50,000 annually, `'greater_percent'`. # # ** HINT: ** You may need to look at the table above to understand how the `'income'` entries are formatted. # In[2]: # TODO: Total number of records n_records = data.shape[0] # TODO: Number of records where individual's income is more than $50,000 n_greater_50k = data[data["income"] == ">50K"].shape[0] # TODO: Number of records where individual's income is at most $50,000 n_at_most_50k = data[data["income"] == "<=50K"].shape[0] # TODO: Percentage of individuals whose income is more than $50,000 greater_percent = n_greater_50k/n_records * 100 # Print the results print("Total number of records: {}".format(n_records)) print("Individuals making more than $50,000: {}".format(n_greater_50k)) print("Individuals making at most $50,000: {}".format(n_at_most_50k)) print("Percentage of individuals making more than $50,000: {}%".format(greater_percent)) # It is clear that the 2 classes (individuals with income > \$50k = 11208 and individuals with income atmost \$50k = 34014) are imbalanced. Please check this [link](https://www.quora.com/In-classification-how-do-you-handle-an-unbalanced-training-set) to understand how to deal with imbalanced data. # ** Featureset Exploration ** # # * **age**: continuous. # * **workclass**: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. # * **education**: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. # * **education-num**: continuous. # * **marital-status**: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse. # * **occupation**: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. # * **relationship**: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. # * **race**: Black, White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other. # * **sex**: Female, Male. # * **capital-gain**: continuous. # * **capital-loss**: continuous. # * **hours-per-week**: continuous. # * **native-country**: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. # ---- # ## Preparing the Data # Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as **preprocessing**. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms. # ### Transforming Skewed Continuous Features # A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: '`capital-gain'` and `'capital-loss'`. # # Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed. # In[3]: # Split the data into features and target label income_raw = data['income'] features_raw = data.drop('income', axis = 1) # Visualize skewed continuous features of original data vs.distribution(data) # For highly-skewed feature distributions such as `'capital-gain'` and `'capital-loss'`, it is common practice to apply a <a href="https://en.wikipedia.org/wiki/Data_transformation_(statistics)">logarithmic transformation</a> on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of `0` is undefined, so we must translate the values by a small amount above `0` to apply the the logarithm successfully. # # Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed. # In[4]: # Log-transform the skewed features skewed = ['capital-gain', 'capital-loss'] features_log_transformed = pd.DataFrame(data = features_raw) features_log_transformed[skewed] = features_raw[skewed].apply(lambda x: np.log(x + 1)) # Visualize the new log distributions vs.distribution(features_log_transformed, transformed = True) # ### Normalizing Numerical Features # In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as `'capital-gain'` or `'capital-loss'` above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below. # # Run the code cell below to normalize each numerical feature. We will use [`sklearn.preprocessing.MinMaxScaler`](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html) for this. # In[5]: # Import sklearn.preprocessing.StandardScaler from sklearn.preprocessing import MinMaxScaler # Initialize a scaler, then apply it to the features scaler = MinMaxScaler() # default=(0, 1) numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] features_log_minmax_transform = pd.DataFrame(data = features_log_transformed) features_log_minmax_transform[numerical] = scaler.fit_transform(features_log_transformed[numerical]) # Show an example of a record with scaling applied display(features_log_minmax_transform.head(n = 5)) # ### Implementation: Data Preprocessing # # From the table in **Exploring the Data** above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called *categorical variables*) be converted. One popular way to convert categorical variables is by using the **one-hot encoding** scheme. One-hot encoding creates a _"dummy"_ variable for each possible category of each non-numeric feature. For example, assume `someFeature` has three possible entries: `A`, `B`, or `C`. We then encode this feature into `someFeature_A`, `someFeature_B` and `someFeature_C`. # # | | someFeature | | someFeature_A | someFeature_B | someFeature_C | # | :-: | :-: | | :-: | :-: | :-: | # | 0 | B | | 0 | 1 | 0 | # | 1 | C | ----> one-hot encode ----> | 0 | 0 | 1 | # | 2 | A | | 1 | 0 | 0 | # # Additionally, as with the non-numeric features, we need to convert the non-numeric target label, `'income'` to numerical values for the learning algorithm to work. Since there are only two possible categories for this label ("<=50K" and ">50K"), we can avoid using one-hot encoding and simply encode these two categories as `0` and `1`, respectively. In code cell below, you will need to implement the following: # - Use [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummies#pandas.get_dummies) to perform one-hot encoding on the `'features_log_minmax_transform'` data. # - Convert the target label `'income_raw'` to numerical entries. # - Set records with "<=50K" to `0` and records with ">50K" to `1`. # In[6]: # TODO: One-hot encode the 'features_log_minmax_transform' data using pandas.get_dummies() features_final =
pd.get_dummies(features_log_minmax_transform)
pandas.get_dummies
import numpy as np np.random.seed(1234) import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler import torch.optim as optim import argparse import time from sklearn.metrics import mean_absolute_error from scipy.stats import pearsonr from sklearn.metrics import f1_score, confusion_matrix, accuracy_score,\ classification_report, precision_recall_fscore_support from sklearn.metrics import precision_score, recall_score, roc_auc_score from model import BiModel, Model, MaskedNLLLoss from collections import OrderedDict import pandas as pd #from model import AVECModel, MaskedMSELoss from dataloader import CallHomeDataset def get_train_valid_sampler(trainset, valid=0.1): size = len(trainset) idx = range(size) split = int(valid*size) return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split]) def get_CallHome_loaders(path, stance, batch_size=32, valid=None, num_workers=0, pin_memory=False, acproject=False, acfset="eGeMAPSv01a"): devset = CallHomeDataset(path=path, stance=stance, part="dev", acproject=acproject, acfset=acfset) testset = CallHomeDataset(path=path, stance=stance, part="eval", acproject=acproject, acfset=acfset) trainset = CallHomeDataset(path=path, stance=stance, part="train", acproject=acproject, acfset=acfset) train_loader = DataLoader(trainset, batch_size=batch_size, #sampler=train_sampler, shuffle=True, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) valid_loader = DataLoader(devset, batch_size=batch_size, #sampler=valid_sampler, shuffle=True, collate_fn=devset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) #testset = AVECDataset(path=path, train=False) test_loader = DataLoader(testset, batch_size=batch_size, collate_fn=testset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) return train_loader, valid_loader, test_loader def get_AVEC_loaders(path, batch_size=32, valid=None, num_workers=0, pin_memory=False): trainset = AVECDataset(path=path) train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid) train_loader = DataLoader(trainset, batch_size=batch_size, sampler=train_sampler, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) valid_loader = DataLoader(trainset, batch_size=batch_size, sampler=valid_sampler, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) testset = AVECDataset(path=path, train=False) test_loader = DataLoader(testset, batch_size=batch_size, collate_fn=testset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) return train_loader, valid_loader, test_loader def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, train=False): losses = [] preds = [] probs = [] labels = [] masks = [] alphas, alphas_f, alphas_b, metas = [], [], [], [] assert not train or optimizer!=None if train: model.train() else: model.eval() for data in dataloader: if train: optimizer.zero_grad() # import ipdb;ipdb.set_trace() ## get batch features textf, acouf, qmask, umask, label, metadf =\ [d.cuda() for d in data] if cuda else data # [d.cuda() for d in data[:-1]] if cuda else data[:-1] ## qmask is the speakers ## umask is the sequence mask #log_prob = model(torch.cat((textf,acouf,visuf),dim=-1), qmask,umask) # seq_len, batch, n_classes log_prob, alpha, alpha_f, alpha_b = model(textf, qmask, umask) # seq_len, batch, n_classes #print("log prob", log_prob.shape) lp_ = log_prob.transpose(0,1).contiguous().view(-1,log_prob.size()[2]) # batch*seq_len, n_classes ## predictions are now batch first, but mask is seq first #print("lp_", lp_.shape) labels_ = label.view(-1) # batch*seq_len currmask = umask.transpose(0,1).contiguous() #.view(-1) #loss = loss_function(lp_, labels_, umask) loss = loss_function(lp_, labels_, currmask) pred_ = torch.argmax(lp_,1) # batch*seq_len preds.append(pred_.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) currmask = currmask.view(-1) #print("currmask", currmask.shape) #masks.append(umask.view(-1).cpu().numpy()) masks.append(currmask.cpu().numpy()) #print(masks) #raise SystemExit probs.append(lp_.data.cpu().numpy()) #print(metadf.shape) metas.append(metadf.view(-1)) #print(metas[-1].shape) losses.append(loss.item()*masks[-1].sum()) if train: loss.backward() if args.tensorboard: for param in model.named_parameters(): writer.add_histogram(param[0], param[1].grad, epoch) optimizer.step() else: alphas += alpha alphas_f += alpha_f alphas_b += alpha_b if preds!=[]: preds = np.concatenate(preds) probs = np.concatenate(probs) labels = np.concatenate(labels) masks = np.concatenate(masks) metas = np.concatenate(metas) # print(probs.shape) # print(metas.shape) else: return float('nan'), float('nan'), [], [], [], float('nan'),[] ## Are these the wrong masks? avg_loss = round(np.sum(losses)/np.sum(masks),4) avg_accuracy = round(accuracy_score(labels,preds,sample_weight=masks)*100,2) avg_fscore = round(f1_score(labels,preds,sample_weight=masks,average='weighted')*100,2) return avg_loss, avg_accuracy, labels, preds, probs, masks, avg_fscore, metas, [alphas, alphas_f, alphas_b] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--no-cuda', action='store_true', default=False, help='does not use GPU') parser.add_argument('--lr', type=float, default=0.0001, metavar='LR', help='learning rate') parser.add_argument('--l2', type=float, default=0.0001, metavar='L2', help='L2 regularization weight') parser.add_argument('--rec-dropout', type=float, default=0.0, metavar='rec_dropout', help='rec_dropout rate') parser.add_argument('--dropout', type=float, default=0.0, metavar='dropout', help='dropout rate') parser.add_argument('--batch-size', type=int, default=128, metavar='BS', help='batch size') parser.add_argument('--epochs', type=int, default=100, metavar='E', help='number of epochs') parser.add_argument('--active-listener', action='store_true', default=False, help='active listener') parser.add_argument('--attention', default='simple', help='Attention type') parser.add_argument('--class-weight', action='store_true', default=True, help='class weight') parser.add_argument('--tensorboard', action='store_true', default=False, help='Enables tensorboard log') parser.add_argument('--attribute', type=str , default="Positive", help='CallHome Stance') parser.add_argument('--encdir', default='/afs/inf.ed.ac.uk/user/c/clai/tunguska/stance2019/h5/encodings/', help='embedding directory') parser.add_argument('--acproject', action='store_true', default=False, help='use acoustic encoding with projection layer') parser.add_argument('--acfset', type=str , default="eGeMAPSv01a", help='base acoustic feature set') args = parser.parse_args() print(args) args.cuda = torch.cuda.is_available() and not args.no_cuda if args.cuda: print('Running on GPU') else: print('Running on CPU') if args.tensorboard: from tensorboardX import SummaryWriter writer = SummaryWriter() batch_size = args.batch_size n_classes = 2 cuda = args.cuda n_epochs = args.epochs D_m = 100 D_g = 100 D_p = 100 D_e = 100 D_h = 100 D_a = 100 # concat attention model = BiModel(D_m, D_g, D_p, D_e, D_h, n_classes=n_classes, listener_state=args.active_listener, context_attention=args.attention, dropout_rec=args.rec_dropout, dropout=args.dropout) if cuda: model.cuda() loss_weights = torch.FloatTensor([ 1., 1. ]) if args.class_weight: loss_function = MaskedNLLLoss(loss_weights.cuda() if cuda else loss_weights) else: loss_function = MaskedNLLLoss() optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2) #print(args.attribute) ## basically we need a new data loader train_loader, valid_loader, test_loader =\ get_CallHome_loaders(args.encdir, args.attribute, valid=0.0, batch_size=batch_size, num_workers=2, acproject=args.acproject, acfset=args.acfset) best_loss, best_label, best_pred, best_mask = None, None, None, None ## This is doing early stopping on test, not dev? ## Also there's not model saving etc ## Check that it's using eval mode? patience = 10 for e in range(n_epochs): start_time = time.time() if patience == 0: print("NO MORE PATIENCE", patience) break print("EPOCH:", e) train_loss, train_acc, _,_,_,_,train_fscore, _, _= train_or_eval_model(model, loss_function, train_loader, e, optimizer, True) valid_loss, valid_acc, valid_label, valid_pred , valid_probs, valid_mask, val_fscore, val_metas, val_attentions = train_or_eval_model(model, loss_function, valid_loader, e) test_loss, test_acc, test_label, test_pred, test_probs, test_mask, test_fscore, test_metas, attentions = train_or_eval_model(model, loss_function, test_loader, e) if best_loss == None or best_valid_loss > valid_loss: best_loss, best_label, best_pred, best_prob, best_mask, best_metas, best_attn =\ test_loss, test_label, test_pred, test_probs, test_mask, test_metas, attentions best_valid_loss, best_valid_label, best_valid_pred, best_valid_prob, best_valid_mask, best_valid_metas, best_valid_attn =\ valid_loss, valid_label, valid_pred, valid_probs, valid_mask, val_metas, val_attentions print('epoch {} train_loss {} train_acc {} train_fscore {} valid_loss {} valid_acc {} val_fscore {} test_loss {} test_acc {} test_fscore {} time {}'.\ format(e, train_loss, train_acc, train_fscore, valid_loss, valid_acc, val_fscore,\ test_loss, test_acc, test_fscore, round(time.time()-start_time,2))) patience = 10 else: patience -= 1 print("EPOCH/PATIENCE:", e, patience) if args.tensorboard: writer.add_scalar('valid: accuracy/loss',valid_acc/valid_loss,e) writer.add_scalar('test: accuracy/loss',test_acc/test_loss,e) writer.add_scalar('train: accuracy/loss',train_acc/train_loss,e) if args.tensorboard: writer.close() print('Dev performance..') print('Loss {} accuracy {}'.format(best_valid_loss, round(accuracy_score(best_valid_label,best_valid_pred,sample_weight=best_valid_mask)*100,2))) print(classification_report(best_valid_label,best_valid_pred,sample_weight=best_valid_mask,digits=4)) print(confusion_matrix(best_valid_label,best_valid_pred,sample_weight=best_valid_mask)) print('Test performance..') print('Loss {} accuracy {}'.format(best_loss, round(accuracy_score(best_label,best_pred,sample_weight=best_mask)*100,2))) print(classification_report(best_label,best_pred,sample_weight=best_mask,digits=4)) print(confusion_matrix(best_label,best_pred,sample_weight=best_mask)) print(np.exp(best_valid_prob)) modname = "BiModel" Y_dev = best_valid_label devpred = best_valid_pred devprob = np.exp(best_valid_prob[:,1]) print(Y_dev.shape, devpred.shape, devprob.shape) print(f1_score(Y_dev, devpred, sample_weight=best_valid_mask, pos_label=0)) dev_metrics = pd.DataFrame(OrderedDict( [('classifier','DialogueRNN'), ('p1','turntrans_turnacoustic'), ('p2','X'), ('stance',args.attribute), ('f1',f1_score(Y_dev, devpred, sample_weight=best_valid_mask)), ('weighted_f1',f1_score(Y_dev, devpred, average='weighted', sample_weight=best_valid_mask)), ('precision',precision_score(Y_dev, devpred, sample_weight=best_valid_mask)), ('recall',recall_score(Y_dev, devpred, sample_weight=best_valid_mask)), ('f1_0',f1_score(Y_dev, devpred, sample_weight=best_valid_mask, pos_label=0)), ('weighted_f1_0',f1_score(Y_dev, devpred, average='weighted', sample_weight=best_valid_mask, pos_label=0)), ('precision_0',precision_score(Y_dev, devpred, sample_weight=best_valid_mask, pos_label=0)), ('recall_0',recall_score(Y_dev, devpred, sample_weight=best_valid_mask, pos_label=0)), ('accuracy',accuracy_score(Y_dev, devpred, sample_weight=best_valid_mask)), ('auroc',roc_auc_score(Y_dev, devprob, sample_weight=best_valid_mask))] ), index=[modname]) Y_eval = best_label evalpred = best_pred evalprob = np.exp(best_prob[:,1]) eval_metrics = pd.DataFrame(OrderedDict( [('classifier','DialogueRNN'), ('p1','turntrans_turnacoustic'), ('p2','X'), ('stance',args.attribute), ('f1',f1_score(Y_eval, evalpred, sample_weight=best_mask)), ('weighted_f1',f1_score(Y_eval, evalpred, average='weighted', sample_weight=best_mask)), ('precision',precision_score(Y_eval, evalpred, sample_weight=best_mask)), ('recall',recall_score(Y_eval, evalpred, sample_weight=best_mask)), ('f1_0',f1_score(Y_eval, evalpred, sample_weight=best_mask, pos_label=0)), ('weighted_f1_0',f1_score(Y_eval, evalpred, average='weighted', sample_weight=best_mask, pos_label=0)), ('precision_0',precision_score(Y_eval, evalpred, sample_weight=best_mask, pos_label=0)), ('recall_0',recall_score(Y_eval, evalpred, sample_weight=best_mask, pos_label=0)), ('accuracy',accuracy_score(Y_eval, evalpred, sample_weight=best_mask)), ('auroc',roc_auc_score(Y_eval, evalprob, sample_weight=best_mask))] ), index=[modname]) alstr = "simple" if args.active_listener: alstr = "active" acstr = "noproj" if args.acproject: acstr = "acproj" acstr = acstr + "-" + args.acfset + "-" + str(batch_size) outdir = "./callhome" resfile = outdir + "/DialogueRNN." + args.attribute + "." + alstr + "." + acstr + ".metrics.txt" print(resfile) print(dev_metrics) dev_metrics.to_csv(resfile) resfile = resfile + ".eval" print(resfile) print(eval_metrics) eval_metrics.to_csv(resfile) predfile = "./preds/BiModel.turntrans_turnacoustic." + args.attribute + "." + alstr + "." + acstr + ".pred.dev.txt" print(predfile) preddf0 = pd.DataFrame({'classifier':'BiModel', 'p1':'X', 'xid':best_valid_metas, 'stance':args.attribute, 'pred':best_valid_pred, 'label':best_valid_label, 'mask':best_valid_mask}) devprobdf = pd.DataFrame(np.exp(best_valid_prob), columns=["Pr0", "Pr1"]) preddf = pd.concat([preddf0, devprobdf], axis=1) preddf.to_csv(predfile, index=False, sep="\t") predfile = predfile.replace(".dev.", ".eval.") #"./preds/BiModel.turntrans_turnacoustic." + args.attribute + ".pred.eval.txt" print(predfile) preddf0 =
pd.DataFrame({'classifier':'BiModel', 'p1':'X', 'xid':best_metas, 'stance':args.attribute, 'pred':best_pred, 'label':best_label, 'mask':best_mask})
pandas.DataFrame
# **************************************************************************** # @man_helpers.py # # @copyright 2022 Elektronische Fahrwerksysteme GmbH and Audi AG. All rights reserved. # # @license Apache v2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # **************************************************************************** """ helper functions for maneuver abstraction. """ import pyproj import simplekml import math import pandas as pd import numpy as np import os from typing import Union from osc_generator.tools.coord_calculations import get_proj_from_open_drive from osc_generator.tools import rulebased, utils def convert_maneuvers_to_kml(lat: pd.DataFrame, lon: pd.DataFrame, maneuvers: pd.DataFrame, ego: bool) -> simplekml.Kml: """ Convert manuevers from pandas Dataframe to kml Args: lat: Latitude lon: Longitude maneuvers: Maneuvers of the vehicle ego: For the ego vehicle True Returns: object (simplekml.Kml): Kml file containing the maneuvers """ if not isinstance(lat, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(lon, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(maneuvers, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(ego, bool): raise TypeError("input must be a bool") kml = simplekml.Kml() overview_doc = kml.newdocument(name='Overview') old_lon = 0 old_lat = 0 accelerate = maneuvers['FM_EGO_accelerate'] accelerate_doc = kml.newdocument(name='accelerate') velocity = maneuvers['FM_EGO_keep_velocity'] velocity_doc = kml.newdocument(name='velocity') standstill = maneuvers['FM_EGO_standstill'] standstill_doc = kml.newdocument(name='standstill') decelerate = maneuvers['FM_EGO_decelerate'] decelerate_doc = kml.newdocument(name='decelerate') lane_change_left = None lane_change_left_doc = None lane_change_right = None lane_change_right_doc = None if ego is True: lane_change_left = maneuvers['FM_INF_lane_change_left'] lane_change_left_doc = kml.newdocument(name='lane_change_left') lane_change_right = maneuvers['FM_INF_lane_change_right'] lane_change_right_doc = kml.newdocument(name='lane_change_right') for row in range(lat.shape[0]): if not (pd.isna(lat.loc[row])) or not (pd.isna(lon.loc[row])): if old_lat != 0 and old_lon != 0: pathway = overview_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 8 pathway.style.linestyle.color = simplekml.Color.rgb(0, 0, 0) if accelerate[row] == 1: pathway = accelerate_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 4 pathway.style.linestyle.color = simplekml.Color.rgb(0, 255, 251) if velocity[row] == 1: pathway = velocity_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 4 pathway.style.linestyle.color = simplekml.Color.rgb(0, 143, 255) if standstill[row] == 1: pathway = standstill_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 4 pathway.style.linestyle.color = simplekml.Color.rgb(0, 0, 0) if decelerate[row] == 1: pathway = decelerate_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 4 pathway.style.linestyle.color = simplekml.Color.rgb(0, 23, 255) if ego is True: if lane_change_left[row] == 1: pathway = lane_change_left_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 4 pathway.style.linestyle.color = simplekml.Color.rgb(255, 169, 59) if lane_change_right[row] == 1: pathway = lane_change_right_doc.newlinestring() pathway.coords = [(old_lon, old_lat), (lon.loc[row], lat.loc[row])] pathway.style.linestyle.width = 4 pathway.style.linestyle.color = simplekml.Color.rgb(209, 126, 20) old_lon = lon.loc[row] old_lat = lat.loc[row] return kml def create_speed_model(df_maneuvers: pd.DataFrame, init_speed: float) -> Union[list, np.ndarray]: """ Helper function. Extracts speed information from maneuvers. Args: df_maneuvers: Maneuvers array init_speed: Initial speed Returns: object (Union[list, np.ndarray]): Modelled speed """ if not isinstance(df_maneuvers, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(init_speed, float): raise TypeError("input must be a float") speed = [] man_type = [] # 1 for acceleration, -1 for deceleration, 0 for standstill num_rows, num_cols = df_maneuvers.shape for i in range(num_rows): if df_maneuvers.iloc[i].iloc[2] == 'FM_EGO_decelerate': man_type.append(-1) elif df_maneuvers.iloc[i].iloc[2] == 'FM_EGO_keep_velocity': if i == 0: start_speed = float(init_speed / 3.6) else: start_speed = float(df_maneuvers.iloc[i - 1].iloc[5]) if float(df_maneuvers.iloc[i].iloc[5]) >= start_speed: man_type.append(1) else: man_type.append(-1) elif df_maneuvers.iloc[i].iloc[2] == 'FM_EGO_accelerate': man_type.append(1) elif df_maneuvers.iloc[i].iloc[2] == 'FM_EGO_standstill': man_type.append(0) accel_res = [] maneuver_len = [] for i in range(num_rows): accel_res.append(float(df_maneuvers.iloc[i].iloc[6]) * man_type[i]) if i > 0: maneuver_start = int(df_maneuvers.iloc[i].iloc[0]) maneuver_end = int(df_maneuvers.iloc[i - 1].iloc[1]) if maneuver_end >= maneuver_start: maneuver_len.append(int(df_maneuvers.iloc[i].iloc[1]) - maneuver_end) else: maneuver_len.append(int(df_maneuvers.iloc[i].iloc[1]) + 1 - int(df_maneuvers.iloc[i].iloc[0])) else: maneuver_len.append(int(df_maneuvers.iloc[i].iloc[1]) + 1 - int(df_maneuvers.iloc[i].iloc[0])) start_time = int(df_maneuvers.iloc[0].iloc[0]) delta_t = 0.1 acc_full = [] for i in range(len(maneuver_len)): for k in range(int(maneuver_len[i])): acc_full.append(accel_res[i]) for i in range(start_time, start_time + len(acc_full)): if i == start_time: speed.append(init_speed) else: if start_time == 0: sub = 1 else: sub = start_time + 1 speed.append(speed[i - sub] + acc_full[i - sub] * delta_t * 3.6) speed_np = np.array(speed) return speed_np def calc_opt_acc_thresh(df: pd.DataFrame, df_lanes: pd.DataFrame, opendrive_path: str, use_folder: bool, dir_name: str) -> np.ndarray: """ Used to get optimal acceleration threshold to label maneuvers. Args: df: Main processed dataframe df_lanes: Dataframe which contains absolute positions of lanes opendrive_path: Path to opendrive file use_folder: Option to create folder structure dir_name: Name of the folder Returns: object (np.ndarray): Optimal acceleration threshold """ if not isinstance(df, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(df_lanes, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(opendrive_path, str): raise TypeError("input must be a str") if not isinstance(use_folder, bool): raise TypeError("input must be a bool") if not isinstance(dir_name, str): raise TypeError("input must be a str") movobj_grps_coord = utils.find_vars('lat_|lon_|speed_|class', df.columns, reshape=True) # Labeling lane_change_left_array, lane_change_right_array = rulebased.create_lateral_maneuver_vectors(df_lanes, df['lat'], df['long']) # Array can be extended with more values for acceleration thresholds acc_thres = np.array([0.05, 0.1, 0.15, 0.2, 0.25, 0.3]) quality_array = np.zeros((len(movobj_grps_coord) + 1, len(acc_thres))) for x in range(len(acc_thres)): curr_thres = acc_thres[x] print('current acceleration threshold: ' + str(curr_thres)) speed = df['speed'] accelerate_array, \ start_array, \ keep_velocity_array, \ standstill_array, \ decelerate_array, \ stop_array, \ reversing_array = rulebased.create_longitudinal_maneuver_vectors( speed, acceleration_definition_threshold=curr_thres) # Create df with maneuver info df_maneuvers = pd.DataFrame(data=None) df_maneuvers['FM_INF_lane_change_left'] = lane_change_left_array df_maneuvers['FM_INF_lane_change_right'] = lane_change_right_array df_maneuvers['FM_EGO_accelerate'] = accelerate_array df_maneuvers['FM_EGO_start'] = start_array df_maneuvers['FM_EGO_keep_velocity'] = keep_velocity_array df_maneuvers['FM_EGO_standstill'] = standstill_array df_maneuvers['FM_EGO_decelerate'] = decelerate_array df_maneuvers['FM_EGO_stop'] = stop_array df_maneuvers['FM_EGO_reversing'] = reversing_array df_maneuvers_objects = {} for i in range(len(movobj_grps_coord)): speed = df[movobj_grps_coord[i][2]] accelerate_array, \ start_array, \ keep_velocity_array, \ standstill_array, \ decelerate_array, \ stop_array, \ reversing_array = rulebased.create_longitudinal_maneuver_vectors( speed, acceleration_definition_threshold=acc_thres[x]) df_maneuvers_objects[i] = pd.DataFrame(data=None) df_maneuvers_objects[i]['FM_EGO_accelerate'] = accelerate_array df_maneuvers_objects[i]['FM_EGO_start'] = start_array df_maneuvers_objects[i]['FM_EGO_keep_velocity'] = keep_velocity_array df_maneuvers_objects[i]['FM_EGO_standstill'] = standstill_array df_maneuvers_objects[i]['FM_EGO_decelerate'] = decelerate_array df_maneuvers_objects[i]['FM_EGO_stop'] = stop_array df_maneuvers_objects[i]['FM_EGO_reversing'] = reversing_array left_lane_change_array, right_lane_change_array = rulebased.create_lateral_maneuver_vectors(df_lanes, df[ movobj_grps_coord[i][0]], df[movobj_grps_coord[i][1]]) # lat lon df_maneuvers_objects[i]['FM_INF_lane_change_left'] = left_lane_change_array df_maneuvers_objects[i]['FM_INF_lane_change_right'] = right_lane_change_array # Init # Get projection coordinates of respective open drive from open drive file proj_in = pyproj.Proj('EPSG:4326') proj_out = get_proj_from_open_drive(open_drive_path=opendrive_path) columns = ['lat', 'long', 'speed', 'heading'] # Get start position, speed and heading of ego ego = [] lon, lat = (pyproj.Transformer.from_crs(proj_in.crs, proj_out.crs, always_xy=True)).transform( df[columns[1]][0], df[columns[0]][0]) ego.append(lon) ego.append(lat) ego.append(df[columns[2]][0] / 3.6) # Speed ego.append(utils.convert_heading(df[columns[3]][0])) # Heading # Get start position, speed and heading of other objects objects = {} for i in range(len(movobj_grps_coord)): lon, lat = (pyproj.Transformer.from_crs(proj_in.crs, proj_out.crs, always_xy=True)).transform( df[movobj_grps_coord[i][1]][0], df[movobj_grps_coord[i][0]][0]) obj = list() obj.append(lon) # Lon obj.append(lat) # Lat obj.append(df[movobj_grps_coord[i][2]][0] / 3.6) # Speed temp_heading = utils.calc_heading_from_two_geo_positions(df[movobj_grps_coord[i][0]][0], df[movobj_grps_coord[i][1]][0], df[movobj_grps_coord[i][0]][1], df[movobj_grps_coord[i][1]][1]) obj.append(utils.convert_heading(temp_heading)) objects[i] = obj # Get maneuvers ego_maneuver_array = {} for j in range(len(df_maneuvers_objects) + 1): # + 1 because of ego maneuvers # Ego basis maneuvers for speed & acceleration control acceleration_switch = -1 keep_switch = -1 deceleration_switch = -1 standstill_switch = -1 temp_ego_maneuver_array = np.empty(shape=[0, 7]) if j == 0: # Use ego maneuvers = df_maneuvers cols = columns else: # Use objects maneuvers = df_maneuvers_objects[j - 1] cols = movobj_grps_coord[j - 1] # Get start and end time of each maneuver for i in range(len(maneuvers)): # Start if maneuvers['FM_EGO_accelerate'][i] == 1 and acceleration_switch == -1: temp_lon, temp_lat = (pyproj.Transformer.from_crs(proj_in.crs, proj_out.crs, always_xy=True)).\ transform( df[cols[1]][i], df[cols[0]][i]) temp_ego_maneuver_array = np.append(temp_ego_maneuver_array, [[i, i, 'FM_EGO_accelerate', temp_lon, temp_lat, 0, 0]], axis=0) acceleration_switch = temp_ego_maneuver_array.shape[0] - 1 # End elif maneuvers['FM_EGO_accelerate'][i] == 0 and acceleration_switch > -1: temp_ego_maneuver_array[acceleration_switch][1] = i - 1 # Target speed temp_ego_maneuver_array[acceleration_switch][5] = df[cols[2]][i - 1] / 3.6 # Calculate the acceleration = (target speed - start speed) / duration temp_ego_maneuver_array[acceleration_switch][6] = abs(df[cols[2]][i - 1] / 3.6 - ( df[cols[2]][int(temp_ego_maneuver_array[acceleration_switch][0])] / 3.6)) / ((i - int( temp_ego_maneuver_array[acceleration_switch][0])) / 10) acceleration_switch = -1 if maneuvers['FM_EGO_keep_velocity'][i] == 1 and keep_switch == -1: temp_lon, temp_lat = (pyproj.Transformer.from_crs(proj_in.crs, proj_out.crs, always_xy=True)).\ transform( df[cols[1]][i], df[cols[0]][i]) temp_ego_maneuver_array = np.append(temp_ego_maneuver_array, [[i, i, 'FM_EGO_keep_velocity', temp_lon, temp_lat, 0, 0]], axis=0) keep_switch = temp_ego_maneuver_array.shape[0] - 1 elif maneuvers['FM_EGO_keep_velocity'][i] == 0 and keep_switch > -1: temp_ego_maneuver_array[keep_switch][1] = i - 1 temp_ego_maneuver_array[keep_switch][5] = df[cols[2]][i - 1] / 3.6 temp_ego_maneuver_array[keep_switch][6] = abs(df[cols[2]][i - 1] / 3.6 - ( df[cols[2]][int(temp_ego_maneuver_array[keep_switch][0])] / 3.6)) / ((i - int( temp_ego_maneuver_array[keep_switch][0])) / 10) keep_switch = -1 if maneuvers['FM_EGO_decelerate'][i] == 1 and deceleration_switch == -1: temp_lon, temp_lat = (pyproj.Transformer.from_crs(proj_in.crs, proj_out.crs, always_xy=True)).\ transform( df[cols[1]][i], df[cols[0]][i]) temp_ego_maneuver_array = np.append(temp_ego_maneuver_array, [[i, i, 'FM_EGO_decelerate', temp_lon, temp_lat, 0, 0]], axis=0) deceleration_switch = temp_ego_maneuver_array.shape[0] - 1 elif maneuvers['FM_EGO_decelerate'][i] == 0 and deceleration_switch > -1: temp_ego_maneuver_array[deceleration_switch][1] = i - 1 temp_ego_maneuver_array[deceleration_switch][5] = df[cols[2]][i - 1] / 3.6 temp_ego_maneuver_array[deceleration_switch][6] = abs(df[cols[2]][i - 1] / 3.6 - ( df[cols[2]][int(temp_ego_maneuver_array[deceleration_switch][0])] / 3.6)) / ((i - int( temp_ego_maneuver_array[deceleration_switch][0])) / 10) deceleration_switch = -1 if maneuvers['FM_EGO_standstill'][i] == 1 and standstill_switch == -1: if len(temp_ego_maneuver_array) > 0: # Assure that last maneuver (if it exists) ends with 0 km/h temp_ego_maneuver_array[len(temp_ego_maneuver_array) - 1][5] = 0.0 temp_lon, temp_lat = pyproj.transform(proj_in, proj_out, df[cols[1]][i], df[cols[0]][i]) temp_ego_maneuver_array = np.append(temp_ego_maneuver_array, [[i, i, 'FM_EGO_standstill', temp_lon, temp_lat, 0, 0]], axis=0) standstill_switch = temp_ego_maneuver_array.shape[0] - 1 elif maneuvers['FM_EGO_standstill'][i] == 0 and standstill_switch > -1: temp_ego_maneuver_array[standstill_switch][1] = i - 1 temp_ego_maneuver_array[standstill_switch][5] = df[cols[2]][i - 1] / 3.6 temp_ego_maneuver_array[standstill_switch][6] = abs(df[cols[2]][i - 1] / 3.6 - ( df[cols[2]][int(temp_ego_maneuver_array[standstill_switch][0])] / 3.6)) / ((i - int( temp_ego_maneuver_array[standstill_switch][0])) / 10) standstill_switch = -1 if j == 0: speed = df['speed'] else: speed_tmp = df[movobj_grps_coord[j - 1][2]] speed = [] for y in range(len(speed_tmp)): if not math.isnan(speed_tmp[y]): speed.append(speed_tmp[y]) speed = np.array(speed) # Calculate the model speed in osc format (linear accelerations) if temp_ego_maneuver_array.size != 0: df_ego_maneuver_array = pd.DataFrame( data=temp_ego_maneuver_array[0:, 0:], index=temp_ego_maneuver_array[0:, 0], columns=temp_ego_maneuver_array[0, 0:]) model_speed = create_speed_model(df_ego_maneuver_array, speed[0]) # Use RMSE Value for calculating the difference if len(model_speed) - len(speed) == 1: rmse_speed = np.sqrt(np.square(np.subtract(model_speed[0:-1], speed)).mean()) elif len(speed) - len(model_speed) == 1: rmse_speed = np.sqrt(np.square(np.subtract(model_speed, speed[0:-1])).mean()) elif len(model_speed) == len(speed): rmse_speed = np.sqrt(np.square(np.subtract(model_speed, speed)).mean()) else: rmse_speed = 999 else: rmse_speed = 999 ego_maneuver_array[j] = temp_ego_maneuver_array quality_array[j][x] = rmse_speed # Get the minumum RMSE values for each object (EGO + Player) num_rows, num_cols = quality_array.shape df_opt_acc = pd.DataFrame() acc_thres_opt = [] obj_qual = np.empty(0) for z in range(num_rows): obj_qual = quality_array[z][:] acc_thres_opt.append(acc_thres[np.argmin(obj_qual)]) if z == 0: playername = 'EGO' else: playername = 'Player' + str(z) df_opt_acc[playername] = [acc_thres[np.argmin(obj_qual)]] if use_folder: if not os.path.isdir(os.path.abspath(dir_name)): raise FileNotFoundError("input must be a valid path.") if not os.path.exists(os.path.abspath(dir_name)): raise NotADirectoryError("input must be a directory.") maneuver_dir = os.path.abspath(dir_name + '/maneuver_lists') if not os.path.exists(maneuver_dir): os.mkdir(maneuver_dir) df_opt_acc.to_csv(maneuver_dir + '/acc_thres_values.csv') acc_thres_opt.append(acc_thres[np.argmin(obj_qual)]) return np.array(acc_thres_opt) def label_maneuvers(df: pd.DataFrame, df_lanes: pd.DataFrame, acc_threshold: Union[float, np.ndarray], generate_kml: bool, opendrive_path: str, use_folder: bool, dir_name: str) -> tuple: """ Used for labeling the maneuvers Args: df: Main processed Dataframe df_lanes: Dataframe which contains absolute positions of lanes acc_threshold: Acceleration threshold for labeling generate_kml: Option to generate kml files opendrive_path: Path to opendrive file use_folder: Option to create folder structure dir_name: Name of the folder Returns: object (tuple): ego_maneuver_array, inf_maneuver_array, objlist, objects, ego, movobj_grps_coord """ if not isinstance(df, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not isinstance(df_lanes, pd.DataFrame): raise TypeError("input must be a pd.DataFrame") if not (isinstance(acc_threshold, float) or isinstance(acc_threshold, np.ndarray)): raise TypeError("input must be a float or np.ndarray") if not isinstance(generate_kml, bool): raise TypeError("input must be a bool") if not isinstance(opendrive_path, str): raise TypeError("input must be a str") if not isinstance(use_folder, bool): raise TypeError("input must be a bool") if not isinstance(dir_name, str): raise TypeError("input must be a str") # Get signals from trajectories file speed = df['speed'] # Labeling lane_change_left_array, lane_change_right_array = rulebased.create_lateral_maneuver_vectors(df_lanes, df['lat'], df['long']) if isinstance(acc_threshold, int) or isinstance(acc_threshold, float): accelerate_array, \ start_array, \ keep_velocity_array, \ standstill_array, \ decelerate_array, \ stop_array, \ reversing_array = rulebased.create_longitudinal_maneuver_vectors( speed, acceleration_definition_threshold=acc_threshold) else: accelerate_array, \ start_array, \ keep_velocity_array, \ standstill_array, \ decelerate_array, \ stop_array, \ reversing_array = rulebased.create_longitudinal_maneuver_vectors( speed, acceleration_definition_threshold=acc_threshold[0]) # Create df with maneuver info df_maneuvers =
pd.DataFrame(data=None)
pandas.DataFrame
import re import os import json from datetime import datetime, timedelta import numpy as np import pandas as pd # spreadsheet cleaning and formatting def clean_column_name(colname): """convert column names to lowercase with underbars""" colname = colname.lower().rstrip().lstrip() colname = re.sub(r'[^a-z0-9_]+','_',colname) # sub _ for nonalpha chars colname = re.sub(r'_$','',colname) # remove trailing _ colname = re.sub(r'^([0-9])',r'_\1',colname) # insert _ before leading digit return colname def clean_column_names(df, col_map={}, inplace=False): """clean all column names for a Pandas dataframe""" if not inplace: df = df.copy() ccns = [] for c in df.columns: if c in col_map: ccns.append(col_map[c]) else: ccns.append(clean_column_name(c)) df.columns = ccns return df def drop_columns(df, columns, inplace=False): """drop a list of columns from a Pandas dataframe, in place""" if not inplace: df = df.copy() for c in columns: df.pop(c) return df def dropna_except(df, except_subset, inplace=False): """drop rows containing nans from a Pandas dataframe, but allow nans in the specified subset of columns, in place""" subset = set(df.columns) for ec in except_subset: subset.remove(ec) df = df.dropna(inplace=inplace, subset=subset) return df def cast_columns(df, dtype, columns, inplace=False, fillna=None): """convert columns in a dataframe to the given datatype, in place""" if not inplace: df = df.copy() for c in columns: if fillna is not None: df[c] = df[c].fillna(fillna) df[c] = df[c].astype(dtype) return df def float_to_datetime(s, format='%Y%m%d'): """pandas will interpret some datetime formats as floats, e.g., '20180830' will be parsed as the float 20180830.0. convert back to datetimes""" def convert(value): return pd.to_datetime(str(int(value)), format=format, utc=True) return s.map(convert, na_action='ignore') # return pd.to_datetime(s.astype(int).astype(str), format=format) def doy_to_datetime(doy, year, zero_based=False): """convert a decimal day of year (e.g., 34.58275) to a datetime. Day is one-based unless zero_based param is True""" origin = '{}-01-01'.format(year) o = pd.Timestamp(origin) if not zero_based: adjusted_doy = doy - 1 return
pd.to_datetime(adjusted_doy, unit='D', origin=o, utc=True)
pandas.to_datetime
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import os.path import pkg_resources import tempfile import unittest import numpy as np import pandas as pd from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn, MetadataFileError) def get_data_path(filename): return pkg_resources.resource_filename('qiime2.metadata.tests', 'data/%s' % filename) # NOTE: many of the test files in the `data` directory intentionally have # leading/trailing whitespace characters on some lines, as well as mixed usage # of spaces, tabs, carriage returns, and newlines. When editing these files, # please make sure your code editor doesn't strip these leading/trailing # whitespace characters (e.g. Atom does this by default), nor automatically # modify the files in some other way such as converting Windows-style CRLF # line terminators to Unix-style newlines. # # When committing changes to the files, carefully review the diff to make sure # unintended changes weren't introduced. class TestLoadErrors(unittest.TestCase): def test_path_does_not_exist(self): with self.assertRaisesRegex(MetadataFileError, "Metadata file path doesn't exist"): Metadata.load( '/qiime2/unit/tests/hopefully/this/path/does/not/exist') def test_path_is_directory(self): fp = get_data_path('valid') with self.assertRaisesRegex(MetadataFileError, "path points to something other than a " "file"): Metadata.load(fp) def test_non_utf_8_file(self): fp = get_data_path('invalid/non-utf-8.tsv') with self.assertRaisesRegex(MetadataFileError, 'encoded as UTF-8 or ASCII'): Metadata.load(fp) def test_utf_16_le_file(self): fp = get_data_path('invalid/simple-utf-16le.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_utf_16_be_file(self): fp = get_data_path('invalid/simple-utf-16be.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_empty_file(self): fp = get_data_path('invalid/empty-file') with self.assertRaisesRegex(MetadataFileError, 'locate header.*file may be empty'): Metadata.load(fp) def test_comments_and_empty_rows_only(self): fp = get_data_path('invalid/comments-and-empty-rows-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'locate header.*only of comments or empty ' 'rows'): Metadata.load(fp) def test_header_only(self): fp = get_data_path('invalid/header-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_header_only_with_comments_and_empty_rows(self): fp = get_data_path( 'invalid/header-only-with-comments-and-empty-rows.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_qiime1_empty_mapping_file(self): fp = get_data_path('invalid/qiime1-empty.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_invalid_header(self): fp = get_data_path('invalid/invalid-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'unrecognized ID column name.*' 'invalid_id_header'): Metadata.load(fp) def test_empty_id(self): fp = get_data_path('invalid/empty-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_whitespace_only_id(self): fp = get_data_path('invalid/whitespace-only-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_empty_column_name(self): fp = get_data_path('invalid/empty-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_whitespace_only_column_name(self): fp = get_data_path('invalid/whitespace-only-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_duplicate_ids(self): fp = get_data_path('invalid/duplicate-ids.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_ids_with_whitespace(self): fp = get_data_path('invalid/duplicate-ids-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_column_names(self): fp = get_data_path('invalid/duplicate-column-names.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_duplicate_column_names_with_whitespace(self): fp = get_data_path( 'invalid/duplicate-column-names-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_id_conflicts_with_id_header(self): fp = get_data_path('invalid/id-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "ID 'id' conflicts.*ID column header"): Metadata.load(fp) def test_column_name_conflicts_with_id_header(self): fp = get_data_path( 'invalid/column-name-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "column name 'featureid' conflicts.*ID " "column header"): Metadata.load(fp) def test_column_types_unrecognized_column_name(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'not_a_column.*column_types.*not a column ' 'in the metadata file'): Metadata.load(fp, column_types={'not_a_column': 'numeric'}) def test_column_types_unrecognized_column_type(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*column_types.*unrecognized column ' 'type.*CATEGORICAL'): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'CATEGORICAL'}) def test_column_types_not_convertible_to_numeric(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'categorical', 'col3': 'numeric'}) def test_column_types_override_directive_not_convertible_to_numeric(self): fp = get_data_path('valid/simple-with-directive.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col3': 'numeric'}) def test_directive_before_header(self): fp = get_data_path('invalid/directive-before-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'directive.*#q2:types.*searching for ' 'header'): Metadata.load(fp) def test_unrecognized_directive(self): fp = get_data_path('invalid/unrecognized-directive.tsv') with self.assertRaisesRegex(MetadataFileError, 'Unrecognized directive.*#q2:foo.*' '#q2:types directive is supported'): Metadata.load(fp) def test_duplicate_directives(self): fp = get_data_path('invalid/duplicate-directives.tsv') with self.assertRaisesRegex(MetadataFileError, 'duplicate directive.*#q2:types'): Metadata.load(fp) def test_unrecognized_column_type_in_directive(self): fp = get_data_path('invalid/unrecognized-column-type.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*unrecognized column type.*foo.*' '#q2:types directive'): Metadata.load(fp) def test_column_types_directive_not_convertible_to_numeric(self): fp = get_data_path('invalid/types-directive-non-numeric.tsv') # This error message regex is intentionally verbose because we want to # assert that many different types of non-numeric strings aren't # interpreted as numbers. The error message displays a sorted list of # all values that couldn't be converted to numbers, making it possible # to test a variety of non-numeric strings in a single test case. msg = (r"column 'col2' to numeric.*could not be interpreted as " r"numeric: '\$42', '\+inf', '-inf', '0xAF', '1,000', " r"'1\.000\.0', '1_000_000', '1e3e4', 'Infinity', 'NA', 'NaN', " "'a', 'e3', 'foo', 'inf', 'nan', 'sample-1'") with self.assertRaisesRegex(MetadataFileError, msg): Metadata.load(fp) def test_directive_after_directives_section(self): fp = get_data_path( 'invalid/directive-after-directives-section.tsv') with self.assertRaisesRegex(MetadataFileError, '#q2:types.*outside of the directives ' 'section'): Metadata.load(fp) def test_directive_longer_than_header(self): fp = get_data_path('invalid/directive-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) def test_data_longer_than_header(self): fp = get_data_path('invalid/data-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) class TestLoadSuccess(unittest.TestCase): def setUp(self): self.temp_dir_obj = tempfile.TemporaryDirectory( prefix='qiime2-metadata-tests-temp-') self.temp_dir = self.temp_dir_obj.name # This Metadata object is compared against observed Metadata objects in # many of the tests, so just define it once here. self.simple_md = Metadata( pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) # Basic sanity check to make sure the columns are ordered and typed as # expected. It'd be unfortunate to compare observed results to expected # results that aren't representing what we think they are! obs_columns = [(name, props.type) for name, props in self.simple_md.columns.items()] exp_columns = [('col1', 'numeric'), ('col2', 'categorical'), ('col3', 'categorical')] self.assertEqual(obs_columns, exp_columns) def tearDown(self): self.temp_dir_obj.cleanup() def test_simple(self): # Simple metadata file without comments, empty rows, jaggedness, # missing data, odd IDs or column names, directives, etc. The file has # multiple column types (numeric, categorical, and something that has # mixed numbers and strings, which must be interpreted as categorical). fp = get_data_path('valid/simple.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_bom_simple_txt(self): # This is the encoding that notepad.exe will use most commonly fp = get_data_path('valid/BOM-simple.txt') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_different_file_extension(self): fp = get_data_path('valid/simple.txt') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_no_newline_at_eof(self): fp = get_data_path('valid/no-newline-at-eof.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_unix_line_endings(self): fp = get_data_path('valid/unix-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_windows_line_endings(self): fp = get_data_path('valid/windows-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_mac_line_endings(self): fp = get_data_path('valid/mac-line-endings.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_no_source_artifacts(self): fp = get_data_path('valid/simple.tsv') metadata = Metadata.load(fp) self.assertEqual(metadata.artifacts, ()) def test_retains_column_order(self): # Explicitly test that the file's column order is retained in the # Metadata object. Many of the test cases use files with column names # in alphabetical order (e.g. "col1", "col2", "col3"), which matches # how pandas orders columns in a DataFrame when supplied with a dict # (many of the test cases use this feature of the DataFrame # constructor when constructing the expected DataFrame). fp = get_data_path('valid/column-order.tsv') obs_md = Metadata.load(fp) # Supply DataFrame constructor with explicit column ordering instead of # a dict. exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_columns = ['z', 'y', 'x'] exp_data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'], [3.0, 'c', '42'] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_leading_trailing_whitespace(self): fp = get_data_path('valid/leading-trailing-whitespace.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_comments(self): fp = get_data_path('valid/comments.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_empty_rows(self): fp = get_data_path('valid/empty-rows.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_qiime1_mapping_file(self): fp = get_data_path('valid/qiime1.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='#SampleID') exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_qiita_sample_information_file(self): fp = get_data_path('valid/qiita-sample-information.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id.1', 'id.2'], name='sample_name') exp_df = pd.DataFrame({ 'DESCRIPTION': ['description 1', 'description 2'], 'TITLE': ['A Title', 'Another Title']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_qiita_preparation_information_file(self): fp = get_data_path('valid/qiita-preparation-information.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id.1', 'id.2'], name='sample_name') exp_df = pd.DataFrame({ 'BARCODE': ['ACGT', 'TGCA'], 'EXPERIMENT_DESIGN_DESCRIPTION': ['longitudinal study', 'longitudinal study']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_biom_observation_metadata_file(self): fp = get_data_path('valid/biom-observation-metadata.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['OTU_1', 'OTU_2'], name='#OTUID') exp_df = pd.DataFrame([['k__Bacteria;p__Firmicutes', 0.890], ['k__Bacteria', 0.9999]], columns=['taxonomy', 'confidence'], index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_supported_id_headers(self): case_insensitive = { 'id', 'sampleid', 'sample id', 'sample-id', 'featureid', 'feature id', 'feature-id' } exact_match = { '#SampleID', '#Sample ID', '#OTUID', '#OTU ID', 'sample_name' } # Build a set of supported headers, including exact matches and headers # with different casing. headers = set() for header in case_insensitive: headers.add(header) headers.add(header.upper()) headers.add(header.title()) for header in exact_match: headers.add(header) fp = os.path.join(self.temp_dir, 'metadata.tsv') count = 0 for header in headers: with open(fp, 'w') as fh: fh.write('%s\tcolumn\nid1\tfoo\nid2\tbar\n' % header) obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2'], name=header) exp_df = pd.DataFrame({'column': ['foo', 'bar']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) count += 1 # Since this test case is a little complicated, make sure that the # expected number of comparisons are happening. self.assertEqual(count, 26) def test_recommended_ids(self): fp = get_data_path('valid/recommended-ids.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'], name='id') exp_df = pd.DataFrame({'col1': ['foo', 'bar']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_non_standard_characters(self): # Test that non-standard characters in IDs, column names, and cells are # handled correctly. The test case isn't exhaustive (e.g. it doesn't # test every Unicode character; that would be a nice additional test # case to have in the future). Instead, this test aims to be more of an # integration test for the robustness of the reader to non-standard # data. Many of the characters and their placement within the data file # are based on use-cases/bugs reported on the forum, Slack, etc. The # data file has comments explaining these test case choices in more # detail. fp = get_data_path('valid/non-standard-characters.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5'], name='id') exp_columns = ['↩c@l1™', 'col(#2)', "#col'3", '"<col_4>"', 'col\t \r\n5'] exp_data = [ ['ƒoo', '(foo)', '#f o #o', 'fo\ro', np.nan], ["''2''", 'b#r', 'ba\nr', np.nan, np.nan], ['b"ar', 'c\td', '4\r\n2', np.nan, np.nan], ['b__a_z', '<42>', '>42', np.nan, np.nan], ['baz', np.nan, '42'] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_missing_data(self): fp = get_data_path('valid/missing-data.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['None', 'nan', 'NA'], name='id') exp_df = pd.DataFrame(collections.OrderedDict([ ('col1', [1.0, np.nan, np.nan]), ('NA', [np.nan, np.nan, np.nan]), ('col3', ['null', 'N/A', 'NA']), ('col4', np.array([np.nan, np.nan, np.nan], dtype=object))]), index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) # Test that column types are correct (mainly for the two empty columns; # one should be numeric, the other categorical). obs_columns = [(name, props.type) for name, props in obs_md.columns.items()] exp_columns = [('col1', 'numeric'), ('NA', 'numeric'), ('col3', 'categorical'), ('col4', 'categorical')] self.assertEqual(obs_columns, exp_columns) def test_minimal_file(self): # Simplest possible metadata file consists of one ID and zero columns. fp = get_data_path('valid/minimal.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['a'], name='id') exp_df = pd.DataFrame({}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_single_id(self): fp = get_data_path('valid/single-id.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1'], name='id') exp_df = pd.DataFrame({'col1': [1.0], 'col2': ['a'], 'col3': ['foo']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_no_columns(self): fp = get_data_path('valid/no-columns.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['a', 'b', 'my-id'], name='id') exp_df = pd.DataFrame({}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_single_column(self): fp = get_data_path('valid/single-column.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_trailing_columns(self): fp = get_data_path('valid/trailing-columns.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_jagged_trailing_columns(self): # Test case based on https://github.com/qiime2/qiime2/issues/335 fp = get_data_path('valid/jagged-trailing-columns.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_padding_rows_shorter_than_header(self): fp = get_data_path('valid/rows-shorter-than-header.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': [1.0, 2.0, np.nan], 'col2': ['a', np.nan, np.nan], 'col3': [np.nan, np.nan, np.nan]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_all_cells_padded(self): fp = get_data_path('valid/all-cells-padded.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': [np.nan, np.nan, np.nan], 'col2': [np.nan, np.nan, np.nan], 'col3': [np.nan, np.nan, np.nan]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_does_not_cast_ids_or_column_names(self): fp = get_data_path('valid/no-id-or-column-name-type-cast.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['0.000001', '0.004000', '0.000000'], dtype=object, name='id') exp_columns = ['42.0', '1000', '-4.2'] exp_data = [ [2.0, 'b', 2.5], [1.0, 'b', 4.2], [3.0, 'c', -9.999] ] exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_numeric_column(self): fp = get_data_path('valid/numeric-column.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8', 'id9', 'id10', 'id11', 'id12'], name='id') exp_df = pd.DataFrame({'col1': [0.0, 2.0, 0.0003, -4.2, 1e-4, 1e4, 1.5e2, np.nan, 1.0, 0.5, 1e-8, -0.0]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_numeric_column_as_categorical(self): fp = get_data_path('valid/numeric-column.tsv') obs_md = Metadata.load(fp, column_types={'col1': 'categorical'}) exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8', 'id9', 'id10', 'id11', 'id12'], name='id') exp_df = pd.DataFrame({'col1': ['0', '2.0', '0.00030', '-4.2', '1e-4', '1e4', '+1.5E+2', np.nan, '1.', '.5', '1e-08', '-0']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_with_complete_types_directive(self): fp = get_data_path('valid/complete-types-directive.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_with_partial_types_directive(self): fp = get_data_path('valid/partial-types-directive.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_with_empty_types_directive(self): fp = get_data_path('valid/empty-types-directive.tsv') obs_md = Metadata.load(fp) self.assertEqual(obs_md, self.simple_md) def test_with_case_insensitive_types_directive(self): fp = get_data_path('valid/case-insensitive-types-directive.tsv') obs_md = Metadata.load(fp) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': [-5.0, 0.0, 42.0]}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_column_types_without_directive(self): fp = get_data_path('valid/simple.tsv') obs_md = Metadata.load(fp, column_types={'col1': 'categorical'}) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) def test_column_types_override_directive(self): fp = get_data_path('valid/simple-with-directive.tsv') obs_md = Metadata.load(fp, column_types={'col1': 'categorical', 'col2': 'categorical'}) exp_index = pd.Index(['id1', 'id2', 'id3'], name='id') exp_df = pd.DataFrame({'col1': ['1', '2', '3'], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=exp_index) exp_md = Metadata(exp_df) self.assertEqual(obs_md, exp_md) class TestSave(unittest.TestCase): def setUp(self): self.temp_dir_obj = tempfile.TemporaryDirectory( prefix='qiime2-metadata-tests-temp-') self.temp_dir = self.temp_dir_obj.name self.filepath = os.path.join(self.temp_dir, 'metadata.tsv') def tearDown(self): self.temp_dir_obj.cleanup() def test_simple(self): md = Metadata(pd.DataFrame( {'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md.save(self.filepath) with open(self.filepath, 'r') as fh: obs = fh.read() exp = ( "id\tcol1\tcol2\tcol3\n" "#q2:types\tnumeric\tcategorical\tcategorical\n" "id1\t1\ta\tfoo\n" "id2\t2\tb\tbar\n" "id3\t3\tc\t42\n" ) self.assertEqual(obs, exp) def test_save_metadata_auto_extension(self): md = Metadata(pd.DataFrame( {'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=
pd.Index(['id1', 'id2', 'id3'], name='id')
pandas.Index
""" This is a program which automatically fetches, organizes, and graphs stock data for a user's desired ticker. It allows the user to see the High, Low, Open, Close, and Volume of a ticker for the past 2 weeks. It also provides metrics such as the Average Volume, Volatility, and Stochastic Oscillator. On top of that, it provides graphs the show the Volume, Moving Average, Expected Returns, and correlation to the S&P 500. It is designed to assist in the technical analysis of a stock and graph its fundemantal metrics. """ import math import datetime import pandas as pd from pandas import Series, DataFrame import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import style import pandas_datareader.data as pdr from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() __author__ = "<NAME>" __maintainer__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.0" __status__ = "Development" mpl.rc("figure", figsize = (7, 8)) style.use("seaborn") ticker = input("Please enter the ticker of the desired stock: ").upper() month = int(input("How many months back should we fetch the historic data? ")) cur_date = datetime.datetime.today() #gets the current date orig_date = pd.to_datetime(cur_date, format="%Y-%m-%d") - pd.DateOffset(months = month) #gets the date the specified months back start = datetime.datetime(orig_date.year, orig_date.month, orig_date.day) end = datetime.datetime(cur_date.year, cur_date.month, cur_date.day) orig_date_2 =
pd.to_datetime(cur_date, format="%Y-%m-%d")
pandas.to_datetime
""" MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time from time import strptime, mktime from pandas import Timestamp, DateOffset, to_datetime, Series, NaT, isnull import calendar from calendar import timegm from datetime import datetime, timedelta import pytz from pytz import timezone from stocklook.config import config import logging as lg log = lg.getLogger(__name__) # Time-related helper methods TZ = 'PYTZ_TIMEZONE' GLOBAL_TIMEOUT_MAP = dict() def timestamp_to_local(dt): """ Convert nearly any time object to local time. :param dt: The following objects are tested: - utc integer/float/numeric string - datetime.datetime - pandas.Timestamp - date or datetime string coercible by pandas.Timestamp algos - :return: """ try: return localize_utc_int(dt) except: if not dt: return None if isinstance(dt, str): # convert a string-ish object to a # pandas.Timestamp (way smarter than datetime) utc_dt = Timestamp(dt) # Get rid of existing timezones dt = de_localize_datetime(dt) if hasattr(dt, 'utctimetuple'): dt = timegm(dt.utctimetuple()) return localize_utc_int(dt) def localize_utc_int(utc_int): tz = timezone(config[TZ]) utc_dt = datetime.fromtimestamp(int(float(utc_int)), pytz.utc) return utc_dt.astimezone(tz) def de_localize_datetime(dt): tz_info = getattr(dt, 'tzinfo', None) if tz_info and tz_info != pytz.utc: if hasattr(dt, 'astimezone'): dt = dt.astimezone(pytz.utc) return dt.replace(tzinfo=None) return dt def timestamp_trim_to_min(time_stamp): t = Timestamp(time_stamp) s = DateOffset(seconds=t.second) return t - s def timestamp_trim_to_hour(time_stamp): t = Timestamp(time_stamp) s = DateOffset(seconds=t.second, minutes=t.minute) return t - s def timestamp_trim_to_date(time_stamp): t = Timestamp(time_stamp) return t.date def timestamp_from_utc(utc_time): try: utc = datetime.utcfromtimestamp(utc_time) utc_form = utc.strftime('%Y-%m-%d %H:%M:%S') except (TypeError, OSError): utc_form = utc_time return
Timestamp(utc_form)
pandas.Timestamp
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ts.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_date_unit(self, unit): df = self.tsframe.copy() df["date"] = Timestamp("20130101 20:43:42") dl = df.columns.get_loc("date") df.iloc[1, dl] = Timestamp("19710101 20:43:42") df.iloc[2, dl] = Timestamp("21460101 20:43:42") df.iloc[4, dl] = pd.NaT json = df.to_json(date_format="epoch", date_unit=unit) # force date unit result = read_json(json, date_unit=unit) tm.assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) tm.assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r"""{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }""" read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB")) dfj2["date"] = Timestamp("20130101") dfj2["ints"] = range(5) dfj2["bools"] = True dfj2.index = pd.date_range("20130101", periods=5) json = dfj2.to_json() result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_}) tm.assert_frame_equal(result, result) def test_misc_example(self): # parsing unordered input fails result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) error_msg = """DataFrame\\.index are different DataFrame\\.index values are different \\(100\\.0 %\\) \\[left\\]: Index\\(\\['a', 'b'\\], dtype='object'\\) \\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)""" with pytest.raises(AssertionError, match=error_msg): tm.assert_frame_equal(result, expected, check_index_type=False) result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]') expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @tm.network @pytest.mark.single def test_round_trip_exception_(self): # GH 3867 csv = "https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv" df = pd.read_csv(csv) s = df.to_json() result = pd.read_json(s) tm.assert_frame_equal(result.reindex(index=df.index, columns=df.columns), df) @tm.network @pytest.mark.single @pytest.mark.parametrize( "field,dtype", [ ["created_at", pd.DatetimeTZDtype(tz="UTC")], ["closed_at", "datetime64[ns]"], ["updated_at", pd.DatetimeTZDtype(tz="UTC")], ], ) def test_url(self, field, dtype): url = "https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5" # noqa result = read_json(url, convert_dates=True) assert result[field].dtype == dtype def test_timedelta(self): converter = lambda x:
pd.to_timedelta(x, unit="ms")
pandas.to_timedelta
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, to_datetime, ) import pandas._testing as tm import pandas.tseries.offsets as offsets class TestRollingTS: # rolling time-series friendly # xref GH13327 def setup_method(self, method): self.regular = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") self.ragged = DataFrame({"B": range(5)}) self.ragged.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] def test_doc_string(self): df = DataFrame( {"B": [0, 1, 2, np.nan, 4]}, index=[ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ], ) df df.rolling("2s").sum() def test_invalid_window_non_int(self): # not a valid freq msg = "passed window foobar is not compatible with a datetimelike index" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="foobar") # not a datetimelike index msg = "window must be an integer" with pytest.raises(ValueError, match=msg): self.regular.reset_index().rolling(window="foobar") @pytest.mark.parametrize("freq", ["2MS", offsets.MonthBegin(2)]) def test_invalid_window_nonfixed(self, freq): # non-fixed freqs msg = "\\<2 \\* MonthBegins\\> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): self.regular.rolling(window=freq) @pytest.mark.parametrize("freq", ["1D", offsets.Day(2), "2ms"]) def test_valid_window(self, freq): self.regular.rolling(window=freq) @pytest.mark.parametrize("minp", [1.0, "foo", np.array([1, 2, 3])]) def test_invalid_minp(self, minp): # non-integer min_periods msg = ( r"local variable 'minp' referenced before assignment|" "min_periods must be an integer" ) with pytest.raises(ValueError, match=msg): self.regular.rolling(window="1D", min_periods=minp) def test_invalid_center_datetimelike(self): # center is not implemented msg = "center is not implemented for datetimelike and offset based windows" with pytest.raises(NotImplementedError, match=msg): self.regular.rolling(window="1D", center=True) def test_on(self): df = self.regular # not a valid column msg = ( r"invalid on specified as foobar, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling(window="2s", on="foobar") # column is valid df = df.copy() df["C"] = date_range("20130101", periods=len(df)) df.rolling(window="2d", on="C").sum() # invalid columns msg = "window must be an integer" with pytest.raises(ValueError, match=msg): df.rolling(window="2d", on="B") # ok even though on non-selected df.rolling(window="2d", on="C").B.sum() def test_monotonic_on(self): # on/index must be monotonic df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) assert df.A.is_monotonic df.rolling("2s", on="A").sum() df = df.set_index("A") assert df.index.is_monotonic df.rolling("2s").sum() def test_non_monotonic_on(self): # GH 19248 df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) df = df.set_index("A") non_monotonic_index = df.index.to_list() non_monotonic_index[0] = non_monotonic_index[3] df.index = non_monotonic_index assert not df.index.is_monotonic msg = "index must be monotonic" with pytest.raises(ValueError, match=msg): df.rolling("2s").sum() df = df.reset_index() msg = ( r"invalid on specified as A, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling("2s", on="A").sum() def test_frame_on(self): df = DataFrame( {"B": range(5), "C": date_range("20130101 09:00:00", periods=5, freq="3s")} ) df["A"] = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] # we are doing simulating using 'on' expected = df.set_index("A").rolling("2s").B.sum().reset_index(drop=True) result = df.rolling("2s", on="A").B.sum() tm.assert_series_equal(result, expected) # test as a frame # we should be ignoring the 'on' as an aggregation column # note that the expected is setting, computing, and resetting # so the columns need to be switched compared # to the actual result where they are ordered as in the # original expected = ( df.set_index("A").rolling("2s")[["B"]].sum().reset_index()[["B", "A"]] ) result = df.rolling("2s", on="A")[["B"]].sum() tm.assert_frame_equal(result, expected) def test_frame_on2(self): # using multiple aggregation columns df = DataFrame( { "A": [0, 1, 2, 3, 4], "B": [0, 1, 2, np.nan, 4], "C": Index( [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] ), }, columns=["A", "C", "B"], ) expected1 = DataFrame( {"A": [0.0, 1, 3, 3, 7], "B": [0, 1, 3, np.nan, 4], "C": df["C"]}, columns=["A", "C", "B"], ) result = df.rolling("2s", on="C").sum() expected = expected1 tm.assert_frame_equal(result, expected) expected = Series([0, 1, 3, np.nan, 4], name="B") result = df.rolling("2s", on="C").B.sum() tm.assert_series_equal(result, expected) expected = expected1[["A", "B", "C"]] result = df.rolling("2s", on="C")[["A", "B", "C"]].sum() tm.assert_frame_equal(result, expected) def test_basic_regular(self): df = self.regular.copy() df.index = date_range("20130101", periods=5, freq="D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="1D").sum() tm.assert_frame_equal(result, expected) df.index = date_range("20130101", periods=5, freq="2D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1).sum() result = df.rolling(window="2D").sum() tm.assert_frame_equal(result, expected) def test_min_periods(self): # compare for min_periods df = self.regular # these slightly different expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s", min_periods=1).sum() tm.assert_frame_equal(result, expected) def test_closed(self): # xref GH13965 df = DataFrame( {"A": [1] * 5}, index=[ Timestamp("20130101 09:00:01"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:04"), Timestamp("20130101 09:00:06"), ], ) # closed must be 'right', 'left', 'both', 'neither' msg = "closed must be 'right', 'left', 'both' or 'neither'" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="2s", closed="blabla") expected = df.copy() expected["A"] = [1.0, 2, 2, 2, 1] result = df.rolling("2s", closed="right").sum() tm.assert_frame_equal(result, expected) # default should be 'right' result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [1.0, 2, 3, 3, 2] result = df.rolling("2s", closed="both").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 2, 2, 1] result = df.rolling("2s", closed="left").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 1, 1, np.nan] result = df.rolling("2s", closed="neither").sum() tm.assert_frame_equal(result, expected) def test_ragged_sum(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 3, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, np.nan, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s").sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=3).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 10] tm.assert_frame_equal(result, expected) def test_ragged_mean(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_median(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_quantile(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5]
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# import all the required files i.e. numpy , pandas and math library from graphlib.financialGraph import Data import numpy as np import pandas as pd from pandas import DataFrame , Series import math # All the indicators are defined and arranged in Alphabetical order # ------------------> A <------------------------ # [0] __ Average True Range (ATR) # Moving Average of True Range(TR) def atr(data: DataFrame, period: int = 14) -> Series: TR = tr(data) return pd.Series( TR.rolling(center=False, window=period, min_periods=1).mean(), name=f'{period} ATR' ) # [0] __ Adaptive Price Zone (APZ) # TODO def apz(data: DataFrame,period: int = 21,dev_factor: int = 2, MA: Series = None,adjust: bool = True,) -> DataFrame: if not isinstance(MA, pd.Series): MA = dema(data, period) price_range = pd.Series( (data["high"] - data["low"]).ewm(span=period, adjust=adjust).mean() ) volatility_value = pd.Series( price_range.ewm(span=period, adjust=adjust).mean(), name="vol_val" ) upper_band = pd.Series((volatility_value * dev_factor) + MA, name="UPPER") lower_band = pd.Series(MA - (volatility_value * dev_factor), name="LOWER") return pd.concat([upper_band, lower_band], axis=1) # ------------------> B <------------------------ # [0] __ Bollinger Bands (BBANDS) # TODO def bbands(data: DataFrame,period: int = 20,MA: Series = None, column: str = "close",std_multiplier: float = 2,) -> DataFrame: std = data[column].rolling(window=period).std() if not isinstance(MA, pd.core.series.Series): middle_band = pd.Series(sma(data, period), name="BB_MIDDLE") else: middle_band = pd.Series(MA, name="BB_MIDDLE") upper_bb = pd.Series(middle_band + (std_multiplier * std), name="BB_UPPER") lower_bb = pd.Series(middle_band - (std_multiplier * std), name="BB_LOWER") return pd.concat([upper_bb, middle_band, lower_bb], axis=1) # [0] __ Bollinger Bands Width (BBWidth) # TODO def bbwidth( data: DataFrame, period: int = 20, MA: Series = None, column: str = "close" ) -> Series: BB = bbands(data, period, MA, column) return pd.Series( (BB["BB_UPPER"] - BB["BB_LOWER"]) / BB["BB_MIDDLE"], name="{0} period BBWITH".format(period), ) # ------------------> D <------------------------ # [0] __ Double Exponential Moving Average (DEMA) # 2 * EWMA - ewm(EWMA) def dema(data : DataFrame,period: int = 10,column: str ='close',adjust: bool = True) -> Series: DEMA = ( 2*ema(data,period) - ema(data,period).ewm(span=period , adjust=adjust).mean() ) return pd.Series( DEMA , name = f'{period}_DEMA' ) # [0] __ Directional Movement Index (DMI) # TODO def dmi(data: DataFrame, column: str = "close", adjust: bool = True) -> Series: def _get_time(close): sd = close.rolling(5).std() asd = sd.rolling(10).mean() v = sd / asd t = 14 / v.round() t[t.isna()] = 0 t = t.map(lambda x: int(min(max(x, 5), 30))) return t def _dmi(index): time = t.iloc[index] if (index - time) < 0: subset = data.iloc[0:index] else: subset = data.iloc[(index - time) : index] return rsi(subset, period=time, adjust=adjust).values[-1] dates = Series(data.index) periods = Series(range(14, len(dates)), index=dates.index[14:].values) t = _get_time(data[column]) return periods.map(lambda x: _dmi(x)) # ------------------> E <------------------------ # [0] __ Exponential Weighted Moving Average (EWMA) or Exponential Moving Average(EMA) # Exponential average of prev n day prices def ema(data : DataFrame,period: int = 10,column: str ='close',adjust: bool = True) -> Series: return pd.Series( data[column].ewm(span=period, adjust=adjust).mean(), name = f'{period}_EMA' ) # [0] __ Kaufman Efficiency indicator (KER) or (ER) # change in price / volatility Here change and volatility are absolute def er(data : DataFrame,period: int = 10,column: str ='close') -> Series: change = data[column].diff(period).abs() volatility = data[column].diff().abs().rolling(window=period,min_periods=1).sum() return pd.Series(change / volatility, name=f'{period}_ER' ) # [0] __ TODO (EVSTC) # TODO def evstc(data: DataFrame,period_fast: int = 12,period_slow: int = 30, k_period: int = 10,d_period: int = 3,adjust: bool = True) -> Series: ema_slow = evwma(data, period_slow) ema_fast = evwma(data, period_fast) macd = ema_fast - ema_slow STOK = pd.Series(( (macd - macd.rolling(window=k_period).min()) / (macd.rolling(window=k_period).max() - macd.rolling(window=k_period).min()) ) * 100) STOD = STOK.rolling(window=d_period).mean() STOD_DoubleSmooth = STOD.rolling(window=d_period).mean() return pd.Series(STOD_DoubleSmooth, name="{0} period EVSTC".format(k_period)) # [0] __ Elastic Volume Weighted Moving Average (EVWMA) # x is ((volume sum for n period) - volume ) divided by (volume sum for n period) # y is volume * close / (volume sum for n period) def evwma(data, period: int = 20) -> Series: vol_sum = (data["volume"].rolling(window=period,min_periods=1).sum()) x = (vol_sum - data["volume"]) / vol_sum y = (data["volume"] * data["close"]) / vol_sum evwma = [0] for x, y in zip(x.fillna(0).iteritems(), y.iteritems()): if x[1] == 0 or y[1] == 0: evwma.append(0) else: evwma.append(evwma[-1] * x[1] + y[1]) return pd.Series( evwma[1:], index=data.index, name=f'{period}_EVWMA' ) # [0] __ Elastic Volume Weighted Moving average convergence divergence (EV_MACD) # MACD calculation on basis of Elastic Volume Weighted Moving average (EVWMA) def ev_macd(data: DataFrame,period_fast: int = 20,period_slow: int = 40, signal: int = 9,adjust: bool = True,) -> DataFrame: evwma_slow = evwma(data, period_slow) evwma_fast = evwma(data, period_fast) MACD =
pd.Series(evwma_fast - evwma_slow, name="EV MACD")
pandas.Series
import logging logger = logging.getLogger(__name__) import os import sys import zipfile import math import re import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.switch_backend('agg') import lxml.html as lh from datetime import datetime as dt def read_rnaseq_metrics(path): try: logger.debug("unzipping contents for {}".format(path)) zfile = zipfile.ZipFile(path) try: metrics_file = zfile.open('CollectRnaSeqMetrics.metrics.txt') except KeyError: metrics_file = zfile.open('RNA_Seq_Metrics_html.html') return metrics_file.readlines() except: logger.warning("not a zip file; reading lines directly") with open(path) as f: return f.readlines() def get_norm_cov(rnaseq_metrics_lines): logger.debug("parsing normalized coverage histogram") try: logger.debug("attempting to parse histogram from " "expected location (lines 11-112)") cov_hist_lines = rnaseq_metrics_lines[11:112] norm_cov = [float(line.rstrip('\n').split('\t')[-1]) for line in cov_hist_lines] except ValueError: try: logger.warning("parsing failed; attempting to parse histogram from " "alternative location (lines 31-132)") cov_hist_lines = rnaseq_metrics_lines[31:132] norm_cov = [float(re.search('[0-9]*\t[0-9]+(\.[0-9]+)*', line) .group() .split('\t')[-1]) for line in cov_hist_lines] # THIS IS A HACK-Y WORKAROUND. NEED TO PARSE TABLE BETTER except AttributeError: try: logger.warning("parsing failed; attempting to parse histogram from " "alternative location (lines 30-131)") cov_hist_lines = rnaseq_metrics_lines[30:131] norm_cov = [float(re.search('[0-9]*\t[0-9]+(\.[0-9]+)*', line) .group() .split('\t')[-1]) for line in cov_hist_lines] except AttributeError: logger.warning("no coverage histogram found, returning empty list") norm_cov = [] return norm_cov # def scrape_norm_cov_table(path): # lh.parse(path) def build_norm_cov_df(metrics_path): rnaseq_metrics_files = [os.path.join(metrics_path, f) for f in os.listdir(metrics_path) if re.search('_al.zip', f) or re.search('rnaseq_metrics.html', f)] rnaseq_metrics_files.sort() logger.info("found Picard RNA-seq metrics files for {} samples" .format(len(rnaseq_metrics_files))) norm_cov_dict = {} for f in rnaseq_metrics_files: logger.debug("reading RNA-seq metrics from {}".format(f)) rnaseq_metrics_lines = read_rnaseq_metrics(f) norm_cov = get_norm_cov(rnaseq_metrics_lines) norm_cov = [0] * 101 if not len(norm_cov) else norm_cov logger.debug("parsing filename to get sample ID") lib = ('_').join(os.path.basename(f).split('_')[0:2]) norm_cov_dict[lib] = norm_cov return
pd.DataFrame(data=norm_cov_dict)
pandas.DataFrame
# This file is part of the # Garpar Project (https://github.com/quatrope/garpar). # Copyright (c) 2021, 2022, <NAME>, <NAME> and QuatroPe # License: MIT # Full Text: https://github.com/quatrope/garpar/blob/master/LICENSE # ============================================================================= # IMPORTS # ============================================================================= from io import BytesIO from garpar.io import read_hdf5 from garpar.core.portfolio import GARPAR_METADATA_KEY, Metadata, Portfolio import numpy as np import pandas as pd import pytest # ============================================================================= # TESTS # ============================================================================= def test_Portfolio_creation(): df = pd.DataFrame({"stock": [1, 2, 3, 4, 5]}) df.attrs[GARPAR_METADATA_KEY] = Metadata( { "entropy": 0.5, "window_size": 5, } ) manual_pf = Portfolio(df=df.copy(), weights=[1.0]) mk_pf = Portfolio.from_dfkws( df=df, entropy=0.5, window_size=5, ) assert manual_pf == mk_pf def test_Portfolio_copy_eq_ne(): pf = Portfolio.from_dfkws( df=pd.DataFrame({"stock": [1, 2, 3, 4, 5]}), entropy=0.5, window_size=5, ) copy = pf.copy() assert pf == copy assert pf is not copy assert ( pf._df.attrs[GARPAR_METADATA_KEY] == copy._df.attrs[GARPAR_METADATA_KEY] ) assert ( pf._df.attrs[GARPAR_METADATA_KEY] is not copy._df.attrs[GARPAR_METADATA_KEY] ) other = Portfolio.from_dfkws( df=pd.DataFrame({"stock": [1, 2, 3, 4, 5]}), entropy=0.25, window_size=5, ) assert pf != other def test_Portfolio_bad_metadata(): df = pd.DataFrame({"stock": [1, 2, 3, 4, 5]}) df.attrs[GARPAR_METADATA_KEY] = None with pytest.raises(TypeError): Portfolio(df) def test_Portfolio_repr(): pf = Portfolio.from_dfkws( df=
pd.DataFrame({"stock": [1, 2, 3, 4, 5]})
pandas.DataFrame
__author__ = "<NAME>, <NAME>, <NAME>, <NAME>" __license__ = "MIT" __version__ = "0.1" #================================================================================ # modules #================================================================================ import pandas as pd import numpy as np from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import VotingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.neural_network import MLPClassifier from sklearn.datasets import make_classification from sklearn import datasets from sklearn import metrics from sklearn.dummy import DummyClassifier from sklearn import tree #================================================================================ # properties #================================================================================ dataPath = './data/' def main(): fullDf = load_dataframe('DataSet-cleaned-binary.csv') trainDf, testDf = splitDataFrame(fullDf, 90) RunDummyClassifier(trainDf, testDf) # RunDecisionTreeClassifier(trainDf, testDf) # RunRandomForestClassifier(trainDf, testDf) # RunExtraTreesClassifier(trainDf, testDf) # RunAdaBoostClassifier(trainDf, testDf) # RunBaggingClassifier(trainDf, testDf) # RunGradientBoostingClassifier(trainDf, testDf) # RunVotingClassifier(trainDf, testDf) # RunKNeighborsClassifier(trainDf, testDf) # RunMLPClassifier(trainDf, testDf) return None # ██████╗██╗ █████╗ ███████╗███████╗██╗███████╗██╗███████╗██████╗ ███████╗ # ██╔════╝██║ ██╔══██╗██╔════╝██╔════╝██║██╔════╝██║██╔════╝██╔══██╗██╔════╝ # ██║ ██║ ███████║███████╗███████╗██║█████╗ ██║█████╗ ██████╔╝███████╗ # ██║ ██║ ██╔══██║╚════██║╚════██║██║██╔══╝ ██║██╔══╝ ██╔══██╗╚════██║ # ╚██████╗███████╗██║ ██║███████║███████║██║██║ ██║███████╗██║ ██║███████║ # ╚═════╝╚══════╝╚═╝ ╚═╝╚══════╝╚══════╝╚═╝╚═╝ ╚═╝╚══════╝╚═╝ ╚═╝╚══════╝ def trainAndRetrainClassifier(classifier, X, X_, y, y_, train_X, train_y, test_X): """trainAndRetrainClassifier Trains a classifier a first time, predicts a target feature and train the classifier again thereafter. Input: classifier -- the classifier to use X -- X split of training set X_ -- X split of testing set y -- y split of training set y_ -- y splif of testing set train_X -- training set (sample) train_y -- target feature test_X -- testing set Output: y_test_c -- predicted values """ classifier.fit(X, y) # Training a first time y_c = classifier.predict(X_) # Predicting (y_c represents the estimated targets as returned by the classifier) evaluateModel(y_, y_c) # Evaluating model with validation set classifier.fit(train_X, train_y) # Training again (with entire training set) y_test_c = classifier.predict(test_X) # Predicting with test set return y_test_c def RunDummyClassifier(trainDf, testDf): """RunDummyClassifier Runs a Dummy Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) dc = DummyClassifier(strategy='stratified', random_state=0) y_test_dc = trainAndRetrainClassifier(dc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_dc, 'dc.csv') def RunDecisionTreeClassifier(trainDf, testDf): """RunDecisionTreeClassifier Runs a Decision Tree Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) dtc = tree.DecisionTreeClassifier(criterion='entropy') y_test_dtc = trainAndRetrainClassifier(dtc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_dtc, 'dtc.csv') def RunRandomForestClassifier(trainDf, testDf): """RunRandomForestClassifier Runs a Random Forest Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) rfc = RandomForestClassifier(n_estimators=10, criterion='entropy', max_features=None, max_depth=None, verbose=True) y_test_rfc = trainAndRetrainClassifier(rfc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_rfc, 'rfc.csv') def RunExtraTreesClassifier(trainDf, testDf): """RunExtraTreesClassifier Runs a Extra Trees Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) etc = ExtraTreesClassifier(n_estimators=10, max_depth=None, random_state=0, verbose=True) y_test_etc = trainAndRetrainClassifier(etc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_etc, 'etc.csv') def RunAdaBoostClassifier(trainDf, testDf): """RunAdaBoostClassifier Runs an Ada Boost Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) abc = AdaBoostClassifier(n_estimators=10) y_test_abc = trainAndRetrainClassifier(abc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_abc, 'abc.csv') def RunBaggingClassifier(trainDf, testDf): """RunBaggingClassifier Runs a Bagging Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) bc = BaggingClassifier(KNeighborsClassifier(), max_samples=0.8, max_features=0.8, n_estimators=10) y_test_bc = trainAndRetrainClassifier(bc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_bc, 'bc.csv') def RunGradientBoostingClassifier(trainDf, testDf): """RunGradientBoostingClassifier Runs a Gradient Boosting Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) gbc = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0) y_test_gbc = trainAndRetrainClassifier(gbc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_gbc, 'bc.csv') def RunVotingClassifier(trainDf, testDf): """RunVotingClassifier Runs a Voting Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):scores = cross_val_score(clf, train_X, train_y, cv=5, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label)) def RunKNeighborsClassifier(trainDf, testDf): """RunKNeighborsClassifier Runs a K-Neighbors Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) knc = KNeighborsClassifier(n_neighbors=1, weights='distance') y_test_knc = trainAndRetrainClassifier(knc, X, X_, y, y_, train_X, train_y, test_X) savePredictions(y_test_knc, 'knc.csv') # ███╗ ██╗███████╗██╗ ██╗██████╗ █████╗ ██╗ # ████╗ ██║██╔════╝██║ ██║██╔══██╗██╔══██╗██║ # ██╔██╗ ██║█████╗ ██║ ██║██████╔╝███████║██║ # ██║╚██╗██║██╔══╝ ██║ ██║██╔══██╗██╔══██║██║ # ██║ ╚████║███████╗╚██████╔╝██║ ██║██║ ██║███████╗ # ╚═╝ ╚═══╝╚══════╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝╚══════╝ def RunMLPClassifier(trainDf, testDf): """RunMLPClassifier Runs a Neural Network based on a MLP Classifier on training and testing dataframes. Input: trainDf -- the training DataFrame (pandas) testDf -- the testing DataFrame (pandas) """ train_X, train_y, test_X = createArrays(trainDf, testDf) # Split the training set into training and validation sets X, X_, y, y_ = train_test_split(train_X, train_y, test_size=0.2) mlpc = MLPClassifier(verbose=True) mlpc.fit(X, y) # Train MLPClassifier(hidden_layer_sizes=(56, 56, 56)) y_mlpc = mlpc.predict(X_) # Predict / y_rf represents the estimated targets as returned by our classifier evaluateModel(y_, y_mlpc) # Evaluating model with validation set mlpc.fit(train_X, train_y) # Retrain with entire training set y_test_mlpc = mlpc.predict(test_X) # Predict with test set # ██╗███╗ ██╗██████╗ ██╗ ██╗████████╗ ██████╗ ██╗ ██╗████████╗██████╗ ██╗ ██╗████████╗ # ██║████╗ ██║██╔══██╗██║ ██║╚══██╔══╝ ██╔═══██╗██║ ██║╚══██╔══╝██╔══██╗██║ ██║╚══██╔══╝ # ██║██╔██╗ ██║██████╔╝██║ ██║ ██║█████╗██║ ██║██║ ██║ ██║ ██████╔╝██║ ██║ ██║ # ██║██║╚██╗██║██╔═══╝ ██║ ██║ ██║╚════╝██║ ██║██║ ██║ ██║ ██╔═══╝ ██║ ██║ ██║ # ██║██║ ╚████║██║ ╚██████╔╝ ██║ ╚██████╔╝╚██████╔╝ ██║ ██║ ╚██████╔╝ ██║ # ╚═╝╚═╝ ╚═══╝╚═╝ ╚═════╝ ╚═╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ def load_dataframe(fileName): """load_dataframe Loads a DataFrame from a .csv file. Input: fileName -- the name of the file (should be located in ./data/) Output: pd.read_csv() -- the DataFrame loaded by Pandas """ path = dataPath + fileName return pd.read_csv(path, header=0) def write_dataframe(df, fileName): """write_dataframe Writes a DataFrame into a .csv file. Input: df -- the DataFrame to write fileName -- the name of the file (will be saved in ./data/) """ path = dataPath + fileName df.to_csv(path) def savePredictions(predictions, fileName): """savePredictions Saves predictions into a .csv file. Input: predictions -- predictions to save fileName -- the name of the file (will be saved in ./data/predictions/) """
pd.DataFrame({'Cover_Type': predictions})
pandas.DataFrame
# -*- coding: utf-8 -*- import argparse import pandas as pd from zvt import init_log, zvt_env from zvt.api.quote import get_stock_factor_schema from zvt.contract import IntervalLevel from zvt.contract.api import df_to_db from zvt.contract.recorder import FixedCycleDataRecorder from zvt.recorders.joinquant.common import to_jq_trading_level, to_jq_entity_id from zvt.domain import Stock,StockFactorCommon from zvt.utils.pd_utils import pd_is_not_null from zvt.utils.time_utils import to_time_str, now_pd_timestamp, TIME_FORMAT_DAY, TIME_FORMAT_ISO8601 try: from jqdatasdk import auth, logout, get_factor_values except: pass class JqChinaStockFactorRecorder(FixedCycleDataRecorder): entity_provider = 'joinquant' entity_schema = Stock data_schema = StockFactorCommon # 数据来自jq provider = 'joinquant' def __init__(self, exchanges=['sh', 'sz'], schema=None, entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=0, default_size=2000, real_time=False, fix_duplicate_way='ignore', start_timestamp=None, end_timestamp=None, level=IntervalLevel.LEVEL_1WEEK, kdata_use_begin_time=False, close_hour=15, close_minute=0, one_day_trading_minutes=4 * 60, ) -> None: level = IntervalLevel(level) self.data_schema = get_stock_factor_schema(schema) self.jq_trading_level = to_jq_trading_level(level) super().__init__('stock', exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute, level, kdata_use_begin_time, one_day_trading_minutes) auth(zvt_env['jq_username'], zvt_env['jq_password']) def on_finish(self): super().on_finish() logout() def record(self, entity, start, end, size, timestamps): now_date = to_time_str(now_pd_timestamp()) jq_entity_di = to_jq_entity_id(entity) if size > 1000: start_end_size = self.evaluate_start_end_size_timestamps(entity) size = 1000 bdate= pd.bdate_range(start=start_end_size[0], periods=size) self.start_timestamp = bdate[0] self.end_timestamp = bdate[-1] if bdate[-1] <= now_pd_timestamp() else now_pd_timestamp() if not self.end_timestamp: factor_data = get_factor_values(securities=[jq_entity_di], factors=self.data_schema.important_cols(), end_date=now_date, count=size) else: end_timestamp = to_time_str(self.end_timestamp) if self.start_timestamp: start_timestamp = to_time_str(self.start_timestamp) else: bdate_list = pd.bdate_range(end=end_timestamp, periods=size) start_timestamp = to_time_str(bdate_list[0]) factor_data = get_factor_values(securities=[to_jq_entity_id(entity)], factors=self.data_schema.important_cols(), start_date=start_timestamp, end_date=end_timestamp) df_list = [values.rename(columns={jq_entity_di: key}) for key, values in factor_data.items()] if len(df_list) != 0: df = pd.concat(df_list,join='inner',sort=True,axis=1).sort_index(ascending=True) else: df = pd.DataFrame(columns=self.data_schema.important_cols(),index=pd.bdate_range(start=start_timestamp,end=end_timestamp)) if pd_is_not_null(df): df_fill = pd.DataFrame(index=pd.bdate_range(start=start_timestamp, end=end_timestamp)) if self.end_timestamp else
pd.DataFrame(index=df.index)
pandas.DataFrame
import numpy as np import pandas as pd from gmpy2 import bit_mask from rulelist.rulelistmodel.gaussianmodel.gaussiantarget import GaussianTargets class TestGaussianTargets(object): def test_onetarget(self): dictoutput = {"target1": np.arange(100)} input_target_data = pd.DataFrame(data=dictoutput) expected_number_targets = 1 expected_bit_array = bit_mask(100) expected_mean_vector = np.array([49.5]) expected_variance_vector = np.var([*range(100)]) output_gaussiantargets= GaussianTargets(input_target_data) assert expected_bit_array == output_gaussiantargets.bit_array assert expected_number_targets == len(output_gaussiantargets.mean) assert expected_number_targets == len(output_gaussiantargets.variance) np.testing.assert_array_equal(expected_mean_vector, output_gaussiantargets.mean) np.testing.assert_array_equal(expected_variance_vector, output_gaussiantargets.variance) def test_twotargets(self): dictoutput = {"target1": np.arange(100), "target2": np.ones(100)} input_target_data = pd.DataFrame(data=dictoutput) expected_number_targets = 2 expected_bit_array = bit_mask(100) expected_mean_vector = np.array([49.5,1]) expected_variance_vector = [np.var([*range(100)]),0] output_gaussiantargets= GaussianTargets(input_target_data) assert expected_bit_array == output_gaussiantargets.bit_array assert expected_number_targets == len(output_gaussiantargets.mean) assert expected_number_targets == len(output_gaussiantargets.variance) np.testing.assert_array_equal(expected_mean_vector, output_gaussiantargets.mean) np.testing.assert_array_equal(expected_variance_vector, output_gaussiantargets.variance) def test_onlyzeros(self): dictoutput = {"target1": np.zeros(100)} input_target_data =
pd.DataFrame(data=dictoutput)
pandas.DataFrame
import matplotlib import matplotlib.pyplot as plt from time import sleep from subprocess import Popen, PIPE, STDOUT from IPython.display import clear_output, display import urllib.parse from io import BytesIO from zipfile import ZipFile import urllib.request import datetime import os from subprocess import Popen, PIPE, STDOUT import pandas import numpy from IPython.display import display, HTML def readDataAndGenerateCSV(scenario): if scenario == 1 or scenario == 2: zNormalized = 1 if scenario == 3: zNormalized = 0 p = Popen(['java', '-jar', 'StockDataGenerateCSV-1.0-jar-with-dependencies.jar', 'properties_scenario' + str(scenario) + '.conf'], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) if zNormalized == 1: stocks_file = open("stockTS.csvzNorm.csv") else: stocks_file = open("stockTS.csv") stocks_lines = stocks_file.readlines() stocks = {} for s in stocks_lines: stock_name = s.split(",")[0] stock_values_str = s.split("\n")[0].split(",")[3:264] stock_values = [] for st in stock_values_str: stock_values.append(float(st)) stocks[stock_name] = stock_values return stocks def discoverBundles(scenario): if scenario > 0: p = Popen(['java', '-jar', 'BundleDiscovery-1.0-jar-with-dependencies.jar', 'properties_scenario' + str(scenario) + '.conf'], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) else: p = Popen(['java', '-jar', './GET_DB_DATA.jar'], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) def plotAllData(stock_market, year, stocks): xlim_1 = 0 xlim_2 = 261 plt.rcParams['figure.figsize'] = [28, 14] plt.title('Stocks of ' + stock_market + '\'s Stock Market', fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Day of Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) plt.grid(True) for k, v in stocks.items(): plt.plot(v) #return bundles_members, bundles_duration def plotAllBundles(stock_market, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 261 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration for k, v in bundles_members.items(): duration = bundles_duration[k] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of Stocks (' + stock_market + '\'s Stock Market)', fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Day of Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) for member in bundles_members[k]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 p = plt.plot(list(range(x1, x2)), maximum, linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color=p[0].get_color(), linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color=p[0].get_color(), alpha=0.15) def plotSelectedBundle(scenario, bundle_to_visualize, stock_market, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 261 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration if bundle_to_visualize == -1: if scenario == 1 or scenario == 2: bundle_to_visualize = 'Bundle_0' if scenario == 3: bundle_to_visualize = 'Bundle_100' else: bundle_to_visualize = bundle_to_visualize duration = bundles_duration[bundle_to_visualize] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of ' + bundle_to_visualize + ' (' + stock_market + '\'s Stock Market)', fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Day of Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) print('BUNDLE MEMBERS:') for member in bundles_members[bundle_to_visualize]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 plt.plot(ts) print(member) plt.axvline(x = x1) plt.axvline(x = x2) plt.plot(list(range(x1, x2)), maximum, color='#539ecd', linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color='#539ecd', linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color='#539ecd', alpha=0.25) def segmentData(year, interval, symbol, zNormalize): if os.path.exists("singleStockTS.csv"): os.remove("singleStockTS.csv") count1 = 1 count2 = 0 string_to_write = "" for i in range(1,12): month = str(i) if i < 10: month = "0" + month link = "http://5.175.24.176/Qualimaster/history/" + str(interval) + "/" + year + month + "_" + symbol + ".zip" link = urllib.parse.urlsplit(link) link = list(link) link[2] = urllib.parse.quote(link[2]) link = urllib.parse.urlunsplit(link) url = urllib.request.urlopen(link) with ZipFile(BytesIO(url.read())) as my_zip_file: for contained_file in my_zip_file.namelist(): for line in my_zip_file.open(contained_file).readlines(): line = line.decode("utf-8") date = line.split(",")[0] day_of_week = datetime.datetime.strptime(date, '%m/%d/%Y').strftime('%a') if day_of_week == "Mon" and prev_day_of_week == "Fri": if count2 == 45: with open('singleStockTS.csv', 'a') as the_file: the_file.write(string_to_write + "\n") count1 += 1 string_to_write = "Week_" + str(count1) + ",X,Y" count2 = 0 if count1>1 and count1<52: string_to_write += "," + str(float(line.split(",")[5])) count2 += 1 prev_day_of_week = day_of_week p = Popen(['java', '-jar', 'StockDataGenerateCSV-1.0-jar-with-dependencies.jar', str(zNormalize), 'singleStockTS.csv', str(45)], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) if zNormalize == 1: stocks_file = open("singleStockTS.csvzNorm.csv") else: stocks_file = open("singleStockTS.csv") stocks_lines = stocks_file.readlines() stocks = {} for s in stocks_lines: stock_name = s.split(",")[0] stock_values_str = s.split("\n")[0].split(",")[3:264] stock_values = [] for st in stock_values_str: stock_values.append(float(st)) stocks[stock_name] = stock_values return stocks def plotAllData2(symbol, year, stocks): xlim_1 = 0 xlim_2 = 44 plt.rcParams['figure.figsize'] = [28, 14] plt.title(symbol, fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Hour of Week for Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) plt.grid(True) for k, v in stocks.items(): plt.plot(v) def plotAllBundles2(symbol, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 44 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration for k, v in bundles_members.items(): duration = bundles_duration[k] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of ' + symbol, fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Hour of Week for Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) for member in bundles_members[k]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 p = plt.plot(list(range(x1, x2)), maximum, linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color=p[0].get_color(), linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color=p[0].get_color(), alpha=0.15) def plotSelectedBundle2(scenario, bundle_to_visualize, symbol, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 44 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration duration = bundles_duration[bundle_to_visualize] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of ' + bundle_to_visualize, fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Hour of Week for Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) print('BUNDLE MEMBERS:') for member in bundles_members[bundle_to_visualize]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 plt.plot(ts) print(member) plt.axvline(x = x1) plt.axvline(x = x2) plt.plot(list(range(x1, x2)), maximum, color='#539ecd', linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color='#539ecd', linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color='#539ecd', alpha=0.25) def getSimilarBundles(sort_by): pandas.set_option('display.max_colwidth', -1) p = Popen(['java', '-jar', 'simjoin-0.0.1-SNAPSHOT-jar-with-dependencies.jar', 'ssjoin_config.properties'], stdout=PIPE, stderr=STDOUT) f = open('ssjoin_out.txt', "r") lines_ssjoin = f.readlines() f.close() f = open('results.txt', "r") lines_bundles = f.readlines() f.close() first_time = True for line in lines_ssjoin: res_list = [] bundle1 = lines_bundles[int(line.split(",")[0])] bundle1_name = bundle1.split(";")[0] bundle1_members = bundle1.split(";")[1] bundle1_interval_start = int(bundle1.split(";")[2].split("-")[0][1:]) bundle1_interval_end = int(bundle1.split(";")[2].split("-")[1][:-2]) bundle2 = lines_bundles[int(line.split(",")[1])] bundle2_name = bundle2.split(";")[0] bundle2_members = bundle2.split(";")[1] bundle2_interval_start = int(bundle2.split(";")[2].split("-")[0][1:]) bundle2_interval_end = int(bundle2.split(";")[2].split("-")[1][:-2]) res_list.append(bundle1_name + " " + bundle2_name) similarity = float(line.split(",")[2].split("\n")[0][:-1]) res_list.append(similarity) x = range(bundle1_interval_start, bundle1_interval_end+1) x_len = bundle1_interval_end-bundle1_interval_start y = range(bundle2_interval_start, bundle2_interval_end+1) y_len = bundle2_interval_end-bundle2_interval_start xs = set(x) intersect_length = len(xs.intersection(y)) interval_similarity = 0 if x_len > y_len: interval_similarity = intersect_length/x_len else: interval_similarity = intersect_length/y_len res_list.append(interval_similarity) bundle1_set = set(''.join(bundle1_members).split(",")) bundle2_set = set(''.join(bundle2_members).split(",")) common = bundle1_set.intersection(bundle2_set) res_list.append(common) not_common = bundle1_set.symmetric_difference(bundle2_set) res_list.append(not_common) if first_time == True: newArray = numpy.array(res_list) first_time = False else: newArray = numpy.vstack([newArray, res_list]) field_list = ["Bundle Pair", "Member Similarity", "Interval Similarity", "Common Members", "Non-Common Members"] members_incr = range(1, len(newArray)+1) display(
pandas.DataFrame(newArray, members_incr, field_list)
pandas.DataFrame
#!/Users/lindsaychuang/miniconda3/envs/obspy/bin/python import pandas as pd from obspy import UTCDateTime, read, Stream, Trace import dash_html_components as html import plotly.graph_objects as go def wrap_wfs(st): fig = go.Figure() for i in range(0, len(st)): fig.add_trace( go.Scattergl( x=st[i].times(), y=st[i].data*0.85 + i + 1, name=f'{st[i].stats["station"]}-{st[i].stats["channel"]}') ) return fig def norm_wfs(st, norm): # ---- normalize if norm == "Normalize": st.normalize(global_max=False) elif norm == "Original": st = st return st def filters(st, type, lowf, highf): if type == "raw": st = st elif type == "bandpass": st.taper(max_percentage=0.05) st.filter('bandpass', freqmin=lowf, freqmax=highf) elif type == "lowpass": st.taper(max_percentage=0.05) st.filter('lowpass', freq=lowf) elif type == "highpass": st.taper(max_percentage=0.05) st.filter('highpass', freq=highf) else: raise Exception("Unexpected filter type") return st def load_wfs(path, stas, btime, etime, comps): allwfs = Stream() for sta in stas: if comps == 'N' or comps == 'E' or comps == 'Z': try: st = read(f'{path}/*{sta}*.*{comps}.*', starttime=btime, endtime=etime) allwfs += st except: print(f'can not find station: {sta} component: {comps}') elif comps == 'All': st = read(f'{path}/*{sta}*', starttime=btime, endtime=etime) allwfs += st else: raise Exception("Unexpected components") return allwfs def wrap_map_object_eq(path_earthquake_cata,pd_cata, map_data): pd_cata = pd.read_csv(f'{path_earthquake_cata}/{pd_cata[0]}') map_data[0]["lat"] = pd_cata.evla.values map_data[0]["lon"] = pd_cata.evlo.values map_data[0]['marker']['size'] = pd_cata.mag.values map_data[0]["text"] = pd_cata.time.values map_data[0]['marker']['color'] = pd_cata.evdp.values return map_data def wrap_map_object_st(path_station_cata,st_cata, map_data): st_cata = pd.read_csv(f'{path_station_cata}/{st_cata[0]}') map_data[1]["lat"] = st_cata.stla.values map_data[1]["lon"] = st_cata.stlo.values map_data[1]["text"] = st_cata.station.values return map_data def quick_analysis_eq_catalog(path,files): pd_cata = pd.read_csv(f'{path}/{files[0]}') pd_datetime = pd.to_datetime(pd_cata[["year", "month", "day", "hour", "minute", "second"]]) earlist = pd_datetime.min() latest = pd_datetime.max() total_event_number = len(pd_cata) return earlist, latest, total_event_number def quick_analysis_phase_catalog(path,files): pd_cata =
pd.read_csv(f'{path}/{files[0]}')
pandas.read_csv
#!/usr/bin/python3 # ----------------------------------------------------------- # Calculator to add countdown features to the dataset # ----------------------------------------------------------- import calendar import datetime from enum import Enum import dateutil import lunardate import convertdate import pandas as pd from pandas.api.types import is_datetime64_any_dtype as is_datetime class Events(Enum): """ A class used to represent all Events as Enum """ EPIPHANIE = "epiphanie" CHANDELEUR = "chandeleur" MARDI_GRAS = "mardi_gras" HALLOWEEN = "halloween" NOUVEL_AN_CHINOIS = "nouvel_an_chinois" AID = "aid" RAMADAN = "ramadan" def compute_last_weekday_of_a_month(year, month, weekday): """ given a year, month and weekday (1 = monday, 2 = tuesday, ..., 7 = sunday) returns the last occurence of this weekday in this month of this year as a date """ last_day = max( week[-1 + weekday] for week in calendar.monthcalendar(year, month) ) return datetime.date(year, month, last_day) def compute_first_weekday_of_a_month(year, month, weekday): """ given a year, month and weekday (1 = monday, 2 = tuesday, ..., 7 = sunday) returns the first occurence of this weekday in this month of this year as a date """ first_day = min( week[-1 + weekday] for week in calendar.monthcalendar(year, month) if week[-1 + weekday] > 0 ) return datetime.date(year, month, first_day) def compute_events_dates(years): """ For a given list of years compute a dict of events with a list of dates for each event """ events_dates_by_event = {} for event in Events: events_dates_by_event[event] = [] for year in years: # epiphanie events_dates_by_event[Events.EPIPHANIE].append(datetime.date(year, 1, 6)) # chandeleur events_dates_by_event[Events.CHANDELEUR].append(datetime.date(year, 2, 2)) # date_easter = easter(year) date_easter = dateutil.easter.easter(year, 3) # mardi_gras events_dates_by_event[Events.MARDI_GRAS].append(date_easter - datetime.timedelta(days=47)) # Halloween : 31/10 events_dates_by_event[Events.HALLOWEEN].append(datetime.date(year, 10, 31)) # Ramadan islamic_year = convertdate.islamic.from_gregorian(year, 1, 1)[0] ramadan = datetime.datetime( convertdate.islamic.to_gregorian(islamic_year, 9, 1)[0], convertdate.islamic.to_gregorian(islamic_year, 9, 1)[1], convertdate.islamic.to_gregorian(islamic_year, 9, 1)[2], ) events_dates_by_event[Events.RAMADAN].append(ramadan.date()) # aid events_dates_by_event[Events.AID].append((ramadan + datetime.timedelta(days=30)).date()) # chinese new year events_dates_by_event[Events.NOUVEL_AN_CHINOIS].append(lunardate.LunarDate(year, 1, 1, 0).toSolarDate()) return events_dates_by_event def add_countdown_ago(date, event, events_dates_per_event): """ Given a date and an even, compute the number of days since the previous occurence of this events within events_dates_per_event """ countdown = [] for special_date in events_dates_per_event[event]: date_count_down = (special_date - date).days if date_count_down <= 0: countdown.append(date_count_down) return -1 * max(countdown) def add_countdown_in(date, event, events_dates_per_event): """ Given a date and an even, compute the number of days until the next occurence of this events within events_dates_per_event """ countdown = [] for special_date in events_dates_per_event[event]: date_count_down = (special_date - date).days if date_count_down >= 0: countdown.append(date_count_down) return min(countdown) # pylint: disable=W0613 def add_feature_events_countdown(dtf, date_col, date_format): """ Given a dataframe dtf, a date_col and its format date_format generate two cols: - number of days before next event occurence - number of day since last event occurence for each of the following events: - epiphanie - chandeleur - mardi_gras - halloween - nouvel_an_chinois - aid - ramadan """ col_retyped = False if not is_datetime(dtf[date_col]): new_date_col = f'{date_col}_retyped' dtf[new_date_col] =
pd.to_datetime(dtf[date_col], format=date_format)
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # In[1]: # import warnings # warnings.filterwarnings('ignore') # In[2]: # import libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy import sparse get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.model_selection import RandomizedSearchCV from scipy.stats import uniform from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import LinearSVC from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from catboost import CatBoostClassifier import pickle # # Amazon Employee Access Challenge # In[3]: train = pd.read_csv('data/train.csv') test = pd.read_csv('data/test.csv') # In[4]: train.shape # In[5]: test.shape # In[6]: y_train = train['ACTION'] # In[7]: y_train.shape # In[8]: train_data = train.drop('ACTION', axis=1) train_data.shape # In[9]: test_data = test.drop('id', axis=1) test_data.shape # ## Common Variables # In[10]: # define variables random_state = 42 cv = 5 scoring = 'roc_auc' verbose=2 # ## Common functions # In[11]: def save_submission(predictions, filename): ''' Save predictions into csv file ''' global test submission = pd.DataFrame() submission["Id"] = test["id"] submission["ACTION"] = predictions filepath = "result/sampleSubmission_"+filename submission.to_csv(filepath, index = False) # In[12]: def print_graph(results, param1, param2, xlabel, ylabel, title='Plot showing the ROC_AUC score for various hyper parameter values'): ''' Plot the graph ''' plt.plot(results[param1],results[param2]); plt.grid(); plt.xlabel(xlabel); plt.ylabel(ylabel); plt.title(title); # In[13]: def get_rf_params(): ''' Return dictionary of parameters for random forest ''' params = { 'n_estimators':[10,20,50,100,200,500,700,1000], 'max_depth':[1,2,5,10,12,15,20,25], 'max_features':[1,2,3,4,5], 'min_samples_split':[2,5,7,10,20] } return params # In[14]: def get_xgb_params(): ''' Return dictionary of parameters for xgboost ''' params = { 'n_estimators': [10,20,50,100,200,500,750,1000], 'learning_rate': uniform(0.01, 0.6), 'subsample': uniform(), 'max_depth': [3, 4, 5, 6, 7, 8, 9], 'colsample_bytree': uniform(), 'min_child_weight': [1, 2, 3, 4] } return params # ### We will try following models # # 1. KNN # 2. SVM # 3. Logistic Regression # 4. Random Forest # 5. Xgboost # ## Build Models on the raw data # ## 1.1 KNN with raw features # In[15]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[16]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[17]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[18]: best_c=best_model.best_params_['n_neighbors'] best_c # In[19]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_data,y_train) # In[20]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, "knn_raw.csv") # ![knn-raw](images/knn-raw-new.png) # ## 1.2 SVM with raw feature # In[21]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[22]: best_c=best_model.best_params_['C'] best_c # In[23]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[24]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[25]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_data,y_train) # In[26]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'svm_raw.csv') # ![svm-raw](images/svm-raw.png) # ## 1.3 Logistic Regression with Raw Feature # In[27]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[28]: best_c=best_model.best_params_['C'] best_c # In[29]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[30]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[31]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_data,y_train) # In[32]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'lr_raw.csv') # ![lr-raw](images/lr-raw.png) # ## 1.4 Random Forest with Raw Feature # In[33]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[34]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[35]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[36]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_data,y_train) # In[37]: features=train_data.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # ## Features Observations: # # 1. MGR_ID is the most important feature followed by RESOURCE and ROLE_DEPTNAME # In[38]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'rf_raw.csv') # ![rf-raw](images/rf-raw.png) # ## 1.5 Xgboost with Raw Feature # In[39]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_data,y_train) # In[40]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[41]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[42]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_data,y_train) # In[43]: features=train_data.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[44]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'xgb_raw.csv') # ![xgb-raw](images/xgb-raw.png) # ![kaggle-submission-raw](images/kaggle-submission-raw.png) # In[45]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','Raw', 0.67224, 0.68148]) x.add_row(['SVM', 'Raw', 0.50286, 0.51390]) x.add_row(['Logistic Regression', 'Raw', 0.53857, 0.53034]) x.add_row(['Random Forest', 'Raw', 0.87269, 0.87567]) x.add_row(['Xgboost', 'Raw', 0.86988, 0.87909]) print(x) # # Observations: # # 1. Xgboost perform best on the raw features # 2. Random forest also perform good on raw features # 3. Tree based models performs better than linear models for raw features # ## Build model on one hot encoded features # ### 2.1 KNN with one hot encoded features # In[46]: train_ohe = sparse.load_npz('data/train_ohe.npz') test_ohe = sparse.load_npz('data/test_ohe.npz') train_ohe.shape, test_ohe.shape, y_train.shape # In[47]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=4) best_model = clf.fit(train_ohe,y_train) # In[48]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[49]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[50]: best_c=best_model.best_params_['n_neighbors'] best_c # In[51]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_ohe,y_train) # In[52]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, "knn_ohe.csv") # ![knn-ohe](images/knn-ohe.png) # ## 2.2 SVM with one hot encoded features # In[53]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[54]: best_c=best_model.best_params_['C'] best_c # In[55]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[56]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[57]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_ohe,y_train) # In[58]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'svm_ohe.csv') # ![svm-ohe](images/svm-ohe.png) # ## 2.3 Logistic Regression with one hot encoded features # In[59]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[60]: best_c=best_model.best_params_['C'] best_c # In[61]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[62]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[63]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_ohe,y_train) # In[64]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'lr_ohe.csv') # ![lr-ohe](images/lr-ohe.png) # ## 2.4 Random Forest with one hot encoded features # In[65]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[66]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[67]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[68]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_ohe,y_train) # In[69]: # features=train_ohe.columns # importance=model.feature_importances_ # features=pd.DataFrame({'features':features,'value':importance}) # features=features.sort_values('value',ascending=False) # sns.barplot('value','features',data=features); # plt.title('Feature Importance'); # In[70]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'rf_ohe.csv') # ![rf-ohe](images/rf-ohe.png) # ## 2.5 Xgboost with one hot encoded features # In[71]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_ohe,y_train) # In[72]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[73]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[74]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_ohe,y_train) # In[75]: # features=train_ohe.columns # importance=model.feature_importances_ # features=pd.DataFrame({'features':features,'value':importance}) # features=features.sort_values('value',ascending=False) # sns.barplot('value','features',data=features); # plt.title('Feature Importance'); # In[76]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, 'xgb_ohe.csv') # ![xgb-ohe](images/xgb-ohe.png) # ![kaggle-submission-ohe](images/kaggle-submission-ohe.png) # In[77]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','ohe', 0.81657, 0.81723]) x.add_row(['SVM', 'ohe', 0.87249, 0.87955]) x.add_row(['Logistic Regression', 'ohe', 0.87436, 0.88167]) x.add_row(['Random Forest', 'ohe', 0.84541, 0.84997]) x.add_row(['Xgboost', 'ohe', 0.84717, 0.85102]) print(x) # # Observations: # # 1. One hot encoding features performs better than other encoding technique # 2. Linear models (Logistic Regression and SVM) performs better on higher dimension # # 3 Build Model on frequency encoding feature # ## 3.1 KNN with frequency encoding # In[78]: train_df_fc = pd.read_csv('data/train_df_fc.csv') test_df_fc = pd.read_csv('data/test_df_fc.csv') # In[79]: train_df_fc.shape, test_df_fc.shape, y_train.shape # In[80]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[81]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[82]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[83]: best_c=best_model.best_params_['n_neighbors'] best_c # In[84]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_df_fc,y_train) # In[85]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, "knn_fc.csv") # ![knn-fc](images/knn-fc.png) # ## 3.2 SVM with frequency encoding # In[86]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[87]: best_c=best_model.best_params_['C'] best_c # In[88]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[89]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[90]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_df_fc,y_train) # In[91]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, 'svm_fc.csv') # ![svm-fc](images/svm-fc.png) # ## 3.3 Logistic Regression with frequency encoding # In[92]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[93]: best_c=best_model.best_params_['C'] best_c # In[94]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[95]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[96]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_df_fc,y_train) # In[97]: predictions = model.predict_proba(test_df_fc)[:,1] save_submission(predictions, 'lr_fc.csv') # ![lr-fc](images/lr-fc.png) # ## 3.4 Random Forest with frequency encoding # In[98]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_df_fc,y_train) # In[99]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[100]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[101]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_df_fc,y_train) # In[103]: features=train_df_fc.columns importance=model.feature_importances_ features=
pd.DataFrame({'features':features,'value':importance})
pandas.DataFrame
# -*- coding: utf-8 -*- '''prepare data for random forest classifier''' import logging import os import datetime as dt import pandas as pd #from sklearn.preprocessing import OneHotEncoder logger = logging.getLogger('main') def load_data(fileDir='general'): # get today and create path for saving investment list dirName = os.path.join('data', fileDir) today = dt.datetime.now() todayStr = today.strftime('%Y_%m_%d') filename = f'{todayStr}.csv' filepath = os.path.join(dirName, filename) # load raw data dataRaw = pd.read_csv(filepath, low_memory=False) length = len(dataRaw)/1000 logger.info(f'Loaded Data: {length:.1f}k credits') return dataRaw ############################################################################## def clean_data(dataRaw, mode='train'): if mode != 'train' or mode != 'apply': pass if mode == 'train': # create label if True: dataRaw.loc[dataRaw.WorseLateCategory.isnull(), 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '1-7', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '8-15', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '16-30', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '31-60', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '61-90', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '91-120', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '121-150', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '151-180', 'Defaulted'] = 0 dataRaw.loc[dataRaw.WorseLateCategory == '180+', 'Defaulted'] = 1 #dataRaw.loc[dataRaw.Status == 'Repaid', 'Defaulted'] = 0 else: dataRaw.loc[dataRaw.Status == 'Late', 'Defaulted'] = 1 dataRaw.loc[dataRaw.Status == 'Current', 'Defaulted'] = 0 dataRaw.loc[dataRaw.Status == 'Repaid', 'Defaulted'] = 0 # define features columnsFeatures = ['BiddingStartedOn', # will be removed 'Age', # continuous 'Amount', # continuous 'AmountOfPreviousLoansBeforeLoan', # continuous #'ApplicationSignedHour', # 0-23 #'ApplicationSignedWeekday', # 1-7 'AppliedAmount', # continuous 'BidsApi', # continuous 'BidsManual', # continuous 'BidsPortfolioManager', # continuous 'Country', # 'Education', # #'EmploymentDurationCurrentEmployer', # 'ExistingLiabilities', # continuous 'Gender', # 0, 1, 2 #'HomeOwnershipType', # 'IncomeTotal', # continuous 'Interest', # continuous #'LanguageCode', # 1:26 'LiabilitiesTotal', # continuous 'LoanDuration', # continuous 'MonthlyPayment', # continuous #'MonthlyPaymentDay', 'NewCreditCustomer', # True False 'NoOfPreviousLoansBeforeLoan', # continuous 'PreviousRepaymentsBeforeLoan', # continuous 'ProbabilityOfDefault', # continuous 'Rating', 'VerificationType' ] if mode == 'train': columnsFeatures.append('Defaulted') # extract features from raw dataPresorted = dataRaw[columnsFeatures].copy() # get row count before cleaning presortedLen = len(dataPresorted.index) # format to datetime and sort dataPresorted.loc[:, 'BiddingStartedOn'] = pd.to_datetime(dataPresorted.BiddingStartedOn).copy() dataPresorted = dataPresorted.sort_values(['BiddingStartedOn'], ascending=True) if mode == 'train': # remove data prior three months from today today = dt.datetime.now() dataSorted = dataPresorted.loc[dataPresorted['BiddingStartedOn'] <= (today - dt.timedelta(days=90)),:].copy() sortedLen = len(dataSorted.index) removed = (presortedLen - sortedLen) / presortedLen *100 logger.info(f'{removed:.2f} % time filtered') else: dataSorted = dataPresorted sortedLen = len(dataSorted.index) removed = 0 # additional features dataSorted.loc[:, 'AppliedRatio'] = dataSorted.Amount.div(dataSorted.AppliedAmount) dataSorted.loc[:, 'IncomeCreditRatio'] = dataSorted.MonthlyPayment.div(dataSorted.IncomeTotal) dataSorted.loc[dataSorted.IncomeCreditRatio > 2, 'IncomeCreditRatio'] = 2 # replace NaN element with standard values values = {'AmountOfPreviousLoansBeforeLoan': 0, 'Education': 0, 'Gender': 2, 'HomeOwnershipType': 10, 'EmploymentDurationCurrentEmployer': 'Other', 'MonthlyPayment': 0, 'NoOfPreviousLoansBeforeLoan': 0, 'PreviousRepaymentsBeforeLoan': 0, 'VerificationType': 0 } dataClean = dataSorted.fillna(values) # remove remaining nan dataClean = dataClean.dropna(axis=0) cleanLen = len(dataClean.index) removed = (presortedLen - cleanLen) / presortedLen *100 - removed if mode =='train': logger.info(f'{removed:.2f} % NaN filtered') elif mode == 'apply' and removed > 0: logger.warning(f'Some credits were removed due to NaN values') # one hot encoding # define possible categories hours = list(range(0,24)) weekday = list(range(1,8)) country = ['EE', 'ES', 'FI', 'SK'] education = list(range(-1,6)) employment = ['MoreThan5Years', 'UpTo3Years', 'UpTo5Years', 'UpTo1Year', 'UpTo2Years', 'UpTo4Years', 'TrialPeriod', 'Retiree', 'Other'] gender = list(range(0,3)) home = list(range(0,11)) language = list(range(1,27)) new = [False, True] rating = ['AA', 'A', 'B', 'C', 'D', 'E', 'F', 'HR'] veri = list(range(0,5)) dummy = dataClean.head(30).copy().reset_index(drop=True) dummy['Age'] = -99 for ii in range(0,30): dummy.loc[ii, 'VerificationType'] = veri[min(ii,len(veri)-1)] dummy.loc[ii, 'Gender'] = gender[min(ii,len(gender)-1)] #dummy.loc[ii, 'ApplicationSignedHour'] = hours[min(ii,len(hours)-1)] #dummy.loc[ii, 'ApplicationSignedWeekday'] = weekday[min(ii,len(weekday)-1)] dummy.loc[ii, 'Country'] = country[min(ii,len(country)-1)] dummy.loc[ii, 'Education'] = education[min(ii,len(education)-1)] #dummy.loc[ii, 'EmploymentDurationCurrentEmployer'] = employment[min(ii,len(employment)-1)] #dummy.loc[ii, 'HomeOwnershipType'] = home[min(ii,len(home)-1)] #dummy.loc[ii, 'LanguageCode'] = language[min(ii,len(language)-1)] dummy.loc[ii, 'NewCreditCustomer'] = new[min(ii,len(new)-1)] dummy.loc[ii, 'Rating'] = rating[min(ii,len(rating)-1)] dataClean = dataClean.append(dummy, sort=False) # change specific columns numeric to string to trigger dummy creation dataClean['VerificationType'] = dataClean.VerificationType.astype(int).astype(str) dataClean['Gender'] = dataClean.Gender.astype(int).astype(str) #dataClean['ApplicationSignedHour'] = dataClean.ApplicationSignedHour.astype(int).astype(str) #dataClean['ApplicationSignedWeekday'] = dataClean.ApplicationSignedWeekday.astype(int).astype(str) dataClean['Education'] = dataClean.Education.astype(int).astype(str) #dataClean['HomeOwnershipType'] = dataClean.HomeOwnershipType.astype(int).astype(str) #dataClean['LanguageCode'] = dataClean.LanguageCode.astype(int).astype(str) dataClean =
pd.get_dummies(dataClean)
pandas.get_dummies
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import os.path import pkg_resources import tempfile import unittest import numpy as np import pandas as pd from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn, MetadataFileError) def get_data_path(filename): return pkg_resources.resource_filename('qiime2.metadata.tests', 'data/%s' % filename) # NOTE: many of the test files in the `data` directory intentionally have # leading/trailing whitespace characters on some lines, as well as mixed usage # of spaces, tabs, carriage returns, and newlines. When editing these files, # please make sure your code editor doesn't strip these leading/trailing # whitespace characters (e.g. Atom does this by default), nor automatically # modify the files in some other way such as converting Windows-style CRLF # line terminators to Unix-style newlines. # # When committing changes to the files, carefully review the diff to make sure # unintended changes weren't introduced. class TestLoadErrors(unittest.TestCase): def test_path_does_not_exist(self): with self.assertRaisesRegex(MetadataFileError, "Metadata file path doesn't exist"): Metadata.load( '/qiime2/unit/tests/hopefully/this/path/does/not/exist') def test_path_is_directory(self): fp = get_data_path('valid') with self.assertRaisesRegex(MetadataFileError, "path points to something other than a " "file"): Metadata.load(fp) def test_non_utf_8_file(self): fp = get_data_path('invalid/non-utf-8.tsv') with self.assertRaisesRegex(MetadataFileError, 'encoded as UTF-8 or ASCII'): Metadata.load(fp) def test_utf_16_le_file(self): fp = get_data_path('invalid/simple-utf-16le.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_utf_16_be_file(self): fp = get_data_path('invalid/simple-utf-16be.txt') with self.assertRaisesRegex(MetadataFileError, 'UTF-16 Unicode'): Metadata.load(fp) def test_empty_file(self): fp = get_data_path('invalid/empty-file') with self.assertRaisesRegex(MetadataFileError, 'locate header.*file may be empty'): Metadata.load(fp) def test_comments_and_empty_rows_only(self): fp = get_data_path('invalid/comments-and-empty-rows-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'locate header.*only of comments or empty ' 'rows'): Metadata.load(fp) def test_header_only(self): fp = get_data_path('invalid/header-only.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_header_only_with_comments_and_empty_rows(self): fp = get_data_path( 'invalid/header-only-with-comments-and-empty-rows.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_qiime1_empty_mapping_file(self): fp = get_data_path('invalid/qiime1-empty.tsv') with self.assertRaisesRegex(MetadataFileError, 'at least one ID'): Metadata.load(fp) def test_invalid_header(self): fp = get_data_path('invalid/invalid-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'unrecognized ID column name.*' 'invalid_id_header'): Metadata.load(fp) def test_empty_id(self): fp = get_data_path('invalid/empty-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_whitespace_only_id(self): fp = get_data_path('invalid/whitespace-only-id.tsv') with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'): Metadata.load(fp) def test_empty_column_name(self): fp = get_data_path('invalid/empty-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_whitespace_only_column_name(self): fp = get_data_path('invalid/whitespace-only-column-name.tsv') with self.assertRaisesRegex(MetadataFileError, 'column without a name'): Metadata.load(fp) def test_duplicate_ids(self): fp = get_data_path('invalid/duplicate-ids.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_ids_with_whitespace(self): fp = get_data_path('invalid/duplicate-ids-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'IDs must be unique.*id1'): Metadata.load(fp) def test_duplicate_column_names(self): fp = get_data_path('invalid/duplicate-column-names.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_duplicate_column_names_with_whitespace(self): fp = get_data_path( 'invalid/duplicate-column-names-with-whitespace.tsv') with self.assertRaisesRegex(MetadataFileError, 'Column names must be unique.*col1'): Metadata.load(fp) def test_id_conflicts_with_id_header(self): fp = get_data_path('invalid/id-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "ID 'id' conflicts.*ID column header"): Metadata.load(fp) def test_column_name_conflicts_with_id_header(self): fp = get_data_path( 'invalid/column-name-conflicts-with-id-header.tsv') with self.assertRaisesRegex(MetadataFileError, "column name 'featureid' conflicts.*ID " "column header"): Metadata.load(fp) def test_column_types_unrecognized_column_name(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'not_a_column.*column_types.*not a column ' 'in the metadata file'): Metadata.load(fp, column_types={'not_a_column': 'numeric'}) def test_column_types_unrecognized_column_type(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*column_types.*unrecognized column ' 'type.*CATEGORICAL'): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'CATEGORICAL'}) def test_column_types_not_convertible_to_numeric(self): fp = get_data_path('valid/simple.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col1': 'numeric', 'col2': 'categorical', 'col3': 'numeric'}) def test_column_types_override_directive_not_convertible_to_numeric(self): fp = get_data_path('valid/simple-with-directive.tsv') with self.assertRaisesRegex(MetadataFileError, "column 'col3' to numeric.*could not be " "interpreted as numeric: 'bar', 'foo'"): Metadata.load(fp, column_types={'col3': 'numeric'}) def test_directive_before_header(self): fp = get_data_path('invalid/directive-before-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'directive.*#q2:types.*searching for ' 'header'): Metadata.load(fp) def test_unrecognized_directive(self): fp = get_data_path('invalid/unrecognized-directive.tsv') with self.assertRaisesRegex(MetadataFileError, 'Unrecognized directive.*#q2:foo.*' '#q2:types directive is supported'): Metadata.load(fp) def test_duplicate_directives(self): fp = get_data_path('invalid/duplicate-directives.tsv') with self.assertRaisesRegex(MetadataFileError, 'duplicate directive.*#q2:types'): Metadata.load(fp) def test_unrecognized_column_type_in_directive(self): fp = get_data_path('invalid/unrecognized-column-type.tsv') with self.assertRaisesRegex(MetadataFileError, 'col2.*unrecognized column type.*foo.*' '#q2:types directive'): Metadata.load(fp) def test_column_types_directive_not_convertible_to_numeric(self): fp = get_data_path('invalid/types-directive-non-numeric.tsv') # This error message regex is intentionally verbose because we want to # assert that many different types of non-numeric strings aren't # interpreted as numbers. The error message displays a sorted list of # all values that couldn't be converted to numbers, making it possible # to test a variety of non-numeric strings in a single test case. msg = (r"column 'col2' to numeric.*could not be interpreted as " r"numeric: '\$42', '\+inf', '-inf', '0xAF', '1,000', " r"'1\.000\.0', '1_000_000', '1e3e4', 'Infinity', 'NA', 'NaN', " "'a', 'e3', 'foo', 'inf', 'nan', 'sample-1'") with self.assertRaisesRegex(MetadataFileError, msg): Metadata.load(fp) def test_directive_after_directives_section(self): fp = get_data_path( 'invalid/directive-after-directives-section.tsv') with self.assertRaisesRegex(MetadataFileError, '#q2:types.*outside of the directives ' 'section'): Metadata.load(fp) def test_directive_longer_than_header(self): fp = get_data_path('invalid/directive-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) def test_data_longer_than_header(self): fp = get_data_path('invalid/data-longer-than-header.tsv') with self.assertRaisesRegex(MetadataFileError, 'row has 5 cells.*header declares 4 ' 'cells'): Metadata.load(fp) class TestLoadSuccess(unittest.TestCase): def setUp(self): self.temp_dir_obj = tempfile.TemporaryDirectory( prefix='qiime2-metadata-tests-temp-') self.temp_dir = self.temp_dir_obj.name # This Metadata object is compared against observed Metadata objects in # many of the tests, so just define it once here. self.simple_md = Metadata( pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=
pd.Index(['id1', 'id2', 'id3'], name='id')
pandas.Index
# to do: # - calculate train score # - learning curve plot (vary training examples used and examine the effect on train and validation set scores) # - https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html # - add sampling in the model code # - finish creating lists of hyperparameter values # - https://neptune.ai/blog/lightgbm-parameters-guide # - make sure log is not copied to S3 if the program crashes # - check if LightGBM and Dask logging needs to be disabled - LightGBM probably sends all output to stdout # - plot learning curves? https://stackoverflow.com/questions/60132246/how-to-plot-the-learning-curves-in-lightgbm-and-python # - write docstrings and header # - best_iteration - needed? (can be used while saving model) # "s3://sales-demand-data/parquet_dataset/" # save_model(filename, num_iteration=None, start_iteration=0, importance_type='split')[source] # Save Booster to file. # # Parameters # filename (string or pathlib.Path) – Filename to save Booster. # num_iteration (int or None, optional (default=None)) – Index of the iteration that should be saved. If None, if the best iteration exists, it is saved; otherwise, all iterations are saved. If <= 0, all iterations are saved. # start_iteration (int, optional (default=0)) – Start index of the iteration that should be saved. # importance_type (string, optional (default="split")) – What type of feature importance should be saved. If “split”, result contains numbers of times the feature is used in a model. If “gain”, result contains total gains of splits which use the feature. # # Returns # self – Returns self. # # Return type # Booster import argparse from datetime import datetime, timedelta from itertools import product import logging import os from pathlib import Path import platform from statistics import mean import sys import time import boto3 from botocore.exceptions import ClientError import dask as dsk from dask import array as da, dataframe as dd from dask.distributed import Client, LocalCluster, performance_report, wait from dask_ml.metrics.regression import mean_squared_error from dateutil.relativedelta import relativedelta from ec2_metadata import ec2_metadata import lightgbm as lgb import numpy as np import pandas as pd def month_counter(fm, LAST_DAY_OF_TRAIN_PRD=(2015, 10, 31)): """Calculate number of months (i.e. month boundaries) between the first month of train period and the end month of validation period. Parameters: ----------- fm : datetime First day of first month of train period Returns: -------- Number of months between first month of train period and end month of validation period """ return ( (datetime(*LAST_DAY_OF_TRAIN_PRD).year - fm.year) * 12 + datetime(*LAST_DAY_OF_TRAIN_PRD).month - fm.month ) def calc_rmse(y_true, y_pred, get_stats): if get_stats: pred_stats_to_csv(y_true, y_pred) return mean_squared_error(y_true, y_pred, squared=False, compute=True) def pred_stats_to_csv(y_true, y_pred, output_csv="pred_value_stats.csv"): y_true_df = pd.DataFrame(y_true.compute(), columns=["y_true"]) y_pred_df = pd.DataFrame( y_pred.compute(), columns=["y_pred"], index=y_true_df.index ) # convert Dask array to Pandas DF full_df = pd.concat( [y_true_df, y_pred_df], axis=1 ) # join actual and predicted values del y_true_df del y_pred_df stats_df = ( full_df.groupby("y_true") .describe(percentiles=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]) .droplevel(level=0, axis=1) .reset_index() ) stats_df.to_csv(output_csv, index=False) s3_client = boto3.client("s3") try: s3_client.upload_file(output_csv, "sales-demand-data", output_csv) logging.info( "CSV file with descriptive stats of predicted values " "successfully copied to S3." ) except ClientError as e: logging.exception( "CSV file with descriptive stats of predicted values " "was not copied to S3." ) def calc_monthly_rmse(y_true_w_id_cols, y_pred): y_true_df = y_true_w_id_cols.compute() # convert Dask dataframe to Pandas DF y_pred_df = pd.DataFrame( y_pred.compute(), columns=["y_pred"], index=y_true_df.index ) # convert Dask array to Pandas DF full_df = pd.concat( [y_true_df, y_pred_df], axis=1 ) # join actual and predicted values del y_true_df del y_pred_df # calculate sums of actual and predicted values by shop-item-month # the code below assumes that same calendar month does not appear across multiple years in validation set shop_item_month_df = ( full_df.groupby([full_df.index.month, "shop_id", "item_id"]) .agg("sum") .reset_index() ) # calculate RMSE for each month and then take the average of monthly values return ( shop_item_month_df.groupby("sale_date") .apply( lambda x: np.sqrt( np.average((x["sid_shop_item_qty_sold_day"] - x["y_pred"]) ** 2) ) ) .mean() ) # calculate monthly rmse # return np.sqrt(np.average((shop_item_df['sid_shop_item_qty_sold_day'] - shop_item_df['y_pred'])**2)) def valid_frac(s): """Convert command-line fraction argument to float value. Parameters: ----------- s : str Command-line argument for fraction of rows to sample Returns: -------- float Raises: ------- ArgumentTypeError if input string cannot be converted to float or if the resulting float is a negative value """ try: f = float(s) except ValueError: msg = f"Not a valid fraction value: {s}. Enter a value between 0.0 and 1.0." raise argparse.ArgumentTypeError(msg) else: if f < 0: msg = f"{f} is an invalid positive float value. Enter a value between 0.0 and 1.0." raise argparse.ArgumentTypeError(msg) return f def valid_date(s): """Convert command-line date argument to YY-MM datetime value. Parameters: ----------- s : str Command-line argument for first month of data to be used Returns: -------- datetime object (format: %y-%m) Raises: ------- ArgumentTypeError if input string cannot be parsed according to %y-%m strptime format """ try: return datetime.strptime(s, "%y-%m") except ValueError: msg = f"Not a valid date: {s}." raise argparse.ArgumentTypeError(msg) # https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html # Deal with Over-fitting # Use small max_bin # Use small num_leaves # Use min_data_in_leaf and min_sum_hessian_in_leaf # Use bagging by set bagging_fraction and bagging_freq # Use feature sub-sampling by set feature_fraction # Use bigger training data # Try lambda_l1, lambda_l2 and min_gain_to_split for regularization # Try max_depth to avoid growing deep tree # Try extra_trees # Try increasing path_smooth # boosting_type = 'gbdt', num_leaves=31, max_depth=- 1, learning_rate=0.1, n_estimators=100, # subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0, # min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0, # colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=- 1, # silent=True, importance_type='split', client=None, **kwargs # param_names = ('num','let') # for params_dict in (dict(zip(param_names,v)) for v in product([1,2,3],('a','b'))): # print(params_dict) # convert the generator expression into a list that's saved to instance variable, # make the loop numbered (with enumerate), # update the instance variable (one dictionary at a time) while looping over sets of hyperparameters, # at the end, convert the full list of dictionaries into a table that can be exported to CSV # params = { # 'objective' : ['tweedie', 'regression', 'regression_l1', 'poisson'], # 'metric' : ['rmse'], # tweedie, poisson, rmse, l1, l2 # 'boosting_type' : ['gdbt', 'dart', 'rf'], # # num_leaves - sets the maximum number of nodes per tree. Decrease num_leaves to reduce training time. # 'num_leaves' : [31, 62, 124], # max number of leaves in one tree, 31 is default # # max_depth - this parameter is an integer that controls the maximum distance between the root node of each tree and a leaf node. Decrease max_depth to reduce training time. -1 is default (no limit) # 'max_depth' : [5, 10], # # num_iterations - number of boosting iterations, default is 100 (alias: n_estimators) # 'num_iterations' : [50, 75, 100], # # min_child_samples - minimal number of data in one leaf. Can be used to deal with over-fitting, 20 is default, aka min_data_in_leaf # 'min_child_samples' : [2, 100, 1000], # # learning_rate: default is 0.1 # 'learning_rate' : [0.1, 0.05, 0.01], # # max_bin - max number of bins that feature values will be bucketed in, use larger value for better accuracy (may be slower), smaller value helps deal with over-fitting, default is 255 # 'max_bin' : [128, 255], # # subsample_for_bin - number of data that sampled to construct feature discrete bins, default: 200000 # 'subsample_for_bin' : [200000], # # bagging_fraction - for random selection of part of the data, without resampling, default: 1.0, constraints: 0.0 < bagging_fraction <= 1.0 # 'bagging_fraction' : [1.0], # # bagging_freq - frequency for bagging, 0 means disable bagging; k means perform bagging at every k iteration. default: 0 # 'bagging_freq' : [0], # # feature_fraction - LightGBM will randomly select a subset of features on each iteration (tree) if feature_fraction is smaller than 1.0, default: 1.0, constraints: 0.0 < feature_fraction <= 1.0 # # colsample_bytree (float, optional (default=1.)) – Subsample ratio of columns when constructing each tree. # 'colsample_bytree' : [1.0] # } params = { "objective": ["tweedie"], "metric": ["rmse"], # tweedie, poisson, rmse, l1, l2 "boosting_type": ["gbdt"], # num_leaves - sets the maximum number of nodes per tree. Decrease num_leaves to reduce training time. "num_leaves": [28], # max number of leaves in one tree, 31 is default # max_depth - this parameter is an integer that controls the maximum distance between the root node of each tree and a leaf node. Decrease max_depth to reduce training time. -1 is default (no limit) # To keep in mind: "Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31)." "max_depth": [5], # num_iterations - number of boosting iterations, default is 100 (alias: n_estimators) "num_iterations": [1000], # min_child_samples - minimal number of data in one leaf. Can be used to deal with over-fitting, 20 is default, aka min_data_in_leaf "min_child_samples": [200], # learning_rate: default is 0.1 "learning_rate": [0.01], # max_bin - max number of bins that feature values will be bucketed in, use larger value for better accuracy (may be slower), smaller value helps deal with over-fitting, default is 255 "max_bin": [255], # subsample_for_bin - number of data that sampled to construct feature discrete bins, default: 200000 "subsample_for_bin": [200000], # bagging_fraction - for random selection of part of the data, without resampling, default: 1.0, constraints: 0.0 < bagging_fraction <= 1.0 "bagging_fraction": [0.6], # bagging_freq - frequency for bagging, 0 means disable bagging; k means perform bagging at every k iteration. default: 0 "bagging_freq": [0], # feature_fraction - LightGBM will randomly select a subset of features on each iteration (tree) if feature_fraction is smaller than 1.0, default: 1.0, constraints: 0.0 < feature_fraction <= 1.0 # colsample_bytree (float, optional (default=1.)) – Subsample ratio of columns when constructing each tree. "colsample_bytree": [1.], "tweedie_variance_power": [1.4], "weight_for_zeros": [1.], } # additional parameters # pre_partition: https://lightgbm.readthedocs.io/en/latest/Parameters.html#pre_partition # default: false # used for distributed learning (excluding the feature_parallel mode) # true if training data are pre-partitioned, and different machines use different partitions # tweedie_variance_power: https://lightgbm.readthedocs.io/en/latest/Parameters.html#tweedie_variance_power # default: 1.5, constraints: 1.0 <= tweedie_variance_power < 2.0 # used only in tweedie regression application # used to control the variance of the tweedie distribution # set this closer to 2 to shift towards a Gamma distribution # set this closer to 1 to shift towards a Poisson distribution # poisson_max_delta_step: https://lightgbm.readthedocs.io/en/latest/Parameters.html#poisson_max_delta_step # default: 0.7, constraints: poisson_max_delta_step > 0.0 # used only in poisson regression application # parameter for Poisson regression to safeguard optimization # distributed learning # num_threads: https://lightgbm.readthedocs.io/en/latest/Parameters.html#num_threads # number of threads for LightGBM, default: 0 # for the best speed, set this to the number of real CPU cores, not the number of threads (most CPUs use hyper-threading to generate 2 threads per CPU core) # for distributed learning, do not use all CPU cores because this will cause poor performance for the network communication # n_jobs (int, optional (default=-1)) – Number of parallel threads. # https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.DaskLGBMRegressor.html#lightgbm.DaskLGBMRegressor # parameters specific to objective # lambda_l1 - L1 regularization, default: 0.0, constraints: lambda_l1 >= 0.0 # lambda_l2 - L2 regularization, default: 0.0, constraints: lambda_l2 >= 0.0 # for DaskLGBMRegressor: reg_alpha – L1 regularization term on weights, reg_lambda – L2 regularization term on weights. # b = {'objective' : ['tweedie', 'regression_l1', 'poisson'], 'boosting_type' : ['gdbt', 'dart', 'rf']} # # >>> list(product(*list(b.values()))) # [('tweedie', 'gdbt'), ('tweedie', 'dart'), ('tweedie', 'rf'), ('regression_l1', 'gdbt'), ('regression_l1', 'dart'), ('regression_l1', 'rf'), ('poisson', 'gdbt'), ('poisson', 'dart'), ('poisson', 'rf')] # # [dict(zip(b.keys(), v)) for v in list(product(*list(b.values())))] class LightGBMDaskLocal: # https://github.com/Nixtla/mlforecast/blob/main/nbs/distributed.forecast.ipynb """ persist call: data = self.client.persist(data) (assignment replaces old lazy array, as persist does not change the input in-place) To reduce the risk of hitting memory limits, consider restarting each worker process before running any data loading or training code. self.client.restart() - This function will restart each of the worker processes, clearing out anything they’re holding in memory. This function does NOT restart the actual machines of your cluster, so it runs very quickly. - should the workers just be killed regardless of whether the whole process was successful or unsuccessful (sort of a clean up action)? can restarting be that cleanup action? loop over hyperparameter values (method that accepts hyperparameters as a dictionary - initializes self.model = DaskLGBMRegressor() with each set of parameters and calls the method that loops over ) loop over train-valdation sets run model's fit method and compute predicted values and RMSE """ def __init__( self, curr_dt_time, n_workers, s3_path, startmonth, n_months_in_first_train_set, n_months_in_val_set, frac=None, ): self.curr_dt_time = curr_dt_time self.startmonth = startmonth self.n_months_in_first_train_set = n_months_in_first_train_set self.n_months_in_val_set = n_months_in_val_set self.frac = frac if frac is not None else 1.0 cluster = LocalCluster(n_workers=n_workers) self.client = Client(cluster) self.client.wait_for_workers(n_workers) print(f"***VIEW THE DASHBOARD HERE***: {cluster.dashboard_link}") # self.pca_transformed = ___ # call PCA code that returns numpy array here # (rename self.pca_transformed to self.full_dataset) # numpy array can also be created from the saved (pickle) file # for data: # instead of first looping over hyperparameter values and then over different # train-validation sets, is it better to do it in the opposite order # to allow for one set of train-validation data to be created only once? try: # this commented out code did not work without the meta= argument, # meta= was not tried as it needs all other columns listed, in # addition to the ones being recast # self.full_dataset = self.client.persist( # dd.read_parquet( # s3_path, index=False, engine="pyarrow" # ) # .sample(frac=self.frac, random_state=42) # .map_partitions( # self.cast_types, # meta={ # 'sid_shop_item_qty_sold_day': 'i2', # **{f'cat{n}': 'i2' for n in range(1,23)} # } # ) # .map_partitions(self.drop_neg_qty_sold) # .set_index( # "sale_date", sorted=False, npartitions="auto" # ) # .repartition(partition_size="100MB") # ) # create Dask dataframe from partitioned Parquet dataset on S3 and persist it to cluster self.full_dataset = dd.read_parquet( s3_path, index=False, engine="pyarrow" ).sample(frac=self.frac, random_state=42) self.full_dataset["sale_date"] = self.full_dataset["sale_date"].astype( "datetime64[ns]" ) self.full_dataset["sid_shop_item_qty_sold_day"] = self.full_dataset[ "sid_shop_item_qty_sold_day" ].astype("int16") for col in self.full_dataset: if col.startswith("cat"): self.full_dataset[col] = self.full_dataset[col].astype("int16") logging.debug( f"# of rows in full dataframe before removal of negative target values: {len(self.full_dataset)}" ) self.full_dataset = self.full_dataset[ self.full_dataset.sid_shop_item_qty_sold_day >= 0 ] # call dataframe.set_index(), then repartition, then persist # https://docs.dask.org/en/latest/generated/dask.dataframe.DataFrame.set_index.html # set_index(sorted=False, npartitions='auto') # df = df.repartition(npartitions=df.npartitions // 100) # self.full_dataset = self.client.persist(self.full_dataset) # _ = wait([self.full_dataset]) # https://docs.dask.org/en/latest/generated/dask.dataframe.DataFrame.repartition.html # self.full_dataset = self.full_dataset.repartition(partition_size="100MB") self.full_dataset = self.full_dataset.set_index( "sale_date", sorted=False, npartitions="auto", partition_size=100_000_000, ) # partition_size for set_index: int, optional, desired size of # eaach partition in bytes (to be used with npartitions='auto') self.full_dataset = self.cull_empty_partitions(self.full_dataset) self.full_dataset = self.client.persist(self.full_dataset) _ = wait([self.full_dataset]) logging.debug( f"# of rows in full dataframe after removal of negative target values: {len(self.full_dataset)}" ) logging.debug( f"Earliest and latest dates in full dataframe are : {dd.compute(self.full_dataset.index.min(), self.full_dataset.index.max())}" ) logging.debug( f"Data types of full Dask dataframe are: {self.full_dataset.dtypes}" ) except Exception: logging.exception( "Exception occurred while creating Dask dataframe and persisting it on the cluster." ) # kill all active work, delete all data on the network, and restart the worker processes. self.client.restart() sys.exit(1) # finally: # self.client.restart() # sys.exit(1) # https://stackoverflow.com/questions/58437182/how-to-read-a-single-large-parquet-file-into-multiple-partitions-using-dask-dask # Parquet datasets can be saved into separate files. # Each file may contain separate row groups. # Dask Dataframe reads each Parquet row group into a separate partition. # I DON'T WANT TO KEEP THE NUMPY ARRAY IN MEMORY, SO IT NEEDS TO BE # DELETED AFTER DASK ARRAY IS CREATED # MIGHT BE BETTER TO CREATE DASK ARRAY FROM FILE ON S3, TO AVOID # HAVING BOTH NUMPY ARRAY AND PERSISTED DASK ARRAY IN MEMORY # I ALSO WANT TO SPLIT THAT NUMPY ARRAY INTO MULTIPLE TRAIN AND VALIDATION # SETS, SO WHAT'S THE BEST WAY TO DO THAT? # SEND THE ENTIRE ARRAY TO THE CLUSTER AT ONCE - PROBABLY NOT, OR # SEND TRAIN AND VALIDATION SETS ONE BY ONE AND DELETE? # BUT THAT WILL REQUIRE SENDING DATA TO THE CLUSTER MULTIPLE TIMES - # NOT IF THE DATA BEING SENT ARE DIFFERENT EACH TIME # THEY ARE NOT GOING TO BE COMPLETELY DIFFERENT BECAUSE TRAIN DATA WILL # JUST CONTINUE TO MERGE WITH VALIDATION SETS AND GROW # CREATE FIRST DASK ARRAY AND SEND TO CLUSTER, THEN APPEND TO IT? # IT DOES NOT LOOK LIKE DASK WOULD ALLOW THAT (SEE # https://github.com/dask/distributed/issues/1676 - # "You should also be aware that the task/data model underlying dask # arrays is immutable. You should never try to modify memory in-place.") # SO PROBABLY SEND ALL OF THE DATA TO THE CLUSTER AT THE BEGINNING, # THEN TAKE CHUNKS OF IT FOR WALK-FORWARD VALIDATION # PROBABLY SHOULD RELY ON LOADING DATA FROM FILE USING DELAYED / # FROM_DELAYED # SEE https://stackoverflow.com/questions/45941528/how-to-efficiently-send-a-large-numpy-array-to-the-cluster-with-dask-array) # can I use a function to read multiple files into one Dask array? # either figure out how to read multiple files (saved on S3) into one # Dask array, or # figure out how to save one array of PCA results to S3 (need disk space # to save it locally before transfer to S3 and need a method that can # handle transfer of more than 5GB - multipart transfer to S3) # try to write PCA-transformed data directly to zarr array (stored in memory) # then upload it to S3 (directly from memory) # then create dask array from that zarr array in S3 # try to write PCA-transformed data to xarray then upload it to S3 as zarr # save numpy array to parquet file, upload that file to S3 (using upload_file), # then read that file into a Dask dataframe # write data to parquet on S3 from pandas dataframe and append to it using awswrangler library? # (https://github.com/awslabs/aws-data-wrangler/blob/main/tutorials/004%20-%20Parquet%20Datasets.ipynb) # df = dd.read_parquet('s3://bucket/my-parquet-data') # (https://docs.dask.org/en/latest/generated/dask.dataframe.read_parquet.html#dask.dataframe.read_parquet) # from above link: # engine argument: If ‘pyarrow’ or ‘pyarrow-dataset’ is specified, the ArrowDatasetEngine (which leverages the pyarrow.dataset API) will be used. # read partitioned parquet dataset with Dask: # https://stackoverflow.com/questions/67222212/read-partitioned-parquet-dataset-written-by-spark-using-dask-and-pyarrow-dataset # def cast_types(self, df): # df = df.copy() # df['sale_date'] = df["sale_date"].astype( # "datetime64[ns]" # ) # for col in df: # if col.startswith("cat") or (col == "sid_shop_item_qty_sold_day"): # df[col] = df[col].astype("int16") # return df # # def drop_neg_qty_sold(self, df): # return df[df.sid_shop_item_qty_sold_day >= 0].copy() # function from https://stackoverflow.com/questions/47812785/remove-empty-partitions-in-dask def cull_empty_partitions(self, ddf): ll = list(ddf.map_partitions(len).compute()) ddf_delayed = ddf.to_delayed() ddf_delayed_new = list() pempty = None for ix, n in enumerate(ll): if 0 == n: pempty = ddf.get_partition(ix) else: ddf_delayed_new.append(ddf_delayed[ix]) if pempty is not None: ddf = dd.from_delayed(ddf_delayed_new, meta=pempty) return ddf def gridsearch_wfv(self, params): # self.hyperparameters = hyperparameters # self.rmse_results = defaultdict(list) # replace this variable by creating a key-value in # the self.hyper_dict dictionary with value containing list of RMSE values self.all_params_combs = list() # determine if there is more than one combination of hyperparameters # if only one combination, set get_stats_ flag to True self.get_stats_ = ( len(params[max(params, key=lambda x: len(params[x]))]) == 1 ) for params_comb_dict in ( dict(zip(params.keys(), v)) for v in list(product(*list(params.values()))) ): # for self.hyper_dict in hyperparameters: # self.params_combs_list.append(params_comb_dict) self.params_comb_dict = params_comb_dict.copy() self.params_comb_dict["rmse_list_"] = list() self.params_comb_dict["monthly_rmse_list_"] = list() self.params_comb_dict["fit_times_list_"] = list() try: self.model = lgb.DaskLGBMRegressor( client=self.client, random_state=42, silent=False, tree_learner="data", force_row_wise=True, **params_comb_dict, ) except Exception: logging.exception("Exception occurred while initializing Dask model.") # kill all active work, delete all data on the network, and restart the worker processes. self.client.restart() sys.exit(1) # call method that loops over train-validation sets with performance_report(filename=f"dask_report_{self.curr_dt_time}.html"): for train, test, get_stats in self.train_test_time_split(): self.fit(train).predict(test).rmse_all_folds(test, get_stats) self.params_comb_dict["avg_rmse_"] = mean( self.params_comb_dict["rmse_list_"] ) self.params_comb_dict["monthly_avg_rmse_"] = mean( self.params_comb_dict["monthly_rmse_list_"] ) self.all_params_combs.append(self.params_comb_dict) best_params = min(self.all_params_combs, key=lambda x: x["monthly_avg_rmse_"]) self.best_score_ = best_params["monthly_avg_rmse_"] # remove non-parameter key-values from self.best_params (i.e., rmse_list_ and avg_rmse_, etc.) self.best_params_ = {k: v for k, v in best_params.items() if k in params} # save list of parameter-result dictionaries to dataframe and then to CSV if self.all_params_combs: all_params_combs_df =
pd.DataFrame(self.all_params_combs)
pandas.DataFrame
import logging import graphviz import pandas as pd from ..linx.data import ParquetData from ..linx.ds import BayesianNetwork, \ ConditionalProbabilityTable as CPT, Query from ..linx.infer import VariableElimination from .conftest import (assert_approx_value_df, clean_tmp, create_df_medium, create_prior_df, get_tmp_path) def create_levels_df_mini(): collection = [] for narrative in range(5): for viz in range(5): for level in range(5): true_level = min( narrative, viz, ) if level == true_level: value = 1.0 collection.append({ 'Narrative': narrative, 'Visualization': viz, 'Level': level, 'value': value }) return
pd.DataFrame(collection)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This module contains all classes and functions specific for processing GLS. """ import pandas as pd import numpy as np import scipy import scipy.sparse as sps import scipy.sparse.linalg as spsl import sandy __author__ = "<NAME>" __all__ = [ "gls_update", "_y_calc", "chi_individual", "chi_diag", "chi_square", "ishikawa_factor", "constrained_gls_update" ] x_prior = [1, 2, 3] y_extra = pd.Series([2, 3, 4], index=[1, 2, 3]) S = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] Vx_prior = [[0, 0, 0], [0, 3, 0], [0, 0, 8]] Vy_extra = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] N_e = 1 def gls_update(x_prior, S, Vx_prior, Vy_extra, y_extra, sparse=False, threshold=None): """ Perform GlS update for a given variances, vectors and sensitivity. .. math:: $$ x_{post} = x_{prior} + V_{x_{prior}}\cdot S.T \cdot \left(S\cdot V_{x_{prior}}\cdot S.T + V_{y_{extra}}\right)^{-1} \cdot \left(y_{extra} - y_{calc}\right) $$ Parameters ---------- x_prior: 1D iterable Vector in which we are going to apply GLS (MX1) Vx_prior : 2D iterable 2D covariance matrix of x_prior (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXN). S : 2D iterable 2D sensitivity of the model y=f(x) (MXN). y_extra : 1D iterable 1D extra info on output (NX1) sparse : `bool`, optional Option to use sparse matrix for calculations. The default is False. threshold : `int`, optional Thereshold to avoid numerical fluctuations. The default is None. Returns ------- `pd.Series` GLS apply to a vector x_prior given S, Vx_prior, Vy_extra, y_calc and y_extra. Example ------- >>> S = [[1, 2], [3, 4]] >>> y = pd.Series([1, 1]) >>> Vx = sandy.CategoryCov.from_var([1, 1]).data >>> Vy = pd.DataFrame([[1, 0], [0, 1]], index=[1, 2], columns=[1, 2]) >>> x = [1, 1] >>> x_p = [2, 2] >>> gls_update(y, S, Vx, Vy, x_p) 0 2.00000e-01 1 4.85714e-01 dtype: float64 >>> gls_update(y, S, Vx, Vy, x_p, sparse=True) 0 2.00000e-01 1 4.85714e-01 dtype: float64 """ # Model calculus: x_prior_ = pd.Series(x_prior) S_ = pd.DataFrame(S).reindex(columns=x_prior_.index) y_calc_ = _y_calc(x_prior, S, sparse=sparse) y_extra_ = pd.Series(y_extra) y_calc_ = y_calc_.reindex(y_extra_.index) S_ = S_.reindex(index=y_extra_.index) # Data in a appropriate format delta = y_extra_ - y_calc_ Vx_prior_ = sandy.CategoryCov(Vx_prior) # GLS update A = Vx_prior_._gls_general_sensitivity(S_, Vy_extra, sparse=sparse, threshold=threshold).values if sparse: A = sps.csr_matrix(A) index = x_prior_.index x_prior_ = x_prior_.values x_post = x_prior_ + A.dot(delta) x_post = pd.Series(x_post, index=index) else: x_post = x_prior_ + A.dot(delta) return x_post def _y_calc(x_prior, S, sparse=False): """ Perform model calculation in GLS. Parameters ---------- x_prior: 1D iterable Vector in which we are going to apply GLS (MX1). S : 2D iterable 2D sensitivity of the model y=f(x) (MXN). sparse : `bool`, optional Option to use sparse matrix for calculations. The default is False. Returns ------- y_calc : `pd.Series` 1D calculated output using S.dot(x_prior), e.g. calculated CFY Example ------- S square matrix: >>> _y_calc(x_prior, S) 0 1 1 2 2 3 dtype: int64 Different number of row and columns in S: >>> S = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]] >>> _y_calc(x_prior, S) 0 1 1 2 2 3 3 6 dtype: int64 >>> _y_calc(x_prior, S, sparse=True) 0 1 1 2 2 3 3 6 dtype: int64 """ S_ = pd.DataFrame(S) x_prior_ = pd.Series(x_prior).reindex(S_.columns).fillna(0) if sparse: index = S_.index S_ = sps.csr_matrix(S_.values) y_calc = S_.dot(x_prior_.values) y_calc = pd.Series(y_calc, index=index) else: y_calc = S_.dot(x_prior_) return y_calc def chi_individual(x_prior, S, Vx_prior, Vy_extra, y_extra, sparse=False): """ Function to calculate individual chi-value measured in sigmas according to https://www.oecd-nea.org/jcms/pl_19760/intermediate-report-on-methods-and-approaches-to-provide-feedback-from-nuclear-and-covariance-data-adjustment-for-improvement-of-nuclear-data-files (page 9, equation (4.2)) Parameters ---------- x_prior: 1D iterable Vector in which we are going to apply GLS (MX1) S : 2D iterable 2D sensitivity of the model y=f(x) (MXN). Vx_prior : 2D iterable 2D covariance matrix of x_prior (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXN). y_extra : 1D iterable 1D extra info on output (NX1). sparse : `bool`, optional Option to use sparse matrix for calculations. The default is False. Returns ------- `pd.Series` individual chi-value measured in sigmas. Example ------- >>> chi_individual(x_prior, S, Vx_prior, Vy_extra, y_extra) 1 1.00000e+00 2 5.00000e-01 3 3.33333e-01 dtype: float64 >>> chi_individual(x_prior, S, Vx_prior, Vy_extra, y_extra, sparse=True) 1 1.00000e+00 2 5.00000e-01 3 3.33333e-01 dtype: float64 """ Vx_prior_ = sandy.CategoryCov(Vx_prior) G = Vx_prior_._gls_G(S, Vy_extra, sparse=sparse) G = np.sqrt(np.diag(G)) y_calc_ = _y_calc(x_prior, S, sparse=sparse).values y_extra_ = pd.Series(y_extra) delta = np.abs(y_extra_.values - y_calc_) return pd.Series(delta / G, index=y_extra_.index) def chi_diag(x_prior, S, Vx_prior, Vy_extra, y_extra, sparse=False): """ Function to calculate diagonal chi-value measured in sigmas $\chi_{ind,i}$>>1 according to https://www.oecd-nea.org/jcms/pl_19760/intermediate-report-on-methods-and-approaches-to-provide-feedback-from-nuclear-and-covariance-data-adjustment-for-improvement-of-nuclear-data-files (page 9, equation (4.3)) Parameters ---------- x_prior: 1D iterable Vector in which we are going to apply GLS (MX1) S : 2D iterable 2D sensitivity of the model y=f(x) (MXN). Vx_prior : 2D iterable 2D covariance matrix of x_prior (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXN). y_extra : 1D iterable 1D extra info on output (NX1) sparse : `bool`, optional Option to use sparse matrix for calculations. The default is False. Returns ------- `pd.Series` diagonal chi-value measured in sigmas $\chi_{ind,i}$>>1 Example ------- >>> chi_diag(x_prior, S, Vx_prior, Vy_extra, y_extra) 1 1.00000e+00 2 2.00000e+00 3 3.00000e+00 dtype: float64 >>> chi_diag(x_prior, S, Vx_prior, Vy_extra, y_extra, sparse=True) 1 1.00000e+00 2 2.00000e+00 3 3.00000e+00 dtype: float64 """ Vx_prior_ = sandy.CategoryCov(Vx_prior) G_inv = Vx_prior_._gls_G_inv(S, Vy_extra, sparse=sparse).values G_inv = np.sqrt(np.diag(G_inv)) y_calc_ = _y_calc(x_prior, S, sparse=sparse).values y_extra_ = pd.Series(y_extra) delta = np.abs(y_extra_.values - y_calc_) return pd.Series(delta / G_inv, index=y_extra_.index) def chi_square(x_prior, S, Vx_prior, Vy_extra, y_extra, N_e, sparse=False): """ Function to calculate contribution to chi-square value according to https://www.oecd-nea.org/jcms/pl_19760/intermediate-report-on-methods-and-approaches-to-provide-feedback-from-nuclear-and-covariance-data-adjustment-for-improvement-of-nuclear-data-files (page 10, equation (4.4)) Parameters ---------- x_prior: 1D iterable Vector in which we are going to apply GLS (MX1) S : 2D iterable 2D sensitivity of the model y=f(x) (MXN). Vx_prior : 2D iterable 2D covariance matrix of x_prior (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXN). y_extra : 1D iterable 1D extra info on output (NX1) N_e : `int` Number of experimental values used in adjustment. sparse : `bool`, optional Option to use sparse matrix for calculations. The default is False. Returns ------- `pd.Series` contribution to chi-square value Example ------- >>> chi_square(x_prior, S, Vx_prior, Vy_extra, y_extra, N_e) 1 1.00000e+00 2 2.50000e-01 3 1.11111e-01 dtype: float64 >>> chi_square(x_prior, S, Vx_prior, Vy_extra, y_extra, N_e, sparse=True) 1 1.00000e+00 2 2.50000e-01 3 1.11111e-01 dtype: float64 """ Vx_prior_ = sandy.CategoryCov(Vx_prior) G_inv = Vx_prior_._gls_G_inv(S, Vy_extra, sparse=sparse).values y_calc_ = _y_calc(x_prior, S, sparse=sparse).values y_extra_ = pd.Series(y_extra) delta = y_extra_.values - y_calc_ chi_square = delta.T.dot(G_inv) * delta / N_e return pd.Series(chi_square, index=y_extra_.index) def ishikawa_factor(S, Vx_prior, Vy_extra, sparse=False): """ Function to obtain Ishikawa factor according to https://www.oecd-nea.org/jcms/pl_19760/intermediate-report-on-methods-and-approaches-to-provide-feedback-from-nuclear-and-covariance-data-adjustment-for-improvement-of-nuclear-data-files (page 10, equation (4.5)) Parameters ---------- S : 2D iterable 2D sensitivity of the model y=f(x) (MXN). Vx_prior : 2D iterable 2D covariance matrix of x_prior (MXN). Vy_extra : 2D iterable 2D covariance matrix for y_extra (MXN). sparse : `bool`, optional Option to use sparse matrix for calculations. The default is False. Returns ------- `pd.Series` Ishikawa factor. Example ------- >>> ishikawa_factor(S, Vx_prior, Vy_extra) 0 0.00000e+00 1 3.00000e+00 2 8.00000e+00 dtype: float64 >>> ishikawa_factor(S, Vx_prior, Vy_extra, sparse=True) 0 0.00000e+00 1 3.00000e+00 2 8.00000e+00 dtype: float64 """ Vx_prior_ = sandy.CategoryCov(Vx_prior) Vy_calc = Vx_prior_._gls_Vy_calc(S, sparse=sparse) Vy_values = np.diag(Vy_calc) Vy_extra_ = np.diag(
pd.DataFrame(Vy_extra)
pandas.DataFrame
import numpy as np """ This monte carlo algorithm aproximates the "true" value of the interesting parameter/s using a random walk of normally distributed steps with mean 0 or a mean of the last accepted step in the walk for the parameter. """ truth=5 tss = [] for j in range(50): ts = [] stepsizes = [.01,.05,.1,.5,1,5,10] index=0 while len(ts) < len(stepsizes): w0 = 0 score1 = abs(truth-w0) score=score1 delta = 0 t = 0 u = 0 stepsize=stepsizes[index] while (score1 > .5)&(t<1000): w1 = w0+np.random.normal(delta,stepsize) score2 = abs(truth-w1) if -score2>-score1: delta = w1-w0 w0 = w1 score1=score2 u+=1 t+=1 print(t,score1,u) if score1 <=.5: ts.append(t) index+=1 tss.append(ts) tss=np.array(tss) stepsize = stepsizes[np.argmin(np.mean(tss,axis=0))] truth = 5 w0 = 0 score1 = abs(truth-w0) score=score1 delta = 0 t = 0 u = 0 while (score1 > .5)&(t<1000): w1 = w0+np.random.normal(delta,stepsize) score2 = abs(truth-w1) if -score2>-score1: delta = w1-w0 w0 = w1 score1=score2 u+=1 t+=1 print(t,score1,u) import pandas as pd import numpy as np import random import matplotlib.pyplot as plt dat = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00519/heart_failure_clinical_records_dataset.csv") pd.set_option("display.max_columns",500) dat.tail() covars = ['age','anaemia','creatinine_phosphokinase', 'diabetes','ejection_fraction','high_blood_pressure', 'platelets','serum_creatinine','serum_sodium', 'sex','smoking','time'] X=dat[covars].copy() Y=dat['DEATH_EVENT'] Yodds = Y/(1-Y) Yodds = np.where(Yodds==np.inf,1e16,1e-16) Ylogodds = np.log(Yodds) X=(X-np.mean(X,axis=0))/np.std(X,axis=0) X['int']=1 random.seed(42) index = np.array(random.choices([1,2,3,4,5],k=len(X))) xv = X[index==5].copy() yv = Ylogodds[index==5].copy() xt = X[index!=5].copy() yt = Ylogodds[index!=5].copy() coefs = np.linalg.pinv(xt.T@xt)@(xt.T@yt) predtlogodds = xt@coefs predvlogodds = xv@coefs predt=np.exp(predtlogodds)/(1+np.exp(predtlogodds)) predt=np.where(predt>.5,1,0) predv=np.exp(predvlogodds)/(1+np.exp(predvlogodds)) predv=np.where(predv>.5,1,0) act_t = np.exp(yt)/(1+np.exp(yt)) act_t=np.where(act_t>.5,1,0) act_v = np.exp(yv)/(1+np.exp(yv)) act_v=np.where(act_v>.5,1,0) logregt_acc=sum(np.where(predt==act_t,1,0))/len(predt) logregv_acc = sum(np.where(predv==act_v,1,0))/len(predv) print("logreg training acc:",logregt_acc,"val acc:",logregv_acc) from sklearn.linear_model import LogisticRegression xv = X[index==5].copy() yv = Y[index==5].copy() xt = X[index!=5].copy() yt = Y[index!=5].copy() lr = LogisticRegression(fit_intercept=False,solver = 'newton-cg',penalty='l2') lr.fit(xt,yt) sum(np.where(lr.predict(xt)==yt,1,0))/len(yt) sum(np.where(lr.predict(xv)==yv,1,0))/len(yv) #BASE KNN Maximizing Recall from sklearn.neighbors import KNeighborsClassifier X=dat[covars].copy() Y=dat['DEATH_EVENT'] X=(X-np.mean(X,axis=0))/np.std(X,axis=0) random.seed(42) index = np.array(random.choices([1,2,3,4,5,6],k=len(X))) acc = [] for i in list(range(2,30)): avgscore=[] for t in [1,2,3,4,5]: xv = X[index==t].copy() yv = Y[index==t].copy() xt = X[~pd.Series(index).isin([t,6])].copy() yt = Y[~pd.Series(index).isin([t,6])].copy() knn = KNeighborsClassifier(n_neighbors=i, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt,yt) tp=sum(np.where((knn.predict(xv)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv)==0)&(yv==1),1,0)) precision=tp/(tp+fp) recall=tp/(tp+fn) #score = (sum(np.where(knn.predict(xv*w0)==yv,1,0)))/(len(yv)) score = precision avgscore.append(score) acc.append(np.mean(avgscore)) plt.plot(acc) plt.xticks(list(range(28)),list(range(2,30))) plt.show() #k=18 k=4 k=16 def model_precision(X,Y,w,k): random.seed(42) index = np.array(random.choices([1,2,3,4,5,6],k=len(X))) initscores=[] for val in [1,2,3,4,5]: xv = X[pd.Series(index).isin([val])].copy() yv = Y[pd.Series(index).isin([val])].copy() xt = X[~pd.Series(index).isin([val,6])].copy() yt = Y[~pd.Series(index).isin([val,6])].copy() knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*w,yt) tp=sum(np.where((knn.predict(xv*w)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*w)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*w)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*w)==0)&(yv==1),1,0)) precision=tp/(tp+fp) recall=tp/(tp+fn) #score = (sum(np.where(knn.predict(xv*w0)==yv,1,0)))/(len(yv)) score = precision initscores.append(score) score=np.mean(initscores) return score def model_recall(X,Y,w,k): random.seed(42) index = np.array(random.choices([1,2,3,4,5,6],k=len(X))) initscores=[] for val in [1,2,3,4,5]: xv = X[pd.Series(index).isin([val])].copy() yv = Y[pd.Series(index).isin([val])].copy() xt = X[~pd.Series(index).isin([val,6])].copy() yt = Y[~pd.Series(index).isin([val,6])].copy() knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*w,yt) tp=sum(np.where((knn.predict(xv*w)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*w)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*w)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*w)==0)&(yv==1),1,0)) precision=tp/(tp+fp) recall=tp/(tp+fn) #score = (sum(np.where(knn.predict(xv*w0)==yv,1,0)))/(len(yv)) score = recall initscores.append(score) score=np.mean(initscores) return score def sequential_MCMC(X,Y,model_fn,draws=30,no_update_limit=120, stepsize=.1,step_shrinkage=.9, delta_reset=20,): #INITIAL SCORE w0 = np.ones(len(X.columns.values)) score = model_fn(X,Y,w0,k) scoreinit=score wfin = [] scores = [] while len(wfin)<draws: noupdate=0 deltachosen=False stepsize=stepsize score=scoreinit delta=np.random.normal(0,stepsize/2,len(covars)) w0=np.ones(len(X.columns.values)) while noupdate<no_update_limit: w1 = w0+np.random.normal(delta,stepsize,len(X.columns.values)) score2 = model_fn(X,Y,w1,k) if score2>score: print(score2,score,"accepted",noupdate) deltachosen==True score=score2 delta = w1-w0 w0=w1 noupdate=0 else: #print(score2,score) noupdate+=1 if deltachosen==False: delta=np.random.normal(0,stepsize/2,len(X.columns.values)) if noupdate%delta_reset==delta_reset: deltachosen=False stepsize=stepsize*step_shrinkage delta=np.random.normal(0,stepsize/2,len(X.columns.values)) if score>scoreinit: wfin.append(w0) scores.append(score) wfin_arr=np.vstack(wfin) return(wfin_arr,scores) wfin_arr,scores=sequential_MCMC(X,Y,model_fn=model_precision,draws=30,no_update_limit=120, stepsize=.1,step_shrinkage=.9, delta_reset=20) print(np.mean(wfin_arr,axis=0)) print(np.std(wfin_arr,axis=0)) for i in range(12): plt.hist(wfin_arr.T[i],bins=10) plt.title(covars[i]) plt.show() method=np.median xv = X[pd.Series(index).isin([6])].copy() yv = Y[pd.Series(index).isin([6])].copy() xt = X[pd.Series(index).isin([1,2,3,4,5])].copy() yt = Y[pd.Series(index).isin([1,2,3,4,5])].copy() wf=method(wfin_arr,axis=0) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*wf,yt) tp=sum(np.where((knn.predict(xv*wf)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*wf)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*wf)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*wf)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt,yt) tp=sum(np.where((knn.predict(xv)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) wfin_arr,scores=sequential_MCMC(X,Y,model_fn=model_recall,draws=30,no_update_limit=120, stepsize=.1,step_shrinkage=.9, delta_reset=20) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*wf,yt) tp=sum(np.where((knn.predict(xv*wf)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*wf)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*wf)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*wf)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt,yt) tp=sum(np.where((knn.predict(xv)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) initscores=[] for val in [1,2,3,4,5]: xv = X[pd.Series(index).isin([val])].copy() yv = Y[pd.Series(index).isin([val])].copy() xt = X[~pd.Series(index).isin([val,6])].copy() yt = Y[~pd.Series(index).isin([val,6])].copy() knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) stepsize=.1 w0=np.ones(len(covars)) delta=np.random.normal(0,stepsize/2,len(covars)) knn.fit(xt*w0,yt) tp=sum(np.where((knn.predict(xv*w0)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*w0)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*w0)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*w0)==0)&(yv==1),1,0)) precision=tp/(tp+fp) recall=tp/(tp+fn) #score = (sum(np.where(knn.predict(xv*w0)==yv,1,0)))/(len(yv)) score = recall initscores.append(score) score=np.mean(initscores) scoreinit=score #sum(np.where(knn.predict(xv*w0)==yv,1,0))/len(yv) #sum(np.where(knn.predict(xt*w0)==yt,1,0))/len(yt) wfin=[] scores = [] while len(wfin)<30: noupdate=0 deltachosen=False score=scoreinit stepsize=.1 delta=np.random.normal(0,stepsize/2,len(covars)) w0=np.ones(len(covars)) #iteration=0 while noupdate<120: #iteration+=1 #val = iteration%4+1 score2list=[] for val in [1,2,3,4,5]: xv = X[pd.Series(index).isin([val])].copy() yv = Y[pd.Series(index).isin([val])].copy() xt = X[~pd.Series(index).isin([val,6])].copy() yt = Y[~pd.Series(index).isin([val,6])].copy() w1 = w0+np.random.normal(delta,stepsize,len(covars)) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*w1,yt) tp=sum(np.where((knn.predict(xv*w1)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*w1)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*w1)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*w1)==0)&(yv==1),1,0)) precision=tp/(tp+fp) recall=tp/(tp+fn) #score2 = sum(np.where(knn.predict(xv*w1)==yv,1,0))/len(yv) score2 = recall score2list.append(score2) score2=np.mean(score2list) if score2>score: print(score2,score,"accepted",noupdate) deltachosen==True score=score2 delta = w1-w0 w0=w1 noupdate=0 else: #print(score2,score) noupdate+=1 if deltachosen==False: delta=np.random.normal(0,stepsize/2,len(covars)) if noupdate%20==20: deltachosen=False stepsize=stepsize*.9 delta=np.random.normal(0,stepsize/2,len(covars)) if score>scoreinit: wfin.append(w0) scores.append(score) wfin_arr=np.vstack(wfin) print(np.mean(wfin_arr,axis=0)) print(np.std(wfin_arr,axis=0)) for i in range(12): plt.hist(wfin_arr.T[i],bins=10) plt.title(covars[i]) plt.show() method=np.mean xv = X[pd.Series(index).isin([6])].copy() yv = Y[pd.Series(index).isin([6])].copy() xt = X[pd.Series(index).isin([1,2,3,4,5])].copy() yt = Y[pd.Series(index).isin([1,2,3,4,5])].copy() wf=method(wfin_arr,axis=0) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*wf,yt) tp=sum(np.where((knn.predict(xv*wf)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*wf)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*wf)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*wf)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt,yt) tp=sum(np.where((knn.predict(xv)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) scores_ordered = sorted(range(len(scores)), key=lambda k: scores[k]) wfin_sorted = wfin_arr[scores_ordered] wfin_selected = wfin_sorted[15:] wf_sort=method(wfin_selected,axis=0) knn = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt*wf_sort,yt) tp=sum(np.where((knn.predict(xv*wf_sort)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv*wf_sort)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv*wf_sort)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv*wf_sort)==0)&(yv==1),1,0)) print('precision: ',tp/(tp+fp)) print('recall: ',tp/(tp+fn)) print('accuracy: ',(tp+tn)/(tp+fn+fp+tn)) #BASE KNN Maximizing Precision from sklearn.neighbors import KNeighborsClassifier import warnings warnings.filterwarnings("ignore") X=dat[covars].copy() Y=dat['DEATH_EVENT'] X=(X-np.mean(X,axis=0))/np.std(X,axis=0) random.seed(42) index = np.array(random.choices([1,2,3,4,5,6],k=len(X))) acc = [] for i in list(range(2,30)): avgscore=[] for t in [1,2,3,4,5]: xv = X[index==t].copy() yv = Y[index==t].copy() xt = X[~pd.Series(index).isin([t,6])].copy() yt = Y[~pd.Series(index).isin([t,6])].copy() knn = KNeighborsClassifier(n_neighbors=i, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='euclidean', metric_params=None, n_jobs=None) knn.fit(xt,yt) tp=sum(np.where((knn.predict(xv)==1)&(yv==1),1,0)) fp=sum(np.where((knn.predict(xv)==1)&(yv==0),1,0)) tn=sum(np.where((knn.predict(xv)==0)&(yv==0),1,0)) fn=sum(np.where((knn.predict(xv)==0)&(yv==1),1,0)) precision=tp/(tp+fp) recall=tp/(tp+fn) #score = (sum(np.where(knn.predict(xv*w0)==yv,1,0)))/(len(yv)) score = precision avgscore.append(score) acc.append(np.mean(avgscore)) plt.plot(acc) plt.xticks(list(range(28)),list(range(2,30))) plt.show() #k=18 k=17 initscores=[] for val in [1,2,3,4,5]: xv = X[pd.Series(index).isin([val])].copy() yv = Y[pd.Series(index).isin([val])].copy() xt = X[~
pd.Series(index)
pandas.Series
# -*- coding: utf-8 -*- import copy import datetime from unittest import mock import numpy import pandas from pandas import DataFrame import pkg_resources import pytest from pandas_gbq import gbq pytestmark = pytest.mark.filter_warnings( "ignore:credentials from Google Cloud SDK" ) pandas_installed_version = pkg_resources.get_distribution( "pandas" ).parsed_version def _make_connector(project_id="some-project", **kwargs): return gbq.GbqConnector(project_id, **kwargs) @pytest.fixture def min_bq_version(): import pkg_resources return pkg_resources.parse_version("1.11.0") def mock_get_credentials_no_project(*args, **kwargs): import google.auth.credentials mock_credentials = mock.create_autospec( google.auth.credentials.Credentials ) return mock_credentials, None def mock_get_credentials(*args, **kwargs): import google.auth.credentials mock_credentials = mock.create_autospec( google.auth.credentials.Credentials ) return mock_credentials, "default-project" @pytest.fixture def mock_service_account_credentials(): import google.oauth2.service_account mock_credentials = mock.create_autospec( google.oauth2.service_account.Credentials ) return mock_credentials @pytest.fixture def mock_compute_engine_credentials(): import google.auth.compute_engine mock_credentials = mock.create_autospec( google.auth.compute_engine.Credentials ) return mock_credentials @pytest.fixture(autouse=True) def no_auth(monkeypatch): import pydata_google_auth monkeypatch.setattr(pydata_google_auth, "default", mock_get_credentials) @pytest.mark.parametrize( ("type_", "expected"), [ ("INTEGER", None), # Can't handle NULL ("BOOLEAN", None), # Can't handle NULL ("FLOAT", numpy.dtype(float)), # TIMESTAMP will be localized after DataFrame construction. ("TIMESTAMP", "datetime64[ns]"), ("DATETIME", "datetime64[ns]"), ], ) def test__bqschema_to_nullsafe_dtypes(type_, expected): result = gbq._bqschema_to_nullsafe_dtypes( [dict(name="x", type=type_, mode="NULLABLE")] ) if not expected: assert result == {} else: assert result == {"x": expected} def test_GbqConnector_get_client_w_old_bq(monkeypatch, mock_bigquery_client): gbq._test_google_api_imports() connector = _make_connector() monkeypatch.setattr(gbq, "HAS_CLIENT_INFO", False) connector.get_client() # No client_info argument. mock_bigquery_client.assert_called_with( credentials=mock.ANY, project=mock.ANY ) def test_GbqConnector_get_client_w_new_bq(mock_bigquery_client): gbq._test_google_api_imports() pytest.importorskip( "google.cloud.bigquery", minversion=gbq.BIGQUERY_CLIENT_INFO_VERSION ) pytest.importorskip("google.api_core.client_info") connector = _make_connector() connector.get_client() _, kwargs = mock_bigquery_client.call_args assert kwargs["client_info"].user_agent == "pandas-{}".format( pandas.__version__ ) def test_to_gbq_should_fail_if_invalid_table_name_passed(): with pytest.raises(gbq.NotFoundException): gbq.to_gbq(DataFrame([[1]]), "invalid_table_name", project_id="1234") def test_to_gbq_with_no_project_id_given_should_fail(monkeypatch): import pydata_google_auth monkeypatch.setattr( pydata_google_auth, "default", mock_get_credentials_no_project ) with pytest.raises(ValueError, match="Could not determine project ID"): gbq.to_gbq(DataFrame([[1]]), "dataset.tablename") def test_to_gbq_with_verbose_new_pandas_warns_deprecation(min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.23.0") with pytest.warns(FutureWarning), mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] try: gbq.to_gbq( DataFrame([[1]]), "dataset.tablename", project_id="my-project", verbose=True, ) except gbq.TableCreationError: pass def test_to_gbq_with_not_verbose_new_pandas_warns_deprecation(min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.23.0") with pytest.warns(FutureWarning), mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] try: gbq.to_gbq( DataFrame([[1]]), "dataset.tablename", project_id="my-project", verbose=False, ) except gbq.TableCreationError: pass def test_to_gbq_wo_verbose_w_new_pandas_no_warnings(recwarn, min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.23.0") with mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] try: gbq.to_gbq( DataFrame([[1]]), "dataset.tablename", project_id="my-project" ) except gbq.TableCreationError: pass assert len(recwarn) == 0 def test_to_gbq_with_verbose_old_pandas_no_warnings(recwarn, min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.22.0") with mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] try: gbq.to_gbq( DataFrame([[1]]), "dataset.tablename", project_id="my-project", verbose=True, ) except gbq.TableCreationError: pass assert len(recwarn) == 0 def test_to_gbq_with_private_key_raises_notimplementederror(): with pytest.raises(NotImplementedError, match="private_key"): gbq.to_gbq( DataFrame([[1]]), "dataset.tablename", project_id="my-project", private_key="path/to/key.json", ) def test_to_gbq_doesnt_run_query( recwarn, mock_bigquery_client, min_bq_version ): try: gbq.to_gbq( DataFrame([[1]]), "dataset.tablename", project_id="my-project" ) except gbq.TableCreationError: pass mock_bigquery_client.query.assert_not_called() def test_to_gbq_w_empty_df(mock_bigquery_client): import google.api_core.exceptions mock_bigquery_client.get_table.side_effect = google.api_core.exceptions.NotFound( "my_table" ) gbq.to_gbq(DataFrame(), "my_dataset.my_table", project_id="1234") mock_bigquery_client.create_table.assert_called_with(mock.ANY) mock_bigquery_client.load_table_from_dataframe.assert_not_called() mock_bigquery_client.load_table_from_file.assert_not_called() def test_to_gbq_creates_dataset(mock_bigquery_client): import google.api_core.exceptions mock_bigquery_client.get_table.side_effect = google.api_core.exceptions.NotFound( "my_table" ) mock_bigquery_client.get_dataset.side_effect = google.api_core.exceptions.NotFound( "my_dataset" ) gbq.to_gbq(DataFrame([[1]]), "my_dataset.my_table", project_id="1234") mock_bigquery_client.create_dataset.assert_called_with(mock.ANY) def test_read_gbq_with_no_project_id_given_should_fail(monkeypatch): import pydata_google_auth monkeypatch.setattr( pydata_google_auth, "default", mock_get_credentials_no_project ) with pytest.raises(ValueError, match="Could not determine project ID"): gbq.read_gbq("SELECT 1", dialect="standard") def test_read_gbq_with_inferred_project_id(monkeypatch): df = gbq.read_gbq("SELECT 1", dialect="standard") assert df is not None def test_read_gbq_with_inferred_project_id_from_service_account_credentials( mock_bigquery_client, mock_service_account_credentials ): mock_service_account_credentials.project_id = "service_account_project_id" df = gbq.read_gbq( "SELECT 1", dialect="standard", credentials=mock_service_account_credentials, ) assert df is not None mock_bigquery_client.query.assert_called_once_with( "SELECT 1", job_config=mock.ANY, location=None, project="service_account_project_id", ) def test_read_gbq_without_inferred_project_id_from_compute_engine_credentials( mock_compute_engine_credentials, ): with pytest.raises(ValueError, match="Could not determine project ID"): gbq.read_gbq( "SELECT 1", dialect="standard", credentials=mock_compute_engine_credentials, ) def test_read_gbq_with_max_results_zero(monkeypatch): df = gbq.read_gbq("SELECT 1", dialect="standard", max_results=0) assert df is None def test_read_gbq_with_max_results_ten(monkeypatch, mock_bigquery_client): df = gbq.read_gbq("SELECT 1", dialect="standard", max_results=10) assert df is not None mock_bigquery_client.list_rows.assert_called_with(mock.ANY, max_results=10) def test_read_gbq_with_verbose_new_pandas_warns_deprecation(min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.23.0") with pytest.warns(FutureWarning), mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] gbq.read_gbq("SELECT 1", project_id="my-project", verbose=True) def test_read_gbq_with_not_verbose_new_pandas_warns_deprecation( min_bq_version, ): import pkg_resources pandas_version = pkg_resources.parse_version("0.23.0") with pytest.warns(FutureWarning), mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] gbq.read_gbq("SELECT 1", project_id="my-project", verbose=False) def test_read_gbq_wo_verbose_w_new_pandas_no_warnings(recwarn, min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.23.0") with mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] gbq.read_gbq("SELECT 1", project_id="my-project", dialect="standard") assert len(recwarn) == 0 def test_read_gbq_with_old_bq_raises_importerror(): import pkg_resources bigquery_version = pkg_resources.parse_version("0.27.0") with pytest.raises(ImportError, match="google-cloud-bigquery"), mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [bigquery_version] gbq.read_gbq( "SELECT 1", project_id="my-project", ) def test_read_gbq_with_verbose_old_pandas_no_warnings(recwarn, min_bq_version): import pkg_resources pandas_version = pkg_resources.parse_version("0.22.0") with mock.patch( "pkg_resources.Distribution.parsed_version", new_callable=mock.PropertyMock, ) as mock_version: mock_version.side_effect = [min_bq_version, pandas_version] gbq.read_gbq( "SELECT 1", project_id="my-project", dialect="standard", verbose=True, ) assert len(recwarn) == 0 def test_read_gbq_with_private_raises_notimplmentederror(): with pytest.raises(NotImplementedError, match="private_key"): gbq.read_gbq( "SELECT 1", project_id="my-project", private_key="path/to/key.json" ) def test_read_gbq_with_invalid_dialect(): with pytest.raises(ValueError, match="is not valid for dialect"): gbq.read_gbq("SELECT 1", dialect="invalid") def test_read_gbq_with_configuration_query(): df = gbq.read_gbq(None, configuration={"query": {"query": "SELECT 2"}}) assert df is not None def test_read_gbq_with_configuration_duplicate_query_raises_error(): with pytest.raises( ValueError, match="Query statement can't be specified inside config" ): gbq.read_gbq( "SELECT 1", configuration={"query": {"query": "SELECT 2"}} ) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with pytest.warns(FutureWarning): df =
DataFrame([[1, "two"], [3, "four"]])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
# -*- coding: utf-8 -*- """Input Output (IO) helpers. .. plot:: :context: reset import numpy as np import matplotlib.pyplot as plt plt.rcParams['axes.grid'] = True import spaudiopy as spa """ import os from warnings import warn import multiprocessing import json from datetime import datetime import numpy as np import pandas as pd from scipy.io import loadmat, savemat import h5py import soundfile as sf from . import utils, sig, decoder, sdm, grids, sph, process, __version__ def load_audio(filenames, fs=None): """Load mono and multichannel audio from files. Parameters ---------- filenames : string or list of strings Audio files. Returns ------- sig : sig.MonoSignal or sig.MultiSignal Audio signal. """ loaded_data = [] loaded_fs = [] # pack in list if only a single string if not isinstance(filenames, (list, tuple)): filenames = [filenames] for file in filenames: data, fs_file = sf.read(file) if data.ndim != 1: # detect and split interleaved wav for c in data.T: loaded_data.append(c) else: loaded_data.append(data) loaded_fs.append(fs_file) # Assert same sample rate for all channels assert all(x == loaded_fs[0] for x in loaded_fs) # Check against provided samplerate if fs is not None: if fs != loaded_fs[0]: raise ValueError("File: Found different fs:" + str(loaded_fs[0])) else: fs = loaded_fs[0] # MonoSignal or MultiSignal if len(loaded_data) == 1: return sig.MonoSignal(loaded_data, fs=fs) else: return sig.MultiSignal([*loaded_data], fs=fs) def save_audio(signal, filename, fs=None, subtype='FLOAT'): """Save signal to audio file. Parameters ---------- signal : sig. MonoSignal, sig.MultiSignal or np.ndarray Audio Signal, forwarded to sf.write(); (frames x channels). filename : string Audio file name. fs : int fs(t). subtype : optional """ # assert(isinstance(signal, (sig.MonoSignal, sig.MultiSignal))) if isinstance(sig, sig.MonoSignal): if fs is not None: assert(signal.fs == fs) if type(signal) == sig.MonoSignal: data = signal.signal data_fs = signal.fs elif type(signal) in (sig.MultiSignal, sig.AmbiBSignal): data = signal.get_signals().T data_fs = signal.fs elif isinstance(signal, (np.ndarray, np.generic)): data = signal data_fs = fs else: raise NotImplementedError('Data type not supported.') sf.write(filename, data, data_fs, subtype=subtype) def load_hrirs(fs, filename=None): """Convenience function to load 'HRTF.mat'. The file contains ['hrir_l', 'hrir_r', 'fs', 'azi', 'colat']. Parameters ---------- fs : int fs(t). filename : string, optional HRTF.mat file or default set, or 'dummy' for debugging. Returns ------- HRIRs : sig.HRIRs instance left : (g, h) numpy.ndarray h(t) for grid position g. right : (g, h) numpy.ndarray h(t) for grid position g. grid : (g, 2) pandas.dataframe [azi: azimuth, colat: colatitude] for hrirs. fs : int fs(t). """ if filename == 'dummy': azi, colat, _ = grids.gauss(15) grid = pd.DataFrame({'azi': azi, 'colat': colat}) # Create diracs as dummy hrir_l = np.zeros([grid.shape[0], 256]) hrir_l[:, 0] = np.ones(hrir_l.shape[0]) hrir_r = np.zeros_like(hrir_l) hrir_r[:, 0] = np.ones(hrir_r.shape[0]) hrir_fs = fs elif filename is None: # default if fs not in [44100, 48000, 96000]: raise NotImplementedError('44100, 48000, 96000' ' default available.') default_file = '../data/' + 'HRTF_default_' + str(fs) + '.mat' current_file_dir = os.path.dirname(__file__) filename = os.path.join(current_file_dir, default_file) try: mat = loadmat(filename) except FileNotFoundError: warn("No default hrirs. Generating them...") get_default_hrirs() mat = loadmat(filename) else: mat = loadmat(filename) if not filename == 'dummy': hrir_l = np.array(np.squeeze(mat['hrir_l']), dtype=float) hrir_r = np.array(np.squeeze(mat['hrir_r']), dtype=float) try: hrir_fs = int(mat['fs']) except KeyError: hrir_fs = int(mat['SamplingRate']) azi = np.array(np.squeeze(mat['azi']), dtype=float) colat = np.array(np.squeeze(mat['colat']), dtype=float) grid =
pd.DataFrame({'azi': azi, 'colat': colat})
pandas.DataFrame
import os.path import pickle import pytest import pandas as pd from ...source.tests.util import verify_datasource_interface from .util import assert_items_equal from intake import Catalog TEST_CATALOG_PATH = os.path.join(os.path.dirname(__file__), 'catalog1.yml') def test_info_describe(intake_server): catalog = Catalog(intake_server) assert_items_equal(list(catalog), ['use_example1', 'nested', 'entry1', 'entry1_part', 'remote_env', 'local_env', 'text', 'arr']) info = catalog['entry1'].describe() assert info == { 'container': 'dataframe', 'description': 'entry1 full', 'name': 'entry1', 'direct_access': 'forbid', 'user_parameters': [] } info = catalog['entry1_part'].describe() assert info['direct_access'] == 'allow' def test_bad_url(intake_server): bad_url = intake_server + '/nonsense_prefix' with pytest.raises(Exception): Catalog(bad_url) def test_metadata(intake_server): catalog = Catalog(intake_server) assert hasattr(catalog, 'metadata') assert catalog['metadata']['test'] is True assert catalog.version == 1 def test_unknown_source(intake_server): catalog = Catalog(intake_server) with pytest.raises(Exception): catalog['does_not_exist'].describe() def test_remote_datasource_interface(intake_server): catalog = Catalog(intake_server) d = catalog['entry1'].get() verify_datasource_interface(d) def test_environment_evaluation(intake_server): catalog = Catalog(intake_server) import os os.environ['INTAKE_TEST'] = 'client' d = catalog['remote_env'] def test_read(intake_server): catalog = Catalog(intake_server) d = catalog['entry1'].get() test_dir = os.path.dirname(__file__) file1 = os.path.join(test_dir, 'entry1_1.csv') file2 = os.path.join(test_dir, 'entry1_2.csv') expected_df = pd.concat((pd.read_csv(file1), pd.read_csv(file2))) meta = expected_df[:0] info = d.discover() assert info['datashape'] is None assert info['dtype'] == {k: str(v) for k, v in meta.dtypes.to_dict().items()} assert info['npartitions'] == 2 assert info['shape'] == (None, 3) # Do not know CSV size ahead of time md = d.metadata.copy() md.pop('catalog_dir', None) assert md == dict(foo='bar', bar=[1, 2, 3], cache=[]) df = d.read() assert expected_df.equals(df) def test_read_direct(intake_server): catalog = Catalog(intake_server) d = catalog['entry1_part'].get(part='2') test_dir = os.path.dirname(__file__) file2 = os.path.join(test_dir, 'entry1_2.csv') expected_df = pd.read_csv(file2) meta = expected_df[:0] info = d.discover() assert info['datashape'] is None assert info['dtype'] == {k: str(v) for k, v in meta.dtypes.to_dict().items()} assert info['npartitions'] == 1 assert info['shape'] == (None, 3) # Do not know CSV size ahead of time md = info['metadata'].copy() md.pop('catalog_dir', None) assert md == {'bar': [2, 4, 6], 'foo': 'baz', 'cache': []} md = d.metadata.copy() md.pop('catalog_dir', None) assert md == dict(foo='baz', bar=[2, 4, 6], cache=[]) assert d.description == 'entry1 part' df = d.read() assert expected_df.equals(df) def test_read_chunks(intake_server): catalog = Catalog(intake_server) d = catalog.entry1.get() chunks = list(d.read_chunked()) assert len(chunks) == 2 test_dir = os.path.dirname(__file__) file1 = os.path.join(test_dir, 'entry1_1.csv') file2 = os.path.join(test_dir, 'entry1_2.csv') expected_df = pd.concat((pd.read_csv(file1), pd.read_csv(file2))) assert expected_df.equals(pd.concat(chunks)) def test_read_partition(intake_server): catalog = Catalog(intake_server) d = catalog.entry1.get() p2 = d.read_partition(1) p1 = d.read_partition(0) test_dir = os.path.dirname(__file__) file1 = os.path.join(test_dir, 'entry1_1.csv') file2 = os.path.join(test_dir, 'entry1_2.csv') assert
pd.read_csv(file1)
pandas.read_csv
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(pd.concat(result), expected) # skipfooter is not supported with the C parser yet if self.engine == 'python': # test bad parameter (skipfooter) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skipfooter=1) pytest.raises(ValueError, reader.read, 3) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_blank_df(self): # GH 14545 data = """a,b """ df = self.read_csv(StringIO(data), header=[0]) expected = DataFrame(columns=['a', 'b']) tm.assert_frame_equal(df, expected) round_trip = self.read_csv(StringIO( expected.to_csv(index=False)), header=[0]) tm.assert_frame_equal(round_trip, expected) data_multiline = """a,b c,d """ df2 = self.read_csv(StringIO(data_multiline), header=[0, 1]) cols = MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) expected2 = DataFrame(columns=cols) tm.assert_frame_equal(df2, expected2) round_trip = self.read_csv(StringIO( expected2.to_csv(index=False)), header=[0, 1]) tm.assert_frame_equal(round_trip, expected2) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') assert df.index.name is None def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = self.read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pandas-dev/pandas/master/' 'pandas/tests/io/parser/data/salaries.csv') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @pytest.mark.slow def test_file(self): dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems pytest.skip("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath( df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_nonexistent_path(self): # gh-2428: pls no segfault # gh-14086: raise more helpful FileNotFoundError path = '%s.csv' % tm.rands(10) pytest.raises(compat.FileNotFoundError, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) assert result['D'].isna()[1:].all() def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) assert pd.isna(result.iloc[0, 29]) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) s.close() tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') assert len(result) == 50 if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') assert len(result) == 50 def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') assert got == expected def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') assert result['SEARCH_TERM'][2] == ('SLAGBORD, "Bergslagen", ' 'IKEA:s 1700-tals serie') tm.assert_index_equal(result.columns, Index(['SEARCH_TERM', 'ACTUAL_URL'])) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) tm.assert_series_equal(result['Numbers'], expected['Numbers']) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. assert type(df.a[0]) is np.float64 assert df.a.dtype == np.float def test_warn_if_chunks_have_mismatched_type(self): warning_type = False integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) # see gh-3866: if chunks are different types and can't # be coerced using numerical types, then issue warning. if self.engine == 'c' and self.low_memory: warning_type = DtypeWarning with tm.assert_produces_warning(warning_type): df = self.read_csv(StringIO(data)) assert df.a.dtype == np.object def test_integer_overflow_bug(self): # see gh-2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') assert result[0].dtype == np.float64 result = self.read_csv(StringIO(data), header=None, sep=r'\s+') assert result[0].dtype == np.float64 def test_catch_too_many_names(self): # see gh-5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" pytest.raises(ValueError, self.read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # see gh-3374, gh-6607 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # see gh-10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) assert len(result) == 2 # see gh-9735: this issue is C parser-specific (bug when # parsing whitespace and characters at chunk boundary) if self.engine == 'c': chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = self.read_csv(StringIO(chunk1 + chunk2), header=None) expected = DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # see gh-10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_empty_with_multiindex(self): # see gh-10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_float_parser(self): # see gh-9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_scientific_no_exponent(self): # see gh-12215 df = DataFrame.from_items([('w', ['2e']), ('x', ['3E']), ('y', ['42e']), ('z', ['632E'])]) data = df.to_csv(index=False) for prec in self.float_precision_choices: df_roundtrip = self.read_csv( StringIO(data), float_precision=prec) tm.assert_frame_equal(df_roundtrip, df) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" # 13007854817840016671868 > UINT64_MAX, so this # will overflow and return object as the dtype. result = self.read_csv(StringIO(data)) assert result['ID'].dtype == object # 13007854817840016671868 > UINT64_MAX, so attempts # to cast to either int64 or uint64 will result in # an OverflowError being raised. for conv in (np.int64, np.uint64): pytest.raises(OverflowError, self.read_csv, StringIO(data), converters={'ID': conv}) # These numbers fall right inside the int64-uint64 range, # so they should be parsed as string. ui_max = np.iinfo(np.uint64).max i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min, ui_max]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([x]) tm.assert_frame_equal(result, expected) # These numbers fall just outside the int64-uint64 range, # so they should be parsed as string. too_big = ui_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([str(x)])
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
''' This code compares the loc and iloc in pandas dataframe ''' __author__ = "<NAME>" __email__ = "<EMAIL>" import pandas as pd import timeit df_test =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import os def mask_step(x, step): """ Create a mask to only contain the step-th element starting from the first element. Used to downsample """ mask = np.zeros_like(x) mask[::step] = 1 return mask.astype(bool) def downsample(df, step): """ Downsample data by the given step. Example, SDD is recorded in 30 fps, with step=30, the fps of the resulting df will become 1 fps. With step=12 the result will be 2.5 fps. It will do so individually for each unique pedestrian (metaId) :param df: pandas DataFrame - necessary to have column 'metaId' :param step: int - step size, similar to slicing-step param as in array[start:end:step] :return: pd.df - downsampled """ mask = df.groupby(['metaId'])['metaId'].transform(mask_step, step=step) return df[mask] def filter_short_trajectories(df, threshold): """ Filter trajectories that are shorter in timesteps than the threshold :param df: pandas df with columns=['x', 'y', 'frame', 'trackId', 'sceneId', 'metaId'] :param threshold: int - number of timesteps as threshold, only trajectories over threshold are kept :return: pd.df with trajectory length over threshold """ len_per_id = df.groupby(by='metaId', as_index=False).count() # sequence-length for each unique pedestrian idx_over_thres = len_per_id[len_per_id['frame'] >= threshold] # rows which are above threshold idx_over_thres = idx_over_thres['metaId'].unique() # only get metaIdx with sequence-length longer than threshold df = df[df['metaId'].isin(idx_over_thres)] # filter df to only contain long trajectories return df def groupby_sliding_window(x, window_size, stride): x_len = len(x) n_chunk = (x_len - window_size) // stride + 1 idx = [] metaId = [] for i in range(n_chunk): idx += list(range(i * stride, i * stride + window_size)) metaId += ['{}_{}'.format(x.metaId.unique()[0], i)] * window_size # temp = x.iloc()[(i * stride):(i * stride + window_size)] # temp['new_metaId'] = '{}_{}'.format(x.metaId.unique()[0], i) # df = df.append(temp, ignore_index=True) df = x.iloc()[idx] df['newMetaId'] = metaId return df def sliding_window(df, window_size, stride): """ Assumes downsampled df, chunks trajectories into chunks of length window_size. When stride < window_size then chunked trajectories are overlapping :param df: df :param window_size: sequence-length of one trajectory, mostly obs_len + pred_len :param stride: timesteps to move from one trajectory to the next one :return: df with chunked trajectories """ gb = df.groupby(['metaId'], as_index=False) df = gb.apply(groupby_sliding_window, window_size=window_size, stride=stride) df['metaId'] = pd.factorize(df['newMetaId'], sort=False)[0] df = df.drop(columns='newMetaId') df = df.reset_index(drop=True) return df def split_at_fragment_lambda(x, frag_idx, gb_frag): """ Used only for split_fragmented() """ metaId = x.metaId.iloc()[0] counter = 0 if metaId in frag_idx: split_idx = gb_frag.groups[metaId] for split_id in split_idx: x.loc[split_id:, 'newMetaId'] = '{}_{}'.format(metaId, counter) counter += 1 return x def split_fragmented(df): """ Split trajectories when fragmented (defined as frame_{t+1} - frame_{t} > 1) Formally, this is done by changing the metaId at the fragmented frame and below :param df: DataFrame containing trajectories :return: df: DataFrame containing trajectories without fragments """ gb = df.groupby('metaId', as_index=False) # calculate frame_{t+1} - frame_{t} and fill NaN which occurs for the first frame of each track df['frame_diff'] = gb['frame'].diff().fillna(value=1.0).to_numpy() fragmented = df[df['frame_diff'] != 1.0] # df containing all the first frames of fragmentation gb_frag = fragmented.groupby('metaId') # helper for gb.apply frag_idx = fragmented.metaId.unique() # helper for gb.apply df['newMetaId'] = df['metaId'] # temporary new metaId df = gb.apply(split_at_fragment_lambda, frag_idx, gb_frag) df['metaId'] = pd.factorize(df['newMetaId'], sort=False)[0] df = df.drop(columns='newMetaId') return df def load_inD(path='inD-dataset-v1.0/data', scenes=[1], recordings=None): ''' Loads data from inD Dataset. Makes the following preprocessing: -filter out unnecessary columns -filter out non-pedestrian -makes new unique ID (column 'metaId') since original dataset resets id for each scene -add scene name to column for visualization -output has columns=['trackId', 'frame', 'x', 'y', 'sceneId', 'metaId'] :param path: str - path to folder, default is 'data/inD' :param scenes: list of integers - scenes to load :param recordings: list of strings - alternative to scenes, load specified recordings instead, overwrites scenes :return: DataFrame containing all trajectories from split ''' scene2rec = {1: ['00', '01', '02', '03', '04', '05', '06'], 2: ['07', '08', '09', '10', '11', '12', '13', '14', '15', '16', '17'], 3: ['18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29'], 4: ['30', '31', '32']} rec_to_load = [] for scene in scenes: rec_to_load.extend(scene2rec[scene]) if recordings is not None: rec_to_load = recordings data = [] for rec in rec_to_load: # load csv track = pd.read_csv(os.path.join(path, '{}_tracks.csv'.format(rec))) track = track.drop(columns=['trackLifetime', 'heading', 'width', 'length', 'xVelocity', 'yVelocity', 'xAcceleration', 'yAcceleration', 'lonVelocity', 'latVelocity', 'lonAcceleration', 'latAcceleration']) track_meta = pd.read_csv(os.path.join(path, '{}_tracksMeta.csv'.format(rec))) # Filter non-pedestrians pedestrians = track_meta[track_meta['class'] == 'pedestrian'] track = track[track['trackId'].isin(pedestrians['trackId'])] track['rec&trackId'] = [str(recId) + '_' + str(trackId).zfill(6) for recId, trackId in zip(track.recordingId, track.trackId)] track['sceneId'] = rec track['yCenter'] = -track['yCenter'] # Filter all trajectories outside the scene frame, ie negative values track = track[(track['yCenter'] >= 0) & (track['xCenter'] >= 0)] data.append(track) data =
pd.concat(data, ignore_index=True)
pandas.concat
from scipy.spatial.distance import cdist from matplotlib import pyplot as plt from joblib import dump, load import numpy as np import pandas as pd from sklearn.cluster import DBSCAN from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.xmeans import xmeans from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from sklearn import metrics from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler from random import random import csv import config import os import time from beacon import * import warnings warnings.simplefilter(action='ignore', category=FutureWarning) # utilizado para reproduzir os slots da rua lenght_via = config.GERAL["lenght_via"] interval = config.GERAL["interval"] # define o método de redução send_method = config.GERAL["Configuracao"] # caminho local RemotePathFiles = config.CONSTANTES["RemotePathFiles"] # reusmos MEDIA_LOS=0.0 MEDIANA_LOS=0.0 # clusteres MEDIA_CLUSTER=0.0 MEDIA_RUIDO=0.0 COUNT_CLUSTERES=0 COUNT_RUIDO=0 COUNT_DATA = 0 # Sporte aos Tipos de baseline BASELINE1TO2=0 BASELINETHRESHOLD=5.0 # arquivo final SIZE_FINAL_FILE=0.0 # datasets de suporte DF_PREVIOUS=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 5 15:46:16 2019 @author: tungutokyo """ import pandas as pd import numpy as np pd.options.mode.chained_assignment = None
pd.set_option("display.max_columns", 60)
pandas.set_option
# python3 import argparse from Bio import SeqIO from Bio.SeqUtils.ProtParam import ProteinAnalysis import pandas as pd # imput parameters ap = argparse.ArgumentParser(description="outputs the id, pI, charge and molecular weight of each protein") ap.add_argument("-in", "--input", required=True, help="input fasta file") ap.add_argument("-txt", "--txt", required=False, help=" 1-column txt file with pH values, to calculate the protein charge") ap.add_argument("-pH", "--pH", type=float, default=7.0, required=False,help="pH to calculate the protein charge(default is 7.0)") ap.add_argument("-pro", "--program", type=int, default=1, required=False, help="program to select 1) 1 pH value , 2) many pH values 1 per protein, 3) many pH values for all proteins. Default is 1") ap.add_argument("-out", "--output", required=True, help="output txt file with id, pI, charge, molecular weight and pH columns") args = vars(ap.parse_args()) # main headers = [] seqs = [] pI = [] charge = [] mw = [] # setup empty lists # choose program # same pH value for all proteins if args['program'] == 1: for record in SeqIO.parse(args['input'], "fasta"): headers.append(record.id) prot = ProteinAnalysis(str(record.seq)) pI.append(round(prot.isoelectric_point(), 2)) mw.append(round(prot.molecular_weight(), 2)) charge.append(round(prot.charge_at_pH(args['pH']), 2)) # create data frame df = pd.DataFrame() df['id'] = headers df['pI'] = pI df['charge'] = charge df['mw'] = mw df['pH'] = args['pH'] # export with open(args['output'], 'a') as f: f.write( df.to_csv(header = True, index = False, sep = '\t', doublequote= False, line_terminator= '\n') ) # 1 pH value for each protein elif args['program'] == 2: for record in SeqIO.parse(args['input'], "fasta"): headers.append(record.id) seqs.append(record.seq) # import txt file with pH values with open(args['txt'], 'r') as f: ph_values = f.readlines() ph_values = [x.strip() for x in ph_values] # calculate the properties using a pair of the above 2 lists for (a, b) in zip(seqs, ph_values): prot = ProteinAnalysis(str(a)) pI.append(round(prot.isoelectric_point(), 2)) mw.append(round(prot.molecular_weight(), 2)) charge.append(round(prot.charge_at_pH(float(b)), 2)) # create data frame df = pd.DataFrame() df['id'] = headers df['pI'] = pI df['charge'] = charge df['mw'] = mw df['pH'] = ph_values # export with open(args['output'], 'a') as f: f.write( df.to_csv(header = True, index = False, sep = '\t', doublequote= False, line_terminator= '\n') ) # many pH values for each protein else: # setup empty list physioprot = [] # import txt file with pH values with open(args['txt'], 'r') as f: ph_values = f.readlines() ph_values = [x.strip() for x in ph_values] # iterate for each pH value in each fasta record for i in ph_values: for record in SeqIO.parse(args['input'], "fasta"): headers.append(record.id) prot = ProteinAnalysis(str(record.seq)) pI.append(round(prot.isoelectric_point(), 2)) mw.append(round(prot.molecular_weight(), 2)) charge.append(round(prot.charge_at_pH(float(i)), 2)) # create data frame df =
pd.DataFrame()
pandas.DataFrame