prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- """ @author: charl """ # code to go alongside Applied Tracking: Pressure - https://www.opengoalapp.com/tracking-pressure from MetricaUtils import Reformat import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import matplotlib from mplsoccer.pitch import Pitch imported_home = pd.read_csv('data/Sample_Game_1_RawTrackingData_Home_Team.csv', skiprows=2) # ignore first 2 unneeded rows on inport imported_away = pd.read_csv('data/Sample_Game_1_RawTrackingData_Away_Team.csv', skiprows=2) imported_events = pd.read_csv('data/Sample_Game_1_RawEventsData.csv') timestep = imported_home["Time [s]"].iloc[1] - imported_home["Time [s]"].iloc[0] # find timestep of imported data from csv # pitch dimension in metres PITCH_XDIM = 105 PITCH_YDIM = 68 frames_per_sample = 1 # how often will we sample the data - e.g. 5 = sample every 5 frames, 1 = keep every frame sampled_timestep= frames_per_sample * timestep tracking_home = imported_home.iloc[::frames_per_sample] tracking_away = imported_away.iloc[::frames_per_sample] tracking_home = Reformat(tracking_home) # reformat into more user friendly form tracking_away = Reformat(tracking_away) #change locs to actual vals in metres tracking_home['x_loc'] = tracking_home['x_loc']*PITCH_XDIM tracking_home['y_loc'] = tracking_home['y_loc']*PITCH_YDIM tracking_away['x_loc'] = tracking_away['x_loc']*PITCH_XDIM tracking_away['y_loc'] = tracking_away['y_loc']*PITCH_YDIM imported_events[['start_x','end_x']] = imported_events[['start_x','end_x']]*PITCH_XDIM imported_events[['start_y','end_y']] = imported_events[['start_y','end_y']]*PITCH_YDIM #select just passes from events feed passes = imported_events[imported_events['type']=='PASS'] #focus on home team passes home_passes = passes[passes['team']=='Home'] #find the tracking frames associated with a pass receive event home_receive_frames = list(home_passes['end_frame']) #get the location of opposition players for said frames home_receive_opplocs = tracking_away[tracking_away['frame'].isin(home_receive_frames)] #convert this data back into wide format (pivot being opposite of melt) for this analysis as it is, for me, easier to visualise hro_grouped = home_receive_opplocs.pivot(index='frame', columns='player', values=['x_loc', 'y_loc']) hro_ball = hro_grouped[[('x_loc','Ball'),('y_loc','Ball')]] hro_grouped = hro_grouped.drop([('x_loc','Ball'),('y_loc','Ball')], axis=1) # create and fill dictionary with square of distance between location and ball for both x and y axis xdiffs = {} ydiffs = {} for column in hro_grouped: xdiff2 = (hro_grouped[column]-hro_ball[('x_loc','Ball')])**2 xdiffs[column] = xdiff2 ydiff2 = (hro_grouped[column]-hro_ball[('y_loc','Ball')])**2 ydiffs[column] = ydiff2 # convert to df and only keep valid distances xdiffs_df = pd.DataFrame(xdiffs) xdiffs_df = xdiffs_df.filter(like='x_loc') ydiffs_df =
pd.DataFrame(ydiffs)
pandas.DataFrame
import logging try: from openbabel import pybel # ob 3.0.0 except ImportError: # ob 2.4 import pybel import re import numpy as np import pandas as pd import pymongo from bson.objectid import ObjectId from rdkit import Chem from rdkit.Chem import rdFMCS from aqc_utils.helper_classes import config from aqc_utils.helper_functions import add_numbers_to_repeated_items logger = logging.getLogger(__name__) desc_presets = ['global', 'min_max', 'substructure', 'core', 'labeled', 'transitions'] desc_presets_long = ['Global', 'Min Max Atomic', 'Substructure Atomic', 'Common Core Atomic', 'Labeled Atomic', "Excited State Transitions"] conf_options = ['boltzmann', 'max', 'min', 'mean', 'std', 'any'] conf_options_long = ['Boltzman Average', 'Lowest Energy Conformer', 'Highest Energy Conformer', 'Arithmetic Average', 'Standard Deviation', 'Random'] class InconsistentLabelsException(Exception): """Raised when a set of molecules is inconsistently labeled""" pass def db_connect(collection=None) -> pymongo.collection.Collection: """Create a connection to the database and return the table (Collection). :return: pymongo.collection.Collection """ cli = pymongo.MongoClient("mongodb+srv://julosdu13:[email protected]/Cluster0?retryWrites=true&w=majority") #db = client.test # cli = pymongo.MongoClient(config['mongoDB']['host'], # username=config['mongoDB']['user'], # password=config['mongoDB']['password'], # port=config['mongoDB']['port']) if collection is None: return cli['dft_for_nicoupling'] else: return cli['dft_for_nicoupling'][collection] def db_upload_molecule(can, tags, metadata, weights, conformations, logs) -> ObjectId: """Upload single molecule to DB and all child objects tags, features and log files for its conformations""" db = db_connect() mols_coll = db['molecules'] tags_coll = db['tags'] # create molecule record and insert it mol_data = {'can': can, 'metadata': metadata} # try/except added by julosdu13 try: ret = mols_coll.insert_one(mol_data) mol_id = ret.inserted_id # insert tag record for tag in tags: tags_coll.insert_one({'tag': tag, 'molecule_id': mol_id, 'can': can}) for weight, conformation, log in zip(weights, conformations, logs): db_upload_conformation(mol_id, can, weight, conformation, log, check_mol_exists=False) except: mol_id = None return mol_id def db_upload_conformation(mol_id, can, weight, conformation, log, check_mol_exists=True): """Upload single conformation features and log file to DB, requires a molecule to be present""" db = db_connect() # check if the molecule with a given id exists in the DB mols_coll = db["molecules"] if check_mol_exists: assert mols_coll.find_one({'_id': mol_id}) is not None # connect to features and logs collections feats_coll = db['qchem_descriptors'] logs_coll = db['log_files'] data = {'molecule_id': mol_id, 'weight': weight, 'can': can} # update with descriptors data.update(conformation) # db insertion feats_coll.insert_one(data) logs_coll.insert_one({'molecule_id': mol_id, 'log': log, 'can': can}) def db_delete_molecule(mol_id): """Delete molecule from DB, cascade all child objects: tags, features and log files""" db = db_connect() if isinstance(mol_id, str): mol_id = ObjectId(mol_id) print(mol_id) db['qchem_descriptors'].delete_many({"molecule_id": mol_id}) # features db['log_files'].delete_many({"molecule_id": mol_id}) # log files db['tags'].delete_many({"molecule_id": mol_id}) # tags db['molecules'].delete_one({"_id": mol_id}) # molecule itself def db_select_molecules(cls=None, subcls=None, type=None, subtype=None, tags=[], substructure="") -> pd.DataFrame: """Get a summary frame of molecules in the database :param tags: a list of tags of the db records (if multiple an 'OR' is taken) :type tags: list :param substructure: substructure SMARTS string :type substructure: str :return: pandas.core.frame.DataFrame """ db = db_connect() tags_coll = db['tags'] mols_coll = db['molecules'] feats_coll = db['qchem_descriptors'] tags_cur = tags_coll.find({'tag': {'$in': tags}} if tags else {}) tags_df = pd.DataFrame(tags_cur) filter = {} if cls != "" and cls is not None: filter['metadata.class'] = cls if subcls != "" and subcls is not None: filter['metadata.subclass'] = subcls if type != "" and type is not None: filter['metadata.type'] = type if subtype != "" and subtype is not None: filter['metadata.subtype'] = subtype filter['_id'] = {'$in': tags_df.molecule_id.tolist()} mols_cur = mols_coll.find(filter) mols_df = pd.DataFrame(mols_cur) if 'name' not in mols_df.columns: mols_df['name'] = None if substructure: pattern = pybel.Smarts(substructure) mols_df['pybel_mol'] = mols_df['can'].map(lambda can: pybel.readstring("smi", can)) mols_df = mols_df[mols_df['pybel_mol'].map(lambda mol: bool(pattern.findall(mol)))] mols_df = mols_df.drop('pybel_mol', axis=1) # merge tags in an outer way df = pd.merge(mols_df, tags_df, how='outer', left_on='_id', right_on='molecule_id', suffixes=('', '_tag')) # make tags into a list of tags df['metadata_str'] = df['metadata'].map(repr) grouped = df.groupby(['can', 'metadata_str']) # groupby tags df = pd.concat([grouped['metadata', 'molecule_id', 'name'].first(), grouped['tag'].apply(list)], axis=1).reset_index().drop('metadata_str', axis=1) # fetch ids and weights feats_cur = feats_coll.find({'molecule_id': {'$in': df.molecule_id.tolist()}}, {'_id': 1, 'weight': 1, 'molecule_id': 1}) feats_df = pd.DataFrame(feats_cur) feats_df = feats_df.groupby('molecule_id').agg(list).reset_index() feats_df = feats_df.rename(columns={'_id': '_ids', 'weight': 'weights'}) # merge into df df = df.merge(feats_df, on='molecule_id') df['num_conformers'] = df['_ids'].map(len) return df def db_check_exists(can, gaussian_config, max_num_conformers) -> tuple: """Check if a molecule is already present in the database with the same Gaussian config (theory, basis_sets, etc.) :param can: canonical smiles :type can: str :param gaussian_config: gaussian config dictionary :type gaussian_config: dict :return: exists(bool), list of tags that are associated with the molecule if it exists """ db = db_connect() mols_coll = db['molecules'] tags_coll = db['tags'] mol_id = mols_coll.find_one({"can": can, "metadata.gaussian_config": gaussian_config, "metadata.max_num_conformers": max_num_conformers}, {"molecule_id": 1}) exists, tags = False, [] if mol_id is not None: exists = True tags = tags_coll.distinct('tag', {'molecule_id': ObjectId(mol_id['_id'])}) return exists, tags def descriptors(cls, subcls, type, subtype, tags, presets, conf_option, substructure="") -> dict: """Retrieve DFT descriptors from the database :param tag: metadata.tag of the db records :type tag: str :param presets: list of descriptor presets from 'global' (molecule level descriptors), \ 'min_max' (min and max for each atomic descriptor across the molecule), 'substructure' \ (atomic descriptors for each atom in the substructure) :type presets: list :param conf_option: conformer averaging option: 'boltzmann' (Boltzmann average), \ 'max' (conformer with highest weight), 'mean' (arithmetic average), 'min' (conformer with smallest weight), \ 'any' (any single conformer), 'std' (std dev. over conformers) :type conf_option: str :param substructure: substructure SMARTS string :type substructure: str :return: """ # don't bother with extraction if there are not presets nor conf_option if not presets or not conf_option: logger.warning(f"One of options 'presets' or 'conf_option' is empty. Not extracting.") return {} # check that presets are ok if not all(p in desc_presets for p in presets): logger.warning(f"One of the presets in {presets} is not from allowed list {desc_presets}. Not extracting.") return {} # check that conf option is ok if conf_option not in conf_options: logger.warning(f"Conf_option {conf_option} is not one of the allowed options {conf_options}. Not extracting.") return {} mol_df = db_select_molecules(cls=cls, subcls=subcls, type=type, subtype=subtype, tags=tags, substructure=substructure) # TODO making DB queries inside a loop is very inefficient, this code should be reorganized to use single query descs_df = mol_df.set_index('can')['_ids'].map(lambda l: descriptors_from_list_of_ids(l, conf_option=conf_option)) data = {} if 'global' in presets: dg = pd.concat([d['descriptors'] for can, d in descs_df.iteritems()], axis=1, sort=True) dg.columns = descs_df.index data['global'] = dg.T if 'min_max' in presets: dmin = pd.concat([d['atom_descriptors'].min() for can, d in descs_df.iteritems()], axis=1, sort=True) dmax = pd.concat([d['atom_descriptors'].max() for can, d in descs_df.iteritems()], axis=1, sort=True) dmin.columns = descs_df.index dmax.columns = descs_df.index data['min'] = dmin.T data['max'] = dmax.T if 'transitions' in presets: # select top 3 transitions by oscillation strength ts = pd.concat([d['transitions'].sort_values("ES_osc_strength", ascending=False).head(10).reset_index(drop=True).unstack() for can, d in descs_df.iteritems()], axis=1, sort=True) ts.index = ts.index.map(lambda i: "_".join(map(str, i))) ts.columns = descs_df.index data['transitions'] = ts.T if 'substructure' in presets and substructure: sub = pybel.Smarts(substructure) # these matches are numbered from 1, so subtract one from them matches = descs_df.index.map(lambda c: sub.findall(pybel.readstring("smi", c))[0]) matches = matches.map(lambda x: (np.array(x) - 1).tolist()) # fetch atom labels for this smarts using the first molecule sub_labels = pd.Series(descs_df.iloc[0]['labels']).loc[matches[0]].tolist() sub_labels = add_numbers_to_repeated_items(sub_labels) sub_labels = [f"atom{i + 1}" for i in range(len(matches[0]))] # create a frame with descriptors large structure in one column, and substructure match # indices in the second column tmp_df = descs_df.to_frame('descs') tmp_df['matches'] = matches for i, label in enumerate(sub_labels): # data[label] = pd.concat([row['descs']['atom_descriptors'].loc[row['matches'][i]] # for c, row in tmp_df.iterrows()], axis=1) to_concat = [] for c, row in tmp_df.iterrows(): atom_descs = row['descs']['atom_descriptors'] atom_descs['labels'] = row['descs']['labels'] to_concat.append(atom_descs.iloc[row['matches'][i]]) data[label] = pd.concat(to_concat, axis=1, sort=True) data[label].columns = descs_df.index data[label] = data[label].T if 'core' in presets: cans = mol_df['can'].tolist() rd_mols = {can: Chem.MolFromSmiles(can) for can in cans} # occasionally rdkit cannot create a molecule from can that openbabel can # this is typically due to dative bonds, dative for can, rd_mol in rd_mols.items(): if rd_mol is None: logger.warning(f"Molecule with can: {can} cannot be constructed directly by rdkit.") rd_mols[can] = Chem.MolFromSmarts(can) # create it from smarts # run MCS if there is more than 1 molecule if len(rd_mols) > 1: core_smarts = rdFMCS.FindMCS(list(rd_mols.values())).smartsString else: # otherwise use the entire smiles as smarts string core_smarts = Chem.MolToSmarts(list(rd_mols.values())[0]) # create an rdkit smarts core = Chem.MolFromSmarts(core_smarts) # get the first match, if multiple substructure matches exist matches = {can: rd_mols[can].GetSubstructMatches(core)[0] for can in cans} matches = pd.Series(matches).map(list) # create a frame with descriptors large structure in one column, and substructure match # indices in the second column tmp_df = descs_df.to_frame('descs') tmp_df['matches'] = matches # fetch atom labels for this smarts using the first molecule row = tmp_df.iloc[0] row_labels = pd.Series(row['descs']['labels']) row_labels = row_labels[~row_labels.str.startswith('H')] # need to remove hydrogens sub_labels = row_labels.iloc[row['matches']].tolist() sub_labels = add_numbers_to_repeated_items(sub_labels) for i, label in enumerate(sub_labels): to_concat = [] for c, row in tmp_df.iterrows(): atom_descs = row['descs']['atom_descriptors'] atom_descs['labels'] = row['descs']['labels'] atom_descs = atom_descs[~atom_descs['labels'].str.startswith("H")] # need to remove hydrogens to_concat.append(atom_descs.iloc[row['matches'][i]]) data[label] = pd.concat(to_concat, axis=1, sort=True) data[label].columns = descs_df.index data[label] = data[label].T if 'labeled' in presets: # extract the positions of the labeled atoms in the atom lists for each molecule labels = descs_df.map(lambda d: [re.sub("\D", "", l) for l in d['labels']]) labels = labels.map(lambda ls: [(index, l) for index, l in enumerate(ls) if l]) labels = labels.map(lambda ls: sorted(ls, key=lambda l: l[1])) # verify that the atomic labels are consistent across all molecules atom_numbers = labels.map(lambda ls: [l[1] for l in ls]) atom_numbers_dedup = atom_numbers.map(tuple).drop_duplicates() if len(atom_numbers_dedup) == 1: matches = labels.map(lambda ls: [l[0] for l in ls]) # create a frame with descriptors large structure in one column, and substructure match # indices in the second column tmp_df = descs_df.to_frame('descs') tmp_df['matches'] = matches for i, label in enumerate(atom_numbers_dedup.iloc[0]): label = 'A' + label data[label] = pd.concat([row['descs']['atom_descriptors'].loc[row['matches'][i]] for c, row in tmp_df.iterrows()], axis=1, sort=True) data[label].columns = descs_df.index data[label] = data[label].T else: logger.warning("Atomic labels are inconsistent. Not all molecules have the same set of labeled atoms") raise InconsistentLabelsException return data def descriptors_from_list_of_ids(ids, conf_option='max') -> dict: """Get and average descriptors using a list of db ids. :param ids: list of db id's that correspond to a given molecule :type ids: list :param conf_option: conformer averaging option: 'boltzmann' (Boltzmann average), \ 'max' (conformer with highest weight), 'mean' (arithmetic average), 'min' (conformer with smallest weight), \ 'any' (any single conformer), 'std' (std dev. over conformers) :type conf_option: str :return: dict """ # check that conf option is ok if conf_option not in conf_options: logger.warning(f"Conf_option {conf_option} is not one of the allowed options {conf_options}. Not extracting.") return {} # connect to db feats_coll = db_connect("qchem_descriptors") # fetch db _ids and weights and can cursor = feats_coll.find({"_id": {"$in": ids}}, {'weight': 1, 'molecule_id': 1}) recs = pd.DataFrame(cursor).sort_values('weight', ascending=False) # assert that all ids come from the same can, and that weights sum to 1. assert len(recs.molecule_id.unique()) == 1 assert abs(recs.weight.sum() - 1.) < 1e-6 # set trivial option for the case with only one conformation if len(recs) == 1: conf_option = 'any' # single conf options if conf_option in ['min', 'max', 'any']: if conf_option == 'max': _id = recs['_id'].iloc[0] elif conf_option == 'min': _id = recs['_id'].iloc[-1] else: _id = recs['_id'].sample(1).iloc[0] # return pandatized record for a chosen id return _pandatize_record(feats_coll.find_one({"_id": _id})) rec = {} if conf_option in ['boltzmann', 'mean', 'std']: # fetch db records for these _ids cursor = feats_coll.find({"_id": {"$in": ids}}) recs = [_pandatize_record(record) for record in cursor] rec.update({"labels": recs[0]['labels']}) keys_to_reweight = ['descriptors', 'atom_descriptors', 'modes', 'transitions'] for key in keys_to_reweight: if conf_option == 'boltzmann': dfs = pd.concat(r[key] * r['weight'] for r in recs) rec[key] = dfs.groupby(dfs.index, sort=False).sum() if conf_option in ['mean', 'std']: dfs = pd.concat(r[key] for r in recs) if conf_option == 'mean': rec[key] = dfs.groupby(dfs.index, sort=False).mean() elif conf_option == 'std': rec[key] = dfs.groupby(dfs.index, sort=False).std() return rec def _pandatize_record(record) -> dict: """Convert json structures to pandas structures for an individual db record of a single conformation. :param record: db record of a single conformation :return: dict """ del record['descriptors']['stoichiometry'] record['descriptors'] = pd.Series(record['descriptors']).astype(float) record['modes'] = pd.DataFrame(record['modes']).astype(float) record['transitions'] = pd.DataFrame(record['transitions']).astype(float) record['atom_descriptors'] = pd.DataFrame(record['atom_descriptors']).astype(float) if record['mode_vectors'] is not None: record['mode_vectors'] = pd.DataFrame(record['mode_vectors']) record['mode_vectors']['atom_idx'] = list(range(len(record['labels']))) * 3 * record['modes'].shape[0] record['mode_vectors'] = record['mode_vectors'].set_index(['mode_number', 'axis', 'atom_idx']).unstack( ['mode_number', 'axis']) record['mode_vectors'] = record['mode_vectors'].droplevel(0, axis=1).astype(float) else: record['mode_vectors'] =
pd.DataFrame()
pandas.DataFrame
# Version 1.0. <NAME> # Copyright (c) 2019 Potsdam university # read result tables from PV fischer.c code (by <NAME>:https://github.com/CullanHowlett/PV_fisher) import csv import glob import pandas as pd res_dir = "./results_new_2904" def get_pars_from_table(table): """ read the Full redshift range values of zeff, fsigma8(z_eff), percentage error(z_eff) from the files produced by the fischer code. """ print ("reading results from file: %s"%table) out = {} with open(table, 'r') as tab: lines = tab.readlines() out['n_sample'] = float(lines[0].split(":")[-1].strip()) if lines[1].split(":")[-1].strip() == "False": out['w_rsd'] = False else: out['w_rsd'] = True print(lines[1].split(":")[-1].strip()) print(bool(lines[1].split(":")[-1].strip())) out['pv_d_error'] = float(lines[2].split(":")[-1].strip()) out['sky_area'] = float(lines[3].split(":")[-1].strip()) #out['zmax'] = float(lines[4].split(":")[-1].strip()) out['k_max'] = float(lines[4].split(":")[-1].strip()) out['free_paramters'] = float(lines[5].split(":")[-1].strip()) last_line = lines[-1] pieces = [p.strip() for p in last_line.strip().split(" ") if p not in ['']] out['zeff'] = pieces[-3] out['fsigma8'] = pieces[-2] out['%error'] = pieces[-1] #print (repr(out)) return out # read all the tables, save average values of parameters tables = glob.glob(res_dir+"/fisher*.csv") print ("found %d table files in %s"%(len(tables), res_dir)) results = [] for table in tables: out = get_pars_from_table(table) results.append(out) #save the extracted results into one big table #outfile = "global_taibresult.csv" outfile = "global_Magnitudes_result.csv" df =
pd.DataFrame(results)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json import os from webtzite import mapi_func import pandas as pd from itertools import groupby from scipy.optimize import brentq from webtzite.connector import ConnectorBase from mpcontribs.rest.views import Connector from mpcontribs.users.redox_thermo_csp.rest.energy_analysis import EnergyAnalysis as enera from mpcontribs.users.redox_thermo_csp.rest.utils import remove_comp_one, add_comp_one, rootfind, get_energy_data from mpcontribs.users.redox_thermo_csp.rest.utils import s_th_o, dh_ds, funciso, funciso_redox, isobar_line_elling from mpcontribs.users.redox_thermo_csp.rest.utils import funciso_theo, funciso_redox_theo, d_h_num_dev_calc, d_s_fundamental ConnectorBase.register(Connector) def init_isographs(request, db_type, cid, mdb): try: contrib = mdb.contrib_ad.query_contributions( {'_id': cid}, projection={'_id': 0, 'content.pars': 1, 'content.data': 1})[0] pars = contrib['content']['pars'] pars['compstr_disp'] = remove_comp_one(pars['theo_compstr']) # for user display if pars['compstr_disp'] == pars['theo_compstr']: pars['theo_compstr'] = add_comp_one(pars['theo_compstr']) # compstr must contain '1' such as in "Sr1Fe1Ox" pars['compstr_disp'] = [''.join(g) for _, g in groupby(str(pars['compstr_disp']), str.isalpha)] pars['experimental_data_available'] = pars.get('fit_type_entr') if pars['experimental_data_available']: pars['compstr_exp'] = contrib['content']['data']['oxidized_phase']['composition'] pars['compstr_exp'] = [''.join(g) for _, g in groupby(str(pars['compstr_exp']), str.isalpha)] else: pars['compstr_exp'] = "n.a." pars['td_perov'] = pars["elastic"]["debye_temp"]["perovskite"] pars['td_brownm'] = pars["elastic"]["debye_temp"]["brownmillerite"] pars['tens_avail'] = pars["elastic"]["tensors_available"] for k, v in pars.items(): if k == 'experimental_data_available': continue elif isinstance(v, dict): pars[k] = {} for kk, x in v.items(): try: pars[k][kk] = float(x) except: continue elif not v[0].isalpha(): try: pars[k] = float(v) except: continue a, b = 1e-10, 0.5-1e-10 # limiting values for non-stoichiometry delta in brentq response, payload = {}, {} plottype = request.path.split("/")[-1] if request.method == 'GET': if plottype == "isotherm": payload['iso'] = 800. payload['rng'] = [-5, 1] elif plottype == "isobar": payload['iso'] = -5 payload['rng'] = [600, 1000] elif plottype == "isoredox": payload['iso'] = 0.3 payload['rng'] = [700, 1000] elif plottype == "ellingham": payload['iso'] = 0. payload['rng'] = [700, 1000] else: # dH or dS payload['iso'] = 500. elif request.method == 'POST': payload = json.loads(request.body) payload['iso'] = float(payload['iso']) if payload.get('rng'): payload['rng'] = map(float, payload['rng'].split(",")) if plottype == "isotherm": # pressure on the x-axis x_val = pd.np.log(pd.np.logspace(payload['rng'][0], payload['rng'][1], num=100)) elif not payload.get('rng'): # dH or dS # delta on the x-axis x_val =
pd.np.linspace(0.01, 0.49, num=100)
pandas.np.linspace
import os from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" # features DATE = "date" YEAR = "year" MONTH = "month" DAY = "day" ID = 'id' PRICE = 'price' ZIP = 'zipcode' RESPONSE_COLUMN = 'price' FEATURES_TO_DROP = ['id', 'date', 'yr_renovated', 'zipcode'] # we want to drop the house ID NUM_AREAS = 20 HOUSES_FILE = r"IML.HUJI\datasets\house_prices.csv" EVALUATION_OUTPUT_PATH = r"C:\Users\rimon\Desktop\2021-2022 semester B\IML\ex2\feature_evaluation_graph" TRAIN_RATIO = 0.75 #Q4 Q4_OUTPUT_PATH = r"C:\Users\rimon\Desktop\2021-2022 semester B\IML\ex2\a " Q4_GRAPH_TITLE = "average loss as a function of training size" Q4_X_TITLE = "training-data size" Q4_Y_TITLE = "average loss" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ initial_dataset = pd.read_csv(filename) samples_mat, response = preprocess_dataset(initial_dataset, RESPONSE_COLUMN) return (samples_mat, response) def preprocess_dataset(initial_dataset: pd.DataFrame, response_label) -> (pd.DataFrame, pd.Series): """ preprocessing the data set to include only the relevance features and samples, and won't include the response :param response_label: the name of the column of the response. this column will be removed from the features of the dataset :param initial_dataset: the initial dataset :return: samples matrix after preprocess """ # remove samples that have missing features samples_dataset = initial_dataset.dropna(how="any") # remove duplicated samples samples_dataset = samples_dataset.drop_duplicates() # remove samples with invalid features range samples_dataset = samples_dataset[samples_dataset.price > 0] samples_dataset = samples_dataset[samples_dataset.bedrooms < 15] # split the date feature date = samples_dataset["date"] samples_dataset["year_sold"], samples_dataset["month_sold"], samples_dataset["day_sold"] = \ date.str[0:4].astype(int), date.str[4:6].astype(int), date.str[6:8].astype(int) # normalize the above and basement features samples_dataset['sqft_above'] = samples_dataset['sqft_above'] / \ samples_dataset['sqft_living'] samples_dataset['sqft_basement'] = samples_dataset['sqft_basement'] / \ samples_dataset['sqft_living'] # add years since last renovated- where the yr_built counts as reanovation year. last_renovation = samples_dataset[['yr_built', 'yr_renovated']].max(axis=1) years_since_renovated = samples_dataset['year_sold'] - last_renovation samples_dataset['yrs_since_renovated'] = years_since_renovated # quantization of the zipcodes to area-groups samples_dataset['zipcode_area'] = pd.qcut(samples_dataset['zipcode'], NUM_AREAS, labels=False) samples_dataset =
pd.get_dummies(samples_dataset, columns=['zipcode_area'])
pandas.get_dummies
#adding required libraries import pandas as pd import pymysql import openpyxl from openpyxl.styles import Font from docx import Document from docx2pdf import convert import PyPDF2 as pdf import os import json #connecting to the database db = pymysql.connect('localhost', 'root', None, 'contactbook') cursor = db.cursor() #dummy data df = {'First_name': [''], 'Last_name': [''], 'Mobile_no': [] } #insert function def insert_data(): first_name = str(input("Enter your first name : ")) last_name = str(input("Enter your last name : ")) mobile = int(input("Enter your mobile number : ")) sql = "INSERT INTO CONTACTS(FIRST_NAME," \ "LAST_NAME, CONTACT) " \ "VALUES ('%s', '%s', '%s' )" % \ (first_name, last_name, mobile) try: cursor.execute(sql) db.commit() except Exception: db.rollback() #display function def Dis(): sql = """SELECT * FROM contacts""" cursor.execute(sql) rows = cursor.fetchall() print('first name lastname Contact no') for row in rows: print(row) #delete function def delete_data(): var = input("Enter the first name of the person's record to be deleted : ") sql = "DELETE FROM CONTACTS WHERE first_name = '%s'" % var try: cursor.execute(sql) db.commit() cursor.close() except Exception: db.rollback() print("Deleted Successfully") #function to convert to csv def convert_csv(): #df = open(r"Saves\phonebook.csv",'wb') #df.close() #df = pd.read_csv(r'Saves\phonebook.csv') df =
pd.DataFrame()
pandas.DataFrame
import unittest import dolphindb as ddb import numpy as np import pandas as pd from setup import HOST, PORT, WORK_DIR, DATA_DIR from numpy.testing import assert_array_equal, assert_array_almost_equal from pandas.testing import assert_series_equal from pandas.testing import assert_frame_equal class TestBasicDataTypes(unittest.TestCase): @classmethod def setUp(cls): cls.s = ddb.session() cls.s.connect(HOST, PORT, "admin", "123456") @classmethod def tearDownClass(cls): pass def test_int_scalar(self): re = self.s.run("100") self.assertEqual(re, 100) re = self.s.run("int()") self.assertIsNone(re) def test_bool_scalar(self): re = self.s.run("true") self.assertEqual(re, True) re = self.s.run("bool()") self.assertIsNone(re) def test_char_scalar(self): re = self.s.run("'a'") self.assertEqual(re, 97) re = self.s.run("char()") self.assertIsNone(re) def test_short_scalar(self): re = self.s.run("112h") self.assertEqual(re, 112) re = self.s.run("short()") self.assertIsNone(re) def test_long_scalar(self): re = self.s.run("22l") self.assertEqual(re, 22) re = self.s.run("long()") self.assertIsNone(re) def test_date_scalar(self): re = self.s.run("2012.06.12") self.assertEqual(re, np.datetime64('2012-06-12')) re = self.s.run("date()") self.assertIsNone(re) def test_month_scalar(self): re = self.s.run("2012.06M") self.assertEqual(re, np.datetime64('2012-06')) re = self.s.run("month()") self.assertIsNone(re) def test_time_scalar(self): re = self.s.run("12:30:00.008") self.assertEqual(re, np.datetime64('1970-01-01T12:30:00.008')) re = self.s.run("time()") self.assertIsNone(re) def test_minute_scalar(self): re = self.s.run("12:30m") self.assertEqual(re, np.datetime64('1970-01-01T12:30')) re = self.s.run("minute()") self.assertIsNone(re) def test_second_scalar(self): re = self.s.run("12:30:10") self.assertEqual(re, np.datetime64('1970-01-01T12:30:10')) re = self.s.run("second()") self.assertIsNone(re) def test_datetime_scalar(self): re = self.s.run('2012.06.13 13:30:10') self.assertEqual(re, np.datetime64('2012-06-13T13:30:10')) re = self.s.run("datetime()") self.assertIsNone(re) def test_timestamp_scalar(self): re = self.s.run('2012.06.13 13:30:10.008') self.assertEqual(re, np.datetime64('2012-06-13T13:30:10.008')) re = self.s.run("timestamp()") self.assertIsNone(re) def test_nanotime_scalar(self): re = self.s.run('13:30:10.008007006') self.assertEqual(re, np.datetime64('1970-01-01T13:30:10.008007006')) re = self.s.run("nanotime()") self.assertIsNone(re) def test_nanotimestamp_scalar(self): re = self.s.run('2012.06.13 13:30:10.008007006') self.assertEqual(re, np.datetime64('2012-06-13T13:30:10.008007006')) re = self.s.run("nanotimestamp()") self.assertIsNone(re) def test_float_scalar(self): re = self.s.run('2.1f') self.assertEqual(round(re), 2) re = self.s.run("float()") self.assertIsNone(re) def test_double_scalar(self): re = self.s.run('2.1') self.assertEqual(re, 2.1) re = self.s.run("double()") self.assertIsNone(re) def test_string_scalar(self): re = self.s.run('"abc"') self.assertEqual(re, 'abc') re = self.s.run("string()") self.assertIsNone(re) def test_uuid_scalar(self): re = self.s.run("uuid('5d212a78-cc48-e3b1-4235-b4d91473ee87')") self.assertEqual(re, '5d212a78-cc48-e3b1-4235-b4d91473ee87') re = self.s.run("uuid()") self.assertIsNone(re) def test_ipaddr_sclar(self): re = self.s.run("ipaddr('192.168.1.135')") self.assertEqual(re, '192.168.1.135') re = self.s.run("ipaddr()") self.assertIsNone(re) def test_int128_scalar(self): re = self.s.run("int128('e1671797c52e15f763380b45e841ec32')") self.assertEqual(re, 'e1671797c52e15f763380b45e841ec32') re = self.s.run("int128()") self.assertIsNone(re) def test_python_datetime64_dolphindb_date_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('date', ts), np.datetime64('2019-01-01')) def test_python_datetime64_dolphindb_month_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('month', ts), np.datetime64('2019-01')) def test_python_datetime64_dolphindb_time_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('time', ts), np.datetime64('1970-01-01T20:01:01.122')) def test_python_datetime64_dolphindb_minute_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('minute', ts), np.datetime64('1970-01-01T20:01')) def test_python_datetime64_dolphindb_second_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('second', ts), np.datetime64('1970-01-01T20:01:01')) def test_python_datetime64_dolphindb_datetime_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('datetime', ts), np.datetime64('2019-01-01T20:01:01')) def test_python_datetime64_dolphindb_timestamp_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('timestamp', ts), np.datetime64('2019-01-01T20:01:01.122')) def test_python_datetime64_dolphindb_nanotime_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('nanotime', ts), np.datetime64('1970-01-01T20:01:01.122346100')) def test_python_datetime64_dolphindb_nanotimestamp_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('nanotimestamp', ts), np.datetime64('2019-01-01T20:01:01.122346100')) def test_string_vector(self): re = self.s.run("`IBM`GOOG`YHOO") self.assertEqual((re == ['IBM', 'GOOG', 'YHOO']).all(), True) re = self.s.run("['IBM', string(), 'GOOG']") self.assertEqual((re==['IBM', '', 'GOOG']).all(), True) re = self.s.run("[string(), string(), string()]") self.assertEqual((re==['','','']).all(), True) def test_function_def(self): re = self.s.run("def f(a,b){return a+b}") re = self.s.run("f(1, 2)") self.assertEqual(re, 3) def test_symbol_vector(self): re = self.s.run("symbol(`IBM`MSFT`GOOG`BIDU)") self.assertEqual((re == ['IBM', 'MSFT', 'GOOG', 'BIDU']).all(), True) re = self.s.run("symbol(['IBM', '', 'GOOG'])") self.assertEqual((re==['IBM', '', 'GOOG']).all(), True) re = self.s.run("symbol(['', '', ''])") self.assertEqual((re==['', '', '']).all(), True) def test_char_vector(self): re = self.s.run("['a', 'b', 'c']") expected = [97, 98, 99] self.assertEqual((re==expected).all(), True) re = self.s.run("['a', char(), 'c']") expected = [97.0, np.nan, 99.0] assert_array_almost_equal(re, expected) def test_bool_vector(self): re = self.s.run("[true, false, true]") expected = [True, False, True] assert_array_equal(re, expected) re = self.s.run("[true, false, bool()]") assert_array_equal(re[0:2], [True, False]) self.assertTrue(np.isnan(re[2])) re = self.s.run("[bool(), bool(), bool()]") self.assertTrue(np.isnan(re[0])) self.assertTrue(np.isnan(re[1])) self.assertTrue(np.isnan(re[2])) def test_int_vector(self): re = self.s.run("2938 2920 54938 1999 2333") self.assertEqual((re == [2938, 2920, 54938, 1999, 2333]).all(), True) re = self.s.run("[2938, int(), 6552]") expected = [2938.0, np.nan, 6552.0] assert_array_almost_equal(re, expected, 1) re = self.s.run("[int(), int(), int()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_short_vector(self): re = self.s.run("[10h, 11h, 12h]") expected = [10, 11, 12] assert_array_equal(re, expected) re = self.s.run("[10h, short(), 12h]") expected = [10.0, np.nan, 12.0] assert_array_almost_equal(re, expected) re = self.s.run("[short(), short(), short()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_long_vector(self): re = self.s.run("[10l, 11l, 12l]") expected = [10, 11, 12] assert_array_equal(re, expected) re = self.s.run("[10l, long(), 12l]") expected = [10.0, np.nan, 12.0] assert_array_almost_equal(re, expected) re = self.s.run("[long(), long(), long()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_double_vector(self): re = self.s.run("rand(10.0,10)") self.assertEqual(len(re), 10) re = self.s.run("[12.5, 26.0, double()]") expected = [12.5, 26.0, np.nan] assert_array_almost_equal(re, expected) re = self.s.run("[double(), double(), double()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_float_vector(self): re = self.s.run("[12.5f, 26.34f, 25.896f]") expected = [12.5, 26.34, 25.896] assert_array_almost_equal(re, expected, 3) re = self.s.run("[12.5f, float(), 25.896f]") expected = [12.5, np.nan, 25.896] assert_array_almost_equal(re, expected, 3) re = self.s.run("[float(), float(), float()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_date_vector(self): re = self.s.run("2012.10.01 +1..3") expected = np.array(['2012-10-02','2012-10-03','2012-10-04'], dtype="datetime64") self.assertEqual((re == expected).all(), True) re = self.s.run("[2012.06.01, date(), 2012.06.03]") expected = np.array(['2012-06-01', 'NaT', '2012-06-03'], dtype="datetime64") assert_array_equal(re, expected) re = self.s.run("[date(), date(), date()]") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_month_vector(self): re = self.s.run("[2012.06M, 2012.07M, 2012.08M]") expected = [np.datetime64('2012-06'), np.datetime64('2012-07'), np.datetime64('2012-08')] assert_array_equal(re, expected) re = self.s.run("[2012.06M, month(), 2012.08M]") expected = [np.datetime64('2012-06'), np.datetime64('NaT'), np.datetime64('2012-08')] assert_array_equal(re, expected) re = self.s.run("take(month(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_time_vector(self): re = self.s.run("[12:30:10.008, 12:30:10.009, 12:30:10.010]") expected = [np.datetime64('1970-01-01T12:30:10.008'), np.datetime64('1970-01-01T12:30:10.009'), np.datetime64('1970-01-01T12:30:10.010')] assert_array_equal(re, expected) re = self.s.run("[12:30:10.008, NULL, 12:30:10.010]") expected = [np.datetime64('1970-01-01T12:30:10.008'), np.datetime64('NaT'), np.datetime64('1970-01-01T12:30:10.010')] assert_array_equal(re, expected) re = self.s.run("take(time(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_minute_vector(self): re = self.s.run("[13:30m, 13:34m, 13:35m]") expected = [np.datetime64('1970-01-01T13:30'), np.datetime64('1970-01-01T13:34'), np.datetime64('1970-01-01T13:35')] assert_array_equal(re, expected) re = self.s.run("[13:30m, minute(), 13:35m]") expected = [np.datetime64('1970-01-01T13:30'), np.datetime64('NaT'), np.datetime64('1970-01-01T13:35')] assert_array_equal(re, expected) re = self.s.run("take(minute(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_second_vector(self): re = self.s.run("[13:30:10, 13:30:11, 13:30:12]") expected = [np.datetime64('1970-01-01T13:30:10'), np.datetime64('1970-01-01T13:30:11'), np.datetime64('1970-01-01T13:30:12')] assert_array_equal(re, expected) re = self.s.run("[13:30:10, second(), 13:30:12]") expected = [np.datetime64('1970-01-01T13:30:10'), np.datetime64('NaT'), np.datetime64('1970-01-01T13:30:12')] assert_array_equal(re, expected) re = self.s.run("take(second(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_datetime_vector(self): re = self.s.run("2012.10.01T15:00:04 + 2009..2011") expected = np.array(['2012-10-01T15:33:33', '2012-10-01T15:33:34', '2012-10-01T15:33:35'], dtype="datetime64") self.assertEqual((re == expected).all(), True) re = self.s.run("[2012.06.01T12:30:00, datetime(), 2012.06.02T12:30:00]") expected = np.array(['2012-06-01T12:30:00', 'NaT', '2012-06-02T12:30:00'], dtype="datetime64") assert_array_equal(re, expected) def test_timestamp_vector(self): re = self.s.run("[2012.06.13T13:30:10.008, 2012.06.13T13:30:10.009, 2012.06.13T13:30:10.010]") expected = [np.datetime64('2012-06-13T13:30:10.008'), np.datetime64('2012-06-13T13:30:10.009'), np.datetime64('2012-06-13T13:30:10.010')] assert_array_equal(re, expected) re = self.s.run("[2012.06.13T13:30:10.008, NULL, 2012.06.13T13:30:10.010]") expected = [np.datetime64('2012-06-13T13:30:10.008'), np.datetime64('NaT'), np.datetime64('2012-06-13T13:30:10.010')] assert_array_equal(re, expected) re = self.s.run("take(timestamp(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_nanotime_vector(self): re = self.s.run("[13:30:10.008007006, 13:30:10.008007007, 13:30:10.008007008]") expected = [np.datetime64('1970-01-01T13:30:10.008007006'), np.datetime64('1970-01-01T13:30:10.008007007'), np.datetime64('1970-01-01T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("[13:30:10.008007006, NULL, 13:30:10.008007008]") expected = [np.datetime64('1970-01-01T13:30:10.008007006'), np.datetime64('NaT'), np.datetime64('1970-01-01T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("take(nanotime(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_nanotimestamp_vector(self): re = self.s.run("[2012.06.13T13:30:10.008007006, 2012.06.13T13:30:10.008007007, 2012.06.13T13:30:10.008007008]") expected = [np.datetime64('2012-06-13T13:30:10.008007006'), np.datetime64('2012-06-13T13:30:10.008007007'), np.datetime64('2012-06-13T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("[2012.06.13T13:30:10.008007006, NULL, 2012.06.13T13:30:10.008007008]") expected = [np.datetime64('2012-06-13T13:30:10.008007006'), np.datetime64('NaT'), np.datetime64('2012-06-13T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("take(nanotimestamp(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_uuid_vector(self): re = self.s.run("uuid(['5d212a78-cc48-e3b1-4235-b4d91473ee87', '5d212a78-cc48-e3b1-4235-b4d91473ee88', '5d212a78-cc48-e3b1-4235-b4d91473ee89'])") expected = ['5d212a78-cc48-e3b1-4235-b4d91473ee87', '5d212a78-cc48-e3b1-4235-b4d91473ee88', '5d212a78-cc48-e3b1-4235-b4d91473ee89'] assert_array_equal(re, expected) re = self.s.run("uuid(['5d212a78-cc48-e3b1-4235-b4d91473ee87', '', '5d212a78-cc48-e3b1-4235-b4d91473ee89'])") expected = ['5d212a78-cc48-e3b1-4235-b4d91473ee87', '00000000-0000-0000-0000-000000000000', '5d212a78-cc48-e3b1-4235-b4d91473ee89'] assert_array_equal(re, expected) re = self.s.run("uuid(['', '', ''])") expected = ['00000000-0000-0000-0000-000000000000', '00000000-0000-0000-0000-000000000000', '00000000-0000-0000-0000-000000000000'] assert_array_equal(re, expected) def test_ipaddr_vector(self): re = self.s.run("ipaddr(['192.168.1.135', '192.168.1.124', '192.168.1.14'])") expected = ['192.168.1.135', '192.168.1.124', '192.168.1.14'] assert_array_equal(re, expected) re = self.s.run("ipaddr(['192.168.1.135', '', '192.168.1.14'])") expected = ['192.168.1.135', '0.0.0.0', '192.168.1.14'] assert_array_equal(re, expected) re = self.s.run("ipaddr(['', '', ''])") expected = ['0.0.0.0', '0.0.0.0', '0.0.0.0'] assert_array_equal(re, expected) def test_int128_vector(self): re = self.s.run("int128(['e1671797c52e15f763380b45e841ec32', 'e1671797c52e15f763380b45e841ec33', 'e1671797c52e15f763380b45e841ec34'])") expected = ['e1671797c52e15f763380b45e841ec32', 'e1671797c52e15f763380b45e841ec33', 'e1671797c52e15f763380b45e841ec34'] assert_array_equal(re, expected) re = self.s.run("int128(['e1671797c52e15f763380b45e841ec32', '', 'e1671797c52e15f763380b45e841ec34'])") expected = ['e1671797c52e15f763380b45e841ec32', '00000000000000000000000000000000', 'e1671797c52e15f763380b45e841ec34'] assert_array_equal(re, expected) re = self.s.run("int128(['', '', ''])") expected = ['00000000000000000000000000000000', '00000000000000000000000000000000', '00000000000000000000000000000000'] assert_array_equal(re, expected) def test_int_matrix(self): re = self.s.run("1..6$3:2") expected = np.array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_short_matrix(self): re = self.s.run("short(1..6)$3:2") expected = np.array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_long_matrix(self): re = self.s.run("long(1..6)$3:2") expected = np.array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_double_matrix(self): re = self.s.run("[1.1, 1.2, 1.3, 1.4, 1.5, 1.6]$3:2") expected = [[1.1, 1.4], [1.2, 1.5], [1.3, 1.6]] assert_array_almost_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_float_matrix(self): re = self.s.run("[1.1f, 1.2f, 1.3f, 1.4f, 1.5f, 1.6f]$3:2") expected = [[1.1, 1.4], [1.2, 1.5], [1.3, 1.6]] assert_array_almost_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_symbol_matrix(self): re = self.s.run('symbol("A"+string(1..9))$3:3') expected = np.array([["A1","A4","A7"], ["A2","A5","A8"], ["A3","A6","A9"]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_huge_matrix(self): re = self.s.run('matrix(loop(take{, 3000}, 1..3000))') expected = np.arange(1, 3001) for i in np.arange(0, 3000): assert_array_equal(re[0][i], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_one_column_matrix(self): re = self.s.run('matrix(1..3000000)') for i in np.arange(0, 3000000): assert_array_equal(re[0][i], [i+1]) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_one_row_matrix(self): re = self.s.run("matrix(take(1, 5000)).transpose()") assert_array_equal(re[0], [np.repeat(1, 5000)]) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_zero_column_matrix(self): re = self.s.run("matrix(INT, 3, 0)") expected = [[] for i in range(3)] assert_array_equal(re[0], expected) re = self.s.run("matrix(BOOL,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,bool ) re = self.s.run("matrix(CHAR,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'int8') re = self.s.run("matrix(SHORT,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'int16') re = self.s.run("matrix(LONG,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'int64') re = self.s.run("matrix(DATE,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(MONTH,3,0)") expected = np.empty((3,0),dtype="datetime64[M]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[M]') re = self.s.run("matrix(TIME,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(MINUTE,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(SECOND,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) re = self.s.run("matrix(DATETIME,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(TIMESTAMP,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(NANOTIME,3,0)") assert_array_equal(re[0], expected) re = self.s.run("matrix(NANOTIMESTAMP,3,0)") assert_array_equal(re[0], expected) re = self.s.run("matrix(FLOAT,3,0)") expected = np.empty((3,0),dtype="float32") assert_array_equal(re[0], expected) re = self.s.run("matrix(DOUBLE,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,"float64") re = self.s.run("matrix(SYMBOL,3,0)") assert_array_equal(re[0], expected) def test_zero_row_matrix(self): re = self.s.run("matrix(INT, 0, 3)") expected = np.empty((0,3),dtype="int32") assert_array_equal(re[0], expected) re = self.s.run("matrix(BOOL,0,3)") expected = np.empty((0,3),dtype="bool") assert_array_equal(re[0], expected) re = self.s.run("matrix(CHAR,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(SHORT,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(LONG,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(DATE,0,3)") expected = np.empty((0,3),dtype="datetime64[ns]") assert_array_equal(re[0], expected) re = self.s.run("matrix(MONTH,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(TIME,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(MINUTE,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(SECOND,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(DATETIME,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(TIMESTAMP,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(NANOTIME,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(NANOTIMESTAMP,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(FLOAT,0,3)") expected = np.empty((0,3),dtype="float32") assert_array_equal(re[0], expected) re = self.s.run("matrix(DOUBLE,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(SYMBOL,0,3)") assert_array_equal(re[0], expected) def test_all_null_matrix(self): re = self.s.run("take(int(), 12)$3:4") expected=[[np.NaN, np.NaN, np.NaN, np.NaN], [np.NaN, np.NaN, np.NaN, np.NaN], [np.NaN, np.NaN, np.NaN, np.NaN]] assert_array_equal(re[0], expected) re = self.s.run("[1, 2, NULL, 3, NULL, 4]$2:3") expected=[[1, np.NaN, np.NaN], [2., 3., 4.]] assert_array_equal(re[0], expected) re = self.s.run("symbol(take(string(), 12))$3:4") assert_array_equal(re[0][0], ['','','','']) assert_array_equal(re[0][1], ['','','','']) assert_array_equal(re[0][2], ['','','','']) re = self.s.run("symbol(['AA', 'BB', NULL, 'CC', NULL, 'DD'])$2:3") assert_array_equal(re[0][0], ['AA','','']) assert_array_equal(re[0][1], ['BB','CC','DD']) def test_huge_symbol_matrix(self): re = self.s.run("m = symbol(string(1..1000000))$200:5000;m.rename!(1..200,1..5000);m") assert_array_equal(re[1], np.arange(1, 201)) assert_array_equal(re[2], np.arange(1, 5001)) re = self.s.run("m = symbol(string(1..1000000))$200:5000;m.rename!(1..200,1..5000);table(m.rowNames() as label, m)") assert_array_equal(re["label"], np.arange(1, 201)) j=1 for i in np.arange(1, 5001): assert_series_equal(re.iloc[:,i], pd.Series([str(x) for x in np.arange(j, j+200)], index=np.arange(0, 200)),check_names=False) j+=200 def test_int_matrix_with_label(self): re = self.s.run("cross(add,1..5,1..10)") expected = np.array( [[2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]) #self.assertEqual((re == expected).all(), True) assert_array_equal(re[0], expected) assert_array_equal(re[1], np.array([1, 2, 3, 4, 5])) assert_array_equal(re[2], np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) def test_matrix_only_with_row_label(self): re = self.s.run("m=1..6$3:2;m.rename!([0, 1, 2],);m") expected = [[1, 4], [2, 5], [3, 6]] assert_array_equal(re[0], expected) assert_array_equal(re[1], [0, 1, 2]) self.assertIsNone(re[2]) def test_matrix_only_with_col_label(self): re = self.s.run("m=1..6$3:2;m.rename!([0, 1]);m") expected = [[1, 4], [2, 5], [3, 6]] assert_array_equal(re[0], expected) self.assertIsNone(re[1]) assert_array_equal(re[2], [0, 1]) def test_matrix_label_date_symbol(self): script=''' m=matrix([2200, 1300, 2500, 8800], [6800, 5400, NULL, NULL], [1900, 2100, 3200, NULL]).rename!(2012.01.01..2012.01.04, symbol(`C`IBM`MS)); m ''' re = self.s.run(script) expected=[[2200., 6800.,1900.],[1300.,5400.,2100.],[2500.,np.NaN,3200.],[8800.,np.NaN, np.NaN]] assert_array_almost_equal(re[0], expected) assert_array_equal(re[1], np.array(['2012-01-01T00:00:00.000000000', '2012-01-02T00:00:00.000000000','2012-01-03T00:00:00.000000000', '2012-01-04T00:00:00.000000000'], dtype="datetime64")) assert_array_equal(re[2], ['C', 'IBM', 'MS']) def test_matrix_label_second_symbol(self): script=''' m=matrix([2200, 1300, 2500, 8800], [6800, 5400, NULL, NULL], [1900, 2100, 3200, NULL]).rename!([09:30:00, 10:00:00, 10:30:00, 11:00:00], `C`IBM`MS) m ''' re = self.s.run(script) expected=[[2200., 6800.,1900.],[1300.,5400.,2100.],[2500.,np.NaN,3200.],[8800.,np.NaN, np.NaN]] assert_array_almost_equal(re[0], expected) assert_array_equal(re[1], np.array(['1970-01-01T09:30:00.000000000', '1970-01-01T10:00:00.000000000','1970-01-01T10:30:00.000000000', '1970-01-01T11:00:00.000000000'], dtype="datetime64")) assert_array_equal(re[2], ['C', 'IBM', 'MS']) def test_matrix_label_symbol_date(self): script=''' m=matrix([2200, 1300, 2500, 8800], [6800, 5400, NULL, NULL], [1900, 2100, 3200, NULL]).rename!(`C`IBM`MS`ZZ, 2012.01.01..2012.01.03) m ''' re = self.s.run(script) expected=[[2200., 6800.,1900.],[1300.,5400.,2100.],[2500.,np.NaN,3200.],[8800.,np.NaN, np.NaN]] assert_array_almost_equal(re[0], expected) assert_array_equal(re[1], ['C', 'IBM', 'MS', 'ZZ']) assert_array_equal(re[2], np.array(['2012-01-01T00:00:00.000000000', '2012-01-02T00:00:00.000000000', '2012-01-03T00:00:00.000000000'],dtype="datetime64")) def test_table(self): script = '''n=20; syms=`IBM`C`MS`MSFT`JPM`ORCL`BIDU`SOHU`GE`EBAY`GOOG`FORD`GS`PEP`USO`GLD`GDX`EEM`FXI`SLV`SINA`BAC`AAPL`PALL`YHOO`KOH`TSLA`CS`CISO`SUN; mytrades=table(09:30:00+rand(18000,n) as timestamp,rand(syms,n) as sym, 10*(1+rand(100,n)) as qty,5.0+rand(100.0,n) as price); select qty,price from mytrades where sym==`IBM;''' re = self.s.run(script) self.assertEqual(re.shape[1], 2) def test_dictionary(self): script = '''dict(1 2 3,`IBM`MSFT`GOOG)''' re = self.s.run(script) expected = {2: 'MSFT', 3: 'GOOG', 1: 'IBM'} self.assertDictEqual(re, expected) def test_any_vector(self): re = self.s.run("([1], [2],[1,3, 5],[0.9, 0.8])") self.assertEqual((re[0] == [1]).all(), True) self.assertEqual((re[1] == [2]).all(), True) self.assertEqual((re[2] == [1, 3, 5]).all(), True) def test_set(self): re = self.s.run("set(1+3*1..3)") self.assertSetEqual(re, {10, 4, 7}) def test_pair(self): re = self.s.run("3:4") self.assertListEqual(re, list([3, 4])) def test_any_dictionary(self): re = self.s.run("{a:1,b:2}") expected = {'a': 1, 'b': 2} self.assertDictEqual(re, expected) def test_upload_matrix(self): a = self.s.run("cross(+, 1..5, 1..5)") b = self.s.run("1..25$5:5") self.s.upload({'a': a, 'b': b}) re = self.s.run('a+b') # print(re) # self.assertEqual((re[0] == [3, 9, 15, 21, 27]).all(), True) # self.assertEqual((re[1] == [5, 11, 17, 23, 29]).all(), True) # self.assertEqual((re[2] == [7, 13, 19, 25, 31]).all(), True) # self.assertEqual((re[3] == [9, 15, 21, 27, 33]).all(), True) # self.assertEqual((re[4] == [11, 17, 23, 29, 35]).all(), True) def test_run_plot(self): script = ''' x=1..10 t = table(x as sin, x+100 as cos) plot(t) ''' re = self.s.run(script) assert_array_equal(re['data'][0], np.array([[1, 101], [2, 102], [3, 103], [4, 104], [5, 105], [6, 106], [7, 107], [8, 108], [9, 109], [10, 110]])) self.assertIsNone(re['data'][1]) assert_array_equal(re['data'][2], np.array(['sin', 'cos'])) assert_array_equal(re['title'], np.array(['', '', ''])) def test_table_datatypes(self): script=''' n = 200 a = 100 v1 = string(1..n) v2 = string(1..n) v3 = take(int128("fcc69bca9885b51962660c23d08c124a"),n-a).join(take(int128("a428d55098d8e41e8adc4b7d04d8ede1"),a)) v4 = take(uuid("407c628e-d319-25c1-17ee-e5a73500a010"),n-a).join(take(uuid("d7a39280-1b18-8f56-160c-beabd428c934"),a)) v5 = take(ipaddr("fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b"),n-a).join(take(ipaddr("fc00:db20:35b:7399::5"),a)) t = table(n:n,`val1`val2`val3`val4`val5,[SYMBOL,STRING,INT128,UUID,IPADDR]) t[`val1] = v1 t[`val2] = v2 t[`val3] = v3 t[`val4] = v4 t[`val5] = v5 ''' self.s.run(script) df1 = self.s.run("select val1 from t") df2 = self.s.run("select val2 from t") df3 = self.s.run("select val3 from t") df4 = self.s.run("select val4 from t") df5 = self.s.run("select val5 from t") df = self.s.run("select * from t") n = 200 a = 100 data1 = np.array(range(1,n+1),dtype="str") data2 = np.append(np.repeat("fcc69bca9885b51962660c23d08c124a",n-a),np.repeat("a428d55098d8e41e8adc4b7d04d8ede1",a)) data3 = np.append(np.repeat("407c628e-d319-25c1-17ee-e5a73500a010",n-a),np.repeat("d7a39280-1b18-8f56-160c-beabd428c934",a)) data4 = np.append(np.repeat("fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b",n-a),np.repeat("3fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b",a)) ex1 = pd.DataFrame({"val1":data1}) ex2 =
pd.DataFrame({"val2":data1})
pandas.DataFrame
# Packages are imported. import pandas as pd import requests as req import numpy as np import datetime as dt import time import multiprocessing as mp import os import random import sys import matplotlib.pyplot as plt import seaborn as sns from scipy import stats import statsmodels.stats.multitest as statsmodels import pickle np.random.seed(1) sys.setrecursionlimit(25000) # Function that requests data. Change IP to external IP of one of the VM's collecting data. def request_data(job, startTime, endTime): print('Job request: ' + str(job) + ' started.') #print(startTime) #print(job) #print(endTime) request = req.get('http://35.246.188.180:30000/api/v1/query_range?query={job=~"' + job + '"}&start=' + startTime + 'Z&end=' + endTime + 'Z&step=1s') #print(eval(request.content)) metric_data = pd.DataFrame(eval(request.content)) return metric_data # Change IP to external IP of one of the VM's collecting data. def get_jobs(): # Cluster: Get list of jobs x = req.get('http://172.16.58.3:30000/api/v1/label/job/values') jobList = eval(x.content)['data'] return jobList # Get timestamps for next 15mins. def get_timestamps(date): scrape_timeframes = [] interval = dt.timedelta(minutes=14, seconds=59) scrape_timeframes.append([str(date).replace(" ", "T"), str(date + interval).replace(" ", "T"), pd.date_range(date, (date + interval), freq='1S')]) return scrape_timeframes # Info of features is saved in separate files. def save_feature_info(job, dfList_info): dfFeatures_info = pd.concat(dfList_info, axis=1) dfFeatures_info.columns = [str(column) + dfFeatures_info.columns[column] for column in range(0, len(dfFeatures_info.columns))] list_features_info = [dirs for dirs in os.listdir('data_scraped/feature_info/') if job in dirs] file_number = len(list_features_info) + 1 dfFeatures_info.to_feather('data_scraped/feature_info/features_' + job + str(file_number) + '.ftr') # Function to load in data and structure it into one dataframe. def structureData(job, date): scrape_timeframes = get_timestamps(date) features_dict = {'Timestamp' : scrape_timeframes[0][2]} dfMetric = request_data(job, scrape_timeframes[0][0], scrape_timeframes[0][1]) dfFeatures = pd.DataFrame(features_dict) print(job + ' metrics: ' + str(len(dfMetric['data'][0]))) dfList = [pd.DataFrame(metric['values'], columns=['Timestamp', '#'.join(list(metric['metric'].values()))]) for metric in dfMetric['data'][0]] dfList_info = [pd.DataFrame(metric['metric'].keys(), columns=['#'.join(list(metric['metric'].keys()))]) for metric in dfMetric['data'][0]] dfList.insert(0, dfFeatures) for df in dfList: if len(df.columns) > 1: df['Timestamp'] = pd.to_datetime(df['Timestamp'], unit='s') else: df['Timestamp'] = pd.to_datetime(df['Timestamp']) dfList = [df.set_index('Timestamp', drop=True) for df in dfList] save_feature_info(job, dfList_info) dfFeatures = pd.concat(dfList, axis=1) print('Done: ' + job) return dfFeatures # Function that saves the data as feather files. def save_data(job, date): tic = time.clock() df = structureData(job, date) file_number = len(os.listdir('data_scraped/' + job + '/')) + 1 df.reset_index(inplace=True) df.to_feather('data_scraped/' + job + '/' + job + str(file_number - 1) + '.ftr') toc = time.clock() print(job + ': ' + str(toc-tic)) return df # For each separate job, data is requested in a timeframe of 15mins, structured, and then saved. job_list = ['envoy-stats', 'istiod', 'kube-state-metrics', 'kubernetes-apiservers', 'kubernetes-cadvisor', 'kubernetes-nodes', 'kubernetes-pods', 'kubernetes-service-endpoints', 'litmuschaos', 'skydive'] def scrape_data(job_list): dfDates = pd.date_range('11:00', '15:45', freq='15min') interval = dt.timedelta(minutes=15, seconds=1) now = dt.datetime.now() for date in dfDates: time_passed = False while time_passed is False: if now > (date + interval): time_passed = True for job in job_list: df = save_data(job, date) time.sleep(5) else: print('Too early') time.sleep(60) now = dt.datetime.now() # The function to collect data is run. scrape_data(job_list) # The collected data is filtered. Litmus related and constant features are removed along with features containing too many missing values. # Litmus related features are removed. def filter_chaos(dataset): filter_keywords_list = ['litmus', 'litmuschaos', 'chaos', 'chaos-runner', 'hog', 'iostress', 'helper'] column_list = [] iteration_list = [] final_feature_list = [] checked_shape = False dataframes_list = [] df = pd.read_feather(dataset) for column in df.columns: if any(keyword in column for keyword in filter_keywords_list) == False: iteration_list.append(column) return iteration_list # Function to convert datatypes to numeric. def convert_datatype(column_data): return column_data[0][column_data[1]].apply(pd.to_numeric, errors='coerce') # Parallelization function. def modifyParallelized(function, df): column_list = [[df, column] for column in df.columns] # All the available cores are used. cores=mp.cpu_count() # Create the multiprocessing pool of cores. pool = mp.Pool(cores) columns_converted = pool.map(function, column_list) # Close down the pool and join. pool.close() pool.join() #pool.clear() return columns_converted # Scraped data for jobs are read, combined, filtered, and saved to pickle files. job_list = ['envoy-stats', 'istiod', 'kube-state-metrics', 'kubernetes-apiservers', 'kubernetes-cadvisor', 'kubernetes-nodes', 'kubernetes-pods', 'kubernetes-service-endpoints', 'litmuschaos', 'skydive'] filter_keywords_list = ['litmus', 'litmuschaos', 'chaos', 'chaos-runner', 'hog', 'iostress', 'helper'] for job in job_list: if os.path.isfile('data_combined_filtered/' + job + '/' + job + '_filtered.pkl') == True: continue column_list = [] iteration_list = [] final_feature_list = [] dataframes_list = [] # Paths for each file are generated. dataset_dirs = ['data_scraped/' + job + '/' + file for file in os.listdir('data_scraped/' + job) if job in file] dataset_dirs.sort() print('Start Job: ' + job) df = pd.read_feather(dataset_dirs[0]) print(df.shape) # Any non-litmus job is filtered on litmus related features. if job != 'litmuschaos': column_list = filter_chaos(dataset_dirs[0]) df = df[column_list] # NA's are dropped, features having more than 5 NA's are dropped. df.dropna(axis=1, inplace=True, thresh=(len(df) - 5)) print(df.shape) column_list = [column for column in df.columns if "Timestamp" not in column] df[column_list] = pd.concat(modifyParallelized(convert_datatype, df[column_list]), axis=1) print(df.shape) df.dropna(axis=1, inplace=True, thresh=(len(df) - 5)) column_list = df.columns df.set_index('Timestamp', drop=True, inplace=True) # All datasets are merged into one dataset. for dataset in dataset_dirs[1:]: print(dataset) df_concat = pd.read_feather(dataset).set_index('Timestamp', drop=True) concat_columns = list(set(column_list).intersection(df_concat.columns)) df_concat = pd.concat(modifyParallelized(convert_datatype, df_concat[concat_columns]), axis=1) df = pd.concat([df, df_concat[concat_columns]], axis=0) time.sleep(2) print(df.shape) # For litmuschaos, only features showing which experiment is running are kept. if job == 'litmuschaos': df.dropna(axis=0, inplace=True) df = df[[column for column in df.columns if 'awaited_experiments' in column]] # Final filters are executed. else: column_list = filter_chaos(dataset_dirs[0]) df.reset_index(drop=False, inplace=True) df.dropna(axis=1, inplace=True, thresh=(len(df) - 5)) df.dropna(axis=0, inplace=True) df = df.loc[:, (df != df.iloc[0]).any()] print(df.shape) df.to_pickle('data_combined_filtered/' + job + '/' + job + '_filtered.pkl') # Feature summary of all jobs. for job in job_list: df =
pd.read_pickle('data_combined_filtered/' + job + '/' + job + '_filtered.pkl')
pandas.read_pickle
# -*- coding: utf-8 -*- from __future__ import print_function from numpy import nan import numpy as np from pandas import compat from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameConvertTo(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_to_dict(self): test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } recons_data = DataFrame(test_data).to_dict() for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k][k2]) recons_data = DataFrame(test_data).to_dict("l") for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k][int(k2) - 1]) recons_data = DataFrame(test_data).to_dict("s") for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k][k2]) recons_data = DataFrame(test_data).to_dict("sp") expected_split = {'columns': ['A', 'B'], 'index': ['1', '2', '3'], 'data': [[1.0, '1'], [2.0, '2'], [nan, '3']]} tm.assert_dict_equal(recons_data, expected_split) recons_data = DataFrame(test_data).to_dict("r") expected_records = [{'A': 1.0, 'B': '1'}, {'A': 2.0, 'B': '2'}, {'A': nan, 'B': '3'}] tm.assertIsInstance(recons_data, list) self.assertEqual(len(recons_data), 3) for l, r in zip(recons_data, expected_records): tm.assert_dict_equal(l, r) # GH10844 recons_data = DataFrame(test_data).to_dict("i") for k, v in compat.iteritems(test_data): for k2, v2 in compat.iteritems(v): self.assertEqual(v2, recons_data[k2][k]) def test_to_dict_timestamp(self): # GH11247 # split/records producing np.datetime64 rather than Timestamps # on datetime64[ns] dtypes only tsmp = Timestamp('20130101') test_data = DataFrame({'A': [tsmp, tsmp], 'B': [tsmp, tsmp]}) test_data_mixed = DataFrame({'A': [tsmp, tsmp], 'B': [1, 2]}) expected_records = [{'A': tsmp, 'B': tsmp}, {'A': tsmp, 'B': tsmp}] expected_records_mixed = [{'A': tsmp, 'B': 1}, {'A': tsmp, 'B': 2}] self.assertEqual(test_data.to_dict(orient='records'), expected_records) self.assertEqual(test_data_mixed.to_dict(orient='records'), expected_records_mixed) expected_series = { 'A': Series([tsmp, tsmp], name='A'), 'B': Series([tsmp, tsmp], name='B'), } expected_series_mixed = { 'A': Series([tsmp, tsmp], name='A'), 'B': Series([1, 2], name='B'), } tm.assert_dict_equal(test_data.to_dict(orient='series'), expected_series) tm.assert_dict_equal(test_data_mixed.to_dict(orient='series'), expected_series_mixed) expected_split = { 'index': [0, 1], 'data': [[tsmp, tsmp], [tsmp, tsmp]], 'columns': ['A', 'B'] } expected_split_mixed = { 'index': [0, 1], 'data': [[tsmp, 1], [tsmp, 2]], 'columns': ['A', 'B'] } tm.assert_dict_equal(test_data.to_dict(orient='split'), expected_split) tm.assert_dict_equal(test_data_mixed.to_dict(orient='split'), expected_split_mixed) def test_to_dict_invalid_orient(self): df = DataFrame({'A': [0, 1]}) self.assertRaises(ValueError, df.to_dict, orient='xinvalid') def test_to_records_dt64(self): df = DataFrame([["one", "two", "three"], ["four", "five", "six"]], index=date_range("2012-01-01", "2012-01-02")) self.assertEqual(df.to_records()['index'][0], df.index[0]) rs = df.to_records(convert_datetime64=False) self.assertEqual(rs['index'][0], df.index.values[0]) def test_to_records_with_multindex(self): # GH3189 index = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] data = np.zeros((8, 4)) df = DataFrame(data, index=index) r = df.to_records(index=True)['level_0'] self.assertTrue('bar' in r) self.assertTrue('one' not in r) def test_to_records_with_Mapping_type(self): import email from email.parser import Parser import collections collections.Mapping.register(email.message.Message) headers = Parser().parsestr('From: <<EMAIL>>\n' 'To: <<EMAIL>>\n' 'Subject: Test message\n' '\n' 'Body would go here\n') frame = DataFrame.from_records([headers]) all(x in frame for x in ['Type', 'Subject', 'From']) def test_to_records_floats(self): df = DataFrame(np.random.rand(10, 10)) df.to_records() def test_to_records_index_name(self): df = DataFrame(np.random.randn(3, 3)) df.index.name = 'X' rs = df.to_records() self.assertIn('X', rs.dtype.fields) df = DataFrame(np.random.randn(3, 3)) rs = df.to_records() self.assertIn('index', rs.dtype.fields) df.index = MultiIndex.from_tuples([('a', 'x'), ('a', 'y'), ('b', 'z')]) df.index.names = ['A', None] rs = df.to_records() self.assertIn('level_0', rs.dtype.fields) def test_to_records_with_unicode_index(self): # GH13172 # unicode_literals conflict with to_records result = DataFrame([{u'a': u'x', u'b': 'y'}]).set_index(u'a')\ .to_records() expected = np.rec.array([('x', 'y')], dtype=[('a', 'O'), ('b', 'O')])
tm.assert_almost_equal(result, expected)
pandas.util.testing.assert_almost_equal
import pandas as pd import numpy as np from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import accuracy_score from config import const def cross_validation_score(model, X, y, metrics=accuracy_score, n_splits=5, random_state=0, stratified=True, shuffle=True): oof_train = cross_validation_predict(model, X, y) y_pred_oof = np.argmax(oof_train, axis=1) return accuracy_score(y, y_pred_oof) def cross_validation_predict(model, X, y, X_test=None, metrics=accuracy_score, n_splits=5, random_state=0, stratified=True, shuffle=True): oof_train = np.zeros((len(y), const.n_class)) y_preds = [] X = X.copy() y = y.copy() if X_test is not None: X_test = X_test.copy() if stratified: kfold = StratifiedKFold( n_splits=n_splits, random_state=random_state, shuffle=shuffle) for fold_id, (train_index, valid_index) in enumerate(kfold.split(X, y)): X_train = X.iloc[train_index, :] X_valid = X.iloc[valid_index, :] y_train = y.iloc[train_index] y_valid = y.iloc[valid_index] model.fit(X_train, y_train) oof_train[valid_index] = model.predict(X_valid) if X_test is not None: y_preds.append(model.predict(X_test)) else: kfold = KFold(n_splits, random_state=random_state, shuffle=shuffle) for fold_id, (train_index, valid_index) in enumerate(kfold.split(X)): X_train = X.iloc[train_index, :] X_valid = X.iloc[valid_index, :] y_train = y.iloc[train_index] y_valid = y.iloc[valid_index] model.fit(X_train, y_train) oof_train[valid_index] = model.predict(X_valid) if X_test is not None: y_preds.append(model.predict(X_test)) if X_test is None: return oof_train else: return oof_train, sum(y_preds) / len(y_preds) def stacking(models, X_train, y_train, X_test, n_round=10): X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_preds = [] oofs = [] for i in range(n_round): y_preds = [] for j, model in enumerate(models): print("{}th {}".format(i, str(model))) columns = [] for k in range(const.n_class): columns.append("{}-round-{}th-{}-{}th-class".format(i, j, str(model), k)) oof_train, y_pred = cross_validation_predict( model, X_train, y_train, X_test) X_append_train = pd.DataFrame(oof_train, columns=columns) X_append_test =
pd.DataFrame(y_pred, columns=columns)
pandas.DataFrame
#!/usr/bin/python3 import datetime import numpy as np import pandas as pd import re import requests from lxml import etree from dev_global.env import TIME_FMT from polaris.mysql8 import (mysqlBase, mysqlHeader) from jupiter.utils import trans __version__ = '1.0.10' class StockBase(object): """ param header: mysqlHeader """ def __init__(self, header): self._Today = datetime.date.today().strftime(TIME_FMT) self.today = datetime.date.today().strftime('%Y%m%d') if not isinstance(header, mysqlHeader): raise HeaderException() self.mysql = mysqlBase(header) @property def Today(self): self._Today = datetime.date.today().strftime(TIME_FMT) return self._Today class HeaderException(BaseException): def __str__(self) -> str: return "Error occurs due to mysql header." class StockEventBase(object): """ Today: date format like yyyy-mm-dd \n today: date format like yyyymmdd """ def __init__(self, header): self.Today = datetime.date.today().strftime(TIME_FMT) self.today = datetime.date.today().strftime('%Y%m%d') if not header: raise Exception self.mysql = mysqlBase(header) self.stock_list = [] self.coder = StockCodeFormat() def __str__(self): return "<Stock Event Base>" def data_clean(self, df): for index, col in df.iteritems(): try: if re.search('date', index): df[index] = pd.to_datetime(df[index]) elif re.search('int', index): df[index] = pd.to_numeric(df[index]) elif re.search('float', index): df[index] = pd.to_numeric(df[index]) elif re.search('char', index): pass else: pass except Exception: ERROR( f"Error while record interest of {col['char_stock_code']}") return df def update_date_time(self): """ Get date of today. """ self.Today = datetime.date.today().strftime(TIME_FMT) def get_all_stock_list(self): """ Return stock code --> list. """ query = self.mysql.condition_select( "stock_manager", "stock_code", "flag='t'" ) df =
pd.DataFrame.from_dict(query)
pandas.DataFrame.from_dict
#!/usr/bin/env python # coding: utf-8 ##### HELPER FUNCTIONS ##### # import libraries import numpy as np import pandas as pd from datetime import datetime,date from device_detector import DeviceDetector import re ### CLEANING def drop_rows(df): print('Starting dropping rows...') # keep rows where exclude hit is == 0 df = df[df['exclude_hit'] == 0] # keep rows where hit source != 5, 7, 8 or 9 df = df[(df['hit_source'] != 5) | (df['hit_source'] != 7) |(df['hit_source'] != 8) |(df['hit_source'] != 9)] # keep rows where visitor id is not missing (6 missing values) df = df[pd.notnull(df['visitor_id'])] # clean visit page num and keep rows where visit page num is not missing or faulty (118 missing and 269 faulty values) df['visit_page_num'] = df['visit_page_num'].apply(lambda x: np.nan if len(str(x)) > 10 else x) df = df[pd.notnull(df['visit_page_num'])] print('Dropping rows complete.') return df def drop_columns(df): print('Starting dropping columns...') # select columns to keep columns_to_keep = ['visitor_id', 'visit_start_time_gmt', 'hit_time_gmt', 'date_time', # numerical columns 'visit_num', 'visit_page_num', 'purchase_boolean', 'product_view_boolean', 'checkout_boolean', 'cart_addition_boolean', 'cart_removal_boolean', 'cart_view_boolean', 'campaign_view_boolean', 'cart_value', 'page_view_boolean', 'last_purchase_num', 'standard_search_results_clicked', 'standard_search_started', 'suggested_search_results_clicked', # categorical columns 'country', 'cookies', 'persistent_cookie', 'search_page_num', 'connection_type', 'search_engine', 'marketing_channel', 'referrer_type', 'new_visit', 'hourly_visitor', 'daily_visitor', 'weekly_visitor', 'monthly_visitor', 'quarterly_visitor', 'yearly_visitor', 'product_items', 'product_item_price', 'product_categories', 'device_type_user_agent', 'device_brand_name_user_agent', 'device_operating_system_user_agent', 'device_browser_user_agent', 'repeat_orders', 'net_promoter_score', 'hit_of_logged_in_user', 'registered_user', 'user_gender', 'user_age', 'visit_during_tv_spot'] # subset dataframe to select only columns to keep df = df[columns_to_keep] print('Dropping columns complete.') return df def rename_columns(df): print('Starting renaming columns...') df.rename(columns={'va_closer_id' : 'marketing_channel'}, inplace=True) df.rename(columns={'os' : 'operating_system'}, inplace=True) df.rename(columns={'ref_type' : 'referrer_type'}, inplace=True) df.rename(columns={'post_search_engine' : 'search_engine'}, inplace=True) df.rename(columns={'cart_value_(v50)' : 'cart_value'}, inplace=True) df.rename(columns={'int._stand._search_result_clicked_(e16)' : 'standard_search_results_clicked'}, inplace=True) df.rename(columns={'active_stand._search_started_(e17)' : 'standard_search_started'}, inplace=True) df.rename(columns={'sugg._search_result_clicked_(e18)' : 'suggested_search_results_clicked'}, inplace=True) df.rename(columns={'post_cookies' : 'cookies'}, inplace=True) df.rename(columns={'post_persistent_cookie' : 'persistent_cookie'}, inplace=True) df.rename(columns={'repeat_orders_(e9)' : 'repeat_orders'}, inplace=True) df.rename(columns={'net_promoter_score_raw_(v10)_-_user' : 'net_promoter_score'}, inplace=True) df.rename(columns={'hit_of_logged_in_user_(e23)' : 'hit_of_logged_in_user'}, inplace=True) df.rename(columns={'registered_user_(user)_(v34)' : 'registered_user'}, inplace=True) df.rename(columns={'user_gender_(v61)' : 'user_gender'}, inplace=True) df.rename(columns={'user_age_(v62)' : 'user_age'}, inplace=True) df.rename(columns={'visit_during_tv_spot_(e71)' : 'visit_during_tv_spot'}, inplace=True) print('Renaming columns complete') return df def fill_missing_and_faulty_values(df): print('Starting filling missing and faulty values...') df['cart_value'].fillna(0, inplace=True) df['registered_user'] = df['registered_user'].apply(lambda x: 1 if x == 'y' else 0) df['cookies'] = df['cookies'].apply(lambda x: 1 if x == 'Y' else 0) df['persistent_cookie'] = df['persistent_cookie'].apply(lambda x: 1 if x == 'Y' else 0) print('Filling missing and faulty values complete.') return df def cast_data_types(df): print('Starting casting data types...') # datetime columns df['date_time'] = df['date_time'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')) df['hit_time_gmt'] = pd.to_datetime(df['hit_time_gmt'], unit='s') df['visit_start_time_gmt'] = pd.to_datetime(df['visit_start_time_gmt'], unit='s') # integer columns integer_columns = ['visit_num', 'visit_page_num', 'purchase_boolean', 'product_view_boolean', 'checkout_boolean', 'cart_addition_boolean', 'cart_removal_boolean', 'cart_view_boolean', 'campaign_view_boolean', 'page_view_boolean', 'last_purchase_num', 'standard_search_results_clicked', 'standard_search_started', 'suggested_search_results_clicked', 'cookies', 'persistent_cookie', 'search_page_num', 'new_visit', 'hourly_visitor', 'daily_visitor', 'weekly_visitor', 'monthly_visitor', 'quarterly_visitor', 'yearly_visitor', 'repeat_orders', 'hit_of_logged_in_user', 'registered_user', 'visit_during_tv_spot'] for column in integer_columns: df[column] = df[column].apply(lambda x: int(float(x))) # float column df['cart_value'] = df['cart_value'].apply(lambda x: float(x)) print('Casting data types complete.') return df ### MAPPING def connection_type_mapping(df): print('Starting connection type mapping...') # load file for connection type mapping and select columns connection_type_mapping = pd.read_csv('../data/mapping_files/connection_type.tsv', sep='\t', header=None) connection_type_mapping.columns = ['connection_type_id', 'connection_type_name'] # create dictionary for connection type mapping connection_type_mapping_dict = dict(zip(connection_type_mapping.connection_type_id, connection_type_mapping.connection_type_name)) # map connection types df['connection_type'] = df['connection_type'].map(connection_type_mapping_dict).fillna(df['connection_type']) print('Connection type mapping complete.') return df def country_mapping(df): print('Starting country mapping...') # load file for country mapping and select columns country_mapping = pd.read_csv('../data/mapping_files/country.tsv', sep='\t', header=None) country_mapping.columns = ['country_id', 'country_name'] # drop dupliate countries country_mapping = country_mapping.drop_duplicates('country_name').reset_index(drop=True) # create dictionary for country mapping country_mapping_dict = dict(zip(country_mapping.country_id, country_mapping.country_name)) # map countries df['country'] = df['country'].map(country_mapping_dict).fillna(df['country']) print('Country mapping complete.') return df def custom_evars_mapping(df): print('Starting custom evars mapping...') # load file for custom evars mapping and select columns evars = pd.read_csv('../data/mapping_files/custom_evars.tsv', sep='\t') evars_mapping = evars[['id', 'name']] # map custom evars evar_cols = [x for x in df.columns if x.lower()[:9] == 'post_evar'] evar_cols = [x.replace('post_', '') for x in evar_cols] evars_mapped = evars[evars['id'].isin(evar_cols)][['id', 'name']] evars_mapped['id'] = evars_mapped['id'].apply(lambda x: 'post_' + x) evars_mapped = evars_mapped.reset_index(drop=True) # rename custom evars for i in range(evars_mapped.shape[0]): df.rename(columns={evars_mapped.iloc[i,0] : str.lower(evars_mapped.iloc[i,1]).replace(' ','_')}, inplace=True) print('Custom evars mapping complete.') return df def custom_marketing_channel_mapping(df): print('Starting custom marketing channel mapping...') # load file for custom marketing channel mapping custom_marketing_channel_mapping = pd.read_csv('../data/mapping_files/custom_marketing_channels.tsv', sep='\t') # create dictionary for marketing channel mapping custom_marketing_channel_mapping_dict = dict(zip(custom_marketing_channel_mapping.channel_id, custom_marketing_channel_mapping.name)) # map custom marketing channels df['va_closer_id'] = df['va_closer_id'].apply(lambda x: float(x)) df['va_closer_id'] = df['va_closer_id'].map(custom_marketing_channel_mapping_dict).fillna(df['va_closer_id']) df['va_closer_id'] = df['va_closer_id'].apply(lambda x: 'Unknown' if x == 0 else x) print('Custom marketing channel mapping complete.') return df def custom_and_standard_events_mapping(df): print('Starting custom and standard events mapping...') # fill missing values in post event list df['post_event_list'] = df['post_event_list'].fillna('Unknown') # load file for standard event mapping and select columns standard_events = pd.read_csv('../data/mapping_files/event.tsv', sep='\t', header=None) standard_events.columns = ['event_id', 'event_name'] # load file for custom event mapping and modify event id for matching custom_events = pd.read_csv('../data/mapping_files/custom_events.tsv', sep='\t') custom_events['event_id'] = custom_events.index + 200 # map standard and custom events events = pd.merge(standard_events, custom_events, how='inner', on='event_id') events_mapping = events[['event_id', 'name']] events_mapping = events_mapping.reset_index(drop=True) # create event dummies for id, event in zip(events_mapping.iloc[:,0], events_mapping.iloc[:,1]): df[str.lower(event).replace(' ','_')] = df['post_event_list'].apply(lambda x: 1 if ','+str(id)+',' in x else 0) # drop internal users df = df[df['internal_user_(e30)'] != 1] print('Standard and custom events mapping complete.') return df def referrer_type_mapping(df): print('Starting referrer type mapping...') # load file for referrer type mapping and select columns referrer_type_mapping = pd.read_csv('../data/mapping_files/referrer_type.tsv', sep='\t', header=None) referrer_type_mapping.columns = ['referrer_type_id', 'referrer_type_name', 'referrer_type'] # create dictionary for referrer type mapping referrer_type_mapping_dict = dict(zip(referrer_type_mapping.referrer_type_id, referrer_type_mapping.referrer_type)) # map referrer types df['ref_type'] = df['ref_type'].map(referrer_type_mapping_dict).fillna(df['ref_type']) print('Referrer type mapping complete.') return df def search_engine_mapping(df): print('Starting search engine mapping...') # load file for search engine mapping and select columns search_engine_mapping = pd.read_csv('../data/mapping_files/search_engines.tsv', sep='\t', header=None) search_engine_mapping.columns = ['search_engine_id', 'search_engine_name'] # create dictionary for search engine mapping search_engine_mapping_dict = dict(zip(search_engine_mapping.search_engine_id, search_engine_mapping.search_engine_name)) # map search engines df['post_search_engine'] = df['post_search_engine'].map(search_engine_mapping_dict).fillna(df['post_search_engine']) # clean search_engine and keep only general search engine name df['post_search_engine'] = df['post_search_engine'].apply(lambda x: str(x).split(' ')[0] if pd.notnull(x) else x) df['post_search_engine'] = df['post_search_engine'].apply(lambda x: 'Google' if x == 'googleadservices.com' else x) df['post_search_engine'] = df['post_search_engine'].apply(lambda x: 'Unknown' if x == '0.0' else x) print('Search engine mapping complete.') return df def generate_user_agent_mapping(df): print('Starting user agent device type, brand name, operating system and bot flag mapping...') # fill missing values df['user_agent'] = df['user_agent'].fillna('Unknown') # create dataframe for user agent mapping and fill with unique user agents columns = ['user_agent', 'device_type_user_agent', 'device_brand_name_user_agent', 'device_operating_system_user_agent', 'device_browser_user_agent', 'device_is_bot_user_agent'] index = np.arange(df['user_agent'].nunique()) user_agent_mapping_df = pd.DataFrame(index=index, columns=columns) user_agent_mapping_df['user_agent'] = df['user_agent'].unique() # map device type user_agent_mapping_df['device_type_user_agent'] = user_agent_mapping_df['user_agent'].apply(lambda x: DeviceDetector(x).parse().device_type()) user_agent_mapping_df['device_type_user_agent'] = user_agent_mapping_df['device_type_user_agent'].apply(lambda x: 'Unknown' if x == '' else x) # map brand name user_agent_mapping_df['device_brand_name_user_agent'] = user_agent_mapping_df['user_agent'].apply(lambda x: DeviceDetector(x).parse().device_brand_name()) user_agent_mapping_df['device_brand_name_user_agent'] = user_agent_mapping_df['device_brand_name_user_agent'].apply(lambda x: 'Unknown' if x == 'UNK' else x) # map operating system user_agent_mapping_df['device_operating_system_user_agent'] = user_agent_mapping_df['user_agent'].apply(lambda x: DeviceDetector(x).parse().os_name()) user_agent_mapping_df['device_operating_system_user_agent'] = user_agent_mapping_df['device_operating_system_user_agent'].apply(lambda x: 'Unknown' if x == '' else x) # map browser user_agent_mapping_df['device_browser_user_agent'] = user_agent_mapping_df['user_agent'].apply(lambda x: DeviceDetector(x).parse().client_name()) # map bot flag user_agent_mapping_df['device_is_bot_user_agent'] = user_agent_mapping_df['user_agent'].apply(lambda x: DeviceDetector(x).parse().is_bot()) user_agent_mapping_df['device_is_bot_user_agent'] = user_agent_mapping_df['device_is_bot_user_agent'].apply(lambda x: 1 if x == True else 0) print('User agent device type, brand name, operating system, browser and bot flag mapping complete.') return user_agent_mapping_df def user_agent_mapping(df): print('Starting user agent mapping...') # fill missing values df['user_agent'] = df['user_agent'].fillna('Unknown') # load file for user agent mapping user_agent_mapping = pd.read_pickle('../data/mapping_files/user_agent_mapping.pkl.gz') # merge user agent mapping and df df = pd.merge(df, user_agent_mapping, how='left', on='user_agent') # drop rows where device_is_bot_user_agent == 1 df = df.drop(df[df['device_is_bot_user_agent'] == 1].index) # fill missing values in user agent columns (device_type_user_agent 51, device_brand_name_user_agent 51, device_operating_system_user_agent 51 and device_browser_user_agent 842 missing rows) device_type_columns = [x for x in df.columns if x.lower()[:6] == 'device'] for i in device_type_columns: df[i] = df[i].apply(lambda x: 'Unknown' if pd.isnull(x) else x) print('User agent mapping complete.') return df ### PROCESSING def process_product_items(df): print('Starting processing product items...') # sum of product items per hit df['product_items'] = df['product_items'].apply(lambda x: len([x for x in x.split(';') if x]) if pd.notnull(x) else 0) print('Processing product items complete.') return df def process_product_item_prices(df): print('Starting processing product item prices...') # sum of product items prices per hit df['product_item_price'] = df['product_item_price'].apply(lambda x: sum([float(x) for x in x.split(';') if x]) if (pd.notnull(x)) & (x != 'product_item_price') else 0) print('Processing product item prices complete.') return df def process_product_categories(df): print('Starting processing product categories...') # select level 1 product categories product_categories_level_1 = ['Computer & Elektronik', 'Wohnen & Haushalt', 'Schönheit & Gesundheit', 'Baumarkt & Garten', 'Baby & Spielzeug', 'Sport & Freizeit', 'Mode & Accessoires', 'Lebensmittel & Getränke', 'Medien & Unterhaltung'] # clean product categories and keep only level 1 product categories df['product_categories_first'] = df['product_categories_first'].apply(lambda x: 'Unknown' if pd.isnull(x) else x.split('/')) df['product_categories_first'] = df['product_categories_first'].apply(lambda x: x if x == 'Unknown' else [x.strip() for x in x][0]) df['product_categories_first_level_1'] = df['product_categories_first'].apply(lambda x: x if x in product_categories_level_1 else 'Unknown') df['product_categories_first_level_1'] = df['product_categories_first_level_1'].apply(lambda x: 'Schoenheit & Gesundheit' if x == 'Schönheit & Gesundheit' else x) df['product_categories_first_level_1'] = df['product_categories_first_level_1'].apply(lambda x: 'Lebensmittel & Getraenke' if x == 'Lebensmittel & Getränke' else x) df.drop('product_categories_first', axis=1, inplace=True) print('Processing product categories complete.') return df def process_net_promoter_score(df): print('Starting processing net promoter score...') # clean net promoter score and fill missing values df['net_promoter_score_first'] = df['net_promoter_score_first'].apply(lambda x: 'Unknown' if pd.isnull(x) else ('8' if x == '8th' else str(int(x)))) print('Processing net promoter score complete.') return df def process_user_gender(df): print('Starting processing user gender...') # clean user gender and fill missing values df['user_gender_first'] = df['user_gender_first'].apply(lambda x: 'Unknown' if
pd.isnull(x)
pandas.isnull
from __future__ import print_function import sys import pandas as pd import numpy.matlib import numpy as np import scipy import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import sklearn from sklearn import preprocessing from sklearn import mixture from sklearn.neighbors.kde import KernelDensity import glob import seaborn as sns import collections sns.set_context('talk') sns.set_style('white') sns.set_style("ticks") import re from scipy import sparse, io import os import math import csv import fbpca from matplotlib import rcParams import numpy as np import scipy.stats as stats from scipy.stats import gaussian_kde import statsmodels.api as sm import statsmodels from statsmodels.distributions.empirical_distribution import ECDF #GO imports #from goatools.obo_parser import GODag #from goatools.associations import read_ncbi_gene2go #from goatools.go_enrichment import GOEnrichmentStudy # The following packages are typically not installed by default in Python installations, but would enable some additional functionality #import Levenshtein (edit_dist) #import infomap (info_cluster) #import networkx as nx (info_cluster) ## progress bar def update_progress(progress): barLength = 10 # Modify this to change the length of the progress bar status = "" if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 status = "error: progress var must be float\r\n" if progress < 0: progress = 0 status = "Halt...\r\n" if progress >= 1: progress = 1 status = "Done...\r\n" block = int(round(barLength*progress)) text = "\rPercent: [{0}] {1}% {2}".format( "#"*block + "-"*(barLength-block), progress*100, status) sys.stdout.write(text) sys.stdout.flush() #######read input############ def read_10x(pathin): """Return Pandas Dataframe containing 10x dataset """ mat=scipy.io.mmread(os.path.join(pathin, "matrix.mtx")) genes_path = os.path.join(pathin, "genes.tsv") gene_ids = [row[0] for row in csv.reader(open(genes_path), delimiter="\t")] gene_names = [row[1] for row in csv.reader(open(genes_path), delimiter="\t")] gene_final = [x+'_'+y for x,y in zip(gene_ids,gene_names)] barcodes_path = os.path.join(pathin, "barcodes.tsv") barcodes = [row[0][0:14] for row in csv.reader(open(barcodes_path), delimiter="\t")] DGE=pd.DataFrame(mat.toarray()) DGE.index=gene_final DGE.columns=barcodes return DGE def genenames_from10x(genelist): """Return gene names from 10x index generated with read_10x """ genesymbol=[] #ensemblid=[] for i in range(len(genelist)): curgene=genelist[i] starts=[] for x in re.finditer('_',curgene): starts.append(x.start()+1) genesymbol.append(curgene[starts[-1]:]) return genesymbol#,ensemblid def genenames_from10x_mod(genelist): """Return gene names from 10x index generated with read_10x """ genesymbol=[] #ensemblid=[] for i in range(len(genelist)): curgene=genelist[i] starts=[] for x in re.finditer('_',curgene): starts.append(x.start()+1) genesymbol.append(curgene[starts[0]:]) return genesymbol#,ensemblid def collapse2gene(DGE): DGE_gene=DGE.copy() DGE_gene.index=genenames_from10x(DGE_gene.index) DGE_gene=DGE_gene.groupby(DGE_gene.index).sum() return DGE_gene def guide2gene(guide): """get genename between underscores""" underscore_pos = [] count=0 if ('INTERGENIC' in guide): nameout='INTERGENIC' elif ('_' in guide): for x in re.finditer('_',guide): if count<2: underscore_pos.append(x.span()[1]) nameout=re.sub('sg','',guide[underscore_pos[0]:underscore_pos[1]-1]) else: nameout=guide return nameout def get_batches(cbcs): """Return batch - last underscore in column names""" batchvec=[] for cell in cbcs: starts=[] for x in re.finditer('_',cell): starts.append(x.start()+1) batchvec.append(cell[starts[-2]:]) return np.array(batchvec) def genelevel_dict(GUIDES_DICT): """Collapse guide level dictionary to gene level using guide2gene""" genes=[guide2gene(x) for x in GUIDES_DICT.keys()] GUIDES_DICT_GENES={} for gene in genes: GUIDES_DICT_GENES[gene]=[] for key in GUIDES_DICT.keys(): GUIDES_DICT_GENES[guide2gene(key)].extend(GUIDES_DICT[key]) return GUIDES_DICT_GENES ####transform data####### def tp10k_transform(DGE,norm_factor=1.0e4): """normalize columns of pandas dataframe to sum to a constant, by default 10,000""" return(norm_factor*(DGE / DGE.sum())) def Zcells(DGE): """Z transformation of columns of pandas""" DGEZ=DGE.copy() DGEZ=pd.DataFrame(sklearn.preprocessing.scale(DGE,axis=0)) DGEZ.index=DGE.index DGEZ.columns=DGE.columns return DGEZ def Zgenes(DGE,batchvec=None): """Z transformation of rows of pandas, option for per batch normalization""" DGEZ=DGE.copy() if batchvec is None: DGEZ=pd.DataFrame(sklearn.preprocessing.scale(DGEZ,axis=1)) DGEZ.columns=DGE.columns DGEZ.index=DGE.index else: batch=np.unique(batchvec) for curbatch in batch: DGEZ.ix[:,np.array(batchvec)==curbatch]=sklearn.preprocessing.scale(DGEZ.ix[:,np.array(batchvec)==curbatch],axis=1) return DGEZ def Zgenes_floor(DGE,floor=0,batchvec=None): """Z transformation of rows of pandas dataframe, with flooring of std dev, option for per batch normalization""" DGEZ=DGE.copy() if batchvec is None: curstd=DGE.std(axis=1)+floor curmean=DGE.mean(axis=1) curZ=(DGEZ.subtract(curmean,axis=0)).divide(curstd,axis=0) DGEZ=curZ DGEZ.columns=DGE.columns DGEZ.index=DGE.index else: batch=np.unique(batchvec) for curbatch in batch: curDGE=DGEZ.ix[:,np.array(batchvec)==curbatch] curstd=curDGE.std(axis=1)+floor curmean=curDGE.mean(axis=1) curZ=(curDGE.subtract(curmean,axis=0)).divide(curstd,axis=0) DGEZ.ix[:,np.array(batchvec)==curbatch]=np.array(curZ) return DGEZ def Centergenes(DGE,batchvec=None): """Median centering of rows of pandas, option for per batch normalization""" DGEC=DGE.copy() if batchvec is None: DGEC=DGEC.subtract(DGEC.median(axis=1),axis='rows') else: batch=np.unique(batchvec) for curbatch in batch: DGEC.ix[:,np.array(batchvec)==curbatch]=DGEC.ix[:,np.array(batchvec)==curbatch].subtract(DGEC.ix[:,np.array(batchvec)==curbatch].median(axis=1),axis='rows') return DGEC def permute_matrix(DGE,bins=20,verbose=0): """Permute genes based on similar expression levels""" DGE_perm=DGE.copy() GSUMS=np.sum(DGE,axis=1) breakvec = np.linspace(1,100,bins) breaks=[] for breaker in breakvec: breaks.append(np.percentile(GSUMS,breaker)) breaks=np.unique(breaks) for i in range(len(breaks)-1): if verbose==1: print(np.round((1.0*i)/(len(breaks)-1))) for j in range(len(DGE.columns)): curlogical=np.logical_and(GSUMS>breaks[i],GSUMS<=breaks[i+1]) DGE_perm.ix[curlogical,j]=np.random.permutation(DGE_perm.ix[curlogical,j]) return DGE_perm def downsample_reads(DF,per_reads=1.0,nrpc=None): DF_mod=DF.copy() numgenes=np.shape(DF_mod)[0] genenames=DF_mod.index DF_mod.index=range(numgenes) cells=DF_mod.columns readspercell=np.sum(DF_mod,axis=0) totalreads =np.sum(readspercell) newreads =np.round(totalreads*per_reads) cellpercents=np.divide(1.0*readspercell,totalreads) if nrpc: newreadspercell=nrpc else: newreadspercell=[int(x) for x in np.round(np.multiply(cellpercents,newreads))] DF_out=pd.DataFrame() for i in range(len(cells)): vectorize=[] curcell=DF_mod[cells[i]] curcell=curcell[curcell!=0] for j in curcell.index: vectorize.extend([j]*curcell[j]) vec_sample=np.random.choice(vectorize,size=newreadspercell[i],replace=False) sampled_vec=np.histogram(vec_sample,bins=range(numgenes+1))[0] DF_out[cells[i]]=sampled_vec DF_out.index=genenames return DF_out def downsampler(DF,percell=1.0,perreads=1.0): if percell==1.0: DF_sampled=DF.copy() else: newcells=int(np.round(np.shape(DF)[1]*percell)) DF_sampled=DF.sample(newcells,axis=1) if perreads==1.0: return DF_sampled else: return downsample_reads(DF_sampled,perreads) ###########generate covariates######### def dict2X(GUIDES_DICT,cbcs): """convert guide cbc dictionary into covariate matrix""" X=pd.DataFrame() for key in GUIDES_DICT.keys(): curkey=[] for cbc in cbcs: if cbc in GUIDES_DICT[key]: curkey.append(1) else: curkey.append(0) X[key]=np.array(curkey) X.index=cbcs return X def clusters2X(clusters,cbcs): """convert cell cluster cbc dictionary into covariate matrix""" clusterun=clusters.columns X=pd.DataFrame(np.zeros((len(cbcs),len(clusterun)))) X.index=cbcs clusters_intersect=clusters.loc[list(set(clusters.index).intersection(set(cbcs)))] X.loc[clusters_intersect.index]=clusters_intersect return X def Xguides2genes(DF): Xgene=DF.copy() Xgene=Xgene.T Xgene.index=[guide2gene(x) for x in Xgene.index] Xgene_group=(Xgene.groupby(Xgene.index).sum()>0).sum() XgeneF=1.0*(Xgene.groupby(Xgene.index).sum()>0).T return XgeneF def Y2FlatCov(Y,verbose=0): ngenes=np.shape(Y)[0] triuind=np.triu_indices(ngenes) curnames=Y.index covgenes=[curnames[x]+'-'+curnames[y] for x,y in zip(triuind[0],triuind[1])] triu_mask=np.triu(np.ones((ngenes,ngenes))).astype(np.bool) ncells=np.shape(Y)[1] i=0 COVout=pd.DataFrame(np.zeros((len(triuind[0]),ncells))) COVout.columns=Y.columns for col in Y: update_progress(np.divide(1.0*i,ncells)) cell=pd.DataFrame(Y[col]) #cell=np.divide(cell,np.linalg.norm(cell)) cellcov=cell.dot(cell.T) triucellcov=cellcov.where(np.triu(np.ones(cellcov.shape)).astype(np.bool)).values.flatten() triucellcov=triucellcov[~numpy.isnan(triucellcov)] COVout[col]=triucellcov i+=1 COVout.index=covgenes return COVout def create_interactions(DF): """Take covariate matrix and generate pairwise interaction matrix between covariates""" INTERACT=pd.DataFrame() dfcolumns=DF.columns groupthese=[] for i in range(len(dfcolumns)): for j in range(len(dfcolumns)): name1=dfcolumns[i] name2=dfcolumns[j] if(i<j): twonames=np.sort(list(set([str(name1),str(name2)]))) if len(twonames)==2: INTERACT[str(name1)+'-'+str(name2)]=np.array(DF.ix[:,i])*np.array(DF.ix[:,j]) groupthese.append(str(twonames[0])+'-'+str(twonames[1])) #INTERACT.columns=[guide2gene(x.split('-')[0])+'-'+guide2gene(x.split('-')[1]) for x in INTERACT.columns] INTERACT=INTERACT.T INTERACT['genes']=INTERACT.index INTERACT=INTERACT.groupby(groupthese).sum().T INTERACT=INTERACT>0 INTERACT.index=DF.index return(1.0*INTERACT) def create_interactions_nothresh(DF): """Take covariate matrix and generate pairwise interaction matrix between covariates""" INTERACT=pd.DataFrame() dfcolumns=DF.columns groupthese=[] for i in range(len(dfcolumns)): for j in range(len(dfcolumns)): name1=dfcolumns[i] name2=dfcolumns[j] if(i<j): twonames=np.sort(list(set([str(name1),str(name2)]))) if len(twonames)==2: INTERACT[str(name1)+'-'+str(name2)]=np.array(DF.ix[:,i])*np.array(DF.ix[:,j]) groupthese.append(str(twonames[0])+'-'+str(twonames[1])) #INTERACT.columns=[guide2gene(x.split('-')[0])+'-'+guide2gene(x.split('-')[1]) for x in INTERACT.columns] INTERACT=INTERACT.T INTERACT=INTERACT.groupby(groupthese).sum().T INTERACT.index=DF.index return(1.0*INTERACT) def create_3_interactions(DF): """Take covariate matrix and generate three-way interaction matrix between covariates""" INTERACT=pd.DataFrame() dfcolumns=DF.columns groupthese=[] for i in range(len(dfcolumns)): for j in range(len(dfcolumns)): for k in range(len(dfcolumns)): if((i<j)&(i<k)): name1=dfcolumns[i] name2=dfcolumns[j] name3=dfcolumns[k] threenames=np.sort(list(set([str(name1),str(name2),str(name3)]))) if len(threenames)==3: INTERACT[str(name1)+'-'+str(name2)+'-'+str(name3)]=np.array(DF.ix[:,i])*np.array(DF.ix[:,j])*np.array(DF.ix[:,k]) groupthese.append(str(threenames[0])+'-'+str(threenames[1])+'-'+str(threenames[2])) #INTERACT.columns=[guide2gene(x.split('-')[0])+'-'+guide2gene(x.split('-')[1])+'-'+guide2gene(x.split('-')[2]) for x in INTERACT.columns] INTERACT=INTERACT.T INTERACT['genes']=INTERACT.index INTERACT=INTERACT.groupby(groupthese).sum().T INTERACT=INTERACT>0 INTERACT.index=DF.index return(1.0*INTERACT) def create_3_interactions_nothresh(DF): """Take covariate matrix and generate three-way interaction matrix between covariates""" INTERACT=pd.DataFrame() dfcolumns=DF.columns groupthese=[] for i in range(len(dfcolumns)): for j in range(len(dfcolumns)): for k in range(len(dfcolumns)): if((i<j)&(i<k)): name1=dfcolumns[i] name2=dfcolumns[j] name3=dfcolumns[k] threenames=np.sort(list(set([str(name1),str(name2),str(name3)]))) if len(threenames)==3: INTERACT[str(name1)+'-'+str(name2)+'-'+str(name3)]=np.array(DF.ix[:,i])*np.array(DF.ix[:,j])*np.array(DF.ix[:,k]) groupthese.append(str(threenames[0])+'-'+str(threenames[1])+'-'+str(threenames[2])) #INTERACT.columns=[guide2gene(x.split('-')[0])+'-'+guide2gene(x.split('-')[1])+'-'+guide2gene(x.split('-')[2]) for x in INTERACT.columns] INTERACT=INTERACT.T INTERACT['genes']=INTERACT.index INTERACT=INTERACT.groupby(groupthese).sum().T INTERACT.index=DF.index return(1.0*INTERACT) #############Linear Model Stuff######## def cv_rsq(Y,X,k=5,per=0.8,adj=[],relcel=[]): Y_tmp=Y.copy() X_tmp=X.copy() rsq=[] for i in range(k): print(i) numsamples=int(np.round(per*len(Y_tmp))) train=np.random.choice(range(len(Y_tmp)),size=numsamples,replace=False) traincells=Y_tmp.index[train] testcells=list(set(Y_tmp.index)-set(traincells)) print('1',len(testcells)) if len(relcel)>0: testcells=list(set(testcells).intersection(set(relcel))) print('2',len(testcells)) Y_train=Y_tmp.loc[traincells] Y_test=Y_tmp.loc[testcells] flag=0 X_train=X_tmp.loc[traincells] X_test=X_tmp.loc[testcells] lmfit=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=0.0005,max_iter=10000)#linear_model.Ridge lmfit.fit(X_train,Y_train) if len(adj)>0: X_train_adj=bayes_cov_col(Y_train,X_train,adj,lmfit) lmfit.fit(X_train_adj,Y_train) X_test_adj=bayes_cov_col(Y_test,X_test,adj,lmfit) rsq.append(lmfit.score(X_test_adj,Y_test)) else: rsq.append(lmfit.score(X_test,Y_test)) return rsq def marginal_covariates(y,x,k=4,percent=0.8): """Input is observations and list of covariates like guides, qc, batch, guide interactions, cell types, cell type interactions perform k-fold CV on xx percent of data for each of the 2^n combinations of covariates """ if isinstance(x,list): numsamples=int(np.round(percent*len(y))) X=pd.concat(x,axis=1) # rsqall=[] # for i in range(k): # print(i) # train=np.random.choice(range(len(y)),size=numsamples,replace=False) # traincells=y.index[train] # testcells=list(set(y.index)-set(traincells)) # X_train=X.loc[traincells] # Y_train=y.loc[traincells] # X_test=X.loc[testcells] # Y_test=y.loc[testcells] # enet=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=0.0012,max_iter=10000) # enet.fit(X_train,Y_train) # print('model has been fit') # rsqall.append(enet.score(X_test,Y_test)) rsqind=[] big_resid=[] for j in range(len(x)): print(j) rsqk=[] for i in range(k): print(k) train=np.random.choice(range(len(y)),size=numsamples,replace=False) traincells=y.index[train] testcells=list(set(y.index)-set(traincells)) Y_train=y.loc[traincells] Y_test=y.loc[testcells] flag=0 if j==0: X_train=x[j].loc[traincells] X_test=x[j].loc[testcells] lmfit=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=0.0005,max_iter=10000) else: X=pd.concat(x[0:j],axis=1) X_train=X.loc[traincells] X_test=X.loc[testcells] lmfit.fit(X_train,Y_train) rsqk.append(lmfit.score(X_test,Y_test)) Yhat=lmfit.predict(X_test) if flag==0: df_resid=Yhat-Y_test flag=1 else: df_resid = (df_resid + (Yhat-Y_test)) / 2.0 rsqind.append(rsqk) big_resid.append(df_resid) else: print('x is not a list') return #df_rsq=pd.concat([pd.DataFrame(rsqind)],axis=0) return rsqind def crosscov_interactions(X1,X2): cols1=X1.columns cols2=X2.columns Xout=pd.DataFrame() for i in range(len(cols1)): for j in range(len(cols2)): if i>j: curi=cols1[i] curj=cols2[j] Xout[str(curi)+'_'+str(curj)]=X1[curi]*X2[curj] return Xout def nonzeroX2dict(X): dict_out={} for col in X.columns: curcol=X[col] dict_out[col]=curcol[curcol>0].index return dict_out def bayes_cov_col(Y,X,cols,lm): """ @Y = Expression matrix, cells x x genes, expecting pandas dataframe @X = Covariate matrix, cells x covariates, expecting pandas dataframe @cols = The subset of columns that the EM should be performed over, expecting list @lm = linear model object """ #EM iterateit Yhat=pd.DataFrame(lm.predict(X)) Yhat.index=Y.index Yhat.columns=Y.columns SSE_all=np.square(Y.subtract(Yhat)) X_adjust=X.copy() df_SSE = [] df_logit = [] for curcov in cols: curcells=X[X[curcov]>0].index if len(curcells)>2: X_notcur=X.copy() X_notcur[curcov]=[0]*len(X_notcur) X_sub=X_notcur.loc[curcells] Y_sub=Y.loc[curcells] GENE_var=2.0*Y_sub.var(axis=0) vargenes=GENE_var[GENE_var>0].index Yhat_notcur=pd.DataFrame(lm.predict(X_sub)) Yhat_notcur.index=Y_sub.index Yhat_notcur.columns=Y_sub.columns SSE_notcur=np.square(Y_sub.subtract(Yhat_notcur)) SSE=SSE_all.loc[curcells].subtract(SSE_notcur) SSE_sum=SSE.sum(axis=1) SSE_transform=SSE.div(GENE_var+0.5)[vargenes].sum(axis=1) logitify=np.divide(1.0,1.0+np.exp(SSE_transform))#sum)) df_SSE.append(SSE_sum) df_logit.append(logitify) X_adjust[curcov].loc[curcells]=logitify return X_adjust def run_model(Y,X,EM_DICT=None,verbose=0,modalpha=0.0005,removecells=1): """ @Y = Expression matrix, cellx x genes, expecting pandas dataframe @X = Covariate matrix, cells x covariates, expecting pandas dataframe @EM_DICT = A dictionary of cell labels for each perturbation to perform the EM-step over, expecting dict """ enet=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=modalpha,max_iter=10000) enet.fit(X,Y) if verbose==1: print(enet.score(X,Y)) Be=pd.DataFrame(enet.coef_) Be.columns=X.columns Be.index=Y.columns #EM iterateit Yhat=pd.DataFrame(enet.predict(X)) Yhat.index=Y.index Yhat.columns=Y.columns SSE_all=np.square(Y.subtract(Yhat)) X_adjust=X.copy() X_adjust['unperturbed']=[0]*len(X) df_SSE = [] df_logit = [] df_pf = [] if EM_DICT is not None: for curcov in EM_DICT.keys(): curcells=EM_DICT[curcov] X_notcur=X.copy() X_notcur[curcov]=[0]*len(X_notcur) X_sub=X_notcur.loc[curcells] Y_sub=Y.loc[curcells] GENE_var=2.0*Y_sub.var(axis=0) vargenes=GENE_var[GENE_var>0].index Yhat_notcur=pd.DataFrame(enet.predict(X_sub)) Yhat_notcur.index=Y_sub.index Yhat_notcur.columns=Y_sub.columns SSE_notcur=np.square(Y_sub.subtract(Yhat_notcur)) SSE=SSE_all.loc[curcells].subtract(SSE_notcur) SSE_sum=SSE.sum(axis=1) SSE_transform=SSE.div(GENE_var+0.5)[vargenes].sum(axis=1) logitify=np.divide(1.0,1.0+np.exp(SSE_sum))#SSE_transform))#sum)) df_SSE.append(SSE_sum) df_logit.append(logitify) pf=np.mean(logitify>0.99) if verbose==1: print(curcov,pf) df_pf.append([curcov,pf]) weak_perturb=1.0*(logitify<0.1) X_adjust[curcov].loc[curcells]=logitify X_adjust['unperturbed'].loc[curcells]=weak_perturb print('done with EM') #refit model enet=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=0.0005,max_iter=10000) if removecells==1: goodcells=X_adjust['unperturbed']!=1 print(np.mean(goodcells)) Y=Y[goodcells] X_adjust=X[goodcells] enet.fit(X_adjust,Y) Yhat=pd.DataFrame(enet.predict(X_adjust)) Yhat.index=Y.index Yhat.columns=Y.columns if verbose==1: print(enet.score(X_adjust,Y)) Be=pd.DataFrame(enet.coef_) Be.columns=X_adjust.columns Be.index=Y.columns RES_out=Y.subtract(Yhat) if EM_DICT is not None: return(Be,X_adjust,RES_out,df_pf)#,df_SSE,df_logit) return(Be,X_adjust,RES_out)#,df_SSE,df_logit) def run_model_bycol(Y,X,EM_cols=None,modalpha=0.005,verbose=0): """ @Y = Expression matrix, expecting pandas dataframe, cells x genes @X = Covariate matrix, expecting pandas dataframe, cells x covariates @EM_cols = The subset of columns that the EM should be performed over, list """ enet=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=modalpha,max_iter=10000) enet.fit(X,Y) if verbose==1: print(enet.score(X,Y)) Be=pd.DataFrame(enet.coef_) Be.columns=X.columns Be.index=Y.columns Yhat=pd.DataFrame(enet.predict(X)) Yhat.index=Y.index Yhat.columns=Y.columns if EM_cols is not None: X_adjust=bayes_cov_col(Y,X,EM_cols,enet) #print('done with EM') #refit model enet=sklearn.linear_model.ElasticNet(precompute=True,l1_ratio=0.5,alpha=0.0004,max_iter=10000) enet.fit(X_adjust,Y) Yhat=pd.DataFrame(enet.predict(X_adjust)) Yhat.index=Y.index Yhat.columns=Y.columns if verbose==1: print(enet.score(X_adjust,Y)) Be=pd.DataFrame(enet.coef_) Be.columns=X_adjust.columns Be.index=Y.columns else: X_adjust=X.copy() RES_out=Y.subtract(Yhat) return(Be,X_adjust,RES_out) def count_27(B1,B2,B3,thresh=0.01): vecs1=[B1<(-thresh),np.abs(B1)<=thresh,B1>thresh] vecs2=[B2<(-thresh),np.abs(B2)<=thresh,B2>thresh] vecs3=[B3<(-thresh),np.abs(B3)<=thresh,B3>thresh] COUNTER=[] for i in range(3): for j in range(3): for k in range(3): COUNTER.append(np.sum(np.logical_and(np.logical_and(vecs1[i],vecs2[j]),vecs3[k]))) return COUNTER def return_sorted_list(in1): output = [0] * len(in1) for i, x in enumerate(sorted(range(len(in1)), key=lambda y: in1[y])): output[x] = i return np.array(output) def index_27(B1,B2,B3,df_order,thresh=0.01): vecs1=[B1<(-thresh),np.abs(B1)<=thresh,B1>thresh] vecs2=[B2<(-thresh),np.abs(B2)<=thresh,B2>thresh] vecs3=[B3<(-thresh),np.abs(B3)<=thresh,B3>thresh] Ball=pd.concat([B1,B2,B3],axis=1) iarray=pd.DataFrame(['none']*len(B1)) iarray.index=B1.index for i in range(3): for j in range(3): for k in range(3): totsum=int(np.sum(np.logical_and(np.logical_and(vecs1[i],vecs2[j]),vecs3[k]))) iarray[np.logical_and(np.logical_and(vecs1[i],vecs2[j]),vecs3[k])]=str(i-1)+' '+str(j-1)+' '+str(k-1) iarray['type']=['none']*len(B1) iarray['order']=[0]*len(B1) iarray['effect']=[0]*len(B1) numbering=0 for i in range(len(df_order)): curgroup=df_order.index[i] curtype=df_order.ix[i,'type'] matches=iarray[0]==curgroup nummatches=np.sum(matches) if nummatches>0: Bmatch=Ball[matches] intarray=[int(x) for x in curgroup.split(' ')] Bmod=Bmatch.copy() l=0 for col in Bmod.columns: Bmod[col]=intarray[l]*Bmod[col] l+=1 Bsum=pd.DataFrame(Bmod.sum(axis=1)) ordervec=return_sorted_list(-np.array(Bsum[0])) ordervec=ordervec+numbering iarray.ix[matches,'type']=curtype iarray.ix[matches,'order']=ordervec iarray.ix[matches,'effect']=np.array(Bsum[0]) numbering+=np.max(ordervec)+1 return iarray def hyper_overlap(genes1,genes2,M): curoverlap=genes1.intersection(genes2) x=len(curoverlap) n=len(genes1) N=len(genes2) pval=1.0-scipy.stats.hypergeom.cdf(x,M, n, N) return pval def hyper_category(df_cats,genes_in): pvals=[] cat_un=np.unique(df_cats[0]) genes2=set(genes_in).intersection(set(df_cats.index)) for cat in cat_un: genes1=set(df_cats[df_cats[0]==cat].index) pvals.append(hyper_overlap(genes1,genes2,len(df_cats))) df_pvals=pd.DataFrame(-np.log10(statsmodels.sandbox.stats.multicomp.fdrcorrection0(pvals)[1])) df_pvals.index=cat_un return df_pvals def numbins(x): iqr=((np.percentile(x, 75) - np.percentile(x, 25))) if iqr==0.0: return int(np.ceil(np.sqrt(len(x)))) else: bins=int(np.ceil((np.max(x)-np.min(x))/((iqr)/np.power(len(x),0.33333333)))) return bins def get_1sidepval(B,joint,edges,gsums,gvar,nguides): Bpval=B.copy() #create index lookup for each gene to the pairs genevec=np.array(range(len(gsums))) guidevec=np.array(range(len(nguides))) gsums=np.array(gsums) gvar=np.array(gvar) nguides=np.array(nguides) rowindex_dict={} colindex_dict={} for i in range(len(edges[0])-1): for j in range(len(edges[1])-1): logical_gsums=np.logical_and(gsums>=edges[0][i],gsums<edges[0][i+1]) logical_gvar=np.logical_and(gvar>=edges[1][j],gvar<edges[1][j+1]) logical_both=np.logical_and(logical_gsums,logical_gvar) if np.sum(logical_both)>0: rowindex_dict[(i,j)]=genevec[logical_both] for i in range(len(edges[2])-1): logical_nguides=np.logical_and(nguides>=edges[2][i],nguides<edges[2][i+1]) if np.sum(logical_nguides)>0: colindex_dict[i]=guidevec[logical_nguides] maxedges=len(edges[3])-2 for key in rowindex_dict.keys(): for guidekey in colindex_dict.keys(): curjoint=joint[key[0]][key[1]][guidekey] curjoint /= curjoint.sum() curjoint=pd.DataFrame(curjoint) curjoint.index=edges[3][:-1] curjoint=curjoint.cumsum() curmat=Bpval.ix[rowindex_dict[key],colindex_dict[guidekey]] lookup_mat=curmat.copy() bp=pd.DataFrame(np.searchsorted(curjoint.index,curmat)) bpmax=bp>maxedges bp[bpmax]=0 for i in range(np.shape(bp)[1]): lookup=1.0-np.round(np.array(curjoint)[bp.ix[:,i]],10) lookup_mat.ix[:,i]=lookup lookup_mat.ix[np.where(bpmax)]=0 Bpval.ix[rowindex_dict[key],colindex_dict[guidekey]]=lookup_mat Bpval[B<=0]=1.0 return Bpval #create permuted coefficient matrix def shuffle_mat(X,Xother,Y): flag=0 X_shuffle=X.copy() X_shuffle.index=np.random.permutation(X.index) X_shuffle=X_shuffle.loc[Y.index] X3_shuffle=pd.concat([X_shuffle,Xother],axis=1) return X3_shuffle def make_simple_shufs(X,Xother,Y,modalpha=0.005,shufnum=3): Be_shuffs=pd.DataFrame() flag=0 for i in range(shufnum): print(i) X3_shuffle=shuffle_mat(X,Xother,Y) Be_shuf,X_adjust,RES=run_model(Y,X3_shuffle,modalpha=modalpha,verbose=0) if flag==0: Be_shuffs=Be_shuf flag=1 else: Be_shuffs=pd.concat([Be_shuffs,Be_shuf]) return Be_shuffs def make_shufs(X,Xother,Y,shufnum=3,modalpha=0.005,verbose=1): Be_shuffs=pd.DataFrame() flag=0 for i in range(shufnum): if verbose==1: print(i) X3_shuffle=shuffle_mat(X,Xother,Y) Be_shuf,X_adjust,RES=run_model_bycol(Y,X3_shuffle,modalpha=modalpha,EM_cols=X.columns,verbose=0) if flag==0: Be_shuffs=Be_shuf flag=1 else: Be_shuffs=pd.concat([Be_shuffs,Be_shuf]) return Be_shuffs def make_shufs_linear_sub(X,Xother,Y,shufnum=3): Be_shuffs=pd.DataFrame() flag=0 for i in range(shufnum): X3_shuffle=shuffle_mat(X,Xother,Y) from sklearn import linear_model lm=linear_model.Ridge(fit_intercept=True,max_iter=10000) lm.fit(X3_shuffle,Y) Be_shuf=pd.DataFrame(lm.coef_) Be_shuf.index=Y.columns Be_shuf.columns=X3_shuffle.columns if flag==0: Be_shuffs=Be_shuf flag=1 else: Be_shuffs=pd.concat([Be_shuffs,Be_shuf]) return Be_shuffs def make_shufs_linear(X,Y,shufnum=3): Be_shuffs=pd.DataFrame() flag=0 for i in range(shufnum): X_shuffle=X.copy() X_shuffle.index=np.random.permutation(X.index) X_shuffle=X_shuffle.loc[Y.index] from sklearn import linear_model lm=linear_model.Ridge(fit_intercept=True,max_iter=10000) lm.fit(X_shuffle,Y) Be_shuf=pd.DataFrame(lm.coef_) Be_shuf.index=Y.columns Be_shuf.columns=X_shuffle.columns if flag==0: Be_shuffs=Be_shuf flag=1 else: Be_shuffs=pd.concat([Be_shuffs,Be_shuf]) return Be_shuffs #get FDR matrix def fdr_coefs(B,B_shuf,gsums,gvar,nguides,mybins=[30,30,20,1000]): numshufs=(1.0*len(B_shuf))/len(B) if numshufs%1!=0: print('you screwed up permuted is not integer multiple of nonpermuted') return numshufs=int(numshufs) gsums_rep=np.array([list(gsums)]*numshufs).flatten() gvar_rep=np.array([list(gvar)]*numshufs).flatten() nguides=np.array(nguides) flag=0 for i in range(np.shape(B_shuf)[1]): datas=pd.DataFrame([gsums_rep,gvar_rep,np.array([nguides[i]]*len(gsums_rep)),np.array(B_shuf.ix[:,i])]).T if flag==0: SHUFCOV=datas flag=1 else: SHUFCOV=pd.concat([SHUFCOV,datas]) numBins = mybins # number of bins in each dimension SHUFPOS=SHUFCOV.copy() SHUFPOS=SHUFPOS[SHUFPOS[3]>=0] joint_pos, edges_pos = np.histogramdd(np.array(SHUFPOS), bins=numBins) joint_pos /= joint_pos.sum() SHUFNEG=SHUFCOV.copy() SHUFNEG=SHUFNEG[SHUFNEG[3]<=0] SHUFNEG[3]=SHUFNEG[3].abs() joint_neg, edges_neg = np.histogramdd(np.array(SHUFNEG), bins=numBins) joint_neg /= joint_neg.sum() print('Created 4D Null Distributions') B_sign = np.sign(B) Bpos=B.copy() Bpos[B<0]=0 Bneg=B.copy() Bneg[B>0]=0 Bneg=Bneg.abs() Bpval_pos=get_1sidepval(Bpos,joint_pos,edges_pos,gsums,gvar,nguides) print('positive pvals calculated') Bpval_neg=get_1sidepval(Bneg,joint_neg,edges_neg,gsums,gvar,nguides) print('negative pvals calculated') BFDR=Bpval_pos.copy() BFDR[Bpval_neg<1]=Bpval_neg[Bpval_neg<1] for col in BFDR.columns: curcol=BFDR[col] curcol_logical=curcol<1 BFDR.ix[curcol_logical,col]=-np.log10(statsmodels.sandbox.stats.multicomp.fdrcorrection0(curcol[curcol_logical])[1]) BFDR=np.multiply(B_sign,BFDR) print('FDR correction performed') return BFDR #get FDR matrix def fdr_colwise_coefs(B,B_shuf): BFDR=B.copy() for col in BFDR.columns: curcol=B[col] curfdr=BFDR[col] curecdf=ECDF(B_shuf[col]) curcol_pos=curcol>0 curcol_neg=curcol<0 sign_col=np.sign(curcol) curfdr[curcol_pos]=-np.log10(statsmodels.sandbox.stats.multicomp.fdrcorrection0(1.0-curecdf(curcol[curcol_pos]))[1]) curfdr[curcol_neg]=np.log10(statsmodels.sandbox.stats.multicomp.fdrcorrection0(curecdf(curcol[curcol_neg]))[1]) BFDR[col]=curfdr print('FDR correction performed') return BFDR def pointwise_p_colwisefdr(B,Bshuf): BFDR=B.copy() for col in B.columns: probs=[] sign=[] for ind in B.index: curecdf=ECDF(Bshuf[col].ix[ind]) curval=B[col].ix[ind] if curval>0: sign.append(1) probs.append(1.0-curecdf(B[col].ix[ind])) else: sign.append(-1) probs.append(curecdf(B[col].ix[ind])) probs=np.array(probs) sign=np.array(sign) BFDR[col]=sign*(-np.log10(statsmodels.sandbox.stats.multicomp.fdrcorrection0(probs)[1])) return BFDR def pointwise_p_rowwisefdr(B,Bshuf): BFDR=B.copy() SIGN=B.copy() for col in B.columns: probs=[] sign=[] for ind in B.index: curecdf=ECDF(Bshuf[col].ix[ind]) curval=B[col].ix[ind] if curval>0: sign.append(1) probs.append(1.0-curecdf(B[col].ix[ind])) else: sign.append(-1) probs.append(curecdf(B[col].ix[ind])) probs=np.array(probs) sign=np.array(sign) SIGN[col]=sign BFDR[col]=probs #rowwise FDR for ind in B.index: BFDR.ix[ind,:]=SIGN.ix[ind,:]*(-np.log10(statsmodels.sandbox.stats.multicomp.fdrcorrection0(BFDR.ix[ind,:])[1])) return BFDR def fregression_fdr(X,Y,B): FDR=pd.DataFrame() for i in Y.columns: pvals=-np.log10(sklearn.feature_selection.f_regression(X, Y[i])[1]) FDR[i]=pvals FDR.index=X.columns FDR=FDR.T FDR=np.sign(B)*FDR return FDR def compare_fdrs(BFDR,BFDR_down,thresh1=1.3,thresh2=1.3): COMPARE=pd.DataFrame() for col in BFDR.columns: col1=BFDR[col] col2=BFDR_down[col] a=np.sign(col1)*(col1.abs()>thresh1) b=np.sign(col2)*(col2.abs()>thresh2) CONF=sklearn.metrics.confusion_matrix(a,b,labels=[-1,0,1]) tp=CONF[0][0]+CONF[2][2] fp=CONF[0][2]+CONF[2][0]+CONF[1][0]+CONF[1][2] fn=CONF[0][1]+CONF[2][1] tn=CONF[1][1] sensitvitiy=np.divide(1.0*tp,tp+fn) specificity=np.divide(1.0*tn,tn+fp) COMPARE[col]=[tp,tn,fp,fn,sensitvitiy,specificity] COMPARE.index=['TP','TN','FP','FN','Sensitivity','Specificity'] return(COMPARE) #############data filtering############ def fano_variable(DGEtpm,input_mean=None,meanthresh=0.5,resthresh=0.05,f=0.25,highlight_genes=None,plot=0): #get mean and std for each gene if input_mean is None: popmean=np.log2(np.mean(DGEtpm,axis=1)+1) else: popmean=input_mean popstd=np.std(np.log2(DGEtpm+1),axis=1)#np.divide(np.std(DGEtpm,axis=1),popmean) thresh=meanthresh x=popmean[np.array(popmean>thresh)] y=popstd[np.array(popmean>thresh)] DGE_fit=DGEtpm[np.array(popmean>thresh)] #fit line lowess = sm.nonparametric.lowess lz_pred = lowess(y, x,frac=f,return_sorted=False) residuals=y-lz_pred if plot==1: plt.scatter(x,y,c=['red' if z>resthresh else 'blue' for z in residuals]) plt.xlabel('log2(Population Mean)') plt.ylabel('Standard Deviation') df_res=pd.DataFrame() df_res['residuals']=residuals df_res['mean']=x df_res['std']=y df_res.index=DGE_fit.index if highlight_genes: if plot==1: subset=df_res.loc[highlight_genes].dropna() for thisgene in subset.index: df_tmp=subset.loc[thisgene] plt.text(df_tmp['mean'],df_tmp['std'],thisgene,fontsize=16) return df_res #return variable genes ##########PCA stuff######################### def fb_pca(DGE,k=50): if 'fbpca' in sys.modules: [Ufb,Sfb,Vfb]=fbpca.pca(DGE,k) else: pca=sklearn.decomposition.PCA(n_components=k) pca.fit(DGE) Ufb=pca.fit_transform(DGE) Sfb=pca.explained_variance_ Vfb=pca.components_ Vfb=pd.DataFrame(Vfb).T Vfb.index=DGE.columns Ufb=pd.DataFrame(Ufb) Ufb.index=DGE.index return Ufb,Sfb,Vfb def project_ontoPC(U,DGE): DGE_t=DGE.copy().T Vfb_new=pd.DataFrame() #sscells=DGE_t.pow(2).sum(axis=1) for i in range(np.shape(U)[1]): Vfb_new[i]=DGE_t.dot(U[i]) Vfb_new=Vfb_new.T Vfb_new=Vfb_new#/sscells return Vfb_new.T def columnwise_compare_innermax(U1,U2): U_big=U1.copy() U_big=U_big.merge(U2,left_index=True,right_index=True) U_big.columns=range(len(U_big.columns)) genes1=set(U1.index) genes2=set(U2.index) jac=np.divide(1.0*len(genes1.intersection(genes2)),len(genes1.union(genes2))) print('jaccard gene overlap =',jac) cols1=np.shape(U1)[1] cols2=np.shape(U2)[1] mincols=np.min([cols1,cols2]) print(np.shape(U_big)) comparevec=[] for i in range(mincols): corrs=[] for j in range(mincols): corrs.append(np.abs(np.corrcoef(U_big.ix[:,j],U_big.ix[:,i+cols1])[0][1])) comparevec.append(np.max(corrs)) return comparevec def PC_noise(DGEZ,noiselevels=np.linspace(-2,2,20),reps=3,sig_pcs=40): PC_cor=pd.DataFrame() [Ufb,Sfb,Vfb]= fb_pca(DGEZ,k=sig_pcs) for noise in noiselevels: df_noise=pd.DataFrame() for rep in range(reps): DGE_Z_wnoise=DGEZ+np.random.normal(0,np.power(10.0,noise),np.shape(DGEZ)) [Ufb_noise,Sfb_noise,Vfb_noise]=fb_pca(DGE_Z_wnoise,k=sig_pcs) comparevec=[] for i in range(sig_pcs): corrs=[] for j in range(sig_pcs): corrs.append(np.abs(np.corrcoef(Ufb.ix[:,j],Ufb_noise.ix[:,i])[0][1])) comparevec.append(np.max(corrs)) df_noise[rep]=comparevec PC_cor[noise]=df_noise.mean(axis=1) return PC_cor def jackstraw(DGEZ,per=0.005,sig_pcs=40,reps=100,verbose=0): """substitute small percentage of features with permuted versions, compare actual to permuted to obtain significance""" ngenes=len(DGEZ) [Ufb,Sfb,Vfb]= fb_pca(DGEZ,k=sig_pcs) Ufb_null = pd.DataFrame() flag=0 #repeatedly permute and recalculate null PC distributions for i in range(reps): if (verbose==1): print('rep',i) shuf_genes=np.random.choice(range(ngenes),size=int(np.ceil(ngenes*per)),replace=False) DGEZ_perm=DGEZ.copy() DGEZ_perm.ix[shuf_genes,:]=np.array(DGEZ_perm.ix[shuf_genes,np.random.permutation(range(np.shape(DGEZ)[1]))]) [Ufb_perm,Sfb_perm,Vfb_perm]= fb_pca(DGEZ,k=sig_pcs) tmp_null=Ufb.ix[shuf_genes,:] if flag==0: Ufb_null=tmp_null flag=1 else: Ufb_null=pd.concat([Ufb_null,tmp_null]) PVALS=Ufb.copy() for i in range(sig_pcs): curecdf=ECDF(Ufb_null.ix[:,i]) curUfb=Ufb.ix[:,i] isnegative=curUfb<0.0 ispositive=curUfb>=0.0 #statsmodels.sandbox.stats.multicomp.fdrcorrection0 PVALS.ix[isnegative,i]=np.log10(curecdf(Ufb.ix[isnegative,i])) PVALS.ix[ispositive,i]=-np.log10(1-curecdf(Ufb.ix[ispositive,i])) PVALS[PVALS>5]=5 PVALS[PVALS<(-5)]=-5 return PVALS ##########significance testing############## def ttest_DGE(DGE1,DGE2,batch=None): """Ttest with batchwise comparison capability""" FC=[] PVALS=[] A=DGE1.T B=DGE2.T if batch is None: for gene in A: difmean=np.mean(A[gene])-np.mean(B[gene]) ttest=scipy.stats.ttest_ind(A[gene],B[gene],equal_var=False) FC.append(difmean) PVALS.append(np.sign(difmean)*(-np.log10(ttest[1]))) else: batchun=np.unique(batch[0]) for gene in A: difmean=[] pvals=[] curA=A[gene] curB=B[gene] for curbatch in batchun: curAbatch=curA[batch[0]==curbatch] curBbatch=curB[batch[1]==curbatch] curdiff=np.mean(curAbatch)-np.mean(curBbatch) difmean.append(curdiff) ttest=scipy.stats.ttest_ind(curAbatch,curBbatch,equal_var=False) pvals.append(np.sign(curdiff)*(-np.log10(ttest[1]))) FC.append(np.mean(difmean)) PVALS.append(np.sum(pvals)) return np.array(FC),np.array(PVALS) def within_across(B1,B2): """Compare correlations between two sets of regression coefficients""" D1=B1.copy() D2=B2.copy() D1=D1.groupby(D1.index).mean() D2=D2.groupby(D2.index).mean() genesin=list(set(D1.index).intersection(set(D2.index))) D1=D1.loc[genesin] D2=D2.loc[genesin] cor_list=[] compare_list=[] for col1 in D1.columns: for col2 in D2.columns: if col1 in D2.columns: cur1=D1[col1] cur2=D2[col2] gene1=guide2gene(col1) gene2=guide2gene(col2) curcor=np.corrcoef(cur1,cur2)[0][1] cor_list.append(curcor) if col1==col2: compare_list.append('same guide') elif gene1==gene2: compare_list.append('within') else: compare_list.append('across') df_compare=pd.DataFrame(compare_list) df_compare['correlations']=np.array(cor_list) return df_compare def within_without(B): """Compare correlations between perturbations targeting the same gene""" COR=pd.DataFrame(np.corrcoef(B.T)) COR.index=B.columns COR.columns=B.columns count1=0 samesies=[] difsies =[] intsies = [] for guide1 in COR.columns: count2=0 for guide2 in COR.columns: if (count1>count2)&(('NTC' not in guide1)&('NTC' not in guide2))&(('INTERGENIC' not in guide1)&('INTERGENIC' not in guide2)): underscore_pos = [] for x in re.finditer('_',guide1): underscore_pos.append(x.span()[1]) thisgene1=guide1[underscore_pos[0]:underscore_pos[1]-1] underscore_pos = [] for x in re.finditer('_',guide2): underscore_pos.append(x.span()[1]) thisgene2=guide2[underscore_pos[0]:underscore_pos[1]-1] if thisgene1==thisgene2: samesies.append(COR[guide1][guide2]) else: difsies.append(COR[guide1][guide2]) elif (count1>count2): intsies.append(COR[guide1][guide2]) count2+=1 count1+=1 return np.array(samesies),np.array(difsies),np.array(intsies) #####GO analysis################ def PCA2GO(DGEZ,sigpcs=15,thresh=2,repin=100,perin=0.005,fdr_thresh=0.1,species='human'): #Jackstraw PVALS=jackstraw(DGEZ,sig_pcs=sigpcs,reps=repin,per=perin) print('done with jackstraw') #go analysis path2db='Path2obo/db/' obodag = GODag(path2db+"go-basic.obo") if (species=='human'): geneid2gos = read_ncbi_gene2go(path2db+"gene2go", taxids=[9606]) print("{N:,} annotated genes".format(N=len(geneid2gos))) these_genes = DGEZ.index Xtable=pd.read_csv('Path2Xref/hg19_xref.txt',sep='\t') Xtable.index=Xtable['Approved Symbol'] entrez=[int(x) for x in np.unique(Xtable.loc[these_genes].dropna()['EntrezGene ID'])] elif(species=='mouse'): geneid2gos = read_ncbi_gene2go(path2db+"gene2go", taxids=[10090]) print("{N:,} annotated genes".format(N=len(geneid2gos))) these_genes = DGEZ.index Xtable=pd.read_csv('Path2xref/biomart_xref.mm10.txt',sep='\t') Xtable=Xtable[['Associated Gene Name','EntrezGene ID']].dropna() Xtable.index=Xtable['Associated Gene Name'] entrez=[int(x) for x in np.unique(Xtable.loc[these_genes].dropna()['EntrezGene ID'])] goeaobj = GOEnrichmentStudy( entrez, # List of mouse protein-coding genes geneid2gos, # geneid/GO associations obodag, # Ontologies propagate_counts = False, alpha = 0.05, # default significance cut-off methods = ['fdr_bh']) # defult multipletest correction method df_bigGO=pd.DataFrame() count=0 ngenes=len(PVALS) for pc in PVALS.columns: print(pc) df_GO=pd.DataFrame() curU=PVALS[pc] meanx=np.mean(curU) stdx=np.std(curU) threshlow=meanx-thresh*stdx threshhigh=meanx+thresh*stdx lookup_entrez_high=[int(x) for x in np.unique(Xtable.loc[curU[curU>threshhigh].index].dropna()['EntrezGene ID'])] lookup_entrez_low=[int(x) for x in np.unique(Xtable.loc[curU[curU<threshlow].index].dropna()['EntrezGene ID'])] # 'p_' means "pvalue". 'fdr_bh' is the multipletest method we are currently using. goea_results_high = goeaobj.run_study(lookup_entrez_high) indexlist=[] if len(lookup_entrez_high)>0: for i in range(len(goea_results_high)): if goea_results_high[i].p_fdr_bh<fdr_thresh: df_GO[i]=[-np.log10(goea_results_high[i].p_fdr_bh)] indexlist.append(goea_results_high[i].name) if len(lookup_entrez_low)>0: goea_results_low = goeaobj.run_study(lookup_entrez_low) for j in range(len(goea_results_high)): if goea_results_low[j].p_fdr_bh<fdr_thresh: df_GO[j+len(goea_results_high)+1]=[np.log10(goea_results_low[j].p_fdr_bh)] indexlist.append(goea_results_low[j].name) if(np.shape(df_GO)[0]==0): df_GO[0]=[0] df_GO.index=['NoGO'] else: df_GO=df_GO.T df_GO.index=indexlist df_GO.columns=[pc] df_GO=df_GO.groupby(df_GO.index).first() if count==0: df_bigGO=df_GO count=1 else: df_bigGO=df_bigGO.merge(df_GO,how='outer',left_index=True,right_index=True) df_bigGO=df_bigGO.fillna(0) if 'NoGO' in df_bigGO.index: df_bigGO=df_bigGO.drop('NoGO') return df_bigGO def DE2GO(df_p,background,sig_thresh=3,num_genes=None,fdr_thresh=0.1,species='human'): #go analysis path2db='PATH2GOobofile/db/' obodag = GODag(path2db+"go-basic.obo") if (species=='human'): geneid2gos = read_ncbi_gene2go(path2db+"gene2go", taxids=[9606]) print("{N:,} annotated genes".format(N=len(geneid2gos))) these_genes = background Xtable=pd.read_csv('PATH2hg19Xref/hg19_xref.txt',sep='\t') Xtable.index=Xtable['Approved Symbol'] entrez=[int(x) for x in np.unique(Xtable.loc[these_genes].dropna()['EntrezGene ID'])] elif(species=='mouse'): geneid2gos = read_ncbi_gene2go(path2db+"gene2go", taxids=[10090]) print("{N:,} annotated genes".format(N=len(geneid2gos))) these_genes = background Xtable=pd.read_csv('PATH2mm10xref/biomart_xref.mm10.txt',sep='\t') Xtable=Xtable[['Associated Gene Name','EntrezGene ID']].dropna() Xtable.index=Xtable['Associated Gene Name'] entrez=[int(x) for x in np.unique(Xtable.loc[these_genes].dropna()['EntrezGene ID'])] goeaobj = GOEnrichmentStudy( entrez, # List of mouse protein-coding genes geneid2gos, # geneid/GO associations obodag, # Ontologies propagate_counts = False, alpha = 0.05, # default significance cut-off methods = ['fdr_bh']) # defult multipletest correction method df_bigGO=pd.DataFrame() count=0 ngenes=len(df_p) xtable_genes=set(Xtable.index) for cluster in df_p.columns: print(cluster) df_GO=pd.DataFrame() cur_cluster=df_p[cluster] threshlow=(-sig_thresh)#np.percentile(cur_cluster,100.0*(1-np.divide(num_genes,ngenes))) threshhigh=sig_thresh#np.percentile(cur_cluster,100.0*(np.divide(num_genes,ngenes))) genes_high=cur_cluster[cur_cluster>threshhigh].index genes_high=list(xtable_genes.intersection(set(genes_high))) genes_low=cur_cluster[cur_cluster<threshlow].index genes_low=list(xtable_genes.intersection(set(genes_low))) lookup_entrez_high=[int(x) for x in np.unique(Xtable.loc[genes_high].dropna()['EntrezGene ID'])] lookup_entrez_low=[int(x) for x in np.unique(Xtable.loc[genes_low].dropna()['EntrezGene ID'])] # 'p_' means "pvalue". 'fdr_bh' is the multipletest method we are currently using. indexlist=[] if len(lookup_entrez_high)>2: goea_results_high = goeaobj.run_study(lookup_entrez_high) for i in range(len(goea_results_high)): if goea_results_high[i].p_fdr_bh<fdr_thresh: df_GO[i]=[-np.log10(goea_results_high[i].p_fdr_bh)] indexlist.append(goea_results_high[i].name) highlen=len(goea_results_high) else: highlen=0 if len(lookup_entrez_low)>2: goea_results_low = goeaobj.run_study(lookup_entrez_low) for j in range(len(goea_results_low)): if goea_results_low[j].p_fdr_bh<fdr_thresh: df_GO[j+highlen+1]=[np.log10(goea_results_low[j].p_fdr_bh)] indexlist.append(goea_results_low[j].name) if(np.shape(df_GO)[0]==0): df_GO[0]=[0] df_GO.index=['NoGO'] else: df_GO=df_GO.T df_GO.index=indexlist df_GO.columns=[cluster] df_GO=df_GO.groupby(df_GO.index).first() if count==0: df_bigGO=df_GO count=1 else: df_bigGO=df_bigGO.merge(df_GO,how='outer',left_index=True,right_index=True) df_bigGO=df_bigGO.fillna(0) if 'NoGO' in df_bigGO.index: df_bigGO=df_bigGO.drop('NoGO') return df_bigGO def TOPN2GO(df_p,background,num_genes=100,fdr_thresh=0.1,species='human'): #go analysis path2db='Path2obo/db/' obodag = GODag(path2db+"go-basic.obo") if (species=='human'): geneid2gos = read_ncbi_gene2go(path2db+"gene2go", taxids=[9606]) print("{N:,} annotated genes".format(N=len(geneid2gos))) these_genes = background Xtable=pd.read_csv('PATH2xfref/hg19_xref.txt',sep='\t') Xtable.index=Xtable['Approved Symbol'] entrez=[int(x) for x in np.unique(Xtable.loc[these_genes].dropna()['EntrezGene ID'])] elif(species=='mouse'): geneid2gos = read_ncbi_gene2go(path2db+"gene2go", taxids=[10090]) print("{N:,} annotated genes".format(N=len(geneid2gos))) these_genes = background Xtable=pd.read_csv('PATH2xref/biomart_xref.mm10.txt',sep='\t') Xtable=Xtable[['Associated Gene Name','EntrezGene ID']].dropna() Xtable.index=Xtable['Associated Gene Name'] entrez=[int(x) for x in np.unique(Xtable.loc[these_genes].dropna()['EntrezGene ID'])] goeaobj = GOEnrichmentStudy( entrez, # List of mouse protein-coding genes geneid2gos, # geneid/GO associations obodag, # Ontologies propagate_counts = False, alpha = 0.05, # default significance cut-off methods = ['fdr_bh']) # defult multipletest correction method df_bigGO=
pd.DataFrame()
pandas.DataFrame
import math import multiprocessing import time from functools import lru_cache, partial from multiprocessing import Pool import pandas as pd from numpy.random import shuffle from retry.api import retry_call from ..mongodb import get_db from ..scripts.trading_calendar import is_trading_day from ..setting.constants import MAX_WORKER from ..utils import batch_loop, data_root, ensure_dtypes, make_logger from ..utils.db_utils import to_dict from ..websource.wy import fetch_cjmx logger = make_logger('成交明细') DATE_FMT = r'%Y-%m-%d' def _last_5(): """最近的5个交易日""" db = get_db() try: return db['交易日历'].find_one()['last_month'][-5:] except Exception: today = pd.Timestamp('today').normalize() dates = pd.date_range(today - pd.Timedelta(days=5), today) return [d.to_pydatetime() for d in dates] def _wy_fix_data(df): dts = df.日期.dt.strftime(DATE_FMT) + ' ' + df.时间 df['成交时间'] = pd.to_datetime(dts) del df['时间'] del df['日期'] df = df.rename(columns={'价格': '成交价', '涨跌额': '价格变动', '方向': '性质'}) df = ensure_dtypes(df, d_cols=['成交时间'], s_cols=['股票代码', '性质'], i_cols=['成交量'], f_cols=['成交价', '成交额']) # 保留2位小数 df = df.round({'价格变动': 2, '成交额': 2, '成交价': 2}) df.fillna(0.0, inplace=True) return df def bacth_refresh(codes, timestamp): db = get_db('cjmx') date_str = timestamp.strftime(DATE_FMT) collection = db[date_str] if collection.estimated_document_count() == 0: create_index(collection) status = {} for code in codes: try: df = retry_call(fetch_cjmx, [code, date_str], delay=0.3, tries=3, logger=logger) if not df.empty: df = _wy_fix_data(df) collection.insert_many(to_dict(df)) logger.info(f'股票 {code} {date_str} 共 {len(df):>5} 行') status[code] = True except Exception as e: logger.info(f'股票 {code} 日期 {date_str} {e!r}') status[code] = False failed = [k for k, v in status.items() if not v] if len(failed): logger.warning(f'{date_str} 以下股票成交明细提取失败') logger.warning(failed) return len(failed) == 0 def was_traded(db, code, timestamp): collection = db[code] filter = {'日期': timestamp, '成交量': {'$gt': 0}} if collection.find_one(filter, {'_id': 1}): return True else: return False @lru_cache(None) def get_traded_codes(timestamp): """当天交易的股票代码列表""" db = get_db('wy_stock_daily') codes = db.list_collection_names() return [code for code in codes if was_traded(db, code, timestamp)] def completed_codes(timestamp): """已经下载的股票代码""" db = get_db('cjmx') collection = db[timestamp.strftime(DATE_FMT)] return collection.distinct('股票代码') def _refresh(timestamp): """刷新指定日期成交明细数据(只能为近5天)""" t_codes = get_traded_codes(timestamp) d_codes = completed_codes(timestamp) codes = list(set(t_codes).difference(set(d_codes))) if len(codes) == 0: return True shuffle(codes) logger.info(f'{timestamp.strftime(DATE_FMT)} 共 {len(codes)} 股票') completed = bacth_refresh(codes, timestamp) return completed def refresh(timestamp): """刷新指定日期成交明细数据(只能为近5天)""" for i in range(1, 4): logger.info(f"第{i}次尝试 {timestamp}") completed = _refresh(timestamp) if completed: break def create_index(collection): collection.create_index([("成交时间", -1)], name='dt_index') collection.create_index([("股票代码", 1)], name='code_index') def refresh_last_5(): """刷新最近5天成交明细""" tdates = [
pd.Timestamp(d)
pandas.Timestamp
import pandas as pd import numpy as np from datetime import datetime, timedelta import matplotlib.pyplot as plt import matplotlib.ticker as mtick import matplotlib.dates as mdates import math ### PORTFOLIO # 24% EQUITY # 18% FIXED INCOME # 19% GOLD # 18% COMDTY TREND/GLOBAL MACRO # 21% LONG VOL ### EQUITY # 80% GLOBAL, 19.2% of tot # 20% EM, 4.8% of tot ### FIXED INCOME # US TSY 50%, 9% of tot # Corp bonds, 25% 4.5% of tot # EM BONDS, 25%, 4.5% of tot ### GOLD # GLD 90%, 17.1% of tot # GDX 10%, 1.9 of tot ### COMDTY TREND+GLOBAL MACRO # LYNX 75%, 13.5% of tot # SEB ASSET SELECTION C LUX 25%, 4.5% of tot # IPM SYSTEMATIC MACRO UCITS 0% # NORDKINN 0% ### LONG VOL # AMUNDI 100%, 21% of tot # LATEST DATE (START MONTH) 2007-11, AMUNDI ### GLOBAL VARIABLES / DATA ### start_date = '2007-11' years = 13.167 global_data_raw = pd.read_csv('MSCI_World_SEK.csv') global_data_raw = global_data_raw.set_index('Date') global_data = pd.DataFrame(global_data_raw.loc[start_date:]) # us_data_raw = pd.read_csv('SPP_aktiefond_USA.csv') # us_data_raw = us_data_raw.set_index('Date') # us_data = pd.DataFrame(us_data_raw.loc[start_date:]) # avanza_zero_raw = pd.read_csv('Avanza_zero.csv') # avanza_zero_raw = avanza_zero_raw.set_index('Date') # avanza_zero = pd.DataFrame(avanza_zero_raw.loc[start_date:]) em_data = pd.read_csv('MSCI_EM_SEK.csv') em_data = em_data.set_index('Date') em_stock =
pd.DataFrame(em_data.loc[start_date:])
pandas.DataFrame
''' @author: <NAME> @date: 7/16/2019 @title: HNSCC Functional Data Analysis Pipeline Library The purpose of this script is to provide the resources to enable an automated analysis pipeline of functional drug response data in the HNSCC project at OHSU led by <NAME> and <NAME>. ''' import pandas as pd import numpy as np from datetime import datetime as dt from matplotlib import pyplot as plt import seaborn as sbn import statsmodels.api as sm import statsmodels import os import shutil from sklearn.preprocessing import PolynomialFeatures import warnings from openpyxl import Workbook, load_workbook def parse_pathname(path, verbose=False, path_sep='/'): ''' parse relevant information from data path, must return - lab_id [unique 5 digit patient identifier] - norm [Blank490, 490] - version_id <str> file name must be in form: lab_id=XXXXX-norm=XXXXXX-plate_version_id=XXXXX.xlsx ''' if verbose: print('path', path) name = path.split(path_sep)[-1][:-5].split('-') labels = [n.split('=')[0] for n in name] values = [n.split('=')[-1] for n in name] assert len(labels) == 4, 'parsing error: atypical pathname - labels require: lab_id, norm, version_id, note - got: ' + str(labels) assert len(values) == 4, 'parsing error: atypical pathname - values require 4 inputs for each label. - got:' + str(values) if verbose: lab_id, norm, version_id, notes = values if verbose: print('---------------------------------------------------------') if verbose: print( 'please double check file name parsing is accurate') if verbose: print( 'file name: %s' %path.split(path_sep)[-1]) if verbose: print('lab_id: %s' %lab_id) if verbose: print('norm: %s' %norm) if verbose: print('version_id: %s' %version_id) if verbose: print('notes: %s' %notes) if verbose: print('---------------------------------------------------------') return values def get_plate_map(map_path, verbose=False): ''' get the plate mapping data from the excel plate map input map_path <str> local or absolute path to the plate map output <dataframe> plate mapping data. header = [plate_number, row, col, drug, conc, version_id] ''' #print('map path:', map_path) book = load_workbook(map_path, data_only=True) sheets = list(book.sheetnames) sheets.pop(0) # remove 'meta' #print() #print('sheets:', sheets) meta = pd.read_excel(map_path, header=None, sheet_name='meta') plate_version = meta[meta[0]=='version_id'].values[0][1] num_sheets = int(len(sheets) / 2) if verbose: print('plate version id is: %s' %plate_version) if verbose: print('There are %d plates in this plate map' %num_sheets) #map_data = pd.read_excel(map_path, header=0, sheet_name=list(range(1,((num_sheets*2)+1)))) #for key in map_data: # print('key', key) # print(map_data[key]) # print(map_data[key].columns) # print('#########################################################') plates = [] for i,p in enumerate(range(0, num_sheets*2, 2)): #? Really odd behavior with excel: #! This only started occuring AFTER I implemented the plate_map renaming script. Now, when I read in the values (seems to be just for conc sheets) #! The formula cells are read in as NA, by changing: , na_values = None, keep_default_na = False , we can prevent this for cells, however we #! still have to rename the header, for some reason it doesn't get handled the same... #! SOLVED: The openpyxl does not evaluate formulas, so when the renaming script saves the new excel plate maps, it has unevaluated equations. #! to fix this issue, after running the renaming script, you have to open each excel file, go to each tab (should autocalculate) and THEN run this. #! If you don't do this, it will result in a ton of NA values. #! Solved better: when the renaming script opens the (backup) original platemaps, it loads in ONLY the data. So all equations are lost in downstream versions, however, issue solved. conc_sheet = sheets[p] inhib_sheet = sheets[p+1] #print('----') #print('conc', conc_sheet) #print('inhib', inhib_sheet) #print('----') conc_raw = pd.read_excel(map_path, header=0, sheet_name=conc_sheet, na_values = None, keep_default_na = False) #conc_raw.rename(columns={o:n for o,n in zip(conc_raw.columns, ['row'] + list(range(1,25)))}, inplace=True) #print(conc_raw) inhib_raw = pd.read_excel(map_path, header=0, sheet_name=inhib_sheet, na_values = None, keep_default_na = False) #inhib_raw.rename(columns={o:n for o,n in zip(inhib_raw.columns, ['row'] + list(range(1,25)))}, inplace=True) #print(inhib_raw) concs = pd.melt( conc_raw, id_vars=['row'], var_name='col', value_name='conc') drugs = pd.melt( inhib_raw, id_vars=['row'], var_name='col', value_name='inhibitor') plate_map = concs.merge(drugs, on=['row','col'], how='outer') plate_map = plate_map.assign(map_version_id = plate_version, plate_number=i+1) plates.append(plate_map) assert len(plates) == num_sheets, f'should be {num_sheets} plates, but only saw {len(plates)}' dat = plates[0] for p in plates[1:]: dat = dat.append(p, ignore_index=True) #print('number of concentration NA:', dat.conc.isna().sum()) #print('number of inhibitors NA:', dat.inhibitor.isna().sum()) assert dat.shape[0] == num_sheets*24*16, f'expected {num_sheets*24*16} non-zero rows from plate-map (based on {num_sheets} plates), but only got {dat.shape[0]} rows.' return dat class panel: ''' This class represents a single HNSCC drug panel. ''' def __init__(self, plate_path, platemap_dir, verbose=True, path_sep='/'): ''' parse path name, load plate data, load plate map, check positive control ''' self.plate_path = plate_path self.platemap_dir = platemap_dir self.verbose = verbose lab_id, norm, version_id, notes = parse_pathname(plate_path,verbose=verbose, path_sep=path_sep) self.msg_log = '' self._log('\n--------------------------------------------------------------------------\nThis is the message log for: \n\tlab_id: %s\n\tversion_id: %s\n\tnotes: %s\n--------------------------------------------------------------------------' %(lab_id, version_id, notes)) assert len(lab_id) <= 5, 'lab_id is expected to be 5 or less characters long' if len(lab_id) < 5: print('Warning: lab_id is less than 5 characters long; appending 0 prefix') lab_id = '0'*(5-len(lab_id)) + lab_id self.lab_id = lab_id #assert version_id in ['OHSU_HNSCC_derm001', 'OHSU_HNSCC_derm002'], 'unknown platemap ID, please double check pathname or update script with acceptable plate IDs' self.version_id = version_id assert norm in ['blank490', '490', 'Blank490'], 'improper pathname value for "norm" [blank490, 490]' self.blank490 = (norm in ['blank490', 'Blank490']) self._log('Data has already been normalized by positive controls: %s' %str(self.blank490)) self.notes = notes self.platemap_path = self.platemap_dir + 'HNSCC_plate_map-version_id=' + self.version_id + '.xlsx' self.platemap = get_plate_map(self.platemap_path) self._raw = self._get_plate_data() def _get_plate_data(self): ''' each plate has 16 rows of drug data, then a empty row, then the next plate. Varying number of plates file name specifies if the spectrometer software has already normalized the data by positive controls (eg. set optical_density = 0 when all cells are dead). This is noted by norm='Blank490' To double check this however, we can make sure that there is a 26th column of the raw plate data which is filled with 'blank490' if this is the case and empty otherwise. inputs None outputs dataframe ''' allplates = pd.read_excel(self.plate_path, header=None) nplates = (allplates.shape[0] + 1) / 18 #print('>>>>>>>>>>>>>>>>> number of plates (in data):', nplates) assert nplates%1.0 == 0, 'atypical number of rows, check data format' self._log('This assay has %d plates' %int(nplates)) plates = [] i = 1 # skip original header warned = False for p in range(int(nplates)): dat = pd.DataFrame( allplates.values[i:(i+16),:]) # check for blank490 column ... confidence in proper documentation if dat.shape[1] < 26: if not warned: self._log('WARNING: This assay [lab_id=%s,notes=%s] does not have a "blank490" column (last col), please double check that the data has been normalized by the positive controls.' %(self.lab_id,self.notes)) warned = True if self.blank490: self._log('WARNING: file name specifies blank490, but data does not appeaer to be postive control normalized.') self.blank490=False dat = dat.assign(plate_row = dat[0]).assign(norm_type = 'none', plate_num = p+1, lab_id = self.lab_id, assay_version_id=self.version_id, note=self.notes).drop(labels = [0], axis='columns') else: dat = dat.assign(plate_row = dat[0]).assign(norm_type = dat[25], plate_num = p+1, lab_id = self.lab_id, assay_version_id=self.version_id, note=self.notes).drop(labels = [0,25], axis='columns') dat = pd.melt(dat, id_vars=['lab_id', 'norm_type', 'plate_num', 'plate_row','assay_version_id', 'note'], value_vars=None, var_name='plate_col', value_name='optical_density', col_level=None) plates.append( dat ) i += 16 + 2 # skip empty row + header df = plates[0] for p in plates[1:]: df = df.append(p, ignore_index=True) ''' print('>>>>>>>>>>>>>>>>>>> number of rows in data:', df.shape[0]) print(df.head()) print('unique rows', df.plate_row.unique()) print('unique columns', df.plate_col.unique()) print('unique plate numbers:', df.plate_num.unique()) print('OD # NA:', df.optical_density.isna().sum()) print('compare to platemap data') print(self.platemap.head()) print('unique rows', self.platemap.row.unique()) print('unique columns', self.platemap.col.unique()) print('unique plate numbers:', self.platemap.plate_number.unique()) ''' return df def _log(self, msg): ''' ''' if self.verbose: print(msg) self.msg_log += '>> ' + str(dt.now()) + ': ' + msg + '\n' def map_data(self): ''' ''' self._log('mapping data... [%s]' %self.version_id) self.data = self._raw.merge(self.platemap, how='left', left_on=['plate_row','plate_col','plate_num'], right_on=['row','col','plate_number']).drop(['row','col','plate_number'], axis='columns') self.data = self.data[~self.data.inhibitor.isna()] self.data = self.data[~self.data.conc.isna()] # remove any leading or trailing spaces self.data = self.data.assign(inhibitor = [x.strip() for x in self.data.inhibitor]) self._log('mapping complete. \n\t mapped data shape: %s\n\t column names: [%r]' %(str(self.data.shape), self.data.columns.tolist())) def normalize_combinationagent_concentrations(self): ''' normalize combination drug assays concentrations by mapping into euclidean distance. conc_norm = ( conc1**2 + conc2**2 )**(0.5) if combination_agent else conc ''' self._log('normalizing combination agent concentrations...') self.data = self.data.assign(iscomb= [';' in str(conc) for conc in self.data['conc']]) #! Remove this when done testing ''' for i,x in self.data.iterrows(): try: np.sqrt(np.sum([float(y)**2 for y in str(x.conc).split(';')])) except: print('failed') print(x) raise ''' self.data = self.data.assign(conc_norm = [ [np.sqrt(np.sum(float(y)**2 for y in str(x).split(';')))].pop() for x in self.data['conc']]) def normalize_cell_viability_by_negative_controls(self): ''' The zero value (positive control) of optical density is set by the p.spec software [blank490] but to interpret assay value as cell viability, we need to scale optical density by plate controls: Cell_viab = opt_dens / plate_average_control (PAC) [This sets PAC control value as cell viability of 1] ''' self._log('normalizing cell viability by negative controls...') # double check the data type is numeric self.data = self.data.assign(optical_density = [float(x) for x in self.data.optical_density]) # get plate average controls PAC = self.data[self.data['inhibitor'] == 'NONE'].groupby(by='plate_num')['optical_density'].mean().to_frame().assign(PAC = lambda x: x.optical_density).drop(['optical_density'], axis='columns') self._log('plate average controls: \n%s' %str(PAC)) self.data = self.data.merge(PAC, how='left', on='plate_num') self.data = self.data.assign(cell_viab = [od / pac for od, pac in zip(self.data['optical_density'], self.data['PAC'])]) # set a flag for low_pac (0.03) self.data = self.data.assign(low_PAC_flag = self.data.PAC < 0.03) def set_floor(self): ''' There is still some contention here, Dan's protocol shifts the PAC up by the smallest value on plate. [and therefore this step would need to come before negative control normalization] I don't think that's a good idea though, rather, I'm going to round any negatives up to 0. These will be marked with 'is_adj' FOR NOW - talk to the group ''' self.data = self.data.assign(is_adj = self.data.cell_viab < 0, cell_viab = [0 if cv < 0 else cv for cv in self.data.cell_viab] ) def replicate_QC(self, method=['within','across'], flag_threshold = 1): ''' linear regression model fit to each within-plate replicate separately and AUC values are calculated. Replicates with AUC differences greater than 100 are flagged. ?flag_name? [TODO] replicates are not normalized, future probit calculations should use all data to fit the probit curve. inputs flag_threshold <float> : threshold to set flag for QC removal method <str> : whether to average within plate or across plates. outputs none ''' ### DEPRECATED ### - not yet def avg_plate_replicates(self, method=['within','across'], flag_threshold = 1): ''' A ‘curve-free’ AUC (integration based on fine linear interpolation between the 7 data points themselves) was calculated for those runs with within-panel replicates after applying a ceiling of 1 for the normalized_viability. The maximum change in AUC amongst the replicates was noted and those runs with differences > 1 were removed. Across-plate replicates are fit with linear regression and replicates with AUC differences > 0.75 are removed. Other replicates are averaged. The HNSCC plates don't appear to have any within plate replicates, so this is an essentially unused method. As such, it has been only lightly tested. Be wary of performance and robustness. inputs flag_threshold <float> : threshold to set flag for QC removal method <str> : whether to average within plate or across plates. outputs none ''' #warnings.warn('This method is deprecated and will be removed in future release. Use `replicate_QC()`` in the future.') n = 0 replicates = [] toflag = [] fitdat = self.data[~self.data['inhibitor'].isin(['NONE', 'F-S-V', 'DMSO'])] if method == 'within': avgd_obs = [] self._log('averaging within plate replicates...') for plate in set(fitdat['plate_num'].values): platedat = fitdat[fitdat['plate_num'] == plate] for inhib in set(platedat['inhibitor'].values): assay = platedat[platedat['inhibitor'] == inhib] if assay.shape[0] > 7: n+=1 aucs = [] # groupby row - TODO: should double check that no replicates are on same row for row in set(assay.plate_row): repl = assay[assay['plate_row']==row] aucs.append(self._get_lin_auc(repl)) if max(aucs) - min(aucs) > flag_threshold: toflag.append(inhib) replicates.append(inhib) assay.groupby(['lab_id','inhibitor','conc_norm', 'plate_num'])['cell_viab'].mean().to_frame().reset_index(level=['lab_id', 'inhibitor', 'conc_norm', 'plate_num']).assign(within_plate_repl_flag = (max(aucs) - min(aucs)) > flag_threshold) avgd_obs.append(new_obs) self._log('There were %d within plate replicates [%r]' %(n, replicates)) self._log('within plate replicates flagged: %r' %toflag) if len(replicates) > 0: # set is_repl flag, signifies that it has been averaged repls = pd.DataFrame({'inhibitor': replicates, 'is_within_plate_repl': [True]*len(replicates)}) self.data = self.data.merge(repls, how='left', on='inhibitor').assign(is_within_plate_repl = lambda x: [True if f else False for f in x.is_within_plate_repl]) # then add the averaged replicate observation to the bottom of dataframe for nobs in avgd_obs: self.data = self.data.append(nobs, ignore_index=True) else: self.data = self.data.assign(is_within_plate_repl = False) # add auc diff flag for removal if (len(toflag) > 0): flags = pd.DataFrame({'inhibitor': toflag, 'within_plate_repl_flag': [True]*len(toflag)}) self.data = self.data.assign(within_plate_repl_flag = lambda x: [True if f else False for f in x.withinplate_repl_flag]).merge(flags, how='left', by='inhibitor') else: self.data.assign(within_plate_repl_flag = False) # ------------- Across plate replicate averaging VVV ------------------ elif method == 'across': self._log('averaging across plate replicates...') avgd_obs = [] replicates = [] for inhib in set(fitdat['inhibitor'].values): assay = fitdat[fitdat['inhibitor'] == inhib] #print('assay shape: %s' %str(assay.shape)) if assay.shape[0] > 7: n+=1 aucs = [] # groupby row - TODO: should double check that no replicates are on same row for plate in set(assay.plate_num): repl = assay[assay['plate_num']==plate] aucs.append(self._get_lin_auc(repl)) self._log('[%s] linear AUCs: %r -- range: (%.2f, %.2f)' %(inhib, aucs, min(aucs), max(aucs))) if (max(aucs) - min(aucs)) > flag_threshold: toflag.append(inhib) replicates.append(inhib) new_obs = assay.groupby(['lab_id','inhibitor','conc_norm'])['cell_viab'].mean().to_frame().reset_index(level=['lab_id', 'inhibitor', 'conc_norm']).assign(across_plate_repl_flag = (max(aucs) - min(aucs)) > flag_threshold) avgd_obs.append(new_obs) self._log('There were %d across plate replicates [%r]' %(n, replicates)) self._log('across plate replicates flagged: %r' %toflag) if len(replicates) > 0: # set is_repl flag, signifies that it has been averaged repls = pd.DataFrame({'inhibitor': replicates, 'is_across_plate_repl': [True]*len(replicates)}) self.data = self.data.merge(repls, how='left', on='inhibitor') self.data = self.data.assign(is_across_plate_repl = lambda x: [False if f != True else True for f in x.is_across_plate_repl]) # then add the averaged replicate observation to the bottom of dataframe for nobs in avgd_obs: self.data = self.data.append(nobs, ignore_index=True, sort=False) else: self.data = self.data.assign(is_across_plate_repl = False) if (len(toflag) > 0): flags = pd.DataFrame({'inhibitor': toflag, 'across_plate_repl_flag': [True]*len(toflag)}) self.data = self.data.assign(across_plate_repl_flag = lambda x: [True if f else False for f in x.across_plate_repl_flag]).merge(flags, how='left', on='inhibitor') else: self.data.assign(across_plate_repl_flag = False) else: raise 'choose a proper averaging method [within, across] plates' def _get_rectangle_auc(self, x, y): ''' This is used when regression fit fails due to perfect separation. Using left-shifted rectangles. x should be log10 transformed concentration y should be cell viab [0,1] ''' delta = (np.max(x) - np.min(x))/(len(y)-1) auc = np.sum([delta * yy for yy in y[1:]]) #print(f'rectangular auc calc: %s' %auc) return auc def _get_lin_auc(self, df, plot=False, return_fig=False): ''' fit a linear regression to the data and calculate auc inputs df <dataframe> 7 points to plot plot <bool> option to plot the fit; for diagnostics outputs auc <float> area under the curve ''' assert df.shape[0] == 7, f'There should only be 7 observations per replicate, got {df.shape[0]}' skip_auc_calc=False x = [np.log10(x) for x in df['conc_norm'].values] y = df['cell_viab'].values pr = sm.GLM(y, sm.add_constant(x)) try: glm_res = pr.fit() except ValueError: try: glm_res = pr.fit(method='newton') except sm.tools.sm_exceptions.PerfectSeparationError: auc = self._get_rectangle_auc(x,y) self._log('Perfect separtion in linear regression: auc calculated by rectangular approximation. AUC=%.3f' %auc) skip_auc_calc=True # AUC calculation ----------------------------------------------------- # left rectangle auc estimate if not skip_auc_calc: delta = 0.001 x2 = np.arange(np.log10(min(df['conc_norm'].values)), np.log10(max(df['conc_norm'].values)), delta) yhat = glm_res.predict(sm.add_constant(x2)) auc = np.sum(yhat*delta) f = plt.figure(figsize = (10,10)) plt.title('Linear Regression [AUC=%.2f]' %auc) plt.plot(x, y, 'ro', label='replicate') plt.plot(x2, yhat, 'g-', label='fit') plt.legend() if plot: plt.show() if return_fig: return auc, f else: plt.close(f) return auc def set_ceiling(self): ''' Apply ceiling of 1 (Dan’s protocol uses 100 – note for AUC threshold adjustments) inputs none outputs none ''' self._log('Applying a ceiling of 1 to cell viability...') self.data.loc[(self.data.cell_viab > 1) & (~self.data.inhibitor.isin(['NONE','DMSO','F-S-V'])), 'cell_viab'] = 1 #self.data = self.data.assign(cell_viab = [1 if (cv > 1 and inhib not in ['NONE','DMSO','F-S-V']) else cv for cv, inhib in self.data[['cell_viab', 'inhibitor']].values]) def fit_probit(self, inhib, x, y, df, res, failures, plot=True): ''' ''' try: pr = sm.GLM(y, sm.add_constant(x), family=sm.families.Binomial(link=sm.families.links.probit())) glm_res = pr.fit(disp=False) auc, x2, yhat = self.calculate_auc(x, glm_res) f, ax = plt.subplots(1,1, figsize=(10,10)) plt.title('inhib: %s [AUC= %.2f]' %(inhib, auc)) plt.plot(x2, yhat, 'r-', label='probit_fit') plt.plot(x, y, 'bo', label='replicates') plt.legend() if plot: plt.show() self._save_plot(f, inhib) plt.close(f) # beta0 = intercept # beta1 = slope intercept,beta1 = glm_res.params probit_AIC, probit_BIC = glm_res.aic, glm_res.bic probit_Deviance = glm_res.deviance probit_pval = glm_res.pvalues self._write_summary_to_file(glm_res.summary(), 'probit', inhib) # update results [res[var].append(val) for var,val in zip(['inhibitor','intercept', 'beta1', 'auc', 'prob_conv', 'prob_AIC', 'prob_BIC', 'prob_deviance', 'prob_pval'], [inhib, intercept ,beta1 , auc, True, probit_AIC, probit_BIC, probit_Deviance, probit_pval])] except statsmodels.tools.sm_exceptions.PerfectSeparationError as e: ''' Perfect separation occurs when all cell_viab values are identical. This most commonly occurs with cell_viab = 1 ''' self._log('Perfect separation has occured during probit fitting [%s]\n\t cell_viab values: %r' %(inhib, df['cell_viab'].values)) cv = df['cell_viab'].unique() #assert len(cv) == 1, 'perfect separation has occured, however, there are multiple cell_viab values. Please investigate issue.' if (len(cv) == 1): self._log('cell_viab values identical; AUC will be calculated by conc-range * cell_viab') cv = cv[0] auc = cv * (np.log10(max(df['conc_norm'])) - np.log10(min(df['conc_norm']))) else: self._log('cell_viab values non-identical; AUC valule will be calculated by linear regression.') auc, f = self._get_lin_auc(df, plot=plot, return_fig=True) self._save_plot(f, inhib) plt.close('all') [res[var].append(val) for var,val in zip(['inhibitor','intercept', 'beta1', 'auc', 'prob_conv', 'prob_AIC', 'prob_BIC', 'prob_deviance', 'prob_pval'], [inhib, None, None, auc, False, None, None, None, None])] except: #print('some other exception...') failures.append( inhib ) #[res[var].append(val) for var,val in zip(['inhibitor','intercept', 'beta1', 'auc'], [inhib, 'NA' ,'NA' , 'NA'])] if plot: f, ax = plt.subplots(1,1, figsize = (10,10)) ax.set_title('FAILURE: %s' %(inhib)) #sbn.scatterplot(x=x2, y=yhat , ax=ax) plt.xscale('log') sbn.scatterplot(x=x, y=y, ax=ax) plt.show() raise def fit_poly(self, inhib, x, y, res, failures, degree=5, plot=True): ''' ''' try: xp = PolynomialFeatures(degree=degree).fit_transform(x.reshape((-1,1))) pr = sm.GLM(y, xp) poly_res = pr.fit(disp=False) x2 = np.arange(min(x), max(x), 0.01) x2p = PolynomialFeatures(degree=degree).fit_transform(x2.reshape((-1,1))) yhat = poly_res.predict(sm.add_constant(x2p)) f, ax = plt.subplots(1,1, figsize=(10,10)) plt.title('POLY FIT (degree=%d) - inhib: %s' %(degree, inhib)) plt.plot(x2, yhat, 'r-', label='probit_fit') plt.plot(x, y, 'bo', label='replicates') plt.legend() if plot: plt.show() self._save_plot(f, inhib, suffix='-poly5') plt.close(f) poly_AIC, poly_BIC = poly_res.aic, poly_res.bic poly_Deviance = poly_res.deviance poly_pval = poly_res.pvalues self._write_summary_to_file(poly_res.summary(), 'poly5', inhib) # update results [res[var].append(val) for var,val in zip(['inhibitor', 'poly_degree', 'poly_AIC', 'poly_BIC', 'poly_deviance', 'poly_pval'], [inhib, degree, poly_AIC, poly_BIC, poly_Deviance, poly_pval])] except ValueError as e: self._log('WARNING! [%s] - %s' %(inhib, str(e))) except: print('I see the error of my ways :|') failures.append( inhib ) raise def _write_summary_to_file(self, summary, model_type, inhib, output_dir='../output/'): ''' ''' dirout = './%s/%s' %(output_dir, self.plate_path[:-5].split('/')[-1]) with open('%s/dose-response-plots/%s/GLM_%s_summary.txt' %(dirout, inhib, model_type), 'w') as f: f.write(str(summary)) def calculate_auc(self, x, model, delta=0.001): ''' left rectangle auc estimate. Note that x is already in log10 space. inputs x <numpy array> endogenous variable model <sm.GLMmodel.results> model delta <float> the rectangular width to use for each rectangle; smaller = more accurate outputs auc ''' x2 = np.arange(min(x), max(x), delta) yhat = model.predict(sm.add_constant(x2)) return np.sum(yhat*delta), x2, yhat def fit_regressions(self, plot=True): ''' A probit regression was fit to all possible run groups using the model: $$\frac{normalized\_viability}{100} \ = \ 1 + log10(concentration) $$ For all groups there were N=7 dose-response measurements and the following statistics were generated: - Regression coefficients labeled as ‘intercept’ and ‘beta’ (slope) - Tests of significance for the slope coefficient: *z-statistic* [beta_z] and *p-value* [beta_p] - model AIC - Summary measures of fit from residuals (Hosmer & Lemeshow 2000) - Pearsons chi square - Deviance - Indication of whether model converged - *fitting method and convergence threshold?* - Otherwise values are from last iteration of fitting alg. - AUC - Area under the curve from numerical integration - no_curve_auc - Auc from a ‘no-curve’ approach as described in the ‘Preprocessing’ section. - linsp_ic50 and linsp_auc - IC50 and AUC from an ‘overfit’ curve using a linear 5th degree spline inputs none outputs none ''' self._log('fitting probit regressions...') failures = [] probit_res = {x:[] for x in ['inhibitor','intercept', 'beta1', 'auc', 'prob_conv', 'prob_AIC', 'prob_BIC', 'prob_deviance', 'prob_pval']} poly_res = {x:[] for x in ['inhibitor', 'poly_degree', 'poly_AIC', 'poly_BIC', 'poly_deviance', 'poly_pval']} i = 0 # Filter controls pat_dat = self.data[~self.data['inhibitor'].isin(['NONE', 'F-S-V', 'DMSO'])] # Filter replicates that have been averaged into new observation pat_dat = pat_dat[pat_dat['is_across_plate_repl'] != True] pat_dat = pat_dat[pat_dat['is_within_plate_repl'] != True] ntofit = int(pat_dat.shape[0] / 7) self._log('number of assays to fit: %d' %ntofit) for inhib in set(pat_dat['inhibitor'].values): if i%1==0: print('\t\tFitting regressions...Progress: %.1f%% \t[%d/%d]' %(i/ntofit*100, i, ntofit), end='\t\t\t\t\t\r') i+=1 df = pat_dat[pat_dat['inhibitor'] == inhib] #! Why is this hanging??? #TODO: Go through the across plate replicate averaging and figure this problem out. #assert df.shape[0] == 7, f"should have exactly 7 doses! [has {df.shape[0]}]\n{df[['lab_id', 'inhibitor', 'cell_viab', 'is_across_plate_repl', 'is_within_plate_repl', 'panel_number']]}" x = np.log10( df['conc_norm'].values ) y = df['cell_viab'].values # probit_res is an object and so should be passed by reference, hence modified inplace self.fit_probit(inhib, x, y, df, probit_res, failures, plot=plot) # fit polynomial for comparison to overfitting self.fit_poly(inhib, x, y, poly_res, failures, plot=plot) self._log('Failures [%d]: \n\t%r' %(len(failures),failures)) # add probit features self.data = self.data.merge(pd.DataFrame(probit_res), how='left', on='inhibitor') # add poly features self.data = self.data.merge(
pd.DataFrame(poly_res)
pandas.DataFrame
"""Main class and helper functions. """ import os from enum import Enum from collections import OrderedDict from functools import reduce from pathlib import Path from typing import Any, Union, Optional from typing import Iterable, Sized, Sequence, Mapping, MutableMapping from typing import Tuple, List, Dict, KeysView from copy import deepcopy import numpy as np from numpy import ma import pandas as pd from numpy.lib.recfunctions import rec_drop_fields from pandas.core.index import RangeIndex from pandas.api.types import is_string_dtype, is_categorical from scipy import sparse from scipy.sparse import issparse from scipy.sparse.sputils import IndexMixin from natsort import natsorted # try importing zarr try: from zarr.core import Array as ZarrArray except ImportError: class ZarrArray: @staticmethod def __rep__(): return 'mock zarr.core.Array' # try importing zappy try: from zappy.base import ZappyArray except ImportError: class ZappyArray: @staticmethod def __rep__(): return 'mock zappy.base.ZappyArray' from . import h5py from .layers import AnnDataLayers from . import utils from .utils import Index, get_n_items_idx from .logging import anndata_logger as logger from .compat import PathLike class StorageType(Enum): Array = np.ndarray Masked = ma.MaskedArray Sparse = sparse.spmatrix ZarrArry = ZarrArray ZappyArry = ZappyArray @classmethod def classes(cls): print(ZarrArray) return tuple(c.value for c in cls.__members__.values()) class BoundRecArr(np.recarray): """A :class:`numpy.recarray` to which fields can be added using ``.['key']``. To enable this, it is bound to a instance of AnnData. """ _attr_choices = ['obsm', 'varm'] def __new__(cls, input_array: np.ndarray, parent: Any, attr: str): """ Parameters ---------- input_array A (structured) numpy array. parent Any object to which the BoundRecArr shall be bound to. attr The name of the attribute as which it appears in parent. """ arr = np.asarray(input_array).view(cls) arr._parent = parent arr._attr = attr return arr def __array_finalize__(self, obj: Any): if obj is None: return self._parent = getattr(obj, '_parent', None) self._attr = getattr(obj, '_attr', None) def __reduce__(self) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]: pickled_state = super().__reduce__() new_state = pickled_state[2] + (self.__dict__, ) return pickled_state[0], pickled_state[1], new_state def __setstate__(self, state: Sequence[Mapping[str, Any]]): for k, v in state[-1].items(): self.__setattr__(k, v) super().__setstate__(state[0:-1]) def copy(self, order='C') -> 'BoundRecArr': new = super().copy() new._parent = self._parent return new def flipped(self) -> 'BoundRecArr': new_attr = (self._attr_choices[1] if self._attr == self._attr_choices[0] else self._attr_choices[0]) return BoundRecArr(self, self._parent, new_attr) def keys(self) -> Tuple[str, ...]: return self.dtype.names def __setitem__(self, key: str, arr: np.ndarray): if not isinstance(arr, np.ndarray): raise ValueError( 'Can only assign numpy ndarrays to .{}[{!r}], not objects of class {}' .format(self._attr, key, type(arr)) ) if arr.ndim == 1: raise ValueError('Use adata.obs or adata.var for 1-dimensional arrays.') if self.shape[0] != arr.shape[0]: raise ValueError( 'Can only assign an array of same length ({}), not of length {}.' .format(self.shape[0], arr.shape[0]) ) # the following always allocates a new array # even if the key already exists and dimensions match # TODO: one could check for this case # dtype merged_dtype = [] found_key = False for descr in self.dtype.descr: if descr[0] == key: merged_dtype.append((key, arr.dtype, arr.shape[1])) found_key = True else: merged_dtype.append(descr) if not found_key: merged_dtype.append((key, arr.dtype, arr.shape[1])) # create new array new = np.empty(len(self), dtype=merged_dtype) # fill the array for name in new.dtype.names: if name == key: new[name] = arr else: new[name] = self[name] # make it a BoundRecArr # TODO: why can we not do this step before filling the array? new = BoundRecArr(new, self._parent, self._attr) setattr(self._parent, self._attr, new) def __delitem__(self, key: str): """Delete field with name.""" if key not in self.dtype.names: raise ValueError( 'Currently, can only delete single names from {}.' .format(self.dtype.names) ) new_array = rec_drop_fields(self, key) new = BoundRecArr(new_array, self._parent, self._attr) setattr(self._parent, self._attr, new) def to_df(self) -> pd.DataFrame: """Convert to pandas dataframe.""" df = pd.DataFrame(index=RangeIndex(0, self.shape[0], name=None)) for key in self.keys(): value = self[key] for icolumn, column in enumerate(value.T): df['{}{}'.format(key, icolumn+1)] = column return df # for backwards compat def _find_corresponding_multicol_key(key, keys_multicol): """Find the corresponding multicolumn key.""" for mk in keys_multicol: if key.startswith(mk) and 'of' in key: return mk return None # for backwards compat def _gen_keys_from_multicol_key(key_multicol, n_keys): """Generates single-column keys from multicolumn key.""" keys = [('{}{:03}of{:03}') .format(key_multicol, i+1, n_keys) for i in range(n_keys)] return keys def df_to_records_fixed_width(df, var_len_str=True): uns = {} # unstructured dictionary for storing categories names = ['index'] if
is_string_dtype(df.index)
pandas.api.types.is_string_dtype
import sys sys.path.append("../ern/") sys.path.append("../dies/") import copy import torch import numpy as np import pandas as pd from dies.utils import listify from sklearn.metrics import mean_squared_error as mse from torch.utils.data.dataloader import DataLoader from fastai.basic_data import DataBunch from fastai.basic_data import DatasetType import glob def to_short_name(file): return ( file.split("/")[-1] .replace(".h5", "") .replace(".csv", "") .replace(".pkl", "") .replace(".pth", "") .replace("_config", "") ) def create_databunch( train_ds, val_ds, test_ds, batch_size, device, ): train_ds.to_device(device) tr = DataLoader( train_ds, batch_size, drop_last=True, shuffle=True, # num_workers=6, pin_memory=False, ) val_ds.to_device(device) val = DataLoader(val_ds, batch_size, pin_memory=False) if test_ds is not None: test_ds.to_device(device) test = DataLoader(test_ds, batch_size, pin_memory=False) else: test = None data_bunch = DataBunch(tr, val, test_dl=test) return data_bunch def get_config(file, include_rmse=False): df =
pd.read_csv(file, sep=",")
pandas.read_csv
""" Miscellaneous data processing utility functions. """ import os import pandas as pd import geopandas as gpd import numpy as np def create_df(file): """ Returns a pandas data frame :param file: CSV file with raw hh listing data :return: """ encodings = ["ISO-8859-1", "latin1"] for encoding in encodings: try: df = pd.read_csv(file, encoding=encoding) return df except Exception as e: continue def create_df_without_pandas(file): """ In case creating df with pandas fails due to encoding issues we try this manual approach :param file: CSV file with raw HH listing data :return: """ data = [] for line in open(file, 'rb'): try: # Decode to a fail-safe string for PY3 line = line.decode('latin1') data.append(line.split(",")) except Exception as e: pass try: # Decode to a fail-safe string for PY3 line = line.decode('utf-8') data.append(line.split(",")) except Exception as e: pass df = pd.DataFrame(data=data[1:], columns=data[0]) return df def check_if_coordinates_colums_need_fixing(df, cols): """ Check if one of the coordinates columns (passed in pairs for lat, lon) requires fixing if they have null string values (e.g., #NULL#) """ col_to_fix = [] col_okay = [] for l in cols: if df[l].dtype == np.float64: col_okay.append(l) continue col_to_fix.append(l) fix_tuple = None if not col_to_fix: pass else: fix_tuple = {"col_to_fix": col_to_fix[0], "replace_col": col_okay[0]} return fix_tuple def convert_to_float(row, col_to_fix, replace_col): """ Simply converts a string coordinate to float but also fix those fixes those NULL coordinate strings by replacing with other available coordinate """ try: return float(row[col_to_fix]) except Exception as e: return row[replace_col] def fix_coordinates(df, cols): """ For coordinate column which require fixing, we it here """ to_fix_or_not_cols = check_if_coordinates_colums_need_fixing(df=df, cols=cols) if to_fix_or_not_cols: fix_col = to_fix_or_not_cols["col_to_fix"] replace_col = to_fix_or_not_cols["replace_col"] df[fix_col] = df.apply(convert_to_float, args=(fix_col, replace_col), axis=1) df[fix_col] =
pd.to_numeric(df[fix_col])
pandas.to_numeric
import unittest import os from collections import defaultdict from unittest import mock import warnings import pandas as pd import numpy as np from dataprofiler.profilers import FloatColumn from dataprofiler.profilers.profiler_options import FloatOptions test_root_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) class TestFloatColumn(unittest.TestCase): def test_base_case(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.match_count, 0) self.assertEqual(profiler.min, None) self.assertEqual(profiler.max, None) self.assertEqual(profiler.sum, 0) self.assertEqual(profiler.mean, 0) self.assertTrue(profiler.median is np.nan) self.assertEqual([np.nan], profiler.mode) self.assertTrue(profiler.variance is np.nan) self.assertTrue(profiler.skewness is np.nan) self.assertTrue(profiler.kurtosis is np.nan) self.assertTrue(profiler.stddev is np.nan) self.assertIsNone(profiler.histogram_selection) self.assertEqual(len(profiler.quantiles), 999) self.assertIsNone(profiler.data_type_ratio) def test_single_data_variance_case(self): data = pd.Series([1.5]).apply(str) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.match_count, 1.0) self.assertEqual(profiler.mean, 1.5) self.assertTrue(profiler.variance is np.nan) data = pd.Series([2.5]).apply(str) profiler.update(data) self.assertEqual(profiler.match_count, 2) self.assertEqual(profiler.mean, 2.0) self.assertEqual(profiler.variance, 0.5) def test_profiled_precision(self): """ Checks whether the precision for the profiler is correct. :return: """ df_1 = pd.Series([0.4, 0.3, 0.1, 0.1, 0.1]).apply(str) df_2 = pd.Series([0.11, 0.11, 0.12, 2.11]).apply(str) df_3 = pd.Series([4.114, 3.161, 2.512, 2.131]).apply(str) df_mix = pd.Series([4.1, '3.', 2.52, 2.13143]).apply(str) float_profiler = FloatColumn("Name") float_profiler.update(df_3) self.assertEqual(4, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler.update(df_2) self.assertEqual(2, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler.update(df_1) self.assertEqual(1, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler = FloatColumn("Name") float_profiler.update(df_mix) self.assertEqual(1, float_profiler.precision['min']) self.assertEqual(6, float_profiler.precision['max']) # edge cases # # integer with 0s on right and left side df_ints = pd.Series(['0013245678', '123456700', '0012345600']) float_profiler = FloatColumn("Name") float_profiler.update(df_ints) self.assertEqual(6, float_profiler.precision['min']) self.assertEqual(8, float_profiler.precision['max']) # scientific df_scientific = pd.Series(['1.23e-3', '2.2344', '1.244e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_scientific) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # plus df_plus = pd.Series(['+1.3e-3', '+2.244', '+1.3324e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_plus) self.assertEqual(2, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # minus df_minus = pd.Series(['-1.3234e-3', '-0.244', '-1.3324e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_minus) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # spaces around values df_spaces = pd.Series([' -1.3234e-3 ', ' -0.244 ']) float_profiler = FloatColumn("Name") float_profiler.update(df_spaces) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # constant precision df_constant = pd.Series(['1.34', '+1.23e-4', '00101', '+100.', '0.234', '-432', '.954', '+.342', '-123e1', '23.1']) float_profiler = FloatColumn("Name") float_profiler.update(df_constant) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(3, float_profiler.precision['max']) self.assertEqual(3, float_profiler.precision['mean']) self.assertEqual(10, float_profiler.precision['sample_size']) self.assertEqual(0, float_profiler.precision['var']) self.assertEqual(0, float_profiler.precision['std']) # random precision df_random = pd.Series(['+ 9', '-.3', '-1e-3', '3.2343', '0', '1230', '0.33', '4.3', '302.1', '-4.322']) float_profiler = FloatColumn("Name") float_profiler.update(df_random) self.assertEqual(0, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) self.assertEqual(2.4444, float_profiler.precision['mean']) self.assertEqual(9, float_profiler.precision['sample_size']) self.assertEqual(2.7778, float_profiler.precision['var']) self.assertEqual(1.6667, float_profiler.precision['std']) # Ensure order doesn't change anything df_random_order = pd.Series(['1230', '0.33', '4.3', '302.1', '-4.322', '+ 9', '-.3', '-1e-3', '3.2343', '0']) float_profiler_order = FloatColumn("Name") float_profiler_order.update(df_random) self.assertDictEqual( float_profiler.precision, float_profiler_order.precision ) # check to make sure all formats of precision are correctly predicted samples = [ # value, min expected precision ['10.01', 4], ['.01', 1], ['0.01', 1], ['-0.01', 1], ['+0.01', 1], [' +0.013', 2], [' -1.3234e-3 ', 5], [' 0012345600 ', 6], [' 0012345600. ', 8], [' -0012345600. ', 8], ] for sample in samples: df_series = pd.Series([sample[0]]) min_expected_precision = sample[1] precision = FloatColumn._get_float_precision(df_series) self.assertEqual(min_expected_precision, precision['min'], msg='Errored for: {}'.format(sample[0])) def test_profiled_min(self): # test with multiple values data = np.linspace(-5, 5, 11) df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) profiler.update(df[1:]) self.assertEqual(profiler.min, -4) profiler.update(df) self.assertEqual(profiler.min, -5) profiler.update(pd.Series(['-4'])) self.assertEqual(profiler.min, -5) # empty data data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.min, None) # data with None value df = pd.Series([2.0, 3.0, None, np.nan]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with one value df =
pd.Series([2.0])
pandas.Series
from os import path from shutil import copyfile import numpy as np import pandas as pd import MDAnalysis import matplotlib.pyplot as plt import networkx as nx from enmspring import pairtype from enmspring.spring import Spring from enmspring.k_b0_util import get_df_by_filter_st, get_df_by_filter_PP, get_df_by_filter_R, get_df_by_filter_RB, get_df_by_filter_PB, get_df_by_filter_PP2_angles, get_df_same_resid, get_df_not_same_resid, FilterSB0Agent from enmspring.hb_util import HBAgent from enmspring.na_seq import sequences from enmspring.networkx_display import THY_Base, CYT_Base, ADE_Base, GUA_Base, THY_Right_Base, CYT_Right_Base, ADE_Right_Base, GUA_Right_Base hosts = ['a_tract_21mer', 'gcgc_21mer', 'tgtg_21mer', 'atat_21mer', 'ctct_21mer', 'g_tract_21mer'] class GraphAgent: type_na = 'bdna+bdna' n_bp = 21 cutoff = 4.7 def __init__(self, host, rootfolder, time_label='0_5000'): self.host = host self.rootfolder = rootfolder self.time_label = time_label self.host_folder = path.join(rootfolder, host) self.na_folder = path.join(self.host_folder, self.type_na) self.input_folder = path.join(self.na_folder, 'input') self.spring_obj = Spring(self.rootfolder, self.host, self.type_na, self.n_bp, time_label) self.df_all_k = self.spring_obj.read_k_b0_pairtype_df_given_cutoff(self.cutoff) self.crd = path.join(self.input_folder, '{0}.nohydrogen.avg.crd'.format(self.type_na)) self.npt4_crd = path.join(self.input_folder, '{0}.nohydrogen.crd'.format(self.type_na)) self.u = MDAnalysis.Universe(self.crd, self.crd) self.map, self.inverse_map, self.residues_map, self.atomid_map,\ self.atomid_map_inverse, self.atomname_map, self.strandid_map,\ self.resid_map, self.mass_map = self.build_map() self.node_list = None self.d_idx = None self.n_node = None self.adjacency_mat = None self.degree_mat = None self.laplacian_mat = None self.b0_mat = None self.w = None # Eigenvalue array self.v = None # Eigenvector matrix, the i-th column is the i-th eigenvector self.strand1_array = list() # 0: STRAND1, 1: STRAND2 self.strand2_array = list() # self.strand1_benchmark = None self.strand2_benchmark = None self.d_seq = {'STRAND1': sequences[host]['guide'], 'STRAND2': sequences[host]['target']} def build_node_list(self): node_list = list() d_idx = dict() idx = 0 for cgname, atomname in self.atomname_map.items(): atom_type = pairtype.d_atomcgtype[atomname] if atom_type == 'B': node_list.append(cgname) d_idx[cgname] = idx idx += 1 self.node_list = node_list self.d_idx = d_idx self.n_node = len(self.node_list) print(f"Thare are {self.n_node} nodes.") def initialize_three_mat(self): self.adjacency_mat = np.zeros((self.n_node, self.n_node)) self.degree_mat = np.zeros((self.n_node, self.n_node)) self.laplacian_mat = np.zeros((self.n_node, self.n_node)) self.b0_mat = np.zeros((self.n_node, self.n_node)) print('Initialize adjacency, degree and Laplacian matrices... Done.') def build_degree_from_adjacency(self): for idx in range(self.n_node): self.degree_mat[idx, idx] = self.adjacency_mat[idx, :].sum() def build_laplacian_by_adjacency_degree(self): self.laplacian_mat = self.degree_mat + self.adjacency_mat print("Finish the setup for Laplaican matrix.") def get_networkx_graph(self, df, key='k'): # key: 'k', 'b0' node1_list = df['Atomid_i'].tolist() node2_list = df['Atomid_j'].tolist() weight_list = df[key].tolist() edges_list = [(node1, node2, {'weight': weight}) for node1, node2, weight in zip(node1_list, node2_list, weight_list)] G = nx.Graph() G.add_nodes_from(self.get_node_list_by_id()) G.add_edges_from(edges_list) return G def get_node_list_by_id(self): return [self.atomid_map[name] for name in self.node_list] def get_networkx_d_pos(self, radius, dist_bw_base, dist_bw_strand): d_atcg = {'A': {'STRAND1': ADE_Base, 'STRAND2': ADE_Right_Base}, 'T': {'STRAND1': THY_Base, 'STRAND2': THY_Right_Base}, 'C': {'STRAND1': CYT_Base, 'STRAND2': CYT_Right_Base}, 'G': {'STRAND1': GUA_Base, 'STRAND2': GUA_Right_Base} } d_strandid_resid = self.get_d_strandid_resid() d_pos = dict() x_move = 0 y_move = 0 for strand_id in ['STRAND1', 'STRAND2']: for resid in range(1, self.n_bp+1): resname = self.d_seq[strand_id][resid-1] nucleobase = d_atcg[resname][strand_id](radius) nucleobase.translate_xy(x_move, y_move) for name in d_strandid_resid[strand_id][resid]: atomid = self.atomid_map[name] atomname = self.atomname_map[name] d_pos[atomid] = nucleobase.d_nodes[atomname] if strand_id == 'STRAND1' and (resid != self.n_bp): y_move += dist_bw_base elif (strand_id == 'STRAND1') and (resid == self.n_bp): y_move -= 0 else: y_move -= dist_bw_base x_move -= dist_bw_strand return d_pos def get_d_strandid_resid(self): d_strandid_resid = self.initialize_d_strandid_resid() for name in self.node_list: strandid = self.strandid_map[name] resid = self.resid_map[name] d_strandid_resid[strandid][resid].append(name) return d_strandid_resid def initialize_d_strandid_resid(self): d_strandid_resid = dict() for strand_id in ['STRAND1', 'STRAND2']: d_strandid_resid[strand_id] = dict() for resid in range(1, self.n_bp+1): d_strandid_resid[strand_id][resid] = list() return d_strandid_resid def get_D_by_atomname_strandid(self, sele_name, sele_strandid): sele_resid_list = list(range(4, 19)) sele_idx_list = list() for idx, name in enumerate(self.node_list): if (self.atomname_map[name] == sele_name) and (self.strandid_map[name] == sele_strandid) and (self.resid_map[name] in sele_resid_list): sele_idx_list.append(idx) sele_D = np.zeros((self.n_node, self.n_node)) for idx in sele_idx_list: sele_D[idx, idx] = self.degree_mat[idx, idx] return sele_D def get_D_by_atomname_strandid_resname(self, sele_name, sele_strandid, sele_resname): sele_resid_list = self.get_sele_resid_list_by_resname(sele_resname, sele_strandid) sele_idx_list = list() for idx, name in enumerate(self.node_list): if (self.atomname_map[name] == sele_name) and (self.strandid_map[name] == sele_strandid) and (self.resid_map[name] in sele_resid_list): sele_idx_list.append(idx) sele_D = np.zeros((self.n_node, self.n_node)) for idx in sele_idx_list: sele_D[idx, idx] = self.degree_mat[idx, idx] return sele_D def get_sele_resid_list_by_resname(self, resname, strandid): sele_resid_list = list() central_resids = list(range(4, 19)) #central_resids = list(range(1, 22)) for idx, nt_name in enumerate(self.d_seq[strandid]): resid = idx + 1 if (resid in central_resids) and (nt_name == resname): sele_resid_list.append(resid) return sele_resid_list def get_A_by_atomname1_atomname2(self, atomname_i, atomname_j, sele_strandid): sele_idx_list = list() for resid_i in range(4, 18): resid_j = resid_i + 1 idx_i = self.d_idx[self.map[self.get_key_by_atomname_resid_strandid(atomname_i, resid_i, sele_strandid)]] idx_j = self.d_idx[self.map[self.get_key_by_atomname_resid_strandid(atomname_j, resid_j, sele_strandid)]] sele_idx_list.append((idx_i, idx_j)) sele_A = np.zeros((self.n_node, self.n_node)) for idx_i, idx_j in sele_idx_list: sele_A[idx_i, idx_j] = self.adjacency_mat[idx_i, idx_j] i_lower = np.tril_indices(self.n_node, -1) sele_A[i_lower] = sele_A.transpose()[i_lower] # make the matrix symmetric return sele_A def get_A_by_atomname1_atomname2_by_resnames(self, atomname_i, atomname_j, resname_i, resname_j, sele_strandid): sele_idx_list = list() resid_i_list, resid_j_list = self.get_resid_i_resid_j_list(resname_i, resname_j, sele_strandid) for resid_i, resid_j in zip(resid_i_list, resid_j_list): idx_i = self.d_idx[self.map[self.get_key_by_atomname_resid_strandid(atomname_i, resid_i, sele_strandid)]] idx_j = self.d_idx[self.map[self.get_key_by_atomname_resid_strandid(atomname_j, resid_j, sele_strandid)]] sele_idx_list.append((idx_i, idx_j)) sele_A = np.zeros((self.n_node, self.n_node)) for idx_i, idx_j in sele_idx_list: sele_A[idx_i, idx_j] = self.adjacency_mat[idx_i, idx_j] i_lower = np.tril_indices(self.n_node, -1) sele_A[i_lower] = sele_A.transpose()[i_lower] # make the matrix symmetric return sele_A def get_resid_i_resid_j_list(self, resname_i, resname_j, sele_strandid): seq = self.d_seq[sele_strandid] central_resids = range(4, 19) resid_i_list = list() resid_j_list = list() for resid in central_resids: if (seq[resid-1] == resname_i) and (seq[resid] == resname_j): resid_i_list.append(resid) resid_j_list.append(resid+1) return resid_i_list, resid_j_list def get_atomidpairs_atomname1_atomname2(self, atomname_i, atomname_j, sele_strandid): atomidpairs = list() for resid_i in range(4, 18): resid_j = resid_i + 1 idx_i = self.atomid_map[self.map[self.get_key_by_atomname_resid_strandid(atomname_i, resid_i, sele_strandid)]] idx_j = self.atomid_map[self.map[self.get_key_by_atomname_resid_strandid(atomname_j, resid_j, sele_strandid)]] atomidpairs.append((idx_i, idx_j)) return atomidpairs def get_key_by_atomname_resid_strandid(self, atomname, resid, strandid): return f'segid {strandid} and resid {resid} and name {atomname}' def get_filter_by_atomname_strandid(self, sele_name, sele_strandid): sele_resid_list = list(range(4, 19)) sele_idx_list = list() for idx, name in enumerate(self.node_list): if (self.atomname_map[name] == sele_name) and (self.strandid_map[name] == sele_strandid) and (self.resid_map[name] in sele_resid_list): sele_idx_list.append(idx) y = np.zeros(self.n_node) y[sele_idx_list] = 1 return y / np.linalg.norm(y) def get_filter_by_atomname_for_YR(self, sele_name, sele_resname, sele_strandid): sele_resid_list = list(range(4, 19)) sele_idx_list = list() for idx, name in enumerate(self.node_list): resid = self.resid_map[name] if resid not in sele_resid_list: continue strandid = self.strandid_map[name] if strandid != sele_strandid: continue resname = self.d_seq[strandid][resid-1] if resname != sele_resname: continue if self.atomname_map[name] == sele_name: sele_idx_list.append(idx) y = np.zeros(self.n_node) y[sele_idx_list] = 1 return y / np.linalg.norm(y) def eigen_decompose(self): w, v = np.linalg.eig(self.laplacian_mat) idx = w.argsort()[::-1] # sort from big to small self.w = w[idx] self.v = v[:, idx] def get_eigenvalue_by_id(self, sele_id): return self.w[sele_id-1] def get_eigenvector_by_id(self, sele_id): return self.v[:,sele_id-1] def get_qtAq(self, sele_id): eigvector_sele = self.get_eigenvector_by_id(sele_id) return np.dot(eigvector_sele.T, np.dot(self.adjacency_mat, eigvector_sele)) def get_qtDq(self, sele_id): eigvector_sele = self.get_eigenvector_by_id(sele_id) return np.dot(eigvector_sele.T, np.dot(self.degree_mat, eigvector_sele)) def get_qtMq(self, sele_id, M): ### M is customized matrix eigvector_sele = self.get_eigenvector_by_id(sele_id) return np.dot(eigvector_sele.T, np.dot(M, eigvector_sele)) def vmd_show_crd(self): print(f'vmd -cor {self.npt4_crd}') def copy_nohydrogen_crd(self): allsys_root = '/home/yizaochen/codes/dna_rna/all_systems' srt = path.join(allsys_root, self.host, self.type_na, 'input', 'heavyatoms', f'{self.type_na}.nohydrogen.crd') dst = self.npt4_crd copyfile(srt, dst) print(f'cp {srt} {dst}') def decide_eigenvector_strand(self, eigv_id): eigv = self.get_eigenvector_by_id(eigv_id) dot_product = np.dot(eigv, self.strand1_benchmark) if np.isclose(dot_product, 0.): return True #'STRAND2' else: return False #'STRAND1' def set_strand_array(self): for eigv_id in range(1, self.n_node+1): if self.decide_eigenvector_strand(eigv_id): self.strand2_array.append(eigv_id) else: self.strand1_array.append(eigv_id) print(f'Total number of nodes: {self.n_node}') print(f'There are {len(self.strand1_array)} eigenvectors belonging to STRAND1.') print(f'There are {len(self.strand2_array)} eigenvectors belonging to STRAND2.') print(f'Sum of two strands: {len(self.strand1_array)+len(self.strand2_array)}') def get_lambda_by_strand(self, strandid): if strandid == 'STRAND1': return [self.get_eigenvalue_by_id(eigv_id) for eigv_id in self.strand1_array] else: return [self.get_eigenvalue_by_id(eigv_id) for eigv_id in self.strand2_array] def get_eigvector_by_strand(self, strandid, sele_id): if strandid == 'STRAND1': real_eigv_id = self.strand1_array[sele_id] else: real_eigv_id = self.strand2_array[sele_id] return self.get_eigenvector_by_id(real_eigv_id), self.get_eigenvalue_by_id(real_eigv_id) def set_adjacency_by_df(self, df_sele): idx_i_list = self.__get_idx_list(df_sele['Atomid_i']) idx_j_list = self.__get_idx_list(df_sele['Atomid_j']) k_list = df_sele['k'].tolist() for idx_i, idx_j, k in zip(idx_i_list, idx_j_list, k_list): self.adjacency_mat[idx_i, idx_j] = k def set_b0_mat_by_df(self, df_sele): idx_i_list = self.__get_idx_list(df_sele['Atomid_i']) idx_j_list = self.__get_idx_list(df_sele['Atomid_j']) b0_list = df_sele['b0'].tolist() for idx_i, idx_j, b0 in zip(idx_i_list, idx_j_list, b0_list): self.b0_mat[idx_i, idx_j] = b0 i_lower = np.tril_indices(self.n_node, -1) self.b0_mat[i_lower] = self.b0_mat.transpose()[i_lower] # make the matrix symmetric def set_adjacency_by_d(self, d_sele): idx_i_list = self.__get_idx_list(d_sele['Atomid_i']) idx_j_list = self.__get_idx_list(d_sele['Atomid_j']) k_list = d_sele['k'] for idx_i, idx_j, k in zip(idx_i_list, idx_j_list, k_list): self.adjacency_mat[idx_i, idx_j] = k def make_adjacency_symmetry(self): i_lower = np.tril_indices(self.n_node, -1) self.adjacency_mat[i_lower] = self.adjacency_mat.transpose()[i_lower] # make the matrix symmetric def write_show_nodes_tcl(self, tcl_out, colorid=0, vdw_radius=1.0): serials_str = self.__get_serial_nodes() f = open(tcl_out, 'w') f.write('display resize 362 954\n\n') f.write('mol color ColorID 6\n') f.write('mol representation Lines 3.000\n') f.write('mol selection all\n') f.write('mol material Opaque\n') f.write('mol addrep 0\n') f.write(f'mol color ColorID {colorid}\n') f.write(f'mol representation VDW {vdw_radius:.3f} 12.000\n') f.write(f'mol selection serial {serials_str}\n') f.write('mol material Opaque\n') f.write('mol addrep 0\n') f.write(f'mol color ColorID 7\n') f.write(f'mol representation VDW 0.300 12.000\n') f.write(f'mol selection serial 6 7 8 9\n') f.write('mol material Opaque\n') f.write('mol addrep 0\n') f.close() print(f'Write tcl to {tcl_out}') print(f'source {tcl_out}') def process_lines_for_edges_tcl(self, lines, df_sele, radius=0.05): u_npt4 = MDAnalysis.Universe(self.npt4_crd, self.npt4_crd) for atomid1, atomid2 in zip(df_sele['Atomid_i'], df_sele['Atomid_j']): line = self.__get_draw_edge_line(u_npt4.atoms.positions, atomid1-1, atomid2-1, radius) lines.append(line) return lines def write_lines_to_tcl_out(self, lines, tcl_out): f = open(tcl_out, 'w') for line in lines: f.write(line) f.close() print(f'Write tcl to {tcl_out}') print(f'source {tcl_out}') def __get_idx_list(self, df_column): cgname_list = [self.atomid_map_inverse[atomid] for atomid in df_column] return [self.d_idx[cgname] for cgname in cgname_list] def __get_serial_nodes(self): serials_list = [str(self.atomid_map[cgname]) for cgname in self.d_idx.keys()] return ' '.join(serials_list) def __get_draw_edge_line(self, positions, atomid1, atomid2, radius): str_0 = 'graphics 0 cylinder {' str_1 = f'{positions[atomid1,0]:.3f} {positions[atomid1,1]:.3f} {positions[atomid1,2]:.3f}' str_2 = '} {' str_3 = f'{positions[atomid2,0]:.3f} {positions[atomid2,1]:.3f} {positions[atomid2,2]:.3f}' str_4 = '} ' str_5 = f'radius {radius:.2f}\n' return str_0 + str_1 + str_2 + str_3 + str_4 + str_5 def build_map(self): d1 = dict() # key: selction, value: cgname d2 = dict() # key: cgname, value: selection d3 = dict() d4 = dict() # key: cgname, value: atomid d5 = dict() # key: atomid, value: cgname d6 = dict() # key: cgname, value: atomname d7 = dict() # key: cgname, value: strand_id d8 = dict() # key: cgname, value: resid d9 = dict() # key: cgname, value: mass atomid = 1 segid1 = self.u.select_atoms("segid STRAND1") d3['STRAND1'] = dict() for i, atom in enumerate(segid1): cgname = 'A{0}'.format(i+1) selection = self.__get_selection(atom) d1[selection] = cgname d2[cgname] = selection if atom.resid not in d3['STRAND1']: d3['STRAND1'][atom.resid] = list() d3['STRAND1'][atom.resid].append(cgname) d4[cgname] = atomid d5[atomid] = cgname d6[cgname] = atom.name d7[cgname] = 'STRAND1' d8[cgname] = atom.resid d9[cgname] = atom.mass atomid += 1 segid2 = self.u.select_atoms("segid STRAND2") d3['STRAND2'] = dict() for i, atom in enumerate(segid2): cgname = 'B{0}'.format(i+1) selection = self.__get_selection(atom) d1[selection] = cgname d2[cgname] = selection if atom.resid not in d3['STRAND2']: d3['STRAND2'][atom.resid] = list() d3['STRAND2'][atom.resid].append(cgname) d4[cgname] = atomid d5[atomid] = cgname d6[cgname] = atom.name d7[cgname] = 'STRAND2' d8[cgname] = atom.resid d9[cgname] = atom.mass atomid += 1 return d1, d2, d3, d4, d5, d6, d7, d8, d9 def __get_selection(self, atom): return 'segid {0} and resid {1} and name {2}'.format(atom.segid, atom.resid, atom.name) class Stack(GraphAgent): def __init__(self, host, rootfolder, time_label='0_5000'): super().__init__(host, rootfolder, time_label) self.df_st = self.read_df_st() def pre_process(self): self.build_node_list() self.initialize_three_mat() self.build_adjacency_from_df_st() self.build_degree_from_adjacency() self.build_laplacian_by_adjacency_degree() self.eigen_decompose() self.set_benchmark_array() self.set_strand_array() self.set_b0_mat_by_df(self.df_st) def build_adjacency_from_df_st(self): self.set_adjacency_by_df(self.df_st) self.make_adjacency_symmetry() def set_benchmark_array(self): idx_start_strand2 = self.d_idx['B6'] strand1 = np.zeros(self.n_node) strand2 = np.zeros(self.n_node) strand1[:idx_start_strand2] = 1. strand2[idx_start_strand2:] = 1. self.strand1_benchmark = strand1 self.strand2_benchmark = strand2 def write_show_base_edges_tcl(self, tcl_out, radius=0.05): lines = ['graphics 0 color 1\n', 'graphics 0 material AOShiny\n'] lines = self.process_lines_for_edges_tcl(lines, self.df_st, radius=radius) self.write_lines_to_tcl_out(lines, tcl_out) def get_df_qTAq_for_vmd_draw(self, eigv_id, strandid): df = self.df_st columns_qTAq = ['Strand_i', 'Resid_i', 'Atomname_i', 'Strand_j', 'Resid_j', 'Atomname_j'] d_qTAq = {col_name: df[col_name].tolist() for col_name in columns_qTAq} d_qTAq['qTAq'] = np.zeros(df.shape[0]) q = self.get_eigvector_by_strand(strandid, eigv_id)[0] for idx, atomids in enumerate(zip(df['Atomid_i'], df['Atomid_j'])): atomid_i , atomid_j = atomids A = self.get_sele_A_by_idx(atomid_i, atomid_j) d_qTAq['qTAq'][idx] = np.dot(q.T, np.dot(A, q)) df_result = pd.DataFrame(d_qTAq) columns_qTAq.append('qTAq') return df_result[columns_qTAq] def get_sele_A_by_idx(self, atomid_i, atomid_j): sele_A = np.zeros((self.n_node, self.n_node)) idx_i = self.d_idx[self.atomid_map_inverse[atomid_i]] idx_j = self.d_idx[self.atomid_map_inverse[atomid_j]] sele_A[idx_i, idx_j] = self.adjacency_mat[idx_i, idx_j] i_lower = np.tril_indices(self.n_node, -1) sele_A[i_lower] = sele_A.transpose()[i_lower] return sele_A def read_df_st(self): criteria = 1e-3 df1 = get_df_by_filter_st(self.df_all_k, 'st') mask = (df1['k'] > criteria) print("Read Dataframe of stacking: df_st") return df1[mask] class StackHB(Stack): def __init__(self, host, rootfolder, time_label='0_5000'): super().__init__(host, rootfolder, time_label) self.hb_agent = HBAgent(host, rootfolder, self.n_bp) def build_adjacency_from_df_st_df_hb(self): self.set_adjacency_by_df(self.df_st) d_hb_new = self.hb_agent.get_d_hb_contain_atomid_k_all_basepair() self.set_adjacency_by_d(d_hb_new) self.make_adjacency_symmetry() def write_show_base_hb_edges_tcl(self, tcl_out, radius=0.05): lines = ['graphics 0 color 1\n', 'graphics 0 material AOShiny\n'] lines = self.process_lines_for_edges_tcl(lines, self.df_st, radius=radius) lines += ['graphics 0 color 1\n', 'graphics 0 material AOShiny\n'] d_hb_new = self.hb_agent.get_d_hb_contain_atomid_k_all_basepair() lines = self.process_lines_for_edges_tcl(lines, d_hb_new, radius=radius) self.write_lines_to_tcl_out(lines, tcl_out) class onlyHB(StackHB): def pre_process(self): self.build_node_list() self.initialize_three_mat() self.build_adjacency_from_df_hb() self.build_degree_from_adjacency() self.build_laplacian_by_adjacency_degree() self.eigen_decompose() def build_adjacency_from_df_hb(self): d_hb_new = self.hb_agent.get_d_hb_contain_atomid_k_all_basepair() self.set_adjacency_by_d(d_hb_new) self.make_adjacency_symmetry() def write_show_base_hb_edges_tcl(self, tcl_out, radius=0.05): lines = ['graphics 0 color 1\n', 'graphics 0 material AOShiny\n'] d_hb_new = self.hb_agent.get_d_hb_contain_atomid_k_all_basepair() lines = self.process_lines_for_edges_tcl(lines, d_hb_new, radius=radius) self.write_lines_to_tcl_out(lines, tcl_out) def get_df_hb_new(self): columns = ['Strand_i', 'Resid_i', 'Atomname_i', 'Atomid_i', 'Strand_j', 'Resid_j', 'Atomname_j', 'Atomid_j', 'k'] d_result = dict() d_hb_new = self.hb_agent.get_d_hb_contain_atomid_k_all_basepair() cgname_i_list = [self.atomid_map_inverse[atomid_i] for atomid_i in d_hb_new['Atomid_i']] cgname_j_list = [self.atomid_map_inverse[atomid_j] for atomid_j in d_hb_new['Atomid_j']] d_result['Strand_i'] = [self.strandid_map[cgname_i] for cgname_i in cgname_i_list] d_result['Strand_j'] = [self.strandid_map[cgname_j] for cgname_j in cgname_j_list] d_result['Resid_i'] = [self.resid_map[cgname_i] for cgname_i in cgname_i_list] d_result['Resid_j'] = [self.resid_map[cgname_j] for cgname_j in cgname_j_list] d_result['Atomname_i'] = [self.atomname_map[cgname_i] for cgname_i in cgname_i_list] d_result['Atomname_j'] = [self.atomname_map[cgname_j] for cgname_j in cgname_j_list] d_result['Atomid_i'] = d_hb_new['Atomid_i'] d_result['Atomid_j'] = d_hb_new['Atomid_j'] d_result['k'] = d_hb_new['k'] df_hb_new = pd.DataFrame(d_result) criteria = 1e-3 mask = (df_hb_new['k'] > criteria) df_hb_new = df_hb_new[mask] return df_hb_new[columns] def get_df_qTAq_for_vmd_draw(self, eigv_id): df = self.get_df_hb_new() columns_qTAq = ['Strand_i', 'Resid_i', 'Atomname_i', 'Strand_j', 'Resid_j', 'Atomname_j'] d_qTAq = {col_name: df[col_name].tolist() for col_name in columns_qTAq} d_qTAq['qTAq'] = np.zeros(df.shape[0]) q = self.get_eigenvector_by_id(eigv_id) for idx, atomids in enumerate(zip(df['Atomid_i'], df['Atomid_j'])): atomid_i , atomid_j = atomids A = self.get_sele_A_by_idx(atomid_i, atomid_j) d_qTAq['qTAq'][idx] = np.dot(q.T, np.dot(A, q)) df_result = pd.DataFrame(d_qTAq) columns_qTAq.append('qTAq') return df_result[columns_qTAq] class BackboneRibose(GraphAgent): def pre_process(self): self.build_node_list() self.initialize_three_mat() self.build_adjacency_from_pp_r() self.build_degree_from_adjacency() self.build_laplacian_by_adjacency_degree() self.eigen_decompose() self.set_benchmark_array() self.set_strand_array() def build_node_list(self): node_list = list() d_idx = dict() idx = 0 for cgname, atomname in self.atomname_map.items(): atom_type = pairtype.d_atomcgtype[atomname] if (atom_type == 'P') or (atom_type == 'S') or (atom_type == 'B'): node_list.append(cgname) d_idx[cgname] = idx idx += 1 self.node_list = node_list self.d_idx = d_idx self.n_node = len(self.node_list) print(f"Thare are {self.n_node} nodes.") def get_df_backbone_ribose(self): df_pp2_filter_angle = get_df_by_filter_PP2_angles(get_df_by_filter_PP(self.df_all_k, 'PP2')) df_pp3 = get_df_by_filter_PP(self.df_all_k, 'PP3') df_pp_lst = [df_pp2_filter_angle, df_pp3] df_rb_lst = [get_df_by_filter_RB(self.df_all_k, subcategory) for subcategory in ['RB2', 'RB3']] df_pb_lst = [get_df_by_filter_PB(self.df_all_k, subcategory) for subcategory in ['PB']] df_pp_r_rb = pd.concat(df_pp_lst+df_rb_lst+df_pb_lst) #df_pp_r_rb = pd.concat(df_pp_lst) criteria = 1e-1 mask = (df_pp_r_rb['k'] > criteria) return df_pp_r_rb[mask] def build_adjacency_from_pp_r(self): df_sele = self.get_df_backbone_ribose() self.set_adjacency_by_df(df_sele) self.make_adjacency_symmetry() self.set_b0_mat_by_df(df_sele) def get_sele_A_by_idx(self, atomid_i, atomid_j): sele_A = np.zeros((self.n_node, self.n_node)) idx_i = self.d_idx[self.atomid_map_inverse[atomid_i]] idx_j = self.d_idx[self.atomid_map_inverse[atomid_j]] sele_A[idx_i, idx_j] = self.adjacency_mat[idx_i, idx_j] i_lower = np.tril_indices(self.n_node, -1) sele_A[i_lower] = sele_A.transpose()[i_lower] return sele_A def get_df_qTAq_for_vmd_draw(self, eigv_id, strandid): df = self.get_df_backbone_ribose() columns_qTAq = ['Strand_i', 'Resid_i', 'Atomname_i', 'Strand_j', 'Resid_j', 'Atomname_j'] d_qTAq = {col_name: df[col_name].tolist() for col_name in columns_qTAq} d_qTAq['qTAq'] = np.zeros(df.shape[0]) q = self.get_eigvector_by_strand(strandid, eigv_id)[0] for idx, atomids in enumerate(zip(df['Atomid_i'], df['Atomid_j'])): atomid_i , atomid_j = atomids A = self.get_sele_A_by_idx(atomid_i, atomid_j) d_qTAq['qTAq'][idx] = np.dot(q.T, np.dot(A, q)) df_result = pd.DataFrame(d_qTAq) columns_qTAq.append('qTAq') return df_result[columns_qTAq] def set_benchmark_array(self): idx_start_strand2 = self.d_idx['B1'] strand1 = np.zeros(self.n_node) strand2 = np.zeros(self.n_node) strand1[:idx_start_strand2] = 1. strand2[idx_start_strand2:] = 1. self.strand1_benchmark = strand1 self.strand2_benchmark = strand2 def write_show_backbone_edges_tcl(self, tcl_out, radius=0.05): lines = ['graphics 0 color 1\n', 'graphics 0 material AOShiny\n'] for subcategory in ['PP0', 'PP1', 'PP2', 'PP3']: df_sele = get_df_by_filter_PP(self.df_all_k, subcategory) lines = self.process_lines_for_edges_tcl(lines, df_sele, radius=radius) for subcategory in ['R0', 'R1']: df_sele = get_df_by_filter_R(self.df_all_k, subcategory) lines = self.process_lines_for_edges_tcl(lines, df_sele, radius=radius) self.write_lines_to_tcl_out(lines, tcl_out) class BB1(GraphAgent): def pre_process(self): self.build_node_list() self.initialize_three_mat() self.build_adjacency_from_pp_r() self.build_degree_from_adjacency() self.build_laplacian_by_adjacency_degree() self.eigen_decompose() self.set_benchmark_array() self.set_strand_array() def build_node_list(self): node_list = list() d_idx = dict() idx = 0 for cgname, atomname in self.atomname_map.items(): atom_type = pairtype.d_atomcgtype[atomname] if (atom_type == 'P') or (atom_type == 'S') or (atom_type == 'B'): node_list.append(cgname) d_idx[cgname] = idx idx += 1 self.node_list = node_list self.d_idx = d_idx self.n_node = len(self.node_list) print(f"Thare are {self.n_node} nodes.") def get_df_backbone_ribose(self): df_pp2_filter_angle = get_df_by_filter_PP2_angles(get_df_by_filter_PP(self.df_all_k, 'PP2')) df_pp3 = get_df_by_filter_PP(self.df_all_k, 'PP3') df_pp_lst = [df_pp2_filter_angle, df_pp3] df_rb_lst = [get_df_by_filter_RB(self.df_all_k, subcategory) for subcategory in ['RB2', 'RB3']] df_pb_lst = [get_df_by_filter_PB(self.df_all_k, subcategory) for subcategory in ['PB']] df_pp_r_rb =
pd.concat(df_pp_lst+df_rb_lst+df_pb_lst)
pandas.concat
import io import json import os.path from typing import Any, BinaryIO, Callable, Dict, List, Optional import numpy as np import pandas as pd import zstandard from databento.common.data import BIN_COLUMNS, BIN_RECORD_MAP, DERIV_SCHEMAS from databento.common.enums import Compression, Encoding, Schema class Bento: """The abstract base class for all Bento I/O classes.""" def __init__( self, schema: Optional[Schema], encoding: Optional[Encoding], compression: Optional[Compression], ): # Set compression self._compression = compression or self._infer_compression() # Set encoding self._encoding = encoding or self._infer_encoding() # Set schema self._schema = schema or self._infer_schema() self._struct_fmt = np.dtype(BIN_RECORD_MAP[self._schema]) self._struct_size = self._struct_fmt.itemsize @property def schema(self) -> Schema: """ Return the output schema. Returns ------- Schema """ return self._schema @property def encoding(self) -> Encoding: """ Return the output encoding. Returns ------- Encoding """ return self._encoding @property def compression(self) -> Compression: """ Return the output compression. Returns ------- Compression """ return self._compression @property def struct_fmt(self) -> np.dtype: """ Return the binary struct format for the schema. Returns ------- np.dtype """ return self._struct_fmt @property def struct_size(self) -> int: """ Return the schemas binary struct size in bytes. Returns ------- int """ return self._struct_size @property def nbytes(self) -> int: raise NotImplementedError() # pragma: no cover @property def raw(self) -> bytes: """ Return the raw data from the I/O stream. Returns ------- bytes """ raise NotImplementedError() # pragma: no cover def reader(self, decompress: bool = False) -> BinaryIO: """ Return an I/O reader for the data. Parameters ---------- decompress : bool If data should be decompressed (if compressed). Returns ------- BinaryIO """ raise NotImplementedError() # pragma: no cover def writer(self) -> BinaryIO: """ Return a raw I/O writer for the data. Returns ------- BinaryIO """ raise NotImplementedError() # pragma: no cover def to_file(self, path: str) -> "FileBento": """ Write the data to a file at the given path. Parameters ---------- path : str The path to write to. Returns ------- FileBento """ with open(path, mode="wb") as f: f.write(self.raw) return FileBento( path=path, schema=self._schema, encoding=self._encoding, compression=self._compression, ) def to_list(self) -> List[Any]: """ Return the data as a list records. - BIN encoding will return a list of `np.void` mixed dtypes. - CSV encoding will return a list of `str`. - JSON encoding will return a list of `Dict[str, Any]`. Returns ------- List[Any] """ if self._encoding == Encoding.BIN: return self._prepare_list_bin() elif self._encoding == Encoding.CSV: return self._prepare_list_csv() elif self._encoding == Encoding.JSON: return self._prepare_list_json() else: # pragma: no cover (design-time error) raise ValueError(f"invalid encoding, was {self._encoding.value}") def to_df(self, pretty_ts: bool = False, pretty_px: bool = False) -> pd.DataFrame: """ Return the data as a pd.DataFrame. Parameters ---------- pretty_ts : bool, default False If the type of any timestamp columns should be converted from UNIX nanosecond `int` to `pd.Timestamp` (UTC). pretty_px : bool, default False If the type of any price columns should be converted from `int` to `float` at the correct scale (using the fixed precision scalar 1e-9). Returns ------- pd.DataFrame """ if self._encoding == Encoding.BIN: df: pd.DataFrame = self._prepare_df_bin() elif self._encoding == Encoding.CSV: df = self._prepare_df_csv() elif self._encoding == Encoding.JSON: df = self._prepare_df_json() else: # pragma: no cover (design-time error) raise ValueError(f"invalid encoding, was {self._encoding.value}") if pretty_ts: df.index =
pd.to_datetime(df.index, utc=True)
pandas.to_datetime
# -*- coding: UTF-8 -*- # **********************************************************************************# # File: PMS entity file. # Author: Myron # **********************************************************************************# import pandas as pd from copy import copy from .. base import * from .. pms_broker import PMSBroker from ... import logger from ... core.clock import clock from ... core.schema import * from ... core.enum import SecuritiesType from lib.gateway.subscriber import MarketQuote from ... trade.dividend import Dividend from ... trade.order import PMSOrder, OrderState, OrderStateMessage from ... utils.date_utils import get_next_date, get_latest_trading_date from ... utils.dict_utils import DefaultDict, dict_map, CompositeDict class SecurityPMSAgent(object): """ Security pms pms_agent """ pms_broker = PMSBroker() portfolio_info = DefaultDict(PortfolioSchema(portfolio_type='parent_portfolio')) sub_portfolio_info = DefaultDict(PortfolioSchema(portfolio_type='sub_portfolio')) position_info = DefaultDict(PositionSchema(date=clock.current_date.strftime('%Y%m%d'))) order_info = DefaultDict(OrderSchema(date=clock.current_date.strftime('%Y%m%d'))) trade_info = DefaultDict(TradeSchema(date=clock.current_date.strftime('%Y%m%d'))) dividends = None current_exchangeable = [] def __new__(cls, **kwargs): """ Args: portfolio_info(dict): all portfolios | {portfolio_id: PortfolioSchema} sub_portfolio_info(dict): all sub portfolios | {sub_portfolio_id: PortfolioSchema} position_info(dict): all pms equities | {sub_portfolio_id: PositionSchema} order_info(dict): all pms orders | {sub_portfolio_id: OrderSchema} trade_info(dict): all pms trades | {sub_portfolio_id: TradeSchema} """ if not hasattr(cls, '_instance'): cls._instance = super(SecurityPMSAgent, cls).__new__(cls) return cls._instance def prepare(self): """ Prepare when service is loading. """ self.current_exchangeable = get_current_exchangeable_securities() def pre_trading_day(self, with_dividend=True, force_date=None): """ 盘前处理: load collections, synchronize portfolio, and dump info to database Args: with_dividend(boolean): 是否分红处理 force_date(datetime.datetime): specific a base date """ date = force_date or clock.current_date message = 'Begin pre trading day: '+date.strftime('%Y-%m-%d') logger.info('[SECURITY] [PRE TRADING DAY]'+message) portfolio_info = query_portfolio_info_by_(SecuritiesType.SECURITY) portfolio_ids = portfolio_info.keys() delete_redis_([SchemaType.position, SchemaType.order], portfolio_ids) position_info = query_by_ids_('mongodb', SchemaType.position, date, portfolio_ids) self.position_info.update(position_info) invalid_portfolios = [key for key in self.position_info if key not in portfolio_info] if invalid_portfolios: invalid_msg = 'Position not loaded'+', '.join(invalid_portfolios) logger.info('[SECURITY] [PRE TRADING DAY]'+invalid_msg) self._load_dividend([date]) self._execute_dividend(date) if with_dividend else None dump_to_('all', SchemaType.position, self.position_info) if self.position_info else None order_info = query_by_ids_('mongodb', SchemaType.order, date, portfolio_ids) dump_to_('redis', SchemaType.order, order_info) if order_info else None self.current_exchangeable = get_current_exchangeable_securities() self.clear() end_msg = 'End pre trading day: '+date.strftime('%Y-%m-%d') logger.info('[SECURITY] [PRE TRADING DAY]'+end_msg) def accept_orders(self, orders): """ Interface to accept orders from outside. Things to be done: 1) do orders pre_check; 2) dump orders to database; 3) send valid orders to broker for transact; Args: orders(list): orders requests """ if isinstance(orders, dict): orders = [orders] pms_orders = \ [self._order_check(PMSOrder.from_request(order)) for order in orders] update_('redis', SchemaType.order, pms_orders) active_pms_orders = [order for order in pms_orders if order.state in OrderState.ACTIVE] self.pms_broker.security_broker.accept_orders(active_pms_orders) def post_trading_day(self, with_dividend=True, force_date=None): """ 盘后处理 Args: with_dividend(Boolean): 是否执行分红 force_date(datetime.datetime): 执行非当前日期的force_date日post_trading_day """ date = force_date or clock.current_date msg = 'Begin post trading day: '+date.strftime('%Y-%m-%d') logger.info('[SECURITY] [POST TRADING DAY]'+msg) portfolio_info = query_portfolio_info_by_(SecuritiesType.SECURITY) position_info = query_by_ids_('mongodb', SchemaType.position, date=date, portfolio_ids=portfolio_info.keys()) benchmark_dict = {e.portfolio_id: e.benchmark for e in portfolio_info.itervalues()} position_info = self.evaluate(position_info, benchmark_dict, force_date) self.position_info.update(position_info) self._load_dividend([date]) if with_dividend: self._record_dividend(date) if self.position_info: dump_to_('all', SchemaType.position, self.position_info) new_position_info = self._synchronize_position(date) if new_position_info: dump_to_('mongodb', SchemaType.position, new_position_info) self.clear() msg = 'End post trading day: '+date.strftime('%Y-%m-%d') logger.info('[SECURITY] [POST TRADING DAY]'+msg) def evaluate(self, position_info=None, benchmark_dict=None, force_evaluate_date=None): """ 计算持仓市值、浮动盈亏以及当日用户权益 Args: position_info(dict): 用户持仓数据 force_evaluate_date(datetime.datetime): 是否强制对根据该日期进行估值 benchmark_dict(dict): 组合所对应的benchmark Returns: position_info(dict): 更新之后的持仓数据 """ if not position_info: return position_info benchmark_change_percent = None if force_evaluate_date: last_price_info = load_equity_market_data(force_evaluate_date) # check out api. latest_trading_date = get_latest_trading_date(force_evaluate_date) benchmark_change_percent = load_change_percent_for_benchmark(latest_trading_date) else: market_quote = MarketQuote.get_instance() all_stocks = set(SecurityPMSAgent().current_exchangeable) if benchmark_dict: all_stocks |= set(benchmark_dict.values()) last_price_info = market_quote.get_price_info(universes=list(all_stocks)) # logger.info('*'*30) for portfolio_id, position_schema in position_info.iteritems(): total_values = 0 for symbol, position in position_schema.positions.iteritems(): price_info = last_price_info.get(symbol) # logger.info("Price message: {}, {}".format(symbol, price_info)) if position and price_info: position.evaluate(price_info['closePrice']) position_schema.positions[symbol] = position # if price info is not available, the total value would add the latest evaluated value. total_values += position.value # logger.info("total_values: {}".format(total_values)) # logger.info("cash: {}".format(position_schema.cash)) # logger.info("portfolio_value: {}".format(position_schema.portfolio_value)) position_schema.portfolio_value = position_schema.cash + total_values position_schema.daily_return = position_schema.portfolio_value / position_schema.pre_portfolio_value - 1 if benchmark_dict: benchmark = benchmark_dict.get(portfolio_id) if not benchmark: position_info[portfolio_id] = position_schema continue if force_evaluate_date: position_schema.benchmark_return = benchmark_change_percent.at[benchmark] else: benchmark_price_item = last_price_info.get(benchmark) pre_benchmark_price = self.pms_broker.get_pre_close_price_of_(benchmark) if benchmark_price_item and pre_benchmark_price is not None: position_schema.benchmark_return = calc_return(pre_benchmark_price, benchmark_price_item['closePrice']) position_info[portfolio_id] = position_schema # logger.info('*'*30) return position_info def clear(self): """ Clear info """ self.portfolio_info.clear() self.sub_portfolio_info.clear() self.position_info.clear() self.order_info.clear() self.trade_info.clear() def _synchronize_position(self, date): """ 同步昨结算持仓信息 """ current_date = date or clock.current_date next_date = get_next_date(current_date).strftime('%Y%m%d') def _update_date(key, value): """ Update the date of node value """ value.date = next_date for position in value.positions.itervalues(): position.available_amount = position.amount value.pre_portfolio_value = value.portfolio_value value.benchmark_return = 0. value.daily_return = 0. return key, value return dict_map(_update_date, copy(self.position_info)) def _load_dividend(self, trading_days=None): """ 加载分红数据并归类 Args: trading_days(list of datetime): 交易日列表 Returns: """ trading_days = trading_days or [clock.current_date] raw_data = load_dividend_data(trading_days) normalize_column = ['per_cash_div_af_tax', 'shares_bf_div', 'shares_af_div'] raw_data[normalize_column] = raw_data[normalize_column].fillna(0).applymap(float) raw_data['share_ratio'] = raw_data.shares_af_div / raw_data.shares_bf_div result = CompositeDict() records = raw_data.groupby('record_date').groups cash_divs = raw_data.groupby('pay_cash_date').groups ex_divs = raw_data.groupby('ex_div_date').groups for date, group in records.iteritems(): date = pd.to_datetime(date) temp_data = raw_data.iloc[group][['security_id', 'pay_cash_date', 'ex_div_date']].as_matrix().tolist() dividend_items = dict() for dividend_item in temp_data: execute_dates = filter(lambda x: x, dividend_item[1:]) if not execute_dates: continue execute_date = max(execute_dates) key = dividend_item[0] dividend_items[key] = execute_date result['div_record'][date.strftime('%Y%m%d')] = dividend_items result['cash_div'] = \ {
pd.to_datetime(date)
pandas.to_datetime
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator import re from copy import copy as copy_obj from numbers import Integral from typing import Type, Sequence import numpy as np import pandas as pd from pandas._libs import lib from pandas.api.indexers import check_array_indexer from pandas.api.types import ( pandas_dtype, is_scalar, is_array_like, is_string_dtype, is_list_like, ) from pandas.api.extensions import ( ExtensionArray, ExtensionDtype, register_extension_dtype, ) from pandas.arrays import StringArray as StringArrayBase from pandas.core import ops from pandas.core.algorithms import take from pandas.compat import set_function_name try: from pandas._libs.arrays import NDArrayBacked except ImportError: NDArrayBacked = None try: import pyarrow as pa pa_null = pa.NULL except ImportError: # pragma: no cover pa = None pa_null = None from ..config import options from ..core import is_kernel_mode from ..lib.version import parse as parse_version from ..utils import tokenize _use_bool_any_all = parse_version(pd.__version__) >= parse_version("1.3.0") class ArrowDtype(ExtensionDtype): @property def arrow_type(self): # pragma: no cover raise NotImplementedError def __from_arrow__(self, array): return self.construct_array_type()(array) @register_extension_dtype class ArrowStringDtype(ArrowDtype): """ Extension dtype for arrow string data. .. warning:: ArrowStringDtype is considered experimental. The implementation and parts of the API may change without warning. In particular, ArrowStringDtype.na_value may change to no longer be ``numpy.nan``. Attributes ---------- None Methods ------- None Examples -------- >>> import mars.dataframe as md >>> md.ArrowStringDtype() ArrowStringDtype """ type = str kind = "U" name = "Arrow[string]" na_value = pa_null @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError(f"Cannot construct a '{cls}' from '{string}'") @classmethod def construct_array_type(cls) -> "Type[ArrowStringArray]": return ArrowStringArray @property def arrow_type(self): return pa.string() @register_extension_dtype class ArrowStringDtypeAlias(ArrowStringDtype): name = "arrow_string" # register an alias name for compatibility class ArrowListDtypeType(type): """ the type of ArrowListDtype, this metaclass determines subclass ability """ pass class ArrowListDtype(ArrowDtype): _metadata = ("_value_type",) def __init__(self, dtype): if isinstance(dtype, type(self)): dtype = dtype.value_type if pa and isinstance(dtype, pa.DataType): dtype = dtype.to_pandas_dtype() dtype = pandas_dtype(dtype) if is_string_dtype(dtype) and not isinstance(dtype, ArrowStringDtype): # convert string dtype to arrow string dtype dtype = ArrowStringDtype() self._value_type = dtype @property def value_type(self): return self._value_type @property def kind(self): return "O" @property def type(self): return ArrowListDtypeType @property def name(self): return f"Arrow[List[{self.value_type.name}]]" @property def arrow_type(self): if isinstance(self._value_type, ArrowDtype): arrow_subdtype = self._value_type.arrow_type else: arrow_subdtype = pa.from_numpy_dtype(self._value_type) return pa.list_(arrow_subdtype) def __repr__(self) -> str: return self.name @classmethod def construct_array_type(cls) -> "Type[ArrowListArray]": return ArrowListArray @classmethod def construct_from_string(cls, string): msg = f"Cannot construct a 'ArrowListDtype' from '{string}'" xpr = re.compile(r"Arrow\[List\[(?P<value_type>[^,]*)\]\]$") m = xpr.match(string) if m: value_type = m.groupdict()["value_type"] return ArrowListDtype(value_type) else: raise TypeError(msg) @classmethod def is_dtype(cls, dtype) -> bool: dtype = getattr(dtype, "dtype", dtype) if isinstance(dtype, str): try: cls.construct_from_string(dtype) except TypeError: return False else: return True else: return isinstance(dtype, cls) def __hash__(self): return super().__hash__() def __eq__(self, other): if not isinstance(other, ArrowListDtype): return False value_type = self._value_type other_value_type = other._value_type try: return value_type == other_value_type except TypeError: # cannot compare numpy dtype and extension dtype return other_value_type == value_type class ArrowArray(ExtensionArray): _arrow_type = None def __init__(self, values, dtype: ArrowDtype = None, copy=False): pandas_only = self._pandas_only() if pa is not None and not pandas_only: self._init_by_arrow(values, dtype=dtype, copy=copy) elif not is_kernel_mode(): # not in kernel mode, allow to use numpy handle data # just for infer dtypes purpose self._init_by_numpy(values, dtype=dtype, copy=copy) else: raise ImportError( "Cannot create ArrowArray " "when `pyarrow` not installed" ) # for test purpose self._force_use_pandas = pandas_only def _init_by_arrow(self, values, dtype: ArrowDtype = None, copy=False): if isinstance(values, (pd.Index, pd.Series)): # for pandas Index and Series, # convert to PandasArray values = values.array if isinstance(values, type(self)): arrow_array = values._arrow_array elif isinstance(values, ExtensionArray): # if come from pandas object like index, # convert to pandas StringArray first, # validation will be done in construct arrow_array = pa.chunked_array([pa.array(values, from_pandas=True)]) elif isinstance(values, pa.ChunkedArray): arrow_array = values elif isinstance(values, pa.Array): arrow_array = pa.chunked_array([values]) else: arrow_array = pa.chunked_array([pa.array(values, type=dtype.arrow_type)]) if copy: arrow_array = copy_obj(arrow_array) self._use_arrow = True self._arrow_array = arrow_array if NDArrayBacked is not None and isinstance(self, NDArrayBacked): NDArrayBacked.__init__(self, np.array([]), dtype) else: self._dtype = dtype def _init_by_numpy(self, values, dtype: ArrowDtype = None, copy=False): self._use_arrow = False ndarray = np.array(values, copy=copy) if NDArrayBacked is not None and isinstance(self, NDArrayBacked): NDArrayBacked.__init__(self, ndarray, dtype) else: self._dtype = dtype self._ndarray = np.array(values, copy=copy) @classmethod def _pandas_only(cls): return options.dataframe.arrow_array.pandas_only def __repr__(self): return f"{type(self).__name__}({repr(self._array)})" @property def _array(self): return self._arrow_array if self._use_arrow else self._ndarray @property def dtype(self) -> "Type[ArrowDtype]": return self._dtype @property def nbytes(self) -> int: if self._use_arrow: return sum( x.size for chunk in self._arrow_array.chunks for x in chunk.buffers() if x is not None ) else: return self._ndarray.nbytes @property def shape(self): if self._use_arrow: return (self._arrow_array.length(),) else: return self._ndarray.shape def memory_usage(self, deep=True) -> int: if self._use_arrow: return self.nbytes else: return pd.Series(self._ndarray).memory_usage(index=False, deep=deep) @classmethod def _to_arrow_array(cls, scalars): return pa.array(scalars) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): if pa is None or cls._pandas_only(): # pyarrow not installed, just return numpy ret = np.empty(len(scalars), dtype=object) ret[:] = scalars return cls(ret) if pa_null is not None and isinstance(scalars, type(pa_null)): scalars = [] elif not hasattr(scalars, "dtype"): ret = np.empty(len(scalars), dtype=object) for i, s in enumerate(scalars): ret[i] = s scalars = ret elif isinstance(scalars, cls): if copy: scalars = scalars.copy() return scalars arrow_array = pa.chunked_array([cls._to_arrow_array(scalars)]) return cls(arrow_array, dtype=dtype, copy=copy) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence(strings, dtype=dtype, copy=copy) @staticmethod def _can_process_slice_via_arrow(slc): if not isinstance(slc, slice): return False if slc.step is not None and slc.step != 1: return False if slc.start is not None and not isinstance( slc.start, Integral ): # pragma: no cover return False if slc.stop is not None and not isinstance( slc.stop, Integral ): # pragma: no cover return False return True def _values_for_factorize(self): arr = self.to_numpy() mask = self.isna() arr[mask] = -1 return arr, -1 def _values_for_argsort(self): return self.to_numpy() @classmethod def _from_factorized(cls, values, original): return cls(values) @staticmethod def _process_pos(pos, length, is_start): if pos is None: return 0 if is_start else length return pos + length if pos < 0 else pos @classmethod def _post_scalar_getitem(cls, lst): return lst.to_pandas()[0] def __getitem__(self, item): cls = type(self) if pa is None or self._force_use_pandas: # pyarrow not installed result = self._ndarray[item] if pd.api.types.is_scalar(item): return result else: return type(self)(result) has_take = hasattr(self._arrow_array, "take") if not self._force_use_pandas and has_take: if pd.api.types.is_scalar(item): item = item + len(self) if item < 0 else item return self._post_scalar_getitem(self._arrow_array.take([item])) elif self._can_process_slice_via_arrow(item): length = len(self) start, stop = item.start, item.stop start = self._process_pos(start, length, True) stop = self._process_pos(stop, length, False) return cls( self._arrow_array.slice(offset=start, length=stop - start), dtype=self._dtype, ) elif hasattr(item, "dtype") and np.issubdtype(item.dtype, np.bool_): return cls( self._arrow_array.filter(pa.array(item, from_pandas=True)), dtype=self._dtype, ) elif hasattr(item, "dtype"): length = len(self) item = np.where(item < 0, item + length, item) return cls(self._arrow_array.take(item), dtype=self._dtype) array = np.asarray(self._arrow_array.to_pandas()) return cls(array[item], dtype=self._dtype) @classmethod def _concat_same_type(cls, to_concat: Sequence["ArrowArray"]) -> "ArrowArray": if pa is None or cls._pandas_only(): # pyarrow not installed return cls(np.concatenate([x._array for x in to_concat])) chunks = list( itertools.chain.from_iterable(x._arrow_array.chunks for x in to_concat) ) if len(chunks) == 0: chunks = [pa.array([], type=to_concat[0].dtype.arrow_type)] return cls(pa.chunked_array(chunks)) def __len__(self): return len(self._array) def __array__(self, dtype=None): return self.to_numpy(dtype=dtype) def to_numpy(self, dtype=None, copy=False, na_value=lib.no_default): if self._use_arrow: array = np.asarray(self._arrow_array.to_pandas()) else: array = self._ndarray if copy or na_value is not lib.no_default: array = array.copy() if na_value is not lib.no_default: array[self.isna()] = na_value return array @classmethod def _array_fillna(cls, array, value): return array.fillna(value) def fillna(self, value=None, method=None, limit=None): cls = type(self) if pa is None or self._force_use_pandas: # pyarrow not installed return cls( pd.Series(self.to_numpy()).fillna( value=value, method=method, limit=limit ) ) chunks = [] for chunk_array in self._arrow_array.chunks: array = chunk_array.to_pandas() if method is None: result_array = self._array_fillna(array, value) else: result_array = array.fillna(value=value, method=method, limit=limit) chunks.append(pa.array(result_array, from_pandas=True)) return cls(pa.chunked_array(chunks), dtype=self._dtype) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if isinstance(dtype, ArrowStringDtype): if copy: return self.copy() return self if pa is None or self._force_use_pandas: # pyarrow not installed if isinstance(dtype, ArrowDtype): dtype = dtype.type return type(self)(pd.Series(self.to_numpy()).astype(dtype, copy=copy)) # try to slice 1 record to get the result dtype test_array = self._arrow_array.slice(0, 1).to_pandas() test_result_array = test_array.astype(dtype).array result_array = type(test_result_array)( np.full( self.shape, test_result_array.dtype.na_value, dtype=np.asarray(test_result_array).dtype, ) ) start = 0 # use chunks to do astype for chunk_array in self._arrow_array.chunks: result_array[start : start + len(chunk_array)] = ( chunk_array.to_pandas().astype(dtype).array ) start += len(chunk_array) return result_array def isna(self): if ( not self._force_use_pandas and self._use_arrow and hasattr(self._arrow_array, "is_null") ): return self._arrow_array.is_null().to_pandas().to_numpy() elif self._use_arrow: return pd.isna(self._arrow_array.to_pandas()).to_numpy() else: return pd.isna(self._ndarray) def take(self, indices, allow_fill=False, fill_value=None): if ( allow_fill is False or (allow_fill and fill_value is self.dtype.na_value) ) and len(self) > 0: return type(self)(self[indices], dtype=self._dtype) if self._use_arrow: array = self._arrow_array.to_pandas().to_numpy() else: array = self._ndarray replace = False if allow_fill and (fill_value is None or fill_value == self._dtype.na_value): fill_value = self.dtype.na_value replace = True result = take(array, indices, fill_value=fill_value, allow_fill=allow_fill) del array if replace and pa is not None: # pyarrow cannot recognize pa.NULL result[result == self.dtype.na_value] = None return type(self)(result, dtype=self._dtype) def copy(self): if self._use_arrow: return type(self)(copy_obj(self._arrow_array)) else: return type(self)(self._ndarray.copy()) def value_counts(self, dropna=False): if self._use_arrow: series = self._arrow_array.to_pandas() else: series = pd.Series(self._ndarray) return type(self)(series.value_counts(dropna=dropna), dtype=self._dtype) if _use_bool_any_all: def any(self, axis=0, out=None): return self.to_numpy().astype(bool).any(axis=axis, out=out) def all(self, axis=0, out=None): return self.to_numpy().astype(bool).all(axis=axis, out=out) else: def any(self, axis=0, out=None): return self.to_numpy().any(axis=axis, out=out) def all(self, axis=0, out=None): return self.to_numpy().all(axis=axis, out=out) def __mars_tokenize__(self): if self._use_arrow: return tokenize( [ memoryview(x) for chunk in self._arrow_array.chunks for x in chunk.buffers() if x is not None ] ) else: return self._ndarray class ArrowStringArray(ArrowArray, StringArrayBase): def __init__(self, values, dtype=None, copy=False): if dtype is not None: assert isinstance(dtype, ArrowStringDtype) ArrowArray.__init__(self, values, ArrowStringDtype(), copy=copy) @classmethod def from_scalars(cls, values): if pa is None or cls._pandas_only(): return cls._from_sequence(values) else: arrow_array = pa.chunked_array([cls._to_arrow_array(values)]) return cls(arrow_array) @classmethod def _to_arrow_array(cls, scalars): return pa.array(scalars).cast(pa.string()) def __setitem__(self, key, value): if isinstance(value, (pd.Index, pd.Series)): value = value.to_numpy() if isinstance(value, type(self)): value = value.to_numpy() key = check_array_indexer(self, key) scalar_key = is_scalar(key) scalar_value = is_scalar(value) if scalar_key and not scalar_value: raise ValueError("setting an array element with a sequence.") # validate new items if scalar_value: if pd.isna(value): value = None elif not isinstance(value, str): raise ValueError( f"Cannot set non-string value '{value}' into a ArrowStringArray." ) else: if not is_array_like(value): value = np.asarray(value, dtype=object) if len(value) and not lib.is_string_array(value, skipna=True): raise ValueError("Must provide strings.") if self._use_arrow: string_array = np.asarray(self._arrow_array.to_pandas()) string_array[key] = value self._arrow_array = pa.chunked_array([pa.array(string_array)]) else: self._ndarray[key] = value # Override parent because we have different return types. @classmethod def _create_arithmetic_method(cls, op): # Note: this handles both arithmetic and comparison methods. def method(self, other): is_arithmetic = True if op.__name__ in ops.ARITHMETIC_BINOPS else False pandas_only = cls._pandas_only() is_other_array = False if not is_scalar(other): is_other_array = True other = np.asarray(other) self_is_na = self.isna() other_is_na = pd.isna(other) mask = self_is_na | other_is_na if pa is None or pandas_only: if is_arithmetic: ret = np.empty(self.shape, dtype=object) else: ret = np.zeros(self.shape, dtype=bool) valid = ~mask arr = ( self._arrow_array.to_pandas().to_numpy() if self._use_arrow else self._ndarray ) o = other[valid] if is_other_array else other ret[valid] = op(arr[valid], o) if is_arithmetic: return ArrowStringArray(ret) else: return pd.arrays.BooleanArray(ret, mask) chunks = [] mask_chunks = [] start = 0 for chunk_array in self._arrow_array.chunks: chunk_array = np.asarray(chunk_array.to_pandas()) end = start + len(chunk_array) chunk_mask = mask[start:end] chunk_valid = ~chunk_mask if is_arithmetic: result = np.empty(chunk_array.shape, dtype=object) else: result = np.zeros(chunk_array.shape, dtype=bool) chunk_other = other if is_other_array: chunk_other = other[start:end] chunk_other = chunk_other[chunk_valid] # calculate only for both not None result[chunk_valid] = op(chunk_array[chunk_valid], chunk_other) if is_arithmetic: chunks.append(pa.array(result, type=pa.string(), from_pandas=True)) else: chunks.append(result) mask_chunks.append(chunk_mask) if is_arithmetic: return ArrowStringArray(pa.chunked_array(chunks)) else: return pd.arrays.BooleanArray( np.concatenate(chunks), np.concatenate(mask_chunks) ) return set_function_name(method, f"__{op.__name__}__", cls) def shift(self, periods: int = 1, fill_value: object = None) -> "ArrowStringArray": return ExtensionArray.shift(self, periods=periods, fill_value=fill_value) @classmethod def _add_arithmetic_ops(cls): cls.__add__ = cls._create_arithmetic_method(operator.add) cls.__radd__ = cls._create_arithmetic_method(ops.radd) cls.__mul__ = cls._create_arithmetic_method(operator.mul) cls.__rmul__ = cls._create_arithmetic_method(ops.rmul) @classmethod def _add_comparison_ops(cls): cls.__eq__ = cls._create_comparison_method(operator.eq) cls.__ne__ = cls._create_comparison_method(operator.ne) cls.__lt__ = cls._create_comparison_method(operator.lt) cls.__gt__ = cls._create_comparison_method(operator.gt) cls.__le__ = cls._create_comparison_method(operator.le) cls.__ge__ = cls._create_comparison_method(operator.ge) _create_comparison_method = _create_arithmetic_method ArrowStringArray._add_arithmetic_ops() ArrowStringArray._add_comparison_ops() class ArrowListArray(ArrowArray): def __init__(self, values, dtype: ArrowListDtype = None, copy=False): if dtype is None: if isinstance(values, type(self)): dtype = values.dtype elif pa is not None: if isinstance(values, pa.Array): dtype = ArrowListDtype(values.type.value_type) elif isinstance(values, pa.ChunkedArray): dtype = ArrowListDtype(values.type.value_type) else: values = pa.array(values) if values.type == pa.null(): dtype = ArrowListDtype(pa.string()) else: dtype = ArrowListDtype(values.type.value_type) else: value_type = np.asarray(values[0]).dtype dtype = ArrowListDtype(value_type) super().__init__(values, dtype=dtype, copy=copy) def to_numpy(self, dtype=None, copy=False, na_value=lib.no_default): if self._use_arrow: s = self._arrow_array.to_pandas() else: s = pd.Series(self._ndarray) s = s.map(lambda x: x.tolist() if hasattr(x, "tolist") else x) if copy or na_value is not lib.no_default: s = s.copy() if na_value is not lib.no_default: s[self.isna()] = na_value return np.asarray(s) @classmethod def _post_scalar_getitem(cls, lst): return lst[0].as_py() def __setitem__(self, key, value): if isinstance(value, (pd.Index, pd.Series)): value = value.to_numpy() key = check_array_indexer(self, key) scalar_key = is_scalar(key) # validate new items if scalar_key: if pd.isna(value): value = None elif not is_list_like(value): raise ValueError("Must provide list.") if self._use_arrow: array = np.asarray(self._arrow_array.to_pandas()) array[key] = value self._arrow_array = pa.chunked_array( [pa.array(array, type=self.dtype.arrow_type)] ) else: self._ndarray[key] = value @classmethod def _array_fillna(cls, series, value): # cannot fillna directly, because value is a list-like object return series.apply(lambda x: x if
is_list_like(x)
pandas.api.types.is_list_like
from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from bs4 import BeautifulSoup as bs import pandas as pd from time import sleep capa = DesiredCapabilities.CHROME capa["pageLoadStrategy"] = "none" opts = Options() opts.add_argument('--ignore-certificate-errors') opts.add_argument('--ignore-ssl-errors') # opts.add_argument("--headless") driver = webdriver.Chrome( desired_capabilities=capa, options=opts, executable_path='C:/WebDrivers/chromedriver.exe') try: print() print('Scraping Process is Started') url = 'https://www.nasdaq.com/market-activity/stocks/tsla/short-interest' wait = WebDriverWait(driver, 10) print() print('Loading Url Please Wait...') driver.get(url) driver.maximize_window() wait.until(EC.presence_of_element_located( (By.CSS_SELECTOR, '.short-interest__table-body'))) sleep(3) driver.execute_script("window.scrollBy(0, 900)", "") # driver.execute_script("window.stop();") print() print('Waiting for Content to Load Properly') sleep(3) src = driver.page_source soup = bs(src, 'lxml') list_1 = [] list_2 = [] list_3 = [] list_4 = [] print() print('Content is Loaded, Scraping Required Detail') print('Wait Please...') SETTLEMENT_DATE = soup.find_all('th', class_='short-interest__cell') for date in SETTLEMENT_DATE: text0 = date.text list_1.append(text0) SHORT_INTEREST = soup.find_all( 'td', class_='short-interest__cell--interest') for interest in SHORT_INTEREST: text1 = interest.text list_2.append(text1) AVG_DAILY_SHARE_VOLUME = soup.find_all( 'td', class_='short-interest__cell--avgDailyShareVolume') for avg in AVG_DAILY_SHARE_VOLUME: text2 = avg.text list_3.append(text2) DAYS_TO_COVER = soup.find_all( 'td', class_='short-interest__cell--daysToCover') for days in DAYS_TO_COVER: text3 = days.text list_4.append(text3) print() print('Scraping Done, Saving the Data') data = { 'SETTLEMENT_DATE': list_1, 'SHORT_INTEREST': list_2, 'AVG_DAILY_SHARE_VOLUME': list_3, 'DAYS_TO_COVER': list_4 } df =
pd.DataFrame(data)
pandas.DataFrame
import backend.constants as constants from datetime import datetime import pandas as pd df = pd.read_excel("C://sl_data//xlsx//okpm_results.xlsx", sheet_name="A") archive.load_machine_info(constants.machine_info_path) machine_legend = pd.read_excel("C://sl_data//xlsx//okpm_results.xlsx", sheet_name="machine_legend", header=0, index_col=0) conditionals = [3, 1 ,1 ,1, 2, 3, 2, 1, 2, 3, 2] def create_schedule(gunler, shift, overtime_hour): temp_df = pd.DataFrame(columns=[0,1]) for x in range(len(gunler)): if conditionals[x] == 1: temp_df = pd.concat([temp_df, df_types[1][shift]], ignore_index = True) elif conditionals[x] == 2: temp_df = pd.concat([temp_df, df_types[2](overtime_hour)], ignore_index = True) else: temp_df = pd.concat([temp_df, df_types[3]], ignore_index = True) return temp_df df_types = {1: {1: pd.DataFrame(data=[[1, 0, 0, 0, 0, 0], [7.5, 0.5]*3]).transpose(), 2: pd.DataFrame(data=[[1, 0, 1, 0, 0, 0], [7.5, 0.5]*3]).transpose(), 3: pd.DataFrame(data=[[1, 0, 1, 0, 1, 0], [7.5, 0.5]*3]).transpose()}, 2: ctesi_creator, 3: pd.DataFrame(data=[0, 24]).transpose()} def ctesi_creator(hour): if hour<24: out = pd.DataFrame(data=[[1,hour],[0, 24-hour]]) else: out =
pd.DataFrame(data=[[1,24],[0, 0]])
pandas.DataFrame
import json import math import random import numpy as np import pandas as pd from scipy.stats import norm from sklearn import linear_model from math import sqrt from DataSynthesizer.lib.utils import read_json_file from FAIR.FairnessInRankings import FairnessInRankingsTester def save_uploaded_file(file, current_file): """ Save user uploaded data on server. Attributes: file: the uploaded dataset. current_file: file name with out ".csv" suffix """ with open(current_file+".csv", 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) def get_score_scatter(current_file,top_K=100): """ Generated data for scatter plot. Attributes: current_file: file name that stored the data (with out ".csv" suffix) top_K: threshold of data size that scatter plot included Return: data for scatter plot using HighChart format """ data = pd.read_csv(current_file+"_weightsum.csv").head(top_K) scatter_points = [] score_value = data["GeneratedScore"].tolist() position_value = [x for x in range(1, len(data) + 1)] for i in range(len(score_value)): scatter_points.append([position_value[i], score_value[i]]) return scatter_points def getAttValueCountTopAndOverall(input_data, att_name, top_K=10): """ Subfunction to count values of input attribute in the data for top 10 and overall pie chart. Attributes: input_data: dataframe that store the input data att_name: name of attribuet to count top_K: top k position to count the value, default value is 10 Return: json data includes two two-dimension arrays for value and its count at top 10 and overall """ counts_all = {} all_values_count = input_data[att_name].value_counts() top_data = input_data[0:top_K] # get overall counts new_values_all = [] for i in range(len(all_values_count)): cur_cate = all_values_count.index[i] # if not a string, then encode it to the type that is JSON serializable if not isinstance(cur_cate, str): cur_cate = str(cur_cate) cur_count = int(all_values_count.values[i]) new_values_all.append([cur_cate,cur_count]) counts_all["overall"] = new_values_all # get top K counts and make sure list of counts include every value of input attribute for consistent pie chart colors top_values_count = top_data[att_name].value_counts() top_cates = top_values_count.index # generate a dict to store the top k value counts top_values_count_dic = {} for i in range(len(top_values_count)): top_values_count_dic[top_values_count.index[i]] = int(top_values_count.values[i]) # generate a new value list for top K using same order as in over all list new_values_top = [] for i in range(len(all_values_count)): cur_cate = all_values_count.index[i] # if not a string, then encode it to the type that is JSON serializable if not isinstance(cur_cate, str): str_cur_cate = str(cur_cate) else: str_cur_cate = cur_cate if cur_cate in top_cates: # exiting in top K new_values_top.append([str_cur_cate, top_values_count_dic[cur_cate]]) else: new_values_top.append([str_cur_cate, 0]) counts_all["topTen"] = new_values_top return counts_all def get_chart_data(current_file, att_names): """ Generated data for pie chart. Attributes: current_file: file name that stored the data (with out ".csv" suffix) att_names: list of attribute names to compute the chart data Return: json data for pie chart plot using HighChart format """ data = pd.read_csv(current_file + "_weightsum.csv") pie_data = {} for ai in att_names: cur_ai_json = {} counts_all = getAttValueCountTopAndOverall(data,ai) cur_ai_json["topTen"] = counts_all["topTen"] cur_ai_json["overall"] = counts_all["overall"] pie_data[ai] = cur_ai_json return pie_data def computeSlopeOfScores(current_file,top_K, round_default=2): """ Compute the slop of scatter plot. Attributes: current_file: file name that stored the data (with out ".csv" suffix) top_K: threshold of data size to compute the slope Return: slope of scatter plot of top_K data """ data = pd.read_csv(current_file + "_weightsum.csv") top_data = data[0:top_K] xd = [i for i in range(1,top_K+1)] yd = top_data["GeneratedScore"].tolist() # determine best fit line par = np.polyfit(xd, yd, 1, full=True) slope = par[0][0] return round(slope,round_default) def compute_correlation(current_file,y_col="GeneratedScore",top_threshold=3,round_default=2): """ Compute the correlation between attributes and generated scores. Attributes: current_file: file name that stored the data (with out ".csv" suffix) y_col: column name of Y variable top_threshold: threshold of number of returned correlated attribute round_default: threshold of round function for the returned coefficient Return: list of correlated attributes and its coefficients """ # get the data for generated ranking ranking_df = pd.read_csv(current_file+"_weightsum.csv") # get the upload data for correlation computation upload_df = pd.read_csv(current_file+".csv") numeric_atts = list(upload_df.describe().columns) X = upload_df[numeric_atts].values # no need to standardize data # scaler = StandardScaler() # transform_X = scaler.fit_transform(X) y = ranking_df[y_col].values regr = linear_model.LinearRegression(normalize=False) regr.fit(X, y) # get coeff's, ordered by significance # format weight with decile of 3 for i in range(len(regr.coef_)): regr.coef_[i] = round(regr.coef_[i], round_default) # normalize coefficients to [-1,1] max_coef = max(regr.coef_) min_coef = min(regr.coef_) abs_max = max(abs(max_coef),abs(min_coef)) stand_coef = [] for ci in regr.coef_: new_ci = round(ci/abs_max,round_default) stand_coef.append(new_ci) # coeff_zip = zip(regr.coef_, numeric_atts) coeff_zip = zip(stand_coef, numeric_atts) coeff_sorted = sorted(coeff_zip, key=lambda tup: abs(tup[0]), reverse=True) if len(coeff_sorted) > top_threshold: coeff_return = coeff_sorted[0:top_threshold] else: coeff_return = coeff_sorted # only return top_threshold most correlated attributes return coeff_return def compute_statistic_topN(chosed_atts,current_file,top_N,round_default=1): """ Compute the statistics of input attributes. Attributes: chosed_atts: list of attributes to be computed current_file: file name that stored the data (with out ".csv" suffix) top_N: size of data to be used in current_file round_default: threshold of round function for the returned statistics Return: json data of computed statistics """ # data is sorted by ranking scores from higher to lower data = pd.read_csv(current_file+"_weightsum.csv").head(top_N) statistic_data = {} # get the median data for atti in chosed_atts: cur_att_max = max(data[atti]) cur_att_median = np.median(data[atti]) cur_att_min = min(data[atti]) statistic_data[atti] = {"max": round(cur_att_max, round_default), "median": round(cur_att_median, round_default), "min": round(cur_att_min, round_default)} return statistic_data def mergeUnfairRanking(_px, _sensitive_idx, _fprob): # input is the ranking """ Generate a fair ranking. Attributes: _px: input ranking (sorted), list of ids _sensitive_idx: the index of protected group in the input ranking _fprob: probability to choose the protected group Return: generated fair ranking, list of ids """ # _px=sorted(range(len(_inputrankingscore)), key=lambda k: _inputrankingscore[k],reverse=True) rx = [x for x in _px if x not in _sensitive_idx] qx = [x for x in _px if x in _sensitive_idx] rx.reverse() # prepare for pop function to get the first element qx.reverse() res_list = [] while (len(qx) > 0 and len(rx) > 0): r_cur = random.random() # r_cur=random.uniform(0,1.1) if r_cur < _fprob: res_list.append(qx.pop()) # insert protected group first else: res_list.append(rx.pop()) if len(qx) > 0: qx.reverse() res_list = res_list + qx if len(rx) > 0: rx.reverse() res_list = res_list + rx if len(res_list) < len(_px): print("Error!") return res_list def runFairOracles(chosed_atts,current_file,alpha_default=0.05,k_threshold=200,k_percentage=0.5): """ Run all fairness oracles: FA*IR, Pairwise and Proportion Attributes: chosed_atts: list of sensitive attributes current_file: file name that stored the data (with out ".csv" suffix) alpha_default: default value of significance level in each oracle k_threshold: threshold of size of upload data to decide the top-K in FA*IR and Proportion k_percentage: threshold to help to decide the top-K in FA*IR and Proportion when upload dataset's size less than k_threshold Return: json data of fairness results of all oracles """ # data is sorted by ranking scores from higher to lower data = pd.read_csv(current_file+"_weightsum.csv") total_n = len(data) # set top K based on the size of input data # if N > 200, then set top K = 100, else set top K = 0.5*N if total_n > k_threshold: top_K = 100 else: top_K = int(np.ceil(k_percentage* total_n)) fair_res_data = {} # include all details of fairness validation fair_statement_data = {} # only include the fairness result, i.e. fair or unfair, True represents fair, False represents unfair. for si in chosed_atts: # get the unique value of this sensitive attribute values_si_att = list(data[si].unique()) # for each value, compute the current pairs and estimated fair pairs si_value_json = {} si_fair_json = {} for vi in values_si_att: # run FAIR oracle to compute its p-value and alpha_c p_value_fair,alphac_fair = computePvalueFAIR(si,vi,current_file,top_K) res_fair= p_value_fair > alphac_fair # run Pairwise orace to compute its p-value, alpha use the default value p_value_pairwise = computePvaluePairwise(si,vi,current_file) res_pairwise = p_value_pairwise > alpha_default # run Proportion oracle to compute its p-value, alpha use the default value p_value_proportion = computePvalueProportion(si,vi,current_file,top_K) res_proportion = p_value_proportion > alpha_default if not isinstance(vi, str): filled_vi = vi else: filled_vi = vi.replace(" ", "") si_value_json[filled_vi] = [p_value_fair,alphac_fair,p_value_pairwise,alpha_default,p_value_proportion,alpha_default] si_fair_json[filled_vi] = [res_fair,res_pairwise,res_proportion] if not isinstance(si, str): filled_si = si else: filled_si = si.replace(" ", "") fair_res_data[filled_si] = si_value_json fair_statement_data[filled_si] = si_fair_json return fair_res_data, fair_statement_data, alpha_default, top_K def computePvalueFAIR(att_name,att_value,current_file,top_K,round_default=2): """ Compute p-value using FA*IR oracle Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute current_file: file name that stored the data (with out ".csv" suffix) top_K: top_K value in FA*IR round_default: threshold of round function for the returned p-value Return: rounded p-value and adjusted significance level in FA*IR """ # input checked_atts includes names of checked sensitive attributes data = pd.read_csv(current_file + "_weightsum.csv") total_N = len(data) top_data = data[0:top_K] # for attribute value, compute the current pairs and estimated fair pairs position_lists_val = data[data[att_name]==att_value].index+1 size_vi = len(position_lists_val) fair_p_vi = size_vi/total_N # generate a ranking of tuples with (id,"pro")/(id,"unpro") by current value as protected group generated_ranking = [] for index, row in top_data.iterrows(): if row[att_name] == att_value: generated_ranking.append([index,"pro"]) else: generated_ranking.append([index,"unpro"]) p_value, isFair, posiFail, alpha_c, pro_needed_list = computeFairRankingProbability(top_K,fair_p_vi,generated_ranking) return round(p_value,round_default),round(alpha_c,round_default) def computePvaluePairwise(att_name,att_value,current_file, round_default=2): """ Compute p-value using Pairwise oracle Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute current_file: file name that stored the data (with out ".csv" suffix) run_time: running times of simulation using mergeUnfairRanking round_default: threshold of round function for the returned p-value Return: rounded p-value """ data = pd.read_csv(current_file + "_weightsum.csv") total_N = len(data) # for attribute value, compute the current pairs and estimated fair pairs position_lists_val = data[data[att_name] == att_value].index + 1 size_vi = len(position_lists_val) fair_p_vi = size_vi / total_N # get the pre-computed pairwise results from simulation # simu_data = read_json_file("/home/ec2-user/dataResponsiblyUI/playdata/SimulationPairs_N1000_R1000.json") simu_data = read_json_file("/home/ec2-user/dataResponsiblyUI/playdata/SimulationPairs_N"+str(total_N)+"_R1000.json") all_fair_p = list(simu_data.keys()) if str(fair_p_vi) in all_fair_p: cur_pi = str(fair_p_vi) else: diff_p = [] for pi in all_fair_p: num_pi = float(pi) diff_p.append(abs(num_pi - fair_p_vi)) min_diff_index = diff_p.index(min(diff_p)) cur_pi = all_fair_p[min_diff_index] # compute the number of pairs of value > * in the input ranking that is stored in the current file pair_N_vi, estimated_fair_pair_vi, size_vi = computePairN(att_name,att_value,current_file) # compute the cdf, i.e. p-value of input pair value sample_pairs = simu_data[cur_pi] cdf_pair = Cdf(sample_pairs,pair_N_vi) # decide to use left tail or right tail # mode_pair_sim,_ = mode(sample_pairs) # median_mode = np.median(list(mode_pair_sim)) # if pair_N_vi <= mode_pair_sim: # p_value = cdf_pair # else: # p_value = 1- cdf_pair return round(cdf_pair,round_default) def computePvaluePairwise_simu(att_name,att_value,current_file, run_time=100, round_default=2): """ Compute p-value using Pairwise oracle Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute current_file: file name that stored the data (with out ".csv" suffix) run_time: running times of simulation using mergeUnfairRanking round_default: threshold of round function for the returned p-value Return: rounded p-value """ data = pd.read_csv(current_file + "_weightsum.csv") total_N = len(data) # for attribute value, compute the current pairs and estimated fair pairs position_lists_val = data[data[att_name] == att_value].index + 1 size_vi = len(position_lists_val) fair_p_vi = size_vi / total_N seed_random_ranking = [x for x in range(total_N)] # list of IDs seed_f_index = [x for x in range(size_vi)] # list of IDs # for simulation outputs data_file = "./media/FairRankingGeneration" plot_df = pd.DataFrame(columns=["RunCount", "N", "sensi_n", "fair_mp", "pair_n"]) # run simulations, in each simulation, generate a fair ranking with input N and size of sensitive group for ri in range(run_time): # only for binary sensitive attribute output_ranking = mergeUnfairRanking(seed_random_ranking, seed_f_index, fair_p_vi) position_pro_list = [i for i in range(len(output_ranking)) if output_ranking[i] in seed_f_index] count_sensi_prefered_pairs = 0 for i in range(len(position_pro_list)): cur_position = position_pro_list[i] left_sensi = size_vi - (i + 1) count_sensi_prefered_pairs = count_sensi_prefered_pairs + (total_N - cur_position - left_sensi) # count_other_prefered_pairs = (_input_sensi_n*(_input_n-_input_sensi_n)) - count_sensi_prefered_pairs cur_row = [ri + 1, total_N, size_vi, fair_p_vi, count_sensi_prefered_pairs] plot_df.loc[len(plot_df)] = cur_row # save the data of pairs in fair ranking generation on server plot_df.to_csv(data_file + "_R" + str(run_time) + "_N" + str(total_N) + "_S" + str(size_vi) + "_pairs.csv") # compute the number of pairs of value > * in the input ranking that is stored in the current file pair_N_vi, estimated_fair_pair_vi, size_vi = computePairN(att_name,att_value,current_file) # compute the cdf, i.e. p-value of input pair value sample_pairs = list(plot_df["pair_n"].dropna()) cdf_pair = Cdf(sample_pairs,pair_N_vi) # decide to use left tail or right tail # mode_pair_sim,_ = mode(sample_pairs) # median_mode = np.median(list(mode_pair_sim)) # if pair_N_vi <= mode_pair_sim: # p_value = cdf_pair # else: # p_value = 1- cdf_pair return round(cdf_pair,round_default) def computePvalueProportion(att_name,att_value,current_file, top_K, round_default=2): """ Compute p-value using Proportion oracle, i.e., z-test method of 4.1.3 in "A survey on measuring indirect discrimination in machine learning". Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute current_file: file name that stored the data (with out ".csv" suffix) top_K: threshold to decide the positive outcome. Ranked inside top_K is positive outcome. Otherwise is negative outcome. round_default: threshold of round function for the returned p-value Return: rounded p-value """ # using z-test method of 4.1.3 in "A survey on measuring indirect discrimination in machine learning" # for binary attribute only data = pd.read_csv(current_file + "_weightsum.csv") total_N = len(data) top_data = data[0:top_K] # for attribute value, compute the current pairs and estimated fair pairs position_lists_val = data[data[att_name] == att_value].index + 1 size_vi = len(position_lists_val) size_other = total_N - size_vi size_vi_top = len(top_data[top_data[att_name]==att_value].index +1) size_other_top = top_K - size_vi_top p_vi_top = size_vi_top / size_vi p_other_top = size_other_top / size_other p_vi_rest = 1 - p_vi_top p_other_rest = 1- p_other_top pooledSE = sqrt((p_vi_top * p_vi_rest/ size_vi) + ( p_other_top * p_other_rest / size_other)) z_test = (p_other_top - p_vi_top) / pooledSE p_value = norm.sf(z_test) return round(p_value,round_default) def Cdf(_input_array, x): """ Compute the CDF value of input samples using left tail computation Attributes: _input_array: list of data points x: current K value Return: value of cdf """ # left tail count = 0.0 for vi in _input_array: if vi <= x: count += 1.0 prob = count / len(_input_array) return prob def computeFairRankingProbability(k,p,generated_ranking,default_alpha=0.05): """ Sub-function to compute p-value used in FA*IR oracle Attributes: k: top_K value in FA*IR p: minimum proportion of protected group generated_ranking: input ranking of users default_alpha: default significance level of FA*IR Return: p-value, fairness, rank position fail, adjusted significance level and list of ranking positions that protected group should be using FA*IR """ ## generated_ranking is a list of tuples (id, "pro"),...(id,"unpro") gft = FairnessInRankingsTester(p, default_alpha, k, correctedAlpha=True) posAtFail, isFair = gft.ranked_group_fairness_condition(generated_ranking) p_value = gft.calculate_p_value_left_tail(k, generated_ranking) return p_value, isFair, posAtFail, gft.alpha_c, gft.candidates_needed def computePairN(att_name, att_value,current_file): """ Sub-function to compute number of pairs that input value > * used in Pairwise oracle Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute current_file: file name that stored the data (with out ".csv" suffix) Return: number of pairs of att_value > * in input data, number of pairs of att_value > * estimated using proportion, and proportion of group with att_value """ # input checked_atts includes names of checked sensitive attributes data = pd.read_csv(current_file + "_weightsum.csv") total_N = len(data) # get the unique value of this sensitive attribute values_att = list (data[att_name].unique()) # for each value, compute the current pairs and estimated fair pairs position_lists_val = data[data[att_name]==att_value].index+1 size_vi = len(position_lists_val) count_vi_prefered_pairs = 0 for i in range(len(position_lists_val)): cur_position = position_lists_val[i] left_vi = size_vi - (i + 1) count_vi_prefered_pairs = count_vi_prefered_pairs + (total_N - cur_position - left_vi) # compute estimated fair pairs total_pairs_vi = size_vi*(total_N-size_vi) estimated_vi_pair = math.ceil((size_vi / total_N) * total_pairs_vi) return int(count_vi_prefered_pairs),int(estimated_vi_pair),int(size_vi) def getSizeOfRanking(current_file): """ Compute size of generated ranking. Attributes: current_file: file name that stored the data (with out ".csv" suffix) Return: size of ranking """ data = pd.read_csv(current_file+"_weightsum.csv") return len(data) def getSizeOfDataset(current_file): """ Compute number of rows in the input data. Attributes: current_file: file name that stored the data (with out ".csv" suffix) Return: number of rows in current_file """ data = pd.read_csv(current_file+".csv") return len(data) def generateRanking(current_file,top_K=100): """ Generate a ranking of input data. Attributes: current_file: file name that stored the data (with out ".csv" suffix) top_K: threshold of returned generated ranking Return: json data of a dataframe that stored the generated ranking """ ranks_file = current_file + "_rankings.json" rankings_paras = read_json_file(ranks_file) data = pd.read_csv(current_file + ".csv") # before compute the score, replace the NA in the data with 0 filled_data = data.fillna(value=0) chosed_atts = rankings_paras["ranked_atts"] filled_data["GeneratedScore"] = 0 for i in range(len(chosed_atts)): cur_weight = rankings_paras["ranked_atts_weight"][i] filled_data["GeneratedScore"] += cur_weight * filled_data[chosed_atts[i]] filled_data = filled_data.reindex_axis(['GeneratedScore'] + list([a for a in filled_data.columns if a != 'GeneratedScore']), axis=1) # save data with weight sum to a csv on server filled_data.sort_values(by="GeneratedScore",ascending=False,inplace=True) filled_data.to_csv(current_file+"_weightsum.csv", index=False) # only show top_K rows in the UI display_data = filled_data.head(top_K) return display_data.to_json(orient='records') def standardizeData(inputdata,colums_to_exclude=[]): """ inputdata is a dataframe stored all the data read from a csv source file noweightlist is a array like data structure stored the attributes which should be ignored in the normalization process. return the distribution of every attribute """ df = inputdata.loc[:, inputdata.columns.difference(colums_to_exclude)]# remove no weight attributes df_stand = (df - df.mean())/np.std(df) inputdata.loc[:, inputdata.columns.difference(colums_to_exclude)] = df_stand return inputdata def normalizeDataset(input_file_name,noweightlist=[]): """ inputdata is the file name of the csv source file noweightlist is a array like data structure stored the attributes which should be ignored in the normalization process. return the processed inputdata """ input_data = pd.read_csv(input_file_name) df = input_data.loc[:,input_data.columns.difference(noweightlist)] # remove no weight attributes #normalize attributes norm_df = (df - df.min()) / (df.max() - df.min()) input_data.loc[:,input_data.columns.difference(noweightlist)] = norm_df return input_data def cleanseData(input_file_name, columns_to_exclude=[]): """ inputdata is the file name of the csv source file noweightlist is a array like data structure stored the attributes which should be ignored in the normalization process. return the cleansed inputdata using normalizating and standization """ norm_data = normalizeDataset(input_file_name, columns_to_exclude) return standardizeData(norm_data, columns_to_exclude) class DataDescriberUI(object): """Analyze input dataset, then save the dataset description in a JSON file. Used to display in datatable. Attributes: threshold_size: float, threshold when size of input_dataset exceed this value, then only display first 100 row in input_dataset dataset_description: Dict, a nested dictionary (equivalent to JSON) recording the mined dataset information. input_dataset: the dataset to be analyzed. """ def __init__(self, threshold_size=100): self.threshold_size = threshold_size self.dataset_description = {} self.input_dataset = pd.DataFrame() self.json_data = {} def read_dataset_from_csv(self, file_name=None): try: self.input_dataset = pd.read_csv(file_name) except (UnicodeDecodeError, NameError): self.input_dataset =
pd.read_csv(file_name, encoding='latin1')
pandas.read_csv
import os from functools import reduce import numpy as np import pandas as pd from sklearn.preprocessing import minmax_scale, scale class Data(): def __init__(self, no_hist_days, no_hist_weeks, target_label, root_dir="", begin_test_date=None, scale_data=None): data_daily = os.path.join(root_dir, "data/slovenia_daily.csv") data_weekly = os.path.join(root_dir, "data/slovenia_weekly.csv") self.df_daily =
pd.read_csv(data_daily)
pandas.read_csv
# File written by <NAME> on July 7 2020 # In reference to: https://github.com/hudson-and-thames/research/blob/master/Advances%20in%20Financial%20Machine%20Learning/Labelling/Trend-Follow-Question.ipynb # Data from here: https://github.com/hudson-and-thames/research/blob/master/Advances%20in%20Financial%20Machine%20Learning/Labelling/sample_dollar_bars.csv # Imports import pandas as pd import mlfinlab as ml import sys import mlfinlab.data_structures as ds import numpy as np import os import datetime import math import sklearn as sk from mlfinlab.datasets import (load_tick_sample, load_stock_prices, load_dollar_bar_sample) import matplotlib.pyplot as plt import pyfolio as pf if __name__ == '__main__': # Initialize Data # Set index csv_name = sys.argv[1] data = pd.read_csv(csv_name) data['date_time'] =
pd.to_datetime(data.date_time)
pandas.to_datetime
import logging import sys import os import requests as req import datetime import pandas as pd import cartoframes import requests import numpy as np ### Constants SOURCE_URL = "https://ngdc.noaa.gov/nndc/struts/results?type_0=Exact&query_0=$ID&t=101650&s=69&d=59&dfn=tsevent.txt" DATE_FORMAT = '%Y-%m-%dT%H:%M:%SZ' LOG_LEVEL = logging.INFO ### Table name and structure CARTO_TABLE = 'dis_009_tsunamis' DATASET_ID = '2fb159b3-e613-40ec-974c-21b22c930ce4' def lastUpdateDate(dataset, date): apiUrl = 'http://api.resourcewatch.org/v1/dataset/{0}'.format(dataset) headers = { 'Content-Type': 'application/json', 'Authorization': os.getenv('apiToken') } body = { "dataLastUpdated": date.isoformat() } try: r = requests.patch(url = apiUrl, json = body, headers = headers) logging.info('[lastUpdated]: SUCCESS, '+ date.isoformat() +' status code '+str(r.status_code)) return 0 except Exception as e: logging.error('[lastUpdated]: '+str(e)) DATASET_ID = '2fb159b3-e613-40ec-974c-21b22c930ce4' def lastUpdateDate(dataset, date): apiUrl = 'http://api.resourcewatch.org/v1/dataset/{0}'.format(dataset) headers = { 'Content-Type': 'application/json', 'Authorization': os.getenv('apiToken') } body = { "dataLastUpdated": date.isoformat() } try: r = requests.patch(url = apiUrl, json = body, headers = headers) logging.info('[lastUpdated]: SUCCESS, '+ date.isoformat() +' status code '+str(r.status_code)) return 0 except Exception as e: logging.error('[lastUpdated]: '+str(e)) ### ## Accessing remote data ### def create_geom(lat, lon): if lat: geom = { "type": "Point", "coordinates": [ lon, lat ] } return geom else: return None def processData(): """ Inputs: SOURCE_URL where data is stored Actions: Retrives data, creates date column, and returns dataframe Output: Dataframe with data """ data = req.get(SOURCE_URL).text data = data.split('\n') lines = [line.split('\t') for line in data] header = lines[0] rows = lines[1:] df = pd.DataFrame(rows) df.columns = header df['the_geom'] = list(map(lambda coords: create_geom(*coords), zip(df['LATITUDE'],df['LONGITUDE']))) text_cols = ['the_geom', 'COUNTRY', 'STATE', 'LOCATION_NAME'] number_cols = [x for x in df.columns if x not in text_cols] df = df.replace(r'^\s*$', np.nan, regex=True) for col in number_cols: print(col) df[col] = pd.to_numeric(df[col], errors='coerce') return(df) def get_most_recent_date(table): #year = table.sort_values(by=['YEAR', 'MONTH', 'DAY'], ascending=True)['YEAR'] #convert date values to numeric for sorting table.YEAR =
pd.to_numeric(table.YEAR, errors='coerce')
pandas.to_numeric
import unittest import pandas as pd import numpy as np from ..timeseries import TimeSeries class TimeSeriesTestCase(unittest.TestCase): times = pd.date_range('20130101', '20130110') pd_series1 = pd.Series(range(10), index=times) pd_series2 = pd.Series(range(5, 15), index=times) pd_series3 = pd.Series(range(15, 25), index=times) series1: TimeSeries = TimeSeries(pd_series1) series2: TimeSeries = TimeSeries(pd_series1, pd_series2, pd_series3) series3: TimeSeries = TimeSeries(pd_series2) def test_creation(self): with self.assertRaises(ValueError): # Index is dateTimeIndex TimeSeries(pd.Series(range(10), range(10))) with self.assertRaises(ValueError): # Conf interval must be same length as main series pd_lo = pd.Series(range(5, 14), index=pd.date_range('20130101', '20130109')) TimeSeries(self.pd_series1, pd_lo) with self.assertRaises(ValueError): # Conf interval must have same time index as main series pd_lo = pd.Series(range(5, 15), index=pd.date_range('20130102', '20130111')) TimeSeries(self.pd_series1, pd_lo) with self.assertRaises(ValueError): # Conf interval must be same length as main series pd_hi = pd.Series(range(5, 14), index=pd.date_range('20130101', '20130109')) TimeSeries(self.pd_series1, None, pd_hi) with self.assertRaises(ValueError): # Conf interval must have same time index as main series pd_lo = pd.Series(range(5, 15), index=pd.date_range('20130102', '20130111')) TimeSeries(self.pd_series1, None, pd_lo) with self.assertRaises(ValueError): # Main series cannot have date holes range_ = pd.date_range('20130101', '20130104').append(pd.date_range('20130106', '20130110')) TimeSeries(pd.Series(range(9), index=range_)) series_test = TimeSeries(self.pd_series1, self.pd_series2, self.pd_series3) self.assertTrue(series_test.pd_series().equals(self.pd_series1)) self.assertTrue(series_test.conf_lo_pd_series().equals(self.pd_series2)) self.assertTrue(series_test.conf_hi_pd_series().equals(self.pd_series3)) def test_alt_creation(self): with self.assertRaises(ValueError): # Series cannot be lower than three index = pd.date_range('20130101', '20130102') TimeSeries.from_times_and_values(index, self.pd_series1.values[:2]) with self.assertRaises(ValueError): # all array must have same length TimeSeries.from_times_and_values(self.pd_series1.index, self.pd_series1.values[:-1], self.pd_series2[:-2], self.pd_series3[:-1]) # test if reordering is correct rand_perm = np.random.permutation(range(1, 11)) index = pd.to_datetime(['201301{:02d}'.format(i) for i in rand_perm]) series_test = TimeSeries.from_times_and_values(index, self.pd_series1.values[rand_perm-1], self.pd_series2[rand_perm-1], self.pd_series3[rand_perm-1].tolist()) self.assertTrue(series_test.start_time() == pd.to_datetime('20130101')) self.assertTrue(series_test.end_time() == pd.to_datetime('20130110')) self.assertTrue(series_test.pd_series().equals(self.pd_series1)) self.assertTrue(series_test.conf_lo_pd_series().equals(self.pd_series2)) self.assertTrue(series_test.conf_hi_pd_series().equals(self.pd_series3)) self.assertTrue(series_test.freq() == self.series1.freq()) # TODO test over to_dataframe when multiple features choice is decided def test_eq(self): seriesA: TimeSeries = TimeSeries(self.pd_series1) self.assertTrue(self.series1 == seriesA) # with a defined CI seriesB: TimeSeries = TimeSeries(self.pd_series1, confidence_hi=pd.Series(range(10, 20), index=pd.date_range('20130101', '20130110'))) self.assertFalse(self.series1 == seriesB) self.assertTrue(self.series1 != seriesB) # with different dates seriesC = TimeSeries(pd.Series(range(10), index=pd.date_range('20130102', '20130111'))) self.assertFalse(self.series1 == seriesC) # compare with both CI seriesD: TimeSeries = TimeSeries(self.pd_series1, self.pd_series2, self.pd_series3) seriesE: TimeSeries = TimeSeries(self.pd_series1, self.pd_series3, self.pd_series2) self.assertTrue(self.series2 == seriesD) self.assertFalse(self.series2 == seriesE) def test_dates(self): self.assertEqual(self.series1.start_time(), pd.Timestamp('20130101')) self.assertEqual(self.series1.end_time(), pd.Timestamp('20130110')) self.assertEqual(self.series1.duration(), pd.Timedelta(days=9)) def test_slice(self): # base case seriesA = self.series1.slice(pd.Timestamp('20130104'), pd.Timestamp('20130107')) self.assertEqual(seriesA.start_time(), pd.Timestamp('20130104')) self.assertEqual(seriesA.end_time(), pd.Timestamp('20130107')) # time stamp not in series seriesB = self.series1.slice(pd.Timestamp('20130104 12:00:00'), pd.Timestamp('20130107')) self.assertEqual(seriesB.start_time(), pd.Timestamp('20130105')) self.assertEqual(seriesB.end_time(), pd.Timestamp('20130107')) # end timestamp after series seriesC = self.series1.slice(pd.Timestamp('20130108'), pd.Timestamp('20130201')) self.assertEqual(seriesC.start_time(), pd.Timestamp('20130108')) self.assertEqual(seriesC.end_time(), pd.Timestamp('20130110')) # n points, base case seriesD = self.series1.slice_n_points_after(pd.Timestamp('20130102'), n=3) self.assertEqual(seriesD.start_time(), pd.Timestamp('20130102')) self.assertTrue(len(seriesD.values()) == 3) self.assertEqual(seriesD.end_time(), pd.Timestamp('20130104')) seriesE = self.series1.slice_n_points_after(pd.Timestamp('20130107 12:00:10'), n=10) self.assertEqual(seriesE.start_time(), pd.Timestamp('20130108')) self.assertEqual(seriesE.end_time(), pd.Timestamp('20130110')) seriesF = self.series1.slice_n_points_before(pd.Timestamp('20130105'), n=3) self.assertEqual(seriesF.end_time(), pd.Timestamp('20130105')) self.assertTrue(len(seriesF.values()) == 3) self.assertEqual(seriesF.start_time(), pd.Timestamp('20130103')) seriesG = self.series1.slice_n_points_before(pd.Timestamp('20130107 12:00:10'), n=10) self.assertEqual(seriesG.start_time(), pd.Timestamp('20130101')) self.assertEqual(seriesG.end_time(), pd.Timestamp('20130107')) # with CI seriesH = self.series2.slice(pd.Timestamp('20130104'), pd.Timestamp('20130107')) self.assertEqual(seriesH.conf_lo_pd_series().index[0], pd.Timestamp('20130104')) self.assertEqual(seriesH.conf_lo_pd_series().index[-1], pd.Timestamp('20130107')) self.assertEqual(seriesH.conf_hi_pd_series().index[0], pd.Timestamp('20130104')) self.assertEqual(seriesH.conf_hi_pd_series().index[-1], pd.Timestamp('20130107')) def test_split(self): seriesA, seriesB = self.series1.split_after(pd.Timestamp('20130104')) self.assertEqual(seriesA.end_time(), pd.Timestamp('20130104')) self.assertEqual(seriesB.start_time(), pd.Timestamp('20130105')) seriesC, seriesD = self.series1.split_before(pd.Timestamp('20130104')) self.assertEqual(seriesC.end_time(), pd.Timestamp('20130103')) self.assertEqual(seriesD.start_time(), pd.Timestamp('20130104')) self.assertEqual(self.series1.freq_str(), seriesA.freq_str()) self.assertEqual(self.series1.freq_str(), seriesC.freq_str()) def test_drop(self): seriesA = self.series1.drop_after(pd.Timestamp('20130105')) self.assertEqual(seriesA.end_time(), pd.Timestamp('20130105') - self.series1.freq()) self.assertTrue(np.all(seriesA.time_index() < pd.Timestamp('20130105'))) seriesB = self.series1.drop_before(pd.Timestamp('20130105')) self.assertEqual(seriesB.start_time(), pd.Timestamp('20130105') + self.series1.freq()) self.assertTrue(np.all(seriesB.time_index() > pd.Timestamp('20130105'))) self.assertEqual(self.series1.freq_str(), seriesA.freq_str()) self.assertEqual(self.series1.freq_str(), seriesB.freq_str()) def test_intersect(self): seriesA = TimeSeries(pd.Series(range(2, 8), index=pd.date_range('20130102', '20130107'))) seriesB = self.series1.slice_intersect(seriesA) self.assertEqual(seriesB.start_time(), pd.Timestamp('20130102')) self.assertEqual(seriesB.end_time(), pd.Timestamp('20130107')) # The same, with CI seriesC = self.series2.slice_intersect(seriesA) self.assertEqual(seriesC.conf_lo_pd_series().index[0], pd.Timestamp('20130102')) self.assertEqual(seriesC.conf_hi_pd_series().index[-1], pd.Timestamp('20130107')) # Outside of range seriesD = self.series1.slice_intersect(TimeSeries(pd.Series(range(6, 13), index=pd.date_range('20130106', '20130112')))) self.assertEqual(seriesD.start_time(), pd.Timestamp('20130106')) self.assertEqual(seriesD.end_time(), pd.Timestamp('20130110')) # No intersect or too small intersect with self.assertRaises(ValueError): self.series1.slice_intersect(TimeSeries(pd.Series(range(6, 13), index=pd.date_range('20130116', '20130122')))) with self.assertRaises(ValueError): self.series1.slice_intersect(TimeSeries(pd.Series(range(9, 13), index=pd.date_range('20130109', '20130112')))) def test_rescale(self): with self.assertRaises(ValueError): self.series1.rescale_with_value(1) seriesA = self.series3.rescale_with_value(0) self.assertTrue(np.all(seriesA.values() == 0)) seriesB = self.series3.rescale_with_value(-5) self.assertTrue(self.series3 * -1. == seriesB) seriesC = self.series3.rescale_with_value(1) self.assertTrue(self.series3 * 0.2 == seriesC) seriesD = self.series3.rescale_with_value(1e+20) # TODO: test will fail if value > 1e24 due to num imprecision self.assertTrue(self.series3 * 0.2e+20 == seriesD) def test_shift(self): seriesA = self.series1.shift(0) self.assertTrue(seriesA == self.series1) seriesB = self.series1.shift(1) self.assertTrue(seriesB.time_index().equals( self.series1.time_index()[1:].append(pd.DatetimeIndex([self.series1.time_index()[-1] + self.series1.freq()])))) seriesC = self.series1.shift(-1) self.assertTrue(seriesC.time_index().equals( pd.DatetimeIndex([self.series1.time_index()[0] - self.series1.freq()]).append( self.series1.time_index()[:-1]))) with self.assertRaises(OverflowError): self.series1.shift(1e+6) seriesM = TimeSeries.from_times_and_values(pd.date_range('20130101', '20130601', freq='m'), range(5)) with self.assertRaises(OverflowError): seriesM.shift(1e+4) def test_append(self): # reconstruct series seriesA, seriesB = self.series1.split_after(pd.Timestamp('20130106')) self.assertEqual(seriesA.append(seriesB), self.series1) self.assertEqual(seriesA.append(seriesB).freq(), self.series1.freq()) # Creating a gap is not allowed seriesC = self.series1.drop_before(pd.Timestamp('20130107')) with self.assertRaises(ValueError): seriesA.append(seriesC) # Changing frequence is not allowed seriesM = TimeSeries.from_times_and_values(pd.date_range('20130107', '20130507', freq='30D'), range(5)) with self.assertRaises(ValueError): seriesA.append(seriesM) # reconstruction with CI seriesD, seriesE = self.series2.split_after(pd.Timestamp('20130106')) self.assertEqual(seriesD.append(seriesE), self.series2) self.assertEqual(seriesD.append(seriesE).freq(), self.series2.freq()) def test_append_values(self): # reconstruct series seriesA, seriesB = self.series1.split_after(
pd.Timestamp('20130106')
pandas.Timestamp
# -*- coding:utf-8 -*- """ #====#====#====#==== # Project Name: RNN-SignalProcess # File Name: SignalProcess # Date: 3/4/18 8:47 AM # Using IDE: PyCharm Community Edition # From HomePage: https://github.com/DuFanXin/RNN # Author: DuFanXin # BlogPage: http://blog.csdn.net/qq_30239975 # E-mail: <EMAIL> # Copyright (c) 2018, All Rights Reserved. #====#====#====#==== """ import tensorflow as tf import argparse import os EPOCH_NUM = 1 TRAIN_BATCH_SIZE = 128 VALIDATION_BATCH_SIZE = 256 TEST_BATCH_SIZE = 256 PREDICT_BATCH_SIZE = 1 PREDICT_SAVED_DIRECTORY = '../data_set/my_set/predictions' EPS = 10e-5 FLAGS = None CLASS_NUM = 4 TIME_STEP = 2600 UNITS_NUM = 128 TRAIN_SET_NAME = 'train_set.tfrecords' VALIDATION_SET_NAME = 'validation_set.tfrecords' TEST_SET_NAME = 'test_set.tfrecords' PREDICT_SET_NAME = 'predict_set.tfrecords' CHECK_POINT_PATH = '../data/History/train_2nd' def write_data_to_tfrecords(): import numpy as np import pandas as pd type_to_num = { 'galaxy': 0, 'qso': 1, 'star': 2, 'unknown': 3 } train_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, TRAIN_SET_NAME)) validation_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, VALIDATION_SET_NAME)) test_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, TEST_SET_NAME)) predict_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, PREDICT_SET_NAME)) train_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'train_set.csv'), header=0, sep=',') # splite_merge_csv() # print(train_set.head()) row_num = train_set.shape[0] for index, row in train_set.iterrows(): # print(row['id']) train_list = np.loadtxt( os.path.join('../data/first_train_data_20180131', '%d.txt' % row['id']), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[type_to_num[row['type']]])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_list.tobytes()])) })) train_set_writer.write(example.SerializeToString()) # 序列化为字符串 if index % 100 == 0: print('Done train_set writing %.2f%%' % (index / row_num * 100)) train_set_writer.close() print("Done train_set writing") validation_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'validation_set.csv'), header=0, sep=',') # splite_merge_csv() # print(validation_set.head()) row_num = validation_set.shape[0] for index, row in validation_set.iterrows(): # print(row['type']) validation_list = np.loadtxt( os.path.join('../data/first_train_data_20180131', '%d.txt' % row['id']), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[type_to_num[row['type']]])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[validation_list.tobytes()])) })) validation_set_writer.write(example.SerializeToString()) # 序列化为字符串 if index % 100 == 0: print('Done validation_set writing %.2f%%' % (index / row_num * 100)) validation_set_writer.close() print("Done validation_set writing") test_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'validation_set.csv'), header=0, sep=',') # splite_merge_csv() # print(test_set.head()) row_num = test_set.shape[0] for index, row in test_set.iterrows(): # print(row['type']) test_list = np.loadtxt( os.path.join('../data/first_train_data_20180131', '%d.txt' % row['id']), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[row['id']])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[test_list.tobytes()])) })) test_set_writer.write(example.SerializeToString()) # 序列化为字符串 if index % 100 == 0: print('Done test_set writing %.2f%%' % (index / row_num * 100)) test_set_writer.close() print("Done test_set writing") predict_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'first_test_index_20180131.csv'), header=0, sep=',') # splite_merge_csv() # print(predict_set.head()) row_num = predict_set.shape[0] for index, row in predict_set.iterrows(): # print(row['type']) predict_list = np.loadtxt( os.path.join('../data/first_test_data_20180131', '%d.txt' % row['id']), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[row['id']])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[predict_list.tobytes()])) })) predict_set_writer.write(example.SerializeToString()) # 序列化为字符串 if index % 100 == 0: print('Done predict_set writing %.2f%%' % (index / row_num * 100)) predict_set_writer.close() print("Done predict_set writing") def read_image(file_queue): reader = tf.TFRecordReader() # key, value = reader.read(file_queue) _, serialized_example = reader.read(file_queue) features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'signal': tf.FixedLenFeature([], tf.string) }) signal = tf.decode_raw(features['signal'], tf.float32) # print('image ' + str(image)) # image = tf.reshape(image, [INPUT_IMG_WIDE, INPUT_IMG_HEIGHT, INPUT_IMG_CHANNEL]) # image = tf.image.convert_image_dtype(image, dtype=tf.float32) # image = tf.image.resize_images(image, (IMG_HEIGHT, IMG_WIDE)) # signal = tf.cast(features['signal'], tf.float32) signal = tf.reshape(signal, [2600, 1]) # label = tf.decode_raw(features['label'], tf.int64) label = tf.cast(features['label'], tf.int32) # label = tf.reshape(label, [OUTPUT_IMG_WIDE, OUTPUT_IMG_HEIGHT]) # label = tf.decode_raw(features['image_raw'], tf.uint8) # print(label) # label = tf.reshape(label, shape=[1, 4]) return signal, label def read_image_batch(file_queue, batch_size): img, label = read_image(file_queue) min_after_dequeue = 2000 capacity = 4000 # image_batch, label_batch = tf.train.batch([img, label], batch_size=batch_size, capacity=capacity, num_threads=10) image_batch, label_batch = tf.train.shuffle_batch( tensors=[img, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue) # one_hot_labels = tf.to_float(tf.one_hot(indices=label_batch, depth=CLASS_NUM)) one_hot_labels = tf.reshape(label_batch, [batch_size]) return image_batch, one_hot_labels def read_check_tfrecords(): train_file_path = os.path.join(FLAGS.data_dir, 'train_set.tfrecords') train_image_filename_queue = tf.train.string_input_producer( string_tensor=tf.train.match_filenames_once(train_file_path), num_epochs=1, shuffle=True) # train_images, train_labels = read_image(train_image_filename_queue) train_images, train_labels = read_image_batch(file_queue=train_image_filename_queue, batch_size=5) # one_hot_labels = tf.to_float(tf.one_hot(indices=train_labels, depth=CLASS_NUM)) with tf.Session() as sess: # 开始一个会话 sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) signal, label = sess.run([train_images, train_labels]) print(signal) print(signal.shape) print(label) # print(sess.run(one_hot_labels)) coord.request_stop() coord.join(threads) print("Done reading and checking") def splite_merge_csv(): import pandas as pd df = pd.read_csv(filepath_or_buffer='../data/first_train_index_20180131.csv', header=0, sep=',') train_set = pd.DataFrame() validate_set = pd.DataFrame() # print(df.head()) groups = df.groupby('type') print(groups.count()) for name, group in groups: if name == 'galaxy': train_set = pd.concat([train_set, group[:5200]]) validate_set = pd.concat([validate_set, group[5200:]]) elif name == 'qso': train_set =
pd.concat([train_set, group[:1300]])
pandas.concat
import talib from datetime import datetime, tzinfo from datetime import date import yfinance as yf import pandas as pd import MetaTrader5 as mt5 import pytz # ^BVSP # data = yf.download("SPY", start="2020-09-01", end="2021-11-02") # real = talib.CDLMORNINGSTAR( # data['Open'], data['High'], data['Low'], data['Close']) # print(real[real != 0]) if not mt5.initialize(): print("Inicialize faleid") mt5.shutdown() print(f"MT5 version: {mt5.__version__}") print(f"Empresa: {mt5.__author__}") # solicitamos 1 000 ticks de EURAUD # euraud_ticks = mt5.copy_ticks_from("EURUSD", datetime(2021,8,28,13), 1000, mt5.COPY_TICKS_ALL) # Obter timezone da corretora activtrade # timezone = pytz.timezone("Europe/Luxembourg") fusoHorario = pytz.timezone("Europe/Luxembourg") data_atual = datetime.now() data_hora_luxembourg = data_atual.astimezone(fusoHorario) data_lux_tx = data_hora_luxembourg.strftime('%d/%m/%Y %H:%M') ano= int(date.strftime(data_hora_luxembourg, '%Y')) mes= int(date.strftime(data_hora_luxembourg, '%m')) dia= int(date.strftime(data_hora_luxembourg, '%d')) print(f"HOra luxemburgo: {data_lux_tx}") # criamos o objeto datetime no fuso horário UTC para que não seja aplicado o deslocamento do fuso horário local print(f"TimeZone Luxemburgo: {data_lux_tx}") # dataAtual = date.today() # mes = int(gmt.strftime('%m')) # ano = int(gmt.strftime('%Y')) # dia = int(gmt.strftime('%d')) # gmtL = datetime.now(gmt) # dl = datetime.strftime(gmt, '%Y-%d-%m %H:%M') # print(f"DAta Luxembourg: {dl}") # utc_from = datetime(ano, mes, dia) # gmt_from = datetime(ano, mes, dia, tzinfo=fusoHorario) # solicitamos 20 barras de EURUSD M5 do dia atual rates = mt5.copy_rates_from_pos("EURUSD", mt5.TIMEFRAME_M5, 0, 200) mt5.shutdown() rates_frame =
pd.DataFrame(rates)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from datetime import datetime, timedelta from functools import reduce import pickle import os import pymssql from virgo import market startDate_default = '20060101' endDate_default = (datetime.now() + timedelta(days=-1)).strftime('%Y%m%d') # endDate_default = datetime.now().strftime('%Y%m%d') indexTickerUnivSR_default = np.array(['000300.SH', '000016.SH', '000905.SH']) indexTickerNameUnivSR_default = np.array(['沪深300', '上证50', '中证500']) # Global val conn243 = pymssql.connect(server='192.168.1.243', user="yuman.hu", password="<PASSWORD>") conn247 = pymssql.connect(server='192.168.1.247', user="yuman.hu", password="<PASSWORD>") # daily data download class dailyQuant(object): def __init__(self, startDate=startDate_default, endDate=endDate_default, indexTickerUnivSR=indexTickerUnivSR_default, indexTickerNameUnivSR=indexTickerNameUnivSR_default): self.startDate = startDate self.endDate = endDate self.rawData_path = '../data/rawData/' self.fundamentalData_path = '../data/fundamentalData/' self.indexTickerUnivSR = indexTickerUnivSR self.indexTickerNameUnivSR = indexTickerNameUnivSR self.tradingDateV, self.timeSeries = self.get_dateData() self.tickerUnivSR, self.stockTickerUnivSR, self.tickerNameUnivSR, self.stockTickerNameUnivSR, self.tickerUnivTypeR = self.get_tickerData() def get_dateData(self): sql = ''' SELECT [tradingday] FROM [Group_General].[dbo].[TradingDayList] where tradingday>='20060101' order by tradingday asc ''' dateSV = pd.read_sql(sql, conn247) tradingdays = dateSV.tradingday.unique() tradingDateV = np.array([x.replace('-', '') for x in tradingdays]) timeSeries = pd.Series(pd.to_datetime(tradingDateV)) pd.Series(tradingDateV).to_csv(self.rawData_path+ 'tradingDateV.csv', index=False) return tradingDateV, timeSeries def get_tickerData(self): # and B.[SecuAbbr] not like '%%ST%%' # where ChangeDate>='%s' sql = ''' SELECT A.[ChangeDate],A.[ChangeType],B.[SecuCode],B.[SecuMarket],B.[SecuAbbr] FROM [JYDB].[dbo].[LC_ListStatus] A inner join [JYDB].[dbo].SecuMain B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 order by SecuCode asc ''' dataV = pd.read_sql(sql, conn243) flagMarket = dataV.SecuMarket == 83 dataV['SecuCode'][flagMarket] = dataV['SecuCode'].map(lambda x: x + '.SH') dataV['SecuCode'][~flagMarket] = dataV['SecuCode'].map(lambda x: x + '.SZ') # dataV.ChangeDate = pd.Series([x.strftime('%Y%m%d') for x in dataV.ChangeDate.values]) dataV.ChangeDate = dataV.ChangeDate.map(lambda x: x.strftime('%Y%m%d')) flagV = np.full(len(dataV), True) flagList = [] for i in range(len(dataV)): if dataV.iat[i, 1] == 4: if dataV.iat[i, 0] < self.tradingDateV[0]: flagList.append(dataV.iat[i, 2]) for i in range(len(dataV)): if dataV.iat[i, 2] in flagList: flagV[i] = False dataV = dataV[flagV] stockTickerUnivSR = dataV.SecuCode.unique() tickerUnivSR = np.append(self.indexTickerUnivSR, stockTickerUnivSR) stockTickerNameUnivSR = dataV.SecuAbbr.unique() tickerNameUnivSR = np.append(self.indexTickerNameUnivSR, stockTickerNameUnivSR) tickerUnivTypeR = np.append(np.full(len(self.indexTickerUnivSR), 3), np.ones(len(dataV))) pd.DataFrame(self.indexTickerUnivSR).T.to_csv(self.rawData_path+'indexTickerUnivSR.csv', header=False, index=False) pd.DataFrame(stockTickerUnivSR).T.to_csv(self.rawData_path+'stockTickerUnivSR.csv', header=False, index=False) pd.DataFrame(tickerUnivSR).T.to_csv(self.rawData_path+'tickerUnivSR.csv', header=False, index=False) pd.DataFrame(self.indexTickerNameUnivSR).T.to_csv(self.rawData_path+'indexTickerNameUnivSR.csv', header=False, index=False) pd.DataFrame(stockTickerNameUnivSR).T.to_csv(self.rawData_path+'stockTickerNameUnivSR.csv', header=False, index=False) pd.DataFrame(tickerNameUnivSR).T.to_csv(self.rawData_path+'tickerNameUnivSR.csv', header=False, index=False) pd.DataFrame(tickerUnivTypeR).T.to_csv(self.rawData_path+'tickerUnivTypeR.csv', header=False, index=False) return tickerUnivSR, stockTickerUnivSR, tickerNameUnivSR, stockTickerNameUnivSR, tickerUnivTypeR def __tradingData(self,tradingDay): sql = ''' SELECT A.[TradingDay], B.[SecuMarket], B.[SecuCode], A.[PrevClosePrice], A.[OpenPrice],A.[HighPrice],A.[LowPrice],A.[ClosePrice], A.[TurnoverVolume],A.[TurnoverValue] FROM [JYDB].[dbo].[QT_DailyQuote] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 where A.tradingday='%s' ''' % tradingDay dataStock = pd.read_sql_query(sql, conn243) sql = ''' SELECT A.[TradingDay], B.[SecuMarket], B.[SecuCode], A.[PrevClosePrice], A.[OpenPrice],A.[HighPrice],A.[LowPrice],A.[ClosePrice], A.[TurnoverVolume],A.[TurnoverValue] FROM [JYDB].[dbo].[QT_IndexQuote] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and (B.SecuCode = '000300' or B.SecuCode = '000016' or B.SecuCode = '000905') and B.SecuCategory=4 where A.tradingday='%s' ''' % tradingDay dataIndex = pd.read_sql_query(sql, conn243) dataV = pd.concat([dataIndex,dataStock]) sql = ''' SELECT [TradingDay], [SecuCode], [StockReturns] FROM [Group_General].[dbo].[DailyQuote] where tradingday='%s' ''' % tradingDay dataStock = pd.read_sql_query(sql, conn247) sql = ''' SELECT A.[TradingDay], B.[SecuCode], A.[ChangePCT] FROM [JYDB].[dbo].[QT_IndexQuote] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and (B.SecuCode = '000300' or B.SecuCode = '000016' or B.SecuCode = '000905') and B.SecuCategory=4 where A.tradingday='%s' ''' % tradingDay dataIndex = pd.read_sql_query(sql, conn243) dataIndex.ChangePCT = dataIndex.ChangePCT / 100 dataIndex = dataIndex.rename({'ChangePCT': 'StockReturns'}, axis='columns') dataR = pd.concat([dataIndex, dataStock]) data = pd.merge(dataV,dataR) flagMarket = data.SecuMarket==83 data['SecuCode'][flagMarket] = data['SecuCode'].map(lambda x: x + '.SH') data['SecuCode'][~flagMarket] = data['SecuCode'].map(lambda x: x + '.SZ') data.TradingDay = data.TradingDay.map(lambda x: x.strftime('%Y%m%d')) preCloseM = pd.DataFrame(pd.pivot_table(data,values='PrevClosePrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) openM = pd.DataFrame(pd.pivot_table(data,values='OpenPrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) highM = pd.DataFrame(
pd.pivot_table(data,values='HighPrice',index='TradingDay',columns='SecuCode')
pandas.pivot_table
import pickle #from .retrieve_marks import norm2 import os import _pickle as cPickle #import cache from scipy.interpolate import interp1d import pandas as pd import numpy as np import glob import pprint from scipy.signal import find_peaks chromlength_human =[249250621,243199373,198022430,191154276,180915260,171115067,159138663,146364022, 141213431,135534747,135006516,133851895,115169878,107349540,102531392,90354753,81195210,78077248, 59128983,63025520,48129895,51304566] chromlength_yeast =[230218,813184,316620,1531933,576874,270161,1090940,562643,439888, 745751,666816,1078177,924431,784333,1091291,948066] try: import pyBigWig import gffutils except: print("You may need to install pyBigWig") pp = pprint.PrettyPrinter(indent=2) def smooth(ser, sc): return np.array(pd.Series(ser).rolling(sc, min_periods=1, center=True).mean()) # string,string -> bool,[],res # select a strain and an experimental value and return if available, the files and the resolution # def is_available(strain, experiment): # return True,[],1 ROOT = "../DNaseI/data/" def nan_polate_c(A, kind="linear"): ok = ~np.isnan(A) x = np.arange(len(A)) f2 = interp1d(x[ok], A[ok], kind=kind, bounds_error=False) # print(ok) return f2(x) def is_available_alias(strain, experiment): alias = {"Hela": ["Hela", "HeLaS3", "Helas3"], "Helas3": ["Helas3", "HeLaS3", "Hela"], "GM12878": ["GM12878", "Gm12878"], "Gm12878": ["GM12878", "Gm12878"] } # alias={"Helas3":["HeLaS3","Hela","Helas3"]} if strain not in alias.keys(): avail, files, res = is_available(strain, experiment) else: for strain1 in alias[strain]: avail, files, res = is_available(strain1, experiment) if files != []: if strain1 != strain: print("Using alias %s" % strain1) return avail, files, res return avail, files, res def is_available(strain, experiment): avail_exp = ["MRT", "OKSeq", "OKSeqo", "DNaseI", "ORC2", "ExpGenes", "Faire", "Meth", "Meth450", "Constant", "OKSeqF", "OKSeqR", "OKSeqS", "CNV", "NFR", "MCM", "HMM", "GC", "Bubble","G4","G4p","G4m","Ini","ORC1","AT_20","AT_5","AT_30","RHMM","MRTstd", "RNA_seq","MCMo","MCMp","MCM-beda","Mcm3","Mcm7","Orc2","Orc3"] marks = ['H2az', 'H3k27ac', 'H3k27me3', 'H3k36me3', 'H3k4me1', 'H3k4me2', 'H3k4me3', 'H3k79me2', 'H3k9ac', 'H3k9me1', 'H3k9me3', 'H4k20me1', "SNS"] marks_bw = [m + "wig" for m in marks] Prot = ["Rad21","ORC2"] #print("La") if strain in ["Yeast-MCM"]: lroot = ROOT+"/external/"+strain + "/" resolutions = glob.glob(lroot + "/*") #print(lroot + "/*") resolutions = [r.split("/")[-1] for r in resolutions if "kb" in r] #print(resolutions) if len(resolutions) != 0: exps = glob.glob(lroot + resolutions[0]+"/*") files = []+exps exps = [exp.split("/")[-1][:] for exp in exps if "csv" in exp] print(exps) for iexp,exp in enumerate(exps): if exp == experiment: return True,[files[iexp]],int(resolutions[0].replace("kb","")) if strain in ["Cerevisae"] and experiment =="MCM-beda": lroot = ROOT+"/external/Yeast-MCM-bedalov/" return True,glob.glob(lroot+"/*"),0.001 if experiment not in avail_exp + marks + Prot + marks_bw: print("Exp %s not available" % experiment) print("Available experiments", avail_exp + marks + Prot) return False, [], None if experiment == "Constant": return True, [], 1 if experiment == "MRT": if strain == "Cerevisae": return True, ["/home/jarbona/ifromprof/notebooks/exploratory/Yeast_wt_alvino.csv"], 1 elif strain == "Raji": files = glob.glob(ROOT + "/external/timing_final//*_Nina_Raji_logE2Lratio_w100kbp_dw10kbp.dat" ) return True, files, 10 else: root = ROOT + "/Data/UCSC/hsap_hg19/downloads/ENCODE/wgEncodeUwRepliSeq_V2/compute_profiles/timing_final/" root = ROOT + "/external/timing_final/" extract = glob.glob(root + "/*Rep1_chr10.dat") cells = [e.split("_")[-3] for e in extract] if strain in cells: files = glob.glob(root + "/timing_final_W100kb_dx10kb_%s*" % strain) return True, files, 10 if experiment == "MRTstd": root = ROOT + "/external/Sfrac/" extract = glob.glob(root + "/*Rep1_chr10.dat") cells = [e.split("_")[-3] for e in extract] if strain in cells: files = glob.glob(root + "/Sfrac_HansenNormDenoised_W100kb_dx10kb_%s*" % strain) return True, files, 10 if experiment == "ExpGenes": root = ROOT + "/external/ExpressedGenes/" extract = glob.glob(root + "/*ExpressedGenes_zero.txt") # print(extract) cells = [e.split("/")[-1].replace("ExpressedGenes_zero.txt", "") for e in extract] print(cells) if strain in cells: files = glob.glob(root + "/%sExpressedGenes_zero.txt" % strain) return True, files, 10 if experiment == "RNA_seq": root = ROOT + "external//RNA_seq//" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*Tot") # print(extract) cells = [e.split("/")[-1].split("_")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + "_Tot/*") files.sort() return True, files, 1 if experiment == "NFR": root = ROOT + "/external/NFR/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") return True, extract, 1 if experiment == "Bubble": root = ROOT + "/external/Bubble/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bedgraph") # print(extract) cells = [e.split("/")[-1].split(".bedgraph")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".bedgraph") files.sort() return True, files, 1 #print("IRCRRRRRRRRRRRRRRRRRRRR") if experiment == "ORC1": #print("LA") root = ROOT + "/external/ORC1/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") #print(extract) cells = [e.split("/")[-1].split(".bed")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".bed") files.sort() return True, files, if (experiment in ["Mcm3","Mcm7","Orc2","Orc3"]) and strain =="Raji": return True,glob.glob(ROOT+"/external/nina_kirstein/*_"+experiment+"_G1_1kbMEAN.txt") ,1 if experiment in ["MCM","MCMp"]: #print("LA") if strain != "Hela": return False,[],1 root = ROOT + "/external/MCM2-bed/R1/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.txt") #print(extract) return True, extract, 1 if experiment == "Ini": root = ROOT + "/external/ini/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.csv") # print(extract) cells = [e.split("/")[-1].split(".csv")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".csv") files.sort() return True, files, 1 if experiment == "GC": root = ROOT + "/external//1ColProfiles/*1kbp*" # chr1_gc_native_w1kbp.dat extract = glob.glob(root) return True, extract, 1 if "AT" in experiment: root = ROOT + "/external//AT_hooks/c__%s.csv"%experiment.split("_")[1] # chr1_gc_native_w1kbp.dat extract = glob.glob(root) return True, extract, 5 if experiment == "SNS": root = ROOT + "/external/SNS/" # root = ROOT + "/external/1kb_profiles//" extract = [] if strain in ["K562"]: extract = glob.glob(root + "*.bed") elif strain in ["HeLaS3","Hela","HeLa"]: extract=glob.glob(root + "*.csv") #print("Strain",strain) #print(extract, root) if strain not in ["K562","HeLaS3"]: print("Wrong strain") print("Only K562") return False, [], 1 return True, extract, 1 if experiment == "MCMo": if strain not in ["HeLa", "HeLaS3","Hela"]: print("Wrong strain") print("Only", "HeLa", "HeLaS3") raise root = ROOT + "/external/MCM/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") print(extract, root) return True, extract, 1 if experiment == "MCMbw": if strain not in ["HeLa", "HeLaS3"]: print("Wrong strain") print("Only", "HeLa", "HeLaS3") raise """ root = ROOT + "/external/SNS/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") print(extract, root) return True, extract, 1""" if "G4" in experiment: root = ROOT + "/external/G4/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") print(extract, root) return True, extract, 1 if experiment == "CNV": root = ROOT + "/external/CNV/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.txt") # print(extract) cells = [e.split("/")[-1].split(".txt")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".txt") files.sort() #print(files) return True, files, 10 if experiment == "HMM": root = ROOT + "/external/HMM/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") # print(extract) cells = [e.split("/")[-1].replace("wgEncodeBroadHmm", "").replace("HMM.bed", "") for e in extract] cells.sort() if strain in cells: files = glob.glob(root + "wgEncodeBroadHmm%sHMM.bed" % strain) files.sort() # print(files) return True, files, 10 if experiment == "RHMM": root = ROOT + "/external/RHMM/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") #print(extract) cells = [e.split("/")[-1].replace("RHMM.bed", "") for e in extract] cells.sort() if strain in cells: files = glob.glob(root + "%sRHMM.bed" % strain) files.sort() # print(files) return True, files, 1 if experiment.startswith("OKSeq"): root = ROOT + "/Data/UCSC/hsap_hg19//local/Okazaki_Hyrien/1kb_profiles/" root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*") cells = [e.split("/")[-1] for e in extract] cells.sort() # print(cells) if strain in cells: if experiment == "OKSeqo": files = glob.glob(root + strain + "/*pol*") if experiment == "OKSeqF": files = glob.glob(root + strain + "/*F*") if experiment == "OKSeqR": files = glob.glob(root + strain + "/*R*") if experiment in ["OKSeqS", "OKSeq"]: # print("La") files = glob.glob(root + strain + "/*R*") files += glob.glob(root + strain + "/*F*") files.sort() return True, files, 1 if experiment == "DNaseI": root = ROOT + "/external/DNaseI//" print(root) if strain == "Cerevisae": return True, [root + "/yeast.dnaseI.tagCounts.bed"], 0.001 else: extract = glob.glob(root + "/*.narrowPeak") cells = [e.split("/")[-1].replace("wgEncodeAwgDnaseUwduke", "").replace("UniPk.narrowPeak", "") for e in extract] extract2 = glob.glob(root + "../DNaseIK562/*.narrowPeak") cells2 = [e.split("/")[-1].replace("wgEncodeOpenChromDnase", "").replace("Pk.narrowPeak", "") for e in extract2] extract3 = glob.glob(root + "../DNaseIK562/*.bigWig") cells3 = [e.split("/")[-1].replace("wgEncodeUwDnase", "").replace("Rep1.bigWig", "") for e in extract3] # print(extract2, cells2) extract += extract2 cells += cells2 extract += extract3 cells += cells3 if strain in cells: files = [extract[cells.index(strain)]] return True, files, 0.001 if experiment == "Meth": root = ROOT + "/external/methylation//" extract = glob.glob(root + "*.bed") cells = [e.split("/")[-1].replace(".bed", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 if experiment == "Meth450": root = ROOT + "/external/methylation450//" extract = glob.glob(root + "*.bed") cells = [e.split("/")[-1].replace(".bed", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 if experiment == "Faire": root = ROOT + "/external/Faire//" extract = glob.glob(root + "*.pk") cells = [e.split("/")[-1].replace("UncFAIREseq.pk", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 if experiment in Prot: root = ROOT + "/external/DNaseI//" extract = glob.glob(root + "/*.narrowPeak") cells = [e.split("/")[-1].replace(experiment + "narrowPeak", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 root = ROOT + "/external/proteins//" extract = glob.glob(root + "/*.csv") cells = [e.split("/")[-1].replace("_ORC2_miotto.csv", "") for e in extract] if strain in cells: files = glob.glob(root + "/%s_ORC2_miotto.csv" % strain) return True, files, 1 if experiment in marks: root = ROOT + "/external/histones//" if experiment == "H2az" and strain == "IMR90": experiment = "H2A.Z" extract = glob.glob(root + "/*%s*.broadPeak" % experiment) #print(extract) if strain not in ["IMR90"]: cells = [e.split("/")[-1].replace("wgEncodeBroadHistone", "").replace("Std", "").replace("%sPk.broadPeak" % experiment, "") for e in extract] # print(extract,cells) if strain in cells: files = glob.glob(root + "/wgEncodeBroadHistone%s%sStdPk.broadPeak" % (strain, experiment)) files += glob.glob(root + "/wgEncodeBroadHistone%s%sPk.broadPeak" % (strain, experiment)) return True, files, 1 else: cells = [e.split("/")[-1].split("-")[0] for e in extract] # print(extract,cells) print("Larr") if strain in cells: files = glob.glob(root + "/%s-%s.broadPeak" % (strain, experiment)) return True, files, 1 if experiment[:-3] in marks: root = ROOT + "/external/histones//" if strain not in ["IMR90"]: extract = glob.glob(root + "/*%s*.bigWig" % experiment[:-3]) # print(extract) cells = [] for c in extract: if "StdSig" in c: cells.append(c.split("/")[-1].replace("wgEncodeBroadHistone", "").replace("%sStdSig.bigWig" % experiment[:-3], "")) else: cells.append(c.split("/")[-1].replace("wgEncodeBroadHistone", "").replace("%sSig.bigWig" % experiment[:-3], "")) # print(extract, cells) if strain in cells: files = glob.glob(root + "/wgEncodeBroadHistone%s%sStdSig.bigWig" % (strain, experiment[:-3])) if files == []: #print("Warning using Sig") files = glob.glob(root + "/wgEncodeBroadHistone%s%sSig.bigWig" % (strain, experiment[:-3])) # print(files) return True, files, 1 else: exp = experiment[:-3] exp = exp.replace("k","K") # from roadmap epi extract = glob.glob(root + "/IMR90_%s*wh.csv" % exp) print(extract) cells = [] return True, extract, 1 print("Available cells") pp.pprint(cells) return False, [], None def re_sample(x, y, start, end, resolution=1000): resampled = np.zeros(int(end / resolution - start / resolution)) + np.nan # print(data) # print(resampled.shape) for p, v in zip(x, y): #print(v) if not np.isnan(v): posi = int((p - start) / resolution) if np.isnan(resampled[min(posi, len(resampled) - 1)]): resampled[min(posi, len(resampled) - 1)] = 0 resampled[min(posi, len(resampled) - 1)] += v if int(posi) > len(resampled) + 1: print("resample", posi, len(resampled)) # raise "Problem" return np.arange(len(resampled)) * resolution + start, resampled def cut_path(start, end, res=1): initpos = 0 + start delta = end - start path = [0 + initpos] def cond(x): return x <= end while (initpos + delta) != int(initpos) and cond(initpos): ddelta = int(initpos) + res - initpos initpos += ddelta ddelta -= initpos path.append(initpos) path[-1] = end if len(path) >= 2 and path[-1] == path[-2]: path.pop(-1) return path def overlap(start, end, res): r = cut_path(start / res, end / res) return [ri * res for ri in r] def overlap_fraction(start, end, res): assert(start <= end) v = np.array(overlap(start, end, res)) deltas = (v[1:] - v[:-1]) / res indexes = np.array(v[:-1] / res, dtype=np.int) return deltas, indexes def create_index_human(strain,exp,resolution=10,root="./"): #chromlength = [248956422] data = {iexp:[] for iexp in exp} for chrom, length in enumerate(chromlength_human, 1): for iexp in exp: data[iexp].append(replication_data(strain, iexp, chromosome=chrom, start=0, end=length // 1000, resolution=resolution)[1]) if iexp == "OKSeq": data[iexp][-1] /= resolution ran = [np.arange(len(dat)) * 1000 * resolution for dat in data[exp[0]]] index = {"chrom": np.concatenate([["chr%i"%i]*len(xran) for i,xran in enumerate(ran,1)]), "chromStart":np.concatenate(ran), "chromEnd":np.concatenate(ran)} print(root) os.makedirs(root,exist_ok=True) pd.DataFrame(index).to_csv(root+"/index.csv",index=False) for iexp in exp: index.update({"signalValue":np.concatenate(data[iexp])}) Df = pd.DataFrame(index) Df.to_csv(root + "/%s.csv" % iexp, index=False) def whole_genome(**kwargs): data = [] def fl(name): def sanit(z): z = z.replace("/", "") return z if type(name) == dict: items = list(name.items()) items.sort() return "".join(["%s-%s" % (p, sanit(str(fl(value)))) for p, value in items]) else: return name redo = kwargs.pop("redo") root = kwargs.get("root", "./") # print("ic") if "root" in kwargs.keys(): # print("la") kwargs.pop("root") name = root + "data/saved/"+fl(kwargs) if os.path.exists(name) and not redo: with open(name, "rb") as f: return cPickle.load(f) strain = kwargs.pop("strain") experiment = kwargs.pop("experiment") resolution = kwargs.pop("resolution") for chrom, length in enumerate(chromlength_human, 1): data.append(replication_data(strain, experiment, chromosome=chrom, start=0, end=length//1000, resolution=resolution, **kwargs)[1]) if len(data[-1]) != int(length / 1000 / resolution - 0 / resolution): print(strain, experiment, len(data[-1]), int(length / 1000 / resolution - 0 / resolution)) raise with open(name, "wb") as f: cPickle.dump(data, f) return data def replication_data(strain, experiment, chromosome, start, end, resolution, raw=False, oData=False, bp=True, bpc=False, filename=None, pad=False, smoothf=None, signame="signalValue"): marks = ['H2az', 'H3k27ac', 'H3k27me3', 'H3k36me3', 'H3k4me1', 'H3k4me2', 'H3k4me3', 'H3k79me2', 'H3k9ac', 'H3k9me1', 'H3k9me3', 'H4k20me1'] if experiment != "" and os.path.exists(experiment): filename = experiment if os.path.exists(strain) and strain.endswith("csv"): #print(strain) data=
pd.read_csv(strain)
pandas.read_csv
# -*- coding: utf-8 -*- from itertools import product import numpy as np import pytest import pandas.util.testing as tm from pandas import DatetimeIndex, MultiIndex from pandas._libs import hashtable from pandas.compat import range, u @pytest.mark.parametrize('names', [None, ['first', 'second']]) def test_unique(names): mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names) res = mi.unique() exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names) tm.assert_index_equal(res, exp) mi = MultiIndex.from_arrays([list('aaaa'), list('abab')], names=names) res = mi.unique() exp = MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names) tm.assert_index_equal(res, exp) mi = MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names) res = mi.unique() exp = MultiIndex.from_arrays([['a'], ['a']], names=mi.names) tm.assert_index_equal(res, exp) # GH #20568 - empty MI mi = MultiIndex.from_arrays([[], []], names=names) res = mi.unique() tm.assert_index_equal(mi, res) def test_unique_datetimelike(): idx1 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01', '2015-01-01', 'NaT', 'NaT']) idx2 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') result = MultiIndex.from_arrays([idx1, idx2]).unique() eidx1 = DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT']) eidx2 = DatetimeIndex(['2015-01-01', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') exp = MultiIndex.from_arrays([eidx1, eidx2]) tm.assert_index_equal(result, exp) @pytest.mark.parametrize('level', [0, 'first', 1, 'second']) def test_unique_level(idx, level): # GH #17896 - with level= argument result = idx.unique(level=level) expected = idx.get_level_values(level).unique() tm.assert_index_equal(result, expected) # With already unique level mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) tm.assert_index_equal(result, expected) # With empty MI mi = MultiIndex.from_arrays([[], []], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) @pytest.mark.parametrize('dropna', [True, False]) def test_get_unique_index(idx, dropna): mi = idx[[0, 1, 0, 1, 1, 0, 0]] expected = mi._shallow_copy(mi[[0, 1]]) result = mi._get_unique_index(dropna=dropna) assert result.unique tm.assert_index_equal(result, expected) def test_duplicate_multiindex_labels(): # GH 17464 # Make sure that a MultiIndex with duplicate levels throws a ValueError with pytest.raises(ValueError): mi = MultiIndex([['A'] * 10, range(10)], [[0] * 10, range(10)]) # And that using set_levels with duplicate levels fails mi = MultiIndex.from_arrays([['A', 'A', 'B', 'B', 'B'], [1, 2, 1, 2, 3]]) with pytest.raises(ValueError): mi.set_levels([['A', 'B', 'A', 'A', 'B'], [2, 1, 3, -2, 5]], inplace=True) @pytest.mark.parametrize('names', [['a', 'b', 'a'], [1, 1, 2], [1, 'a', 1]]) def test_duplicate_level_names(names): # GH18872, GH19029 mi = MultiIndex.from_product([[0, 1]] * 3, names=names) assert mi.names == names # With .rename() mi = MultiIndex.from_product([[0, 1]] * 3) mi = mi.rename(names) assert mi.names == names # With .rename(., level=) mi.rename(names[1], level=1, inplace=True) mi = mi.rename([names[0], names[2]], level=[0, 2]) assert mi.names == names def test_duplicate_meta_data(): # GH 10115 mi = MultiIndex( levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) for idx in [mi, mi.set_names([None, None]), mi.set_names([None, 'Num']), mi.set_names(['Upper', 'Num']), ]: assert idx.has_duplicates assert idx.drop_duplicates().names == idx.names def test_has_duplicates(idx, idx_dup): # see fixtures assert idx.is_unique is True assert idx.has_duplicates is False assert idx_dup.is_unique is False assert idx_dup.has_duplicates is True mi = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert mi.is_unique is False assert mi.has_duplicates is True def test_has_duplicates_from_tuples(): # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'),
u('z')
pandas.compat.u
#!/usr/bin/env python # coding: utf-8 import re import requests import pandas as pd from bs4 import BeautifulSoup RACE_INFO_COLUMNS = [ "race_id", # レースID "year", # 年 "month", # 月 "day", # 日 "venue", # 開催場所 "race_number", # 何レース目 "race_name", # レース名 "course_type", # コース "course_direction", # 左右 "course_distance", # 距離 "weather", # 天候 "course_state", # 馬場状態 ] RACE_REFUND_COLUMNS = [ "win_number", # 単勝 "win_refund", "win_population", "place_number", # 複勝 "place_refund", "place_population", "bracket_quinella_number", # 枠連 "bracket_quinella_refund", "bracket_quinella_population", "quinella_number", # 馬連 "quinella_refund", "quinella_population", "quinella_place_number", # ワイド "quinella_place_refund", "quinella_place_population", "exacta_number", # 馬単 "exacta_refund", "exacta_population", "trio_number", # 三連複 "trio_refund", "trio_population", "tierce_number", # 三連単 "tierce_refund", "tierce_population" ] RACE_DATA_COLUMNS = [ "race_id", # レースID "horse_id", # 馬ID "rank", # 着順 "slot", # 枠番 "horse_num", # 馬番 "horse_name", # 馬名 "horse_gender", # 性別 "horse_age", # 年齢 "jockey_weight", # 斤量 "jockey_name", # 騎手名 "goal_time", # タイム "last_time", # 上り "odds", # 単勝のオッズ "popularity", # 人気 "horse_weight", # 馬体重 "horse_weight_diff", # 馬体重の増減 "trainer", # 調教師 "prize", # 獲得賞金 "odds_place" # 複勝のオッズ ] def get_race_ids(start_year, end_year): years = list(range(start_year, end_year + 1)) venues = list(range(1, 11)) numbers = list(range(1, 11)) days = list(range(1, 11)) races = list(range(1, 13)) race_ids = [f"{y}{v:02}{n:02}{d:02}{r:02}" \ for y in years \ for v in venues \ for n in numbers \ for d in days \ for r in races] return sorted(race_ids) def get_html(race_id): url_base = "https://db.netkeiba.com/race/" url = url_base + str(race_id) html = requests.get(url) html.encoding = "EUC-JP" soup = BeautifulSoup(html.text, "html.parser") if soup.find_all("table", "race_table_01 nk_tb_common") == []: return None return soup def get_race_info(soup, race_id): race_date = soup.find("div", "data_intro").find("p", "smalltxt").get_text(strip=True) race_date = re.match(r"(\d+)年(\d+)月(\d+)日.+", race_date) venue_names = [None, "札幌", "函館", "福島", "新潟", "東京", "中山", "中京", "京都", "阪神", "小倉"] conditions = soup.find("dl", "racedata fc").find("span")\ .get_text(strip=True).replace("\xa0", "").split("/") course_type = "" if "芝" in conditions[0]: course_type += "芝" if "ダ" in conditions[0]: course_type += "ダ" if "左" in conditions[0]: course_direction = "左" elif "右" in conditions[0]: course_direction = "右" elif "障" in conditions[0]: course_direction = "障" elif "直線" in conditions[0]: course_direction = "直" if course_type == "芝ダ": states = re.match(r"芝 : (.+)ダート : (.+)", conditions[2]) course_state = states.group(1) + "/" + states.group(2) else: course_state = conditions[2].split(" : ")[1] race_info = { "race_id": [race_id], "year": [race_date.group(1)], "month": [race_date.group(2)], "day": [race_date.group(3)], "venue": [venue_names[int(race_id[4:6])]], "race_number": [race_id[10:]], "race_name": [soup.find("dl", "racedata fc").find("h1").get_text(strip=True)], "course_type": [course_type], "course_direction": [course_direction], "course_distance": [re.match(r".+([0-9]{4})m", conditions[0]).group(1)], "weather": [conditions[1].split(" : ")[1]], "course_state": [course_state] } return race_info def get_refunds(tables): refunds = {} win = tables[0].find("th", "tan") # 単勝 if win is not None: td = win.parent.find_all("td") refunds["win_number"] = [td[0].get_text(" ")] refunds["win_refund"] = [td[1].get_text(" ")] refunds["win_population"] = [td[2].get_text(" ")] place = tables[0].find("th", "fuku".startswith("fuku")) # 複勝 if place is not None: td = place.parent.find_all("td") refunds["place_number"] = [td[0].get_text(" ")] refunds["place_refund"] = [td[1].get_text(" ")] refunds["place_population"] = [td[2].get_text(" ")] bracket_quinella = tables[0].find("th", "waku") # 枠連 if bracket_quinella is not None: td = bracket_quinella.parent.find_all("td") refunds["bracket_quinella_number"] = [td[0].get_text(" ")] refunds["bracket_quinella_refund"] = [td[1].get_text(" ")] refunds["bracket_quinella_population"] = [td[2].get_text(" ")] quinella = tables[0].find("th", "uren") # 馬連 if quinella is not None: td = quinella.parent.find_all("td") refunds["quinella_number"] = [td[0].get_text(" ")] refunds["quinella_refund"] = [td[1].get_text(" ")] refunds["quinella_population"] = [td[2].get_text(" ")] quinella_place = tables[1].find("th", "wide") # ワイド if quinella_place is not None: td = quinella_place.parent.find_all("td") refunds["quinella_place_number"] = [td[0].get_text(" ")] refunds["quinella_place_refund"] = [td[1].get_text(" ")] refunds["quinella_place_population"] = [td[2].get_text(" ")] exacta = tables[1].find("th", "utan") # 馬単 if exacta is not None: td = exacta.parent.find_all("td") refunds["exacta_number"] = [td[0].get_text(" ")] refunds["exacta_refund"] = [td[1].get_text(" ")] refunds["exacta_population"] = [td[2].get_text(" ")] trio = tables[1].find("th", "sanfuku") # 三連複 if trio is not None: td = trio.parent.find_all("td") refunds["trio_number"] = [td[0].get_text(" ")] refunds["trio_refund"] = [td[1].get_text(" ")] refunds["trio_population"] = [td[2].get_text(" ")] tierce = tables[1].find("th", "santan") # 三連単 if tierce is not None: td = tierce.parent.find_all("td") refunds["tierce_number"] = [td[0].get_text(" ")] refunds["tierce_refund"] = [td[1].get_text(" ")] refunds["tierce_population"] = [td[2].get_text(" ")] return refunds def get_race_records(table, race_refunds, race_id): records = {column:[] for column in RACE_DATA_COLUMNS} for i in range(1, len(table)): row = table[i].find_all("td") rank = row[0].get_text(strip=True) if not rank.isdecimal(): continue horse_num = row[2].get_text(strip=True) weight = re.match(r"(\d+)\((\D*\d+)\)", row[14].get_text(strip=True)) horse_weight = "" horse_weight_diff = "" if weight is not None: horse_weight = weight.group(1) horse_weight_diff = weight.group(2) odds_place = None place_numbers = race_refunds["place_number"][0].split(" ") place_refunds = race_refunds["place_refund"][0].split(" ") for i in range(len(place_numbers)): if horse_num == place_numbers[i]: odds_place = int(place_refunds[i].replace(",", "")) / 100 records["race_id"] += [race_id] records["horse_id"] += [row[3].find("a").get("href").split("/")[2]] records["rank"] += [rank] records["slot"] += [row[1].get_text(strip=True)] records["horse_num"] += [horse_num] records["horse_name"] += [row[3].get_text(strip=True)] records["horse_gender"] += [row[4].get_text(strip=True)[0]] records["horse_age"] += [row[4].get_text(strip=True)[1:]] records["jockey_weight"] += [row[5].get_text(strip=True)] records["jockey_name"] += [row[6].get_text(strip=True)] records["goal_time"] += [to_sec(row[7].get_text(strip=True))] records["last_time"] += [row[11].get_text(strip=True)] records["odds"] += [row[12].get_text(strip=True)] records["popularity"] += [row[13].get_text(strip=True)] records["horse_weight"] += [horse_weight] records["horse_weight_diff"] += [horse_weight_diff] records["trainer"] += [row[18].get_text(strip=True)] records["prize"] += [row[20].get_text(strip=True)] records["odds_place"] += [odds_place] return
pd.DataFrame.from_dict(records)
pandas.DataFrame.from_dict
''' Portfolio Analysis This module is used for portfolio analysis which is divided into 4 steps 1. select breakpoints 2. distribute the assets into groups 3. calculate the average and difference of groups 4. present the result ''' from calendar import c from msilib.schema import Error from unicodedata import decimal from unittest import expectedFailure from click import group from numpy import average, dtype from pyrsistent import v from sklearn.model_selection import GroupShuffleSplit from typesentry import I class ptf_analysis(): def __init__(self) : pass def select_breakpoints(self,character,number,perc=None): ''' select the breakpoints of the sample input : character: used to be divided number: the number of the breakpoint and the number of interval is number+1 perc(None): if perc is true and a list of number, it represents the percentage setted to divided the sample. once it is setted, then the number is invalid output: the rows of samples is realized data the columns of sampple are characters breakpoint: the selected breakpoint ''' import numpy as np # create percentiles if perc == None: perc = np.linspace(0, 100, number+2, dtype=int) elif perc is not None : perc = perc breakpoint = np.percentile(character, perc,axis=0) return breakpoint def distribute(self, character, breakpoint): ''' split the character into groups input: character: character used to divided into groups breakpoint: the breakpoint for dividing samples output: label: return a label column for character ''' import numpy as np r = len(character) label = np.zeros((r, 1)) for i in range(len(breakpoint) - 1): label[np.where((character >= breakpoint[i]) & (character < breakpoint[i+1]) & (i+1 < len(breakpoint) - 1))] = i label[np.where((character >= breakpoint[i]) & (character <= breakpoint[i+1]) & (i+1 == len(breakpoint) - 1))] = i return label def average(self, sample_return, label, cond='uni', weight=None): ''' calculate the average return for each group input: sample_return: sample forecasted return label: group label output: average value of groups ''' import numpy as np if cond == 'uni' : # the whole group label, eg. 10 group lables: [1,2,3,4,5,6,7,8,9,10] temp_label = np.sort(np.unique(label)) # the average return of each group average_return = np.zeros((len(temp_label), 1)) # calculate the average return of each group through matching the sample_return's # label with the group label and the sample_return is Forecasted Return for i in range(len(temp_label)): if weight is None: average_return[i, 0] = np.mean(sample_return[np.where(label==temp_label[i])]) else: standard_weight = weight[np.where(label==temp_label[i])] / np.sum(weight[np.where(label==temp_label[i])]) average_return[i, 0] = np.sum(standard_weight * sample_return[np.where(label==temp_label[i])]) # return average value of each group return average_return if cond == 'bi' : # the whole group label, eg. 10 group labels: [1,2,3,4,5,6,7,8,9,10] temp_label_row = np.sort(np.unique(label[0])) temp_label_col = np.sort(np.unique(label[1])) # the average return of each group average_return = np.zeros((len(temp_label_row), len(temp_label_col))) # calculate the average return of each group through matching the sample_return's # label with the group label and the sample_return is Forecasted Return for i in range(len(temp_label_row)): for j in range(len(temp_label_col)): if weight is None: average_return[i, j] = np.mean(sample_return[np.where((label[0]==temp_label_row[i])&(label[1]==temp_label_col[j]))]) else: standard_weight = weight[np.where((label[0]==temp_label_row[i])&(label[1]==temp_label_col[j]))] / np.sum(weight[np.where((label[0]==temp_label_row[i])&(label[1]==temp_label_col[j]))]) average_return[i, j] = np.sum(standard_weight * sample_return[np.where((label[0]==temp_label_row[i])&(label[1]==temp_label_col[j]))]) # return average value of each group return average_return def statistics(self, variable, label, func, cond='uni'): import numpy as np # the whole group label, eg. 10 group labels: [1,2,3,4,5,6,7,9,10] temp_label = np.sort(np.unique(label)) # initialize average value of variable try: r, c = np.shape(variable) except: r = len(variable) c = 0 if c == 0 : average_statistics = np.zeros((len(temp_label))) # calculate the average variable value of each group through matching the variable's # label with the group label. for i in range(len(temp_label)): average_statistics[i] = func(variable[np.where(label==temp_label[i])]) return average_statistics else : average_statistics = np.zeros((len(temp_label), c)) for i in range(len(temp_label)): for j in range(c): average_statistics[i, j] = func(variable[np.where(label==temp_label[i]), j]) return average_statistics class Univariate(ptf_analysis): def __init__(self, sample, number, perc=None, maxlag=12, weight=False): ''' input: sample: the samples to be analyzed sample usually contain the future return, characteristics, time the DEFAULT settting is the First column is the forecast return and the second colunm is the characteristic the third colunm or the index is time label number: the breakpoint number perc: the breakpoint percentiles factor: risk adjust factor maxlag: maximum lag for Newey-West adjustment ''' import numpy as np if type(sample).__name__ == 'DataFrame': self.sample = np.array(sample) self._sample_type = 'DataFrame' self._columns = list(sample.columns) elif type(sample).__name__ == 'ndarray': self.sample = sample self._sample_type = 'ndarray' else: IOError self.number = number if perc is not None : self.number = len(perc) - 2 self.perc = perc self.maxlag = maxlag self._factor = None self._time = np.sort(np.unique(self.sample[:, 2])) self._weight = weight def divide_by_time(self, sample): ''' split the sample by time into groups 将样本按照时间分组 output: groups_by_time (list) 按时间分组的样本 ''' import numpy as np time = np.sort(np.unique(sample[:, 2])) groups_by_time = list() for i in range(len(time)): groups_by_time.append(sample[np.where(sample[:, 2]==time[i])]) return groups_by_time def average_by_time(self): ''' average of the groups at each time point ''' import numpy as np # get the sample groups by time 得到按时间分组的样本 groups_time = self.divide_by_time(self.sample) # generate table of average return for group and time 生成组和时间的表格 # Rows: groups 行: 组 # Columns: Time 列: 时间 average_group_time = np.zeros((self.number+1, len(groups_time))) self._label = list() for i in range(len(groups_time)): # for each time, a group exist group = groups_time[i] # for each time, generate breakpoint breakpoint = super().select_breakpoints(group[:, 1], self.number, self.perc) # for each time, generate label label = super().distribute(group[:, 1], breakpoint) # for each group in each time, calculate the average future return if self._weight == False: average_group_time[:, i] = super().average(group[:, 0], label[:, 0]).reshape((self.number+1)) elif self._weight == True: average_group_time[:, i] = super().average(group[:, 0], label[:, 0], weight=group[:, 3]).reshape((self.number+1)) else: return IOError self._label.append(label[:, 0]) # return the Table # Rows: groups in each time # Columns: Time return average_group_time def difference(self,average_group): ''' calculate the difference group return input : average_group : Average group at each time(MATRIX: N*T) output: the matrix added with the difference group return ''' import numpy as np diff = average_group[-1, :] - average_group[0, :] diff = diff.reshape((1, len(diff))) result = np.append(average_group, diff, axis=0) return result def summary_and_test(self) : ''' summary the result and take t test ''' import numpy as np from scipy import stats self.result = self.difference(self.average_by_time()) self.average = np.mean(self.result, axis=1) self.ttest = stats.ttest_1samp(self.result, 0.0, axis=1) # if there is a facotr adjustment, then normal return result plus the anomaly result # if self.factor is not None : # self.alpha, self.alpha_tvalue = self.factor_adjustment(self.result) # return self.average, self.ttest, self.alpha, self.alpha_tvalue return self.average, self.ttest def fit(self) : ''' fit the model ''' self.summary_and_test() def factor_adjustment(self, factor): ''' factor adjustment 因子调整 input: reuslt: Return Table with difference sequence factor: factor order by time output: alpha 超额收益 ttest T统计量 ''' import statsmodels.api as sm import numpy as np self._factor = factor # take the inverse of the Table with difference # Rows: Time # Columns: Groups Return table = self.result.T row, col = np.shape(table) # generate anomaly: alpha # generate tvalues: ttest alpha = np.zeros((col, 1)) ttest = np.zeros((col, 1)) # factor adjusment for i in range(col): model = sm.OLS(table[:,i], sm.add_constant(factor)) # fit the model with the Newey-West Adjusment # lags=maxlag re = model.fit() re = re.get_robustcov_results(cov_type='HAC', maxlags=self.maxlag, use_correction=True) #print(re.summary()) # get anomaly and tvalues alpha[i] = re.params[0] ttest[i] = re.tvalues[0] self.alpha = alpha self.alpha_tvalue = ttest return alpha, ttest def summary_statistics(self, variables=None, periodic=False): ''' Summary Statistics 描述性统计 input : variables(ndarray/DataFrame) 除了排序变量之外的其他需要分组总结的数据 periodic(boolean) 是否报告每一期数据 ''' import numpy as np from scipy import stats as sts from prettytable import PrettyTable ''' Group Statistics ''' # Group Statistics if variables is None: groups_time = self.divide_by_time(self.sample) average_variable_period = np.zeros((self.number+1, 1, len(groups_time))) elif variables is not None: try: r, c = np.shape(variables) except: c = 1 temp_sample = np.c_[self.sample, variables] groups_time = self.divide_by_time(temp_sample) average_variable_period = np.zeros((self.number+1, c+1, len(groups_time))) # ccalculate average variables for i in range(len(groups_time)): group = groups_time[i] if variables is None: average_variable_period[:, 0, i] = super().statistics(group[:, 1], self._label[i], np.mean) elif variables is not None: average_variable_period[:, 0, i] = super().statistics(group[:, 1], self._label[i], np.mean) average_variable_period[:, 1:, i] = super().statistics(group[:, -c:], self._label[i], np.mean) # print the result table = PrettyTable() if periodic == True: table.field_names = ['Time'] + [str(i+1) for i in range(self.number+1)] for i in range(len(self._time)): table.add_row([self._time[i]] + list(np.around(average_variable_period[:, 0, i], decimals=5))) if type(variables).__name__ == 'DataFrame' or type(variables).__name__ == 'Series': if type(variables).__name__ == 'DataFrame': variables_col = list(variables.columns) elif type(variables).__namr__ == 'Series': variables_col = list(variables.name) for j in range(c): table.add_row([variables_col[j]] + [' ' for i in range(self.number+1)]) for i in range(len(self._time)): table.add_row([self._time[i]] + list(np.around(average_variable_period[:, j+1, i], decimals=5))) elif type(variables).__name__ == 'ndarray' : for j in range(c): table.add_row(['Variable'+str(j+1)]+[' ' for i in range(self.number+1)]) for i in range(len(self._time)): table.add_row([self._time[i]] + list(np.around(average_variable_period[:, j+1, i], decimals=5))) elif periodic == False: average_variable = np.mean(average_variable_period, axis=2) table.field_names = ['Variable'] + [str(i+1) for i in range(self.number+1)] if self._sample_type == 'DataFrame': table.add_row([self._columns[1]] + list(np.around(average_variable[:, 0], decimals=5))) else: table.add_row(['Sort Variable'] + list(np.around(average_variable[:, 0], decimals=5))) if type(variables).__name__ == 'DataFrame' or type(variables).__name__ == 'Series': if type(variables).__name__ == 'DataFrame': variables_col = list(variables.columns) elif type(variables).__name__ == 'Series': variables_col = [variables.name] for j in range(c): table.add_row([variables_col[j]] + list(np.around(average_variable[:, j+1], decimals=5))) elif type(variables).__name__ == 'ndarray' : for j in range(c): table.add_row(['Variable'+str(j+1)] + list(np.around(average_variable[:, j+1], decimals=5))) else: return IOError print('\nGroup Statistics') print(table) ''' Variable Statistics ''' # Variable Statistics table = PrettyTable() if periodic == True: table.field_names = ['Time', 'Mean', 'SD', 'Skew', 'Kurt', 'Min', 'P5', 'P25', 'Median', 'P75', 'P95', 'Max', 'n'] for i in range(len(groups_time)): group = groups_time[i] stats_mean = np.mean(group[:, 1]) stats_std = np.std(group[:, 1]) stats_skew = sts.skew(group[:, 1]) stats_kurt = sts.kurtosis(group[:, 1]) stats_min = np.min(group[:, 1]) stats_perc5 = np.percentile(group[:, 1] ,5) stats_perc25 = np.percentile(group[:, 1], 25) stats_perc50 = np.percentile(group[:, 1], 50) stats_perc75 = np.percentile(group[:, 1], 75) stats_perc95 = np.percentile(group[:, 1], 95) stats_max = np.max(group[:, 1]) stats_n = len(group[:, 1]) table.add_row([self._time[i]] + list(np.around([stats_mean, stats_std, stats_skew, stats_kurt, stats_min, stats_perc5, stats_perc25, stats_perc50, stats_perc75, stats_perc95, stats_max, stats_n], decimals=5))) if type(variables).__name__ == 'DataFrame' or type(variables).__name__ == 'Series': if type(variables).__name__ == 'DataFrame': variables_col = list(variables.columns) elif type(variables).__name__ == 'Series': variables_col = list(variables.name) for j in range(c): table.add_row([variables_col[j]] + [' ' for k in range(12)]) for i in range(len(groups_time)): group = groups_time[i] stats_mean = np.mean(group[:, -(c-j)]) stats_std = np.std(group[:, -(c-j)]) stats_skew = sts.skew(group[:, -(c-j)]) stats_kurt = sts.kurtosis(group[:, -(c-j)]) stats_min = np.min(group[:, -(c-j)]) stats_perc5 = np.percentile(group[:, -(c-j)] ,5) stats_perc25 = np.percentile(group[:, -(c-j)], 25) stats_perc50 = np.percentile(group[:, -(c-j)], 50) stats_perc75 = np.percentile(group[:, -(c-j)], 75) stats_perc95 = np.percentile(group[:, -(c-j)], 95) stats_max = np.max(group[:, -(c-j)]) stats_n = len(group[:, -(c-j)]) table.add_row([self._time[i]] + list(np.around([stats_mean, stats_std, stats_skew, stats_kurt, stats_min, stats_perc5, stats_perc25, stats_perc50, stats_perc75, stats_perc95, stats_max, stats_n], decimals=5))) elif type(variables).__name__ == 'ndarray': for j in range(c): table.add_row(['Variable'+str(j+1)] + [' ' for k in range(12)]) for i in range(len(groups_time)): group = groups_time[i] stats_mean = np.mean(group[:, -(c-j)]) stats_std = np.std(group[:, -(c-j)]) stats_skew = sts.skew(group[:, -(c-j)]) stats_kurt = sts.kurtosis(group[:, -(c-j)]) stats_min = np.min(group[:, -(c-j)]) stats_perc5 = np.percentile(group[:, -(c-j)] ,5) stats_perc25 = np.percentile(group[:, -(c-j)], 25) stats_perc50 = np.percentile(group[:, -(c-j)], 50) stats_perc75 = np.percentile(group[:, -(c-j)], 75) stats_perc95 = np.percentile(group[:, -(c-j)], 95) stats_max = np.max(group[:, -(c-j)]) stats_n = len(group[:, -(c-j)]) table.add_row([self._time[i]] + list(np.around([stats_mean, stats_std, stats_skew, stats_kurt, stats_min, stats_perc5, stats_perc25, stats_perc50, stats_perc75, stats_perc95, stats_max, stats_n], decimals=5))) elif periodic == False: table.field_names = ['Variable', 'Mean', 'SD', 'Skew', 'Kurt', 'Min', 'P5', 'P25', 'Median', 'P75', 'P95', 'Max', 'n'] stats_mean = np.mean(self.sample[:, 1]) stats_std = np.std(self.sample[:, 1]) stats_skew = sts.skew(self.sample[:, 1]) stats_kurt = sts.kurtosis(self.sample[:, 1]) stats_min = np.min(self.sample[:, 1]) stats_perc5 = np.percentile(self.sample[:, 1] ,5) stats_perc25 = np.percentile(self.sample[:, 1], 25) stats_perc50 = np.percentile(self.sample[:, 1], 50) stats_perc75 = np.percentile(self.sample[:, 1], 75) stats_perc95 = np.percentile(self.sample[:, 1], 95) stats_max = np.max(self.sample[:, 1]) stats_n = int(len(self.sample[:, 1]) / len(self._time)) if self._sample_type == 'DataFrame': table.add_row([self._columns[1]] + list(np.around([stats_mean, stats_std, stats_skew, stats_kurt, stats_min, stats_perc5, stats_perc25, stats_perc50, stats_perc75, stats_perc95, stats_max, stats_n], decimals=5))) else: table.add_row(['Sort Variable'] + list(np.around([stats_mean, stats_std, stats_skew, stats_kurt, stats_min, stats_perc5, stats_perc25, stats_perc50, stats_perc75, stats_perc95, stats_max, stats_n], decimals=5))) if type(variables).__name__ == 'DataFrame' or type(variables).__name__ == 'Series': if type(variables).__name__ == 'DataFrame': variables_col = list(variables.columns) elif type(variables).__name__ == 'Series': variables_col = list([variables.name]) stats_mean = np.mean(temp_sample[:, -c:], axis=0) stats_std = np.std(temp_sample[:, -c:], axis=0, dtype=float) if c > 1: stats_skew = sts.skew(variables.iloc[:, -c:], axis=0) elif c == 1: stats_skew = [sts.skew(variables)] stats_kurt = sts.kurtosis(temp_sample[:, -c:], axis=0) stats_min = np.min(temp_sample[:, -c:], axis=0) stats_perc5 = np.percentile(temp_sample[:, -c:], 5, axis=0) stats_perc25 = np.percentile(temp_sample[:, -c:], 25, axis=0) stats_perc50 = np.percentile(temp_sample[:, -c:], 50, axis=0) stats_perc75 = np.percentile(temp_sample[:, -c:], 75, axis=0) stats_perc95 = np.percentile(temp_sample[:, -c:], 95, axis=0) stats_max = np.max(temp_sample[:, -c:], axis=0) stats_n = int(len(temp_sample[:, 1]) / len(self._time)) for j in range(c): table.add_row([variables_col[j]] + list(np.around([stats_mean[j], stats_std[j], stats_skew[j], stats_kurt[j], stats_min[j], stats_perc5[j], stats_perc25[j], stats_perc50[j], stats_perc75[j], stats_perc95[j], stats_max[j], stats_n], decimals=5))) elif type(variables).__name__ == 'ndarray': stats_mean = np.mean(temp_sample[:, -c:], axis=0) stats_std = np.std(temp_sample[:, -c:], axis=0, dtype=float) if c > 1: stats_skew = sts.skew(variables[:, -c:], axis=0) elif c == 1: stats_skew = [sts.skew(variables)] stats_kurt = sts.kurtosis(temp_sample[:, -c:], axis=0) stats_min = np.min(temp_sample[:, -c:], axis=0) stats_perc5 = np.percentile(temp_sample[:, -c:], 5, axis=0) stats_perc25 = np.percentile(temp_sample[:, -c:], 25, axis=0) stats_perc50 = np.percentile(temp_sample[:, -c:], 50, axis=0) stats_perc75 = np.percentile(temp_sample[:, -c:], 75, axis=0) stats_perc95 = np.percentile(temp_sample[:, -c:], 95, axis=0) stats_max = np.max(temp_sample[:, -c:], axis=0) stats_n = int(len(temp_sample[:, 1]) / len(self._time)) for j in range(c): table.add_row(['Variable'+str(j+1)] + list(np.around([stats_mean[j], stats_std[j], stats_skew[j], stats_kurt[j], stats_min[j], stats_perc5[j], stats_perc25[j], stats_perc50[j], stats_perc75[j], stats_perc95[j], stats_max[j], stats_n], decimals=5))) else: return IOError # print the result print('\nIndicator Statistics') print(table) def correlation(self, variables, periodic=False, export=False): # Variable Statistics # input: # variables (ndarray\DataFrame) import numpy as np from prettytable import PrettyTable from scipy import stats as sts r, c = np.shape(variables) temp_sample = np.c_[self.sample, variables] groups_time = self.divide_by_time(temp_sample) table = PrettyTable() table_spear = PrettyTable() # create field name if type(variables).__name__ == 'DataFrame': variables_col = list(variables.columns) field_name = list() for i in range(len(variables_col)): for j in range(len(variables_col)): if j > i: field_name.append(variables_col[i]+'&'+variables_col[j]) elif type(variables).__name__ == 'ndarray': r , c =np.shape(variables) variables_col = ['Variable_' + str(i) for i in range(c)] field_name = list() for i in range(len(variables_col)): for j in range(len(variables_col)): if j > i : field_name.append(variables_col[i]+' & '+variables_col[j]) if periodic == True: table.field_names = ['Time'] + field_name table_spear.field_names = ['Time'] + field_name elif periodic == False: table.field_names = ['Variable'] + field_name # calculate correlation coefficient corr_maxtrix = np.zeros((len(groups_time), len(field_name))) corr_maxtrix_spearman = np.zeros((len(groups_time), len(field_name))) for i in range(len(groups_time)): group = groups_time[i] temp_variables = group[:, -c:] corr = list() corr_spearman = list() for j in range(c): for k in range(c): if k > j : corr.append(np.around(sts.pearsonr(temp_variables[:, j], temp_variables[:, k])[0], decimals=5)) corr_spearman.append(np.around(sts.spearmanr(temp_variables[:, j], temp_variables[:, k])[0], decimals=5)) corr_maxtrix[i, :] = corr corr_maxtrix_spearman[i, :] = corr_spearman if periodic == True: table.add_row([str(self._time[i]) + ' '] + corr) table_spear.add_row([str(self._time[i]) + ' '] + corr_spearman) if periodic == False: table.add_rows([['Pearson'] + list(np.around(np.mean(corr_maxtrix, axis=0), decimals=5))]) table.add_row(['Spearman'] + list(np.around(np.mean(corr_maxtrix_spearman, axis=0), decimals=5))) print(table) if export == True : import pandas as pd try: from StringIO import StringIO except ImportError: from io import StringIO csv_string = table.get_csv_string() with StringIO(csv_string) as f: df = pd.read_csv(f) return df elif periodic == True: print('Spearman Correlation') print(table_spear) print('Pearson Correlation') print(table) if export == True : import pandas as pd try: from StringIO import StringIO except ImportError: from io import StringIO csv_string = table.get_csv_string() csv_string_spear = table_spear.get_csv_string() with StringIO(csv_string) as f: df = pd.read_csv(f) with StringIO(csv_string_spear) as f_spear: df_spear = pd.read_csv(f_spear) return df, df_spear def print_summary_by_time(self, export=False) : ''' print summary_by_time ''' import numpy as np from prettytable import PrettyTable r, c = np.shape(self.result) table = PrettyTable() time = np.sort(np.unique(self.sample[:, 2])) table.add_column('Time', time) for i in range(r-1): table.add_column(str(i+1), np.around(self.result[i, :], decimals=3)) table.add_column('diff', np.around(self.result[r-1,:], decimals=3)) print(table) if export == True : import pandas as pd try: from StringIO import StringIO except ImportError: from io import StringIO csv_string = table.get_csv_string() with StringIO(csv_string) as f: df = pd.read_csv(f) return df def print_summary(self, export=False): ''' print summary ''' import numpy as np from prettytable import PrettyTable # generate Table if no factor table = PrettyTable() table.add_column('Group', ['Average', 'T-Test']) for i in range(self.number+1): table.add_column(str(i+1), np.around([self.average[i], self.ttest[0][i]], decimals=3)) table.add_column('Diff', np.around([self.average[-1], self.ttest[0][-1]], decimals=3)) if self._factor is not None : table = PrettyTable() table.add_column('Group', ['Average', 'T-Test', 'Alpha', 'Alpha-T']) for i in range(self.number+1): table.add_column(str(i+1), np.around([self.average[i], self.ttest[0][i], self.alpha[i][0], self.alpha_tvalue[i][0]], decimals=3)) table.add_column('Diff', np.around([self.average[-1], self.ttest[0][-1], self.alpha[-1][0], self.alpha_tvalue[-1][0]], decimals=3)) np.set_printoptions(formatter={'float':'{:0.3f}'.format}) print(table) if export == True : import pandas as pd try: from StringIO import StringIO except ImportError: from io import StringIO csv_string = table.get_csv_string() with StringIO(csv_string) as f: df = pd.read_csv(f) return df class Bivariate(ptf_analysis): def __init__(self, sample, number=5, perc_row=None, perc_col=None, weight=False, maxlag=12): ''' input: sample: the samples to be analyzed sample usually contain the future return, characteristics, time the DEFAULT settting: the First column is the forecast return and the second column is the row characteristic the third column is the column characteristic the fourth colunm or the index is time label number: the breakpoint number perc: the breakpoint percentiles factor: risk adjust factor maxlag: maximum lag for Newey-West adjustment ''' import numpy as np if type(sample).__name__ == 'DataFrame' : self.sample = np.array(sample) self._sample_type = 'DataFrame' self._columns = list(sample.columns) elif type(sample).__name__ == 'ndarray' : self.sample = sample self._sample_type = 'ndarray' else: IOError self.number = number self._factor = None self.maxlag = maxlag self.weight = weight self.perc_row = perc_row self.perc_col = perc_col if (perc_row is not None) and (perc_col is not None): self.perc_sign = True else: self.perc_sign = False def divide_by_time(self): ''' split the sample by time into groups 将样本按照时间分组 output: groups_by_time (list) 按时间分组的样本 ''' import numpy as np time=np.sort(np.unique(self.sample[:, 3])) groups_by_time=list() for i in range(len(time)): groups_by_time.append(self.sample[np.where(self.sample[:, 3]==time[i])]) return groups_by_time def average_by_time(self, conditional=False): ''' average of the groups at each time point ''' import numpy as np # get the sample groups by time 得到按时间分组的样本 groups_time = self.divide_by_time() # generate table of average return for group and time 生成组和时间的表格 # Rows: groups 行: 组 # Columns: Time 列: 时间 if self.perc_sign == False: average_group_time = np.zeros((self.number+1, self.number+1, len(groups_time))) elif self.perc_sign == True : average_group_time = np.zeros((len(self.perc_row)-1, len(self.perc_col)-1, len(groups_time))) for i in range(len(groups_time)): # for each time, there exists a group group = groups_time[i] # for each time, generate breakpoint breakpoint_row = super().select_breakpoints(group[:, 1], self.number, self.perc_row) # for each time, generate label label_row = super().distribute(group[:, 1], breakpoint_row)[:, 0] if conditional == False: breakpoint_col = super().select_breakpoints(group[:, 2], self.number, self.perc_col) label_col = super().distribute(group[:, 2], breakpoint_col)[:, 0] elif conditional == True: label_row_unique = list(np.unique(label_row)) label_col = - np.ones(len(group[:, 2])) for j in range(len(label_row_unique)): breakpoint_col = super().select_breakpoints(group[:, 2][np.where(label_row==label_row_unique[j])], self.number, self.perc_col) label_col[np.where(label_row==label_row_unique[j])] = super().distribute(group[:, 2][np.where(label_row==label_row_unique[j])], breakpoint_col)[:, 0] # for each group in each time, calculate the average future return label = [label_row, label_col] if self.perc_sign == False: if self.weight == False: average_group_time[:,:,i] = super().average(group[:, 0], label, cond='bi').reshape((self.number+1, self.number+1)) else: average_group_time[:,:,i] = super().average(group[:, 0], label, cond='bi', weight=group[:, -1]).reshape((self.number+1, self.number+1)) elif self.perc_sign == True: if self.weight == False: average_group_time[:,:,i] = super().average(group[:, 0], label, cond='bi').reshape((len(self.perc_row)-1, len(self.perc_col)-1)) else: average_group_time[:,:,i] = super().average(group[:, 0], label, cond='bi', weight=group[:, -1]).reshape((len(self.perc_row)-1, len(self.perc_col)-1)) # return the Table # Rows: groups in each time # Columns: Time return average_group_time def difference(self, average_group): ''' calculate the difference group return input : average_group : Average group at each time(MATRIX: N*T) output: the matrix added with the difference group return ''' import numpy as np a, b, c= np.shape(average_group) diff_row = average_group[-1, :, :] - average_group[0, :, :] diff_row = diff_row.reshape((1, b, c)) result = np.append(average_group, diff_row, axis=0) diff_col = result[:, -1, :] - result[:, 0, :] diff_col = diff_col.reshape((a+1, 1, c)) result = np.append(result, diff_col, axis=1) return result def factor_adjustment(self, factor): ''' factor adjustment 因子调整 input: reuslt: Return Table with difference sequence factor: factor order by time output: alpha 超额收益 ttest T统计量 ''' import statsmodels.api as sm import numpy as np self._factor = factor # result: r * c * n r, c, n = np.shape(self.result) # generate anomaly: alpha # generate tvalues: ttest alpha = np.zeros((r, c)) ttest = np.zeros((r, c)) # factor adjusment for i in range(r): for j in range(c): model = sm.OLS(self.result[i, j, :], sm.add_constant(factor)) # fit the model with the Newey-West Adjusment # lags=maxlag re = model.fit() re = re.get_robustcov_results(cov_type='HAC', maxlags=self.maxlag, use_correction=True) #print(re.summary()) # get anomaly and tvalues alpha[i, j] = re.params[0] ttest[i, j] = re.tvalues[0] self.alpha = alpha self.alpha_tvalue = ttest return alpha, ttest def summary_and_test(self, **kwargs) : ''' summary the result and take t test ''' import numpy as np from scipy import stats self.result = self.difference(self.average_by_time(**kwargs)) self.average = np.mean(self.result, axis=2) self.ttest = stats.ttest_1samp(self.result, 0.0, axis=2) # if there is a facotr adjustment, then normal return result plus the anomaly result # if self.factor is not None : # self.alpha, self.alpha_tvalue = self.factor_adjustment(self.result) # return self.average, self.ttest, self.alpha, self.alpha_tvalue return self.average,self.ttest def fit(self, **kwargs): self.summary_and_test(**kwargs) def print_summary_by_time(self, export=False) : ''' print summary_by_time ''' import numpy as np from prettytable import PrettyTable r, c, n = np.shape(self.result) table = PrettyTable() time = np.sort(np.unique(self.sample[:, 3])) table.field_names = ['Time', 'Group'] + [str(i+1) for i in range(self.number+1)] + ['Diff'] for i in range(n): for j in range(r): if j == 0 : temp = [time[i], j+1] elif j == r - 1 : temp = [' ', 'Diff'] else : temp = [' ', j+1] for k in range(c): temp.append(np.round(self.result[j, k, i], decimals=3)) table.add_row(temp) print(table) if export == True : import pandas as pd try: from StringIO import StringIO except ImportError: from io import StringIO csv_string = table.get_csv_string() with StringIO(csv_string) as f: df = pd.read_csv(f) return df def print_summary(self, export=False): ''' print summary ''' import numpy as np from prettytable import PrettyTable # generate Table if no factor if self._factor is None : table=PrettyTable() if self._sample_type == 'ndarray': table.field_names = ['Group'] + [i+1 for i in range(self.number+1)] + ['Diff'] elif self._sample_type == 'DataFrame': table.field_names = ['Group'] + [self._columns[2] + str(i+1) for i in range(self.number+1)] + ['Diff'] for i in range(self.number+2): if i == self.number+1 : temp = ['Diff'] temp_tvalue = [' '] else: if self._sample_type == 'ndarray': temp = [str(i+1)] elif self._sample_type == 'DataFrame': temp = [self._columns[1] + str(i+1)] temp_tvalue = [' '] for j in range(self.number+2): temp.append(np.around(self.average[i, j], decimals=3)) temp_tvalue.append(np.around(self.ttest[0][i, j], decimals=3)) table.add_row(temp) table.add_row(temp_tvalue) elif self._factor is not None : table = PrettyTable() if self._sample_type == 'ndarray': table.field_names = ['Group'] + [i+1 for i in range(self.number+1)] + ['Diff'] elif self._sample_type == 'DataFrame': table.field_names = ['Group'] + [self._columns[2] + str(i+1) for i in range(self.number+1)] + ['Diff'] for i in range(self.number+2): if i == self.number+1: temp = ['Diff'] temp_tvalue = [' '] temp_fac = ['alpha'] temp_fac_tvalue = [' '] else : if self._sample_type == 'ndarray': temp = [str(i+1)] elif self._sample_type == 'DataFrame': temp = [self._columns[1] + str(i+1)] temp_tvalue = [' '] temp_fac = ['alpha'] temp_fac_tvalue = [' '] for j in range(self.number+2): temp.append(np.around(self.average[i, j], decimals=3)) temp_tvalue.append(np.around(self.ttest[0][i, j], decimals=3)) temp_fac.append(np.around(self.alpha[i, j], decimals=3)) temp_fac_tvalue.append(np.around(self.alpha_tvalue[i, j], decimals=3)) table.add_row(temp) table.add_row(temp_tvalue) table.add_row(temp_fac) table.add_row(temp_fac_tvalue) np.set_printoptions(formatter={'float':'{:0.3f}'.format}) print(table) if export == True : import pandas as pd try: from StringIO import StringIO except ImportError: from io import StringIO csv_string = table.get_csv_string() with StringIO(csv_string) as f: df = pd.read_csv(f) return df class Persistence(): ''' This class is for persistence analysis ''' def __init__(self, sample): ''' Input : sample (DataFrame): first column : sample number second column : timestamp variables: other columns ''' import numpy as np self.sample = sample self._columns = sample.columns self._r, self._c = np.shape(self.sample) def _shift(self, series, lag): ''' Input : series, lags ''' lag_series = series.groupby([self._columns[0]]).shift(-lag) lag_series.name = series.name + str(lag) return lag_series def fit(self, lags): import pandas as pd temp_sample = self.sample.set_index([self._columns[0], self._columns[1]]).sort_index() def autocorr(x): import numpy as np return np.corrcoef(x.iloc[:, 0], x.iloc[:, 1])[0, 1] variable_autocorr = list() for lag_num in range(len(lags)): for i in range(self._c-2): temp_shift = self._shift(temp_sample.iloc[:, i], lags[lag_num]) temp_merge = pd.merge(temp_sample.iloc[:, i], temp_shift, left_index=True, right_index=True).dropna() temp_autocorr = temp_merge.groupby([self._columns[1]])[self._columns[i+2], temp_shift.name].apply(autocorr) variable_autocorr.append(temp_autocorr) self._lag = lags self._variable_autocorr =
pd.concat(variable_autocorr, axis=1)
pandas.concat
import pandas as pd from milvus import Milvus, IndexType, MetricType from ipykernel.kernelbase import Kernel __version__ = '0.2.0' class MilvusKernel(Kernel): implementation = 'milvus_kernel' implementation_version = __version__ language = 'sql' language_version = 'latest' language_info = {'name': 'sql', 'mimetype': 'text/x-sh', 'file_extension': '.sql'} banner = 'milvus kernel' def __init__(self, **kwargs): Kernel.__init__(self, **kwargs) self.engine = False def output(self, output): if not self.silent: display_content = {'source': 'kernel', 'data': {'text/html': output}, 'metadata': {}} self.send_response(self.iopub_socket, 'display_data', display_content) def ok(self): return {'status':'ok', 'execution_count':self.execution_count, 'payload':[], 'user_expressions':{}} def err(self, msg): return {'status':'error', 'error':msg, 'traceback':[msg], 'execution_count':self.execution_count, 'payload':[], 'user_expressions':{}} def do_execute(self, code, silent, store_history=True, user_expressions=None, allow_stdin=False): self.silent = silent message = 'Unable to connect to Milvus server. Check that the server is running.' output = '' if not code.strip(): return self.ok() sql = code.rstrip()+('' if code.rstrip().endswith(";") else ';') try: for v in sql.split(";"): v = v.rstrip() l = v.lower() if len(l)>0: if l.startswith('milvus://'): self.engine = Milvus(uri=f'tcp://{v[9:]}') elif l=='help': output = pd.DataFrame( {'description':[ 'Create a collection', 'Drop a collection', 'Show all collections', 'Create a partition', 'Drop a partition', 'Show all partitions in a collection', 'Create an index', 'Removes an index', 'Flush data', 'Compact all segments in a collection', 'Search vectors', 'Delete vectors by ID', 'Insert a vector', 'Select vector', 'View metric type', 'View index type', 'View a collection description', 'View a collection statistics', ], 'milvus sql':[ "create table test01 where dimension=128 and index_file_size=1024 and metric_type='L2'", 'drop table test01', 'list table', "create partition test01 where partition_tag='tag01'", "drop partition test01 where partition_tag='tag01'", 'list partitions test01', "create index test01 where index_type='FLAT' and nlist=4096", 'drop index test01', 'flush test01, test02', 'compact test01', "select 2, 3, 5 from test01 where top_k=1 and partition_tags='tag01' and nprobe=16", 'delete test01 by id=1', "insert 2,3,5 from test01 where partition_tag='tag01' by id=0", 'select test01 by id=1,2,3', 'help -metric', 'help -index', 'desc test01', 'stats test01', ]}).to_html() elif l=='help -metric': output = pd.DataFrame( {'description':[ 'HAMMING', 'INVALID', 'IP', 'JACCARD', 'L2', 'SUBSTRUCTURE', 'SUPERSTRUCTURE', 'TANIMOTO' ], 'milvus MetricType':[ 'MetricType.HAMMING', 'MetricType.INVALID', 'MetricType.IP', 'MetricType.JACCARD', 'MetricType.L2', 'MetricType.SUBSTRUCTURE', 'MetricType.SUPERSTRUCTURE', 'MetricType.TANIMOTO' ]}).to_html() elif l=='help -index': output = pd.DataFrame( {'description':[ 'IVFLAT', 'ANNOY', 'FLAT', 'HNSW', 'INVALID', 'IVF_PQ', 'IVF_SQ8', 'IVF_SQ8H', 'RNSG' ], 'milvus IndexType':[ 'IndexType.IVFLAT', 'IndexType.ANNOY', 'IndexType.FLAT', 'IndexType.HNSW', 'IndexType.INVALID', 'IndexType.IVF_PQ', 'IndexType.IVF_SQ8', 'IndexType.IVF_SQ8H', 'IndexType.RNSG' ]}).to_html() elif l.startswith('desc '): if not self.engine: self.output(message) return self.ok() info_col = self.engine.get_collection_info(v[4:].strip())[1] info_index = self.engine.get_index_info(v[4:].strip())[1] desc = (['collection_name', 'dimension', 'index_file_size', 'metric_type', 'index_type'] +[i for i in info_index.params]+['row_count']) info = ([info_col.collection_name, info_col.dimension, info_col.index_file_size, str(info_col.metric_type), str(info_index.index_type)]+[info_index.params[i] for i in info_index.params] +[self.engine.get_collection_stats(v[4:].strip())[1]['row_count']]) output =
pd.DataFrame({'description': desc, 'info': info})
pandas.DataFrame
# Control de datos from io import BytesIO from dateutil import tz from pathlib import Path from zipfile import ZipFile from json import loads as loads_json from datetime import datetime, timedelta from requests import get as get_request # Ingeniería de variables from geopandas import read_file from pandas import DataFrame, json_normalize, read_csv, concat # Gráficas from seaborn import scatterplot from matplotlib.lines import Line2D from contextily import add_basemap, providers from matplotlib.pyplot import Axes, Figure, get_cmap # Twitter from twython import Twython # Modelo import ecoTad, ecoPredict class EcoBiciMap: def __init__(self, client_id: str, client_secret: str, twitter_key: str, twitter_secret: str, access_token: str, access_secret: str, is_local: bool=True) -> None: ''' Define el directorio base, la URL base y las credenciales para el acceso a la API Ecobici :client_id: user_uuid proporcionado por Ecobici. Más info en: https://www.ecobici.cdmx.gob.mx/sites/default/files/pdf/manual_api_opendata_esp_final.pdf :secret_id: contraseña propoprcionada por Ecobici, en un correo aparte para mayor seguridad ''' # Obtiene el directorio actual if is_local: self.base_dir = Path('/Users/efrain.flores/Desktop/hub/ecobici_bot') else: self.base_dir = Path().cwd() self.csv_dir = self.base_dir.joinpath('data','csv') self.shapefile_dir = self.base_dir.joinpath('data','shp') # Dominio web base, de donde se anexarán rutas y parámetros self.base_url = "https://pubsbapi-latam.smartbike.com" # Ruta con las credenciales de acceso self.user_credentials = f"oauth/v2/token?client_id={client_id}&client_secret={client_secret}" # Guarda como atributos las credenciales necesarias para crear tweets self.twitter_key = twitter_key self.twitter_secret = twitter_secret self.access_token = access_token self.access_secret = access_secret # Fecha y hora en la que se instancia la clase self.started_at = datetime.now().astimezone(tz.gettz('America/Mexico_City')) self.started_at_format = self.started_at.strftime(r'%d/%b/%Y %H:%M') self.is_local = is_local self.eb_map = {} def __str__(self) -> str: return f''' {self.started_at_format} Clase para extraer información de la API Ecobici (https://www.ecobici.cdmx.gob.mx/sites/default/files/pdf/manual_api_opendata_esp_final.pdf) transformar, graficar la disponibilidad en un mapa de calor, exportar los datos y crear un tweet con el mapa. ''' def get_token(self, first_time: bool=False) -> None: ''' Guarda los tokens de acceso, necesarios para solicitar la información de estaciones y disponibilidad :first_time: - True para obtener ACCESS_TOKEN y REFRESH_TOKEN usando las credenciales por primera vez - False para continuar con acceso a la API (después de 60min) y renovar ACCESS_TOKEN a través del REFRESH_TOKEN ''' # URL completa para recibir el token de acceso y el token de actualización (se ocupa si la sesión dura más de 60min) if first_time: URL = f"{self.base_url}/{self.user_credentials}&grant_type=client_credentials" # En el caso que se accese por 2a ocasión o más, se llama al token de actualización else: URL = f"{self.base_url}/{self.user_credentials}&grant_type=refresh_token&refresh_token={self.REFRESH_TOKEN}" # Obtiene la respuesta a la solicitud de la URL, los datos vienen en bits req_text = get_request(URL).text # Convierte los bits a formato json para guardar los tokens data = loads_json(req_text) # Guarda los tokens como atributos self.ACCESS_TOKEN = data['access_token'] self.REFRESH_TOKEN = data['refresh_token'] def get_data(self, availability: bool=False) -> DataFrame: ''' Obtiene la información de estaciones y disponibilidad al momento :availabilty: - True para obtener los datos de disponibilidad - False para obtener la información respecto a las estaciones ''' # URL para obtener la información en tiempo real, ya sea la info de las estaciones y/o la disponibilidad de las mismas stations_url = f"{self.base_url}/api/v1/stations{'/status' if availability else ''}.json?access_token={self.ACCESS_TOKEN}" req_text = get_request(stations_url).text data = loads_json(req_text) # El json resultado tiene la data encapsulada en la primer llave first_key = list(data.keys())[0] # Se estructura como tabla df =
json_normalize(data[first_key])
pandas.json_normalize
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right) tm.assert_series_equal(result, expected) result = left | Series(right) tm.assert_series_equal(result, expected) expected = Series([False, True, True, True, True]) result = left ^ right tm.assert_series_equal(result, expected) result = left ^ np.array(right) tm.assert_series_equal(result, expected) result = left ^ Index(right) tm.assert_series_equal(result, expected) result = left ^ Series(right) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): # GH#9016: support bitwise op for integer types # with non-matching indexes, logical operators will cast to object # before operating index = list("bca") s_tft = Series([True, False, True], index=index) s_tft = Series([True, False, True], index=index) s_tff = Series([True, False, False], index=index) s_0123 = Series(range(4), dtype="int64") # s_0123 will be all false now because of reindexing like s_tft expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_tft & s_0123 tm.assert_series_equal(result, expected) expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_0123 & s_tft tm.assert_series_equal(result, expected) s_a0b1c0 = Series([1], list("b")) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list("abc")) tm.assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list("abc")) tm.assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) tm.assert_series_equal(result, expected) def test_scalar_na_logical_ops_corners_aligns(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan d = DataFrame({"A": s}) expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9))) result = s & d tm.assert_frame_equal(result, expected) result = d & s tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) tm.assert_series_equal(result, expected) def test_reversed_xor_with_index_returns_index(self): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Index.symmetric_difference(idx1, ser) with tm.assert_produces_warning(FutureWarning): result = idx1 ^ ser tm.assert_index_equal(result, expected) expected = Index.symmetric_difference(idx2, ser) with tm.assert_produces_warning(FutureWarning): result = idx2 ^ ser tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "op", [ pytest.param( ops.rand_, marks=pytest.mark.xfail( reason="GH#22092 Index __and__ returns Index intersection", raises=AssertionError, strict=True, ), ), pytest.param( ops.ror_, marks=pytest.mark.xfail( reason="GH#22092 Index __or__ returns Index union", raises=AssertionError, strict=True, ), ), ], ) def test_reversed_logical_op_with_index_returns_series(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series(op(idx1.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series(op(idx2.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "op, expected", [ (ops.rand_, Index([False, True])), (ops.ror_, Index([False, True])), (ops.rxor, Index([])), ], ) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # behaving as set ops is deprecated, will become logical ops result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list("bca")) b = Series([False, True, False], list("abc")) expected = Series([False, True, False], list("abc")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False], list("abc")) result = a | b tm.assert_series_equal(result, expected) expected = Series([True, False, False], list("abc")) result = a ^ b tm.assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list("bca")) b = Series([False, True, False, True], list("abcd")) expected = Series([False, True, False, False], list("abcd")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False, False], list("abcd")) result = a | b tm.assert_series_equal(result, expected) # filling # vs empty empty = Series([], dtype=object) result = a & empty.copy() expected = Series([False, False, False], list("bca")) tm.assert_series_equal(result, expected) result = a | empty.copy() expected = Series([True, False, True], list("bca")) tm.assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ["z"]) expected = Series([False, False, False, False], list("abcz")) tm.assert_series_equal(result, expected) result = a | Series([1], ["z"]) expected = Series([True, True, False, False], list("abcz")) tm.assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [ empty.copy(), Series([1], ["z"]), Series(np.nan, b.index),
Series(np.nan, a.index)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # ~~aliGater~~ # (semi)automated gating software # # /^^\ # /^^\_______/0 \_ # ( `~+++,,_________,,++~^^^^^^^ #..V^V^V^V^V^V^\................................. # # # Parsing .fcs files with fcsparser from Eugene Yurtsevs FlowCytometryTools (very slightly modified) # Check out his toolkit for flow cytometry analysis: # http://eyurtsev.github.io/FlowCytometryTools/ # # <NAME> & <NAME> 2016~ # https://www.med.lu.se/labmed/hematologi_och_transfusionsmedicin/forskning/bjoern_nilsson # Distributed under the MIT License import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.colors from matplotlib.patches import Ellipse, Arrow from matplotlib.ticker import Locator, Formatter from matplotlib import transforms as mtransforms from matplotlib import rcParams import math import six from scipy.ndimage.filters import gaussian_filter1d #For computing bin width similarly to scipys histogram_bin_edges from scipy.stats import iqr from sklearn.decomposition import PCA import sys #AliGater imports import aligater.AGConfig as agconf from aligater.AGFileSystem import getGatedVector, AliGaterError from aligater.AGCythonUtils import __vectorlogicleTransform, __vectorInverselogicleTransform, __vectorBilogTransform, __vectorInverseBilogTransform sentinel = object() def plotHeatmap(fcsDF, x, y, vI=sentinel, bins=300, scale='linear', xscale='linear', yscale='linear', thresh=1000, aspect='auto', **kwargs): """ Core plotting function of AliGater. Mainly intended to be called internally, but may be called directly. Only plots. No gating functionalities. **Parameters** fcsDF : pandas.DataFrame Flow data loaded in a pandas DataFrame. x, y : str Marker labels. vI : list-like, optional list-like index of events in the fcsDF that correspond to the parent population. Defaults to plotting all events in fcsDF. bins : int, optional, default: 300 Resolution of the plotted heatmap. scale : str, optional, default: 'linear' Which scale to be used on both axes. xscale : str, optional, default: 'linear' Which scale to be used on the x-axis. yscale : str, optional, default: 'linear' Which scale to be used on the y-axis. T : int, optional, default: 1000 If the threshold for linear-loglike transition for bilog or logicle scales. aspect : str Aspect of plotted heatmap. Passed on to matplotlib.pyplot.imshow() **Keyword arguments** cmap : matplotlib.colors.Colormap or str, default: 'jet' Color map to use. Either string name of existing matplotlib colormap, or a colormap object. rcParams : matplotlib.rcParams Overrides rcParams with the passed rcParams object. mask_where : float,int, default : 0 scalar of heatmap values to mask, these become white when plotted **Returns** fig, matplotlib.pyplot.Figure matplotlib Figure object ax. matplotlib.pyplot.Axes matplotlib axes object **Examples** None currently. """ if vI is sentinel: vI=fcsDF.index elif len(vI)<2: sys.stderr.write("Passed index contains no events\n") return None, None if not isinstance(bins,str) and len(vI)<bins: bins=len(vI) if scale.lower()=='logicle': xscale='logicle' yscale='logicle' if scale.lower()=='bilog': xscale='bilog' yscale='bilog' #Default x and y lims bYlim=False bXlim=False if 'xlim' in kwargs: if not isinstance(kwargs['xlim'],list): raise TypeError("if xlim is passed, it must be a list of float/int") elif not all(isinstance(i,(float,int)) for i in kwargs['xlim']): raise TypeError("Non float/int element encountered in xlim") else: xscale_limits=kwargs['xlim'] if xscale.lower()=='logicle': xscale_limits=logicleTransform(xscale_limits,thresh) bXlim=True if 'ylim' in kwargs: if not isinstance(kwargs['ylim'],list): raise TypeError("if ylim is passed, it must be a list of float/int") elif not all(isinstance(i,(float,int)) for i in kwargs['ylim']): raise TypeError("Non float/int element encountered in ylim") else: yscale_limits=kwargs['ylim'] if yscale.lower()=='logicle': yscale_limits=logicleTransform(yscale_limits,thresh) bYlim=True if 'cmap' in kwargs: cmap = kwargs['cmap'] if not isinstance(cmap, str): collect_default=False else: collect_default=True else: collect_default=True cmap='jet' if 'rcParams' in kwargs: if not isinstance(kwargs['rcParams'],dict): raise TypeError("if rcParams is passed, it must be a dict") else: rcParams=kwargs['rcParams'] custom_rcParams=True else: custom_rcParams=False if 'mask_where' in kwargs: mask_value = kwargs['mask_where'] assert isinstance(mask_value,(float,int)) else: mask_value=0 vX=getGatedVector(fcsDF, x, vI, return_type="nparray") vY=getGatedVector(fcsDF, y, vI, return_type="nparray") plt.clf() if custom_rcParams: plt.rcParams=rcParams else: plt.rcParams['figure.figsize']=10,10 plt.rcParams['image.cmap']=cmap #extra plt.rcParams['font.size'] = 22 plt.rcParams['xtick.labelsize'] = 16 plt.rcParams['ytick.labelsize'] = 16 #plt.rcParams['label.size': 22] heatmap, xedges, yedges = getHeatmap(vX, vY, bins, scale, xscale, yscale, thresh) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] heatmap=np.ma.masked_where(heatmap <= mask_value, heatmap) plt.clf() fig, ax = plt.subplots() plt.imshow(heatmap.T, extent=extent, origin='lower',aspect=aspect, cmap=cmap) #CLOSES ALL OPEN FIGURES ON CALL - PERHAPS BAD ? plt.close('all') fig = plt.figure() ax = plt.gca() #matplotlib 3.2.x changed behaviour of interpolation #see https://github.com/matplotlib/matplotlib/issues/17722 #and https://matplotlib.org/3.2.1/api/api_changes.html#default-image-interpolation plt.imshow(heatmap.T, extent=extent, origin='lower',aspect=aspect, interpolation='none') plt.xlabel(x) plt.ylabel(y) if collect_default: cmap=plt.get_cmap() cmap.set_bad(color='white') #Zeroes should be white, not blue if xscale.lower()=='logicle': ax=plt.gca() ax.xaxis.set_major_locator(logicleLocator(linCutOff=thresh)) ax.xaxis.set_major_formatter(logicleFormatter(linCutOff=thresh)) if yscale.lower()=='logicle': ax=plt.gca() ax.yaxis.set_major_locator(logicleLocator(linCutOff=thresh)) ax.yaxis.set_major_formatter(logicleFormatter(linCutOff=thresh)) if xscale.lower()=='bilog': ax=plt.gca() ax.xaxis.set_major_locator(BiLogLocator(linCutOff=thresh)) ax.xaxis.set_major_formatter(BiLogFormatter(linCutOff=thresh)) if yscale.lower()=='bilog': ax=plt.gca() ax.yaxis.set_major_locator(BiLogLocator(linCutOff=thresh)) ax.yaxis.set_major_formatter(BiLogFormatter(linCutOff=thresh)) if bXlim: ax.xaxis.set_xlim(left=xscale_limits[0], right=xscale_limits[1]) if bYlim: ax.yaxis.set_xlim(left=yscale_limits[0], right=yscale_limits[1]) return fig,ax def getHeatmap(vX, vY, bins='auto', scale='linear', xscale='linear', yscale='linear', T=1000, normalize=False, xlim=None, ylim=None, range=None): if not any(isinstance(i,str) for i in [scale,xscale,yscale]): raise TypeError("scale, xscale, yscale must be specified as string, such as: 'linear', 'logicle'") if not all(i.lower() in ['linear', 'logicle', 'bilog'] for i in [scale,xscale,yscale]): raise TypeError("scale, xscale, yscale can only be either of: 'linear', 'logicle'") if not isinstance(bins,(int,str)): raise TypeError("bins can only be either of int or str") if range is not None: if isinstance(range,list): if len(range)==2: if not all(isinstance(i,(list)) for i in range): AliGaterError("in getHeatmap, invalid dtype encountered in range, expected two list-likes") else: if not all(isinstance(i,(float,int)) for i in range[0]) or not all(isinstance(i,(float,int)) for i in range[1]): AliGaterError("in getHeatmap,invalid dtype encountered in range") else: defaultRange=range xRange=range[0] yRange=range[1] else: AliGaterError("in getHeatmap, range must be list, found "+str(type(range))) else: AliGaterError("in getHeatmap, custom range passed but is not list, found type: "+str(type(range))) else: defaultRange=None xRange=None yRange=None if not len(vX) == len(vY): raise AliGaterError("in getHeatmap: ","Coordinate vectors are of unequal length") if len(vX)==0: raise AliGaterError("in getHeatmap: ","Coordinate vectors are empty") if not isinstance(vX,np.ndarray): try: vX=np.asarray(vX) except: raise AliGaterError("in getHeatmap: ", "Couldn't coerce x-value vectors into numpy array format") if not isinstance(vY,np.ndarray): try: vY=np.asarray(vY) except: raise AliGaterError("in getHeatmap: ", "Couldn't coerce x-value vectors into numpy array format") index_mask=[] for i in np.arange(len(vX)-1,-1,-1): if xlim is not None: if vX[i] < xlim[0] or vX[i] > xlim[1]: index_mask.append(i) continue if vY[i] < ylim[0] or vY[i] > ylim[1]: index_mask.append(i) if len(index_mask) > 0: vX = np.delete(vX, index_mask) vY = np.delete(vY, index_mask) assert len(vX) == len(vY) if isinstance(bins, str): xbin_edges=np.histogram_bin_edges(vX,bins=bins) ybin_edges=np.histogram_bin_edges(vY,bins=bins) else: xbin_edges=bins ybin_edges=bins if scale.lower()=='linear' and xscale.lower()=='linear' and yscale.lower() == 'linear': return np.histogram2d(vX, vY, [xbin_edges, ybin_edges], normed=normalize, range=defaultRange) #if not linear probably just transform and calc edges after #attempt at fix, still some redundancy... t_xbin_edges = t_ybin_edges = None if scale.lower()!='linear' or (xscale.lower()!='linear' and yscale.lower()!='linear'): t_vX = transformWrapper(vX, scale=xscale, T=T) t_xbin_edges=np.histogram_bin_edges(t_vX,bins=bins) xbin_edges = inverseTransformWrapper(t_xbin_edges, scale=xscale, T=T) t_vY = transformWrapper(vY, scale=yscale, T=T) t_ybin_edges=np.histogram_bin_edges(t_vY,bins=bins) ybin_edges = inverseTransformWrapper(t_ybin_edges, scale=yscale, T=T) return np.histogram2d(vX,vY, [xbin_edges, ybin_edges], normed=normalize, range=defaultRange) if xscale.lower()!='linear': t_vX = transformWrapper(vX, scale=xscale, T=T) t_xbin_edges=np.histogram_bin_edges(t_vX,bins=bins) xbin_edges = inverseTransformWrapper(t_xbin_edges, scale=xscale, T=T) ybin_edges = np.histogram_bin_edges(vY, bins=bins) if yscale.lower()!='linear': t_vY = transformWrapper(vY, scale=yscale, T=T) t_ybin_edges=np.histogram_bin_edges(t_vY,bins=bins) ybin_edges = inverseTransformWrapper(t_ybin_edges, scale=yscale, T=T) xbin_edges = np.histogram_bin_edges(vX, bins=bins) #print(ybin_edges) #print("\n\n") #print(xbin_edges) #print("\n\n") return np.histogram2d(vX,vY, [xbin_edges, ybin_edges], normed=normalize, range=defaultRange) #-------------------------DEPRECATED below--------------------------- if scale=='logicle' or (xscale == 'logicle' and yscale == 'logicle'): xBinEdges=logicleBin(vX,bins,T, xRange) yBinEdges=logicleBin(vY,bins,T, yRange) return np.histogram2d(vX, vY, [xBinEdges,yBinEdges], normed=normalize) if xscale=='logicle': xBinEdges=logicleBin(vX,bins,T, xRange) return np.histogram2d(vX, vY, [xBinEdges,bins], normed=normalize) if yscale=='logicle': yBinEdges=logicleBin(vY,bins,T, yRange) return np.histogram2d(vX, vY, [bins,yBinEdges], normed=normalize) if scale=='bilog' or (xscale == 'bilog' and yscale == 'bilog'): xBinEdges=bilogBin(vX,bins,T, xRange) yBinEdges=bilogBin(vY,bins,T, yRange) #print("xBinEdges: ") #print(xBinEdges) #print("\n\n") #print("yBinEdges: ") #print(yBinEdges) return np.histogram2d(vX, vY, [xBinEdges,yBinEdges], normed=normalize) if xscale=='bilog': xBinEdges=bilogBin(vX,bins,T, xRange) return np.histogram2d(vX, vY, [xBinEdges,bins], normed=normalize) if yscale=='bilog': yBinEdges=bilogBin(vY,bins,T, yRange) return np.histogram2d(vX, vY, [bins,yBinEdges], normed=normalize) def plot_flattened_heatmap(heatmap_array, nOfBins, mask=True): reshaped_array = heatmap_array.reshape(nOfBins, nOfBins) fig, ax = plt.subplots() if mask: heatmap=np.ma.masked_where(reshaped_array == 0, reshaped_array) cmap=plt.get_cmap() cmap.set_bad(color='white') else: heatmap=reshaped_array plt.imshow(heatmap.T[::-1]) plt.show() plt.clf() return None def transformWrapper(vX, T, scale): """ General function for converting values or arrays of values to AliGater scales; bilog and logicle. See inverseTransformWrapper to convert the other way around. **Parameters** vX, list-like or float/int value or values to convert. T, int/float Threshold for linear-log transition for bilog and logicle scales scale, str Scale to convert to; 'bilog' or 'logicle' **Returns** If a scalar is passed, scalar If list like is passed, list **Examples** None currently. """ result=None single_val=False #ToDo raise if more than 1 dim? if not isinstance(vX, (list, np.ndarray, tuple)): if isinstance(vX, (float, int)): vInput=np.asarray(vX).reshape(1,) single_val=True else: raise AliGaterError("in transformWrapper","invalid dType of passed vX, must be either a single float/int value or list/np.ndarray/tuple of float/int values") else: vInput=vX if not isinstance(vX,np.ndarray): try: vX=np.asarray(vX) except: raise AliGaterError("in transformWrapper: ", "Couldn't coerce input vector to numpy array format") if scale.lower() == 'logicle': result = logicleTransform(vInput, T) elif scale.lower() == 'bilog': result=bilogTransform(vInput, T) elif scale.lower() == 'linear': result=vX if result is None: raise if single_val: result=result[0] return result def inverseTransformWrapper(vX, T, scale): """ General function for converting values or arrays of values from AliGater scales; bilog and logicle back to linear values. See transformWrapper to convert into AliGater scales. **Parameters** vX, list-like or float/int value or values to convert. T, int/float Threshold for linear-log transition for bilog and logicle scales scale, str Scale to convert from; 'bilog' or 'logicle' **Returns** If a scalar is passed, scalar If list like is passed, list **Examples** None currently. """ result=None single_val=False if not isinstance(vX, (list, np.ndarray, tuple)): if isinstance(vX, (float, int)): vInput=np.asarray(vX).reshape(1,) single_val=True else: raise AliGaterError("in inverseTransformWrapper","invalid dType of passed vX, must be either a single float/int value or list/np.ndarray/tuple of float/int values") else: vInput=vX if not isinstance(vX,np.ndarray): try: vX=np.asarray(vX) except: raise AliGaterError("in inverseTransformWrapper: ", "Couldn't coerce input vector to numpy array format") if scale.lower() == 'logicle': result = inverselogicleTransform(vInput, T) elif scale.lower() == 'bilog': result=inverseBilogTransform(vInput, T) elif scale.lower() == 'linear': result=vX if result is None: raise if single_val: result=result[0] return result def bilogBin(vX, bins, T, customRange=None): if customRange is not None: defaultRange=customRange else: defaultRange=[min(vX),max(vX)] transformedRange=bilogTransform(defaultRange,T) transformedBinEdges=np.linspace(transformedRange[0],transformedRange[1],bins+1) return inverseBilogTransform(transformedBinEdges, T) def bilogTransform(a, T): vA = np.asarray(a, dtype = np.float64, order='C') tA=__vectorBilogTransform(vA, np.float64(T)) return tA # old python implementation, moved to AGCythonUtils # tA = np.empty_like(a).astype(float) # a_idx=0 # while a_idx < len(a): # if a[a_idx] >= T: # tA[a_idx] = np.log(10 * a[a_idx] / T)/np.log(10) # elif a[a_idx] < T and a[a_idx] > -T: # tA[a_idx] = (a[a_idx]/T + np.log(10) - 1) / np.log(10) # else: # tA[a_idx] = -np.log(10 * abs(a[a_idx]) / T) / np.log(10)+1.13141103619349642 #This shift ensures that the transformed coordinates are continous, important for bins and plotting # a_idx+=1 # return tA def inverseBilogTransform(a, T): vA = np.asarray(a, dtype = np.float64, order='C') invA = __vectorInverseBilogTransform(vA, np.float64(T)) return invA # old python implementation, moved to AGCythonUtils # invA=np.empty_like(a).astype(float) # a_idx=0 # while a_idx < len(a): # if a[a_idx] >= 1.0: #transformed linCutOff, always 1.0 at T; np.log(10 * linCutOff / linCutOff)/np.log(10) -> np.log(10)/np.log(10) = 1 # invA[a_idx] = T*np.exp(np.log(10)*a[a_idx])/10 # elif a[a_idx] <= 0.13141103619349642: #This is (np.log(10)-2)/np.log(10) I.e. the linear scale value at X=-T # tmpX=a[a_idx]-1.13141103619349642 #This shift ensures that the transformed coordinates are continous, important for bins and plotting # invA[a_idx] = -T*np.exp(np.log(10)*-tmpX)/10 # else: # invA[a_idx] = T * (np.log(10)*a[a_idx] - np.log(10) + 1) # a_idx+=1 # return invA def logicleBin(vX, bins, T, customRange=None): if customRange is not None: defaultRange=customRange else: defaultRange=[min(vX),max(vX)] transformedRange=logicleTransform(defaultRange,T) transformedBinEdges=np.linspace(transformedRange[0],transformedRange[1],bins+1) return inverselogicleTransform(transformedBinEdges, T) def logicleTransform(a, linCutOff): vA = np.asarray(a, dtype = np.float64, order='C') tA=__vectorlogicleTransform(vA, np.float64(linCutOff)) return tA # old python implementation, moved to AGCythonUtils # tA = np.empty_like(a).astype(float) # a_idx=0 # while a_idx < len(a): # if a[a_idx] >= linCutOff: # tA[a_idx] = np.log(10 * a[a_idx] / linCutOff)/np.log(10) # else: # tA[a_idx] = (a[a_idx]/linCutOff + np.log(10.0) - 1)/np.log(10) # a_idx+=1 #return tA def inverselogicleTransform(a, linCutOff): vA = np.asarray(a, dtype = np.float64, order='C') invA = __vectorInverselogicleTransform(vA, np.float64(linCutOff)) return invA # old python implementation, moved to AGCythonUtils # invA=np.empty_like(a).astype(float) # a_idx=0 # while a_idx < len(a): # if a[a_idx] >= 1.0: #transformed linCutOff, always 1.0 at T; np.log(10 * linCutOff / linCutOff)/np.log(10) -> np.log(10)/np.log(10) = 1 # invA[a_idx] = linCutOff*np.exp(np.log(10)*a[a_idx])/10 # #invA[a_idx]= (np.exp(a[a_idx])+10)*linCutOff/10 # else: # invA[a_idx] = linCutOff*(np.log(10.0)*a[a_idx] - np.log(10.0) + 1) # a_idx+=1 # return invA def addAxLine(fig, ax, pos, orientation, size=2, scale='linear', xscale='linear', yscale='linear', T=1000): if not all(i in ['linear', 'logicle', 'bilog'] for i in [scale, xscale, yscale]): raise TypeError("scale, xscale, yscale can only be either of: 'linear', 'logicle', 'bilog'") if orientation.lower()=='vertical': if scale.lower() != 'linear' or xscale.lower() != 'linear': lims=ax.get_xlim() vmin = lims[0] vmax = lims[1] if scale.lower() == 'logicle' or xscale.lower() == 'logicle': pos = convertTologiclePlotCoordinate(pos,vmin,vmax,T) if scale.lower() == 'bilog' or xscale.lower() == 'bilog': pos = convertToBiLogPlotCoordinate(pos,vmin,vmax,T) ax.axvline(pos, c='r') else: if scale.lower() !='linear' or yscale.lower() != 'linear': lims=ax.get_ylim() vmin = lims[0] vmax = lims[1] if scale=='logicle' or yscale.lower() == 'logicle': pos = convertTologiclePlotCoordinate(pos,vmin,vmax,T) if scale.lower() == 'bilog' or yscale.lower() == 'bilog': pos = convertToBiLogPlotCoordinate(pos,vmin,vmax,T) ax.axhline(pos, c='r') return fig def addLine(fig, ax, lStartCoordinate, lEndCoordinate, size=2, scale='linear', T=1000): if not scale.lower() in ['linear', 'logicle', 'bilog']: raise TypeError("scale, xscale, yscale can only be either of: 'linear', 'logicle', 'bilog'") if scale.lower()=='logicle': view=ax.xaxis.get_view_interval() xCoordinates=convertTologiclePlotCoordinates([lStartCoordinate[0],lEndCoordinate[0]], vmin=view[0], vmax=view[1], T=T) view=ax.yaxis.get_view_interval() yCoordinates=convertTologiclePlotCoordinates([lStartCoordinate[1],lEndCoordinate[1]], vmin=view[0], vmax=view[1], T=T) lStartCoordinate=[xCoordinates[0],yCoordinates[0]] lEndCoordinate=[xCoordinates[1],yCoordinates[1]] if scale.lower()=='bilog': view=ax.xaxis.get_view_interval() xCoordinates=convertToBiLogPlotCoordinates([lStartCoordinate[0],lEndCoordinate[0]], vmin=view[0], vmax=view[1], T=T) view=ax.yaxis.get_view_interval() yCoordinates=convertToBiLogPlotCoordinates([lStartCoordinate[1],lEndCoordinate[1]], vmin=view[0], vmax=view[1], T=T) lStartCoordinate=[xCoordinates[0],yCoordinates[0]] lEndCoordinate=[xCoordinates[1],yCoordinates[1]] plt.plot([lStartCoordinate[0], lEndCoordinate[0]], [lStartCoordinate[1], lEndCoordinate[1]], color='r', linestyle='-', linewidth=size,figure=fig) return fig, ax def addArrow(fig, ax, lStartCoordinate, lEndCoordinate, size=5000): arrow=Arrow(lStartCoordinate[0],lStartCoordinate[1],lEndCoordinate[0]-lStartCoordinate[0],lEndCoordinate[1]-lStartCoordinate[1],width=size, transform=ax.transAxes,head_width=size, head_length=size, fc='r', ec='r') #ax.arrow(lStartCoordinate[0], lStartCoordinate[1], lEndCoordinate[0]-lStartCoordinate[0], lEndCoordinate[1]-lStartCoordinate[1], head_width=size, head_length=size, fc='r', ec='r') ax.add_patch(arrow) return fig def draw_ellipse(position, covariance, sigma=2, ax=None, **kwargs): if agconf.execMode in ["jupyter","ipython"]: plot=True else: plot=False if plot: ax = ax or plt.gca(); # Convert covariance to principal axes if covariance.shape == (2, 2): U, s, Vt = np.linalg.svd(covariance) angle = np.degrees(np.arctan2(U[1, 0], U[0, 0])) width,height = np.sqrt(s)*sigma else: angle = 0 width, height = np.sqrt(covariance)*sigma #Note width, height here is the full width and height and not the semiaxis length # Draw the Ellipse if plot: ax.add_patch(Ellipse(position, width, height, angle, **kwargs)); return width, height, angle def plot_gmm(fcsDF, xCol, yCol, vI, gmm, sigma, ax): if agconf.execMode in ["jupyter","ipython"]: plot=True else: plot=False ax = ax or plt.gca() vEllipses=[] for pos, covar, w in zip(gmm.means_, gmm.covariances_, gmm.weights_): width, height, angle = draw_ellipse(pos, covar, sigma, fill=False,edgecolor='#FF0000', linestyle='dashed'); vEllipses.append([pos,width,height,angle]) if plot: plt.show(); return vEllipses def plot_densityFunc(fcsDF, xCol,vI=sentinel, sigma=3, bins=300, scale='linear', T=1000, *args, **kwargs): """ General function for converting values or arrays of values from AliGater scales; bilog and logicle back to linear values. See transformWrapper to convert into AliGater scales. **Parameters** vX, list-like or float/int value or values to convert. T, int/float Threshold for linear-log transition for bilog and logicle scales scale, str Scale to convert from; 'bilog' or 'logicle' **Returns** If a scalar is passed, scalar If list like is passed, list **Examples** None currently. """ if xCol not in fcsDF.columns: raise TypeError("Specified gate not in dataframe, check spelling or control your dataframe.columns labels") if vI is sentinel: vI=fcsDF.index elif len(vI)==0: sys.stderr.write("Passed index contains no events\n") return None if not all(i in ['linear', 'logicle', 'bilog'] for i in [scale]): raise TypeError("scale, xscale, yscale can only be either of: 'linear', 'logicle', 'bilog'") if not isinstance(sigma,(float,int)): raise AliGaterError("Sigma must be float or int, found: "+str(type(sigma)),"in plot_densityFunc") if 'sigma' in kwargs: if not isinstance(kwargs['sigma'],(float,int)): raise AliGaterError("Sigma must be float or int, found: "+str(type(sigma)),"in plot_densityFunc") else: sigma=kwargs['sigma'] data=getGatedVector(fcsDF, xCol, vI, return_type="nparray") if isinstance(bins,int): if len(vI)<bins: sys.stderr.write("Fewer events than bins, readjusting number of bins\n") bins=len(vI) elif bins=='auto': if scale.lower()!='linear': t_data = transformWrapper(data, T=T, scale=scale) else: t_data=data bins=__autoBinCount(t_data) else: raise AliGaterError("bins must be integer or string 'auto'","in plot_densityFunc") if scale == 'logicle': BinEdges=logicleBin(data,bins,T) histo = np.histogram(data, BinEdges) elif scale == 'bilog': BinEdges=bilogBin(data,bins,T) histo = np.histogram(data, BinEdges) else: histo=np.histogram(data, bins) vHisto=np.linspace(min(histo[1]),max(histo[1]),bins) smoothedHisto=gaussian_filter1d(histo[0].astype(float),sigma) plt.clf() fig,ax = plt.subplots() ax.plot(vHisto,smoothedHisto, label="pdf for "+str(xCol)+"\nsigma: "+str(sigma)) plt.legend(loc='upper right', shadow=True, fontsize='medium') if scale.lower()!='linear': ax=plt.gca() ax.set_xlim(left=min(data),right=max(data)) if scale.lower()=='logicle': ax.xaxis.set_major_locator(logicleLocator(linCutOff=T)) ax.xaxis.set_major_formatter(logicleFormatter(linCutOff=T)) if scale.lower()=='bilog': ax.xaxis.set_major_locator(BiLogLocator(linCutOff=T)) ax.xaxis.set_major_formatter(BiLogFormatter(linCutOff=T)) #plt.show() return fig,ax def __autoBinCount(data): #Internal function that mimics numpus numpy.histogram_bin_edges functionality to guess appropriate number of bins #https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html data_IQR = iqr(data) n=len(data) fd_h = 2*(data_IQR/(np.power(n,(1/3)))) #Freedman Diaconis Estimator fd_bins = np.round(np.ceil((max(data)-min(data)) / fd_h)) #np.round(np.ceil(range / h)) s_bins = np.log2(n)+1 #Sturges estimator bins=int(max([fd_bins,s_bins])) return bins def imagePCA_cluster(imlist, samplelist, nOfComponents=2): immatrix = np.array([im.flatten() for im in imlist],'f') #Check for nan elements in matrix if np.isnan(immatrix).any(): array_has_nan = np.array([np.isnan(arr).any() for arr in immatrix]) removed_images = samplelist[array_has_nan] imlist = imlist[~array_has_nan] samplelist=samplelist[~array_has_nan] n_of_nan=array_has_nan.sum() reportStr=str(n_of_nan)+" samples had invalid images and where removed:\n"+"\n".join(removed_images)+"\n" sys.stderr.write(reportStr) immatrix = np.array([im.flatten() for im in imlist],'f') if immatrix.shape[0] == 0: reportStr="No data in passed image matrix\n" sys.stderr.write(reportStr) return None if immatrix.shape[0] < nOfComponents: reportStr="WARNING: fewer samples than requested components for PC analysis, adjusting\n" sys.stderr.write(reportStr) nOfComponents=immatrix.shape[0] pca_obj = PCA(n_components=nOfComponents) pca_obj.fit(immatrix) projection_d = pca_obj.transform(immatrix) projection_d_df =
pd.DataFrame(projection_d)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn.model_selection import KFold import warnings import time import sys import datetime from sklearn.metrics import mean_squared_error warnings.simplefilter(action='ignore', category=FutureWarning) pd.set_option('display.max_columns', 500) def reduce_mem_usage(df, verbose=True): '''[summary] 看起来好像是数据清洗,减少内存的使用 Arguments: df {[type]} -- [description] Keyword Arguments: verbose {bool} -- [description] (default: {True}) Returns: [type] -- [description] ''' numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df # parse_dates是什么意思? new_transactions = pd.read_csv(r'D:\workspace\MachineLearning\Kaggle\Elo_Merchant_Category_Recommendation\dataset\new_merchant_transactions.csv',parse_dates=['purchase_date']) historical_transactions = pd.read_csv(r'D:\workspace\MachineLearning\Kaggle\Elo_Merchant_Category_Recommendation\dataset\historical_transactions.csv',parse_dates=['purchase_date']) def binarize(df): '''[summary] 二值化,用于将布尔型数据进行转化。 Arguments: df {[type]} -- [description] Returns: [type] -- [description] ''' for col in ['authorized_flag', 'category_1']: df[col] = df[col].map({'Y':1, 'N':0}) return df historical_transactions = binarize(historical_transactions) new_transactions = binarize(new_transactions) # 格式化日期数据,formatting the dates def read_data(input_file): df = pd.read_csv(input_file) df['first_active_month'] = pd.to_datetime(df['first_active_month']) df['elapsed_time'] = (datetime.date(2018, 2, 1) - df['first_active_month'].dt.date).dt.days return df # load the main files, and extracting the target train = read_data(r'D:\workspace\MachineLearning\Kaggle\Elo_Merchant_Category_Recommendation\dataset\train.csv') test = read_data(r'D:\workspace\MachineLearning\Kaggle\Elo_Merchant_Category_Recommendation\dataset\test.csv') target = train['target'] del train['target'] # 特征工程 Feature engineering historical_transactions['month_diff'] = ((datetime.datetime.today() - historical_transactions['purchase_date']).dt.days)//30 historical_transactions['month_diff'] += historical_transactions['month_lag'] new_transactions['month_diff'] = ((datetime.datetime.today() - new_transactions['purchase_date']).dt.days)//30 new_transactions['month_diff'] += new_transactions['month_lag'] # historical_transactions[:5] historical_transactions = pd.get_dummies(historical_transactions, columns=['category_2', 'category_3']) new_transactions = pd.get_dummies(new_transactions, columns=['category_2', 'category_3']) historical_transactions = reduce_mem_usage(historical_transactions) new_transactions = reduce_mem_usage(new_transactions) agg_fun = {'authorized_flag': ['mean']} auth_mean = historical_transactions.groupby(['card_id']).agg(agg_fun) auth_mean.columns = ['_'.join(col).strip() for col in auth_mean.columns.values] auth_mean.reset_index(inplace=True) authorized_transactions = historical_transactions[historical_transactions['authorized_flag'] == 1] historical_transactions = historical_transactions[historical_transactions['authorized_flag'] == 0] # define a few dates features historical_transactions['purchase_month'] = historical_transactions['purchase_date'].dt.month authorized_transactions['purchase_month'] = authorized_transactions['purchase_date'].dt.month new_transactions['purchase_month'] = new_transactions['purchase_date'].dt.month # Then I define two functions that aggregate the info contained in these two tables. The first function aggregates the function by grouping on `card_id` def aggregate_transactions(history): history.loc[:, 'purchase_date'] = pd.DatetimeIndex(history['purchase_date']).\ astype(np.int64) * 1e-9 agg_func = { 'category_1': ['sum', 'mean'], 'category_2_1.0': ['mean'], 'category_2_2.0': ['mean'], 'category_2_3.0': ['mean'], 'category_2_4.0': ['mean'], 'category_2_5.0': ['mean'], 'category_3_A': ['mean'], 'category_3_B': ['mean'], 'category_3_C': ['mean'], 'merchant_id': ['nunique'], 'merchant_category_id': ['nunique'], 'state_id': ['nunique'], 'city_id': ['nunique'], 'subsector_id': ['nunique'], 'purchase_amount': ['sum', 'mean', 'max', 'min', 'std'], 'installments': ['sum', 'mean', 'max', 'min', 'std'], 'purchase_month': ['mean', 'max', 'min', 'std'], 'purchase_date': [np.ptp, 'min', 'max'], 'month_lag': ['mean', 'max', 'min', 'std'], 'month_diff': ['mean'] } agg_history = history.groupby(['card_id']).agg(agg_func) agg_history.columns = ['_'.join(col).strip() for col in agg_history.columns.values] agg_history.reset_index(inplace=True) df = (history.groupby('card_id') .size() .reset_index(name='transactions_count')) agg_history = pd.merge(df, agg_history, on='card_id', how='left') return agg_history history = aggregate_transactions(historical_transactions) history.columns = ['hist_' + c if c != 'card_id' else c for c in history.columns] history[:5] authorized = aggregate_transactions(authorized_transactions) authorized.columns = ['auth_' + c if c != 'card_id' else c for c in authorized.columns] authorized[:5] new = aggregate_transactions(new_transactions) new.columns = ['new_' + c if c != 'card_id' else c for c in new.columns] new[:5] # The second function first aggregates on the two variables `card_id` and `month_lag`. Then a second grouping is performed to aggregate over time: def aggregate_per_month(history): grouped = history.groupby(['card_id', 'month_lag']) agg_func = { 'purchase_amount': ['count', 'sum', 'mean', 'min', 'max', 'std'], 'installments': ['count', 'sum', 'mean', 'min', 'max', 'std'], } intermediate_group = grouped.agg(agg_func) intermediate_group.columns = ['_'.join(col).strip() for col in intermediate_group.columns.values] intermediate_group.reset_index(inplace=True) final_group = intermediate_group.groupby('card_id').agg(['mean', 'std']) final_group.columns = ['_'.join(col).strip() for col in final_group.columns.values] final_group.reset_index(inplace=True) return final_group #___________________________________________________________ final_group = aggregate_per_month(authorized_transactions) final_group[:10] def successive_aggregates(df, field1, field2): t = df.groupby(['card_id', field1])[field2].mean() u = pd.DataFrame(t).reset_index().groupby('card_id')[field2].agg(['mean', 'min', 'max', 'std']) u.columns = [field1 + '_' + field2 + '_' + col for col in u.columns.values] u.reset_index(inplace=True) return u additional_fields = successive_aggregates(new_transactions, 'category_1', 'purchase_amount') additional_fields = additional_fields.merge(successive_aggregates(new_transactions, 'installments', 'purchase_amount'), on = 'card_id', how='left') additional_fields = additional_fields.merge(successive_aggregates(new_transactions, 'city_id', 'purchase_amount'), on = 'card_id', how='left') additional_fields = additional_fields.merge(successive_aggregates(new_transactions, 'category_1', 'installments'), on = 'card_id', how='left') # 3. Training the model # We now train the model with the features we previously defined. A first step consists in merging all the dataframes: train = pd.merge(train, history, on='card_id', how='left') test = pd.merge(test, history, on='card_id', how='left') train =
pd.merge(train, authorized, on='card_id', how='left')
pandas.merge
import re from datetime import datetime import nose import pytz import platform from time import sleep import os import logging import numpy as np from distutils.version import StrictVersion from pandas import compat from pandas import NaT from pandas.compat import u, range from pandas.core.frame import DataFrame import pandas.io.gbq as gbq import pandas.util.testing as tm from pandas.compat.numpy import np_datetime64_compat PROJECT_ID = None PRIVATE_KEY_JSON_PATH = None PRIVATE_KEY_JSON_CONTENTS = None if compat.PY3: DATASET_ID = 'pydata_pandas_bq_testing_py3' else: DATASET_ID = 'pydata_pandas_bq_testing_py2' TABLE_ID = 'new_test' DESTINATION_TABLE = "{0}.{1}".format(DATASET_ID + "1", TABLE_ID) VERSION = platform.python_version() _IMPORTS = False _GOOGLE_API_CLIENT_INSTALLED = False _GOOGLE_API_CLIENT_VALID_VERSION = False _HTTPLIB2_INSTALLED = False _SETUPTOOLS_INSTALLED = False def _skip_if_no_project_id(): if not _get_project_id(): raise nose.SkipTest( "Cannot run integration tests without a project id") def _skip_if_no_private_key_path(): if not _get_private_key_path(): raise nose.SkipTest("Cannot run integration tests without a " "private key json file path") def _skip_if_no_private_key_contents(): if not _get_private_key_contents(): raise nose.SkipTest("Cannot run integration tests without a " "private key json contents") def _in_travis_environment(): return 'TRAVIS_BUILD_DIR' in os.environ and \ 'GBQ_PROJECT_ID' in os.environ def _get_project_id(): if _in_travis_environment(): return os.environ.get('GBQ_PROJECT_ID') else: return PROJECT_ID def _get_private_key_path(): if _in_travis_environment(): return os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json']) else: return PRIVATE_KEY_JSON_PATH def _get_private_key_contents(): if _in_travis_environment(): with open(os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json'])) as f: return f.read() else: return PRIVATE_KEY_JSON_CONTENTS def _test_imports(): global _GOOGLE_API_CLIENT_INSTALLED, _GOOGLE_API_CLIENT_VALID_VERSION, \ _HTTPLIB2_INSTALLED, _SETUPTOOLS_INSTALLED try: import pkg_resources _SETUPTOOLS_INSTALLED = True except ImportError: _SETUPTOOLS_INSTALLED = False if compat.PY3: google_api_minimum_version = '1.4.1' else: google_api_minimum_version = '1.2.0' if _SETUPTOOLS_INSTALLED: try: try: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa except: from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa from oauth2client.client import OAuth2WebServerFlow # noqa from oauth2client.client import AccessTokenRefreshError # noqa from oauth2client.file import Storage # noqa from oauth2client.tools import run_flow # noqa _GOOGLE_API_CLIENT_INSTALLED = True _GOOGLE_API_CLIENT_VERSION = pkg_resources.get_distribution( 'google-api-python-client').version if (StrictVersion(_GOOGLE_API_CLIENT_VERSION) >= StrictVersion(google_api_minimum_version)): _GOOGLE_API_CLIENT_VALID_VERSION = True except ImportError: _GOOGLE_API_CLIENT_INSTALLED = False try: import httplib2 # noqa _HTTPLIB2_INSTALLED = True except ImportError: _HTTPLIB2_INSTALLED = False if not _SETUPTOOLS_INSTALLED: raise ImportError('Could not import pkg_resources (setuptools).') if not _GOOGLE_API_CLIENT_INSTALLED: raise ImportError('Could not import Google API Client.') if not _GOOGLE_API_CLIENT_VALID_VERSION: raise ImportError("pandas requires google-api-python-client >= {0} " "for Google BigQuery support, " "current version {1}" .format(google_api_minimum_version, _GOOGLE_API_CLIENT_VERSION)) if not _HTTPLIB2_INSTALLED: raise ImportError( "pandas requires httplib2 for Google BigQuery support") # Bug fix for https://github.com/pandas-dev/pandas/issues/12572 # We need to know that a supported version of oauth2client is installed # Test that either of the following is installed: # - SignedJwtAssertionCredentials from oauth2client.client # - ServiceAccountCredentials from oauth2client.service_account # SignedJwtAssertionCredentials is available in oauthclient < 2.0.0 # ServiceAccountCredentials is available in oauthclient >= 2.0.0 oauth2client_v1 = True oauth2client_v2 = True try: from oauth2client.client import SignedJwtAssertionCredentials # noqa except ImportError: oauth2client_v1 = False try: from oauth2client.service_account import ServiceAccountCredentials # noqa except ImportError: oauth2client_v2 = False if not oauth2client_v1 and not oauth2client_v2: raise ImportError("Missing oauth2client required for BigQuery " "service account support") def _setup_common(): try: _test_imports() except (ImportError, NotImplementedError) as import_exception: raise nose.SkipTest(import_exception) if _in_travis_environment(): logging.getLogger('oauth2client').setLevel(logging.ERROR) logging.getLogger('apiclient').setLevel(logging.ERROR) def _check_if_can_get_correct_default_credentials(): # Checks if "Application Default Credentials" can be fetched # from the environment the tests are running in. # See Issue #13577 import httplib2 try: from googleapiclient.discovery import build except ImportError: from apiclient.discovery import build try: from oauth2client.client import GoogleCredentials credentials = GoogleCredentials.get_application_default() http = httplib2.Http() http = credentials.authorize(http) bigquery_service = build('bigquery', 'v2', http=http) jobs = bigquery_service.jobs() job_data = {'configuration': {'query': {'query': 'SELECT 1'}}} jobs.insert(projectId=_get_project_id(), body=job_data).execute() return True except: return False def clean_gbq_environment(private_key=None): dataset = gbq._Dataset(_get_project_id(), private_key=private_key) for i in range(1, 10): if DATASET_ID + str(i) in dataset.datasets(): dataset_id = DATASET_ID + str(i) table = gbq._Table(_get_project_id(), dataset_id, private_key=private_key) for j in range(1, 20): if TABLE_ID + str(j) in dataset.tables(dataset_id): table.delete(TABLE_ID + str(j)) dataset.delete(dataset_id) def make_mixed_dataframe_v2(test_size): # create df to test for all BQ datatypes except RECORD bools = np.random.randint(2, size=(1, test_size)).astype(bool) flts = np.random.randn(1, test_size) ints = np.random.randint(1, 10, size=(1, test_size)) strs = np.random.randint(1, 10, size=(1, test_size)).astype(str) times = [datetime.now(pytz.timezone('US/Arizona')) for t in range(test_size)] return DataFrame({'bools': bools[0], 'flts': flts[0], 'ints': ints[0], 'strs': strs[0], 'times': times[0]}, index=range(test_size)) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with tm.assert_produces_warning(FutureWarning): df = make_mixed_dataframe_v2(10) gbq.generate_bq_schema(df) class TestGBQConnectorIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) def test_get_application_default_credentials_does_not_throw_error(self): if _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Can get default_credentials " "from the environment!") credentials = self.sut.get_application_default_credentials() self.assertIsNone(credentials) def test_get_application_default_credentials_returns_credentials(self): if not _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Cannot get default_credentials " "from the environment!") from oauth2client.client import GoogleCredentials credentials = self.sut.get_application_default_credentials() self.assertTrue(isinstance(credentials, GoogleCredentials)) class TestGBQConnectorServiceAccountKeyPathIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class TestGBQConnectorServiceAccountKeyContentsIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class GBQUnitTests(tm.TestCase): def setUp(self): _setup_common() def test_import_google_api_python_client(self): if compat.PY2: with tm.assertRaises(ImportError): from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa else: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa def test_should_return_bigquery_integers_as_python_floats(self): result = gbq._parse_entry(1, 'INTEGER') tm.assert_equal(result, float(1)) def test_should_return_bigquery_floats_as_python_floats(self): result = gbq._parse_entry(1, 'FLOAT') tm.assert_equal(result, float(1)) def test_should_return_bigquery_timestamps_as_numpy_datetime(self): result = gbq._parse_entry('0e9', 'TIMESTAMP') tm.assert_equal(result, np_datetime64_compat('1970-01-01T00:00:00Z')) def test_should_return_bigquery_booleans_as_python_booleans(self): result = gbq._parse_entry('false', 'BOOLEAN') tm.assert_equal(result, False) def test_should_return_bigquery_strings_as_python_strings(self): result = gbq._parse_entry('STRING', 'STRING')
tm.assert_equal(result, 'STRING')
pandas.util.testing.assert_equal
#!/usr/bin/env python # Copyright 2019 <NAME> # See LICENSE for details. __author__ = "<NAME> <<EMAIL>>" import pandas as pd from os import walk from copy import deepcopy def fix_month_format(element): """ This function converts the abbreviation of a Spanish month into its corresponding month number. Args: element (:obj:`str`): name of the month in Spanish. Abbreviation of the first 3 letters. Returns: :obj:`str`: The function returns the corresponding number as string. """ meses = {'ene': 1, 'feb': 2, 'mar': 3, 'abr': 4, 'may': 5, 'jun': 6, 'jul': 7, 'ago': 8, 'sept': 8, 'oct': 8, 'nov': 8, 'dic': 12} for word, initial in meses.items(): element = element.replace(word, '0' + str(initial)) return element def fix_date_format(df_, date_format='%d %m %Y %H:%M', date_column_name='hour'): #podría generalizarse """ This function converts the data column into 'datetime' format. Args: df_ (:obj:`pandas.DataFrame`): Input dataset. date_format (:obj:`str`, optional): format in which the dates are embedded. date_column_name (:obj:`str`, optional): name of the column containing the dates. Returns: :obj:`pandas.DataFrame`: The function returns a dataframe with the date column in datetime format. """ if len(df_[date_column_name][0]) == 33: df2 = df_[date_column_name].map(lambda x: fix_month_format(str(x)[5:-11])) else: print('ERROR: unrecognised date format.\nNo changes are applied.') return df_ df2 = pd.to_datetime(df2, format=date_format) # cambio las columnas df_ = df_.drop(columns=['hour']) df_['date_time'] = df2 return df_ def load_data(original_path='./concatenado', date_format='%d %m %Y %H:%M', sort_values=True, date_column_name='hour'): """ This function loads information from several files and outputs a single dataset containing all the information. Args: original_path (:obj:`str`, optional): path where all the files are located. date_format (:obj:`str`, optional): format in which the dates are embedded. sort_values (:obj:`bool`, optional): sort the values by data or preserve the original order. date_column_name (:obj:`str`, optional): name of the column containing the dates. Returns: :obj:`pandas.DataFrame`: The function returns a pandas.DataFrame containing all the loaded data. """ paths = next(walk(original_path))[2] files = [[] for _ in range(len(paths))] for i in range(len(paths)): for (dirpath, dirnames, filenames) in walk(original_path + paths[i]): files[i].extend(filenames) break df = pd.DataFrame() for file in paths: try: df_new = pd.read_csv(original_path + '/' + file, encoding='utf-8', engine='python', index_col=False) df = df.append([df_new], ignore_index=True) except Exception as e: print(file) print(e) continue df = fix_date_format(df, date_format=date_format, date_column_name=date_column_name) if sort_values: df = df.sort_values(by=['date_time']).reset_index(drop=True) return df def df_house_sensor(df_, house_number, sensor): """ This function extracts the information of a specific sensor in a certain house from a dataframe. Args: df_ (:obj:`pandas.DataFrame`): dataframe containing all data. house_number (:obj:`int`): number of the house which data is getting extracted. sensor (:obj:`int` or :obj:`str`): name/number of the sensor which data is getting extracted. Returns: :obj:`pandas.DataFrame`: The function returns a dataframe containing the data of a specific sensor in a certain house. """ df_grouped = df_.groupby(['house', 'sensor']) df_dates = pd.DataFrame(df_grouped['date_time'].apply(list).values.tolist(), index=df_grouped.groups) df_weights = pd.DataFrame(df_grouped['value'].apply(list).values.tolist(), index=df_grouped.groups) df_dates.columns = df_dates.columns * 2 df_weights.columns = df_weights.columns * 2 + 1 res = pd.concat([df_dates, df_weights], axis=1).sort_index(1) if type(sensor) == str: df_one_row = res.loc[str(house_number)].T[sensor].values else: df_one_row = res.loc[str(house_number)].iloc[sensor].values date_time = [df_one_row[i] for i in range(len(df_one_row)) if i % 2 == 0] values = [df_one_row[i] for i in range(len(df_one_row)) if i % 2 == 1] return pd.DataFrame({'date_time': date_time, 'values': values}) def adapt_frequency(df_, new_frequency=60, start_date=None, end_date=None, time_column_name='date_time'): """ This function changes the refresh frequency of a dataframe. Args: df_ (:obj:`pandas.DataFrame`): dataframes of all houses. new_frequency (:obj:`int`, optional): refresh frequency in minutes of the output. start_date (:obj:`datetime`, optional): left extreme of the selected time interval. end_date (:obj:`datetime`, optional): right extreme of the selected time interval. time_column_name (:obj:`str`, optional): name of the column containing the time information. Returns: :obj:`pandas.DataFrame`: The function returns a pandas dataframe with the selected refresh frequency. """ if not start_date: start_date = df_.dropna().date_time[0] if not end_date: end_date = df_.dropna().date_time.values[-1] new_range = pd.date_range(start_date, end_date, freq=str(new_frequency) + 'min') df_new_range = pd.DataFrame(data=new_range, columns=[time_column_name]) df_new_range['0'] = '' new_df = pd.concat([df_, df_new_range], sort=True).sort_values(by=time_column_name) return new_df.interpolate().dropna().drop(['0'], axis=1).set_index(time_column_name) # PODRIA SER MULTIHILO def get_df_house(df_, house_number, frequency=60, time_column_name='date_time'): """ This function extracts the dataframe of a specific house from a general dataframe. Args: df_ (:obj:`pandas.DataFrame`): dataframes of all houses. house_number (:obj:`str`): number of the selected house. frequency (:obj:`int`, optional): refresh frequency in minutes of the output. time_column_name (:obj:`str`, optional): name of the column containing the time information. Returns: :obj:`pandas.DataFrame`: The function returns a pandas dataframe with all the information of the selected house. """ if str(house_number) not in df_.casa.unique(): return 'House data not available' sensors = df_[df_.casa == str(house_number)].sensor.unique() house_df =
pd.DataFrame()
pandas.DataFrame
#将所有的数据处理函数都包含到此文件下 import SimpleITK as sitk import os import json import glob import SimpleITK as sitk import pandas as pd import matplotlib.pyplot as plt # dcm数据处理函数 def dicom_metainfo(dicm_path, list_tag): ''' 获取dicom的元数据信息 :param dicm_path: dicom文件地址 :param list_tag: 标记名称列表,比如['0008|0018',] :return: ''' reader = sitk.ImageFileReader() reader.LoadPrivateTagsOn() reader.SetFileName(dicm_path) reader.ReadImageInformation() return [reader.GetMetaData(t) for t in list_tag] def dicom2array(dcm_path): ''' 读取dicom文件并把其转化为灰度图(np.array) https://simpleitk.readthedocs.io/en/master/link_DicomConvert_docs.html :param dcm_path: dicom文件 :return: ''' image_file_reader = sitk.ImageFileReader() image_file_reader.SetImageIO('GDCMImageIO') image_file_reader.SetFileName(dcm_path) image_file_reader.ReadImageInformation() image = image_file_reader.Execute() if image.GetNumberOfComponentsPerPixel() == 1: image = sitk.RescaleIntensity(image, 0, 255) if image_file_reader.GetMetaData('0028|0004').strip() == 'MONOCHROME1': image = sitk.InvertIntensity(image, maximum=255) image = sitk.Cast(image, sitk.sitkUInt8) img_x = sitk.GetArrayFromImage(image)[0] return img_x # json文件处理函数 def get_info(train_path,json_path): annotation_info = pd.DataFrame(columns=('studyUid','seriesUid','instanceUid','annotation')) json_df =
pd.read_json(json_path)
pandas.read_json
import pandas as pd import numpy as np from functools import wraps import copy # Pass through pd.DataFrame methods for a (1,1,o,d) shaped triangle: df_passthru = ['to_clipboard', 'to_csv', 'to_pickle', 'to_excel', 'to_json', 'to_html', 'to_dict', 'unstack', 'pivot', 'drop_duplicates', 'describe', 'melt'] # Aggregate method overridden to the 4D Triangle Shape agg_funcs = ['sum', 'mean', 'median', 'max', 'min', 'prod', 'var', 'std'] agg_funcs = {item: 'nan'+item for item in agg_funcs} # def check_triangle_postcondition(f): # ''' Post-condition check to ensure the integrity of the triangle object # remains intact. (used for debugging) # ''' # @wraps(f) # def wrapper(*args, **kwargs): # X = f(*args, **kwargs) # if not hasattr(X, 'triangle'): # raise ValueError('X is missing triangle attribute') # if X.triangle.ndim != 4: # raise ValueError('X.triangle must be a 4-dimensional array') # if len(X.kdims) != X.triangle.shape[0]: # raise ValueError('X.index and X.triangle are misaligned') # if len(X.vdims) != X.triangle.shape[1]: # raise ValueError('X.columns and X.triangle are misaligned') # return X # return wrapper class TriangleBase: def __init__(self, data=None, origin=None, development=None, columns=None, index=None): # Sanitize Inputs columns = [columns] if type(columns) is str else columns origin = [origin] if type(origin) is str else origin if development is not None and type(development) is str: development = [development] key_gr = origin if not development else origin+development if not index: index = ['Total'] data_agg = data.groupby(key_gr).sum().reset_index() data_agg[index[0]] = 'Total' else: data_agg = data.groupby(key_gr+index) \ .sum().reset_index() # Convert origin/development to dates origin_date = TriangleBase.to_datetime(data_agg, origin) self.origin_grain = TriangleBase.get_grain(origin_date) # These only work with valuation periods and not lags if development: development_date = TriangleBase.to_datetime(data_agg, development, period_end=True) self.development_grain = TriangleBase.get_grain(development_date) col = 'development' else: development_date = origin_date self.development_grain = self.origin_grain col = None # Prep the data for 4D Triangle data_agg = self.get_axes(data_agg, index, columns, origin_date, development_date) data_agg = pd.pivot_table(data_agg, index=index+['origin'], columns=col, values=columns, aggfunc='sum') # Assign object properties self.kdims = np.array(data_agg.index.droplevel(-1).unique()) self.odims = np.array(data_agg.index.levels[-1].unique()) if development: self.ddims = np.array(data_agg.columns.levels[-1].unique()) self.ddims = self.ddims*({'Y': 12, 'Q': 3, 'M': 1} [self.development_grain]) self.vdims = np.array(data_agg.columns.levels[0].unique()) else: self.ddims = np.array([None]) self.vdims = np.array(data_agg.columns.unique()) self.ddims = self.ddims self.valuation_date = development_date.max() self.key_labels = index self.iloc = _Ilocation(self) self.loc = _Location(self) # Create 4D Triangle triangle = \ np.reshape(np.array(data_agg), (len(self.kdims), len(self.odims), len(self.vdims), len(self.ddims))) triangle = np.swapaxes(triangle, 1, 2) # Set all 0s to NAN for nansafe ufunc arithmetic triangle[triangle == 0] = np.nan self.triangle = triangle # Used to show NANs in lower part of triangle self.nan_override = False self.valuation = self._valuation_triangle() # ---------------------------------------------------------------- # # ----------------------- Class Properties ----------------------- # # ---------------------------------------------------------------- # def _len_check(self, x, y): if len(x) != len(y): raise ValueError(f'Length mismatch: Expected axis has ', f'{len(x)} elements, new values have', f' {len(y)} elements') @property def shape(self): return self.triangle.shape @property def index(self): return pd.DataFrame(list(self.kdims), columns=self.key_labels) @property def columns(self): return self.idx_table().columns @columns.setter def columns(self, value): self._len_check(self.columns, value) self.vdims = [value] if type(value) is str else value @property def origin(self): return pd.DatetimeIndex(self.odims, name='origin') @origin.setter def origin(self, value): self._len_check(self.origin, value) self.odims = [value] if type(value) is str else value @property def development(self): return pd.Series(list(self.ddims), name='development').to_frame() @development.setter def development(self, value): self._len_check(self.development, value) self.ddims = [value] if type(value) is str else value @property def latest_diagonal(self): return self.get_latest_diagonal() @property # @check_triangle_postcondition def link_ratio(self): obj = copy.deepcopy(self) temp = obj.triangle.copy() temp[temp == 0] = np.nan val_array = obj.valuation.values.reshape(obj.shape[-2:],order='f')[:, 1:] obj.triangle = temp[..., 1:]/temp[..., :-1] obj.ddims = np.array([f'{obj.ddims[i]}-{obj.ddims[i+1]}' for i in range(len(obj.ddims)-1)]) # Check whether we want to eliminate the last origin period if np.max(np.sum(~np.isnan(self.triangle[..., -1, :]), 2)-1) == 0: obj.triangle = obj.triangle[..., :-1, :] obj.odims = obj.odims[:-1] val_array = val_array[:-1, :] obj.valuation = pd.DatetimeIndex(pd.DataFrame(val_array).unstack().values) return obj @property def age_to_age(self): return self.link_ratio # ---------------------------------------------------------------- # # ---------------------- End User Methods ------------------------ # # ---------------------------------------------------------------- # # @check_triangle_postcondition def get_latest_diagonal(self, compress=True): ''' Method to return the latest diagonal of the triangle. Requires self.nan_overide == False. ''' obj = copy.deepcopy(self) diagonal = obj[obj.valuation == obj.valuation_date].triangle if compress: diagonal = np.expand_dims(np.nansum(diagonal, 3), 3) obj.ddims = ['Latest'] obj.valuation = pd.DatetimeIndex( [pd.to_datetime(obj.valuation_date)]*len(obj.odims)) obj.triangle = diagonal return obj # @check_triangle_postcondition def incr_to_cum(self, inplace=False): """Method to convert an incremental triangle into a cumulative triangle. Parameters ---------- inplace: bool Set to True will update the instance data attribute inplace Returns ------- Updated instance of triangle accumulated along the origin """ if inplace: np.cumsum(np.nan_to_num(self.triangle), axis=3, out=self.triangle) self.triangle = self.expand_dims(self.nan_triangle())*self.triangle self.triangle[self.triangle == 0] = np.nan return self else: new_obj = copy.deepcopy(self) return new_obj.incr_to_cum(inplace=True) # @check_triangle_postcondition def cum_to_incr(self, inplace=False): """Method to convert an cumlative triangle into a incremental triangle. Parameters ---------- inplace: bool Set to True will update the instance data attribute inplace Returns ------- Updated instance of triangle accumulated along the origin """ if inplace: temp = np.nan_to_num(self.triangle)[..., 1:] - \ np.nan_to_num(self.triangle)[..., :-1] temp = np.concatenate((self.triangle[..., 0:1], temp), axis=3) temp = temp*self.expand_dims(self.nan_triangle()) temp[temp == 0] = np.nan self.triangle = temp return self else: new_obj = copy.deepcopy(self) return new_obj.cum_to_incr(inplace=True) # @check_triangle_postcondition def grain(self, grain='', incremental=False, inplace=False): """Changes the grain of a cumulative triangle. Parameters ---------- grain : str The grain to which you want your triangle converted, specified as 'O<x>D<y>' where <x> and <y> can take on values of ``['Y', 'Q', 'M']`` For example, 'OYDY' for Origin Year/Development Year, 'OQDM' for Origin quarter, etc. incremental : bool Not implemented yet inplace : bool Whether to mutate the existing Triangle instance or return a new one. Returns ------- Triangle """ if inplace: origin_grain = grain[1:2] development_grain = grain[-1] new_tri, o = self._set_ograin(grain=grain, incremental=incremental) # Set development Grain dev_grain_dict = {'M': {'Y': 12, 'Q': 3, 'M': 1}, 'Q': {'Y': 4, 'Q': 1}, 'Y': {'Y': 1}} if self.shape[3] != 1: keeps = dev_grain_dict[self.development_grain][development_grain] keeps = np.where(np.arange(new_tri.shape[3]) % keeps == 0)[0] keeps = -(keeps + 1)[::-1] new_tri = new_tri[..., keeps] self.ddims = self.ddims[keeps] self.odims = np.unique(o) self.origin_grain = origin_grain self.development_grain = development_grain self.triangle = self._slide(new_tri, direction='l') self.triangle[self.triangle == 0] = np.nan self.valuation = self._valuation_triangle() return self else: new_obj = copy.deepcopy(self) new_obj.grain(grain=grain, incremental=incremental, inplace=True) return new_obj def trend(self, trend=0.0, axis=None): """ Allows for the trending along origin or development Parameters ---------- trend : float The amount of the trend axis : str ('origin' or 'development') The axis along which to apply the trend factors. The latest period of the axis is the trend-to period. Returns ------- Triangle updated with multiplicative trend applied. """ axis = {'origin': -2, 'development': -1}.get(axis, None) if axis is None: if self.shape[-2] == 1 and self.shape[-1] != 1: axis = -1 elif self.shape[-2] != 1 and self.shape[-1] == 1: axis = -2 else: raise ValueError('Cannot infer axis, please supply') trend = (1+trend)**np.arange(self.shape[axis])[::-1] trend = np.expand_dims(self.expand_dims(trend), -1) if axis == -1: trend = np.swapaxes(trend, -2, -1) obj = copy.deepcopy(self) obj.triangle = obj.triangle*trend return obj def rename(self, axis, value): if axis == 'index' or axis == 0: self.index = value if axis == 'columns' or axis == 1: self.columns = value if axis == 'origin' or axis == 2: self.origin = value if axis == 'development' or axis == 3: self.development = value return self # ---------------------------------------------------------------- # # ------------------------ Display Options ----------------------- # # ---------------------------------------------------------------- # def __repr__(self): if (self.triangle.shape[0], self.triangle.shape[1]) == (1, 1): data = self._repr_format() return data.to_string() else: data = 'Valuation: ' + self.valuation_date.strftime('%Y-%m') + \ '\nGrain: ' + 'O' + self.origin_grain + \ 'D' + self.development_grain + \ '\nShape: ' + str(self.shape) + \ '\nindex: ' + str(self.key_labels) + \ '\ncolumns: ' + str(list(self.vdims)) return data def _repr_html_(self): ''' Jupyter/Ipython HTML representation ''' if (self.triangle.shape[0], self.triangle.shape[1]) == (1, 1): data = self._repr_format() if np.nanmean(abs(data)) < 10: fmt_str = '{0:,.4f}' elif np.nanmean(abs(data)) < 1000: fmt_str = '{0:,.2f}' else: fmt_str = '{:,.0f}' if len(self.ddims) > 1 and type(self.ddims[0]) is int: data.columns = [['Development Lag'] * len(self.ddims), self.ddims] default = data.to_html(max_rows=pd.options.display.max_rows, max_cols=pd.options.display.max_columns, float_format=fmt_str.format) \ .replace('nan', '') return default.replace( f'<th></th>\n <th>{self.development.values[0][0]}</th>', f'<th>Origin</th>\n <th>{self.development.values[0][0]}</th>') else: data = pd.Series([self.valuation_date.strftime('%Y-%m'), 'O' + self.origin_grain + 'D' + self.development_grain, self.shape, self.key_labels, list(self.vdims)], index=['Valuation:', 'Grain:', 'Shape', 'Index:', "Columns:"], name='Triangle Summary').to_frame() pd.options.display.precision = 0 return data.to_html(max_rows=pd.options.display.max_rows, max_cols=pd.options.display.max_columns) def _repr_format(self): ''' Flatten to 2D DataFrame ''' x = self.triangle[0, 0] if type(self.odims[0]) == np.datetime64: origin = pd.Series(self.odims).dt.to_period(self.origin_grain) else: origin = pd.Series(self.odims) return pd.DataFrame(x, index=origin, columns=self.ddims) # ---------------------------------------------------------------- # # ----------------------- Pandas Passthrus ----------------------- # # ---------------------------------------------------------------- # def to_frame(self, *args, **kwargs): """ Converts a triangle to a pandas.DataFrame. Requires an individual index and column selection to appropriately grab the 2D DataFrame. Returns ------- pandas.DataFrame representation of the Triangle. """ axes = [num for num, item in enumerate(self.shape) if item > 1] if self.shape[:2] == (1, 1): return self._repr_format() elif len(axes) == 2: tri = np.squeeze(self.triangle) axes_lookup = {0: self.kdims, 1: self.vdims, 2: self.odims, 3: self.ddims} return pd.DataFrame(tri, index=axes_lookup[axes[0]], columns=axes_lookup[axes[1]]) else: raise ValueError('len(index) and len(columns) must be 1.') def plot(self, *args, **kwargs): """ Passthrough of pandas functionality """ return self.to_frame().plot(*args, **kwargs) @property def T(self): """ Passthrough of pandas functionality """ return self.to_frame().T # ---------------------------------------------------------------- # # ---------------------- Arithmetic Overload --------------------- # # ---------------------------------------------------------------- # def _validate_arithmetic(self, obj, other): other = copy.deepcopy(other) ddims = None odims = None if type(other) not in [int, float, np.float64, np.int64]: if len(self.vdims) != len(other.vdims): raise ValueError('Triangles must have the same number of \ columns') if len(self.kdims) != len(other.kdims): raise ValueError('Triangles must have the same number of', 'index') if len(self.vdims) == 1: other.vdims = np.array([None]) # If broadcasting doesn't work, then try intersecting before # failure a, b = self.shape[-2:], other.shape[-2:] if not (a[0] == 1 or b[0] == 1 or a[0] == b[0]) and \ not (a[1] == 1 or b[1] == 1 or a[1] == b[1]): ddims = set(self.ddims).intersection(set(other.ddims)) odims = set(self.odims).intersection(set(other.odims)) # Need to set string vs int type-casting obj = obj[obj.origin.isin(odims)][obj.development.isin(ddims)] other = other[other.origin.isin(odims)][other.development.isin(ddims)] obj.odims = np.sort(np.array(list(odims))) obj.ddims = np.sort(np.array(list(ddims))) other = other.triangle return obj, other # @check_triangle_postcondition def __add__(self, other): obj = copy.deepcopy(self) obj, other = self._validate_arithmetic(obj, other) obj.triangle = np.nan_to_num(obj.triangle) + np.nan_to_num(other) obj.triangle = obj.triangle * self.expand_dims(obj.nan_triangle()) obj.triangle[obj.triangle == 0] = np.nan obj.vdims = [None] if len(obj.vdims) == 1 else obj.vdims return obj # @check_triangle_postcondition def __radd__(self, other): return self if other == 0 else self.__add__(other) # @check_triangle_postcondition def __sub__(self, other): obj = copy.deepcopy(self) obj, other = self._validate_arithmetic(obj, other) obj.triangle = np.nan_to_num(obj.triangle) - \ np.nan_to_num(other) obj.triangle = obj.triangle * self.expand_dims(obj.nan_triangle()) obj.triangle[obj.triangle == 0] = np.nan obj.vdims = [None] if len(obj.vdims) == 1 else obj.vdims return obj # @check_triangle_postcondition def __rsub__(self, other): obj = copy.deepcopy(self) obj, other = self._validate_arithmetic(obj, other) obj.triangle = np.nan_to_num(other) - \ np.nan_to_num(obj.triangle) obj.triangle = obj.triangle * self.expand_dims(obj.nan_triangle()) obj.triangle[obj.triangle == 0] = np.nan obj.vdims = [None] if len(obj.vdims) == 1 else obj.vdims return obj def __len__(self): return self.shape[0] # @check_triangle_postcondition def __neg__(self): obj = copy.deepcopy(self) obj.triangle = -obj.triangle return obj # @check_triangle_postcondition def __pos__(self): return self # @check_triangle_postcondition def __mul__(self, other): obj = copy.deepcopy(self) obj, other = self._validate_arithmetic(obj, other) obj.triangle = np.nan_to_num(obj.triangle)*other obj.triangle = obj.triangle * self.expand_dims(obj.nan_triangle()) obj.triangle[obj.triangle == 0] = np.nan obj.vdims = [None] if len(obj.vdims) == 1 else obj.vdims return obj # @check_triangle_postcondition def __rmul__(self, other): return self if other == 1 else self.__mul__(other) # @check_triangle_postcondition def __truediv__(self, other): obj = copy.deepcopy(self) obj, other = self._validate_arithmetic(obj, other) obj.triangle = np.nan_to_num(obj.triangle)/other obj.triangle[obj.triangle == 0] = np.nan obj.vdims = [None] if len(obj.vdims) == 1 else obj.vdims return obj # @check_triangle_postcondition def __rtruediv__(self, other): obj = copy.deepcopy(self) obj.triangle = other / self.triangle obj.triangle[obj.triangle == 0] = np.nan return obj def __eq__(self, other): if np.all(np.nan_to_num(self.triangle) == np.nan_to_num(other.triangle)): return True else: return False def quantile(self, q, *args, **kwargs): if self.shape[:2] == (1, 1): return self.to_frame().quantile(q, *args, **kwargs) return _TriangleGroupBy(self, by=-1).quantile(q, axis=1) def groupby(self, by, *args, **kwargs): if self.shape[:2] == (1, 1): return self.to_frame().groupby(*args, **kwargs) return _TriangleGroupBy(self, by) def idx_table_format(self, idx): if type(idx) is pd.Series: # One row or one column selection is it k or v? if len(set(idx.index).intersection(set(self.vdims))) == len(idx): # One column selection idx = idx.to_frame().T idx.index.names = self.key_labels else: # One row selection idx = idx.to_frame() elif type(idx) is tuple: # Single cell selection idx = self.idx_table().iloc[idx[0]:idx[0] + 1, idx[1]:idx[1] + 1] return idx def idx_table(self): idx = self.kdims temp = pd.DataFrame(list(idx), columns=self.key_labels) for num, item in enumerate(self.vdims): temp[item] = list(zip(np.arange(len(temp)), (np.ones(len(temp))*num).astype(int))) temp.set_index(self.key_labels, inplace=True) return temp def __getitem__(self, key): ''' Function for pandas style column indexing''' if type(key) is pd.DataFrame and 'development' in key.columns: return self._slice_development(key['development']) if type(key) is np.ndarray: # Presumes that if I have a 1D array, I will want to slice origin. if len(key) == self.shape[-2]*self.shape[-1] and self.shape[-1] > 1: return self._slice_valuation(key) return self._slice_origin(key) if type(key) is pd.Series: return self.iloc[list(self.index[key].index)] if key in self.key_labels: # Boolean-indexing of a particular key return self.index[key] idx = self.idx_table()[key] idx = self.idx_table_format(idx) return _LocBase(self).get_idx(idx) def __setitem__(self, key, value): ''' Function for pandas style column indexing setting ''' idx = self.idx_table() idx[key] = 1 self.vdims = np.array(idx.columns.unique()) self.triangle = np.append(self.triangle, value.triangle, axis=1) # @check_triangle_postcondition def append(self, obj, index): return_obj = copy.deepcopy(self) x = pd.DataFrame(list(return_obj.kdims), columns=return_obj.key_labels) new_idx = pd.DataFrame([index], columns=return_obj.key_labels) x = x.append(new_idx) x.set_index(return_obj.key_labels, inplace=True) return_obj.triangle = np.append(return_obj.triangle, obj.triangle, axis=0) return_obj.kdims = np.array(x.index.unique()) return return_obj # @check_triangle_postcondition def _slice_origin(self, key): obj = copy.deepcopy(self) obj.odims = obj.odims[key] obj.triangle = obj.triangle[..., key, :] return self._cleanup_slice(obj) # @check_triangle_postcondition def _slice_valuation(self, key): obj = copy.deepcopy(self) obj.valuation_date = obj.valuation[key].max() key = key.reshape(self.shape[-2:], order='f') nan_tri = np.ones(self.shape[-2:]) nan_tri = key*nan_tri nan_tri[nan_tri == 0] = np.nan o, d = nan_tri.shape o_idx = np.arange(o)[list(np.sum(np.isnan(nan_tri), 1) != d)] d_idx = np.arange(d)[list(np.sum(np.isnan(nan_tri), 0) != o)] obj.odims = obj.odims[np.sum(np.isnan(nan_tri), 1) != d] if len(obj.ddims) > 1: obj.ddims = obj.ddims[np.sum(np.isnan(nan_tri), 0) != o] obj.triangle = (obj.triangle*nan_tri) obj.triangle = np.take(np.take(obj.triangle, o_idx, -2), d_idx, -1) return self._cleanup_slice(obj) # @check_triangle_postcondition def _slice_development(self, key): obj = copy.deepcopy(self) obj.ddims = obj.ddims[key] obj.triangle = obj.triangle[..., key] return self._cleanup_slice(obj) def _cleanup_slice(self, obj): obj.valuation = obj._valuation_triangle() if hasattr(obj, '_nan_triangle'): # Force update on _nan_triangle at next access. del obj._nan_triangle obj._nan_triangle = obj.nan_triangle() return obj # ---------------------------------------------------------------- # # ------------------- Data Ingestion Functions ------------------- # # ---------------------------------------------------------------- # def get_date_axes(self, origin_date, development_date): ''' Function to find any missing origin dates or development dates that would otherwise mess up the origin/development dimensions. ''' def complete_date_range(origin_date, development_date, origin_grain, development_grain): ''' Determines origin/development combinations in full. Useful for when the triangle has holes in it. ''' origin_unique = \ pd.period_range(start=origin_date.min(), end=origin_date.max(), freq=origin_grain).to_timestamp() development_unique = \ pd.period_range(start=origin_date.min(), end=development_date.max(), freq=development_grain).to_timestamp() development_unique = TriangleBase.period_end(development_unique) # Let's get rid of any development periods before origin periods cart_prod = TriangleBase.cartesian_product(origin_unique, development_unique) cart_prod = cart_prod[cart_prod[:, 0] <= cart_prod[:, 1], :] return pd.DataFrame(cart_prod, columns=['origin', 'development']) cart_prod_o = \ complete_date_range(pd.Series(origin_date.min()), development_date, self.origin_grain, self.development_grain) cart_prod_d = \ complete_date_range(origin_date, pd.Series(origin_date.max()), self.origin_grain, self.development_grain) cart_prod_t = pd.DataFrame({'origin': origin_date, 'development': development_date}) cart_prod = cart_prod_o.append(cart_prod_d) \ .append(cart_prod_t).drop_duplicates() cart_prod = cart_prod[cart_prod['development'] >= cart_prod['origin']] return cart_prod def get_axes(self, data_agg, groupby, columns, origin_date, development_date): ''' Preps axes for the 4D triangle ''' date_axes = self.get_date_axes(origin_date, development_date) kdims = data_agg[groupby].drop_duplicates() kdims['key'] = 1 date_axes['key'] = 1 all_axes = pd.merge(date_axes, kdims, on='key').drop('key', axis=1) data_agg = \ all_axes.merge(data_agg, how='left', left_on=['origin', 'development'] + groupby, right_on=[origin_date, development_date] + groupby) \ .fillna(0)[['origin', 'development'] + groupby + columns] data_agg['development'] = \ TriangleBase.development_lag(data_agg['origin'], data_agg['development']) return data_agg # ---------------------------------------------------------------- # # ------------------- Class Utility Functions -------------------- # # ---------------------------------------------------------------- # def nan_triangle(self): '''Given the current triangle shape and grain, it determines the appropriate placement of NANs in the triangle for future valuations. This becomes useful when managing array arithmetic. ''' if self.triangle.shape[2] == 1 or \ self.triangle.shape[3] == 1 or \ self.nan_override: # This is reserved for summary arrays, e.g. LDF, Diagonal, etc # and does not need nan overrides return np.ones(self.triangle.shape[2:]) if len(self.valuation) != len(self.odims)*len(self.ddims) or not \ hasattr(self, '_nan_triangle'): self.valuation = self._valuation_triangle() val_array = self.valuation val_array = val_array.values.reshape(self.shape[-2:], order='f') nan_triangle = np.array( pd.DataFrame(val_array) > self.valuation_date) nan_triangle = np.where(nan_triangle, np.nan, 1) self._nan_triangle = nan_triangle return self._nan_triangle def _valuation_triangle(self, ddims=None): ''' Given origin and development, develop a triangle of valuation dates. ''' ddims = self.ddims if ddims is None else ddims if ddims[0] is None: ddims = pd.Series([self.valuation_date]*len(self.origin)) return pd.DatetimeIndex(ddims.values) special_cases = dict(Ultimate='2262-03-01', Latest=self.valuation_date) if ddims[0] in special_cases.keys(): return pd.DatetimeIndex([pd.to_datetime(special_cases[ddims[0]])] * len(self.origin)) if type(ddims[0]) is np.str_: ddims = [int(item[:item.find('-'):]) for item in ddims] origin = pd.PeriodIndex(self.odims, freq=self.origin_grain) \ .to_timestamp(how='s') origin = pd.Series(origin) # Limit origin to valuation date origin[origin > self.valuation_date] = self.valuation_date next_development = origin+pd.DateOffset(days=-1, months=ddims[0]) val_array = np.expand_dims(np.array(next_development), -1) for item in ddims[1:]: if item == 9999: next_development = pd.Series([pd.to_datetime('2262-03-01')] * len(origin)) next_development = np.expand_dims(np.array( next_development), -1) else: next_development = np.expand_dims( np.array(origin+pd.DateOffset(days=-1, months=item)), -1) val_array = np.concatenate((val_array, next_development), -1) return pd.DatetimeIndex(pd.DataFrame(val_array).unstack().values) def _slide(self, triangle, direction='r'): ''' Facilitates swapping alignment of triangle between development period and development date. ''' obj = copy.deepcopy(self) obj.triangle = triangle nan_tri = obj.nan_triangle() r = (nan_tri.shape[1] - np.nansum(nan_tri, axis=1)).astype(int) r = -r if direction == 'l' else r k, v, rows, column_indices = \ np.ogrid[:triangle.shape[0], :triangle.shape[1], :triangle.shape[2], :triangle.shape[3]] r[r < 0] += nan_tri.shape[1] column_indices = column_indices - r[:, np.newaxis] return triangle[k, v, rows, column_indices] def expand_dims(self, tri_2d): '''Expands from one 2D triangle to full 4D object ''' k = len(self.kdims) v = len(self.vdims) tri_3d = np.repeat(np.expand_dims(tri_2d, axis=0), v, axis=0) return np.repeat(np.expand_dims(tri_3d, axis=0), k, axis=0) # @check_triangle_postcondition def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self @staticmethod def to_datetime(data, fields, period_end=False): '''For tabular form, this will take a set of data column(s) and return a single date array. ''' # Concat everything into one field if len(fields) > 1: target_field = pd.Series(index=data.index).fillna('') for item in fields: target_field = target_field + data[item].astype(str) else: target_field = data[fields[0]] # pandas is not good at inferring YYYYMM format so trying that first # and if it fails, move on to how pandas infers things. datetime_arg = target_field.unique() date_inference_list = \ [{'arg': datetime_arg, 'format': '%Y%m'}, {'arg': datetime_arg, 'format': '%Y'}, {'arg': datetime_arg, 'infer_datetime_format': True}] for item in date_inference_list: try: arr = dict(zip(datetime_arg, pd.to_datetime(**item))) break except: pass target = target_field.map(arr) if period_end: target = TriangleBase.period_end(target) return target @staticmethod def development_lag(origin, development): ''' For tabular format, this will convert the origin/development difference to a development lag ''' year_diff = development.dt.year - origin.dt.year if np.all(origin != development): development_grain = TriangleBase.get_grain(development) else: development_grain = 'M' if development_grain == 'Y': return year_diff + 1 if development_grain == 'Q': quarter_diff = development.dt.quarter - origin.dt.quarter return year_diff * 4 + quarter_diff + 1 if development_grain == 'M': month_diff = development.dt.month - origin.dt.month return year_diff * 12 + month_diff + 1 @staticmethod def period_end(array): if type(array) is not pd.DatetimeIndex: array_lookup = len(set(array.dt.month)) else: array_lookup = len(set(array.month)) offset = {12:
pd.tseries.offsets.MonthEnd()
pandas.tseries.offsets.MonthEnd
import pandas as pd from scoreware.race.utils import get_last_name def parse_general(df, headers, id): newdf=pd.DataFrame() print((type(headers))) for key in headers: print((headers[key])) for column in df.columns: if column.lower() in headers[key]: print((column.lower()+' matches')) print(key) print(key=='name') #if (key=='time'): # df[column]=df[column].replace('nan', method='bfill') # df[column]=df[column].fillna(method='bfill') # print((df[column].loc[1:10])) # df[column]=df[column].astype(str) # print((df[column].loc[230:240])) # newdf['time']=df[column].apply(lambda x: '00:'+x.split(':')[0]+':'+x.split(':')[1]) if (key=='full_name'): df[column]=df[column].fillna(value='none none') df[column]=df[column].replace('nan', value='none none') df[column]=df[column].astype(str) newdf['first_name']=df[column].apply(lambda x: x.split()[0]) #newdf['last_name']=df[column].apply(lambda x: x.split()[-1]) newdf['last_name']=df[column].apply(lambda x: get_last_name(x)) print(newdf['last_name']) else: if (key=='age'): df[column]=df[column].fillna(value=-1) else: df[column]=df[column].fillna(value='none') newdf[key]=df[column] newdf['race_id']=id return newdf def parse_general2(df, headers, id): newdf=
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 """Module for tespy network class. The network is the container for every TESPy simulation. The network class automatically creates the system of equations describing topology and parametrisation of a specific model and solves it. This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location tespy/networks/networks.py SPDX-License-Identifier: MIT """ # reading .csv import ast # ordered dicts for fluid composition vector from collections import Counter, OrderedDict # calculation of molar masses and gas constants from CoolProp.CoolProp import PropsSI as CPPSI # logging messages import logging # numpy functions import numpy as np from numpy.linalg import inv from numpy.linalg import norm # checking/creating folders import os # DataFrames for connections and components import pandas as pd # printing results from tabulate import tabulate from tespy import connections as con from tespy.components.basics import (sink, source, subsystem_interface, cycle_closer) from tespy.components.combustion import combustion_chamber, combustion_engine from tespy.components.heat_exchangers import heat_exchanger from tespy.components.nodes import drum, merge, splitter from tespy.components.reactors import water_electrolyzer from tespy.tools import data_containers as dc from tespy.tools import fluid_properties as fp from tespy.tools import helpers as hlp from tespy.tools.global_vars import molar_masses, gas_constants, err # calculation time from time import time class network: r""" Class component is the base class of all TESPy components. Parameters ---------- fluids : list A list of all fluids within the network container. m_unit : str Specify the unit for mass flow: 'kg / s', 't / h'. v_unit : str Specify the unit for volumetric flow: 'm3 / s', 'm3 / h', 'l / s', 'l / h'. p_unit : str Specify the unit for pressure: 'Pa', 'psi', 'bar', 'MPa'. h_unit : str Specify the unit for mass flow: 'J / kg', 'kJ / kg', 'MJ / kg'. T_unit : str Specify the unit for mass flow: 'K', 'C', 'F'. p_range : list List with minimum and maximum values for pressure value range. h_range : list List with minimum and maximum values for enthalpy value range. T_range : list List with minimum and maximum values for temperature value range. iterinfo : boolean Print convergence progress to console. Note ---- Unit specification is optional: If not specified the SI unit (first element in above lists) will be applied! Range specification is optional, too. The value range is used to stabilise the newton algorith. For more information see the "getting started" section in the online-documentation. Example ------- Basic example for a setting up a tespy.networks.network object. Specifying the fluids is mandatory! Unit systems, fluid property range and iterinfo are optional. Standard value for iterinfo is True. This will print out convergence progress to the console. You can suop the printouts by setting this property to false. >>> from tespy.networks import network >>> fluid_list = ['water', 'air', 'R134a'] >>> mynetwork = network(fluids=fluid_list, p_unit='bar', T_unit='C') >>> mynetwork.set_attr(p_range=[1, 10]) >>> type(mynetwork) <class 'tespy.networks.networks.network'> >>> mynetwork.set_attr(iterinfo=False) >>> mynetwork.iterinfo False >>> mynetwork.set_attr(iterinfo=True) >>> mynetwork.iterinfo True A simple network consisting of a source, a pipe and a sink. This example shows how the printout parameter can be used. We specify :code:`printout=False` for both connections, the pipe as well as the heat bus. Therefore the :code:`.print_results()` method should not print any results. >>> from tespy.networks import network >>> from tespy.components import source, sink, pipe >>> from tespy.connections import connection, bus >>> nw = network(['CH4'], T_unit='C', p_unit='bar', v_unit='m3 / s') >>> so = source('source') >>> si = sink('sink') >>> p = pipe('pipe', Q=0, pr=0.95, printout=False) >>> a = connection(so, 'out1', p, 'in1') >>> b = connection(p, 'out1', si, 'in1') >>> nw.add_conns(a, b) >>> a.set_attr(fluid={'CH4': 1}, T=30, p=10, m=10, printout=False) >>> b.set_attr(printout=False) >>> b = bus('heat bus') >>> b.add_comps({'c': p}) >>> nw.add_busses(b) >>> b.set_attr(printout=False) >>> nw.set_attr(iterinfo=False) >>> nw.solve('design') >>> nw.print_results() """ def __init__(self, fluids, **kwargs): # initialisation of basic properties self.checked = False # in case of a design calculation after an offdesign calculation self.redesign = False # connection dataframe self.conns = pd.DataFrame(columns=['s', 's_id', 't', 't_id']) # list for busses self.busses = OrderedDict() # default design_path value self.design_path = None # fluid list and constants if isinstance(fluids, list): self.fluids = sorted(fluids) else: msg = ('Please provide a list containing the network\'s fluids on ' 'creation.') logging.error(msg) raise TypeError(msg) msg = 'Network fluids are: ' for f in self.fluids: msg += f + ', ' if 'INCOMP::' in f: # molar mass and gas constant not available for incompressibles molar_masses[f] = 1 gas_constants[f] = 1 elif 'TESPy::' not in f: # calculating molar masses/gas constants for network's fluids # tespy_fluid molar mass/gas constant are added on lut creation molar_masses[f] = CPPSI('M', f) gas_constants[f] = CPPSI('GAS_CONSTANT', f) msg = msg[:-2] + '.' logging.debug(msg) # initialise fluid property memorisation function for this network fp.memorise.add_fluids(self.fluids) # available unit systems # mass flow self.m = { 'kg / s': 1, 't / h': 3.6 } # pressure self.p = { 'Pa': 1, 'psi': 6.8948e3, 'bar': 1e5, 'MPa': 1e6 } # enthalpy self.h = { 'J / kg': 1, 'kJ / kg': 1e3, 'MJ / kg': 1e6 } # temperature self.T = { 'C': [273.15, 1], 'F': [459.67, 5 / 9], 'K': [0, 1] } # volumetric flow self.v = { 'm3 / s': 1, 'l / s': 1e-3, 'm3 / h': 1 / 3600, 'l / h': 1 / 3.6 } # SI unit specification self.SI_units = { 'm': 'kg / s', 'p': 'Pa', 'h': 'J / kg', 'T': 'K', 'v': 'm3 / s' } # iterinfo self.iterinfo = True # standard unit set self.m_unit = self.SI_units['m'] self.p_unit = self.SI_units['p'] self.h_unit = self.SI_units['h'] self.T_unit = self.SI_units['T'] self.v_unit = self.SI_units['v'] msg = ('Default unit specifications: ' 'mass flow: ' + self.m_unit + ', ' + 'pressure: ' + self.p_unit + ', ' + 'enthalpy: ' + self.h_unit + ', ' + 'temperature: ' + self.T_unit + ', ' + 'volumetric flow: ' + self.v_unit + '.') logging.debug(msg) # generic value range self.m_range_SI = np.array([-1e12, 1e12]) self.p_range_SI = np.array([2e2, 300e5]) self.h_range_SI = np.array([1e3, 7e6]) self.T_range_SI = np.array([273.16, 1773.15]) msg = ('Default mass flow limits, ' 'min: ' + str(self.m_range_SI[0]) + ' ' + self.m_unit + ', max: ' + str(self.m_range_SI[1]) + ' ' + self.m_unit + ', ') logging.debug(msg) msg = ('Default pressure limits, ' 'min: ' + str(self.p_range_SI[0]) + ' ' + self.p_unit + ', max: ' + str(self.p_range_SI[1]) + ' ' + self.p_unit + ', ') logging.debug(msg) msg = ('Default enthalpy limits, ' 'min: ' + str(self.h_range_SI[0]) + ' ' + self.h_unit + ', max: ' + str(self.h_range_SI[1]) + ' ' + self.h_unit + ', ') logging.debug(msg) msg = ('Default temperature limits, ' 'min: ' + str(self.T_range_SI[0]) + ' ' + self.T_unit + ', max: ' + str(self.T_range_SI[1]) + ' ' + self.T_unit + ', ') logging.debug(msg) self.set_attr(**kwargs) def set_attr(self, **kwargs): r""" Set, resets or unsets attributes of a network. Parameters ---------- m_unit : str Specify the unit for mass flow: 'kg / s', 't / h'. v_unit : str Specify the unit for volumetric flow: 'm3 / s', 'm3 / h', 'l / s', 'l / h'. p_unit : str Specify the unit for pressure: 'Pa', 'psi', 'bar', 'MPa'. h_unit : str Specify the unit for enthalpy: 'J / kg', 'kJ / kg', 'MJ / kg'. T_unit : str Specify the unit for temperature: 'K', 'C', 'F'. m_range : list List with minimum and maximum values for mass flow value range. p_range : list List with minimum and maximum values for pressure value range. h_range : list List with minimum and maximum values for enthalpy value range. T_range : list List with minimum and maximum values for temperature value range. iterinfo : boolean Print convergence progress to console. """ # unit sets if 'm_unit' in kwargs.keys(): if kwargs['m_unit'] not in self.m.keys(): msg = ('Allowed units for mass flow are: ' + str(self.m.keys())) logging.error(msg) raise ValueError(msg) else: self.m_unit = kwargs['m_unit'] msg = 'Setting mass flow unit: ' + self.m_unit logging.debug(msg) if 'p_unit' in kwargs.keys(): if kwargs['p_unit'] not in self.p.keys(): msg = ('Allowed units for pressure are: ' + str(self.p.keys())) logging.error(msg) raise ValueError(msg) else: self.p_unit = kwargs['p_unit'] msg = 'Setting pressure unit: ' + self.p_unit logging.debug(msg) if 'h_unit' in kwargs.keys(): if kwargs['h_unit'] not in self.h.keys(): msg = ('Allowed units for pressure are: ' + str(self.h.keys())) logging.error(msg) raise ValueError(msg) else: self.h_unit = kwargs['h_unit'] msg = 'Setting enthalpy unit: ' + self.h_unit logging.debug(msg) if 'T_unit' in kwargs.keys(): if kwargs['T_unit'] not in self.T.keys(): msg = ('Allowed units for pressure are: ' + str(self.T.keys())) logging.error(msg) raise ValueError(msg) else: self.T_unit = kwargs['T_unit'] msg = 'Setting temperature unit: ' + self.T_unit logging.debug(msg) if 'v_unit' in kwargs.keys(): if kwargs['v_unit'] not in self.v.keys(): msg = ('Allowed units for pressure are: ' + str(self.v.keys())) logging.error(msg) raise ValueError(msg) else: self.v_unit = kwargs['v_unit'] msg = 'Setting volumetric flow unit: ' + self.v_unit logging.debug(msg) # value ranges if 'm_range' in kwargs.keys(): if not isinstance(kwargs['m_range'], list): msg = ('Specify the value range as list: [m_min, m_max]') logging.error(msg) raise TypeError(msg) else: self.m_range_SI = (np.array(kwargs['m_range']) * self.m[self.m_unit]) msg = ('Setting mass flow limits, min: ' + str(self.m_range_SI[0]) + ' ' + self.SI_units['m'] + ', max: ' + str(self.m_range_SI[1]) + ' ' + self.SI_units['m'] + '.') logging.debug(msg) if 'p_range' in kwargs.keys(): if not isinstance(kwargs['p_range'], list): msg = ('Specify the value range as list: [p_min, p_max]') logging.error(msg) raise TypeError(msg) else: self.p_range_SI = (np.array(kwargs['p_range']) * self.p[self.p_unit]) msg = ('Setting pressure limits, min: ' + str(self.p_range_SI[0]) + ' ' + self.SI_units['p'] + ', max: ' + str(self.p_range_SI[1]) + ' ' + self.SI_units['p'] + '.') logging.debug(msg) if 'h_range' in kwargs.keys(): if not isinstance(kwargs['h_range'], list): msg = ('Specify the value range as list: [h_min, h_max]') logging.error(msg) raise TypeError(msg) else: self.h_range_SI = (np.array(kwargs['h_range']) * self.h[self.h_unit]) msg = ('Setting enthalpy limits, min: ' + str(self.h_range_SI[0]) + ' ' + self.SI_units['h'] + ', max: ' + str(self.h_range_SI[1]) + ' ' + self.SI_units['h'] + '.') logging.debug(msg) if 'T_range' in kwargs.keys(): if not isinstance(kwargs['T_range'], list): msg = ('Specify the value range as list: [T_min, T_max]') logging.error(msg) raise TypeError(msg) else: self.T_range_SI = ((np.array(kwargs['T_range']) + self.T[self.T_unit][0]) * self.T[self.T_unit][1]) msg = ('Setting temperature limits, min: ' + str(self.T_range_SI[0]) + ' ' + self.SI_units['T'] + ', max: ' + str(self.T_range_SI[1]) + ' ' + self.SI_units['T'] + '.') logging.debug(msg) # update non SI value ranges self.m_range = self.m_range_SI / self.m[self.m_unit] self.p_range = self.p_range_SI / self.p[self.p_unit] self.h_range = self.h_range_SI / self.h[self.h_unit] self.T_range = (self.T_range_SI / self.T[self.T_unit][1] - self.T[self.T_unit][0]) for f in self.fluids: if 'TESPy::' in f: fp.memorise.vrange[f][0] = self.p_range_SI[0] fp.memorise.vrange[f][1] = self.p_range_SI[1] fp.memorise.vrange[f][2] = self.T_range_SI[0] fp.memorise.vrange[f][3] = self.T_range_SI[1] self.iterinfo = kwargs.get('iterinfo', self.iterinfo) if not isinstance(self.iterinfo, bool): msg = ('Network parameter iterinfo must be True or False!') logging.error(msg) raise TypeError(msg) def get_attr(self, key): r""" Get the value of a network attribute. Parameters ---------- key : str The attribute you want to retrieve. Returns ------- out : Specified attribute. """ if key in self.__dict__: return self.__dict__[key] else: msg = 'Network has no attribute \"' + str(key) + '\".' logging.error(msg) raise KeyError(msg) def add_subsys(self, *args): r""" Add one or more subsystems to the network. Parameters ---------- c : tespy.components.subsystems.subsystem The subsystem to be added to the network, subsystem objects si :code:`network.add_subsys(s1, s2, s3, ...)`. """ for subsys in args: for c in subsys.conns.values(): self.add_conns(c) def add_nwks(self, *args): """ Add connections from a different network. :param args: network objects si :code:`add_subsys(s1, s2, s3, ...)` :type args: tespy.networks.network :returns: no return value """ for nw in args: for c in nw.conns.index: self.add_conns(c) def add_conns(self, *args): r""" Add one or more connections to the network. Parameters ---------- c : tespy.connections.connection The connection to be added to the network, connections objects ci :code:`add_conns(c1, c2, c3, ...)`. """ for c in args: if not isinstance(c, con.connection): msg = ('Must provide tespy.connections.connection objects as ' 'parameters.') logging.error(msg) raise TypeError(msg) self.conns.loc[c] = [c.s, c.s_id, c.t, c.t_id] msg = ('Added connection ' + c.s.label + ' (' + c.s_id + ') -> ' + c.t.label + ' (' + c.t_id + ') to network.') logging.debug(msg) # set status "checked" to false, if conneciton is added to network. self.checked = False def del_conns(self, *args): """ Remove one or more connections from the network. Parameters ---------- c : tespy.connections.connection The connection to be removed from the network, connections objects ci :code:`del_conns(c1, c2, c3, ...)`. """ for c in args: self.conns = self.conns.drop(c) msg = ('Deleted connection ' + c.s.label + ' (' + c.s_id + ') -> ' + c.t.label + ' (' + c.t_id + ') from network.') logging.debug(msg) # set status "checked" to false, if conneciton is deleted from network. self.checked = False def check_conns(self): r"""Check connections for multiple usage of inlets or outlets.""" dub = self.conns.loc[self.conns.duplicated(['s', 's_id']) == True] for c in dub.index: targets = '' for conns in self.conns[(self.conns.s == c.s) & (self.conns.s_id == c.s_id)].index: targets += conns.t.label + ' (' + conns.t_id + '); ' msg = ('The source ' + c.s.label + ' (' + c.s_id + ') is attached ' 'to more than one target: ' + targets[:-2] + '. ' 'Please check your network.') logging.error(msg) raise hlp.TESPyNetworkError(msg) dub = self.conns.loc[self.conns.duplicated(['t', 't_id']) == True] for c in dub.index: sources = '' for conns in self.conns[(self.conns.t == c.t) & (self.conns.t_id == c.t_id)].index: sources += conns.s.label + ' (' + conns.s_id + '); ' msg = ('The target ' + c.t.label + ' (' + c.t_id + ') is attached ' 'to more than one source: ' + sources[:-2] + '. ' 'Please check your network.') logging.error(msg) raise hlp.TESPyNetworkError(msg) def add_busses(self, *args): r""" Add one or more busses to the network. Parameters ---------- b : tespy.connections.bus The bus to be added to the network, bus objects bi :code:`add_busses(b1, b2, b3, ...)`. """ for b in args: if self.check_busses(b): self.busses[b.label] = b msg = 'Added bus ' + b.label + ' to network.' logging.debug(msg) def del_busses(self, *args): r""" Remove one or more busses from the network. Parameters ---------- b : tespy.connections.bus The bus to be removed from the network, bus objects bi :code:`add_busses(b1, b2, b3, ...)`. """ for b in args: if b in self.busses.values(): del self.busses[b.label] msg = 'Deleted bus ' + b.label + ' from network.' logging.debug(msg) def check_busses(self, b): r""" Checksthe busses to be added for type, duplicates and identical labels. Parameters ---------- b : tespy.connections.bus The bus to be checked. """ if isinstance(b, con.bus): if len(self.busses) > 0: if b in self.busses.values(): msg = ('Network contains the bus ' + b.label + ' (' + str(b) + ') already.') logging.error(msg) raise hlp.TESPyNetworkError(msg) elif b.label in self.busses.keys(): msg = ('Network already has a bus with the name ' + b.label + '.') logging.error(msg) raise hlp.TESPyNetworkError(msg) else: return True else: return True else: msg = 'Only objects of type bus are allowed in *args.' logging.error(msg) raise TypeError(msg) def check_network(self): r"""Check if components are connected properly within the network.""" self.check_conns() # get unique components in connections dataframe comps = pd.unique(self.conns[['s', 't']].values.ravel()) # build the dataframe for components self.init_components(comps) # count number of incoming and outgoing connections and compare to # expected values for comp in self.comps.index: num_o = (self.conns[['s', 't']] == comp).sum().s num_i = (self.conns[['s', 't']] == comp).sum().t if num_o != comp.num_o: msg = (comp.label + ' is missing ' + str(comp.num_o - num_o) + ' outgoing connections. Make sure all outlets are ' ' connected and all connections have been added to the ' 'network.') logging.error(msg) # raise an error in case network check is unsuccesful raise hlp.TESPyNetworkError(msg) elif num_i != comp.num_i: msg = (comp.label + ' is missing ' + str(comp.num_i - num_i) + ' incoming connections. Make sure all inlets are ' ' connected and all connections have been added to the ' 'network.') logging.error(msg) # raise an error in case network check is unsuccesful raise hlp.TESPyNetworkError(msg) # network checked self.checked = True msg = 'Networkcheck successful.' logging.info(msg) def init_components(self, comps): r""" Set up a dataframe for the network's components. Additionally, check, if all components have unique labels. Note ---- The dataframe for the components is derived from the network's connections. Thus it does not hold any additional information, the dataframe is used to simplify the code, only. """ self.comps = pd.DataFrame(index=comps, columns=['i', 'o']) labels = [] for comp in self.comps.index: # get for incoming and outgoing connections of a component s = self.conns[self.conns.s == comp] s = s.s_id.sort_values().index t = self.conns[self.conns.t == comp] t = t.t_id.sort_values().index self.comps.loc[comp] = [t, s] # save the incoming and outgoing as well as the number of # connections as component attribute comp.inl = t.tolist() comp.outl = s.tolist() comp.num_i = len(comp.inlets()) comp.num_o = len(comp.outlets()) labels += [comp.label] # save the connection locations to the components comp.conn_loc = [] for c in comp.inl + comp.outl: comp.conn_loc += [self.conns.index.get_loc(c)] # check for duplicates in the component labels if len(labels) != len(list(set(labels))): duplicates = [item for item, count in Counter(labels).items() if count > 1] msg = ('All Components must have unique labels, duplicates are: ' + str(duplicates) + '.') logging.error(msg) raise hlp.TESPyNetworkError(msg) def initialise(self): r""" Initilialise the network depending on calclation mode. Design - Generic fluid composition and fluid property initialisation. - Starting values from initialisation path if provided. Offdesign - Check offdesign path specification. - Set component and connection design point properties. - Switch from design/offdesign parameter specification. """ if len(self.conns) == 0: msg = ('No connections have been added to the network, please ' 'make sure to add your connections with the ' '.add_conns() method.') logging.error(msg) raise hlp.TESPyNetworkError(msg) if len(self.fluids) == 0: msg = ('Network has no fluids, please specify a list with fluids ' 'on network creation.') logging.error(msg) raise hlp.TESPyNetworkError(msg) if self.mode == 'offdesign': self.redesign = True if self.design_path is None: # must provide design_path msg = ('Please provide \'design_path\' for every offdesign ' 'calculation.') logging.error(msg) raise hlp.TESPyNetworkError(msg) else: # load design case if self.new_design is True: self.init_offdesign_params() self.init_offdesign() else: # load design case self.init_design() # generic fluid initialisation self.init_fluids() # generic fluid property initialisation self.init_properties() # starting values from init path if self.init_path is not None: self.init_csv() msg = 'Network initialised.' logging.info(msg) def init_design(self): r""" Initialise a design calculation. Offdesign parameters are unset, design parameters are set. If :code:`local_offdesign` is True for connections or components, the design point information are read from the .csv-files in the respective :code:`design_path`. In this case, the design values are unset, the offdesign values set. """ # connections for c in self.conns.index: # read design point information of connections with # local_offdesign activated from their respective design path if c.local_offdesign is True: if c.design_path is None: msg = ('The parameter local_offdesign is True for the ' 'connection ' + c.s.label + '(' + c.s_id + ') -> ' + c.t.label + '(' + c.t_id + '), an individual ' 'design_path must be specified in this case!') logging.error(msg) raise hlp.TESPyNetworkError(msg) # unset design parameters for var in c.design: c.get_attr(var).set_attr(val_set=False) # set offdesign parameters for var in c.offdesign: c.get_attr(var).set_attr(val_set=True) # read design point information path = hlp.modify_path_os(c.design_path + '/conn.csv') msg = ('Reading individual design point information for ' 'connection ' + c.s.label + '(' + c.s_id + ') -> ' + c.t.label + '(' + c.t_id + ') from path ' + path + '.') logging.debug(msg) df = pd.read_csv(path, index_col=0, delimiter=';', decimal='.') # write data to connections self.init_conn_design_params(c, df) else: # unset all design values c.m.design = np.nan c.p.design = np.nan c.h.design = np.nan c.fluid.design = OrderedDict() c.new_design = True # switch connections to design mode if self.redesign is True: for var in c.design: c.get_attr(var).set_attr(val_set=True) for var in c.offdesign: c.get_attr(var).set_attr(val_set=False) # unset design values for busses for b in self.busses.values(): for cp in b.comps.index: b.comps.loc[cp].P_ref = np.nan series = pd.Series() for cp in self.comps.index: # read design point information of components with # local_offdesign activated from their respective design path if cp.local_offdesign is True: if cp.design_path is not None: # get type of component (class name) c = cp.__class__.__name__ # read design point information path = hlp.modify_path_os(cp.design_path + '/comps/' + c + '.csv') df = pd.read_csv(path, sep=';', decimal='.', converters={ 'busses': ast.literal_eval, 'bus_P_ref': ast.literal_eval }) df.set_index('label', inplace=True) # write data self.init_comp_design_params(cp, df.loc[cp.label]) # unset design parameters for var in cp.design: cp.get_attr(var).set_attr(is_set=False) # set offdesign parameters switched = False msg = 'Set component attributes ' for var in cp.offdesign: # set variables provided in .offdesign attribute data = cp.get_attr(var) data.set_attr(is_set=True) # take nominal values from design point if isinstance(data, dc.dc_cp): cp.get_attr(var).val = cp.get_attr(var).design switched = True msg += var + ', ' if switched: msg = (msg[:-2] + ' to design value at component ' + cp.label + '.') logging.debug(msg) cp.new_design = False else: # switch connections to design mode if self.redesign is True: for var in cp.design: cp.get_attr(var).set_attr(is_set=True) for var in cp.offdesign: cp.get_attr(var).set_attr(is_set=False) cp.set_parameters(self.mode, series) # component initialisation cp.comp_init(self) def init_offdesign_params(self): r""" Read design point information from specified :code:`design_path`. If a :code:`design_path` has been specified individually for components or connections, the data will be read from the specified individual path instead. Note ---- The methods :func:`tespy.networks.network.init_comp_design_params` (components) and the :func:`tespy.networks.network.init_conn_design_params` (connections) handle the parameter specification. """ # components without any parameters not_required = ['source', 'sink', 'node', 'merge', 'splitter', 'separator', 'drum', 'subsystem_interface'] # fetch all components, reindex with label cp_sort = self.comps.copy() # get class name cp_sort['cp'] = cp_sort.apply(network.get_class_base, axis=1) cp_sort['label'] = cp_sort.apply(network.get_props, axis=1, args=('label',)) cp_sort['comp'] = cp_sort.index cp_sort.set_index('label', inplace=True) # iter through unique types of components (class names) for c in cp_sort.cp.unique(): if c not in not_required: path = hlp.modify_path_os(self.design_path + '/comps/' + c + '.csv') msg = ('Reading design point information for components of ' 'type ' + c + ' from path ' + path + '.') logging.debug(msg) # read data df = pd.read_csv(path, sep=';', decimal='.', converters={'busses': ast.literal_eval, 'bus_P_ref': ast.literal_eval}) df.set_index('label', inplace=True) # iter through all components of this type and set data for c_label in df.index: comp = cp_sort.loc[c_label].comp # read data of components with individual design_path if comp.design_path is not None: path_c = hlp.modify_path_os(comp.design_path + '/comps/' + c + '.csv') df_c = pd.read_csv(path_c, sep=';', decimal='.', converters={ 'busses': ast.literal_eval, 'bus_P_ref': ast.literal_eval }) df_c.set_index('label', inplace=True) data = df_c.loc[comp.label] else: data = df.loc[comp.label] # write data to components self.init_comp_design_params(comp, data) msg = 'Read design point information for components.' logging.debug(msg) # read connection design point information path = hlp.modify_path_os(self.design_path + '/conn.csv') df =
pd.read_csv(path, index_col=0, delimiter=';', decimal='.')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 19 21:14:42 2020 @author: hiroyasu """ import torch import numpy as np import matplotlib.pyplot as plt import RNNtraining as rnnl import CCMsampling as sccm import pandas as pd import pickle dt = sccm.dt*0.1 tspan = sccm.tspan #tspan = np.array([0,20]) s = sccm.s b = sccm.b r = sccm.r ratio_p = sccm.ratio_p*1 C = sccm.C B = sccm.B D = sccm.D dim = sccm.dim d1_over = sccm.d1_over d2_over = sccm.d2_over b_over = sccm.b_over c_over = sccm.c_over d_over = sccm.d_over RungeNum = sccm.RungeNum RungeNum = 1 N = np.load('data/params/optimal/N.npy') alp = alp = np.load('data/params/optimal/alp.npy') optvals = np.load('data/params/optimal/optvals.npy') optval = np.mean(optvals) n_input = rnnl.n_input n_hidden = rnnl.n_hidden n_output = rnnl.n_output n_layers = rnnl.n_layers class Lorenz: def __init__(self,X,t,dt,runge_num=RungeNum): self.X = X self.t = t self.dt = dt self.runge_num = runge_num self.h = dt/runge_num def dynamics(self,state,time): x1 = state[0] x2 = state[1] x3 = state[2] dx1dt = s*(x2-x1); dx2dt = x1*(r-x3)-x2; dx3dt = x1*x2-b*x3; return np.array([dx1dt,dx2dt,dx3dt]) def measurement(self): Xv = (np.array([self.X])).T d2 = (np.random.rand(1,1)*2-1)*ratio_p y = C@Xv+D@d2 y = y[:,0] return y def rk4(self): X = self.X t = self.t h = self.h k1 = self.dynamics(X,t) k2 = self.dynamics(X+k1*h/2.,t+h/2.) k3 = self.dynamics(X+k2*h/2.,t+h/2.) k4 = self.dynamics(X+k3*h,t+h) return X+h*(k1+2.*k2+2.*k3+k4)/6., t+h def one_step_sim(self): runge_num = self.runge_num for num in range(0, runge_num): #self.X, self.tを更新することで全体で更新 self.X, self.t = self.rk4() d1 = (np.random.rand(3,1)*2-1)*ratio_p dist_dt = B@d1*self.dt self.X = self.X+dist_dt[:,0] return self.X, self.t class Estimator: def __init__(self,Z,t,dt,runge_num=RungeNum): self.Z = Z self.t = t self.ns = Z.shape[0] self.runge_num = runge_num self.h = dt/runge_num self.net = rnnl.RNN(n_input,n_hidden,n_output,n_layers) self.net.load_state_dict(torch.load('data/trained_nets/RNNLorenz.pt')) self.net.eval() self.YC = np.load('data/trained_nets/Y_params.npy') #self.net = torch.load('data/TrainedNets/NNLorenz.pt') self.RNN = 1 def rk4(self,L,y): Z = self.Z t = self.t h = self.h k1 = self.estimator(Z,t,L,y) k2 = self.estimator(Z+k1*h/2.,t+h/2.,L,y) k3 = self.estimator(Z+k2*h/2.,t+h/2.,L,y) k4 = self.estimator(Z+k3*h,t+h,L,y) return Z+h*(k1+2.*k2+2.*k3+k4)/6.,t+h def dynamics(self,state,time): x1 = state[0] x2 = state[1] x3 = state[2] dx1dt = s*(x2-x1); dx2dt = x1*(r-x3)-x2; dx3dt = x1*x2-b*x3; return np.array([dx1dt,dx2dt,dx3dt]) def estimator(self,state,time,L,y): yv = (np.array([y])).T Zv = (np.array([state])).T de = L@(yv-C@Zv) de = de[:,0] f = self.dynamics(state,time) dZdt = f+de return dZdt def one_step_sim(self,y): runge_num = self.runge_num L = self.GetL() P = self.GetP() for num in range(0, runge_num): #self.X, self.tを更新することで全体で更新 self.Z, self.t = self.rk4(L,y) return self.Z, self.t,P def GetP(self): Znet = self.Np2Var(self.Z) if self.RNN == 1: cP = self.net(Znet.view(1,1,-1)) cP = cP.data.numpy()*self.YC P = self.cP2P(cP[0,0,:]) else: cP = self.net(Znet) cP = cP.data.numpy() P = self.cP2P(cP) return P def GetL(self): P = self.GetP() Ct = C.T L = P@Ct return L def Np2Var(self,X): X = X.astype(np.float32) X = torch.from_numpy(X) return X def cP2P(self,cP): cPnp = 0 for i in range(self.ns): lb = i*(i+1)/2 lb = int(lb) ub = (i+1)*(i+2)/2 ub = int(ub) Di = cP[lb:ub] Di = np.diag(Di,self.ns-(i+1)) cPnp += Di P = (cPnp.T)@cPnp return P def M2cMvec(M): cholM = np.linalg.cholesky(M) cholM = cholM.T # upper triangular ns = M.shape[0] cM = np.zeros(int(ns*(ns+1)/2)) for ii in range(ns): jj = (ns-1)-ii; di = np.diag(cholM,jj) cM[int(1/2*ii*(ii+1)):int(1/2*(ii+1)*(ii+2))] = di return cM def SaveDict(filename,var): output = open(filename,'wb') pickle.dump(var,output) output.close() pass def LoadDict(filename): pkl_file = open(filename,'rb') varout = pickle.load(pkl_file) pkl_file.close() return varout if __name__ == "__main__": np.random.seed(seed=5) numX0 = 10 WindowSize = 50 X0s = (np.random.rand(numX0,3)*2-1)*10 Z0s = (np.random.rand(numX0,3)*2-1)*10 ccm = sccm.CCM(X0s,tspan,0.1,1,np.array([alp])) X0 = np.array([1,2,0]) Z0 = np.array([10,2,0]) net = rnnl.RNN(n_input,n_hidden,n_output,n_layers) net.load_state_dict(torch.load('data/trained_nets/RNNLorenz.pt')) net.eval() YC = np.load('data/trained_nets/Y_params.npy') t0 = tspan[0] tf = tspan[1] N = np.floor((tf-t0)/dt+1) N = N.astype(np.int32) dcMMs = {} for iX0 in range(numX0): est = Estimator(Z0,t0,dt) lor = Lorenz(X0,t0,dt) Xhis01 = X0 Z1his01 = Z0 cholP1 = {} t = 0 j = 0 cholP1[0] = M2cMvec(est.GetP())/YC for i in range(N): y = lor.measurement() X,t = lor.one_step_sim() Z1,t1,P1 = est.one_step_sim(y) if np.remainder(i+1,10) == 0: cholP1[j+1] = M2cMvec(est.GetP())/YC Xhis01 = np.vstack((Xhis01,X)) Z1his01 = np.vstack((Z1his01,Z1)) j += 1 cvx_status,cvx_optval,tt,XX,WWout,chi,nu = ccm.CCMXhis(Z1his01,alp) dcP = [] cholMM = {} dcMM = [] for i in range(len(WWout)-1): Mi = np.linalg.inv(WWout[i]) cMi = M2cMvec(Mi)/YC cholMM[i] = cMi dcMM.append((np.linalg.norm(cholMM[i]-cholP1[i]))**2) dcMMs[iX0] = dcMM fig = plt.figure() for iX0 in range(numX0): dcMM = dcMMs[iX0] plt.plot(np.linspace(0,50,500),dcMM) plt.xlabel('t') plt.ylabel('Error') plt.show() fig = plt.figure() for iX0 in range(numX0): dcMM = dcMMs[iX0] datadM = {'score': dcMM} dfdM =
pd.DataFrame(datadM)
pandas.DataFrame
import numpy as np import pandas as pd from pysight.nd_hist_generator.tag_lens import ( TagPeriodVerifier, TagPhaseAllocator, TagPipeline, numba_digitize, ) class TestTagPipeline: """ Tests for TAG analysis functions """ tag_data = pd.Series(np.arange(0, 200 * 6530, 6530)) photons = pd.DataFrame([10, 100, 1000], columns=["abs_time"]) def_pipe = TagPipeline(photons=photons, tag_pulses=tag_data) def test_preservation(self): photons = pd.DataFrame([0, 10, 6531], columns=["abs_time"]) pipe = TagPipeline(photons=photons, tag_pulses=self.tag_data) returned = pd.Series([0, 6530]) assert np.array_equal( returned, pipe._TagPipeline__preserve_relevant_tag_pulses() ) def test_preservation_without_zero(self): photons = pd.DataFrame([10, 6531], columns=["abs_time"]) pipe = TagPipeline(photons=photons, tag_pulses=self.tag_data) returned = pd.Series([6530]) assert np.array_equal( returned, pipe._TagPipeline__preserve_relevant_tag_pulses() ) class TestTagPeriodVerifier: """ Test the Verifier class """ tag_data = pd.Series(np.arange(0, 200 * 6530, 6530)) freq = 189e3 binwidth = 800e-12 def_verifier = TagPeriodVerifier( tag=tag_data, freq=freq, binwidth=binwidth, last_photon=np.uint64(200 * 6530) ) def test_bins_bet_pulses(self): assert 6614 == self.def_verifier.period def test_allowed_noise(self): assert 331 == self.def_verifier.allowed_noise def test_start_end_no_issues(self): tag_data = pd.Series(np.arange(0, 100, 10)) freq = 0.1 binwidth = 1.0 verifier = TagPeriodVerifier( tag=tag_data, freq=freq, binwidth=binwidth, last_photon=np.uint64(100) ) ret_start, ret_end = verifier._TagPeriodVerifier__obtain_start_end_idx() my_start = np.array([], dtype=np.int64) my_end = np.array([], dtype=np.int64) assert np.array_equal(my_start, ret_start) assert np.array_equal(my_end, ret_end) def test_start_end_no_zero(self): tag_data = pd.Series(np.arange(0, 300, 10)) tag_data.drop([0, 5, 6], inplace=True) tag_data = tag_data.append(pd.Series([3, 9, 25])) tag_data = tag_data.sort_values().reset_index(drop=True) freq = 0.1 binwidth = 1.0 verifier = TagPeriodVerifier( tag=tag_data, freq=freq, binwidth=binwidth, last_photon=np.uint64(300) ) ret_start, ret_end = verifier._TagPeriodVerifier__obtain_start_end_idx() my_start = [0, 3, 6] my_end = [2, 5, 7] assert list(ret_start) == my_start assert list(ret_end) == my_end def test_start_end_adding_zero(self): tag_data = pd.Series(np.arange(5, 300, 10)) tag_data.drop([1, 5, 7, 8], inplace=True) tag_data = tag_data.append(pd.Series([9, 27, 29, 31])) tag_data = tag_data.sort_values().reset_index(drop=True) freq = 0.1 binwidth = 1.0 verifier = TagPeriodVerifier( tag=tag_data, freq=freq, binwidth=binwidth, last_photon=np.uint64(300) ) ret_start, ret_end = verifier._TagPeriodVerifier__obtain_start_end_idx() my_start = [0, 7] my_end = [6, 9] assert list(ret_start) == my_start assert list(ret_end) == my_end def test_fix_tag_pulses_adding_zero(self): tag_data = pd.Series(np.arange(0, 100, 10)) tag_data.drop([0, 5, 6], inplace=True) tag_data = tag_data.append(pd.Series([3, 9, 25])) tag_data = tag_data.sort_values().reset_index(drop=True) freq = 0.1 binwidth = 1.0 verifier = TagPeriodVerifier( tag=tag_data, freq=freq, binwidth=binwidth, last_photon=np.uint64(100) ) my_start = [0, 3, 6] my_end = [2, 5, 7] verifier._TagPeriodVerifier__fix_tag_pulses(starts=my_start, ends=my_end) assert np.array_equal(verifier.tag.values, np.arange(0, 100, 10)) def test_fix_tag_pulses_no_zero_end_missing(self): tag_data = pd.Series(np.arange(5, 95, 10, dtype=np.uint64)) tag_data.drop([1, 5, 7, 8], inplace=True) tag_data = tag_data.append(
pd.Series([9, 27, 29, 31], dtype=np.uint64)
pandas.Series
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas as pd import datetime as dt import numpy as np from collections import OrderedDict import os import pickle from errorplots import ErrorPlots class ErrorAnalysis(object): """ Reads log and output files to analyze errors""" def __init__(self, train_log_file=None, pred_file=None, period=1, output_field=3): """ Instantiates the class with the log file and prediction output file period : prediction period i.e how far out are the predictions in years (1,2,3 etc) output_field : column to grab in the output file. EBIT is 3 """ self.train_log_file = train_log_file self.pred_file = pred_file self.period = period self.output_field = output_field return def read_train_log(self): """ Returns mse data from training log file mse is an ordered dict with epoch as key and (train_mse,validation_mse) as value """ if self.train_log_file is None: print("train log file not provided") return mse_data = OrderedDict() # Iterate through the file with open(self.train_log_file) as f: lines = f.readlines() for line in lines: line = line.split(' ') if line[0] == 'Epoch:': epoch = int(line[1]) train_mse = float(line[4]) valid_mse = float(line[7]) # Add to the mse dict mse_data[epoch] = (train_mse, valid_mse) return mse_data def read_predictions(self): """ Returns a dict of companies with output and target values# Structure of companies dict companies : { gvkey: period: { output : { date: output } target : { date: target} } """ if self.pred_file is None: print('Predictions file not provided') return else: print('Reading '+self.pred_file) # initialize the dicts companies={} with open(self.pred_file, 'rb') as f: lines = f.readlines() for i, line in enumerate(lines): row = line.split(' ') try: date = dt.datetime.strptime(str(row[0]), "%Y%m") mse_val = float(row[-1].split('=')[-1]) cur_output = float(lines[i + 6].split(' ')[self.output_field]) cur_target = float(lines[i + 7].split(' ')[self.output_field]) if cur_target == 'nan': cur_target = 0.0 gvkey = row[1] try: companies[gvkey][self.period]['output'][date] = cur_output companies[gvkey][self.period]['target'][date] = cur_target companies[gvkey][self.period]['mse'][date] = mse_val except KeyError: companies[gvkey] = {} companies[gvkey][self.period] = {} companies[gvkey][self.period]['output'] = {} companies[gvkey][self.period]['target'] = {} companies[gvkey][self.period]['mse'] = {} except (ValueError, IndexError): pass return companies def get_errors(self, save_csv=False, rel_err_filename='rel_error.csv',mse_err_filename='mse_error.csv'): """ Returns a dataframe of relative errors where rows are dates and columns are companies INPUTS companies: dict returned from read_predictions method """ # Read the predictions files to generate company errors companies = self.read_predictions() pickle.dump(companies,open('companies.pkl','wb')) # Initialize dict rel_err = {} mse_err = {} print("Processing Errors...") for i, key in enumerate(sorted(companies)): # print(key) try: company = companies[key] p1 = company[1] out_p1 = sorted(p1['output'].items()) tar_p1 = sorted(p1['target'].items()) mse_p1 = sorted(p1['mse'].items()) x1, y1 = zip(*out_p1) xt1, yt1 = zip(*tar_p1) x_mse_1,y_mse_1 = zip(*mse_p1) rel_err[key] = abs(np.divide(np.array(y1) - np.array(yt1), np.array(yt1))) mse_err[key] = np.array(y_mse_1) df_tmp =
pd.DataFrame(data=rel_err[key], index=x1, columns=[key])
pandas.DataFrame
#!/usr/bin/env python """ # Author: <NAME> # Created Time : Sat 28 Apr 2018 08:31:29 PM CST # File Name: SCALE.py # Description: Single-Cell ATAC-seq Analysis via Latent feature Extraction. Input: scATAC-seq data Output: 1. latent feature 2. cluster assignment 3. imputation data """ import time import torch import numpy as np import pandas as pd import os import argparse from scale import SCALE from scale.dataset import SingleCellDataset from scale.utils import read_labels, cluster_report, estimate_k, binarization from scale.plot import plot_embedding from sklearn.preprocessing import MaxAbsScaler from torch.utils.data import DataLoader if __name__ == '__main__': parser = argparse.ArgumentParser(description='SCALE: Single-Cell ATAC-seq Analysis via Latent feature Extraction') parser.add_argument('--dataset', '-d', type=str, help='input dataset path') parser.add_argument('--n_centroids', '-k', type=int, help='cluster number') parser.add_argument('--outdir', '-o', type=str, default='output/', help='Output path') parser.add_argument('--verbose', action='store_true', help='Print loss of training process') parser.add_argument('--pretrain', type=str, default=None, help='Load the trained model') parser.add_argument('--lr', type=float, default=0.002, help='Learning rate') parser.add_argument('--batch_size', '-b', type=int, default=32, help='Batch size') parser.add_argument('--gpu', '-g', default=0, type=int, help='Select gpu device number when training') parser.add_argument('--seed', type=int, default=18, help='Random seed for repeat results') parser.add_argument('--encode_dim', type=int, nargs='*', default=[1024, 128], help='encoder structure') parser.add_argument('--decode_dim', type=int, nargs='*', default=[], help='encoder structure') parser.add_argument('--latent', '-l',type=int, default=10, help='latent layer dim') parser.add_argument('--low', '-x', type=float, default=0.01, help='Remove low ratio peaks') parser.add_argument('--high', type=float, default=0.9, help='Remove high ratio peaks') parser.add_argument('--min_peaks', type=float, default=100, help='Remove low quality cells with few peaks') parser.add_argument('--log_transform', action='store_true', help='Perform log2(x+1) transform') parser.add_argument('--max_iter', '-i', type=int, default=30000, help='Max iteration') parser.add_argument('--weight_decay', type=float, default=5e-4) parser.add_argument('--impute', action='store_true', help='Save the imputed data') parser.add_argument('--binary', action='store_true', help='Save binary imputed data') parser.add_argument('--no_tsne', action='store_true', help='Not save the tsne embedding') parser.add_argument('--reference', '-r', default=None, type=str, help='Reference celltypes') parser.add_argument('--transpose', '-t', action='store_true', help='Transpose the input matrix') args = parser.parse_args() # Set random seed seed = args.seed np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): # cuda device device='cuda' torch.cuda.set_device(args.gpu) else: device='cpu' batch_size = args.batch_size normalizer = MaxAbsScaler() dataset = SingleCellDataset(args.dataset, low=args.low, high=args.high, min_peaks=args.min_peaks, transpose=args.transpose, transforms=[normalizer.fit_transform]) trainloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True) testloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, drop_last=False) cell_num = dataset.shape[0] input_dim = dataset.shape[1] if args.n_centroids is None: k = min(estimate_k(dataset.data.T), 30) print('Estimate k {}'.format(k)) else: k = args.n_centroids lr = args.lr name = args.dataset.strip('/').split('/')[-1] args.min_peaks = int(args.min_peaks) if args.min_peaks >= 1 else args.min_peaks outdir = args.outdir if not os.path.exists(outdir): os.makedirs(outdir) print("\n**********************************************************************") print(" SCALE: Single-Cell ATAC-seq Analysis via Latent feature Extraction") print("**********************************************************************\n") print("======== Parameters ========") print('Cell number: {}\nPeak number: {}\nn_centroids: {}\nmax_iter: {}\nbatch_size: {}\ncell filter by peaks: {}\nrare peak filter: {}\ncommon peak filter: {}'.format( cell_num, input_dim, k, args.max_iter, batch_size, args.min_peaks, args.low, args.high)) print("============================") dims = [input_dim, args.latent, args.encode_dim, args.decode_dim] model = SCALE(dims, n_centroids=k) # print(model) if not args.pretrain: print('\n## Training Model ##') model.init_gmm_params(testloader) model.fit(trainloader, lr=lr, weight_decay=args.weight_decay, verbose=args.verbose, device = device, max_iter=args.max_iter, name=name, outdir=outdir ) # torch.save(model.to('cpu').state_dict(), os.path.join(outdir, 'model.pt')) # save model else: print('\n## Loading Model: {}\n'.format(args.pretrain)) model.load_model(args.pretrain) model.to(device) ### output ### print('outdir: {}'.format(outdir)) # 1. latent feature feature = model.encodeBatch(testloader, device=device, out='z')
pd.DataFrame(feature)
pandas.DataFrame
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx) expected = IntervalIndex.from_breaks(idx.values) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self): index = self.index assert len(index) == 2 assert index.size == 2 assert index.shape == (2, ) tm.assert_index_equal(index.left, Index([0, 1])) tm.assert_index_equal(index.right, Index([1, 2])) tm.assert_index_equal(index.mid, Index([0.5, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.index_with_nan assert len(index) == 3 assert index.size == 3 assert index.shape == (3, ) tm.assert_index_equal(index.left, Index([0, np.nan, 1])) tm.assert_index_equal(index.right, Index([1, np.nan, 2])) tm.assert_index_equal(index.mid, Index([0.5, np.nan, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), np.nan, Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self): index = self.index assert not index.hasnans tm.assert_numpy_array_equal(index.isna(), np.array([False, False])) tm.assert_numpy_array_equal(index.notna(), np.array([True, True])) index = self.index_with_nan assert index.hasnans tm.assert_numpy_array_equal(index.notna(), np.array([True, False, True])) tm.assert_numpy_array_equal(index.isna(), np.array([False, True, False])) def test_copy(self): actual = self.index.copy() assert actual.equals(self.index) actual = self.index.copy(deep=True) assert actual.equals(self.index) assert actual.left is not self.index.left def test_ensure_copied_data(self): # exercise the copy flag in the constructor # not copying index = self.index result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self): idx = self.index assert idx.equals(idx) assert idx.equals(idx.copy()) assert not idx.equals(idx.astype(object)) assert not idx.equals(np.array(idx)) assert not idx.equals(list(idx)) assert not idx.equals([1, 2]) assert not idx.equals(np.array([1, 2])) assert not idx.equals(pd.date_range('20130101', periods=2)) def test_astype(self): idx = self.index for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) def test_where(self): expected = self.index result = self.index.where(self.index.notna()) tm.assert_index_equal(result, expected) idx = IntervalIndex.from_breaks([1, 2]) result = idx.where([True, False]) expected = IntervalIndex.from_intervals( [Interval(1.0, 2.0, closed='right'), np.nan]) tm.assert_index_equal(result, expected) def test_where_array_like(self): pass def test_delete(self): expected = IntervalIndex.from_breaks([1, 2]) actual = self.index.delete(0) assert expected.equals(actual) def test_insert(self): expected = IntervalIndex.from_breaks(range(4)) actual = self.index.insert(2, Interval(2, 3)) assert expected.equals(actual) pytest.raises(ValueError, self.index.insert, 0, 1) pytest.raises(ValueError, self.index.insert, 0, Interval(2, 3, closed='left')) def test_take(self): actual = self.index.take([0, 1]) assert self.index.equals(actual) expected = IntervalIndex.from_arrays([0, 0, 1], [1, 1, 2]) actual = self.index.take([0, 0, 1]) assert expected.equals(actual) def test_monotonic_and_unique(self): assert self.index.is_monotonic assert self.index.is_unique idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)]) assert idx.is_monotonic assert idx.is_unique idx = IntervalIndex.from_tuples([(0, 1), (2, 3), (1, 2)]) assert not idx.is_monotonic assert idx.is_unique idx = IntervalIndex.from_tuples([(0, 2), (0, 2)]) assert not idx.is_unique assert idx.is_monotonic @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed='right') assert i[0] == Interval(0.0, 1.0) assert i[1] == Interval(1.0, 2.0) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed='right') tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed='right') tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed='right') tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_breaks([0, 1, 2], closed='both') assert index.slice_locs(1, 1) == (0, 2) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index =
IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)])
pandas.IntervalIndex.from_tuples
#Copyright (c) Facebook, Inc. and its affiliates. #This source code is licensed under the MIT license found in the #LICENSE file in the root directory of this source tree. import itertools import copy import csv import os import matplotlib.pyplot as plt import pandas as pd import numpy as np import shutil from settings import config_plotting import time def get_column_name_number(dir_addr, mode): column_name_number_dic = {} try: if mode == "all": file_name = "result_summary/FARSI_simple_run_0_1_all_reults.csv" else: file_name = "result_summary/FARSI_simple_run_0_1.csv" file_full_addr = os.path.join(dir_addr, file_name) with open(file_full_addr) as f: resultReader = csv.reader(f, delimiter=',', quotechar='|') for row in resultReader: for idx, el_name in enumerate(row): column_name_number_dic[el_name] = idx break return column_name_number_dic except Exception as e: raise e # # the function to get the column information of the given category def columnNum(dirName, fileName, cate, result): if result == "all": with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1_all_reults.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') for i, row in enumerate(resultReader): if i == 0: for j in range(0, len(row)): if row[j] == cate: return j raise Exception("No such category in the list! Check the name: " + cate) break elif result == "simple": with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') for i, row in enumerate(resultReader): if i == 0: for j in range(0, len(row)): if row[j] == cate: return j raise Exception("No such category in the list! Check the name: " + cate) break else: raise Exception("No such result file! Check the result type! It should be either \"all\" or \"simple\"") # the function to plot the frequency of all comm_comp in the pie chart def plotCommCompAll(dirName, fileName, all_res_column_name_number): colNum = all_res_column_name_number["comm_comp"] truNum = all_res_column_name_number["move validity"] with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1_all_reults.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') commNum = 0 compNum = 0 for i, row in enumerate(resultReader): if row[trueNum] != "True": continue if i > 1: if row[colNum] == "comm": commNum += 1 elif row[colNum] == "comp": compNum += 1 else: raise Exception("comm_comp is not giving comm or comp! The new type: " + row[colNum]) plt.figure() plt.pie([commNum, compNum], labels = ["comm", "comp"]) plt.title("comm_comp: Frequency") plt.savefig(dirName + fileName + "/comm-compFreq-" + fileName + ".png") # plt.show() plt.close('all') # the function to plot the frequency of all high level optimizations in the pie chart def plothighLevelOptAll(dirName, fileName, all_res_column_name_number): colNum = all_res_column_name_number["high level optimization name"] truNum = all_res_column_name_number["move validity"] with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1_all_reults.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') topoNum = 0 tunNum = 0 mapNum = 0 idenOptNum = 0 for i, row in enumerate(resultReader): if row[trueNum] != "True": continue if i > 1: if row[colNum] == "topology": topoNum += 1 elif row[colNum] == "customization": tunNum += 1 elif row[colNum] == "mapping": mapNum += 1 elif row[colNum] == "identity": idenOptNum += 1 else: raise Exception("high level optimization name is not giving topology or customization or mapping or identity! The new type: " + row[colNum]) plt.figure() plt.pie([topoNum, tunNum, mapNum, idenOptNum], labels = ["topology", "customization", "mapping", "identity"]) plt.title("High Level Optimization: Frequency") plt.savefig(dirName + fileName + "/highLevelOpt-" + fileName + ".png") # plt.show() plt.close('all') # the function to plot the frequency of all architectural variables to improve in the pie chart def plotArchVarImpAll(dirName, fileName, colNum, trueNum): with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1_all_reults.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') parazNum = 0 custNum = 0 localNum = 0 idenImpNum = 0 for i, row in enumerate(resultReader): if row[trueNum] != "True": continue if i > 1: if row[colNum] == "parallelization": parazNum += 1 elif row[colNum] == "customization": custNum += 1 elif row[colNum] == "locality": localNum += 1 elif row[colNum] == "identity": idenImpNum += 1 else: raise Exception("architectural principle is not parallelization or customization or locality or identity! The new type: " + row[colNum]) plt.figure() plt.pie([parazNum, custNum, localNum, idenImpNum], labels = ["parallelization", "customization", "locality", "identity"]) plt.title("Architectural Principle: Frequency") plt.savefig(dirName + fileName + "/archVarImp-" + fileName + ".png") # plt.show() plt.close('all') # the function to plot simulation time vs. system block count def plotSimTimeVSblk(dirName, fileName, blkColNum, simColNum, trueNum): with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1_all_reults.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') sysBlkCount = [] simTime = [] for i, row in enumerate(resultReader): if row[trueNum] != "True": continue if i > 1: sysBlkCount.append(int(row[blkColNum])) simTime.append(float(row[simColNum])) plt.figure() plt.plot(sysBlkCount, simTime) plt.xlabel("System Block Count") plt.ylabel("Simulation Time") plt.title("Simulation Time vs. Sytem Block Count") plt.savefig(dirName + fileName + "/simTimeVSblk-" + fileName + ".png") # plt.show() plt.close('all') # the function to plot move generation time vs. system block count def plotMoveGenTimeVSblk(dirName, fileName, blkColNum, movColNum, trueNum): with open(dirName + fileName + "/result_summary/FARSI_simple_run_0_1_all_reults.csv", newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') sysBlkCount = [] moveGenTime = [] for i, row in enumerate(resultReader): if row[trueNum] != "True": continue if i > 1: sysBlkCount.append(int(row[blkColNum])) moveGenTime.append(float(row[movColNum])) plt.figure() plt.plot(sysBlkCount, moveGenTime) plt.xlabel("System Block Count") plt.ylabel("Move Generation Time") plt.title("Move Generation Time vs. System Block Count") plt.savefig(dirName + fileName + "/moveGenTimeVSblk-" + fileName + ".png") # plt.show() plt.close('all') def get_experiments_workload(all_res_column_name): latency_budget = all_res_column_name_number["latency budget"][:-1] workload_latency = latency_budget.split(";") workloads = [] for workload_latency in workload_latency: workloads.append(workload_latency.split("=")[0]) return workloads def get_experiments_name(file_full_addr, all_res_column_name_number): with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') row1 = next(resultReader) row2 = next(resultReader) latency_budget = row2[all_res_column_name_number["latency_budget"]] power_budget = row2[all_res_column_name_number["power_budget"]] area_budget = row2[all_res_column_name_number["area_budget"]] try: transformation_selection_mode = row2[all_res_column_name_number["transformation_selection_mode"]] except: transformation_selection_mode = "" workload_latency = latency_budget[:-1].split(';') latency_budget_refined ="" for workload_latency in workload_latency: latency_budget_refined +="_" + (workload_latency.split("=")[0][0]+workload_latency.split("=")[1]) return latency_budget_refined[1:]+"_" + power_budget + "_" + area_budget+"_"+transformation_selection_mode def get_all_col_values_of_a_file(file_full_addr, all_res_column_name_number, column_name): column_number = all_res_column_name_number[column_name] all_values = [] with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') experiment_name = get_experiments_name(file_full_addr, all_res_column_name_number) for i, row in enumerate(resultReader): if i > 1: if not row[column_number] == '': value =row[column_number] values = value.split(";") # if mutiple values for val in values: if "=" in val: val_splitted = val.split("=") all_values.append(val_splitted[0]) else: all_values.append(val) return all_values def get_all_col_values_of_a_folders(input_dir_names, input_all_res_column_name_number, column_name): all_values = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") all_values.extend(get_all_col_values_of_a_file(file_full_addr, input_all_res_column_name_number, column_name)) # get rid of duplicates all_values_rid_of_duplicates = list(set(all_values)) return all_values_rid_of_duplicates def extract_latency_values(values_): print("") def plot_codesign_rate_efficacy_cross_workloads_updated(input_dir_names, res_column_name_number): #itrColNum = all_res_column_name_number["iteration cnt"] #distColNum = all_res_column_name_number["dist_to_goal_non_cost"] trueNum = all_res_column_name_number["move validity"] move_name_number = all_res_column_name_number["move name"] # experiment_names file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") file_full_addr_list.append(file_full_addr) axis_font = {'fontname': 'Arial', 'size': '4'} x_column_name = "iteration cnt" #y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"] y_column_name_list = ["exact optimization name", "architectural principle", "comm_comp", "workload"] #y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"] column_co_design_cnt = {} column_non_co_design_cnt = {} column_co_design_rate = {} column_non_co_design_rate = {} column_co_design_efficacy_avg = {} column_non_co_design_efficacy_rate = {} column_non_co_design_efficacy = {} column_co_design_dist= {} column_co_design_dist_avg= {} column_co_design_improvement = {} experiment_name_list = [] last_col_val = "" for file_full_addr in file_full_addr_list: experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_name_list.append(experiment_name) column_co_design_dist_avg[experiment_name] = {} column_co_design_efficacy_avg[experiment_name] = {} column_co_design_cnt = {} for y_column_name in y_column_name_list: y_column_number = res_column_name_number[y_column_name] x_column_number = res_column_name_number[x_column_name] dis_to_goal_column_number = res_column_name_number["dist_to_goal_non_cost"] ref_des_dis_to_goal_column_number = res_column_name_number["ref_des_dist_to_goal_non_cost"] column_co_design_cnt[y_column_name] = [] column_non_co_design_cnt[y_column_name] = [] column_non_co_design_efficacy[y_column_name] = [] column_co_design_dist[y_column_name] = [] column_co_design_improvement[y_column_name] = [] column_co_design_rate[y_column_name] = [] all_values = get_all_col_values_of_a_folders(input_dir_names, all_res_column_name_number, y_column_name) last_row_change = "" with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') rows = list(resultReader) for i, row in enumerate(rows): if i >= 1: last_row = rows[i - 1] if row[y_column_number] not in all_values or row[move_name_number]=="identity": continue col_value = row[y_column_number] col_values = col_value.split(";") for idx, col_val in enumerate(col_values): # only for improvement if float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]) < 0: continue delta_x_column = (float(row[x_column_number]) - float(last_row[x_column_number]))/len(col_values) delta_improvement = (float(last_row[dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/(float(last_row[dis_to_goal_column_number])*len(col_values)) if not col_val == last_col_val and i > 1: if not last_row_change == "": distance_from_last_change = float(last_row[x_column_number]) - float(last_row_change[x_column_number]) + idx * delta_x_column column_co_design_dist[y_column_name].append(distance_from_last_change) improvement_from_last_change = (float(last_row[dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(last_row[dis_to_goal_column_number]) + idx *delta_improvement column_co_design_improvement[y_column_name].append(improvement_from_last_change) last_row_change = copy.deepcopy(last_row) last_col_val = col_val # co_des cnt # we ignore the first element as the first element distance is always zero co_design_dist_sum = 0 co_design_efficacy_sum = 0 avg_ctr = 1 co_design_dist_selected = column_co_design_dist[y_column_name] co_design_improvement_selected = column_co_design_improvement[y_column_name] for idx,el in enumerate(column_co_design_dist[y_column_name]): if idx == len(co_design_dist_selected) - 1: break co_design_dist_sum += (column_co_design_dist[y_column_name][idx] + column_co_design_dist[y_column_name][idx+1]) co_design_efficacy_sum += (column_co_design_improvement[y_column_name][idx] + column_co_design_improvement[y_column_name][idx+1]) #/(column_co_design_dist[y_column_name][idx] + column_co_design_dist[y_column_name][idx+1]) avg_ctr+=1 column_co_design_improvement = {} column_co_design_dist_avg[experiment_name][y_column_name]= co_design_dist_sum/avg_ctr column_co_design_efficacy_avg[experiment_name][y_column_name] = co_design_efficacy_sum/avg_ctr #result = {"rate":{}, "efficacy":{}} #rate_column_co_design = {} plt.figure() plotdata = pd.DataFrame(column_co_design_dist_avg, index=y_column_name_list) fontSize = 10 plotdata.plot(kind='bar', fontsize=fontSize) plt.xticks(fontsize=fontSize, rotation=6) plt.yticks(fontsize=fontSize) plt.xlabel("co design parameter", fontsize=fontSize) plt.ylabel("co design distance", fontsize=fontSize) plt.title("co desgin distance of different parameters", fontsize=fontSize) # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "cross_workloads/co_design_rate") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.savefig(os.path.join(output_dir,"_".join(experiment_name_list) +"_"+"co_design_avg_dist"+'_'.join(y_column_name_list)+".png")) plt.close('all') plt.figure() plotdata = pd.DataFrame(column_co_design_efficacy_avg, index=y_column_name_list) fontSize = 10 plotdata.plot(kind='bar', fontsize=fontSize) plt.xticks(fontsize=fontSize, rotation=6) plt.yticks(fontsize=fontSize) plt.xlabel("co design parameter", fontsize=fontSize) plt.ylabel("co design dis", fontsize=fontSize) plt.title("co desgin efficacy of different parameters", fontsize=fontSize) # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "cross_workloads/co_design_rate") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.savefig(os.path.join(output_dir,"_".join(experiment_name_list) +"_"+"co_design_efficacy"+'_'.join(y_column_name_list)+".png")) plt.close('all') def plot_codesign_rate_efficacy_per_workloads(input_dir_names, res_column_name_number): #itrColNum = all_res_column_name_number["iteration cnt"] #distColNum = all_res_column_name_number["dist_to_goal_non_cost"] trueNum = all_res_column_name_number["move validity"] move_name_number = all_res_column_name_number["move name"] # experiment_names file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") file_full_addr_list.append(file_full_addr) axis_font = {'fontname': 'Arial', 'size': '4'} x_column_name = "iteration cnt" #y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"] y_column_name_list = ["exact optimization name", "architectural principle", "comm_comp", "workload"] #y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"] column_co_design_cnt = {} column_non_co_design_cnt = {} column_co_design_rate = {} column_non_co_design_rate = {} column_co_design_efficacy_rate = {} column_non_co_design_efficacy_rate = {} column_non_co_design_efficacy = {} column_co_design_efficacy= {} last_col_val = "" for file_full_addr in file_full_addr_list: experiment_name = get_experiments_name(file_full_addr, res_column_name_number) column_co_design_cnt = {} for y_column_name in y_column_name_list: y_column_number = res_column_name_number[y_column_name] x_column_number = res_column_name_number[x_column_name] dis_to_goal_column_number = res_column_name_number["dist_to_goal_non_cost"] ref_des_dis_to_goal_column_number = res_column_name_number["ref_des_dist_to_goal_non_cost"] column_co_design_cnt[y_column_name] = [] column_non_co_design_cnt[y_column_name] = [] column_non_co_design_efficacy[y_column_name] = [] column_co_design_efficacy[y_column_name] = [] all_values = get_all_col_values_of_a_folders(input_dir_names, all_res_column_name_number, y_column_name) with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') rows = list(resultReader) for i, row in enumerate(rows): if i >= 1: last_row = rows[i - 1] if row[y_column_number] not in all_values or row[trueNum] == "False" or row[move_name_number]=="identity": continue col_value = row[y_column_number] col_values = col_value.split(";") for idx, col_val in enumerate(col_values): delta_x_column = (float(row[x_column_number]) - float(last_row[x_column_number]))/len(col_values) value_to_add_1 = (float(last_row[x_column_number]) + idx * delta_x_column, 1) value_to_add_0 = (float(last_row[x_column_number]) + idx * delta_x_column, 0) # only for improvement if float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]) < 0: continue if not col_val == last_col_val: column_co_design_cnt[y_column_name].append(value_to_add_1) column_non_co_design_cnt[y_column_name].append(value_to_add_0) column_co_design_efficacy[y_column_name].append((float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(row[ref_des_dis_to_goal_column_number])) column_non_co_design_efficacy[y_column_name].append(0) else: column_co_design_cnt[y_column_name].append(value_to_add_0) column_non_co_design_cnt[y_column_name].append(value_to_add_1) column_co_design_efficacy[y_column_name].append(0) column_non_co_design_efficacy[y_column_name].append((float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(row[ref_des_dis_to_goal_column_number])) last_col_val = col_val # co_des cnt x_values_co_design_cnt = [el[0] for el in column_co_design_cnt[y_column_name]] y_values_co_design_cnt = [el[1] for el in column_co_design_cnt[y_column_name]] y_values_co_design_cnt_total =sum(y_values_co_design_cnt) total_iter = x_values_co_design_cnt[-1] # non co_des cnt x_values_non_co_design_cnt = [el[0] for el in column_non_co_design_cnt[y_column_name]] y_values_non_co_design_cnt = [el[1] for el in column_non_co_design_cnt[y_column_name]] y_values_non_co_design_cnt_total =sum(y_values_non_co_design_cnt) column_co_design_rate[y_column_name] = y_values_co_design_cnt_total/total_iter column_non_co_design_rate[y_column_name] = y_values_non_co_design_cnt_total/total_iter # co_des efficacy y_values_co_design_efficacy = column_co_design_efficacy[y_column_name] y_values_co_design_efficacy_total =sum(y_values_co_design_efficacy) # non co_des efficacy y_values_non_co_design_efficacy = column_non_co_design_efficacy[y_column_name] y_values_non_co_design_efficacy_total =sum(y_values_non_co_design_efficacy) column_co_design_efficacy_rate[y_column_name] = y_values_co_design_efficacy_total/(y_values_non_co_design_efficacy_total + y_values_co_design_efficacy_total) column_non_co_design_efficacy_rate[y_column_name] = y_values_non_co_design_efficacy_total/(y_values_non_co_design_efficacy_total + y_values_co_design_efficacy_total) result = {"rate":{}, "efficacy":{}} rate_column_co_design = {} result["rate"] = {"co_design":column_co_design_rate, "non_co_design": column_non_co_design_rate} result["efficacy_rate"] = {"co_design":column_co_design_efficacy_rate, "non_co_design": column_non_co_design_efficacy_rate} # prepare for plotting and plot plt.figure() plotdata = pd.DataFrame(result["rate"], index=y_column_name_list) fontSize = 10 plotdata.plot(kind='bar', fontsize=fontSize, stacked=True) plt.xticks(fontsize=fontSize, rotation=6) plt.yticks(fontsize=fontSize) plt.xlabel("co design parameter", fontsize=fontSize) plt.ylabel("co design rate", fontsize=fontSize) plt.title("co desgin rate of different parameters", fontsize=fontSize) # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "single_workload/co_design_rate") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.savefig(os.path.join(output_dir,experiment_name +"_"+"co_design_rate_"+'_'.join(y_column_name_list)+".png")) plt.close('all') plt.figure() plotdata = pd.DataFrame(result["efficacy_rate"], index=y_column_name_list) fontSize = 10 plotdata.plot(kind='bar', fontsize=fontSize, stacked=True) plt.xticks(fontsize=fontSize, rotation=6) plt.yticks(fontsize=fontSize) plt.xlabel("co design parameter", fontsize=fontSize) plt.ylabel("co design efficacy rate", fontsize=fontSize) plt.title("co design efficacy rate of different parameters", fontsize=fontSize) # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "single_workload/co_design_rate") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.savefig(os.path.join(output_dir,experiment_name+"_"+"co_design_efficacy_rate_"+'_'.join(y_column_name_list)+".png")) plt.close('all') def plot_codesign_progression_per_workloads(input_dir_names, res_column_name_number): #itrColNum = all_res_column_name_number["iteration cnt"] #distColNum = all_res_column_name_number["dist_to_goal_non_cost"] trueNum = all_res_column_name_number["move validity"] # experiment_names experiment_names = [] file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") file_full_addr_list.append(file_full_addr) experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_names.append(experiment_name) axis_font = {'size': '20'} x_column_name = "iteration cnt" y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"] experiment_column_value = {} for file_full_addr in file_full_addr_list: experiment_name = get_experiments_name(file_full_addr, res_column_name_number) for y_column_name in y_column_name_list: y_column_number = res_column_name_number[y_column_name] x_column_number = res_column_name_number[x_column_name] experiment_column_value[experiment_name] = [] all_values = get_all_col_values_of_a_folders(input_dir_names, all_res_column_name_number, y_column_name) all_values_encoding = {} for idx, val in enumerate(all_values): all_values_encoding[val] = idx with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') rows = list(resultReader) for i, row in enumerate(rows): #if row[trueNum] != "True": # continue if i >= 1: if row[y_column_number] not in all_values: continue col_value = row[y_column_number] col_values = col_value.split(";") for idx, col_val in enumerate(col_values): last_row = rows[i-1] delta_x_column = (float(row[x_column_number]) - float(last_row[x_column_number]))/len(col_values) value_to_add = (float(last_row[x_column_number])+ idx*delta_x_column, col_val) experiment_column_value[experiment_name].append(value_to_add) # prepare for plotting and plot axis_font = {'size': '20'} fontSize = 20 fig = plt.figure(figsize=(12, 8)) plt.rc('font', **axis_font) ax = fig.add_subplot(111) x_values = [el[0] for el in experiment_column_value[experiment_name]] #y_values = [all_values_encoding[el[1]] for el in experiment_column_value[experiment_name]] y_values = [el[1] for el in experiment_column_value[experiment_name]] #ax.set_title("experiment vs system implicaction") ax.tick_params(axis='both', which='major', labelsize=fontSize, rotation=60) ax.set_xlabel(x_column_name, fontsize=20) ax.set_ylabel(y_column_name, fontsize=20) ax.plot(x_values, y_values, label=y_column_name, linewidth=2) ax.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize=fontSize) # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "single_workload/progression") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.tight_layout() fig.savefig(os.path.join(output_dir,experiment_name+"_progression_"+'_'.join(y_column_name_list)+".png")) # plt.show() plt.close('all') fig = plt.figure(figsize=(12, 8)) plt.rc('font', **axis_font) ax = fig.add_subplot(111) x_values = [el[0] for el in experiment_column_value[experiment_name]] # y_values = [all_values_encoding[el[1]] for el in experiment_column_value[experiment_name]] y_values = [el[1] for el in experiment_column_value[experiment_name]] # ax.set_title("experiment vs system implicaction") ax.tick_params(axis='both', which='major', labelsize=fontSize, rotation=60) ax.set_xlabel(x_column_name, fontsize=20) ax.set_ylabel(y_column_name, fontsize=20) ax.plot(x_values, y_values, label=y_column_name, linewidth=2) ax.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize=fontSize) # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "single_workload/progression") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.tight_layout() fig.savefig(os.path.join(output_dir, experiment_name + "_progression_" + y_column_name + ".png")) # plt.show() plt.close('all') def plot_3d(input_dir_names, res_column_name_number): # experiment_names experiment_names = [] file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1.csv") file_full_addr_list.append(file_full_addr) experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_names.append(experiment_name) axis_font = {'size': '10'} fontSize = 10 column_value = {} # initialize the dictionary column_name_list = ["budget_scaling_power", "budget_scaling_area","budget_scaling_latency"] under_study_vars =["iteration cnt", "local_bus_avg_theoretical_bandwidth", "local_bus_max_actual_bandwidth", "local_bus_avg_actual_bandwidth", "system_bus_avg_theoretical_bandwidth", "system_bus_max_actual_bandwidth", "system_bus_avg_actual_bandwidth", "global_total_traffic", "local_total_traffic", "global_memory_total_area", "local_memory_total_area", "ips_total_area", "gpps_total_area","ip_cnt", "max_accel_parallelism", "avg_accel_parallelism", "gpp_cnt", "max_gpp_parallelism", "avg_gpp_parallelism"] # get all the data for file_full_addr in file_full_addr_list: with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') experiment_name = get_experiments_name( file_full_addr, res_column_name_number) for i, row in enumerate(resultReader): #if row[trueNum] != "True": # continue if i >= 1: for column_name in column_name_list + under_study_vars: if column_name not in column_value.keys() : column_value[column_name] = [] column_number = res_column_name_number[column_name] col_value = row[column_number] col_values = col_value.split(";") if "=" in col_values[0]: column_value[column_name].append(float((col_values[0]).split("=")[1])) else: column_value[column_name].append(float(col_values[0])) for idx,under_study_var in enumerate(under_study_vars): fig_budget_blkcnt = plt.figure(figsize=(12, 12)) plt.rc('font', **axis_font) ax_blkcnt = fig_budget_blkcnt.add_subplot(projection='3d') img = ax_blkcnt.scatter3D(column_value["budget_scaling_power"], column_value["budget_scaling_area"], column_value["budget_scaling_latency"], c=column_value[under_study_var], cmap="bwr", s=80, label="System Block Count") for idx,_ in enumerate(column_value[under_study_var]): coordinate = column_value[under_study_var][idx] coord_in_scientific_notatio = "{:.2e}".format(coordinate) ax_blkcnt.text(column_value["budget_scaling_power"][idx], column_value["budget_scaling_area"][idx], column_value["budget_scaling_latency"][idx], '%s' % coord_in_scientific_notatio, size=fontSize) ax_blkcnt.set_xlabel("Power Budget", fontsize=fontSize) ax_blkcnt.set_ylabel("Area Budget", fontsize=fontSize) ax_blkcnt.set_zlabel("Latency Budget", fontsize=fontSize) ax_blkcnt.legend() cbar = fig_budget_blkcnt.colorbar(img, aspect=40) cbar.set_label("System Block Count", rotation=270) #plt.title("{Power Budget, Area Budget, Latency Budget} VS System Block Count: " + subDirName) plt.tight_layout() output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "3D/case_studies") if not os.path.exists(output_dir): os.makedirs(output_dir) plt.savefig(os.path.join(output_dir, under_study_var+ ".png")) # plt.show() plt.close('all') def plot_convergence_per_workloads(input_dir_names, res_column_name_number): #itrColNum = all_res_column_name_number["iteration cnt"] #distColNum = all_res_column_name_number["dist_to_goal_non_cost"] trueNum = all_res_column_name_number["move validity"] move_name_number = all_res_column_name_number["move name"] # experiment_names experiment_names = [] file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") file_full_addr_list.append(file_full_addr) experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_names.append(experiment_name) color_values = ["r","b","y","black","brown","purple"] column_name_color_val_dict = {"best_des_so_far_power":"purple", "power_budget":"purple","best_des_so_far_area_non_dram":"blue", "area_budget":"blue", "latency_budget_hpvm_cava":"orange", "latency_budget_audio_decoder":"yellow", "latency_budget_edge_detection":"red", "best_des_so_far_latency_hpvm_cava":"orange", "best_des_so_far_latency_audio_decoder": "yellow","best_des_so_far_latency_edge_detection": "red", "latency_budget":"white" } axis_font = {'size': '20'} fontSize = 20 x_column_name = "iteration cnt" y_column_name_list = ["power", "area_non_dram", "latency", "latency_budget", "power_budget","area_budget"] experiment_column_value = {} for file_full_addr in file_full_addr_list: experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_column_value[experiment_name] = {} for y_column_name in y_column_name_list: if "budget" in y_column_name: prefix = "" else: prefix = "best_des_so_far_" y_column_name = prefix+y_column_name y_column_number = res_column_name_number[y_column_name] x_column_number = res_column_name_number[x_column_name] #dis_to_goal_column_number = res_column_name_number["dist_to_goal_non_cost"] #ref_des_dis_to_goal_column_number = res_column_name_number["ref_des_dist_to_goal_non_cost"] if not y_column_name == prefix+"latency": experiment_column_value[experiment_name][y_column_name] = [] with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') for i, row in enumerate(resultReader): if i > 1: if row[trueNum] == "FALSE" or row[move_name_number]=="identity": continue col_value = row[y_column_number] if ";" in col_value: col_value = col_value[:-1] col_values = col_value.split(";") for col_val in col_values: if "=" in col_val: val_splitted = col_val.split("=") value_to_add = (float(row[x_column_number]), (val_splitted[0], val_splitted[1])) else: value_to_add = (float(row[x_column_number]), col_val) if y_column_name in [prefix+"latency", prefix+"latency_budget"] : new_tuple = (value_to_add[0], 1000*float(value_to_add[1][1])) if y_column_name+"_"+value_to_add[1][0] not in experiment_column_value[experiment_name].keys(): experiment_column_value[experiment_name][y_column_name + "_" + value_to_add[1][0]] = [] experiment_column_value[experiment_name][y_column_name+"_"+value_to_add[1][0]].append(new_tuple) if y_column_name in [prefix+"power", prefix+"power_budget"]: new_tuple = (value_to_add[0], float(value_to_add[1])*1000) experiment_column_value[experiment_name][y_column_name].append(new_tuple) elif y_column_name in [prefix+"area_non_dram", prefix+"area_budget"]: new_tuple = (value_to_add[0], float(value_to_add[1]) * 1000000) experiment_column_value[experiment_name][y_column_name].append(new_tuple) # prepare for plotting and plot fig = plt.figure(figsize=(15, 8)) ax = fig.add_subplot(111) for column, values in experiment_column_value[experiment_name].items(): x_values = [el[0] for el in values] y_values = [el[1] for el in values] ax.set_yscale('log') if "budget" in column: marker = 'x' alpha_ = .3 else: marker = "_" alpha_ = 1 ax.plot(x_values, y_values, label=column, c=column_name_color_val_dict[column], marker=marker, alpha=alpha_) #ax.set_title("experiment vs system implicaction") ax.set_xlabel(x_column_name, fontsize=fontSize) y_axis_name = "_".join(list(experiment_column_value[experiment_name].keys())) ax.set_ylabel(y_axis_name, fontsize=fontSize) ax.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize=fontSize) plt.tight_layout() # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "single_workload/convergence") if not os.path.exists(output_dir): os.mkdir(output_dir) fig.savefig(os.path.join(output_dir,experiment_name+"_convergence.png")) # plt.show() plt.close('all') def plot_convergence_vs_time(input_dir_names, res_column_name_number): PA_time_scaling_factor = 10 #itrColNum = all_res_column_name_number["iteration cnt"] #distColNum = all_res_column_name_number["dist_to_goal_non_cost"] trueNum = all_res_column_name_number["move validity"] # experiment_names experiment_names = [] file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") file_full_addr_list.append(file_full_addr) experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_names.append(experiment_name) axis_font = {'size': '15'} fontSize = 20 x_column_name = "exploration_plus_simulation_time" y_column_name_list = ["best_des_so_far_dist_to_goal_non_cost"] PA_column_experiment_value = {} FARSI_column_experiment_value = {} #column_name = "move name" for k, file_full_addr in enumerate(file_full_addr_list): for y_column_name in y_column_name_list: # get all possible the values of interest y_column_number = res_column_name_number[y_column_name] x_column_number = res_column_name_number[x_column_name] PA_column_experiment_value[y_column_name] = [] FARSI_column_experiment_value[y_column_name] = [] PA_last_time = 0 FARSI_last_time = 0 with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') experiment_name = get_experiments_name( file_full_addr, res_column_name_number) for i, row in enumerate(resultReader): #if row[trueNum] != "True": # continue if i >= 1: FARSI_last_time += float(row[x_column_number]) FARSI_value_to_add = (float(FARSI_last_time), row[y_column_number]) FARSI_column_experiment_value[y_column_name].append(FARSI_value_to_add) PA_last_time = FARSI_last_time*PA_time_scaling_factor PA_value_to_add = (float(PA_last_time), row[y_column_number]) PA_column_experiment_value[y_column_name].append(PA_value_to_add) # prepare for plotting and plot fig = plt.figure(figsize=(12, 12)) plt.rc('font', **axis_font) ax = fig.add_subplot(111) fontSize = 20 #plt.tight_layout() x_values = [el[0] for el in FARSI_column_experiment_value[y_column_name]] y_values = [str(float(el[1]) * 100 // 1 / 100.0) for el in FARSI_column_experiment_value[y_column_name]] x_values.reverse() y_values.reverse() ax.scatter(x_values, y_values, label="FARSI time to completion", marker="_") # ax.set_yscale('log') x_values = [el[0] for el in PA_column_experiment_value[y_column_name]] y_values = [str(float(el[1]) * 100 // 1 / 100.0) for el in PA_column_experiment_value[y_column_name]] x_values.reverse() y_values.reverse() ax.scatter(x_values, y_values, label="PA time to completion", marker="_") #ax.set_xscale('log') #ax.set_title("experiment vs system implicaction") ax.legend(loc="upper right")#bbox_to_anchor=(1, 1), loc="upper left") ax.set_xlabel(x_column_name, fontsize=fontSize) ax.set_ylabel(y_column_name, fontsize=fontSize) plt.tight_layout() # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "single_workload/progression") if not os.path.exists(output_dir): os.makedirs(output_dir) fig.savefig(os.path.join(output_dir,str(k)+"_" + y_column_name+"_vs_"+x_column_name+"_FARSI_vs_PA.png")) #plt.show() plt.close('all') def plot_convergence_cross_workloads(input_dir_names, res_column_name_number): #itrColNum = all_res_column_name_number["iteration cnt"] #distColNum = all_res_column_name_number["dist_to_goal_non_cost"] trueNum = all_res_column_name_number["move validity"] # experiment_names experiment_names = [] file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv") file_full_addr_list.append(file_full_addr) experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_names.append(experiment_name) axis_font = {'size': '20'} x_column_name = "iteration cnt" y_column_name_list = ["best_des_so_far_dist_to_goal_non_cost", "dist_to_goal_non_cost"] column_experiment_value = {} #column_name = "move name" for y_column_name in y_column_name_list: # get all possible the values of interest y_column_number = res_column_name_number[y_column_name] x_column_number = res_column_name_number[x_column_name] column_experiment_value[y_column_name] = {} # initialize the dictionary # get all the data for file_full_addr in file_full_addr_list: with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') experiment_name = get_experiments_name( file_full_addr, res_column_name_number) column_experiment_value[y_column_name][experiment_name] = [] for i, row in enumerate(resultReader): #if row[trueNum] != "True": # continue if i >= 1: value_to_add = (float(row[x_column_number]), max(float(row[y_column_number]),.01)) column_experiment_value[y_column_name][experiment_name].append(value_to_add) # prepare for plotting and plot fig = plt.figure() ax = fig.add_subplot(111) #plt.tight_layout() for experiment_name, values in column_experiment_value[y_column_name].items(): x_values = [el[0] for el in values] y_values = [el[1] for el in values] ax.scatter(x_values, y_values, label=experiment_name[1:]) #ax.set_title("experiment vs system implicaction") ax.set_yscale('log') ax.legend(bbox_to_anchor=(1, 1), loc="best") ax.set_xlabel(x_column_name) ax.set_ylabel(y_column_name) plt.tight_layout() # dump in the top folder output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2]) output_dir = os.path.join(output_base_dir, "cross_workloads/convergence") if not os.path.exists(output_dir): os.makedirs(output_dir) fig.savefig(os.path.join(output_dir,x_column_name+"_"+y_column_name+".png")) # plt.show() plt.close('all') def plot_system_implication_analysis(input_dir_names, res_column_name_number, case_study): # experiment_names experiment_names = [] file_full_addr_list = [] for dir_name in input_dir_names: file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1.csv") file_full_addr_list.append(file_full_addr) experiment_name = get_experiments_name(file_full_addr, res_column_name_number) experiment_names.append(experiment_name) axis_font = {'size': '10'} column_name_list = list(case_study.values())[0] column_experiment_value = {} #column_name = "move name" for column_name in column_name_list: # get all possible the values of interest column_number = res_column_name_number[column_name] column_experiment_value[column_name] = {} # initialize the dictionary column_experiment_number_dict = {} experiment_number_dict = {} # get all the data for file_full_addr in file_full_addr_list: with open(file_full_addr, newline='') as csvfile: resultReader = csv.reader(csvfile, delimiter=',', quotechar='|') experiment_name = get_experiments_name( file_full_addr, res_column_name_number) for i, row in enumerate(resultReader): #if row[trueNum] != "True": # continue if i >= 1: col_value = row[column_number] col_values = col_value.split(";") for col_val in col_values: column_experiment_value[column_name][experiment_name] = float(col_val) # prepare for plotting and plot # plt.figure() index = experiment_names plotdata =
pd.DataFrame(column_experiment_value, index=index)
pandas.DataFrame
import pandas as pd import pickle import os import argparse import sys if './' not in sys.path: sys.path.append('./') from src.train import FrankModelTrainer, Trainer from src.dataset import get_datasets from src.utils.eval_values import frank_m2_similarity from src.comparators.activation_comparator import ActivationComparator def parse_args(args): parser = argparse.ArgumentParser(description='Simple settings.') parser.add_argument('i', type=int, help='Index of tiny pairs from 0 to 9') parser.add_argument('-c','--csv', default="results/official/tiny_bn/summary.csv") parser.add_argument('-o','--out-dir', default='results/collection/cka_per_iter_lr') parser.add_argument('-cr','--cka-reg', type=float, default=0) parser.add_argument('-n', '--n-iter', type=int, default=500) parser.add_argument('-l', '--layer', default='bn3') parser.add_argument('--init', default='ps_inv') return parser.parse_args(args) def get_df(csv, layer, init='ps_inv'): df =
pd.read_csv(csv)
pandas.read_csv
#! /usr/bin/env python3 import os import sys import requests from pandas import DataFrame from msmarco import load_msmarco_queries, load_msmarco_qrels, extract_querie_relevance def create_request_specific_ids(query, rankprofile, doc_ids): body = { "yql": "select id, rankfeatures from sources * where (userInput(@userQuery))", "userQuery": query, "hits": len(doc_ids), "recall": "+(" + " ".join(["id:" + str(doc) for doc in doc_ids]) + ")", "timeout": "15s", "presentation.format": "json", "ranking": {"profile": rankprofile, "listFeatures": "true"}, } return body def create_request_top_hits(query, rankprofile, hits): body = { "yql": "select id, rankfeatures from sources * where (userInput(@userQuery))", "userQuery": query, "hits": hits, "timeout": "15s", "presentation.format": "json", "ranking": {"profile": rankprofile, "listFeatures": "true"}, } return body def get_features(url, body): r = requests.post(url, json=body) if r.status_code != requests.codes.ok: print("Bad response code for request: " + str(body)) return {} result = r.json() hits = [] if "children" in result["root"]: hits = result["root"]["children"] return hits def annotate_data(hits, query_id, relevant_id): data = [] for h in hits: rankfeatures = h["fields"]["rankfeatures"] rankfeatures.update({"docid": h["fields"]["id"]}) rankfeatures.update({"qid": query_id}) rankfeatures.update({"relevant": 1 if h["fields"]["id"] == relevant_id else 0}) data.append(rankfeatures) return data def load_processed_queries(file_path): try: f_processed = open(file_path) processed_queries = [int(x) for x in f_processed.readlines()] f_processed.close() except FileNotFoundError: processed_queries = [] return processed_queries def build_dataset(url, query_relevance, rank_profile, number_random_sample): processed_queries = load_processed_queries(file_path=PROCESSED_QUERIES_FILE) number_queries = len(query_relevance) - len(processed_queries) line = 0 for qid, (query, relevant_id) in query_relevance.items(): if int(qid) not in processed_queries: line += 1 print("{0}/{1}".format(line, number_queries)) relevant_id_request = create_request_specific_ids( query=query, rankprofile=rank_profile, doc_ids=[relevant_id] ) hits = get_features(url=url, body=relevant_id_request) if len(hits) == 1 and hits[0]["fields"]["id"] == relevant_id: random_hits_request = create_request_top_hits( query=query, rankprofile=rank_profile, hits=number_random_sample ) hits.extend(get_features(url=url, body=random_hits_request)) features = annotate_data( hits=hits, query_id=qid, relevant_id=relevant_id ) if os.path.isfile(OUTPUT_FILE):
DataFrame.from_records(features)
pandas.DataFrame.from_records
import pandas as pd import numpy as np import yfinance as yf from pandas import Series from prettytable import PrettyTable from Common.Readers.Engine.AbstractEngine import AbstractEngine from Common.StockType.AbstractStock import AbstractStock from Common.StockType.Equities.AbstractStockEquity import AbstractStockEquity from Common.StockType.Funds.ExchangeTraded.ExchangeTradedFund import ExchangeTradedFund from Common.StockType.Funds.Index.IndexFund import IndexFund from Common.StockType.Funds.Mutual.MutualFund import MutualFund from Common.StockType.Currencies.Crypto.CryptoCurrency import CryptoCurrency from Common.StockType.Currencies.Regular.RegularCurrency import RegularCurrency from Common.StockType.Futures.AbstractStockFuture import AbstractStockFuture class YahooFinanceEngine(AbstractEngine): __pretty_table: PrettyTable = PrettyTable() _info_labels: list = list() _info_list: list = list() __ticker: str = 'NA' _stock_type: AbstractStock _url: str = 'NA' _url_logo: str = 'NA' _address1: str = 'NA' _address2: str = 'NA' _city: str = 'NA' _company_name: str = 'NA' _country: str = 'NA' _currency: str = 'NA' _exchange: str = 'NA' _fax: str = 'NA' _state: str = 'NA' _phone: str = 'NA' _postal_code: str = 'NA' _market: str = 'NA' _market_cap: str = 'NA' _quote_type: str = 'NA' _beta: float = -1.1 _high52: float = -1.1 _low52: float = -1.1 _high_today: float = -1.1 _low_today: float = -1.1 _avg50: float = -1.1 _avg200: float = -1.1 _ratio_payout: float = -1.1 _ratio_peg: float = -1.1 _ratio_short: float = -1.1 _pe_forward: float = -1.1 _pe_trailing: float = -1.1 _book_value: float = -1.1 _book_price_to: float = -1.1 _ent_value: int = -1 _ent2revenue: float = -1.1 _ent2ebitda: float = -1.1 _div_rate: float = -1.1 _div_5y_avg_yield: float = -1.1 _div_yield: float = -1.1 _div_last_value: float = -1.1 _div_last_date: int = -1 _div_ex_date: int = -1 _div_last_date: int = -1 _split_date: int = -1 _fiscal_year_end_last: int = -1 _fiscal_year_end_next: int = -1 _last_quarter: int = -1 InfoDic: dict # = dict() ActionsDf: pd.DataFrame = pd.DataFrame() Balance_SheetDf: pd.DataFrame = pd.DataFrame() BalanceSheetDf: pd.DataFrame =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) class TestFwfColspaceSniffing(tm.TestCase): def test_full_file(self): # File with all values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = ''' Account Name Balance CreditLimit AccountCreated 101 <NAME> 9315.45 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 <NAME> 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 5000.00 2/5/2007 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = ''' Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 5/25/1985 761 <NAME>-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = ''' Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 761 <NAME> 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r''' col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~<NAME> 33+++122.33\\\bar.........<NAME> ++44~~~~12.01 baz~~<NAME> ~~55 11+++foo++++<NAME>-Smith ..66++++++.03~~~bar <NAME> '''.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=' +~.\\') tm.assert_frame_equal(expected, read_fwf(StringIO(test), delimiter=' +~.\\')) def test_variable_width_unicode(self): if not compat.PY3: raise nose.SkipTest( 'Bytes-related test - only needs to work on Python 3') test = ''' שלום שלום ום שלל של ום '''.strip('\r\n') expected = pd.read_fwf(BytesIO(test.encode('utf8')), colspecs=[(0, 4), (5, 9)], header=None, encoding='utf8') tm.assert_frame_equal(expected, read_fwf(BytesIO(test.encode('utf8')), header=None, encoding='utf8')) class CParserTests(ParserTests): """ base class for CParser Testsing """ def test_buffer_overflow(self): # GH9205 # test certain malformed input files that cause buffer overflows in # tokenizer.c malfw = "1\r1\r1\r 1\r 1\r" # buffer overflow in words pointer malfs = "1\r1\r1\r 1\r 1\r11\r" # buffer overflow in stream pointer malfl = "1\r1\r1\r 1\r 1\r11\r1\r" # buffer overflow in lines pointer for malf in (malfw, malfs, malfl): try: df = self.read_table(StringIO(malf)) except Exception as cperr: self.assertIn( 'Buffer overflow caught - possible malformed input file.', str(cperr)) def test_buffer_rd_bytes(self): # GH 12098 # src->buffer can be freed twice leading to a segfault if a corrupt # gzip file is read with read_csv and the buffer is filled more than # once before gzip throws an exception data = '\x1F\x8B\x08\x00\x00\x00\x00\x00\x00\x03\xED\xC3\x41\x09' \ '\x00\x00\x08\x00\xB1\xB7\xB6\xBA\xFE\xA5\xCC\x21\x6C\xB0' \ '\xA6\x4D' + '\x55' * 267 + \ '\x7D\xF7\x00\x91\xE0\x47\x97\x14\x38\x04\x00' \ '\x1f\x8b\x08\x00VT\x97V\x00\x03\xed]\xefO' for i in range(100): try: _ = self.read_csv(StringIO(data), compression='gzip', delim_whitespace=True) except Exception as e: pass class TestCParserHighMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_table(*args, **kwds) def test_compact_ints(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_parse_dates_empty_string(self): # #2263 s = StringIO("Date, test\n2012-01-01, 1\n,2") result = self.read_csv(s, parse_dates=["Date"], na_filter=False) self.assertTrue(result['Date'].isnull()[1]) def test_usecols(self): raise nose.SkipTest( "Usecols is not supported in C High Memory engine.") def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) # check with delim_whitespace=True df = self.read_csv(StringIO(data.replace(',', ' ')), comment='#', delim_whitespace=True) tm.assert_almost_equal(df.values, expected) # check with custom line terminator df = self.read_csv(StringIO(data.replace('\n', '*')), comment='#', lineterminator='*') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_skiprows_lineterminator(self): # GH #9079 data = '\n'.join(['SMOSMANIA ThetaProbe-ML2X ', '2007/01/01 01:00 0.2140 U M ', '2007/01/01 02:00 0.2141 M O ', '2007/01/01 04:00 0.2142 D M ']) expected = pd.DataFrame([['2007/01/01', '01:00', 0.2140, 'U', 'M'], ['2007/01/01', '02:00', 0.2141, 'M', 'O'], ['2007/01/01', '04:00', 0.2142, 'D', 'M']], columns=['date', 'time', 'var', 'flag', 'oflag']) # test with the three default lineterminators LF, CR and CRLF df = self.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r\n')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" expected = pd.DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # this should ignore six lines including lines with trailing # whitespace and blank lines. issues 8661, 8679 df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # test skipping set of rows after a row with trailing spaces, issue # #8983 expected = pd.DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) # empty frame # GH12048 actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_dtype_and_names_error(self): # GH 8833 # passing both dtype and names resulting in an error reporting issue data = """ 1.0 1 2.0 2 3.0 3 """ # base cases result = self.read_csv(StringIO(data), sep='\s+', header=None) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]]) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b']) expected = DataFrame( [[1.0, 1], [2.0, 2], [3.0, 3]], columns=['a', 'b']) tm.assert_frame_equal(result, expected) # fallback casting result = self.read_csv(StringIO( data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) expected = DataFrame([[1, 1], [2, 2], [3, 3]], columns=['a', 'b']) expected['a'] = expected['a'].astype(np.int32) tm.assert_frame_equal(result, expected) data = """ 1.0 1 nan 2 3.0 3 """ # fallback casting, but not castable with tm.assertRaisesRegexp(ValueError, 'cannot safely convert'): self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) class TestCParserLowMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_table(*args, **kwds) def test_compact_ints(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) def test_compact_ints_as_recarray(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_precise_conversion(self): # GH #8002 tm._skip_if_32bit() from decimal import Decimal normal_errors = [] precise_errors = [] for num in np.linspace(1., 2., num=500): # test numbers between 1 and 2 text = 'a\n{0:.25}'.format(num) # 25 decimal digits of precision normal_val = float(self.read_csv(StringIO(text))['a'][0]) precise_val = float(self.read_csv( StringIO(text), float_precision='high')['a'][0]) roundtrip_val = float(self.read_csv( StringIO(text), float_precision='round_trip')['a'][0]) actual_val = Decimal(text[2:]) def error(val): return abs(Decimal('{0:.100}'.format(val)) - actual_val) normal_errors.append(error(normal_val)) precise_errors.append(error(precise_val)) # round-trip should match float() self.assertEqual(roundtrip_val, float(text[2:])) self.assertTrue(sum(precise_errors) <= sum(normal_errors)) self.assertTrue(max(precise_errors) <= max(normal_errors)) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'object') def test_pass_dtype_as_recarray(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}, as_recarray=True) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'S1') def test_empty_pass_dtype(self): data = 'one,two' result = self.read_csv(
StringIO(data)
pandas.compat.StringIO
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from pandas import ( DatetimeIndex, Series, _testing as tm, date_range, ) from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tests.tseries.offsets.test_offsets import _ApplyCases from pandas.tseries import offsets as offsets from pandas.tseries.holiday import USFederalHolidayCalendar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask="Mon Wed Fri") assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthEnd>" assert repr(self.offset2) == "<2 * CustomBusinessMonthEnds>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 2, 29) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthEnd(10).rollback(self.d) == datetime(2007, 12, 31) def testRollforward1(self): assert CBMonthEnd(10).rollforward(self.d) == datetime(2008, 1, 31) def test_roll_date_object(self): offset = CBMonthEnd() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 8, 31) result = offset.rollforward(dt) assert result == datetime(2012, 9, 28) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthEnd(), datetime(2008, 1, 31), True), (CBMonthEnd(), datetime(2008, 1, 1), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, d, expected = case assert_is_on_offset(offset, d, expected) apply_cases: _ApplyCases = [ ( CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ( 2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 2, 7): datetime(2008, 3, 31), }, ), ( -CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 2, 8): datetime(2008, 1, 31), }, ), ( -2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 11, 30), datetime(2008, 2, 9): datetime(2007, 12, 31), }, ), ( CBMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ] @pytest.mark.parametrize("case", apply_cases) def test_apply(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthEnd(10) assert result == datetime(2013, 7, 31) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthEnd() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 29) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 5, 31) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ["2012-01-31", datetime(2012, 2, 28), np.datetime64("2012-02-29")] bm_offset = CBMonthEnd(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 30) assert dt + 2 * bm_offset == datetime(2012, 2, 27) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): from pandas.tseries.holiday import USFederalHolidayCalendar hcal = USFederalHolidayCalendar() freq = CBMonthEnd(calendar=hcal) assert date_range(start="20120101", end="20130101", freq=freq).tolist()[ 0 ] == datetime(2012, 1, 31) class TestCustomBusinessMonthBegin(CustomBusinessMonthBase, Base): _offset = CBMonthBegin def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthBegin>" assert repr(self.offset2) == "<2 * CustomBusinessMonthBegins>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 3, 3) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthBegin(10).rollback(self.d) == datetime(2008, 1, 1) def testRollforward1(self): assert CBMonthBegin(10).rollforward(self.d) == datetime(2008, 1, 1) def test_roll_date_object(self): offset = CBMonthBegin() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 9, 3) result = offset.rollforward(dt) assert result == datetime(2012, 10, 1) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthBegin(), datetime(2008, 1, 1), True), (CBMonthBegin(), datetime(2008, 1, 31), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, dt, expected = case assert_is_on_offset(offset, dt, expected) apply_cases: _ApplyCases = [ ( CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 2, 7): datetime(2008, 3, 3), }, ), ( 2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 3, 3), datetime(2008, 2, 7): datetime(2008, 4, 1), }, ), ( -CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 12, 3), datetime(2008, 2, 8): datetime(2008, 2, 1), }, ), ( -2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 11, 1), datetime(2008, 2, 9): datetime(2008, 1, 1), }, ), ( CBMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 7): datetime(2008, 2, 1), }, ), ] @pytest.mark.parametrize("case", apply_cases) def test_apply(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthBegin(10) assert result == datetime(2013, 8, 1) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthBegin() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 1) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 6, 1) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ["2012-02-01", datetime(2012, 2, 2), np.datetime64("2012-03-01")] bm_offset = CBMonthBegin(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 2) assert dt + 2 * bm_offset == datetime(2012, 2, 3) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): hcal = USFederalHolidayCalendar() cbmb = CBMonthBegin(calendar=hcal) assert date_range(start="20120101", end="20130101", freq=cbmb).tolist()[ 0 ] == datetime(2012, 1, 3) class TestSemiMonthEnd(Base): _offset = SemiMonthEnd offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = ( datetime(2007, 12, 31), datetime(2008, 1, 15), datetime(2008, 1, 31), datetime(2008, 2, 15), datetime(2008, 2, 29), datetime(2008, 3, 15), datetime(2008, 3, 31), datetime(2008, 4, 15), datetime(2008, 4, 30), datetime(2008, 5, 15), datetime(2008, 5, 31), datetime(2008, 6, 15), datetime(2008, 6, 30), datetime(2008, 7, 15), datetime(2008, 7, 31), datetime(2008, 8, 15), datetime(2008, 8, 31), datetime(2008, 9, 15), datetime(2008, 9, 30), datetime(2008, 10, 15), datetime(2008, 10, 31), datetime(2008, 11, 15), datetime(2008, 11, 30), datetime(2008, 12, 15), datetime(2008, 12, 31), ) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthEnd(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = SemiMonthEnd() + s exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = date_range(start=dates[0], end=dates[-1], freq="SM") exp = DatetimeIndex(dates, freq="SM") tm.assert_index_equal(result, exp) offset_cases = [] offset_cases.append( ( SemiMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 20), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 20), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20), }, ) ) offset_cases.append( ( SemiMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 16): datetime(2008, 1, 31), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 15), }, ) ) offset_cases.append( ( SemiMonthEnd(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 16), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 16), }, ) ) offset_cases.append( ( SemiMonthEnd(2), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 11, 30), }, ) ) offset_cases.append( ( SemiMonthEnd(-1), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 15), datetime(2008, 12, 31): datetime(2008, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 15), datetime(2006, 12, 30): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(-1, day_of_month=4), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2007, 1, 4): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 4), datetime(2008, 12, 31): datetime(2008, 12, 4), datetime(2006, 12, 5): datetime(2006, 12, 4), datetime(2006, 12, 30): datetime(2006, 12, 4), datetime(2007, 1, 1): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(-2), { datetime(2007, 1, 1): datetime(2006, 12, 15), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 3, 15): datetime(2008, 2, 15), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 14): datetime(2006, 11, 15), datetime(2007, 1, 1): datetime(2006, 12, 15), }, ) ) @pytest.mark.parametrize("case", offset_cases) def test_offset(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize("case", offset_cases) def test_apply_index(self, case): # https://github.com/pandas-dev/pandas/issues/34580 offset, cases = case s = DatetimeIndex(cases.keys()) exp = DatetimeIndex(cases.values()) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = offset + s tm.assert_index_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = offset.apply_index(s) tm.assert_index_equal(result, exp) on_offset_cases = [ (datetime(2007, 12, 31), True), (datetime(2007, 12, 15), True), (datetime(2007, 12, 14), False), (datetime(2007, 12, 1), False), (datetime(2008, 2, 29), True), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): dt, expected = case assert_is_on_offset(SemiMonthEnd(), dt, expected) @pytest.mark.parametrize("klass", [Series, DatetimeIndex]) def test_vectorized_offset_addition(self, klass): s = klass( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = s + SemiMonthEnd() result2 = SemiMonthEnd() + s exp = klass( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = klass( [ Timestamp("2000-01-01 00:15:00", tz="US/Central"), Timestamp("2000-02-01", tz="US/Central"), ], name="a", ) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = s + SemiMonthEnd() result2 = SemiMonthEnd() + s exp = klass( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) class TestSemiMonthBegin(Base): _offset = SemiMonthBegin offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = ( datetime(2007, 12, 15), datetime(2008, 1, 1), datetime(2008, 1, 15), datetime(2008, 2, 1), datetime(2008, 2, 15), datetime(2008, 3, 1), datetime(2008, 3, 15), datetime(2008, 4, 1), datetime(2008, 4, 15), datetime(2008, 5, 1), datetime(2008, 5, 15), datetime(2008, 6, 1), datetime(2008, 6, 15), datetime(2008, 7, 1), datetime(2008, 7, 15), datetime(2008, 8, 1), datetime(2008, 8, 15), datetime(2008, 9, 1), datetime(2008, 9, 15), datetime(2008, 10, 1), datetime(2008, 10, 15), datetime(2008, 11, 1), datetime(2008, 11, 15), datetime(2008, 12, 1), datetime(2008, 12, 15), ) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthBegin(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = SemiMonthBegin() + s exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = date_range(start=dates[0], end=dates[-1], freq="SMS") exp = DatetimeIndex(dates, freq="SMS") tm.assert_index_equal(result, exp) offset_cases = [ ( SemiMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2007, 1, 1), }, ), ( SemiMonthBegin(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20), }, ), ( SemiMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 16): datetime(2008, 2, 1), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 2): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2007, 1, 1), }, ), ( SemiMonthBegin(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 5): datetime(2007, 1, 16), datetime(2007, 1, 1): datetime(2007, 1, 1), }, ), ( SemiMonthBegin(2), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 1): datetime(2007, 1, 1), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 15): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 2, 1), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 12, 1), }, ), (
SemiMonthBegin(-1)
pandas._libs.tslibs.offsets.SemiMonthBegin
#dd-cell import pandas as pd df_customers = inputs['Customer'] customers = df_customers['CustomerID'].values df_customers.set_index('CustomerID', inplace=True) df_offers = inputs['Offer'] offers = df_offers['OfferID'].values df_offers.set_index('OfferID', inplace=True) df_channels = inputs['Channel'] channels = df_channels['ChannelID'].values df_channels.set_index('ChannelID', inplace=True) df_candidates = inputs['Candidate'] candidates = [] for index, row in df_candidates.iterrows(): candidate = {} candidates.append( (row['CustomerID'], row['OfferID'],row['ChannelID']) ) df_candidates.set_index(["CustomerID", "OfferID","ChannelID"], inplace = True) df_parameters = inputs['parameters'] parameters = df_parameters['name'].values df_parameters.set_index('name', inplace=True) df_channels.head() #dd-cell from docplex.mp.model import Model mdl = Model("RetailPlanning") selected = mdl.binary_var_dict(candidates, name="selected") df_selected =
pd.DataFrame({'selected': selected})
pandas.DataFrame
""" Figure 2 1. Load data 2. Run statistical tests 3. Prepare figure 4. Plot learning-rate simulations 5. Plot parameter estimates 6. Add subplot labels and save figure """ import numpy as np import pandas as pd import matplotlib import seaborn as sns import os from al_utilities import get_stats import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from AlAgentVars import AgentVars from AlAgent import AlAgent from al_plot_utils import cm2inch, label_subplots, latex_plt, swarm_boxplot # Update matplotlib to use Latex and to change some defaults os.environ["PATH"] += os.pathsep + '/usr/local/texlive/2016/bin/x86_64-darwin' matplotlib = latex_plt(matplotlib) # Get home directory paths = os.getcwd() path = paths.split(os.path.sep) home_dir = path[1] # ------------ # 1. Load data # ------------ model_results = pd.read_pickle('al_data/estimates_first_exp_25_sp.pkl') # ------------------------- # 2. Runs statistical tests # ------------------------- # Print out statistics for paper print('\n\nMotor-noise parameter\n') median_omikron_0, q1_omikron_0, q3_omikron_0, p_omikron_0, stat_omikron_0 = get_stats(model_results, 1, 'omikron_0') print('\n\nLearning-rate-noise parameter\n') median_omikron_1, q1_omikron_1, q3_omikron_1, p_omikron_1, stat_omikron_1 = get_stats(model_results, 1, 'omikron_1') print('\n\nb_0 parameter 1\n') median_b_0, q1_b_0, q3_b_0, p_b_0, stat_b_0 = get_stats(model_results, 1, 'b_0') print('\n\nb_1 parameter\n') median_b_1, q1_b_1, q3_b_1, p_b_1, stat_b_1 = get_stats(model_results, 1, 'b_1') print('\n\nUncertainty-underestimation parameter\n') median_u, q1_u, q3_u, p_u, stat_u = get_stats(model_results, 1, 'u') print('\n\nSurprise-sensitivity parameter\n') median_s, q1_s, q3_s, p_s, stat_s = get_stats(model_results, 1, 's') print('\n\nHazard-rate parameter\n') median_h, q1_h, q3_h, p_h, stat_h = get_stats(model_results, 1, 'h') print('\n\nCatch-trial parameter\n') median_sigma_H, q1_sigma_H, q3_sigma_H, p_sigma_H, stat_sigma_H = get_stats(model_results, 1, 'sigma_H') print('\n\nReward-bias parameter\n') median_q, q1_q, q3_q, p_q, stat_q = get_stats(model_results, 1, 'q') # Create data frames to save statistics for Latex manuscript fig_2_desc =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import polling2 import requests import json from web3 import Web3 import pandas as pd from decouple import config from datetime import datetime import logging from collections import defaultdict import time from sqlalchemy import create_engine, desc from sqlalchemy.orm import sessionmaker from models import EdenBlock, Epoch, Base, Distribution, DistributionBalance from apscheduler.schedulers.background import BackgroundScheduler INFURA_ENDPOINT = config('INFURA_ENDPOINT') PSQL_ENDPOINT = config('PSQL_ENDPOINT') engine = create_engine(PSQL_ENDPOINT) Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query_dict = { 'block': 'block.graphql', 'distribution': 'distribution.graphql', 'block_lookup': 'block_lookup.graphql', 'epoch_latest': 'epoch_latest.graphql', 'epoch': 'epoch.graphql' } eden_governance_api = 'https://api.thegraph.com/subgraphs/name/eden-network/governance' eden_distribution_api = 'https://api.thegraph.com/subgraphs/name/eden-network/distribution' eden_network_api = 'https://api.thegraph.com/subgraphs/name/eden-network/network' def query_to_dict(rset): result = defaultdict(list) for obj in rset: instance = inspect(obj) for key, x in instance.attrs.items(): result[key].append(x.value) return result def get_web3_provider(): infura_endpoint = INFURA_ENDPOINT my_provider = Web3.HTTPProvider(infura_endpoint) w3 = Web3(my_provider) return w3 def get_latest_eth_block(): eden_db_last_block = get_latest_eden_block_db() w3 = get_web3_provider() latest_eth_block = w3.eth.get_block('latest')['number'] if latest_eth_block > eden_db_last_block: return latest_eth_block else: return None def get_latest_eden_block_db(): eden_db_last_block = session.query(EdenBlock).order_by(desc(EdenBlock.block_number)).limit(1).all() if eden_db_last_block != []: eden_db_last_block = eden_db_last_block[0].block_number else: eden_db_last_block = 0 return eden_db_last_block def clean_epoch_entry(epoch_string): epoch_number = int(epoch_string.split('+')[1].replace('epoch', '')) return int(epoch_number) def get_latest_distribution_number(): eden_db_last_number_query = session.query(Distribution).order_by(desc(Distribution.distribution_number)).limit(1).all() if eden_db_last_number_query != []: eden_last_number = eden_db_last_number_query[0].distribution_number return eden_last_number else: return 0 def ipfs_link_cleanup(raw_uri): final_ipfs_link = "https://ipfs.io/ipfs/" + raw_uri.split('//')[1] return final_ipfs_link def graph_query_call(api, query, variables=None): request = requests.post(api, json={'query': query, 'variables': variables}) if request.status_code == 200: return request.json() else: Exception('Query failed. return code is {}. {}'.format(request.status_code, query)) def fetch_query(query): query_file = query_dict.get(query) with open(query_file, 'r') as file: data = file.read() return data def get_epoch_number(block_number): epoch_number_query = session.query(Epoch).filter(block_number >= Epoch.start_block_number, block_number <= Epoch.end_block_number).limit(1).all() if epoch_number_query != []: epoch_number = epoch_number_query[0].epoch_number return epoch_number else: latest_epoch = get_latest_epoch() return latest_epoch def get_latest_epoch(): query = fetch_query('epoch_latest') latest_epoch_result = graph_query_call(eden_governance_api, query) latest_epoch_id = latest_epoch_result['data']['epoches'][0]['id'] latest_epoch_number = clean_epoch_entry(latest_epoch_id) return latest_epoch_number def get_block_number_from_id(block_id): query = fetch_query('block_lookup') variables = {'block_id': block_id} block_result = graph_query_call(eden_governance_api, query, variables) eden_block_number = int(block_result['data']['block']['number']) return eden_block_number def eden_block_call(): last_block = 0 last_block_current = get_latest_eth_block() eden_blocks_df =
pd.DataFrame()
pandas.DataFrame
import unittest import pdb import logging import numpy as np import pandas as pd from ais import analysis TEST_VESSEL_LOCATION_FILE = "testdata/vessellocations.csv" TEST_VESSEL_METADATA_FILE = "testdata/vesselmetadatas.csv" TEST_ICE_CONDITION_FILE = "testdata/iceconditions.csv" # some vessels and icebreakers in the dataset AURA = 230601000 BBC_VIRGINIA=305463000 KIISLA=230956000 SISU=230289000 YMER=265066000 class TestAnalysis(unittest.TestCase): @classmethod def setUpClass(self): pd.set_option('display.width', 240) self.vl = pd.read_csv(TEST_VESSEL_LOCATION_FILE, parse_dates = ['timestamp']) self.vm = pd.read_csv(TEST_VESSEL_METADATA_FILE, parse_dates = ['timestamp']) self.ice = pd.read_csv(TEST_ICE_CONDITION_FILE, parse_dates = ['timestamp']) def test_number_of_observations(self): self.assertEqual(len(self.vl), 99063) def test_append_sudden_stopping(self): df = pd.DataFrame(data = {'timestamp': ['2013-01-01 00:00:00', '2013-01-01 00:00:01', '2013-01-01 00:00:02', '2013-01-01 00:00:03'], 'mmsi': [123, 123, 123, 123], 'sog': [10, 10, 7, 0]}) df['timestamp'] = pd.to_datetime(df['timestamp']) analysis.append_sudden_stopping(df) self.assertTrue(df.iloc[3]['sudden_stopping']) self.assertTrue((df.iloc[0:2]['sudden_stopping'] == False).all()) def test_append_sudden_stopping_continuous(self): df = pd.DataFrame(data = {'timestamp': ['2013-01-01 00:00:00', '2013-01-01 00:00:01', '2013-01-01 00:00:02', '2013-01-01 00:00:03', '2013-01-01 00:00:04'], 'mmsi': [123, 123, 123, 123, 123], 'sog': [12, 12, 13, 0, 0]}) df['timestamp'] = pd.to_datetime(df['timestamp']) analysis.append_sudden_stopping(df) self.assertTrue(df.iloc[3]['sudden_stopping']) self.assertTrue((df.iloc[0:2]['sudden_stopping'] == False).all()) self.assertFalse(df.iloc[4]['sudden_stopping']) def test_append_sudden_stopping_sample_data(self): vl = self.vl vl = vl[(vl['timestamp'] >= '2018-03-19 12:45:00') & (vl['timestamp'] < '2018-03-19 13:00:00')] analysis.append_sudden_stopping(vl) self.assertEqual(len(vl[vl['sudden_stopping'] == True]), 4) @staticmethod def create_vessel_meta_and_location_data(mmsi, time_offset='0 Seconds'): vm = pd.DataFrame(data = {'timestamp': pd.to_datetime(['2013-01-01 00:00:00.102', '2013-01-01 00:00:00.104', '2013-01-01 00:00:00.112']) + pd.to_timedelta(time_offset), 'mmsi': [mmsi, mmsi, mmsi], 'name': ['name1_' + str(mmsi), 'name2_' + str(mmsi), 'name3_' + str(mmsi)], 'ship_type': [1, 1, 1], 'callsign': ['ABCD', 'ABCD', 'ABCD'], 'imo': [456789, 456789, 456789], 'destination': ['KEMI', 'KEMI', 'KEMI'], 'eta': [12345, 12345, 12345], 'draught': [45, 45, 45], 'pos_type': [1, 1, 1], 'reference_point_a': [100, 100, 100], 'reference_point_b': [10, 10, 10], 'reference_point_c': [20, 20, 20], 'reference_point_d': [25, 25, 25]}) vl = pd.DataFrame(data = {'timestamp': pd.to_datetime(['2013-01-01 00:00:00.100', '2013-01-01 00:00:00.101', '2013-01-01 00:00:00.103', '2013-01-01 00:00:00.105', '2013-01-01 00:00:00.106']) + pd.to_timedelta(time_offset), 'mmsi': [mmsi, mmsi, mmsi, mmsi, mmsi], 'lon': [23.2, 23.2, 23.2, 23.2, 23.2], 'lat': [65.1, 65.1, 65.1, 65.1, 65.1], 'sog': [10, 10, 10, 10, 10], 'cog': [120, 120, 120, 120, 120], 'heading': [121, 121, 121, 121, 121]}) return vm, vl def test_merge_location_and_metadata(self): vm, vl = self.create_vessel_meta_and_location_data(123) df = analysis.merge_vessel_meta_and_location_data(vm, vl) self.assertEqual(len(df), 3) self.assertEqual(df.name.isin(['name1_123', 'name2_123']).any(), True) self.assertEqual(~df.name.isin(['name3_123']).any(), True) def test_merge_multiple_location_and_metadata(self): vm, vl = self.create_vessel_meta_and_location_data(123, '0 Seconds') vm2, vl2 = self.create_vessel_meta_and_location_data(456, '10 Seconds') vm = vm.append(vm2) vl = vl.append(vl2) df = analysis.merge_vessel_meta_and_location_data(vm, vl) df = df.sort_values(by=['timestamp', 'mmsi']) self.assertEqual(len(df), 6) self.assertEqual(df.name.isin(['name1_123', 'name2_123']).any(), True) self.assertEqual(~df.name.isin(['name3_123']).any(), True) def test_merge_location_and_ice_condition(self): vl = pd.DataFrame(data = {'timestamp':
pd.to_datetime(['2018-03-21 00:00:00.100', '2018-03-21 00:00:00.101', '2018-03-21 00:00:00.103', '2018-03-21 00:00:00.105', '2018-03-21 00:00:00.106'])
pandas.to_datetime
import numpy as np import pandas as pd import networkx as nx from sklearn.manifold import TSNE from sklearn.metrics.pairwise import cosine_similarity from bokeh.io import show from bokeh.plotting import figure from bokeh.models import Plot, Range1d, MultiLine, Circle, HoverTool, TapTool, BoxSelectTool, LinearColorMapper, ColumnDataSource, LabelSet, SaveTool, ColorBar, BasicTicker from bokeh.models.graphs import from_networkx, NodesAndLinkedEdges, EdgesAndLinkedNodes from bokeh.palettes import Spectral8 def visualize_sentences(vecs, sentences, palette="Viridis256"): tsne = TSNE(n_components=2) tsne_results = tsne.fit_transform(vecs) df = pd.DataFrame(columns=['x', 'y', 'sentence']) df['x'], df['y'], df['sentence'] = tsne_results[:, 0], tsne_results[:, 1], sentences source = ColumnDataSource(ColumnDataSource.from_df(df)) labels = LabelSet(x="x", y="y", text="sentence", y_offset=8, text_font_size="12pt", text_color="#555555", source=source, text_align='center') color_mapper = LinearColorMapper(palette=palette, low=min(tsne_results[:, 1]), high=max(tsne_results[:, 1])) plot = figure(plot_width=900, plot_height=900) plot.scatter("x", "y", size=12, source=source, color={'field': 'y', 'transform': color_mapper}, line_color=None, fill_alpha=0.8) plot.add_layout(labels) show(plot, notebook_handle=True) """ Visualize homonyms (2d vector space) Inspired by: https://github.com/hengluchang/visualizing_contextual_vectors/blob/master/elmo_vis.py """ def visualize_homonym(homonym, tokenized_sentences, vecs, model_name, palette="Viridis256"): # process sentences token_list, processed_sentences = [], [] for tokens in tokenized_sentences: token_list.extend(tokens) sentence = [] for token in tokens: if model_name == "bert": processed_token = token.replace("##", "") else: processed_token = token if token == homonym: processed_token = "\"" + processed_token + "\"" sentence.append(processed_token) processed_sentences.append(' '.join(sentence)) # dimension reduction tsne = TSNE(n_components=2) tsne_results = tsne.fit_transform(vecs[1:]) # only plot the word representation of interest interest_vecs, idx = np.zeros((len(tokenized_sentences), 2)), 0 for word, vec in zip(token_list, tsne_results): if word == homonym: interest_vecs[idx] = vec idx += 1 df =
pd.DataFrame(columns=['x', 'y', 'annotation'])
pandas.DataFrame
import io import os import time import gym import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from datetime import datetime from threading import Thread from rl_visualization.app import start_app from math import sqrt, ceil sns.set(style='whitegrid') sns.set_context('paper') class VisualizationEnv(gym.Wrapper): def __init__(self, env, agent=None, steps_lookback=1000, episodic=True, features_names=None, actions_names=None, refresh_time=20, path='./logs'): """Gym Env wrapper for visualization Args: env (gym.Env): Gym Env to be wrapped """ super().__init__(env) self.env = env self.agent = agent self.steps_lookback = steps_lookback self.episodic = episodic self.user_plots = {} self.user_plots_values = {} if isinstance(self.observation_space, gym.spaces.Discrete): self.state_dim = self.observation_space.n elif isinstance(self.observation_space, gym.spaces.Box): self.state_dim = self.observation_space.shape[0] else: exit('Observation space not supported.') if isinstance(self.action_space, gym.spaces.Discrete): self.action_dim = self.action_space.n elif isinstance(self.action_space, gym.spaces.Box): self.action_dim = self.action_space.shape[0] else: exit('Action space not supported') if features_names is not None: self.features_names = features_names else: self.features_names = ['feature_'+str(i) for i in range(self.state_dim)] if actions_names is not None: self.actions_names = actions_names else: self.actions_names = ['action'+str(i) for i in range(self.action_dim)] if not os.path.exists(path): os.mkdir(path) self.filepath = os.path.join(path, 'rl_vis' + str(datetime.now()).split('.')[0] + "." + 'csv') self.refresh_time = refresh_time self.delay = 0 self.experiences = [] self.epsilon = [] self.sa_counter = Counter() self.obs = None self.start_app() def set_agent(self, agent): self.agent = agent def step(self, action): next_obs, reward, done, info = self.env.step(action) if self.delay > 0: time.sleep(self.delay) self.experiences.append((self.obs, action, reward, next_obs, done)) if self.agent is not None and hasattr(self.agent, 'q_table'): self.sa_counter.update([(self.env.encode(self.obs), action)]) self.obs = next_obs for plot in self.user_plots: self.user_plots_values[plot].append(self.user_plots[plot]()) return next_obs, reward, done, info def reset(self): self.obs = self.env.reset() return self.obs def start_app(self): self.app_process = Thread(target=start_app, args=(self,)) self.app_process.start() def get_available_plots(self): plots = [] if len(self.experiences) == 0: return plots if self.agent is not None and hasattr(self.agent, 'q_table'): plots.append('Q-table') plots.append('Visit Count') self.q_table_to_df() plots.append('Rewards') if self.episodic: plots.append('Episode Rewards') plots.extend(['Features Distributions', 'Actions Distributions']) plots.extend(self.user_plots.keys()) return plots def add_plot(self, title, get_func): self.user_plots[title] = get_func self.user_plots_values[title] = [] def get_userplot(self, title): f, ax = plt.subplots(figsize=(14, 8)) plt.title(title) plt.xlabel('step') plt.plot(self.user_plots_values[title]) plt.tight_layout() bytes_image = io.BytesIO() plt.savefig(bytes_image, format='png') plt.close() bytes_image.seek(0) return bytes_image def get_featuresdistribution(self): f, ax = plt.subplots(figsize=(14, 8)) plt.title('Features Distribution') d = [] for exp in self.experiences[-self.steps_lookback:]: s = exp[0] d.append({self.features_names[i]: s[i] for i in range(self.state_dim)}) df = pd.DataFrame(d) n = ceil(sqrt(self.state_dim)) for i in range(self.state_dim): plt.subplot(1 if n == self.state_dim else n, n, i+1) sns.distplot(df[self.features_names[i]], hist=True, color="b", kde_kws={"shade": True}) plt.tight_layout() return self.plot_to_bytes(plt) def get_actionsdistribution(self): f, ax = plt.subplots() plt.title('Actions Distribution') if not hasattr(self.experiences[0][1], '__len__'): # int, float or numpy.int d = [] for exp in self.experiences[-self.steps_lookback:]: a = exp[1] d.append({'Action': self.actions_names[a]}) df = pd.DataFrame(d) sns.catplot(x="Action", kind="count", data=df) else: d = [] for exp in self.experiences[-self.steps_lookback:]: s = exp[1] d.append({self.actions_names[i]: s[i] for i in range(self.action_dim)}) df =
pd.DataFrame(d)
pandas.DataFrame
"""A collection of functions that assist in validation/comparison of data and conditions. """ from collections.abc import Sized from typing import List, Union, Callable, Type, Iterable import numpy as np import pandas as pd from pandas.core.dtypes.common import is_categorical from helpsk.exceptions import * # pylint: disable=wildcard-import,unused-wildcard-import from helpsk.utility import suppress_warnings def any_none_nan(values: Union[List, np.ndarray, pd.Series, pd.DataFrame, object]) -> bool: """Can be used with a single value or a collection of values. Returns `True` if any item in `values` are `None`, `np.Nan`, `pd.NA`, `pd.NaT` or if the length of `values` is `0`. Args: values: A collection of values to check. Returns: bool - True if any item in `values` are None/np.NaN """ # pylint: disable=too-many-return-statements if values is None or values is np.NaN or values is pd.NA or values is pd.NaT: # pylint: disable=nan-comparison return True if isinstance(values, Sized) and not isinstance(values, str) and len(values) == 0: return True if isinstance(values, pd.Series): return values.isnull().any() or values.isna().any() if isinstance(values, pd.DataFrame): return values.isnull().any().any() or values.isna().any().any() if isinstance(values, Iterable) and not isinstance(values, str): if len(values) == 0: return True return any((any_none_nan(x) for x in values)) try: if not isinstance(values, str) and None in values: return True except Exception: # pylint: disable=broad-except # noqa pass try: if np.isnan(values).any(): return True except TypeError: return False return False def assert_not_none_nan(values: Union[List, np.ndarray, pd.Series, pd.DataFrame, object]) -> None: """Raises an HelpskAssertionError if any item in `values` are `None`, `np.Nan`, or if the length of `values` is `0`. For numeric types only. Args: values: A collection of values to check. """ assert_false(any_none_nan(values), message='None/NaN Values Found') def any_missing(values: Union[List, pd.Series, pd.DataFrame, object]) -> bool: """Same as `any_none_nan` but checks for empty strings Args: values: A collection of values to check. Returns: bool - True if any item in `values` are None/np.NaN/'' """ if any_none_nan(values): return True if isinstance(values, pd.Series): return values.isin(['']).any() # noqa if isinstance(values, pd.DataFrame): return values.isin(['']).any().any() # noqa if isinstance(values, str) and values.strip() == '': return True if isinstance(values, Iterable) and '' in values: return True return False def assert_not_any_missing(values: Union[List, pd.Series, pd.DataFrame, object]) -> None: """Raises an HelpskAssertionError if any item in `values` are `None`, `np.Nan`, an empty string (i.e. '') or if the length of `values` is `0`. Args: values: A collection of values to check. """ assert_false(any_missing(values), message='Missing Values Found') def any_duplicated(values: Union[List, np.ndarray, pd.Series]) -> bool: """Returns `True` if any items in `values` are duplicated. Args: values: list, np.ndarray, pd.Series A collection of values to check. Returns: bool """ return len(values) != len(set(values)) def assert_not_duplicated(values: Union[List, np.ndarray, pd.Series]) -> None: """Raises an HelpskAssertionError if any items in `values` are duplicated. Args: values: list, np.ndarray, pd.Series A collection of values to check. """ assert_false(any_duplicated(values), message='Duplicate Values Found') def assert_all(values: Union[List, np.ndarray, pd.Series, pd.DataFrame]) -> None: """Raises an `HelpskAssertionError` unless all items in `values` are `True` Args: values: A collection of values to check. """ if isinstance(values, pd.Series): if not values.all(): # noqa raise HelpskAssertionError('Not All True') elif isinstance(values, pd.DataFrame): if not values.all().all(): # noqa raise HelpskAssertionError('Not All True') else: if not all(values): raise HelpskAssertionError('Not All True') def assert_not_any(values: Union[List, np.ndarray, pd.Series, pd.DataFrame]) -> None: """Raises an `HelpskAssertionError` if any items in `values` are `True` Args: values: A collection of values to check. """ if isinstance(values, pd.Series): assert_false(values.any(), message='Found True') # noqa elif isinstance(values, pd.DataFrame): assert_false(values.any().any(), message='Found True') # noqa else: assert_false(any(values), message='Found True') def assert_true(condition: bool, message: str = 'Condition Not True') -> None: """Raises an HelpskAssertionError if `condition` is not True Args: condition: Something that evaluates to True/False message: Message passed to the HelpskAssertionError """ if not isinstance(condition, (bool, np.bool_)): raise HelpskParamTypeError('condition should be boolean') if not condition: raise HelpskAssertionError(message) def assert_false(condition: bool, message: str = 'Condition True') -> None: """Raises an HelpskAssertionError if `condition` is not False Args: condition: bool Something that evaluates to True/False message: Message passed to the HelpskAssertionError """ if not isinstance(condition, (bool, np.bool_)): raise HelpskParamTypeError('condition should be boolean') if condition: raise HelpskAssertionError(message) def iterables_are_equal(iterable_a: Iterable, iterable_b: Iterable) -> bool: """Compares the equality of the values of two iterables. This function will generally give the same result as list equality (e.g. `[x, y, z] == [x, y, z]`) However, in some strange scenarios, `==` will return `False` where it doesn't seem like it should For example: ``` temp = pd.DataFrame({'col_a': [np.nan, 1.0]}) temp.col_a.tolist() == [np.nan, 1.0] # returns False. Why?? iterables_are_equal(temp.col_a.tolist(), [np.nan, 1]) # returns True [np.nan, 1.0] == [np.nan, 1.0] # returns True Also, when comparing a series with an ordered Categorical when the values are the same, pd.Series.equals() will return False if the categories have different order. But we only care if the values are the same, so this function will return True. ``` Args: iterable_a: an iterable to equate to iterable_b iterable_b: an iterable to equate to iterable_a Returns: True if iterable_a is equal to iterable_b """ # seems to be confusion and inconsistencies across stack overflow on how to properly check for category # so this might be overkill but not exactly sure # def is_categorical(series): # if isinstance(series, (pd.Categorical, pd.CategoricalDtype)): # return True # if isinstance(series, pd.Series): # return series.dtype.name == 'category' # return False with suppress_warnings(): # if either list-like structure is categorical, then we need to convert both to unordered categorical if is_categorical(iterable_a) or is_categorical(iterable_b): iterable_a =
pd.Categorical(iterable_a, ordered=False)
pandas.Categorical
from __future__ import annotations from typing import List, Optional, Sequence, Tuple import numpy as np import pandas as pd from pandas.util._decorators import Appender, Substitution from scipy import stats from statsmodels.iolib.summary import Summary, fmt_2cols, fmt_params from statsmodels.iolib.table import SimpleTable from statsmodels.regression.linear_model import OLS, RegressionResults import arch.covariance.kernel as lrcov from arch.typing import ArrayLike1D, ArrayLike2D, Float64Array, Literal, UnitRootTrend from arch.unitroot._engle_granger import EngleGrangerTestResults, engle_granger from arch.unitroot._phillips_ouliaris import ( CriticalValueWarning, PhillipsOuliarisTestResults, phillips_ouliaris, ) from arch.unitroot._shared import ( KERNEL_ERR, KERNEL_ESTIMATORS, _check_cointegrating_regression, _check_kernel, _cross_section, ) from arch.unitroot.unitroot import SHORT_TREND_DESCRIPTION from arch.utility.array import ensure2d from arch.utility.io import pval_format, str_format from arch.utility.timeseries import add_trend from arch.vendor import cached_property __all__ = [ "engle_granger", "EngleGrangerTestResults", "DynamicOLS", "DynamicOLSResults", "phillips_ouliaris", "PhillipsOuliarisTestResults", "CriticalValueWarning", ] class _CommonCointegrationResults(object): def __init__( self, params: pd.Series, cov: pd.DataFrame, resid: pd.Series, kernel_est: lrcov.CovarianceEstimator, num_x: int, trend: UnitRootTrend, df_adjust: bool, r2: float, adj_r2: float, estimator_type: str, ): self._params = params self._cov = cov self._resid = resid self._bandwidth = kernel_est.bandwidth self._kernel = kernel_est.__class__.__name__ self._kernel_est = kernel_est self._num_x = num_x self._trend = trend self._df_adjust = df_adjust self._ci_size = params.shape[0] self._rsquared = r2 self._rsquared_adj = adj_r2 self._estimator_type = estimator_type @property def params(self) -> pd.Series: """The estimated parameters of the cointegrating vector""" return self._params.iloc[: self._ci_size] @cached_property def std_errors(self) -> pd.Series: """ Standard errors of the parameters in the cointegrating vector """ se = np.sqrt(np.diag(self.cov)) return pd.Series(se, index=self.params.index, name="std_errors") @cached_property def tvalues(self) -> pd.Series: """ T-statistics of the parameters in the cointegrating vector """ return pd.Series(self.params / self.std_errors, name="tvalues") @cached_property def pvalues(self) -> pd.Series: """ P-value of the parameters in the cointegrating vector """ return pd.Series(2 * (1 - stats.norm.cdf(np.abs(self.tvalues))), name="pvalues") @property def cov(self) -> pd.DataFrame: """The estimated parameter covariance of the cointegrating vector""" return self._cov.iloc[: self._ci_size, : self._ci_size] @property def resid(self) -> pd.Series: """The model residuals""" return self._resid @property def kernel(self) -> str: """The kernel used to estimate the covariance""" return self._kernel @property def bandwidth(self) -> float: """The bandwidth used in the parameter covariance estimation""" return self._bandwidth @property def rsquared(self) -> float: """The model R²""" return self._rsquared @property def rsquared_adj(self) -> float: """The degree-of-freedom adjusted R²""" return self._rsquared_adj @cached_property def _cov_est(self) -> lrcov.CovarianceEstimate: r = np.asarray(self._resid) kern_class = self._kernel_est.__class__ bw = self._bandwidth force_int = self._kernel_est.force_int cov_est = kern_class(r, bandwidth=bw, center=False, force_int=force_int) return cov_est.cov @property def _df_scale(self) -> float: if not self._df_adjust: return 1.0 nobs = self._resid.shape[0] nvar = self.params.shape[0] return nobs / (nobs - nvar) @property def residual_variance(self) -> float: r""" The variance of the regression residual. Returns ------- float The estimated residual variance. Notes ----- The residual variance only accounts for the short-run variance of the residual and does not account for any autocorrelation. It is defined as .. math:: \hat{\sigma}^2 = T^{-1} \sum _{t=p}^{T-q} \hat{\epsilon}_t^2 If `df_adjust` is True, then the estimator is rescaled by T/(T-m) where m is the number of regressors in the model. """ return self._df_scale * self._cov_est.short_run[0, 0] @property def long_run_variance(self) -> float: """ The long-run variance of the regression residual. Returns ------- float The estimated long-run variance of the residual. The long-run variance is estimated from the model residuals using the same kernel used to estimate the parameter covariance. If `df_adjust` is True, then the estimator is rescaled by T/(T-m) where m is the number of regressors in the model. """ return self._df_scale * self._cov_est.long_run[0, 0] @staticmethod def _top_table( top_left: Sequence[Tuple[str, str]], top_right: Sequence[Tuple[str, str]], title: str, ) -> SimpleTable: stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) fmt = fmt_2cols.copy() fmt["data_fmts"][1] = "%18s" top_right = [("%-21s" % (" " + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) return table def _top_right(self) -> List[Tuple[str, str]]: top_right = [ ("No. Observations:", str(self._resid.shape[0])), ("R²:", str_format(self.rsquared)), ("Adjusted. R²:", str_format(self.rsquared_adj)), ("Residual Variance:", str_format(self.residual_variance)), ("Long-run Variance:", str_format(self.long_run_variance)), ("", ""), ] return top_right @staticmethod def _param_table( params: Float64Array, se: Float64Array, tstats: Float64Array, pvalues: Float64Array, stubs: Sequence[str], title: str, ) -> SimpleTable: ci = params[:, None] + se[:, None] * stats.norm.ppf([[0.025, 0.975]]) param_data = np.column_stack([params, se, tstats, pvalues, ci]) data = [] for row in param_data: txt_row = [] for i, v in enumerate(row): f = str_format if i == 3: f = pval_format txt_row.append(f(v)) data.append(txt_row) header = ["Parameter", "Std. Err.", "T-stat", "P-value", "Lower CI", "Upper CI"] table = SimpleTable( data, stubs=stubs, txt_fmt=fmt_params, headers=header, title=title ) return table def summary(self) -> Summary: """ Summary of the model, containing estimated parameters and std. errors Returns ------- Summary A summary instance with method that support export to text, csv or latex. """ if self._bandwidth != int(self._bandwidth): bw = str_format(self._bandwidth) else: bw = str(int(self._bandwidth)) top_left = [ ("Trend:", SHORT_TREND_DESCRIPTION[self._trend]), ("Kernel:", str(self._kernel)), ("Bandwidth:", bw), ("", ""), ("", ""), ("", ""), ] top_right = self._top_right() smry = Summary() title = self._estimator_type table = self._top_table(top_left, top_right, title) # Top Table # Parameter table smry.tables.append(table) params = np.asarray(self.params) stubs = list(self.params.index) se = np.asarray(self.std_errors) tstats = np.asarray(self.tvalues) pvalues = np.asarray(self.pvalues) title = "Cointegrating Vector" table = self._param_table(params, se, tstats, pvalues, stubs, title) smry.tables.append(table) return smry class DynamicOLSResults(_CommonCointegrationResults): """ Estimation results for Dynamic OLS models Parameters ---------- params : Series The estimated model parameters. cov : DataFrame The estimated parameter covariance. resid : Series The model residuals. lags : int The number of lags included in the model. leads : int The number of leads included in the model. cov_type : str The type of the parameter covariance estimator used. kernel_est : CovarianceEstimator The covariance estimator instance used to estimate the parameter covariance. reg_results : RegressionResults Regression results from fitting statsmodels OLS. df_adjust : bool Whether to degree of freedom adjust the estimator. """ def __init__( self, params: pd.Series, cov: pd.DataFrame, resid: pd.Series, lags: int, leads: int, cov_type: str, kernel_est: lrcov.CovarianceEstimator, num_x: int, trend: UnitRootTrend, reg_results: RegressionResults, df_adjust: bool, ) -> None: super().__init__( params, cov, resid, kernel_est, num_x, trend, df_adjust, r2=reg_results.rsquared, adj_r2=reg_results.rsquared_adj, estimator_type="Dynamic OLS", ) self._leads = leads self._lags = lags self._cov_type = cov_type self._ci_size = params.shape[0] - self._num_x * (leads + lags + 1) @property def full_params(self) -> pd.Series: """The complete set of parameters, including leads and lags""" return self._params @property def full_cov(self) -> pd.DataFrame: """ Parameter covariance of the all model parameters, incl. leads and lags """ return self._cov @property def lags(self) -> int: """The number of lags included in the model""" return self._lags @property def leads(self) -> int: """The number of leads included in the model""" return self._leads @property def cov_type(self) -> str: """The type of parameter covariance estimator used""" return self._cov_type @property def _df_scale(self) -> float: if not self._df_adjust: return 1.0 nobs = self._resid.shape[0] nvar = self.full_params.shape[0] return nobs / (nobs - nvar) def summary(self, full: bool = False) -> Summary: """ Summary of the model, containing estimated parameters and std. errors Parameters ---------- full : bool, default False Flag indicating whether to include all estimated parameters (True) or only the parameters of the cointegrating vector Returns ------- Summary A summary instance with method that support export to text, csv or latex. """ if self._bandwidth != int(self._bandwidth): bw = str_format(self._bandwidth) else: bw = str(int(self._bandwidth)) top_left = [ ("Trend:", SHORT_TREND_DESCRIPTION[self._trend]), ("Leads:", str(self._leads)), ("Lags:", str(self._lags)), ("Cov Type:", str(self._cov_type)), ("Kernel:", str(self._kernel)), ("Bandwidth:", bw), ] top_right = self._top_right() smry = Summary() typ = "Cointegrating Vector" if not full else "Model" title = f"Dynamic OLS {typ} Summary" table = self._top_table(top_left, top_right, title) # Top Table # Parameter table smry.tables.append(table) if full: params = np.asarray(self.full_params) stubs = list(self.full_params.index) se = np.sqrt(np.diag(self.full_cov)) tstats = params / se pvalues = 2 * (1 - stats.norm.cdf(np.abs(tstats))) else: params = np.asarray(self.params) stubs = list(self.params.index) se = np.asarray(self.std_errors) tstats = np.asarray(self.tvalues) pvalues = np.asarray(self.pvalues) title = "Cointegrating Vector" if not full else "Model Parameters" assert isinstance(se, np.ndarray) table = self._param_table(params, se, tstats, pvalues, stubs, title) smry.tables.append(table) return smry class DynamicOLS(object): r""" Dynamic OLS (DOLS) cointegrating vector estimation Parameters ---------- y : array_like The left-hand-side variable in the cointegrating regression. x : array_like The right-hand-side variables in the cointegrating regression. trend : {"n","c","ct","ctt"}, default "c" Trend to include in the cointegrating regression. Trends are: * "n": No deterministic terms * "c": Constant * "ct": Constant and linear trend * "ctt": Constant, linear and quadratic trends lags : int, default None The number of lags to include in the model. If None, the optimal number of lags is chosen using method. leads : int, default None The number of leads to include in the model. If None, the optimal number of leads is chosen using method. common : bool, default False Flag indicating that lags and leads should be restricted to the same value. When common is None, lags must equal leads and max_lag must equal max_lead. max_lag : int, default None The maximum lag to consider. See Notes for value used when None. max_lead : int, default None The maximum lead to consider. See Notes for value used when None. method : {"aic","bic","hqic"}, default "bic" The method used to select lag length when lags or leads is None. * "aic" - Akaike Information Criterion * "hqic" - Hannan-Quinn Information Criterion * "bic" - Schwartz/Bayesian Information Criterion Notes ----- The cointegrating vector is estimated from the regression .. math :: Y_t = D_t \delta + X_t \beta + \Delta X_{t} \gamma + \sum_{i=1}^p \Delta X_{t-i} \kappa_i + \sum _{j=1}^q \Delta X_{t+j} \lambda_j + \epsilon_t where p is the lag length and q is the lead length. :math:`D_t` is a vector containing the deterministic terms, if any. All specifications include the contemporaneous difference :math:`\Delta X_{t}`. When lag lengths are not provided, the optimal lag length is chosen to minimize an Information Criterion of the form .. math:: \ln\left(\hat{\sigma}^2\right) + k\frac{c}{T} where c is 2 for Akaike, :math:`2\ln\ln T` for Hannan-Quinn and :math:`\ln T` for Schwartz/Bayesian. See [1]_ and [2]_ for further details. References ---------- .. [1] <NAME>. (1992). Estimation and testing of cointegrated systems by an autoregressive approximation. Econometric theory, 8(1), 1-27. .. [2] <NAME>., & <NAME>. (1993). A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica: Journal of the Econometric Society, 783-820. """ def __init__( self, y: ArrayLike1D, x: ArrayLike2D, trend: UnitRootTrend = "c", lags: Optional[int] = None, leads: Optional[int] = None, common: bool = False, max_lag: Optional[int] = None, max_lead: Optional[int] = None, method: Literal["aic", "bic", "hqic"] = "bic", ) -> None: setup = _check_cointegrating_regression(y, x, trend) self._y = setup.y self._x = setup.x self._trend = setup.trend self._lags = lags self._leads = leads self._max_lag = max_lag self._max_lead = max_lead self._method = method self._common = bool(common) self._y_df = pd.DataFrame(self._y) self._check_inputs() def _check_inputs(self) -> None: """Validate the inputs""" if not isinstance(self._method, str) or self._method.lower() not in ( "aic", "bic", "hqic", ): raise ValueError('method must be one of "aic", "bic", or "hqic"') max_lag = self._max_lag self._max_lag = int(max_lag) if max_lag is not None else max_lag max_lead = self._max_lead self._max_lead = int(max_lead) if max_lead is not None else max_lead self._leads = int(self._leads) if self._leads is not None else self._leads self._lags = int(self._lags) if self._lags is not None else self._lags if self._common and self._leads != self._lags: raise ValueError( "common is specified but leads and lags have different values" ) if self._common and self._max_lead != self._max_lag: raise ValueError( "common is specified but max_lead and max_lag have different values" ) max_ll = self._max_lead_lag() obs_remaining = self._y.shape[0] - 1 obs_remaining -= max_ll if max_lag is None else max_lag obs_remaining -= max_ll if max_lead is None else max_lead if obs_remaining <= 0: raise ValueError( "max_lag and max_lead are too large for the amount of " "data. The largest model specification in the search " "cannot be estimated." ) def _format_variables( self, leads: int, lags: int ) -> Tuple[pd.DataFrame, pd.DataFrame]: """Format the variables for the regression""" x = self._x y = self._y_df delta_x = x.diff() data = [y, x] for lag in range(-lags, leads + 1): lag_data = delta_x.shift(-lag) typ = "LAG" if lag < 0 else "LEAD" lag_data.columns = [f"D.{c}.{typ}{abs(lag)}" for c in lag_data.columns] if lag == 0: lag_data.columns = [f"D.{c}" for c in lag_data.columns] data.append(lag_data) data_df: pd.DataFrame = pd.concat(data, axis=1).dropna() lhs, rhs = data_df.iloc[:, :1], data_df.iloc[:, 1:] nrhs = rhs.shape[1] rhs = add_trend(rhs, trend=self._trend, prepend=True) ntrend = rhs.shape[1] - nrhs if ntrend: nx = x.shape[1] trend = rhs.iloc[:, :ntrend] rhs = pd.concat( [rhs.iloc[:, ntrend : ntrend + nx], trend, rhs.iloc[:, ntrend + nx :]], axis=1, ) return lhs, rhs def _ic(self, resids: Float64Array, nparam: int) -> float: """Compute an info criterion""" nobs = resids.shape[0] sigma2 = float(resids.T @ resids / nobs) if self._method == "aic": penalty = 2.0 elif self._method == "hqic": penalty = 2.0 * float(np.log(np.log(nobs))) else: # bic penalty = float(np.log(nobs)) return np.log(sigma2) + nparam * penalty / nobs def _max_lead_lag(self) -> int: nobs = self._y.shape[0] return int(np.ceil(12.0 * (nobs / 100) ** (1 / 4))) def _leads_and_lags(self) -> Tuple[int, int]: """Select the optimal number of leads and lags""" if self._lags is not None and self._leads is not None: return self._leads, self._lags nobs = self._y.shape[0] max_lead_lag = int(np.ceil(12.0 * (nobs / 100) ** (1 / 4))) if self._lags is None: max_lag = max_lead_lag if self._max_lag is None else self._max_lag min_lag = 0 else: min_lag = max_lag = self._lags if self._leads is None: max_lead = max_lead_lag if self._max_lead is None else self._max_lead min_lead = 0 else: min_lead = max_lead = self._leads variables = self._format_variables(max_lead, max_lag) lhs = np.asarray(variables[0]) rhs = np.asarray(variables[1]) nx = self._x.shape[1] # +1 to account for the Delta X(t) (not a lead or a lag) lead_lag_offset = rhs.shape[1] - (max_lead + max_lag + 1) * nx always_loc = np.arange(lead_lag_offset) best_ic = np.inf best_leads_and_lags = (0, 0) for lag in range(min_lag, max_lag + 1): for lead in range(min_lead, max_lead + 1): if self._common and lag != lead: continue lag_start = max_lag - lag # +1 to get LAG0 in all regressions lead_end = max_lag + 1 + lead lead_lag_locs = np.arange(lag_start * nx, lead_end * nx) lead_lag_locs += lead_lag_offset locs = np.r_[always_loc, lead_lag_locs] _rhs = rhs[:, locs] params = np.linalg.lstsq(_rhs, lhs, rcond=None)[0] resid = np.squeeze(lhs - _rhs @ params) ic = self._ic(resid, params.shape[0]) if ic < best_ic: best_ic = ic best_leads_and_lags = (lead, lag) return best_leads_and_lags def fit( self, cov_type: Literal[ "unadjusted", "homoskedastic", "robust", "kernel" ] = "unadjusted", kernel: str = "bartlett", bandwidth: Optional[int] = None, force_int: bool = False, df_adjust: bool = False, ) -> DynamicOLSResults: r""" Estimate the Dynamic OLS regression Parameters ---------- cov_type : str, default "unadjusted" Either "unadjusted" (or is equivalent "homoskedastic") or "robust" (or its equivalent "kernel"). kernel : str, default "bartlett" The string name of any of any known kernel-based long-run covariance estimators. Common choices are "bartlett" for the Bartlett kernel (Newey-West), "parzen" for the Parzen kernel and "quadratic-spectral" for the Quadratic Spectral kernel. bandwidth : int, default None The bandwidth to use. If not provided, the optimal bandwidth is estimated from the data. Setting the bandwidth to 0 and using "unadjusted" produces the classic OLS covariance estimator. Setting the bandwidth to 0 and using "robust" produces White's covariance estimator. force_int : bool, default False Whether the force the estimated optimal bandwidth to be an integer. df_adjust : bool, default False Whether the adjust the parameter covariance to account for the number of parameters estimated in the regression. If true, the parameter covariance estimator is multiplied by T/(T-k) where k is the number of regressors in the model. Returns ------- DynamicOLSResults The estimation results. See Also -------- arch.unitroot.cointegration.engle_granger Cointegration testing using the Engle-Granger methodology statsmodels.regression.linear_model.OLS Ordinal Least Squares regression. Notes ----- When using the unadjusted covariance, the parameter covariance is estimated as .. math:: T^{-1} \hat{\sigma}^2_{HAC} \hat{\Sigma}_{ZZ}^{-1} where :math:`\hat{\sigma}^2_{HAC}` is an estimator of the long-run variance of the regression error and :math:`\hat{\Sigma}_{ZZ}=T^{-1}Z'Z`. :math:`Z_t` is a vector the includes all terms in the regression (i.e., deterministics, cross-sectional, leads and lags) When using the robust covariance, the parameter covariance is estimated as .. math:: T^{-1} \hat{\Sigma}_{ZZ}^{-1} \hat{S}_{HAC} \hat{\Sigma}_{ZZ}^{-1} where :math:`\hat{S}_{HAC}` is a Heteroskedasticity-Autocorrelation Consistent estimator of the covariance of the regression scores :math:`Z_t\epsilon_t`. """ leads, lags = self._leads_and_lags() # TODO: Rank check and drop?? lhs, rhs = self._format_variables(leads, lags) mod = OLS(lhs, rhs) res = mod.fit() coeffs = np.asarray(res.params) resid = lhs.squeeze() - (rhs @ coeffs).squeeze() resid.name = "resid" cov, est = self._cov( cov_type, kernel, bandwidth, force_int, df_adjust, rhs, resid ) params = pd.Series(np.squeeze(coeffs), index=rhs.columns, name="params") num_x = self._x.shape[1] return DynamicOLSResults( params, cov, resid, lags, leads, cov_type, est, num_x, self._trend, res, df_adjust, ) @staticmethod def _cov( cov_type: Literal["unadjusted", "homoskedastic", "robust", "kernel"], kernel: str, bandwidth: Optional[int], force_int: bool, df_adjust: bool, rhs: pd.DataFrame, resids: pd.Series, ) -> Tuple[pd.DataFrame, lrcov.CovarianceEstimator]: """Estimate the covariance""" kernel = kernel.lower().replace("-", "").replace("_", "") if kernel not in KERNEL_ESTIMATORS: raise ValueError(KERNEL_ERR) x = np.asarray(rhs) eps = ensure2d(np.asarray(resids), "eps") nobs, nx = x.shape sigma_xx = x.T @ x / nobs sigma_xx_inv = np.linalg.inv(sigma_xx) kernel_est = KERNEL_ESTIMATORS[kernel] scale = nobs / (nobs - nx) if df_adjust else 1.0 if cov_type in ("unadjusted", "homoskedastic"): est = kernel_est(eps, bandwidth, center=False, force_int=force_int) sigma2 = np.squeeze(est.cov.long_run) cov = (scale * sigma2) * sigma_xx_inv / nobs elif cov_type in ("robust", "kernel"): scores = x * eps est = kernel_est(scores, bandwidth, center=False, force_int=force_int) s = est.cov.long_run cov = scale * sigma_xx_inv @ s @ sigma_xx_inv / nobs else: raise ValueError("Unknown cov_type") cov_df = pd.DataFrame(cov, columns=rhs.columns, index=rhs.columns) return cov_df, est class CointegrationAnalysisResults(_CommonCointegrationResults): def __init__( self, params: pd.Series, cov: pd.DataFrame, resid: pd.Series, omega_112: float, kernel_est: lrcov.CovarianceEstimator, num_x: int, trend: UnitRootTrend, df_adjust: bool, rsquared: float, rsquared_adj: float, estimator_type: str, ): super().__init__( params, cov, resid, kernel_est, num_x, trend, df_adjust, rsquared, rsquared_adj, estimator_type, ) self._omega_112 = omega_112 @property def long_run_variance(self) -> float: """ Long-run variance estimate used in the parameter covariance estimator """ return self._omega_112 COMMON_DOCSTRING = r""" %(method)s cointegrating vector estimation. Parameters ---------- y : array_like The left-hand-side variable in the cointegrating regression. x : array_like The right-hand-side variables in the cointegrating regression. trend : {{"n","c","ct","ctt"}}, default "c" Trend to include in the cointegrating regression. Trends are: * "n": No deterministic terms * "c": Constant * "ct": Constant and linear trend * "ctt": Constant, linear and quadratic trends x_trend : {None,"c","ct","ctt"}, default None Trends that affects affect the x-data but do not appear in the cointegrating regression. x_trend must be at least as large as trend, so that if trend is "ct", x_trend must be either "ct" or "ctt". Notes ----- The cointegrating vector is estimated from the regressions .. math:: Y_t & = D_{1t} \delta + X_t \beta + \eta_{1t} \\ X_t & = D_{1t} \Gamma_1 + D_{2t}\Gamma_2 + \epsilon_{2t} \\ \eta_{2t} & = \Delta \epsilon_{2t} or if estimated in differences, the last two lines are .. math:: \Delta X_t = \Delta D_{1t} \Gamma_1 + \Delta D_{2t} \Gamma_2 + \eta_{2t} Define the vector of residuals as :math:`\eta = (\eta_{1t},\eta'_{2t})'`, and the long-run covariance .. math:: \Omega = \sum_{h=-\infty}^{\infty} E[\eta_t\eta_{t-h}'] and the one-sided long-run covariance matrix .. math:: \Lambda_0 = \sum_{h=0}^\infty E[\eta_t\eta_{t-h}'] The covariance matrices are partitioned into a block form .. math:: \Omega = \left[\begin{array}{cc} \omega_{11} & \omega_{12} \\ \omega'_{12} & \Omega_{22} \end{array} \right] The cointegrating vector is then estimated using modified data %(estimator)s """ CCR_METHOD = "Canonical Cointegrating Regression" CCR_ESTIMATOR = r""" .. math:: X^\star_t & = X_t - \hat{\Lambda}_2'\hat{\Sigma}^{-1}\hat{\eta}_t \\ Y^\star_t & = Y_t - (\hat{\Sigma}^{-1} \hat{\Lambda}_2 \hat{\beta} + \hat{\kappa})' \hat{\eta}_t where :math:`\hat{\kappa} = (0,\hat{\Omega}_{22}^{-1}\hat{\Omega}'_{12})` and the regression .. math:: Y^\star_t = D_{1t} \delta + X^\star_t \beta + \eta^\star_{1t} See [1]_ for further details. References ---------- .. [1] <NAME>. (1992). Canonical cointegrating regressions. Econometrica: Journal of the Econometric Society, 119-143. """ FMOLS_METHOD = "Fully Modified OLS" FMOLS_ESTIMATOR = r""" .. math:: Y^\star_t = Y_t - \hat{\omega}_{12}\hat{\Omega}_{22}\hat{\eta}_{2t} as .. math:: \hat{\theta} = \left[\begin{array}{c}\hat{\gamma}_1 \\ \hat{\beta} \end{array}\right] = \left(\sum_{t=2}^T Z_tZ'_t\right)^{-1} \left(\sum_{t=2}^t Z_t Y^\star_t - T \left[\begin{array}{c} 0 \\ \lambda^{\star\prime}_{12} \end{array}\right]\right) where the bias term is defined .. math:: \lambda^\star_{12} = \hat{\lambda}_{12} - \hat{\omega}_{12}\hat{\Omega}_{22}\hat{\omega}_{21} See [1]_ for further details. References ---------- .. [1] <NAME>., & <NAME>. (1990). Estimation and inference in models of cointegration: A simulation study. Advances in Econometrics, 8(1989), 225-248. """ @Substitution(method=FMOLS_METHOD, estimator=FMOLS_ESTIMATOR) @Appender(COMMON_DOCSTRING) class FullyModifiedOLS(object): def __init__( self, y: ArrayLike1D, x: ArrayLike2D, trend: UnitRootTrend = "c", x_trend: Optional[UnitRootTrend] = None, ) -> None: setup = _check_cointegrating_regression(y, x, trend) self._y = setup.y self._x = setup.x self._trend = setup.trend self._x_trend = x_trend self._y_df =
pd.DataFrame(self._y)
pandas.DataFrame
import funcy import matplotlib import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re from dateutil import parser from tqdm import tqdm from utils.helpers import * from utils.plot import plot_joint_distribution font = { "size": 30 } matplotlib.rc("font", **font) pd.options.mode.chained_assignment = None BASE_DIR = os.path.dirname(os.path.abspath(__file__)) MOST_RECENT_FILE = sorted(os.listdir(os.path.join(BASE_DIR, "data", "REDCap")))[-1] REDCAP_FPATH = os.path.join(BASE_DIR, "data", "REDCap", MOST_RECENT_FILE) SERIES_ID_FPATH = os.path.join(BASE_DIR, "data", "match_redcap_plataforma.csv") SEGMENTATION_FPATH = os.path.join(BASE_DIR, "data", "inference_df.csv") get_date_regex = r"ProjetoCOVIDAI_DATA_(?P<data>.*)_\d+.csv" date_str = re.match(get_date_regex, MOST_RECENT_FILE).group("data") dataset_date = parser.parse(date_str) # Normalize name and CPF df = pd.read_csv(REDCAP_FPATH) df.nome = df.nome.apply(lambda s: to_normalized_string(s) if pd.notna(s) else s) df.cpf = df.cpf.apply(lambda v: str(int(v)) if pd.notna(v) else v) # Fill redcap_repeat_instrument missing data with "dados_pessoais_unico" since these # rows are not filled automatically by the database df.redcap_repeat_instrument = df.redcap_repeat_instrument.fillna("dados_pessoais_unico") # Fill the missing hospitalization date with date of admission to ICU if existent df.data_admissao_hospitalar = df.data_admissao_hospitalar.fillna(df.data_admissao_uti) # Calculate length of stay based on hospitalization date and date of discharge or # date of death fill_length_of_stay = df.apply( lambda row: calculate_length_of_stay( row["data_admissao_hospitalar"], row["data_alta_hospitalar"], row["data_obito"] ), axis=1 ) df.tempo_estadia_hospitalar = df.tempo_estadia_hospitalar.fillna(fill_length_of_stay) # Calculate the date of discharge from ICU based on the date of admission # in the ICU and length of stay in the ICU. df["data_alta_uti"] = df.apply( lambda row: sum_date_with_interval( row["data_admissao_uti"], row["tempo_estadia_uti"] ), axis=1 ) # Calculate the date of removal of the ventilation based on the date of ventilation # and the length of ventilation df["data_remocao_ventilacao"] = df.apply( lambda row: sum_date_with_interval( row["data_ventilacao"], row["tempo_ventilacao_mecanica"] ), axis=1 ) # Calculate age and body mass index df["idade"] = df.apply( lambda row: calculate_age( row["data_nasc"], row["data_admissao_hospitalar"], dataset_date ), axis=1 ) df["imc"] = df.peso / (df.altura ** 2) # Some of the rows have the plaquets number in a different unity and need to be # multiplied by 1000 df.plaquetas = df.plaquetas.apply(lambda v: v * 1000 if v < 1000 else v) ############################## Finished processing the ordinary data ############################## # Here we define variables useful for processing the rest of the data cols_intermediate_outcomes = [ "data_sepse", "sepse", "data_sdra", "sdra", "data_falencia_cardiaca", "falencia_cardiaca", "data_choque_septico", "choque_septico", "data_coagulopatia", "coagulopatia", "data_iam", "iam", "data_ira", "ira" ] cols_personal_data = [ "nome", "cpf", "instituicao", "data_nasc", "idade", "sexo", "altura", "peso", "imc", "alta", "obito", "data_admissao_hospitalar", "data_admissao_uti", "data_obito", "data_alta_hospitalar", "data_alta_uti", "data_ventilacao", "data_remocao_ventilacao", "tempo_estadia_hospitalar", "tempo_estadia_uti", "tempo_ventilacao_mecanica" ] + cols_intermediate_outcomes cols_comorbidities = [ "has", "ieca_bra", "dm", "asma", "tabagista", "dpoc", "cardiopatia", "irc", "neoplasia", "aids", "neutropenia" ] cols_respiratory_comorbidities = [ "asma", "tabagista", "dpoc" ] cols_cardiac_comorbidities = [ "has", "cardiopatia" ] cols_dates = [ col for col in df.columns if "data" in col and col not in cols_personal_data + ["redcap_data_access_group"] ] identity_map = { 0: 0, 1: 1 } irc_map = { 1: "negativo", 2: "nao_dialitico", 3: "dialitico" } neoplasia_map = { 1: "negativo", 2: "primaria_ou_secundaria", 3: "outras" } map_comorbidities = { "irc": irc_map, "neoplasia": neoplasia_map } # Now we build a separate dataframe for saving pesonal data. df_personal_data = df[df.redcap_repeat_instrument == "dados_pessoais_unico"] # Discriminate patients that were admitted to the hospital and to the ICU. Also, discriminate those that # were discharged and those who died. df_personal_data["internacao"] = df_personal_data.data_admissao_hospitalar.notna() df_personal_data["uti"] = df_personal_data.data_admissao_uti.notna() df_personal_data["obito"] = df_personal_data.data_obito.notna() df_personal_data["alta"] = df_personal_data.data_alta_hospitalar.notna() df_personal_data = df_personal_data[ ["record_id"] + cols_personal_data + cols_comorbidities ] for col in cols_comorbidities: df_personal_data[col] = df_personal_data[col].map(map_comorbidities.get(col, identity_map)) # Count the number of previous comorbidities each patient has. df_personal_data["n_comorbidades"] = df_personal_data[cols_comorbidities].apply(count_comorbidities, axis=1) df_personal_data["n_comorbidades_respiratorias"] = df_personal_data[cols_respiratory_comorbidities].apply(count_comorbidities, axis=1) df_personal_data["n_comorbidades_cardiacas"] = df_personal_data[cols_cardiac_comorbidities].apply(count_comorbidities, axis=1) ############################## Finished processing the personal data ############################## # Now we build separate dataframes for saving clinical, treatment, laboratorial, image and confirmatory data. # Clinical dataframe cols_clinical = [ "data_dispneia", "dispneia", "data_sofa", "sofa_score", "data_saturacao_o2", "saturacao_o2", "data_saps_3", "saps_3" ] df_clinical = df[df.redcap_repeat_instrument == "evolucao_clinica_multiplo"] df_clinical = df_clinical[["record_id"] + cols_clinical] # We need separate dataframes for each date. Note that the clinical dataframe has four date. We will separate # the columns accordingly. df_dispneia = df_clinical[[ "record_id", "data_dispneia", "dispneia" ]] df_sofa = df_clinical[[ "record_id", "data_sofa", "sofa_score" ]] df_saturacao_o2 = df_clinical[[ "record_id", "data_saturacao_o2", "saturacao_o2" ]] df_saps_3 = df_clinical[[ "record_id", "data_saps_3", "saps_3" ]] # Treatment dataframe cols_treatment = [ "data_ventilacao", "ventilacao", "pao2_fio2", "data_pronacao", "pronacao", "data_hemodialise", "hemodialise" ] df_treatment = df[df.redcap_repeat_instrument == "evolucao_tratamento_multiplo"] df_treatment = df_treatment[["record_id"] + cols_treatment] # Note that the treatment dataframe has four date. We will separate the columns accordingly # just as we did for the clinical dataframe. df_ventilacao = df_treatment[[ "record_id", "data_ventilacao", "ventilacao", "pao2_fio2" ]] df_pronacao = df_treatment[[ "record_id", "data_pronacao", "pronacao" ]] df_hemodialise = df_treatment[[ "record_id" , "data_hemodialise", "hemodialise" ]] # Laboratory results dataframe cols_laboratory = [ "leucocitos", "linfocitos", "neutrofilos", "tgp", "creatinina", "pcr", "d_dimero", "il_6", "plaquetas", "rni", "troponina", "pro_bnp", "bicarbonato", "lactato" ] df_laboratory = df[df.redcap_repeat_instrument == "evolucao_laboratorial_multiplo"] df_laboratory = df_laboratory[["record_id", "data_resultados_lab"] + cols_laboratory] # Image dataframe cols_image = [ "uid_imagem", "tipo_imagem", "data_imagem", "padrao_imagem_rsna", "score_tc_dir_sup", "score_tc_dir_med", "score_tc_dir_inf", "score_tc_esq_sup", "score_tc_esq_med", "score_tc_esq_inf" ] df_image = df[df.redcap_repeat_instrument == "evolucao_imagem_multiplo"] df_image.uid_imagem = df_image.uid_imagem.apply(lambda s: s.strip() if pd.notna(s) else s) df_image = df_image[["record_id", "redcap_repeat_instance"] + cols_image] df_image = pd.merge( left=df_personal_data[["record_id", "nome", "data_nasc", "data_admissao_hospitalar", "instituicao"]], right=df_image, how="right", on="record_id", validate="one_to_many" ) uids_internados = set(df_image[df_image.data_admissao_hospitalar.notna()].uid_imagem.unique()) # For images, we also have the data retrieved from the deep segmentation model. We need # to enrich our dataframe with the percentage of healthy lungs, affected by ground-glass opacity # and consolidation, and the amount of fat in patient's body. cols_series_id = [ "record_id", "redcap_repeat_instance", "infer_series_id" ] df_series_id = pd.read_csv(SERIES_ID_FPATH, sep=";") df_series_id = df_series_id[cols_series_id] df_series_id = df_series_id.drop_duplicates() cols_segmentation = [ "UID_Plataforma", "series_id", "seg_consolidacao", "seg_normal", "seg_vf1", "seg_vf2", "seg_vf3", "volume_pulmao", "taxa_gordura", "volume_gordura", "mediastino" ] tmp_data = [] df_seg_raw = pd.read_csv(SEGMENTATION_FPATH) df_seg_raw = df_seg_raw[cols_segmentation] df_seg_raw = df_seg_raw[df_seg_raw.volume_pulmao >= 1.] df_seg_raw = pd.merge(left=df_series_id, right=df_seg_raw, left_on="infer_series_id", right_on="series_id", how="right") # Each TC study might have multiple series. We need to select the one with grouped = df_seg_raw.groupby("UID_Plataforma") for uid_imagem, group in grouped: if any(group.mediastino): use_group = group[group.mediastino] else: use_group = group sorted_group = use_group.sort_values("volume_pulmao") tmp_data.append( dict(sorted_group.iloc[-1]) ) df_seg = pd.DataFrame(tmp_data) df_seg = df_seg[df_seg.seg_normal.notna()] df_image = pd.merge( left=df_image, right=df_seg, how="left", on=["record_id", "redcap_repeat_instance"] ) df_image[ ["record_id", "redcap_repeat_instance", "nome", "data_nasc", "data_admissao_hospitalar", "instituicao"] + cols_image ].to_csv(os.path.join(BASE_DIR, "data", "TC_scans.csv"), index=False) df_image = df_image.rename({"redcap_repeat_instance": "redcap_repeat_instance_image"}) df_matches = df_image[ (df_image.seg_normal.notna()) & (df_image.data_admissao_hospitalar.notna()) ] df_matches[ ["record_id", "data_admissao_hospitalar", "instituicao", "data_imagem", "uid_imagem"] ].to_csv(os.path.join(BASE_DIR, "data", "matches.csv"), index=False) n_matches = df_matches.uid_imagem.nunique() print(f"{n_matches} between REDCap and segmentation\n") # COVID-19 confirmation dataframe df_confirmation = df[df.redcap_repeat_instrument == "confirmacao_covid_multiplo"] ############################## Finished processing the results data ############################## # Now we are going to create a dataframe that each row corresponds to a moment in the patient stay at the # hospital. For each date in the patient history, we will update the row with the latest information about # that patient. # First, we need to define some helper functions to work on the processing of the data. def get_group(grouped, key, default_columns): """ Gets a group by key from a Pandas Group By object. If the key does not exist, returns an empty group with the default columns. """ if key in grouped.groups: group = grouped.get_group(key) else: group = pd.DataFrame([], columns=default_columns) return group def last_register_before_date(registers, date_col, date, default_columns): """ Gets the last register before a reference date in a dataframe. If there are no register before the date, returns an empty register with the default columns. """ registers = registers[registers[date_col].notna()] registers_before_date = registers[ registers[date_col].apply(parser.parse) <= date ] if len(registers_before_date) == 0: registers_before_date = pd.DataFrame([(np.nan for col in default_columns)], columns=default_columns) last_register = registers_before_date.iloc[-1] return last_register # Theb, we need to group by patient all the dataframes we built previously. grouped_dispneia = df_dispneia.groupby("record_id") grouped_sofa = df_sofa.groupby("record_id") grouped_saturacao_o2 = df_saturacao_o2.groupby("record_id") grouped_saps_3 = df_saps_3.groupby("record_id") grouped_image = df_image.groupby("record_id") grouped_laboratory = df_laboratory.groupby("record_id") grouped_ventilacao = df_ventilacao.groupby("record_id") grouped_pronacao = df_pronacao.groupby("record_id") grouped_hemodialise = df_hemodialise.groupby("record_id") # Now we iterate over the personal data dataframe, which has one row per patient. after_discharge = [] after_death = [] new_rows = [] for i, row in tqdm(df_personal_data.iterrows(), total=len(df_personal_data)): record_id = row["record_id"] institution = row["instituicao"] hospitalization_date = row["data_admissao_hospitalar"] discharge_date = row["data_alta_hospitalar"] date_of_death = row["data_obito"] if pd.notna(date_of_death): date_of_death = parser.parse(date_of_death) if pd.notna(discharge_date): discharge_date = parser.parse(discharge_date) if pd.notna(hospitalization_date): hospitalization_date = parser.parse(hospitalization_date) # Get each group and sort by the date group_dispneia = get_group( grouped_dispneia, record_id, df_dispneia.columns ).sort_values("data_dispneia") group_sofa = get_group( grouped_sofa, record_id, df_sofa.columns ) group_saturacao_o2 = get_group( grouped_saturacao_o2, record_id, df_saturacao_o2.columns ) group_saps_3 = get_group( grouped_saps_3, record_id, df_saps_3.columns ) group_image = get_group( grouped_image, record_id, df_image.columns ) group_laboratory = get_group( grouped_laboratory, record_id, df_laboratory.columns ) group_ventilacao = get_group( grouped_ventilacao, record_id, df_ventilacao.columns ) group_pronacao = get_group( grouped_pronacao, record_id, df_pronacao.columns ) group_hemodialise = get_group( grouped_hemodialise, record_id, df_hemodialise.columns ) # List the dates available for the patient patient_dates = set(filter( pd.notna, list(group_dispneia.data_dispneia) + list(group_sofa.data_sofa) + list(group_saturacao_o2.data_saturacao_o2) + list(group_saps_3.data_saps_3) + list(group_image.data_imagem) + list(group_laboratory.data_resultados_lab) + list(group_ventilacao.data_ventilacao) + list(group_pronacao.data_pronacao) + list(group_hemodialise.data_hemodialise) )) patient_dates = funcy.lmap(parser.parse, patient_dates) # Now we iterate over the dates of the patient retrieving the last register for # each group. new_patient_rows = [] for date_tmp in patient_dates: # If the date is after the patient's death or the patient's discharge, we want to ignore # the register. if abs(date_tmp.year - dataset_date.year) > 0: continue if pd.notna(date_of_death) and date_tmp > date_of_death: after_death.append(record_id) continue if pd.notna(discharge_date) and date_tmp > discharge_date: after_discharge.append(discharge_date) continue last_register_dispneia = last_register_before_date(group_dispneia, "data_dispneia", date_tmp, df_dispneia.columns) last_register_sofa = last_register_before_date(group_sofa, "data_sofa", date_tmp, df_sofa.columns) last_register_saturacao_o2 = last_register_before_date(group_saturacao_o2, "data_saturacao_o2", date_tmp, df_saturacao_o2.columns) last_register_saps_3 = last_register_before_date(group_saps_3, "data_saps_3", date_tmp, df_saps_3.columns) last_register_image = last_register_before_date(group_image, "data_imagem", date_tmp, df_image.columns) last_register_laboratory = last_register_before_date(group_laboratory, "data_resultados_lab", date_tmp, df_laboratory.columns) last_register_pronacao = last_register_before_date(group_pronacao, "data_pronacao", date_tmp, df_pronacao.columns) last_register_hemodialise = last_register_before_date(group_hemodialise, "data_hemodialise", date_tmp, df_hemodialise.columns) # Need for mechanical ventilation is one of our target variables. Thus, we do not want to get the last register before the # current date. We want to know if the patient ever needed mechanical ventilation at any point in time. ventilacao = group_ventilacao[group_ventilacao.ventilacao == group_ventilacao.ventilacao.max()].sort_values("data_ventilacao", ascending=False) if len(ventilacao) == 0: ventilacao = pd.DataFrame([(np.nan for col in group_ventilacao.columns)], columns=group_ventilacao.columns) ventilacao = ventilacao.iloc[-1] new_row = {} new_row.update(row) new_row.update(dict(last_register_dispneia)) new_row.update(dict(last_register_sofa)) new_row.update(dict(last_register_saturacao_o2)) new_row.update(dict(last_register_saps_3)) new_row.update(dict(last_register_image)) new_row.update(dict(last_register_laboratory)) new_row.update(dict(last_register_pronacao)) new_row.update(dict(last_register_hemodialise)) new_row.update(dict(ventilacao)) new_row["data"] = date_tmp new_row["record_id"] = record_id new_row["instituicao"] = institution new_row["dias_desde_admissao"] = (date_tmp - hospitalization_date).days if pd.notna(hospitalization_date) else np.nan date_of_outcome = date_of_death if pd.notna(date_of_death) else discharge_date new_row["dias_antes_desfecho"] = (date_of_outcome - date_tmp).days if pd.notna(date_of_outcome) else np.nan new_patient_rows.append(new_row) new_rows.extend(new_patient_rows) df_final = pd.DataFrame(new_rows) # We need to calculate some dummy variables for the categorical data. padrao_rsna_dummies = pd.get_dummies(df_final.padrao_imagem_rsna, prefix="padrao_rsna") ventilacao_dummies = pd.get_dummies(df_final.ventilacao, prefix="ventilacao") neoplasia_dummies = pd.get_dummies(df_final.neoplasia, prefix="neoplasia") irc_dummies = pd.get_dummies(df_final.irc, prefix="irc") sexo_dummies = pd.get_dummies(df_final.sexo, prefix="sexo") df_final = pd.concat([df_final, padrao_rsna_dummies, ventilacao_dummies, neoplasia_dummies, irc_dummies, sexo_dummies], axis=1) def calc_ventilation(row): if
pd.isna(row["ventilacao"])
pandas.isna
# -*- coding: utf-8 -*- from datetime import timedelta, time import numpy as np from pandas import (DatetimeIndex, Float64Index, Index, Int64Index, NaT, Period, PeriodIndex, Series, Timedelta, TimedeltaIndex, date_range, period_range, timedelta_range, notnull) import pandas.util.testing as tm import pandas as pd from pandas.lib import Timestamp from .common import Base class DatetimeLike(Base): def test_shift_identity(self): idx = self.create_index() self.assert_index_equal(idx, idx.shift(0)) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' self.assertFalse("length=%s" % len(idx) in str(idx)) self.assertTrue("'foo'" in str(idx)) self.assertTrue(idx.__class__.__name__ in str(idx)) if hasattr(idx, 'tz'): if idx.tz is not None: self.assertTrue(idx.tz in str(idx)) if hasattr(idx, 'freq'): self.assertTrue("freq='%s'" % idx.freqstr in str(idx)) def test_view(self): super(DatetimeLike, self).test_view() i = self.create_index() i_view = i.view('i8') result = self._holder(i) tm.assert_index_equal(result, i) i_view = i.view(self._holder) result = self._holder(i) tm.assert_index_equal(result, i_view) class TestDatetimeIndex(DatetimeLike, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def setUp(self): self.indices = dict(index=tm.makeDateIndex(10)) self.setup_indices() def create_index(self): return date_range('20130101', periods=5) def test_shift(self): # test shift for datetimeIndex and non datetimeIndex # GH8083 drange = self.create_index() result = drange.shift(1) expected = DatetimeIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(-1) expected = DatetimeIndex(['2012-12-31', '2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(3, freq='2D') expected = DatetimeIndex(['2013-01-07', '2013-01-08', '2013-01-09', '2013-01-10', '2013-01-11'], freq='D') self.assert_index_equal(result, expected) def test_construction_with_alt(self): i = pd.date_range('20130101', periods=5, freq='H', tz='US/Eastern') i2 = DatetimeIndex(i, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, tz=i.dtype.tz) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz=i.dtype.tz) self.assert_index_equal(i, i2) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') self.assert_index_equal(i2, expected) # incompat tz/dtype self.assertRaises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_pickle_compat_construction(self): pass def test_construction_index_with_mixed_timezones(self): # GH 11488 # no tz results in DatetimeIndex result = Index( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'),
Timestamp('2011-08-01 10:00')
pandas.lib.Timestamp
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["PC1_cos2"] = loading_outlier_scale_df_covar["PC1"] ** 2 loading_outlier_scale_df_covar["PC2_cos2"] = loading_outlier_scale_df_covar["PC2"] ** 2 loading_outlier_scale_df_covar["PC1_contrib"] = \ (loading_outlier_scale_df_covar["PC1_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["PC2_contrib"] = \ (loading_outlier_scale_df_covar["PC2_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["contrib"] = loading_outlier_scale_df_covar["PC1_contrib"] + \ loading_outlier_scale_df_covar[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf_covar = pd.concat( [loading_outlier_scale_df_covar.iloc[:, 0:2], loading_outlier_scale_df_covar.iloc[:, 6]], axis=1) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_dataf_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff_covar = pd.concat( [zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='contrib') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0), ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["PC1_cos2"] = loading_scale_input_df["PC1"] ** 2 loading_scale_input_df["PC2_cos2"] = loading_scale_input_df["PC2"] ** 2 loading_scale_input_df["PC1_contrib"] = \ (loading_scale_input_df["PC1_cos2"] * 100) / (loading_scale_input_df["PC1_cos2"].sum(axis=0)) loading_scale_input_df["PC2_contrib"] = \ (loading_scale_input_df["PC2_cos2"] * 100) / (loading_scale_input_df["PC2_cos2"].sum(axis=0)) loading_scale_input_df["contrib"] = loading_scale_input_df["PC1_contrib"] + loading_scale_input_df[ "PC2_contrib"] loading_scale_input_dataf = pd.concat( [loading_scale_input_df.iloc[:, 0:2], loading_scale_input_df.iloc[:, 6]], axis=1) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_dataf, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["PC1_cos2"] = loading_scale_input_outlier_df["PC1"] ** 2 loading_scale_input_outlier_df["PC2_cos2"] = loading_scale_input_outlier_df["PC2"] ** 2 loading_scale_input_outlier_df["PC1_contrib"] = \ (loading_scale_input_outlier_df["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df["PC2_contrib"] = \ (loading_scale_input_outlier_df["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df["contrib"] = loading_scale_input_outlier_df["PC1_contrib"] + \ loading_scale_input_outlier_df[ "PC2_contrib"] loading_scale_input_outlier_dataf = pd.concat( [loading_scale_input_outlier_df.iloc[:, 0:2], loading_scale_input_outlier_df.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat( [loading_scale_input_outlier_dataf, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='contrib') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["PC1_cos2"] = loading_scale_input_df_covar["PC1"] ** 2 loading_scale_input_df_covar["PC2_cos2"] = loading_scale_input_df_covar["PC2"] ** 2 loading_scale_input_df_covar["PC1_contrib"] = \ (loading_scale_input_df_covar["PC1_cos2"] * 100) / (loading_scale_input_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_df_covar["PC2_contrib"] = \ (loading_scale_input_df_covar["PC2_cos2"] * 100) / (loading_scale_input_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_df_covar["contrib"] = loading_scale_input_df_covar["PC1_contrib"] + \ loading_scale_input_df_covar[ "PC2_contrib"] loading_scale_input_dataf_covar = pd.concat( [loading_scale_input_df_covar.iloc[:, 0:2], loading_scale_input_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_dataf_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["PC1_cos2"] = loading_scale_input_outlier_df_covar["PC1"] ** 2 loading_scale_input_outlier_df_covar["PC2_cos2"] = loading_scale_input_outlier_df_covar["PC2"] ** 2 loading_scale_input_outlier_df_covar["PC1_contrib"] = \ (loading_scale_input_outlier_df_covar["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["PC2_contrib"] = \ (loading_scale_input_outlier_df_covar["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["contrib"] = loading_scale_input_outlier_df_covar["PC1_contrib"] + \ loading_scale_input_outlier_df_covar[ "PC2_contrib"] loading_scale_input_outlier_dataf_covar = pd.concat( [loading_scale_input_outlier_df_covar.iloc[:, 0:2], loading_scale_input_outlier_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat( [loading_scale_input_outlier_dataf_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff_covar = pd.concat( [zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='contrib') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_sort_covar variance = Var_scale_input_outlier_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0) )) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('download-link', 'download'), [Input('all-custom-choice', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(all_custom, outlier, matrix_type): if all_custom == 'All' and outlier == 'Yes' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'Yes' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_data.csv' return download @app.callback(Output('download-link', 'href'), [Input('all-custom-choice', 'value'), Input('feature-input', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')]) def update_link(all_custom, input, outlier, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) # COVARIANCE MATRIX REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) # COVARIANCE MATRIX OUTLIERS REMOVED x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar csv_string = dat.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return csv_string @app.callback(Output('download-link-correlation', 'download'), [Input('eigenA-outlier', 'value'), ]) def update_filename(outlier): if outlier == 'Yes': download = 'feature_correlation_removed_outliers_data.csv' elif outlier == 'No': download = 'feature_correlation_data.csv' return download @app.callback([Output('data-table-correlation', 'data'), Output('data-table-correlation', 'columns'), Output('download-link-correlation', 'href')], [Input("eigenA-outlier", 'value'), Input('csv-data', 'data')], ) def update_output(outlier, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff_table = correlation_dff * correlation_dff r2_dff_table.insert(0, 'Features', features) data_frame = r2_dff_table if outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier_table = correlation_dff_outlier * correlation_dff_outlier r2_dff_outlier_table.insert(0, 'Features', features_outlier) data_frame = r2_dff_outlier_table data = data_frame.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame.columns] csv_string = data_frame.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-eigenA', 'download'), [Input("matrix-type-data-table", 'value'), Input('eigenA-outlier', 'value')]) def update_filename(matrix_type, outlier): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_data.csv' elif outlier == "No" and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_data.csv' return download @app.callback([Output('data-table-eigenA', 'data'), Output('data-table-eigenA', 'columns'), Output('download-link-eigenA', 'href')], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) Var_dfff = pd.concat([(Var_cumsum * 100)], axis=1) Eigen_Analysis = pd.concat([PC_df.T, Eigen_df.T, Var_df.T, Var_dfff.T], axis=0) Eigen_Analysis = Eigen_Analysis.rename(columns=Eigen_Analysis.iloc[0]) Eigen_Analysis = Eigen_Analysis.drop(Eigen_Analysis.index[0]) Eigen_Analysis.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) Var_dfff_outlier = pd.concat([Var_cumsum_outlier * 100], axis=1) Eigen_Analysis_Outlier = pd.concat( [PC_df_outlier.T, Eigen_df_outlier.T, Var_df_outlier.T, Var_dfff_outlier.T], axis=0) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.rename(columns=Eigen_Analysis_Outlier.iloc[0]) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.drop(Eigen_Analysis_Outlier.index[0]) Eigen_Analysis_Outlier.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_Outlier elif outlier == "No" and matrix_type == "Covariance": features1 = dff.columns features = list(features1) x_covar = dff.loc[:, features].values pca_covar = PCA(n_components=len(features)) principalComponents_covar = pca_covar.fit_transform(x_covar) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) dfff_covar = finalDf_covar loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) Var_dfff_covar = pd.concat([(Var_cumsum_covar * 100)], axis=1) Eigen_Analysis_covar = pd.concat([PC_df_covar.T, Eigen_df_covar.T, Var_df_covar.T, Var_dfff_covar.T], axis=0) Eigen_Analysis_covar = Eigen_Analysis_covar.rename(columns=Eigen_Analysis_covar.iloc[0]) Eigen_Analysis_covar = Eigen_Analysis_covar.drop(Eigen_Analysis_covar.index[0]) Eigen_Analysis_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier_covar = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier_covar = outlier_dff.loc[:, ].values pca_outlier_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier_covar) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) dfff_outlier_covar = finalDf_outlier_covar # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier_covar = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier_covar = math.ceil(PC_interp_outlier_covar) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) Var_dfff_outlier_covar = pd.concat([Var_cumsum_outlier_covar * 100], axis=1) Eigen_Analysis_Outlier_covar = pd.concat( [PC_df_outlier_covar.T, Eigen_df_outlier_covar.T, Var_df_outlier_covar.T, Var_dfff_outlier_covar.T], axis=0) Eigen_Analysis_Outlier_covar = Eigen_Analysis_Outlier_covar.rename( columns=Eigen_Analysis_Outlier_covar.iloc[0]) Eigen_Analysis_Outlier_covar = Eigen_Analysis_Outlier_covar.drop(Eigen_Analysis_Outlier_covar.index[0]) Eigen_Analysis_Outlier_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_Outlier_covar elif all_custom == "Custom": if outlier == 'No' and matrix_type == "Correlation": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # INPUT DATA WITH OUTLIERS pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ eigenvalues_scale_input = pca_scale_input.explained_variance_ Eigen_df_scale_input = pd.DataFrame(data=eigenvalues_scale_input, columns=["Eigenvaues"]) PC_df_scale_input = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_input))], columns=['Principal Component']) Var_df_scale_input = pd.DataFrame(data=Var_scale_input, columns=['Cumulative Proportion of Explained Ratio']) Var_cumsum_scale_input = Var_df_scale_input.cumsum() Var_dfff_scale_input = pd.concat([Var_cumsum_scale_input * 100], axis=1) Eigen_Analysis_scale_input = pd.concat([PC_df_scale_input.T, Eigen_df_scale_input.T, Var_df_scale_input.T, Var_dfff_scale_input.T], axis=0) Eigen_Analysis_scale_input = Eigen_Analysis_scale_input.rename(columns=Eigen_Analysis_scale_input.iloc[0]) Eigen_Analysis_scale_input = Eigen_Analysis_scale_input.drop(Eigen_Analysis_scale_input.index[0]) Eigen_Analysis_scale_input.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input elif outlier == "Yes" and matrix_type == "Correlation": dff_input = dff.drop(columns=dff[input]) z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] dff_target = dff[input] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # INPUT DATA WITH REMOVING OUTLIERS pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ eigenvalues_scale_input_outlier = pca_scale_input_outlier.explained_variance_ Eigen_df_scale_input_outlier = pd.DataFrame(data=eigenvalues_scale_input_outlier, columns=["Eigenvaues"]) PC_df_scale_input_outlier = pd.DataFrame( data=['PC' + str(i + 1) for i in range(len(features_input_outlier))], columns=['Principal Component']) Var_df_scale_input_outlier = pd.DataFrame(data=Var_scale_input_outlier, columns=['Cumulative Proportion of Explained ' 'Ratio']) Var_cumsum_scale_input_outlier = Var_df_scale_input_outlier.cumsum() Var_dfff_scale_input_outlier = pd.concat([Var_cumsum_scale_input_outlier * 100], axis=1) Eigen_Analysis_scale_input_outlier = pd.concat([PC_df_scale_input_outlier.T, Eigen_df_scale_input_outlier.T, Var_df_scale_input_outlier.T, Var_dfff_scale_input_outlier.T], axis=0) Eigen_Analysis_scale_input_outlier = Eigen_Analysis_scale_input_outlier.rename( columns=Eigen_Analysis_scale_input_outlier.iloc[0]) Eigen_Analysis_scale_input_outlier = Eigen_Analysis_scale_input_outlier.drop( Eigen_Analysis_scale_input_outlier.index[0]) Eigen_Analysis_scale_input_outlier.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] x_scale_input_covar = dff_input.loc[:, features_input].values # INPUT DATA WITH OUTLIERS pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ eigenvalues_scale_input_covar = pca_scale_input_covar.explained_variance_ Eigen_df_scale_input_covar = pd.DataFrame(data=eigenvalues_scale_input_covar, columns=["Eigenvaues"]) PC_df_scale_input_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_input))], columns=['Principal Component']) Var_df_scale_input_covar = pd.DataFrame(data=Var_scale_input_covar, columns=['Cumulative Proportion of Explained Ratio']) Var_cumsum_scale_input_covar = Var_df_scale_input_covar.cumsum() Var_dfff_scale_input_covar = pd.concat([Var_cumsum_scale_input_covar * 100], axis=1) Eigen_Analysis_scale_input_covar = pd.concat([PC_df_scale_input_covar.T, Eigen_df_scale_input_covar.T, Var_df_scale_input_covar.T, Var_dfff_scale_input_covar.T], axis=0) Eigen_Analysis_scale_input_covar = Eigen_Analysis_scale_input_covar.rename( columns=Eigen_Analysis_scale_input_covar.iloc[0]) Eigen_Analysis_scale_input_covar = Eigen_Analysis_scale_input_covar.drop( Eigen_Analysis_scale_input_covar.index[0]) Eigen_Analysis_scale_input_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dff_input = dff.drop(columns=dff[input]) z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] dff_target = dff[input] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values # INPUT DATA WITH REMOVING OUTLIERS pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ eigenvalues_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ Eigen_df_scale_input_outlier_covar = pd.DataFrame(data=eigenvalues_scale_input_outlier_covar, columns=["Eigenvaues"]) PC_df_scale_input_outlier_covar = pd.DataFrame( data=['PC' + str(i + 1) for i in range(len(features_input_outlier))], columns=['Principal Component']) Var_df_scale_input_outlier_covar = pd.DataFrame(data=Var_scale_input_outlier_covar, columns=['Cumulative Proportion of Explained ' 'Ratio']) Var_cumsum_scale_input_outlier_covar = Var_df_scale_input_outlier_covar.cumsum() Var_dfff_scale_input_outlier_covar = pd.concat([Var_cumsum_scale_input_outlier_covar * 100], axis=1) Eigen_Analysis_scale_input_outlier_covar = pd.concat( [PC_df_scale_input_outlier_covar.T, Eigen_df_scale_input_outlier_covar.T, Var_df_scale_input_outlier_covar.T, Var_dfff_scale_input_outlier_covar.T], axis=0) Eigen_Analysis_scale_input_outlier_covar = Eigen_Analysis_scale_input_outlier_covar.rename( columns=Eigen_Analysis_scale_input_outlier_covar.iloc[0]) Eigen_Analysis_scale_input_outlier_covar = Eigen_Analysis_scale_input_outlier_covar.drop( Eigen_Analysis_scale_input_outlier_covar.index[0]) Eigen_Analysis_scale_input_outlier_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input_outlier_covar data = data_frame_EigenA.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame_EigenA.columns] csv_string = data_frame_EigenA.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-loadings', 'download'), [Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(outlier, matrix_type): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Loadings_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Loadings_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Loadings_correlation_matrix_data.csv' elif outlier == 'No' and matrix_type == "Covariance": download = 'Loadings_covariance_matrix_data.csv' return download @app.callback([Output('data-table-loadings', 'data'), Output('data-table-loadings', 'columns'), Output('download-link-loadings', 'href')], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale, columns=["PC" + str(i + 1) for i in range(len(features))]) line_group_scale_df = pd.DataFrame(data=features, columns=['Features']) loading_scale_dataf = pd.concat([line_group_scale_df, loading_scale_df], axis=1) data_frame = loading_scale_dataf elif outlier == 'Yes' and matrix_type == "Correlation": # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale, columns=["PC" + str(i + 1) for i in range(len(features_outlier))]) line_group_outlier_scale_df = pd.DataFrame(data=features_outlier, columns=['Features']) loading_outlier_scale_dataf = pd.concat([line_group_outlier_scale_df, loading_outlier_scale_df], axis=1) data_frame = loading_outlier_scale_dataf elif outlier == "No" and matrix_type == "Covariance": features1 = dff.columns features = list(features1) x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar, columns=["PC" + str(i + 1) for i in range(len(features))]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['Features']) loading_scale_dataf_covar = pd.concat([line_group_scale_df_covar, loading_scale_df_covar], axis=1) data_frame = loading_scale_dataf_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values # uses covariance matrix pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar, columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar, columns=["PC" + str(i + 1) for i in range(len(features_outlier))]) line_group_outlier_scale_df_covar = pd.DataFrame(data=features_outlier, columns=['Features']) loading_outlier_scale_dataf_covar = pd.concat( [line_group_outlier_scale_df_covar, loading_outlier_scale_df_covar], axis=1) data_frame = loading_outlier_scale_dataf_covar if all_custom == 'Custom': if outlier == 'No' and matrix_type == "Correlation": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input, columns=["PC" + str(i + 1) for i in range(len(features_input))]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['Features']) loading_scale_input_dataf = pd.concat([line_group_scale_input_df, loading_scale_input_df], axis=1) data_frame = loading_scale_input_dataf elif outlier == 'Yes' and matrix_type == "Correlation": dff_input = dff.drop(columns=dff[input]) dff_target = dff[input] z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier, columns=["PC" + str(i + 1) for i in range(len(features_input_outlier))]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['Features']) loading_scale_input_outlier_dataf = pd.concat([line_group_scale_input_outlier_df, loading_scale_input_outlier_df], axis=1) data_frame = loading_scale_input_outlier_dataf elif outlier == "No" and matrix_type == "Covariance": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # INPUT DATA WITH OUTLIERS x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar, columns=["PC" + str(i + 1) for i in range(len(features_input))]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['Features']) loading_scale_input_dataf_covar = pd.concat([line_group_scale_input_df_covar, loading_scale_input_df_covar], axis=1) data_frame = loading_scale_input_dataf_covar elif outlier == "Yes" and matrix_type == "Covariance": dff_input = dff.drop(columns=dff[input]) dff_target = dff[input] z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar, columns=["PC" + str(i + 1) for i in range(len(features_input_outlier))]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['Features']) loading_scale_input_outlier_dataf_covar = pd.concat([line_group_scale_input_outlier_df_covar, loading_scale_input_outlier_df_covar], axis=1) data_frame = loading_scale_input_outlier_dataf_covar data = data_frame.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame.columns] csv_string = data_frame.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-cos2', 'download'), [Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(outlier, matrix_type): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Cos2_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Cos2_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Cos2_correlation_matrix_data.csv' elif outlier == "No" and matrix_type == "Covariance": download = 'Cos2_covariance_matrix_data.csv' return download @app.callback([Output('data-table-cos2', 'data'), Output('data-table-cos2', 'columns'), Output('download-link-cos2', 'href'), ], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df =
pd.read_json(data, orient='split')
pandas.read_json
#! -*- coding: utf-8 -*- #--------------------------------- # モジュールのインポート #--------------------------------- import os import pandas as pd #--------------------------------- # 定数定義 #--------------------------------- #--------------------------------- # 関数 #--------------------------------- def null_count(train_data, test_data): print('<< null count: train_data >>') print(
pd.isnull(train_data)
pandas.isnull
""" Output/model results file interfaces. All defined classes are attached to project and run instances as propertyplugin that return a pandas.DataFrame. For files to be read from the SWIM project, a from_project method needs to be defined. To read the data from a run instance, a method refering to the extension of a file saved as run file needs to be defined (e.g. from_csv) or from_run to overwrite the file selection. Conventions ----------- - class and method names should be lowercase, words separated by _ and descriptions should be singular (subbasin rather than subbasins) - name word order: spatial domain (catchment, subbasin, hydrotope, station etc.), timestep adjective (daily, monthly, annually, average), variable and/or other descriptions. Pattern: domain_timestep_variable[_description...] - all read ``from_*`` methods should parse any keyword to the pandas.read call """ import os.path as osp from glob import glob import datetime as dt import calendar import warnings import inspect import numpy as np import pandas as pd from modelmanager.utils import propertyplugin from modelmanager.plugins.pandas import ProjectOrRunData from swimpy import utils, plot, hydro from swimpy.plot import plot_function as _plot_function from swimpy.grass import _subbasin_or_hydrotope_values_to_raster RESDIR = 'output/Res' GISDIR = 'output/GIS' class station_daily_discharge(ProjectOrRunData): """ Daily discharge of selected stations. """ path = osp.join(RESDIR, 'Q_gauges_sel_sub_routed_m3s.csv') plugin = ['plot', 'plot_regime', 'plot_flow_duration_polar'] @staticmethod def from_project(path, **readkwargs): readkwargs.setdefault("skipinitialspace", True) df = pd.read_csv(path, **readkwargs) dtms = [dt.date(y, 1, 1) + dt.timedelta(d - 1) for y, d in zip(df.pop('YEAR'), df.pop('DAY'))] df.index = pd.PeriodIndex(dtms, freq='d', name='time') return df @staticmethod def from_csv(path, **readkwargs): df = pd.read_csv(path, index_col=0, parse_dates=[0], **readkwargs) df.index = df.index.to_period(freq='d') return df def _default_stations(self, stations=None): if stations is None: dstations = self.columns[1:] # first column is observed else: assert type(stations) == str or len(stations) > 0 dstations = [stations] if type(stations) == str else stations return dstations @_plot_function def plot(self, stations=None, freq='d', minmax=False, observed=False, ax=None, runs=None, output=None, **linekw): """Line plot of daily discharge of selected stations. Arguments --------- stations : None | str | iterable Only show single (str) or subset (iterable) of stations. If None, show all found in file. freq : <pandas frequency> Any pandas frequency to aggregate to. observed : bool Add line for observed discharge. stations.daily_discharge_observed must be configured. **linekw : Parse any keyword to the line plot function. """ stations = self._default_stations(stations) data = utils.aggregate_time(self[stations], freq=freq) # plot observed if observed: obs = utils.aggregate_time( (self.project.stations.daily_discharge_observed .loc[self.index, stations]), freq=freq) clrs = plot.default_colors(len(stations), linekw.get('colors', [])) for c, s in zip(clrs, stations): plot.plot_discharge(obs[s], ax, linestyle='--', color=c) for s in stations: # add label if multiple runs if runs and len(runs[0]) > 1: qs, i = runs lab = '%s ' % qs[i] + ('' if len(stations) == 1 else str(s)) linekw['label'] = lab line = plot.plot_discharge(data[s], ax, **linekw) return line @_plot_function def plot_regime(self, stations=None, freq='d', minmax=False, observed=False, ax=None, runs=None, output=None, **linekw): """Line plot of daily discharge of selected stations. Arguments --------- stations : None | str | iterable Only show single (str) or subset (iterable) of stations. If None, show all found in file. freq : str Regime frequency, d (daily) or m (monthly). minmax : bool | dict Show min-max range. May be a dictionary kwargs parsed to ax.fill_between. observed : bool Add line for observed discharge. stations.daily_discharge_observed must be configured. **linekw : Parse any keyword to the line plot function. """ stations = self._default_stations(stations) data = {} for st in ['mean'] + (['min', 'max'] if minmax else []): data[st] = utils.aggregate_time(self[stations], regime=True, freq=freq, regime_method=st) # show range first if required if minmax: for s in stations: fbkw = minmax if type(minmax) == dict else {} fbkw.setdefault("alpha", 0.5) ax.fill_between(data['min'][s].index, data['max'][s], **fbkw) # plot observed if observed: obs = utils.aggregate_time( (self.project.stations.daily_discharge_observed .loc[self.index, stations]), regime=True, freq=freq) clrs = plot.default_colors(len(stations), linekw.get('colors', [])) for c, s in zip(clrs, stations): plot.plot_discharge(obs[s], ax, linestyle='--', color=c) for s in stations: # add label if multiple runs if runs and len(runs[0]) > 1: qs, i = runs lab = '%s ' % qs[i] + ('' if len(stations) == 1 else str(s)) linekw['label'] = lab line = plot.plot_discharge(data['mean'][s], ax, **linekw) xlabs = {'d': 'Day of year', 'm': 'Month'} ax.set_xlabel(xlabs[freq]) if freq == 'm': ax.set_xticklabels([s[0] for s in calendar.month_abbr[1:]]) ax.set_xticks(range(1, 12+1)) ax.set_xlim(1, 12) elif freq == 'd': nd = np.array(calendar.mdays).cumsum() nd[:-1] += 1 ax.set_xticks(nd) ax.set_xlim(1, 365) return line @_plot_function def plot_flow_duration(self, stations=None, ax=None, runs=None, output=None, **linekw): stations = self._default_stations(stations) lines = [] for s in stations: fd = hydro.flow_duration(self[s]) line = plot.plot_flow_duration(fd, ax=ax, **linekw) lines.append(line) return @_plot_function def plot_flow_duration_polar(self, station, percentilestep=10, freq='m', colormap='jet_r', ax=None, runs=None, output=None, **barkw): """Plot flow duration on a wheel of month or days of year. Arguments --------- station : str A single station label (not possible for multiple stations). percentilestep : % <= 50 Intervals of flow duration of 100%. freq : 'm' | 'd' Duration per month or day of year. colormap : str Matplotlib to use for the colour shading. """ if runs: assert len(runs[0]) == 1 ax = plot.plot_flow_duration_polar(self[station], freq=freq, ax=ax, percentilestep=percentilestep, colormap=colormap, **barkw) return ax def peak_over_threshold(self, percentile=1, threshold=None, maxgap=None, stations=None): """Identify peaks over a threshold, return max, length, date and recurrence. Arguments --------- percentile : number The percentile threshold of q., e.g. 1 means Q1. threshold : number, optional Absolute threshold to use for peak identification. maxgap : int, optional Largest gap between two threshold exceedance periods to count as single flood event. Number of timesteps. If not given, every exceedance is counted as individual flood event. stations : stationID | list of stationIDs Return subset of stations. Default all. Returns ------- pd.DataFrame : Peak discharge ordered dataframe with order index and peak q, length, peak date and recurrence columns with MultiIndex if more than one station is selected. """ stations = self._default_stations(stations) kw = dict(percentile=percentile, threshold=threshold, maxgap=maxgap) pot = [hydro.peak_over_threshold(self[s], **kw) for s in stations] return pot[0] if len(stations) == 1 else pd.concat(pot, keys=stations) def obs_sim_overlap(self, warmupyears=1): """Return overlapping obs and sim dataframes excluding warmup period. Arguments --------- warmupyears : int Number of years to skip at beginng as warm up period. Returns ------- (pd.DataFrame, pd.DataFrame) : observed and simulated discharge. """ obs = self.project.stations.daily_discharge_observed # exclude warmup period sim = self[str(self.index[0].year+warmupyears):] obsa, sima = obs.align(sim, join='inner') # obsa can still have columns with only NAs obsa.dropna(how='all', axis=1, inplace=True) return obsa, sima[obsa.columns] @property def NSE(self): """pandas.Series of Nash-Sutcliff efficiency excluding warmup year.""" obs, sim = self.obs_sim_overlap() return pd.Series({s: hydro.NSE(obs[s], sim[s]) for s in obs.columns}) @property def rNSE(self): """pandas.Series of reverse Nash-Sutcliff efficiency (best = 0)""" return 1 - self.NSE @property def pbias(self): """pandas.Series of percent bias excluding warmup year.""" obs, sim = self.obs_sim_overlap() return pd.Series({s: hydro.pbias(obs[s], sim[s]) for s in obs.columns}) @property def pbias_abs(self): """pandas.Series of absolute percent bias excluding warmup year.""" return self.pbias.abs() class subbasin_daily_waterbalance(ProjectOrRunData): path = osp.join(RESDIR, 'subd.prn') plugin = ['to_raster'] @staticmethod def from_project(path, **readkwargs): def parse_time(y, d): dto = dt.date(int(y), 1, 1) + dt.timedelta(int(d) - 1) return pd.Period(dto, freq='d') d = pd.read_csv(path, delim_whitespace=True, date_parser=parse_time, parse_dates=[[0, 1]], index_col=[0, 1], **readkwargs) d.index.names = ['time', 'subbasinID'] return d @staticmethod def from_csv(path, **readkwargs): df = pd.read_csv(path, index_col=[0, 1], parse_dates=[0], date_parser=pd.Period, **readkwargs) return df def to_raster(self, variable, timestep=None, prefix=None, name=None, strds=True, mapset=None): # extra argument """variable : str Selected variable (will be appended to default prefix). """ prefix = prefix or self.__class__.__name__ + '_' + variable.lower() _subbasin_or_hydrotope_values_to_raster( self.project, self[variable].unstack(), self.project.subbasins.reclass, timestep=timestep, name=name, prefix=prefix, strds=strds, mapset=mapset) return to_raster.__doc__ = (_subbasin_or_hydrotope_values_to_raster.__doc__ + to_raster.__doc__) class subbasin_monthly_waterbalance(subbasin_daily_waterbalance): path = osp.join(RESDIR, 'subm.prn') def from_project(self, path, **readkwargs): styr = self.project.config_parameters['iyr'] def parse_time(y, m): return pd.Period('%04i-%02i' % (styr+int(y)-1, int(m)), freq='m') with open(path) as f: header = f.readline().split() df = pd.read_csv(f, delim_whitespace=True, skiprows=1, header=None, index_col=[0, 1], date_parser=parse_time, parse_dates=[[0, 1]], names=header, **readkwargs) df.index.names = ['time', 'subbasinID'] return df class subbasin_daily_discharge(ProjectOrRunData): path = osp.join(RESDIR, 'Q_gauges_all_sub_routed_m3s.csv') @staticmethod def from_project(path, **readkwargs): df = pd.read_csv(path, delim_whitespace=True, index_col=[0, 1], **readkwargs) dtms = [dt.date(y, 1, 1) + dt.timedelta(d - 1) for y, d in df.index] df.index = pd.PeriodIndex(dtms, freq='d', name='time') df.columns = df.columns.astype(int) return df @staticmethod def from_csv(path, **readkwargs): df = pd.read_csv(path, index_col=0, parse_dates=[0], **readkwargs) df.index = df.index.to_period(freq='d') df.columns = df.columns.astype(int) return df class subbasin_daily_runoff(subbasin_daily_discharge): path = osp.join(RESDIR, 'Q_gauges_all_sub_mm.csv') class catchment_daily_waterbalance(ProjectOrRunData): path = osp.join(RESDIR, 'bad.prn') @staticmethod def from_project(path, **readkwargs): df =
pd.read_csv(path, delim_whitespace=True, **readkwargs)
pandas.read_csv
import pandas as pd import numpy as np from datetime import datetime from binance.spot import Spot from portfolio_keys import * from misc_functions.common_functions import generic_dca_profit_loss, database_recon_update from crypto_utils import _paring_returner,_price_coverter Binanceclient = Spot(key=BINANCE_API_KEY, secret=BINANCE_PRIVATE_KEY) # help functions for final report def kraken_get_balance_deprecated(object): return pd.DataFrame(object.query_private('Balance')['result'],index=[0]) def kraken_get_open_orders(object): orders = object.query_private('OpenOrders') df_orders = pd.DataFrame() for order in orders['result']['open'].keys(): df_orders = pd.concat([df_orders,pd.DataFrame({ 'open_time':datetime.fromtimestamp(orders['result']['open'][order]['opentm']).strftime("%A, %d %B %Y, %H:%M:%S") ,'pair': orders['result']['open'][order]['descr']['pair'] ,'ordertype': orders['result']['open'][order]['descr']['ordertype'] ,'type': orders['result']['open'][order]['descr']['type'] ,'price': orders['result']['open'][order]['descr']['price'] ,'vol':orders['result']['open'][order]['vol'] ,'order': orders['result']['open'][order]['descr']['order'] ,'fee':orders['result']['open'][order]['fee'] ,'transaction_id' : order },index=[order])]) df_orders['exchange'] = 'kraken' return df_orders def kraken_get_transactions_history_deprecated(object): tradeshistory = object.query_private('TradesHistory') df_tradeshistory =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import timeit __author__ = ['<NAME>'] __email__ = ['<EMAIL>'] __package__ = 'Gemm testing' NUM_REPEATS = 10 NUMBER = 500 def gemm_nn (N, M, K): SETUP_CODE = ''' import numpy as np np.random.seed(123) N, M, K = ({N}, {M}, {K}) a = np.random.uniform(low=0., high=1., size=(N, M)) b = np.random.uniform(low=0., high=1., size=(M, K)) '''.format(**{'N' : N, 'M' : M, 'K' : K }) TEST_CODE = ''' c = np.einsum('ij, jk -> ik', a, b, optimize=True) ''' times = timeit.repeat(setup=SETUP_CODE, stmt=TEST_CODE, repeat=NUM_REPEATS, number=NUMBER) return times def gemm_nt (N, M, K): SETUP_CODE = ''' import numpy as np np.random.seed(123) N, M, K = ({N}, {M}, {K}) a = np.random.uniform(low=0., high=1., size=(N, M)) b = np.random.uniform(low=0., high=1., size=(M, K)) bt = b.T '''.format(**{'N' : N, 'M' : M, 'K' : K }) TEST_CODE = ''' c = np.einsum('ij, kj -> ik', a, bt, optimize=True) ''' times = timeit.repeat(setup=SETUP_CODE, stmt=TEST_CODE, repeat=NUM_REPEATS, number=NUMBER) return times if __name__ == '__main__': import seaborn as sns import pylab as plt import pandas as pd import numpy as np N, M, K = (100, 200, 300) times_nn = gemm_nn(N, M, K) times_nt = gemm_nt(N, M, K) ref = np.asarray(times_nn) val = np.asarray(times_nt) times_nt = np.asarray(times_nt)/ref times_nn = np.asarray(times_nn)/ref times_nn =
pd.DataFrame(data=times_nn, columns=['Times'])
pandas.DataFrame
import pandas as pd import xml.etree.ElementTree as ET import lxml.etree as etree most_serious_problem = pd.read_csv( "../data/processed_data/special_eb/data/3_final/most_serious_problem/special_eb_most_serious_problem_final.csv") personally_taken_action = pd.read_csv( "../data/processed_data/special_eb/data/3_final/personally_taken_action/special_eb_personally_taken_action_final.csv") severity_of_problem =
pd.read_csv( "../data/processed_data/special_eb/data/3_final/severity_of_problem/special_eb_severity_of_problem_final.csv")
pandas.read_csv
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right) tm.assert_series_equal(result, expected) result = left | Series(right) tm.assert_series_equal(result, expected) expected = Series([False, True, True, True, True]) result = left ^ right tm.assert_series_equal(result, expected) result = left ^ np.array(right) tm.assert_series_equal(result, expected) result = left ^ Index(right) tm.assert_series_equal(result, expected) result = left ^ Series(right) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): # GH#9016: support bitwise op for integer types # with non-matching indexes, logical operators will cast to object # before operating index = list("bca") s_tft = Series([True, False, True], index=index) s_tft = Series([True, False, True], index=index) s_tff = Series([True, False, False], index=index) s_0123 = Series(range(4), dtype="int64") # s_0123 will be all false now because of reindexing like s_tft expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_tft & s_0123 tm.assert_series_equal(result, expected) expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_0123 & s_tft tm.assert_series_equal(result, expected) s_a0b1c0 = Series([1], list("b")) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list("abc")) tm.assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list("abc")) tm.assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) tm.assert_series_equal(result, expected) def test_scalar_na_logical_ops_corners_aligns(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan d = DataFrame({"A": s}) expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9))) result = s & d tm.assert_frame_equal(result, expected) result = d & s tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) tm.assert_series_equal(result, expected) def test_reversed_xor_with_index_returns_index(self): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Index.symmetric_difference(idx1, ser) with tm.assert_produces_warning(FutureWarning): result = idx1 ^ ser tm.assert_index_equal(result, expected) expected = Index.symmetric_difference(idx2, ser) with tm.assert_produces_warning(FutureWarning): result = idx2 ^ ser tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "op", [ pytest.param( ops.rand_, marks=pytest.mark.xfail( reason="GH#22092 Index __and__ returns Index intersection", raises=AssertionError, strict=True, ), ), pytest.param( ops.ror_, marks=pytest.mark.xfail( reason="GH#22092 Index __or__ returns Index union", raises=AssertionError, strict=True, ), ), ], ) def test_reversed_logical_op_with_index_returns_series(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series(op(idx1.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series(op(idx2.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "op, expected", [ (ops.rand_, Index([False, True])), (ops.ror_, Index([False, True])), (ops.rxor, Index([])), ], ) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # behaving as set ops is deprecated, will become logical ops result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list("bca")) b = Series([False, True, False], list("abc")) expected = Series([False, True, False], list("abc")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False], list("abc")) result = a | b tm.assert_series_equal(result, expected) expected = Series([True, False, False], list("abc")) result = a ^ b tm.assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list("bca")) b = Series([False, True, False, True], list("abcd")) expected = Series([False, True, False, False], list("abcd")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False, False], list("abcd")) result = a | b tm.assert_series_equal(result, expected) # filling # vs empty empty = Series([], dtype=object) result = a & empty.copy() expected = Series([False, False, False], list("bca")) tm.assert_series_equal(result, expected) result = a | empty.copy() expected = Series([True, False, True], list("bca")) tm.assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ["z"]) expected = Series([False, False, False, False], list("abcz")) tm.assert_series_equal(result, expected) result = a | Series([1], ["z"]) expected = Series([True, True, False, False], list("abcz")) tm.assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [ empty.copy(), Series([1], ["z"]), Series(np.nan, b.index), Series(np.nan, a.index), ]: result = a[a | e] tm.assert_series_equal(result, a[a]) for e in [Series(["z"])]: result = a[a | e] tm.assert_series_equal(result, a[a]) # vs scalars index = list("bca") t = Series([True, False, True]) for v in [True, 1, 2]: result =
Series([True, False, True], index=index)
pandas.Series
# -*- coding: utf-8 -*- """ Unit test for name_places.py Created on Wed Oct 13 13:15:45 2021 @author: Beck """ import unittest import pandas as pd import csv from scripts.feature_extraction.names_places import NamesPlacesFeature class NamesPlacesFeatureTest(unittest.TestCase): def setUp(self): self.INPUT_COLUMN = "input" self.names_places_feature = NamesPlacesFeature(self.INPUT_COLUMN) self.df = pd.DataFrame() def test_input_columns(self): self.assertEqual(self.names_places_feature._input_columns, [self.INPUT_COLUMN]) def test_names_places(self): df =
pd.read_csv("data/preprocessing/preprocessed.csv", quoting = csv.QUOTE_NONNUMERIC, lineterminator = "\n")
pandas.read_csv
#!/usr/bin/env python3 #-*- coding:utf-8 -*- import os import urllib.request import json import numpy as np import pandas as pd from multiprocessing.dummy import Pool def download_file(name, spec): url = spec['url'] # All of the datasets are ascii files, so save with extension .txt save_file = 'data/raw/{}.txt'.format(name) # file exists if os.path.isfile(save_file): print('Ignore', save_file, ': file exists') return try: urllib.request.urlretrieve(url, save_file) except Exception as e: print('Got', type(e).__name__, '-', e, '\nIgnore', save_file, ': fail to download') else: print('Succesfully download', save_file) def download_datasets(data_spec): if not os.path.exists('data'): os.makedirs('data') if not os.path.exists('data/raw'): os.makedirs('data/raw') # download files with Pool(16) as pool: pool.starmap(download_file, data_spec.items()) def convert_to_npz(data_spec): print() print('-----------------------------------') print('Dataset Conversion') for name, spec in data_spec.items(): raw_file = 'data/raw/{}.txt'.format(name) save_file = 'data/{}.npz'.format(name) # read dataframe layout = spec['layout'] try: if layout == 'csv': df = pd.read_csv( raw_file, header=None, engine='python', **spec['kwargs']) elif layout == 'txt': df = pd.read_csv( raw_file, header=None, delim_whitespace=True, engine='python', **spec['kwargs']) elif layout == "special": df = pd.read_csv(raw_file, engine='python', **spec['kwargs']) except FileNotFoundError: print('Ignore', raw_file, ': file not found on disk') continue # drop null rows df = df[(df.values != spec['null_value']).all(axis=1)] # preprocess for col, method in spec['preprocess']: if method == 'comma_string_to_float': df[col] = df[col].replace({',':'.'}, regex=True).astype(float) # split target y y = pd.factorize(df[spec["target"]])[0] # drop unused columns X = df.drop(columns=[spec["target"]]+spec['drop_cols']) # create dummy variables if spec['dummy_cols']: assert spec["target"] not in spec['dummy_cols'] dummies = pd.get_dummies(X[spec['dummy_cols']].astype(str), drop_first=True) non_dummies = X.drop(columns=spec['dummy_cols']) X =
pd.concat([non_dummies, dummies], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import os,sys import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 28}) plt.rcParams['figure.figsize'] = (30, 15) # This journal documents the manipulation of PV installation data for the USA. This covers selection of data, and weighting by marketshare. # In[2]: cwd = os.getcwd() #grabs current working directory df_installs_raw = pd.read_csv(cwd+"/../../PV_ICE/baselines/SupportingMaterial/PVInstalls_USA_AllSources.csv", index_col='Year') # In[3]: sources = df_installs_raw.columns #print(len(sources)) plt.plot(df_installs_raw.index,df_installs_raw[sources[0]],lw=4,marker='*',label=sources[0]) plt.plot(df_installs_raw.index,df_installs_raw[sources[1]],lw=3,marker='o',label=sources[1]) plt.plot(df_installs_raw.index,df_installs_raw[sources[2]],lw=2,marker='o',label=sources[2]) plt.plot(df_installs_raw.index,df_installs_raw[sources[3]],lw=2,marker='o',label=sources[3]) plt.plot(df_installs_raw.index,df_installs_raw[sources[4]],lw=2,marker='o',label=sources[4]) plt.plot(df_installs_raw.index,df_installs_raw[sources[5]],lw=2,marker='o',label=sources[5]) plt.yscale('log') plt.ylabel('PV Installed (MW)') plt.legend(bbox_to_anchor=(0, 1, 1, 0), loc="lower left") #plt.plot(df_installs_raw, marker='o') # # Select the data to use for installs # The IRENA is consistently lower than the other sources from 2012 through the present. Given that all other sources are in agreement, we will select one of these data sets to use for installation data, rather than IRENA. In this case, we will select the Wood Mackenzie Power & Renewables quarterly reports and PV forecasts from 2010 through 2019. # In[4]: installs_2010_2019 = df_installs_raw.loc[(df_installs_raw.index>=2010) & (df_installs_raw.index<=2019)] installs_recent = pd.DataFrame(installs_2010_2019[sources[0]]) installs_recent.columns = ['installed_pv_MW'] print(installs_recent) # Only 1 dataset exists from 1995 to 2000, from IEA PVPS 2010 National Survey report. This seems to track reasonably well with Wood Mackenzie data between 2008 and 2010. Therefore, this will be used up to 2010. # In[5]: installs_upto2010 = df_installs_raw.loc[(df_installs_raw.index<2010)] installs_old =
pd.DataFrame(installs_upto2010[sources[1]])
pandas.DataFrame
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% # first, REMEMBER to activate cryptoalgowheel-S2 environment! # %% import datetime import os import sys import backtrader as bt import backtrader.analyzers as btanalyzers import numpy as np import pandas as pd import matplotlib import PyQt5 import seaborn import sklearn # %% #*****WARNING: REVISE THE "dir" FOLDER PATHS!!! datadir = "./data" logdir = "./log" reportdir = "./report" datafile = "BTC_USDT_1h.csv" #!NOTICE: use our data "BTC_USDT_1h.csv" here from_datetime = "2020-01-01 00:00:00" to_datetime = "2020-04-01 00:00:00" # %% class OptDoubleSMACross(bt.Strategy): params = ( ("pfast", 10), ("pslow", 20), ) def log(self, txt, dt=None, doprint=False): #(by default don't print log here) if doprint: dt = dt or self.datas[0].datetime.date(0) print("%s, %s" % (dt.isoformat(), txt)) def __init__(self): self.dataclose = self.datas[0].close # add both "fast" and "slow" SimpleMovingAverage indicators self.fastsma = bt.indicators.SimpleMovingAverage(self.datas[0], period = self.params.pfast) self.slowsma = bt.indicators.SimpleMovingAverage(self.datas[0], period = self.params.pslow) # add a "CrossOver" signal!! self.crossover = bt.indicators.CrossOver(self.fastsma, self.slowsma) #NOTICE here passing in "fast" SMA as 1st line, "slow" SMA as 2nd line #["CrossOver" indicator Usage reference: https://www.backtrader.com/home/helloalgotrading/; documentation: https://www.backtrader.com/docu/indautoref/#crossover] # *****! Warning: avoid the erroreous cases of "pslow" larger than "pfast"! # *** Documentation: https://www.backtrader.com/docu/exceptions/#strategyskiperror if self.params.pslow < self.params.pfast+5: raise bt.errors.StrategySkipError def next(self): if not self.position: #if not in the market yet (no "position" yet) if self.crossover > 0: # "CrossOver" function return 1.0: meaning "fast SMA"(1st line) crosses the "slow SMA"(2nd line) upwards #--BUY! self.buy() else: #("already in the market") if self.crossover < 0: #"CrossOver" function return -1.0: meaning "fast SMA"(1st line) crosses the "slow SMA"(2nd line) downwards #--SELL! self.sell() #*** added "Strategy hook" here - "stop" method, in order to record the portfolio final net value of each optimization round: def stop(self): self.log("Fast SMA Period %2d, Slow SMA Period %2d: Ending Value %.2f" % (self.params.pfast, self.params.pslow, self.broker.getvalue()), doprint=True) #(do print the log message by the end of each optimization round here) # %% [markdown] # KPIs to be calculated: <br> # - Return (ending and starting values) # - MaxDrawDown # - TotalTrades (number of trades, WinTrades + LossTrades) # - WinTrades # - LossTrades # - WinRatio (WinTrades / TotalTrades) # - AverageWin$ (TotalWins dollar value / WinTrades) # - AverageLoss$ (TotalLosses dollar value / LossTrades) # - AverageWinLossRatio (AverageWin\$ / AverageLoss\$) # %% if __name__ == "__main__": cerebro = bt.Cerebro() # feed data: data = pd.read_csv(os.path.join(datadir, datafile), index_col="datetime", parse_dates=True) data = data.loc[(data.index >= pd.to_datetime(from_datetime)) & (data.index <=
pd.to_datetime(to_datetime)
pandas.to_datetime
#!/usr/bin/python # -*- coding: utf-8 -*- import pandas from collections import defaultdict import numpy import ujson from pathlib import Path from typing import * from experiments.arg_helper import get_sm_ids_by_name_range from experiments.evaluation_metrics import smodel_eval, DataNodeMode from experiments.previous_work.serene_2018.ssd import SSD from semantic_modeling.data_io import get_semantic_models, get_ontology from semantic_modeling.karma.semantic_model import SemanticModel from semantic_modeling.utilities.ontology import Ontology from semantic_modeling.utilities.serializable import deserializeJSON from transformation.models.data_table import DataTable from transformation.models.table_schema import Schema def evaluate_serene_outputs(files: List[Path], ont: Ontology, gold_sm: Optional[SemanticModel]=None) -> Union[dict, None]: try: cor_ssd_file = [file for file in files if file.name.endswith(".cor_ssd.json")][0] ssd_file = [file for file in files if file.name.endswith(".ssd.json")][0] except Exception as e: raise Exception("Invalid : %s" % files[0], e) cor_ssd = SSD.from_file(cor_ssd_file, ont).clear_serene_footprint() ssd = SSD.from_file(ssd_file, ont) chuffed_ssds = [] for file in files: if file.name.find(".chuffed") != -1: objs = deserializeJSON(file) chuffed_ssds.append([SSD.from_json(obj, ont) for obj in objs]) if gold_sm is None: # SERENE can filter the cor_ssd graph to remove new-semantic types gold_graph = cor_ssd.graph else: gold_graph = gold_sm.graph eval_results = {} for chuffed_idx, ssds in enumerate(chuffed_ssds): eval_results[chuffed_idx] = {} if len(ssds) == 0: eval_results[chuffed_idx] = { 'precision': 0, 'recall': 0, 'f1': 0 } else: ssd = ssds[0] # ssd.graph.render() result = smodel_eval.f1_precision_recall(gold_graph, ssd.graph, DataNodeMode.NO_TOUCH) eval_results[chuffed_idx]['precision'] = result['precision'] eval_results[chuffed_idx]['recall'] = result['recall'] eval_results[chuffed_idx]['f1'] = result['f1'] return eval_results if __name__ == '__main__': dataset = "museum_crm" sms = get_semantic_models(dataset) sms_index = {sm.id[:3]: sm for sm in sms} ont = get_ontology(dataset) ont.register_namespace("serene", "http://au.csiro.data61/serene/dev#") # get serene output by sms kfold_results = [] stype = "ReImplMinhISWC_False_pat" for kfold in ["kfold-s01-s14", "kfold-s15-s28", "kfold-s08-s21"]: kfold_sms_prefix = {sm[:3] for sm in get_sm_ids_by_name_range(*kfold.replace("kfold-", "").split("-"), [sm.id for sm in sms])} print("==== KFOLD:", kfold, "====") serene_output_dir = Path("/workspace/tmp/serene-python-client/datasets/%s/" % dataset) / kfold / f"predicted_{stype}" serene_outputs = {} if not serene_output_dir.exists(): print("not existed") continue for file in sorted(serene_output_dir.iterdir()): if not file.name.startswith("s") or file.name.startswith("ser"): continue prefix = file.name[:3] if prefix not in serene_outputs: serene_outputs[prefix] = [] serene_outputs[prefix].append(file) methods = defaultdict(lambda: {}) for prefix, files in sorted(serene_outputs.items(), key=lambda x: x[0]): if prefix in kfold_sms_prefix: continue # if not prefix == "s09": # continue # sms_index[prefix].graph.render(80) eval_res = evaluate_serene_outputs(files, ont, sms_index[prefix]) # print(prefix, ujson.dumps(eval_res, indent=4)) for i, res in eval_res.items(): methods[i][prefix] = { 'precision': res['precision'], 'recall': res['recall'], 'f1': res['f1'], } assert len(methods[0]) == 14 header = ["source"] matrix = [] for method_idx, results in sorted(methods.items(), key=lambda x: x[0]): header.append(f"{method_idx}_precision") header.append(f"{method_idx}_recall") header.append(f"{method_idx}_f1") for prefix, o in sorted(methods[0].items(), key=lambda x: x[0]): matrix.append([prefix]) for method_idx, results in sorted(methods.items(), key=lambda x: x[0]): for i, (prefix, o) in enumerate(sorted(results.items(), key=lambda x: x[0])): matrix[i].append(o['precision']) matrix[i].append(o['recall']) matrix[i].append(o['f1']) print(matrix) # print(DataTable.load_from_rows("", matrix).to_string()) df = pandas.DataFrame(data=matrix, columns=header) matrix.append(['average'] + list(df.mean(axis=0))) df =
pandas.DataFrame(data=matrix, columns=header)
pandas.DataFrame
# Copyright 2016 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import getpass import os from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd import pytest from hs2client.compat import Decimal from hs2client.tests.common import ExampleEnv, random_table_name, insert_tuples import hs2client as hs2 TEST_HOST = os.environ.get('HS2_TEST_IMPALA_HOST', 'localhost') TEST_PORT = int(os.environ.get('HS2_TEST_IMPALA_PORT', 21050)) TEST_USER = os.environ.get('HS2_TEST_IMPALA_USER', getpass.getuser()) def test_service_session_scope(): svc = hs2.connect(TEST_HOST, TEST_PORT, TEST_USER) session = svc.open_session() svc = None op = session.execute('show tables') # noqa session = None @pytest.fixture(scope='module') def env1(request): env = ExampleEnv(TEST_HOST, TEST_PORT, TEST_USER) env.setup() request.addfinalizer(env.teardown) return env def test_result_metadata(env1): # As of Impala 2.5, only supports scalar types in result set # metadata. hive can return more types; will need to test this # separately table_name = random_table_name() sql = """ create table {0} ( f0 tinyint comment 'f0', f1 smallint, f2 int, f3 bigint, f4 float, f5 double, f6 char(10), f7 varchar(20), f8 string, f9 decimal(12, 2), f10 timestamp, f11 boolean ) """.format(table_name) env1.session.execute_sync(sql) op = env1.select_all(table_name) schema = op.schema expected = [ # name, type, comment ('f0', 'TINYINT', 'f0'), ('f1', 'SMALLINT', None), ('f2', 'INT', None), ('f3', 'BIGINT', None), ('f4', 'FLOAT', None), ('f5', 'DOUBLE', None), ('f6', 'CHAR', None), ('f7', 'VARCHAR', None), ('f8', 'STRING', None), ('f9', 'DECIMAL', None), ('f10', 'TIMESTAMP', None), ('f11', 'BOOLEAN', None) ] assert len(schema) == len(expected) assert schema.ncolumns == len(schema) for i, attrs in enumerate(expected): name, typename, comment = attrs desc = schema[i] coltype = desc.type assert desc.name == name assert coltype.name == typename # Comments seem to not be coming back # assert desc.comment == comment # test decimal stuff decimal = schema[9].type assert decimal.precision == 12 assert decimal.scale == 2 # test char/varchar stuff char = schema[6].type assert char.max_length == 10 varchar = schema[7].type assert varchar.max_length == 20 # --------------------------------------------------------------------- # Well-behaved pandas types: float, double, string, timestamp def test_pandas_fetch_numeric(env1): all_names = [] all_types = [] all_data = [] ex_dtypes = [] def push(names, types, ex_dtypes, data): all_names.extend(names) all_types.extend(types) all_data.extend(data) ex_dtypes.extend(dtypes) K = 20 length = 100 # Integer without nulls names = ['i0', 'i1', 'i2', 'i3'] types = ['tinyint', 'smallint', 'int', 'bigint'] dtypes = ['i1', 'i2', 'i4', 'i8'] data = [[1, 2, 3, 4, 5] * K] * 4 push(names, types, dtypes, data) expected = pd.DataFrame(index=range(length)) for name, np_type, data in zip(names, dtypes, data): expected[name] = np.array(data, dtype=np_type) # Integers with nulls names = ['i4', 'i5', 'i6', 'i7'] types = ['tinyint', 'smallint', 'int', 'bigint'] dtypes = ['f8'] * 4 data = [[1, 2, None, 4, 5] * K] * 4 for name, np_type, arr in zip(names, dtypes, data): # leave this conversion to pandas (automatically -> float64) expected[name] = arr push(names, types, dtypes, data) # Floating point cases names = ['float0', 'float1', 'double0', 'double1'] types = ['float', 'float', 'double', 'double'] dtypes = ['f4', 'f4', 'f8', 'f8'] data = [ [-0.5, 0, None, 0.5, 1] * K, [-0.5, 0, 0.5, 1, 1.5] * K, ] * 2 for name, ctype, dtype, arr in zip(names, types, dtypes, data): expected[name] = np.array(arr, dtype=dtype) push(names, types, dtypes, data) # We can do this in one shot result = _roundtrip_data(env1, all_names, all_types, all_data) assert_frame_equal(result, expected) for name, ex_dtype in zip(all_names, ex_dtypes): assert result[name].dtype == ex_dtype def test_pandas_fetch_boolean(env1): # Test with nulls and without K = 20 data = [ [True, False, True, False, True] * K, [True, None, None, False, True] * K ] colnames = ['f0', 'f1'] coltypes = ['boolean', 'boolean'] # We can do this in one shot expected = pd.DataFrame({name: np.array(arr) for name, arr in zip(colnames, data)}, columns=colnames) result = _roundtrip_data(env1, colnames, coltypes, data) assert_frame_equal(result, expected) # Boolean + nulls in pandas becomes numpy object assert result['f0'].dtype == np.bool_ assert result['f1'].dtype == np.object_ def test_pandas_fetch_string(env1): K = 20 data = [ ['long string', 'foo', None, 'foo', 'long string'] * K ] colnames = ['f0'] coltypes = ['string', 'boolean'] # We can do this in one shot expected = pd.DataFrame({colnames[0]: data[0]}) result = _roundtrip_data(env1, colnames, coltypes, data) assert_frame_equal(result, expected) # Test string interning c = result['f0'] assert c[0] is c[4] assert c[1] is c[3] def test_pandas_fetch_timestamp(env1): K = 20 v = '2000-01-01 12:34:56.123456' data = [ [v, None, '2001-01-01', v] * K ] colnames = ['f0'] coltypes = ['timestamp'] # We can do this in one shot expected = pd.DataFrame({colnames[0]: pd.to_datetime(data[0])}) result = _roundtrip_data(env1, colnames, coltypes, data) assert_frame_equal(result, expected) def test_pandas_fetch_decimal(env1): K = 20 values = [-1.5, None, 0, 1.5] * K colnames = ['f0'] coltypes = ['decimal(12,2)'] # We can do this in one shot expected = pd.DataFrame({ colnames[0]: np.array([Decimal(x) if x is not None else x for x in values], dtype=object) }) result = _roundtrip_data(env1, colnames, coltypes, [values])
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right) tm.assert_series_equal(result, expected) result = left | Series(right) tm.assert_series_equal(result, expected) expected = Series([False, True, True, True, True]) result = left ^ right tm.assert_series_equal(result, expected) result = left ^ np.array(right) tm.assert_series_equal(result, expected) result = left ^ Index(right) tm.assert_series_equal(result, expected) result = left ^ Series(right) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): # GH#9016: support bitwise op for integer types # with non-matching indexes, logical operators will cast to object # before operating index = list("bca") s_tft = Series([True, False, True], index=index) s_tft = Series([True, False, True], index=index) s_tff = Series([True, False, False], index=index) s_0123 = Series(range(4), dtype="int64") # s_0123 will be all false now because of reindexing like s_tft expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_tft & s_0123 tm.assert_series_equal(result, expected) expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_0123 & s_tft tm.assert_series_equal(result, expected) s_a0b1c0 = Series([1], list("b")) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list("abc")) tm.assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list("abc")) tm.assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) tm.assert_series_equal(result, expected) def test_scalar_na_logical_ops_corners_aligns(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan d = DataFrame({"A": s}) expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9))) result = s & d tm.assert_frame_equal(result, expected) result = d & s tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) tm.assert_series_equal(result, expected) def test_reversed_xor_with_index_returns_index(self): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Index.symmetric_difference(idx1, ser) with tm.assert_produces_warning(FutureWarning): result = idx1 ^ ser tm.assert_index_equal(result, expected) expected = Index.symmetric_difference(idx2, ser) with tm.assert_produces_warning(FutureWarning): result = idx2 ^ ser tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "op", [ pytest.param( ops.rand_, marks=pytest.mark.xfail( reason="GH#22092 Index __and__ returns Index intersection", raises=AssertionError, strict=True, ), ), pytest.param( ops.ror_, marks=pytest.mark.xfail( reason="GH#22092 Index __or__ returns Index union", raises=AssertionError, strict=True, ), ), ], ) def test_reversed_logical_op_with_index_returns_series(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series(op(idx1.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series(op(idx2.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "op, expected", [ (ops.rand_, Index([False, True])), (ops.ror_, Index([False, True])), (ops.rxor, Index([])), ], ) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # behaving as set ops is deprecated, will become logical ops result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list("bca")) b = Series([False, True, False], list("abc")) expected = Series([False, True, False], list("abc")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False], list("abc")) result = a | b tm.assert_series_equal(result, expected) expected = Series([True, False, False], list("abc")) result = a ^ b tm.assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list("bca")) b = Series([False, True, False, True], list("abcd")) expected = Series([False, True, False, False], list("abcd")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False, False], list("abcd")) result = a | b tm.assert_series_equal(result, expected) # filling # vs empty empty = Series([], dtype=object) result = a & empty.copy() expected = Series([False, False, False], list("bca")) tm.assert_series_equal(result, expected) result = a | empty.copy() expected = Series([True, False, True], list("bca")) tm.assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ["z"]) expected = Series([False, False, False, False], list("abcz")) tm.assert_series_equal(result, expected) result = a | Series([1], ["z"]) expected = Series([True, True, False, False], list("abcz")) tm.assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [ empty.copy(), Series([1], ["z"]), Series(np.nan, b.index), Series(np.nan, a.index), ]: result = a[a | e] tm.assert_series_equal(result, a[a]) for e in [Series(["z"])]: result = a[a | e] tm.assert_series_equal(result, a[a]) # vs scalars index = list("bca") t = Series([True, False, True]) for v in [True, 1, 2]: result = Series([True, False, True], index=index) | v expected = Series([True, True, True], index=index) tm.assert_series_equal(result, expected) msg = "Cannot perform.+with a dtyped.+array and scalar of type" for v in [np.nan, "foo"]: with pytest.raises(TypeError, match=msg): t | v for v in [False, 0]: result = Series([True, False, True], index=index) | v expected = Series([True, False, True], index=index) tm.assert_series_equal(result, expected) for v in [True, 1]: result = Series([True, False, True], index=index) & v expected = Series([True, False, True], index=index) tm.assert_series_equal(result, expected) for v in [False, 0]: result = Series([True, False, True], index=index) & v expected = Series([False, False, False], index=index) tm.assert_series_equal(result, expected) msg = "Cannot perform.+with a dtyped.+array and scalar of type" for v in [np.nan]: with pytest.raises(TypeError, match=msg): t & v def test_logical_ops_df_compat(self): # GH#1134 s1 = Series([True, False, True], index=list("ABC"), name="x") s2 = Series([True, True, False], index=list("ABD"), name="x") exp = Series([True, False, False, False], index=list("ABCD"), name="x") tm.assert_series_equal(s1 & s2, exp) tm.assert_series_equal(s2 & s1, exp) # True | np.nan => True exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x") tm.assert_series_equal(s1 | s2, exp_or1) # np.nan | True => np.nan, filled with False exp_or = Series([True, True, False, False], index=list("ABCD"), name="x") tm.assert_series_equal(s2 | s1, exp_or) # DataFrame doesn't fill nan with False tm.assert_frame_equal(s1.to_frame() & s2.to_frame(), exp.to_frame()) tm.assert_frame_equal(s2.to_frame() & s1.to_frame(), exp.to_frame()) exp = DataFrame({"x": [True, True, np.nan, np.nan]}, index=list("ABCD")) tm.assert_frame_equal(s1.to_frame() | s2.to_frame(), exp_or1.to_frame()) tm.assert_frame_equal(s2.to_frame() | s1.to_frame(), exp_or.to_frame()) # different length s3 = Series([True, False, True], index=list("ABC"), name="x") s4 = Series([True, True, True, True], index=list("ABCD"), name="x") exp = Series([True, False, True, False], index=list("ABCD"), name="x") tm.assert_series_equal(s3 & s4, exp) tm.assert_series_equal(s4 & s3, exp) # np.nan | True => np.nan, filled with False exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x") tm.assert_series_equal(s3 | s4, exp_or1) # True | np.nan => True exp_or = Series([True, True, True, True], index=list("ABCD"), name="x")
tm.assert_series_equal(s4 | s3, exp_or)
pandas._testing.assert_series_equal
import typing as t import numpy as np import pandas as pd import pytest from statsmodels.tsa.holtwinters import ExponentialSmoothing, HoltWintersResults from bentoml.statsmodels import StatsModel from tests._internal.helpers import assert_have_file_extension test_df = pd.DataFrame([[0, 0, 1, 1]]) def predict_df(model: t.Any, df: pd.DataFrame): return model.predict(int(df.iat[0, 0])) # exported from # https://colab.research.google.com/github/bentoml/gallery/blob/master/statsmodels_holt/bentoml_statsmodels.ipynb @pytest.fixture(scope="session") def holt_model() -> "HoltWintersResults": df: pd.DataFrame = pd.read_csv( "https://raw.githubusercontent.com/jbrownlee/Datasets/master/shampoo.csv" ) # Taking a test-train split of 80 % train = df[0 : int(len(df) * 0.8)] test = df[int(len(df) * 0.8) :] # Pre-processing the Month field train.Timestamp = pd.to_datetime(train.Month, format="%m-%d") train.index = train.Timestamp test.Timestamp =
pd.to_datetime(test.Month, format="%m-%d")
pandas.to_datetime
# -*- coding: utf-8 -*- import nose import numpy as np from datetime import datetime from pandas.util import testing as tm from pandas.core import config as cf from pandas.compat import u from pandas.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.types.dtypes import DatetimeTZDtype from pandas.types.missing import (array_equivalent, isnull, notnull, na_value_for_dtype) _multiprocess_can_split_ = True def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel()) ]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel4d_equal(result, expected) def test_isnull_lists(): result = isnull([[False]]) exp = np.array([[False]]) assert (np.array_equal(result, exp)) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) assert (np.array_equal(result, exp)) # list of strings / unicode result = isnull(['foo', 'bar']) assert (not result.any()) result = isnull([u('foo'), u('bar')]) assert (not result.any()) def test_isnull_nat(): result = isnull([NaT]) exp = np.array([True]) assert (np.array_equal(result, exp)) result = isnull(np.array([NaT], dtype=object)) exp = np.array([True]) assert (np.array_equal(result, exp)) def test_isnull_numpy_nat(): arr = np.array([NaT, np.datetime64('NaT'), np.timedelta64('NaT'), np.datetime64('NaT', 's')]) result = isnull(arr) expected = np.array([True] * 4) tm.assert_numpy_array_equal(result, expected) def test_isnull_datetime(): assert (not isnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert (notnull(idx).all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert (mask[0]) assert (not mask[1:].any()) # GH 9129 pidx = idx.to_period(freq='M') mask = isnull(pidx) assert (mask[0]) assert (not mask[1:].any()) mask = isnull(pidx[1:]) assert (not mask.any()) class TestIsNull(tm.TestCase): def test_0d_array(self): self.assertTrue(isnull(np.array(np.nan))) self.assertFalse(isnull(np.array(0.0))) self.assertFalse(isnull(np.array(0))) # test object dtype self.assertTrue(isnull(np.array(np.nan, dtype=object))) self.assertFalse(isnull(np.array(0.0, dtype=object))) self.assertFalse(isnull(np.array(0, dtype=object))) def test_array_equivalent(): assert array_equivalent(np.array([np.nan, np.nan]), np.array([np.nan, np.nan])) assert array_equivalent(np.array([np.nan, 1, np.nan]), np.array([np.nan, 1, np.nan])) assert array_equivalent(np.array([np.nan, None], dtype='object'), np.array([np.nan, None], dtype='object')) assert array_equivalent(np.array([np.nan, 1 + 1j], dtype='complex'), np.array([np.nan, 1 + 1j], dtype='complex')) assert not array_equivalent( np.array([np.nan, 1 + 1j], dtype='complex'), np.array( [np.nan, 1 + 2j], dtype='complex')) assert not array_equivalent( np.array([np.nan, 1, np.nan]), np.array([np.nan, 2, np.nan])) assert not array_equivalent( np.array(['a', 'b', 'c', 'd']), np.array(['e', 'e'])) assert array_equivalent(Float64Index([0, np.nan]),
Float64Index([0, np.nan])
pandas.Float64Index
# coding=utf-8 # /usr/bin/env python ''' Author: wenqiangw Email: <EMAIL> Date: 2020-06-29 11:14 Desc: 监控评分卡开发样本和现有样本分数分布的差异程度,关注样本人群的稳定性。 1. Population Stability Index (PSI):群体稳定性指标,用来衡量分数分布的变化 2. Characteristic Stability Index (CSI):特征稳定性指标,用来衡量特征层面的变化 ''' import pickle import pandas as pd import numpy as np from pynovice.score_card.src.data_binning import DataBinning class StabilityIndex: def __init__(self): ''' 计算模型分的稳定性psi: 需要加载bins&bins_statistic_dict,可计算calc_expect_bins_statistic函数 计算入模特征的稳定性csi: 需要加载bins&bins_statistic_dict和bins_statistic_dict,可计算calc_expect_bins_statistic和load_expect_bins_score函数 或者直接加载保存到本地的数据load_bins_statistic()/load_bins_score() ''' self.bins_statistic_dict = {} # 各箱的count数量 self.bins_score_dict = {} # 各箱的对应贡献分 self.bins=[] def calc_expect_bins_statistic(self,expect_array,bins=10.0,bins_func='frequence_blocks'): ''' 对expect数组进行分箱统计 :param expect_array: :param bins: bins_list或者bins数 :param bins_func: bins为整数时使用bins_func进行分箱 :return: ''' df = pd.Series(expect_array).dropna() if isinstance(bins,list): self.bins=bins df_bins = pd.cut(df, bins=bins) else: binning = DataBinning(box_num=bins, _func=bins_func) df_bins = binning.fit_transform(df_x=df) self.bins = binning.bins self.bins_statistic_dict = df_bins.value_counts().to_dict() def calc_expect_bins_score(self,bins_score_dict): ''' :param bins_score_dict: 各分bin对应的模型分值 :return: ''' self.bins_score_dict = bins_score_dict def load_bins_statistic(self,file_name): with open(file_name, "rb") as f: self.bins, self.bins_statistic_dict = pickle.load(f) def load_bins_score(self,file_name): with open(file_name, "rb") as f: self.bins_score_dict = pickle.load(f) def dump_bins_statistic(self,file_name): # json not suppert Interval type bins_info = [self.bins, self.bins_statistic_dict] with open(file_name, "wb") as f: pickle.dump(bins_info, f) def get_psi(self,actual_array,eps=1e-4): ''' psi = (实际占比-预期占比)/LN(实际占比/预期占比) :param actual_array: :param eps: :return: ''' df_expect =
pd.DataFrame.from_dict(self.bins_statistic_dict,orient='index',columns=['expected_samples'])
pandas.DataFrame.from_dict
import praw import pandas as pd import pickle # Define user agent details r = praw.Reddit(user_agent=user_agent, client_id=reddit_client_id, client_secret=reddit_client_secret) epressed_posts_titles = [] depressed_posts_content = [] depressed_comments = [] depressed_dict = {"title": [], "id": [], "num_comments": [], "comments": [], "content": []} non_depressed_dict = {"title": [], "id": [], "num_comments": [], "comments": [], "content": []} def depressed_data(subreddit): for post in r.subreddit(subreddit).top(limit=1000): post.comments.replace_more(limit=100) depressed_dict['title'].append(post.title) depressed_dict['id'].append(post.id) depressed_dict['num_comments'].append(post.num_comments) comments = post.comments.list() comments_new = [] for comment in comments: comments_new.append(comment.body) depressed_dict['comments'].append(comments_new) depressed_dict['content'].append(post.selftext) depressed_df = pd.DataFrame(depressed_dict) depressed_df.drop_duplicates(subset=['id'], inplace=True) print("Total number of comments: ", sum(depressed_df['num_comments'])) print(depressed_df) def non_depressed_data(subreddit): for post in r.subreddit(subreddit).hot(limit=1000): post.comments.replace_more(limit=100) non_depressed_dict['title'].append(post.title) non_depressed_dict['id'].append(post.id) non_depressed_dict['num_comments'].append(post.num_comments) comments = post.comments.list() comments_new = [] for comment in comments: comments_new.append(comment.body) non_depressed_dict['comments'].append(comments_new) non_depressed_dict['content'].append(post.selftext) non_depressed_df = pd.DataFrame(non_depressed_dict) non_depressed_df.drop_duplicates(subset=['id'], inplace=True) print("Total number of comments: ", sum(non_depressed_df['num_comments'])) print(non_depressed_df) depressed_data('depression') non_depressed_data('askreddit') depressed_pickle = open("depressed.pickle","wb") pickle.dump(depressed_dict, depressed_pickle) depressed_pickle.close() test_depressed_pickle = open("depressed.pickle","rb") test_depressed_pickle_dict = pickle.load(test_depressed_pickle) depressed_df2 =
pd.DataFrame(test_depressed_pickle_dict)
pandas.DataFrame
from __future__ import annotations import pytest from pandas.errors import ParserWarning import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, to_datetime, ) import pandas._testing as tm from pandas.io.xml import read_xml @pytest.fixture(params=[pytest.param("lxml", marks=td.skip_if_no("lxml")), "etree"]) def parser(request): return request.param @pytest.fixture( params=[None, {"book": ["category", "title", "author", "year", "price"]}] ) def iterparse(request): return request.param def read_xml_iterparse(data, **kwargs): with tm.ensure_clean() as path: with open(path, "w") as f: f.write(data) return read_xml(path, **kwargs) xml_types = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> </row> </data>""" xml_dates = """<?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> <date>2020-01-01</date> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> <date>2021-01-01</date> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> <date>2022-01-01</date> </row> </data>""" # DTYPE def test_dtype_single_str(parser): df_result = read_xml(xml_types, dtype={"degrees": "str"}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, dtype={"degrees": "str"}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": [4.0, float("nan"), 3.0], } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtypes_all_str(parser): df_result = read_xml(xml_dates, dtype="string", parser=parser) df_iter = read_xml_iterparse( xml_dates, parser=parser, dtype="string", iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": ["4.0", None, "3.0"], "date": ["2020-01-01", "2021-01-01", "2022-01-01"], }, dtype="string", ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtypes_with_names(parser): df_result = read_xml( xml_dates, names=["Col1", "Col2", "Col3", "Col4"], dtype={"Col2": "string", "Col3": "Int64", "Col4": "datetime64"}, parser=parser, ) df_iter = read_xml_iterparse( xml_dates, parser=parser, names=["Col1", "Col2", "Col3", "Col4"], dtype={"Col2": "string", "Col3": "Int64", "Col4": "datetime64"}, iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "Col1": ["square", "circle", "triangle"], "Col2": Series(["00360", "00360", "00180"]).astype("string"), "Col3": Series([4.0, float("nan"), 3.0]).astype("Int64"), "Col4": to_datetime(["2020-01-01", "2021-01-01", "2022-01-01"]), } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtype_nullable_int(parser): df_result = read_xml(xml_types, dtype={"sides": "Int64"}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, dtype={"sides": "Int64"}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": Series([4.0, float("nan"), 3.0]).astype("Int64"), } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtype_float(parser): df_result = read_xml(xml_types, dtype={"degrees": "float"}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, dtype={"degrees": "float"}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": Series([360, 360, 180]).astype("float"), "sides": [4.0, float("nan"), 3.0], } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_wrong_dtype(datapath, parser, iterparse): filename = datapath("io", "data", "xml", "books.xml") with pytest.raises( ValueError, match=('Unable to parse string "Everyday Italian" at position 0') ): read_xml(filename, dtype={"title": "Int64"}, parser=parser, iterparse=iterparse) def test_both_dtype_converters(parser): df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": [4.0, float("nan"), 3.0], } ) with tm.assert_produces_warning(ParserWarning, match="Both a converter and dtype"): df_result = read_xml( xml_types, dtype={"degrees": "str"}, converters={"degrees": str}, parser=parser, ) df_iter = read_xml_iterparse( xml_types, dtype={"degrees": "str"}, converters={"degrees": str}, parser=parser, iterparse={"row": ["shape", "degrees", "sides"]}, ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) # CONVERTERS def test_converters_str(parser): df_result = read_xml(xml_types, converters={"degrees": str}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, converters={"degrees": str}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": [4.0, float("nan"), 3.0], } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_converters_date(parser): convert_to_datetime = lambda x: to_datetime(x) df_result = read_xml( xml_dates, converters={"date": convert_to_datetime}, parser=parser ) df_iter = read_xml_iterparse( xml_dates, parser=parser, converters={"date": convert_to_datetime}, iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": [4.0, float("nan"), 3.0], "date": to_datetime(["2020-01-01", "2021-01-01", "2022-01-01"]), } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_wrong_converters_type(datapath, parser, iterparse): filename = datapath("io", "data", "xml", "books.xml") with pytest.raises(TypeError, match=("Type converters must be a dict or subclass")): read_xml(filename, converters={"year", str}, parser=parser, iterparse=iterparse) def test_callable_func_converters(datapath, parser, iterparse): filename = datapath("io", "data", "xml", "books.xml") with pytest.raises(TypeError, match=("'float' object is not callable")): read_xml( filename, converters={"year": float()}, parser=parser, iterparse=iterparse ) def test_callable_str_converters(datapath, parser, iterparse): filename = datapath("io", "data", "xml", "books.xml") with pytest.raises(TypeError, match=("'str' object is not callable")): read_xml( filename, converters={"year": "float"}, parser=parser, iterparse=iterparse ) # PARSE DATES def test_parse_dates_column_name(parser): df_result = read_xml(xml_dates, parse_dates=["date"], parser=parser) df_iter = read_xml_iterparse( xml_dates, parser=parser, parse_dates=["date"], iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": [4.0, float("nan"), 3.0], "date": to_datetime(["2020-01-01", "2021-01-01", "2022-01-01"]), } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_parse_dates_column_index(parser): df_result = read_xml(xml_dates, parse_dates=[3], parser=parser) df_iter = read_xml_iterparse( xml_dates, parser=parser, parse_dates=[3], iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": [4.0, float("nan"), 3.0], "date": to_datetime(["2020-01-01", "2021-01-01", "2022-01-01"]), } )
tm.assert_frame_equal(df_result, df_expected)
pandas._testing.assert_frame_equal
import abc from datetime import datetime from pathlib import Path from typing import Type import numpy as np import pandas as pd from dscience.tools.filesys_tools import FilesysTools from dscience.core import PathLike class AbstractSaveLoad(metaclass=abc.ABCMeta): def save(self, path: PathLike) -> None: raise NotImplementedError() # noinspection PyAttributeOutsideInit def load(self, path: PathLike): raise NotImplementedError() class SaveableTrainable(AbstractSaveLoad): """ A simpler saveable.= Saves and loads a .info file with these properties. To implement, just override save() and load(), and have each call its supermethod """ def __init__(self): self.info = {} def save(self, path: PathLike) -> None: FilesysTools.save_json(self.info, path.with_suffix(path.suffix + ".info")) def load(self, path: PathLike): path = Path(path) self.info = FilesysTools.load_json(path.with_suffix(path.suffix + ".info")) def fix(key, value): if key in ["started", "finished"]: return datetime.isoformat(value) elif isinstance(value, list): return np.array(value) else: return value self.info = {k: fix(k, v) for k, v in self.info.items()} return self class SaveableTrainableCsv(SaveableTrainable, metaclass=abc.ABCMeta): def save(self, path: PathLike): path = Path(path) super().save(path) self.data.to_csv(path) # noinspection PyAttributeOutsideInit def load(self, path: PathLike): path = Path(path) super().load(path) self.data = pd.read_csv(path) return self class SaveLoadCsv(AbstractSaveLoad, metaclass=abc.ABCMeta): """ Has an attribute (property) called `data`. """ @property @abc.abstractmethod def data(self) -> pd.DataFrame: raise NotImplementedError() @data.setter def data(self, df: pd.DataFrame): raise NotImplementedError() @property def df_class(self) -> Type[pd.DataFrame]: return pd.DataFrame def save(self, path: PathLike): if not isinstance(self.data, self.df_class): raise TypeError("Type {} is not a {}".format(type(self.data), self.df_class)) path = Path(path) pd.DataFrame(self.data).to_csv(path) def load(self, path: PathLike): path = Path(path) self.data = self.df_class(
pd.read_csv(path)
pandas.read_csv
import unittest import tempfile import json import numpy as np import pandas as pd from supervised.preprocessing.label_encoder import LabelEncoder class LabelEncoderTest(unittest.TestCase): def test_fit(self): # training data d = {"col1": ["a", "a", "c"], "col2": ["w", "e", "d"]} df = pd.DataFrame(data=d) le = LabelEncoder() # check first column le.fit(df["col1"]) data_json = le.to_json() # values from column should be in data json self.assertTrue("a" in data_json) self.assertTrue("c" in data_json) self.assertTrue("b" not in data_json) # there is alphabetical order for values self.assertEqual(0, data_json["a"]) self.assertEqual(1, data_json["c"]) # check next column le.fit(df["col2"]) data_json = le.to_json() self.assertEqual(0, data_json["d"]) self.assertEqual(1, data_json["e"]) self.assertEqual(2, data_json["w"]) def test_transform(self): # training data d = {"col1": ["a", "a", "c"]} df =
pd.DataFrame(data=d)
pandas.DataFrame
"""Core utilities""" import sys import logging import inspect from functools import singledispatch from copy import deepcopy from typing import ( Any, Callable, Iterable, List, Mapping, Sequence, Union, Tuple, ) import numpy from numpy import array as Array import pandas from pandas import Categorical, DataFrame, Series from pipda import register_func from pipda.symbolic import Reference from pipda.utils import CallingEnvs from .exceptions import ( ColumnNotExistingError, DataUnrecyclable, NameNonUniqueError, ) from .contexts import Context from .types import ( StringOrIter, Dtype, is_iterable, is_scalar, is_categorical, is_null, ) from .defaults import DEFAULT_COLUMN_PREFIX, NA_REPR # logger logger = logging.getLogger("datar") logger.setLevel(logging.INFO) stream_handler = logging.StreamHandler(sys.stderr) stream_handler.setFormatter( logging.Formatter( "[%(asctime)s][%(name)s][%(levelname)7s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) ) logger.addHandler(stream_handler) def vars_select( all_columns: Iterable[str], *columns: Any, raise_nonexists: bool = True, base0: bool = None, ) -> List[int]: # TODO: support selecting data-frame columns """Select columns Args: all_columns: The column pool to select *columns: arguments to select from the pool raise_nonexist: Whether raise exception when column not exists in the pool base0: Whether indexes are 0-based if columns are selected by indexes. If not given, will use `datar.base.get_option('index.base.0')` Returns: The selected indexes for columns Raises: ColumnNotExistingError: When the column does not exist in the pool and raise_nonexists is True. """ from .collections import Collection from ..base import unique columns = [ column.name if isinstance(column, Series) else column for column in columns ] selected = Collection(*columns, pool=list(all_columns), base0=base0) if raise_nonexists and selected.unmatched and selected.unmatched != {None}: raise ColumnNotExistingError( f"Columns `{selected.unmatched}` do not exist." ) return unique(selected).astype(int) def recycle_value( value: Any, size: int, name: str = None ) -> Union[DataFrame, numpy.ndarray]: """Recycle a value based on a dataframe Args: value: The value to be recycled size: The size to recycle to name: The name to show in the error if failed to recycle Returns: The recycled value """ # TODO: follow base R's recycling rule? i.e. size 2 -> 4 from ..base import NA if is_scalar(value): value = [value] length = len(value) if length not in (0, 1, size): name = "value" if not name else f"`{name}`" expect = "1" if size == 1 else f"(1, {size})" raise DataUnrecyclable( f"Cannot recycle {name} to size {size}, " f"expect {expect}, got {length}." ) if isinstance(value, DataFrame): if length == size == 0: return DataFrame(columns=value.columns) if length == 0: value = DataFrame([[NA] * value.shape[1]], columns=value.columns) if length == 1 and size > length: return value.iloc[[0] * size, :].reset_index(drop=True) return value cats = categorized(value).categories if is_categorical(value) else None if length == size == 0: return [] if cats is None else Categorical([], categories=cats) if length == 0: value = [NA] if isinstance(value, Series): # try to keep Series class # some operators can only do with it or with it correctly # For example: # Series([True, True]) & Series([False, NA]) -> [False, Fa.se] # But with numpy.array, it raises error, since NA is a float if length == 1 and size > length: value = value.iloc[[0] * size].reset_index(drop=True) return value if isinstance(value, tuple): value = list(value) # dtype = getattr(value, 'dtype', None) if length == 1 and size > length: value = list(value) * size if cats is not None: return Categorical(value, categories=cats) is_elem_iter = any(is_iterable(val) for val in value) if is_elem_iter: # without dtype: VisibleDeprecationWarning # return Array(value, dtype=object) # The above does not keep [DataFrame()] structure return value # Avoid numpy.nan to be converted into 'nan' when other elements are string out = Array(value) if numpy.issubdtype(out.dtype, numpy.str_) and is_null(value).any(): return Array(value, dtype=object) return out def recycle_df( df: DataFrame, value: Any, df_name: str = None, value_name: str = None, ) -> Tuple[DataFrame, Any]: """Recycle the dataframe based on value""" if length_of(df) == 1: df = recycle_value(df, length_of(value), df_name) value = recycle_value(value, length_of(df), value_name) return df, value def categorized(data: Any) -> Any: """Get the Categorical object""" if not is_categorical(data): return data if isinstance(data, Series): return data.values return data @singledispatch def to_df(data: Any, name: str = None) -> DataFrame: """Convert an object to a data frame""" if is_scalar(data): data = [data] if name is None: return DataFrame(data) return DataFrame({name: data}) @to_df.register(numpy.ndarray) def _(data: numpy.ndarray, name: StringOrIter = None) -> DataFrame: if name is not None and is_scalar(name): name = [name] if len(data.shape) == 1: return ( DataFrame(data, columns=name) if name is not None else DataFrame(data) ) ncols = data.shape[1] if name is not None and len(name) == ncols: return DataFrame(data, columns=name) # ignore the name return DataFrame(data) @to_df.register(DataFrame) def _(data: DataFrame, name: str = None) -> DataFrame: if name is None: return data return DataFrame({f"{name}${col}": data[col] for col in data.columns}) @to_df.register(Series) def _(data: Series, name: str = None) -> DataFrame: name = name or data.name return data.to_frame(name=name) # @to_df.register(SeriesGroupBy) # def _(data: SeriesGroupBy, name: str = None) -> DataFrame: # name = name or data.obj.name # return data.obj.to_frame(name=name).groupby(data.grouper, dropna=False) def check_column_uniqueness(df: DataFrame, msg: str = None) -> None: """Check if column names are unique of a dataframe""" uniq = set() for col in df.columns: if col not in uniq: uniq.add(col) else: msg = msg or "Name is not unique" raise NameNonUniqueError(f"{msg}: {col}") def dict_insert_at( container: Mapping[str, Any], poskeys: Sequence[str], value: Mapping[str, Any], remove: bool = False, ) -> Mapping[str, Any]: """Insert value to a certain position of a dict""" ret_items = [] # type: List[Tuple[str, Any]] ret_items_append = ret_items.append matched = False for key, val in container.items(): if key == poskeys[0]: matched = True if not remove: ret_items_append((key, val)) ret_items.extend(value.items()) elif matched and key in poskeys: if not remove: ret_items_append((key, val)) elif matched and key not in poskeys: matched = False ret_items_append((key, val)) else: ret_items_append((key, val)) return dict(ret_items) def name_mutatable_args( *args: Union[Series, DataFrame, Mapping[str, Any]], **kwargs: Any, ) -> Mapping[str, Any]: """Convert all mutatable arguments to named mappings, which can be easier to mutate later on. If there are Expression objects, keep it. So if an objects have multiple names and it's built by an Expression, then the name might get lost here. Examples: >>> s = Series([1], name='a') >>> name_mutatable_args(s, b=2) >>> # {'a': s, 'b': 2} >>> df = DataFrame({'x': [3], 'y': [4]}) >>> name_mutatable_args(df) >>> # {'x': [3], 'y': [4]} >>> name_mutatable_args(d=df) >>> # {'d$x': [3], 'd$y': [4]} """ # order kept ret = {} # type: dict for i, arg in enumerate(args): if isinstance(arg, Series): ret[arg.name] = arg elif isinstance(arg, dict): ret.update(arg) elif isinstance(arg, DataFrame): ret.update(arg.to_dict("series")) elif isinstance(arg, Reference): ret[arg._pipda_ref] = arg else: ret[f"{DEFAULT_COLUMN_PREFIX}{i}"] = arg for key, val in kwargs.items(): if isinstance(val, DataFrame): val = val.to_dict("series") if isinstance(val, dict): existing_keys = [ ret_key for ret_key in ret if ret_key == key or ret_key.startswith(f"{key}$") ] if existing_keys: ret = dict_insert_at( # type: ignore ret, existing_keys, {key: val}, remove=True ) else: for dkey, dval in val.items(): ret[f"{key}${dkey}"] = dval else: ret[key] = val return ret def arg_match( arg: Any, argname: str, values: Iterable[Any], errmsg: str = None ) -> Any: """Make sure arg is in one of the values. Mimics `rlang::arg_match`. """ if not errmsg: values = list(values) errmsg = f"`{argname}` must be one of {values}." if arg not in values: raise ValueError(errmsg) return arg def copy_attrs(df1: DataFrame, df2: DataFrame, deep: bool = True) -> None: """Copy attrs from df2 to df1""" for key, val in df2.attrs.items(): if key.startswith("_"): continue df1.attrs[key] = deepcopy(val) if deep else val def nargs(fun: Callable) -> int: """Get the number of arguments of a function""" return len(inspect.signature(fun).parameters) def position_at( pos: int, length: int, base0: bool = None, raise_exc: bool = True ) -> int: """Get the 0-based position right at the given pos When `pos` is negative, it acts like 0-based, meaning `-1` will anyway represent the last position regardless of `base0` Args: pos: The given position length: The length of the pool base0: Whether the given `pos` is 0-based raise_exc: Raise error if `pos` is out of range? Returns: The 0-based position """ from .collections import Collection coll = Collection(pos, pool=length, base0=base0) if raise_exc and coll.error: raise coll.error return coll[0] def position_after(pos: int, length: int, base0: bool = None) -> int: """Get the 0-based position right at the given pos Args: pos: The given position length: The length of the pool Returns: The position before the given position """ base0 = get_option("index.base.0", base0) # after 0 with 1-based, should insert to first column if not base0 and pos == 0: return 0 return position_at(pos, length, base0) + 1 def get_option(key: str, value: Any = None) -> Any: """Get the option with key. This is for interal use mostly. This is a shortcut for: >>> if value is not None: >>> return value >>> from datar.base import get_option >>> return get_option(key) """ if value is not None: return value from ..base import get_option as get_option_ return get_option_(key) def apply_dtypes( df: DataFrame, dtypes: Union[bool, Dtype, Mapping[str, Dtype]] ) -> None: """Apply dtypes to data frame""" if dtypes is None or dtypes is False: return if dtypes is True: inferred = df.convert_dtypes() for col in df: df[col] = inferred[col] return if not isinstance(dtypes, dict): dtypes = dict(zip(df.columns, [dtypes] * df.shape[1])) # type: ignore for column, dtype in dtypes.items(): if column in df: df[column] = df[column].astype(dtype) else: for col in df: if col.startswith(f"{column}$"): df[col] = df[col].astype(dtype) def keep_column_order(df: DataFrame, order: Iterable[str]): """Keep the order of columns as given `order` We cannot do `df[order]` directly, since `df` may have nested df columns. """ out_columns = [] for col in order: if col in df: out_columns.append(col) else: out_columns.extend( (dfcol for dfcol in df.columns if dfcol.startswith(f"{col}$")) ) if set(out_columns) != set(df.columns): raise ValueError("Given `order` does not select all columns.") return df[out_columns] def reconstruct_tibble( input: DataFrame, output: DataFrame, ungrouped_vars: List[str] = None, keep_rowwise: bool = False, ) -> DataFrame: """Reconstruct the output dataframe based on input dataframe Args: input: The input data frame output: The output data frame ungrouped_vars: Variables to exclude from grouping keep_rowwise: Whether rowwise structure should be kept Return: The reconstructed dataframe. """ from ..base import setdiff, intersect from ..dplyr import group_vars, group_by_drop_default from .grouped import DataFrameGroupBy, DataFrameRowwise if ungrouped_vars is None: ungrouped_vars = [] old_groups = group_vars(input, __calling_env=CallingEnvs.REGULAR) new_groups = intersect( setdiff(old_groups, ungrouped_vars, __calling_env=CallingEnvs.REGULAR), output.columns, __calling_env=CallingEnvs.REGULAR ) if isinstance(input, DataFrameRowwise): out = ( DataFrameRowwise( output, _group_vars=new_groups, _group_drop=group_by_drop_default(input), ) if keep_rowwise else output ) elif isinstance(input, DataFrameGroupBy) and len(new_groups) > 0: out = DataFrameGroupBy( output, _group_vars=new_groups, _group_drop=group_by_drop_default(input), ) else: out = output copy_attrs(out, input) return out def df_getitem(df: DataFrame, ref: Any) -> Union[DataFrame, numpy.ndarray]: """Select columns from a data frame If the column is a data frame, select that data frame. """ try: return df[ref] except KeyError: cols = [col for col in df.columns if col.startswith(f"{ref}$")] if not cols: raise KeyError(ref) from None ret = df.loc[:, cols] ret.columns = [col[len(ref) + 1 :] for col in cols] return ret def df_setitem( df: DataFrame, name: str, value: Any, allow_dups: bool = False ) -> DataFrame: """Assign an item to a dataframe Args: df: The data frame name: The name of the item value: The value to insert allow_dups: Allow duplicated names Returns: df itself or a merged df """ value = recycle_value(value, df.shape[0]) if isinstance(value, DataFrame): # nested df value.columns = [f"{name}${col}" for col in value.columns] if allow_dups: return
pandas.concat([df, value], axis=1)
pandas.concat
# coding=utf-8 # pylint: disable-msg=E1101,W0612 """ test get/set & misc """ import pytest from datetime import timedelta import numpy as np import pandas as pd from pandas.core.dtypes.common import is_scalar from pandas import (Series, DataFrame, MultiIndex, Timestamp, Timedelta, Categorical) from pandas.tseries.offsets import BDay from pandas.compat import lrange, range from pandas.util.testing import (assert_series_equal) import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestMisc(TestData): def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') assert result == 4 expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] assert self.series[idx1] == self.series.get(idx1) assert self.objSeries[idx2] == self.objSeries.get(idx2) assert self.series[idx1] == self.series[5] assert self.objSeries[idx2] == self.objSeries[5] assert self.series.get(-1) == self.series.get(self.series.index[-1]) assert self.series[5] == self.series.get(self.series.index[5]) # missing d = self.ts.index[0] - BDay() pytest.raises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) assert result is None def test_getitem_int64(self): idx = np.int64(5) assert self.ts[idx] == self.ts[5] def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] assert self.series.index[2] == slice1.index[1] assert self.objSeries.index[2] == slice2.index[1] assert self.series[2] == slice1[1] assert self.objSeries[2] == slice2[1] def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) @pytest.mark.parametrize( 'result_1, duplicate_item, expected_1', [ [ pd.Series({1: 12, 2: [1, 2, 2, 3]}), pd.Series({1: 313}), pd.Series({1: 12, }, dtype=object), ], [ pd.Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), pd.Series({1: [1, 2, 3]}), pd.Series({1: [1, 2, 3], }), ], ]) def test_getitem_with_duplicates_indices( self, result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_out_of_bounds(self): # don't segfault, GH #495 pytest.raises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) pytest.raises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) assert s.iloc[0] == s['a'] s.iloc[0] = 5 tm.assert_almost_equal(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] assert isinstance(value, np.float64) def test_series_box_timestamp(self): rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng) assert isinstance(ser[5], pd.Timestamp) rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng, index=rng) assert isinstance(ser[5], pd.Timestamp) assert isinstance(ser.iat[5], pd.Timestamp) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) pytest.raises(KeyError, s.__getitem__, 1) pytest.raises(KeyError, s.loc.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) assert is_scalar(obj['c']) assert obj['c'] == 0 def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .loc internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = s.loc[['foo', 'bar', 'bah', 'bam']] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) pytest.raises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] assert result == s.loc['A'] result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.loc[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] assert self.series.index[9] not in numSlice.index assert self.objSeries.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert self.series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == self.series.index[11] assert tm.equalContents(numSliceEnd, np.array(self.series)[-10:]) # Test return view. sl = self.series[10:20] sl[:] = 0 assert (self.series[10:20] == 0).all() def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN assert np.isnan(self.ts[6]) assert np.isnan(self.ts[2]) self.ts[np.isnan(self.ts)] = 5 assert not np.isnan(self.ts[2]) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 assert (series[::2] == 0).all() # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s,
Series([np.nan])
pandas.Series
""" 废弃 新浪网设置了访问频次限制。 新浪有许多以列表形式提供的汇总列,每天访问也仅仅一次。 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from datetime import date from urllib.error import HTTPError import pandas as pd import requests from bs4 import BeautifulSoup import logbook from toolz.itertoolz import partition_all from ..setting.constants import QUOTE_COLS from cnswd.utils import ensure_list # from cnswd.data_proxy import DataProxy from cnswd.websource.base import friendly_download, get_page_response from .._exceptions import NoWebData, FrequentAccess QUOTE_PATTERN = re.compile('"(.*)"') NEWS_PATTERN = re.compile(r'\W+') STOCK_CODE_PATTERN = re.compile(r'\d{6}') SORT_PAT = re.compile(r'↑|↓') DATA_BASE_URL = 'http://stock.finance.sina.com.cn/stock/go.php/' MARGIN_COL_NAMES = [ '股票代码', '股票简称', '融资余额', '融资买入额', '融资偿还额', '融券余量金额', '融券余量', '融券卖出量', '融券偿还量', '融券余额' ] INDEX_QUOTE_COLS = [ '指数简称', '最新价', '涨跌', '涨跌幅%', '成交量(万手)', '成交额(万元)' ] logger = logbook.Logger('新浪网') @friendly_download(10, 10, 10) def fetch_company_info(stock_code): """获取公司基础信息""" url_fmt = 'http://vip.stock.finance.sina.com.cn/corp/go.php/vCI_CorpInfo/stockid/{}.phtml' url = url_fmt.format(stock_code) df = pd.read_html(url, attrs={'id': 'comInfo1'})[0] return df def fetch_issue_new_stock_info(stock_code): """获取发行新股信息""" url_fmt = 'http://vip.stock.finance.sina.com.cn/corp/go.php/vISSUE_NewStock/stockid/{}.phtml' url = url_fmt.format(stock_code) df = pd.read_html(url, attrs={'id': 'comInfo1'})[0] return df def _add_prefix(stock_code): pre = stock_code[0] if pre == '6': return 'sh{}'.format(stock_code) else: return 'sz{}'.format(stock_code) def _to_dataframe(content, p_codes): """解析网页数据,返回DataFrame对象""" res = [x.split(',') for x in re.findall(QUOTE_PATTERN, content)] df = pd.DataFrame(res).iloc[:, :32] df.columns = QUOTE_COLS[1:] df.insert(0, '股票代码', p_codes) # df['股票代码'] = p_codes df.dropna(inplace=True) return df def fetch_quotes(stock_codes): """ 获取股票列表的分时报价 Parameters ---------- stock_codes : list 股票代码列表 Returns ------- res : DataFrame 行数 = len(stock_codes) 33列 Example ------- >>> df = fetch_quotes(['000001','000002']) >>> df.iloc[:,:8] 股票代码 股票简称 开盘 前收盘 现价 最高 最低 竞买价 0 000001 平安银行 11.040 11.050 10.900 11.050 10.880 10.900 1 000002 万 科A 33.700 34.160 33.290 33.990 33.170 33.290 """ stock_codes = ensure_list(stock_codes) num = len(stock_codes) length = 800 url_fmt = 'http://hq.sinajs.cn/list={}' dfs = [] for p_codes in partition_all(length, stock_codes): # p_codes = stock_codes[i * length:(i + 1) * length] url = url_fmt.format(','.join(map(_add_prefix, p_codes))) content = get_page_response(url).text dfs.append(_to_dataframe(content, p_codes)) return pd.concat(dfs).sort_values('股票代码') def _add_index_prefix(code): pre = code[0] if pre == '0': return 's_sh{}'.format(code) else: return 's_sz{}'.format(code) def _to_index_dataframe(content, p_codes): """解析网页数据,返回DataFrame对象""" res = [x.split(',') for x in re.findall(QUOTE_PATTERN, content)] df = pd.DataFrame(res) df.columns = INDEX_QUOTE_COLS df.insert(0, '指数代码', p_codes) df['成交时间'] = pd.Timestamp.now().round('T') df.dropna(inplace=True) return df def fetch_index_quotes(codes): """ 获取指数列表的分时报价 Parameters ---------- codes : list 代码列表 Returns ------- res : DataFrame 行数 = len(stock_codes) 33列 Example ------- >>> df = fetch_index_quotes(['000001','000002']) >>> df.iloc[:,:8] 股票代码 股票简称 开盘 前收盘 现价 最高 最低 竞买价 0 000001 平安银行 11.040 11.050 10.900 11.050 10.880 10.900 1 000002 万 科A 33.700 34.160 33.290 33.990 33.170 33.290 """ codes = ensure_list(codes) length = 800 url_fmt = 'http://hq.sinajs.cn/list={}' dfs = [] for p_codes in partition_all(length, codes): url = url_fmt.format(','.join(map(_add_index_prefix, p_codes))) content = get_page_response(url).text dfs.append(_to_index_dataframe(content, p_codes)) return pd.concat(dfs).sort_values('指数代码') # 不可用 def fetch_globalnews(): """获取24*7全球财经新闻""" url = 'http://live.sina.com.cn/zt/f/v/finance/globalnews1' response = requests.get(url) today = date.today() soup = BeautifulSoup(response.content, "lxml") # 时间戳 stamps = [p.string for p in soup.find_all("p", class_="bd_i_time_c")] # 标题 titles = [p.string for p in soup.find_all("p", class_="bd_i_txt_c")] # 类别 categories = [ re.sub(NEWS_PATTERN, '', p.string) for p in soup.find_all("p", class_="bd_i_tags") ] # 编码bd_i bd_i_og clearfix data_mid = ['{} {}'.format(str(today), t) for t in stamps] return stamps, titles, categories, data_mid @friendly_download(10, 10, 2) def fetch_cjmx(stock_code, date_): """ 下载指定股票代码所在日期成交明细 Parameters ---------- stock_code : str 股票代码(6位数字代码) date_ : 类似日期对象 代表有效日期字符串或者日期对象 Returns ------- res : DataFrame Exception --------- 当不存在数据时,触发NoWebData异常 当频繁访问时,系统会在一段时间内阻止访问,触发FrequentAccess异常 Example ------- >>> df = fetch_cjmx('300002','2016-6-1') >>> df.head() 成交时间 成交价 价格变动 成交量(手) 成交额(元) 性质 0 15:00:03 8.69 NaN 1901 1652438 卖盘 1 14:57:03 8.69 -0.01 10 8690 卖盘 2 14:56:57 8.70 NaN 102 88740 买盘 3 14:56:51 8.70 NaN 15 13049 买盘 4 14:56:48 8.70 0.01 2 1739 买盘 """ dfs = [] url = 'http://vip.stock.finance.sina.com.cn/quotes_service/view/vMS_tradehistory.php' code_str = _add_prefix(stock_code) date_str = pd.Timestamp(date_).strftime(r'%Y-%m-%d') params = {'symbol': code_str, 'date': date_str, 'page': 1} # 单日交易数据不可能超过1000页 for i in range(1, 1000): params['page'] = i r = requests.get(url, params=params) r.encoding = 'gb18030' df = pd.read_html(r.text, attrs={'id': 'datatbl'}, na_values=['--'])[0] if '没有交易数据' in df.iat[0, 0]: df = pd.DataFrame() break dfs.append(df) res = pd.concat(dfs) if len(res) == 0: raise NoWebData('无法在新浪网获取成交明细数据。股票:{},日期:{}'.format( code_str, date_str)) return res @friendly_download(10, 10, 1) def _common_fun(url, pages, header=0, verbose=False): """处理新浪数据中心网页数据通用函数""" dfs = [] def sina_read_fun(x): return pd.read_html( x, header=header, na_values=['--'], flavor='html5lib', attrs={'class': 'list_table'})[0] for i in range(1, pages + 1): page_url = url + 'p={}'.format(i) if verbose: logger.info('第{}页'.format(i)) df = sina_read_fun(page_url) dfs.append(df) return
pd.concat(dfs, ignore_index=True)
pandas.concat
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from pandas import ( DatetimeIndex, Series, _testing as tm, date_range, ) from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tests.tseries.offsets.test_offsets import _ApplyCases from pandas.tseries import offsets as offsets from pandas.tseries.holiday import USFederalHolidayCalendar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask="Mon Wed Fri") assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthEnd>" assert repr(self.offset2) == "<2 * CustomBusinessMonthEnds>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 2, 29) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert
CBMonthEnd(10)
pandas._libs.tslibs.offsets.CBMonthEnd
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as md import datetime import seaborn as sns from scipy.stats import pearsonr from matplotlib import cm as cm from statsmodels.tsa.stattools import adfuller import warnings ################Stationary check################################################################################################################################## def plot_graph (timeseries, unit, title): rolmean = pd.rolling_mean(timeseries, window=720) rolstd =
pd.rolling_std(timeseries, window=12)
pandas.rolling_std
import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.wrappers.scikit_learn import KerasClassifier from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold, StratifiedKFold from sklearn import preprocessing from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.utils import to_categorical from keras.models import load_model from sklearn.metrics import confusion_matrix from keras import optimizers FILENAME = 'dwt.csv' SEED = 200 def save_model(model, path,filename): filename = os.path.join(path,filename + '.h5') model.save(filename) def encode_text_index(df, name): """ Label Encoding using sklearn.preporcessing. Transforms labels into integers i.e: [a, b, c] => [1, 2, 3] df: pandas.DataFrame name: string """ le = preprocessing.LabelEncoder() df[name] = le.fit_transform(df[name]) return le.classes_ def prepare_data(path: str): # Reads data from file, and splits it into training and testing data dataset = pd.read_csv(FILENAME, sep=',', decimal=',') print("The last column is {0}".format(dataset.columns[-1])) last_column_name = dataset.columns[-1] x_data, y_data = to_xy(dataset, last_column_name) return train_test_split(x_data,y_data,test_size=0.25,random_state=47) def get_data_without_encoding(path: str): # Reads data from file, and splits it into training and testing data dataset = pd.read_csv(FILENAME, sep=',', decimal=',') print("The last column is {0}".format(dataset.columns[-1])) last_column_name = dataset.columns[-1] # x_data, y_data = to_xy(dataset, last_column_name) # trainX, x_test, trainY, y_test = train_test_split(x_data,y_data,test_size=0.25,random_state=47) return dataset.to_numpy()[:,0 :dataset.shape[1] - 1], dataset.to_numpy()[:,-1] def train_with_cross_validation(model_function,X, y, epochs=10, cv=3, batch_size=16): cross_validation_model = KerasClassifier(build_fn=model_function, epochs=epochs, batch_size=batch_size, verbose=1) print(cross_val_score(cross_validation_model, X, y, cv=cv)) def fit_model(model, trainX, trainY,batch_size=16, epochs=10, validation_split=0.20, k_fold=3): Adam=optimizers.Adam(lr=0.1, beta_1=0.9, beta_2=0.99, epsilon=1e-08, decay=0.0, amsgrad=False) model.compile(loss='mean_squared_error', optimizer='Adam', metrics=['acc']) scores=model.fit(trainX, trainY, epochs=epochs,batch_size=batch_size,verbose=0, validation_split=validation_split) return model def evalute_model(model, testX, testY, run_ensamble=True): print("EVALUATING MODEL: {0}".format(model.name)) if(run_ensamble): Adam=optimizers.Adam(lr=0.5, beta_1=0.9, beta_2=0.999, epsilon=1e-06, decay=0.0, amsgrad=False) model.compile(loss='mean_squared_error', optimizer='Adam', metrics=['mae','acc']) scores = model.evaluate(testX, testY, verbose = 2) print(model.metrics_names) return scores def generate_fold(X, Y, k=3): folds = list(KFold(n_splits=k, shuffle=True, random_state=1).split(X, Y)) return folds def get_models(folder=''): if(folder == ''): folder = '.' else: folder = folder + '/' models = [f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)) and f.endswith(".h5")] return models def load_models(models, path="models"): changed_models = [] for i in range(len(models)): model=load_model(os.path.join(path,models[i])) import pdb; pdb.set_trace() changed_models.append(model) return changed_models def encode_text_index(df, name): le = preprocessing.LabelEncoder() df[name] = le.fit_transform(df[name]) return le.classes_ # Transform data to fit the format acceptable by Keras model def to_xy(df, target): result = [] for x in df.columns: if x != target: result.append(x) # find out the type of the target column. Is it really this hard? :( target_type = df[target].dtypes target_type = target_type[0] if hasattr(target_type, '__iter__') else target_type # Encode to int for classification, float otherwise. TensorFlow likes 32 bits. if target_type in (np.int64, np.int32): # Classification dummies =
pd.get_dummies(df[target])
pandas.get_dummies
#!/usr/bin/env python3 import argparse import sys from concurrent.futures import ThreadPoolExecutor import pandas as pd import altair as alt def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-a', '--application', help='Plot only the given application') parser.add_argument('data', help='The data to plot, in CSV or DataFrame pickle format') return parser.parse_args() # Plots application `appname` def plot(results, appname): appdata = results[results.application == appname] if len(appdata) == 0: print(f'No data to plot for {appname}.') return if appdata[appdata.svewidth == 0].groupby('version').sum()['count'].max() >= 1e9: scale = 'billion' appdata.loc[:, 'count'] /= 1e9 else: scale = 'million' appdata.loc[:, 'count'] /= 1e6 fname = f'opcount-{appname}-all-clustered-stacked-group.png' alt.Chart(appdata).mark_bar().encode(x=alt.X('version', title='', axis=alt.Axis(labelAngle=-30)), y=alt.Y('sum(count)', title=f'Dynamic execution count ({scale} instructions)'), column='svewidth', color=alt.Color('optype', title='Op Group', scale=alt.Scale(scheme='set2')))\ .configure(background='white')\ .configure_title(anchor='middle', fontSize=14)\ .properties(title=appname)\ .save(fname, scale_factor='2.0') print(f'Saved plot for {appname} in {fname}.') def main(): args = parse_args() if args.data.endswith('csv'): df = pd.read_csv(args.data) else: df = pd.read_pickle(args.data) df['svewidth'] =
pd.to_numeric(df.svewidth)
pandas.to_numeric
import numpy as np import pandas as pd from pandas import read_csv import matplotlib.pyplot as plt #%matplotlib inline #%% attrib = read_csv('attributes.csv', delim_whitespace = True) data = read_csv('communities.data', names = attrib['attributes']) print(data.shape) #%% data.head() #%% ''' Remove non-predictive features state: US state (by number) - not counted as predictive above, but if considered, should be considered nominal (nominal) county: numeric code for county - not predictive, and many missing values (numeric) community: numeric code for community - not predictive and many missing values (numeric) communityname: community name - not predictive - for information only (string) fold: fold number for non-random 10 fold cross validation, potentially useful for debugging, paired tests - not predictive (numeric) ''' data = data.drop(columns=['state','county', 'community','communityname', 'fold'], axis=1) #%% data.head() #%% ''' Remove column with NA Some of the features contained many missing values as some surveys were not conducted in some communities, so they were removed from the data: 'OtherPerCap', 'LemasSwornFT', 'LemasSwFTPerPop', 'LemasSwFTFieldOps', 'LemasSwFTFieldPerPop', 'LemasTotalReq', 'LemasTotReqPerPop', 'PolicReqPerOffic', 'PolicPerPop', 'RacialMatchCommPol', 'PctPolicWhite', 'PctPolicBlack', 'PctPolicHisp', 'PctPolicAsian', 'PctPolicMinor', 'OfficAssgnDrugUnits', 'NumKindsDrugsSeiz', 'PolicAveOTWorked', 'PolicCars', 'PolicOperBudg', 'LemasPctPolicOnPatr', 'LemasGangUnitDeploy', 'PolicBudgPerPop' ''' from pandas import DataFrame data = data.replace('?', np.nan) feat_miss = data.columns[data.isnull().any()] print(feat_miss) data = data.drop(columns=list(feat_miss), axis=1) #%% print(data.shape) data.head() #%% data.describe() #%% # ViolentCrimesPerPop: total number of violent crimes per 100K popuation (numeric - decimal) # GOAL attribute (to be predicted) data.hist(column = ['ViolentCrimesPerPop'], bins = 30, color = 'red', alpha = 0.8) plt.show() #%% # TODO Correlations import seaborn as sns corrmat = data.corr() fig = plt.figure(figsize = (16, 12)) sns.heatmap(corrmat, vmax = 0.8) plt.show() #%% corrT = data.corr(method = 'pearson').round(4) corrT = corrT.sort_values(by=['ViolentCrimesPerPop']) corrT_VCPP = corrT['ViolentCrimesPerPop'] #%% ''' Remove Multicollinearity set VIF = 5, R^2 = 0.8 to remove attributes ''' '''Dimensionality Reduction - Principal Component Analysis (PCA) The dataset contain many variables highly correlated. Multicolinearity will increase the model variance. Dimensionality reduction utilizing PCA can provide an optimal set of orthogonal features. Let's adopt the criterion in which we select those principal components responsible to explain more than a unit variance ("eigenvalue one criterion"). ''' X_DF = data.iloc[:, 0:99] # data.to_csv("data_removed.csv") # Detecting Multicollinearity using VIF from statsmodels.stats.outliers_influence import variance_inflation_factor def calc_vif(X_DF): # X_DF = pd.DataFrame(X) # Calculating VIF vif = pd.DataFrame() vif["variables"] = X_DF.columns vif["VIF"] = [variance_inflation_factor(X_DF.values, i) for i in range(X_DF.shape[1])] return(vif) VIF = calc_vif(X_DF) #%% data_to_dump = VIF.where(VIF['VIF'] > 30) data_to_dump = data_to_dump.dropna(how='any') columns_to_dump = list(data_to_dump.iloc[:, 0]) X_DF = data.drop(columns=columns_to_dump, axis=1) #%% # VIF_2 = calc_vif(X_DF) ''' Now we have two racePct*** remain, consider corrT_VCPP['racePctAsian'] = 0.0376, corrT_VCPP['racePctHisp'] = 0.2931, which means racePctAsian is not very related to ViolentCrimesPerPop, so to simplify the model, we only keep racePctWhite as our sensitive variable. ''' X_DF = X_DF.drop(columns=['racePctAsian', 'racePctHisp'], axis=1) print("Removed columns(", len(columns_to_dump) + 2, "):\n", (columns_to_dump + ['racePctAsian', 'racePctHisp'])) #%% from sklearn.model_selection import train_test_split X = X_DF.values y = data.iloc[:, 99].values seed = 0 # Train test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = seed) print(X.shape) print(y.shape) #%% from sklearn.preprocessing import StandardScaler # Standardize features by removing the mean and scaling to unit variance sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) #%% # Perform PCA # from sklearn.decomposition import PCA # # c = 14 # pca = PCA(n_components = c) # X_train = pca.fit_transform(X_train) # X_test = pca.transform(X_test) # # print("Amount of variance: %s" % pca.explained_variance_) # print("Sum of the variance: %s" % sum(pca.explained_variance_).round(2)) # # print("Percentage of variance: %s" % pca.explained_variance_ratio_) # print("Sum of the percentage of variance: %s" % sum(pca.explained_variance_ratio_).round(2)) # # # plt.scatter(np.arange(1,(c+1)),pca.explained_variance_, c = 'red') # plt.plot((0,15), (1,1), color = 'black', linestyle = 'dashed') # plt.xlabel('PC') # plt.ylabel('Amount of variance explained') # plt.show() # print(X_train.shape) #%%
pd.DataFrame(X_train)
pandas.DataFrame
import sys import configparser import time import re import pandas as pd from pandas import Series,DataFrame #统计可能含日期的口令(连续数字位数大于等于4的) def countProbPasswd(passwdList): df = [] for i in range(len(passwdList)): passwd = str(passwdList[i]) struc = "" for ch in passwd: if ch.isdigit(): struc += 'D' elif ch.isalpha(): struc += 'L' else: struc += 'S' char = struc[0] c = 1 stri = struc[1:] res = '' for j in stri: if j == char: c += 1 else: res += char res += str(c) char = j c = 1 res += char res += str(c) #r'D[4-9]|D\d{2}' if re.search(r'D[4-9]|D\d{2}', res): df.append(passwd) return df #统计含数字日期的口令-Yahoo # 筛选出的符合条件的密码在 date_passwd/Yahoo 路径下 def analysisDate_Yahoo(data): lis1 = [] lis2 = [] lis3 = [] lis4 = [] lis5 = [] lis6 = [] lis7 = [] lis8 = [] lis9 = [] datePasswd = {'yyyy':0,'yyyymm':0,'yyyymmdd':0,'mmddyyyy':0,'ddmmyyyy':0,'yymmdd':0,'mmddyy':0,'ddmmyy':0,'mmdd':0} for i in data: # 密码判断条件由长到短,符合多种条件的密码只归类于先进行判断的条件 # 例如19800205,归类于yyyy-mm-dd而不是yyyy #yyyy-mm-dd if re.search(r'(19\d{2}|20\d{2})(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['yyyymmdd'] += 1 lis3.append(i) continue #mm-dd-yyyy if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])(19\d{2}|20\d{2})',i): datePasswd['mmddyyyy'] += 1 lis4.append(i) continue #dd-mm-yyyy if re.search(r'(0[1-9]|[1-2][0-9]|3[0-1])(0[1-9]|1[0-2])(19\d{2}|20\d{2})',i): datePasswd['ddmmyyyy'] += 1 lis5.append(i) continue #yy-mm-dd if re.search(r'[0-9][0-9](0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['yymmdd'] += 1 lis6.append(i) continue #mm-dd-yy if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])[0-9][0-9]',i): datePasswd['mmddyy'] += 1 lis7.append(i) continue #dd-mm-yy if re.search(r'(0[1-9]|[1-2][0-9]|3[0-1])(0[1-9]|1[0-2])[0-9][0-9]',i): datePasswd['ddmmyy'] += 1 lis8.append(i) continue #yyyy-mm if re.search(r'(19\d{2}|20\d{2})(0[1-9]|1[0-2])',i): datePasswd['yyyymm'] += 1 lis2.append(i) continue #yyyy 1900-2100 if re.search(r'19\d{2}|20\d{2}',i): datePasswd['yyyy'] += 1 lis1.append(i) continue #mm-dd if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['mmdd'] += 1 lis9.append(i) continue pd.Series(lis1).to_csv('date_passwd/Yahoo/yyyy.csv') pd.Series(lis2).to_csv('date_passwd/Yahoo/yyyymm.csv') pd.Series(lis3).to_csv('date_passwd/Yahoo/yyyymmdd.csv') pd.Series(lis4).to_csv('date_passwd/Yahoo/mmddyyyy.csv') pd.Series(lis5).to_csv('date_passwd/Yahoo/ddmmyyyy.csv') pd.Series(lis6).to_csv('date_passwd/Yahoo/yymmdd.csv') pd.Series(lis7).to_csv('date_passwd/Yahoo/mmddyy.csv') pd.Series(lis8).to_csv('date_passwd/Yahoo/ddmmyy.csv') pd.Series(lis9).to_csv('date_passwd/Yahoo/mmdd.csv') print('-------------Date passwd in Yahoo------------------') print(datePasswd) print('--------------------------------------------------') #统计含数字日期的口令-csdn-密码 def analysisDate_csdn(data): lis1 = [] lis2 = [] lis3 = [] lis4 = [] lis5 = [] lis6 = [] lis7 = [] lis8 = [] lis9 = [] datePasswd = {'yyyy':0,'yyyymm':0,'yyyymmdd':0,'mmddyyyy':0,'ddmmyyyy':0,'yymmdd':0,'mmddyy':0,'ddmmyy':0,'mmdd':0} for i in data: #yyyy-mm-dd if re.search(r'(19\d{2}|20\d{2})(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['yyyymmdd'] += 1 lis3.append(i) continue #mm-dd-yyyy if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])(19\d{2}|20\d{2})',i): datePasswd['mmddyyyy'] += 1 lis4.append(i) continue #dd-mm-yyyy if re.search(r'(0[1-9]|[1-2][0-9]|3[0-1])(0[1-9]|1[0-2])(19\d{2}|20\d{2})',i): datePasswd['ddmmyyyy'] += 1 lis5.append(i) continue #yy-mm-dd if re.search(r'[0-9][0-9](0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['yymmdd'] += 1 lis6.append(i) continue #mm-dd-yy if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])[0-9][0-9]',i): datePasswd['mmddyy'] += 1 lis7.append(i) continue #dd-mm-yy if re.search(r'(0[1-9]|[1-2][0-9]|3[0-1])(0[1-9]|1[0-2])[0-9][0-9]',i): datePasswd['ddmmyy'] += 1 lis8.append(i) continue #yyyy-mm if re.search(r'(19\d{2}|20\d{2})(0[1-9]|1[0-2])',i): datePasswd['yyyymm'] += 1 lis2.append(i) continue #yyyy 1900-2100 if re.search(r'19\d{2}|20\d{2}',i): datePasswd['yyyy'] += 1 lis1.append(i) continue #mm-dd if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['mmdd'] += 1 lis9.append(i) continue pd.Series(lis1).to_csv('date_passwd/csdn/yyyy.csv')
pd.Series(lis2)
pandas.Series