prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import math import os import time from datetime import datetime from math import inf from heapq import heappop, heappush import collections import functools from collections import defaultdict import heapq import random import networkx as nx import matplotlib.pyplot as plt import pandas as pd import numpy as np import gurobipy as gp from gurobipy import * from shapely.geometry import Point,LineString import geopandas as gpd import osmnx as ox class World: """ 一个类 """ Observation = collections.namedtuple('Observation', 'traveltime origin destination') # 起点位置的集合 def __init__(self, type=0, num=100, sigma=0, reg=0, time_limit=0.6): """ nodeUrl: 图对象的点的标识信息和位置信息 edgeUrl: 图对象的弧的标识信息、位置信息以及连接信息 type: 选择图对象的类型,0为small,1为normal 超参数num,sigma,reg """ self.type = type self.num = num self.sigma = sigma self.reg = reg self.time_limit = time_limit def True_Graph(self): """ 如果type=0时,加载small_model的真实图。如果type=1时,加载normal_model的真实图。如果其他情况,加载manhattan的真实图。 :return: 返回一个加载好的的图G对象 """ if self.type == 0: # <载入文件模块> df_nodelist =
pd.read_csv("../train_dataset/smallnodelist.csv")
pandas.read_csv
import filecmp import os import shutil from pathlib import Path import pandas as pd import pytest import sas7bdat_converter.converter as converter from tests.conftest import bad_sas_file current_dir = Path().absolute() def test_batch_to_csv_path(tmp_path, sas_file_1, sas_file_2, sas_file_3): converted_file_1 = tmp_path.joinpath("file1.csv") converted_file_2 = tmp_path.joinpath("file2.csv") converted_file_3 = tmp_path.joinpath("file3.csv") file_dict = [ {"sas7bdat_file": sas_file_1, "export_file": converted_file_1}, {"sas7bdat_file": sas_file_2, "export_file": converted_file_2}, {"sas7bdat_file": sas_file_3, "export_file": converted_file_3}, ] converter.batch_to_csv(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_csv_str(tmp_path, sas_file_1, sas_file_2, sas_file_3): converted_file_1 = tmp_path.joinpath("file1.csv") converted_file_2 = tmp_path.joinpath("file2.csv") converted_file_3 = tmp_path.joinpath("file3.csv") file_dict = [ {"sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1)}, {"sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2)}, {"sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3)}, ] converter.batch_to_csv(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_csv_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.csv") converted_file = tmp_path.joinpath("file1.csv") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] converter.batch_to_csv(file_dict, continue_on_error=True) assert converted_file.is_file() assert "Error converting" in caplog.text def test_batch_to_csv_no_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.csv") converted_file = tmp_path.joinpath("file1.csv") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] with pytest.raises(Exception) as execinfo: converter.batch_to_csv(file_dict, continue_on_error=False) assert execinfo.value file_dicts = [ [{"bad_key": "test.sas7bdat", "export_file": "test.csv"}], [{"sas7bdat_file": "test.sas7bdat", "bad_key": "test.csv"}], [{"sas_bad_key": "test.sas7bdate", "export_bad_key": "test.csv"}], ] @pytest.mark.parametrize("file_dict", file_dicts) def test_batch_to_csv_invalid_key(file_dict): with pytest.raises(KeyError) as execinfo: converter.batch_to_csv(file_dict) assert "Invalid key provided" in str(execinfo.value) def test_batch_to_excel_path(tmp_path, sas_file_1, sas_file_2, sas_file_3): converted_file_1 = tmp_path.joinpath("file1.xlsx") converted_file_2 = tmp_path.joinpath("file2.xlsx") converted_file_3 = tmp_path.joinpath("file3.xlsx") file_dict = [ {"sas7bdat_file": sas_file_1, "export_file": converted_file_1}, {"sas7bdat_file": sas_file_2, "export_file": converted_file_2}, {"sas7bdat_file": sas_file_3, "export_file": converted_file_3}, ] converter.batch_to_excel(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_excel_str(tmp_path, sas_file_1, sas_file_2, sas_file_3): converted_file_1 = tmp_path.joinpath("file1.xlsx") converted_file_2 = tmp_path.joinpath("file2.xlsx") converted_file_3 = tmp_path.joinpath("file3.xlsx") file_dict = [ {"sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1)}, {"sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2)}, {"sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3)}, ] converter.batch_to_excel(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_excel_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.xlsx") converted_file = tmp_path.joinpath("file1.xlsx") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] converter.batch_to_excel(file_dict, continue_on_error=True) assert converted_file.is_file() assert "Error converting" in caplog.text def test_batch_to_excel_no_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.xlsx") converted_file = tmp_path.joinpath("file1.xlsx") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] with pytest.raises(FileNotFoundError) as execinfo: converter.batch_to_excel(file_dict, continue_on_error=False) assert execinfo.value file_dicts = [ [{"bad_key": "test.sas7bdat", "export_file": "test.xlsx"}], [{"sas7bdat_file": "test.sas7bdat", "bad_key": "<KEY>"}], [{"sas_bad_key": "test.sas7bdate", "export_bad_key": "<KEY>"}], ] @pytest.mark.parametrize("file_dict", file_dicts) def test_batch_to_excel_invalid_key(file_dict): with pytest.raises(KeyError) as execinfo: converter.batch_to_excel(file_dict) assert "Invalid key provided" in str(execinfo.value) def test_batch_to_json_path(tmp_path, sas_file_1, sas_file_2, sas_file_3): converted_file_1 = tmp_path.joinpath("file1.json") converted_file_2 = tmp_path.joinpath("file2.json") converted_file_3 = tmp_path.joinpath("file3.json") file_dict = [ {"sas7bdat_file": sas_file_1, "export_file": converted_file_1}, {"sas7bdat_file": sas_file_2, "export_file": converted_file_2}, {"sas7bdat_file": sas_file_3, "export_file": converted_file_3}, ] converter.batch_to_json(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_json_path_str(tmp_path, sas_file_1, sas_file_2, sas_file_3): converted_file_1 = tmp_path.joinpath("file1.json") converted_file_2 = tmp_path.joinpath("file2.json") converted_file_3 = tmp_path.joinpath("file3.json") file_dict = [ {"sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1)}, {"sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2)}, {"sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3)}, ] converter.batch_to_json(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_json_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.json") converted_file = tmp_path.joinpath("file1.json") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] converter.batch_to_json(file_dict, continue_on_error=True) assert converted_file.is_file() assert "Error converting" in caplog.text def test_batch_to_json_no_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.json") converted_file = tmp_path.joinpath("file1.json") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] with pytest.raises(Exception) as execinfo: converter.batch_to_json(file_dict, continue_on_error=False) assert execinfo.value file_dicts = [ [{"bad_key": "test.sas7bdat", "export_file": "test.json"}], [{"sas7bdat_file": "test.sas7bdat", "bad_key": "test.json"}], [{"sas_bad_key": "test.sas7bdate", "export_bad_key": "test.json"}], ] @pytest.mark.parametrize("file_dict", file_dicts) def test_batch_to_json_invalid_key(file_dict): with pytest.raises(KeyError) as execinfo: converter.batch_to_json(file_dict) assert "Invalid key provided" in str(execinfo.value) optionals = [ {}, {"root_node": "root"}, {"first_node": "item"}, {"root_node": "root", "first_node": "item"}, ] @pytest.mark.parametrize("optional", optionals) def test_batch_to_xml_path(tmp_path, sas_file_1, sas_file_2, sas_file_3, optional): converted_file_1 = tmp_path.joinpath("file1.xml") converted_file_2 = tmp_path.joinpath("file2.xml") converted_file_3 = tmp_path.joinpath("file3.xml") if optional.get("root_node") and optional.get("first_node"): file_dict = [ { "sas7bdat_file": sas_file_1, "export_file": converted_file_1, "root_node": optional.get("root_node"), "first_node": optional.get("first_node"), }, { "sas7bdat_file": sas_file_2, "export_file": converted_file_2, "root_node": optional.get("root_node"), "first_node": optional.get("first_node"), }, { "sas7bdat_file": sas_file_3, "export_file": converted_file_3, "root_node": optional.get("root_node"), "first_node": optional.get("first_node"), }, ] elif optional.get("root_node"): file_dict = [ { "sas7bdat_file": sas_file_1, "export_file": converted_file_1, "root_node": optional.get("root_node"), }, { "sas7bdat_file": sas_file_2, "export_file": converted_file_2, "root_node": optional.get("root_node"), }, { "sas7bdat_file": sas_file_3, "export_file": converted_file_3, "root_node": optional.get("root_node"), }, ] elif optional.get("first_node"): file_dict = [ { "sas7bdat_file": sas_file_1, "export_file": converted_file_1, "first_node": optional.get("first_node"), }, { "sas7bdat_file": sas_file_2, "export_file": converted_file_2, "first_node": optional.get("first_node"), }, { "sas7bdat_file": sas_file_3, "export_file": converted_file_3, "first_node": optional.get("first_node"), }, ] else: file_dict = [ { "sas7bdat_file": sas_file_1, "export_file": converted_file_1, }, { "sas7bdat_file": sas_file_2, "export_file": converted_file_2, }, { "sas7bdat_file": sas_file_3, "export_file": converted_file_3, }, ] converter.batch_to_xml(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created @pytest.mark.parametrize("optional", optionals) def test_batch_to_xml_str(tmp_path, sas_file_1, sas_file_2, sas_file_3, optional): converted_file_1 = tmp_path.joinpath("file1.xml") converted_file_2 = tmp_path.joinpath("file2.xml") converted_file_3 = tmp_path.joinpath("file3.xml") if optional.get("root_node") and optional.get("first_node"): file_dict = [ { "sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1), "root_node": optional.get("root_node"), "first_node": optional.get("first_node"), }, { "sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2), "root_node": optional.get("root_node"), "first_node": optional.get("first_node"), }, { "sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3), "root_node": optional.get("root_node"), "first_node": optional.get("first_node"), }, ] elif optional.get("root_node"): file_dict = [ { "sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1), "root_node": optional.get("root_node"), }, { "sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2), "root_node": optional.get("root_node"), }, { "sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3), "root_node": optional.get("root_node"), }, ] elif optional.get("first_node"): file_dict = [ { "sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1), "first_node": optional.get("first_node"), }, { "sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2), "first_node": optional.get("first_node"), }, { "sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3), "first_node": optional.get("first_node"), }, ] else: file_dict = [ { "sas7bdat_file": str(sas_file_1), "export_file": str(converted_file_1), }, { "sas7bdat_file": str(sas_file_2), "export_file": str(converted_file_2), }, { "sas7bdat_file": str(sas_file_3), "export_file": str(converted_file_3), }, ] converter.batch_to_xml(file_dict) files_created = False if converted_file_1.is_file() and converted_file_2.is_file() and converted_file_3.is_file(): files_created = True assert files_created def test_batch_to_xml_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.xml") converted_file = tmp_path.joinpath("file1.xml") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] converter.batch_to_xml(file_dict, continue_on_error=True) assert converted_file.is_file() assert "Error converting" in caplog.text def test_batch_to_xml_no_continue(tmp_path, caplog, sas_file_1): bad_sas_file = tmp_path.joinpath("bad_file.sas7bdat") bad_converted_file = tmp_path.joinpath("bad_file.xml") converted_file = tmp_path.joinpath("file1.xml") file_dict = [ {"sas7bdat_file": bad_sas_file, "export_file": bad_converted_file}, {"sas7bdat_file": sas_file_1, "export_file": converted_file}, ] with pytest.raises(Exception) as execinfo: converter.batch_to_xml(file_dict, continue_on_error=False) assert execinfo.value file_dicts = [ [{"bad_key": "test.sas7bdat", "export_file": "test.xml"}], [{"sas7bdat_file": "test.sas7bdat", "bad_key": "<KEY>"}], [{"sas_bad_key": "test.sas7bdate", "export_bad_key": "<KEY>"}], [ { "sas7bdat_file": "test.sas7bdat", "export_file": "test.xml", "root_node": "test", "bad": "test", } ], [ { "sas7bdat_file": "test.sas7bdat", "export_file": "test.xml", "bad": "test", "first_node": "test", } ], ] @pytest.mark.parametrize("file_dict", file_dicts) def test_batch_to_xml_invalid_key(file_dict): with pytest.raises(KeyError) as execinfo: converter.batch_to_xml(file_dict) assert "Invalid key provided" in str(execinfo.value) def test_dir_to_csv_same_dir_path(tmp_path, sas7bdat_dir): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) converter.dir_to_csv(tmp_path) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".csv"]) assert sas_counter == convert_counter def test_dir_to_csv_same_dir_str(tmpdir, sas7bdat_dir): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, tmpdir) converter.dir_to_csv(tmpdir) sas_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".csv"]) assert sas_counter == convert_counter def test_dir_to_csv_continue(tmp_path, caplog, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) converter.dir_to_csv(tmp_path, continue_on_error=True) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) - 1 convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".csv"]) assert sas_counter == convert_counter assert "Error converting" in caplog.text def test_dir_to_csv_no_continue(tmp_path, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) with pytest.raises(Exception) as execinfo: converter.dir_to_csv(tmp_path, continue_on_error=False) assert execinfo.value def test_dir_to_csv_different_dir_path(tmp_path, sas7bdat_dir): converter.dir_to_csv(dir_path=sas7bdat_dir, export_path=tmp_path) sas_counter = len([name for name in sas7bdat_dir.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".csv"]) assert sas_counter == convert_counter def test_dir_to_csv_different_dir_str(tmpdir, sas7bdat_dir): converter.dir_to_csv(dir_path=str(sas7bdat_dir), export_path=tmpdir) sas_counter = len([name for name in Path(sas7bdat_dir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".csv"]) assert sas_counter == convert_counter def test_dir_to_excel_same_dir_path(tmp_path, sas7bdat_dir): sas_files = [x for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) converter.dir_to_excel(tmp_path) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".xlsx"]) assert sas_counter == convert_counter def test_dir_to_excel_same_dir_str(tmpdir, sas7bdat_dir): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, tmpdir) converter.dir_to_excel(tmpdir) sas_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".xlsx"]) assert sas_counter == convert_counter def test_dir_to_excel_different_dir_path(tmp_path, sas7bdat_dir): converter.dir_to_excel(dir_path=sas7bdat_dir, export_path=tmp_path) sas_counter = len([name for name in sas7bdat_dir.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".xlsx"]) assert sas_counter == convert_counter def test_dir_to_excel_different_dir_str(tmpdir, sas7bdat_dir): converter.dir_to_excel(dir_path=str(sas7bdat_dir), export_path=tmpdir) sas_counter = len([name for name in Path(sas7bdat_dir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".xlsx"]) assert sas_counter == convert_counter def test_dir_to_excel_continue(tmp_path, caplog, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) converter.dir_to_excel(tmp_path, continue_on_error=True) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) - 1 convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".xlsx"]) assert sas_counter == convert_counter assert "Error converting" in caplog.text def test_dir_to_excel_no_continue(tmp_path, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) with pytest.raises(Exception) as execinfo: converter.dir_to_excel(tmp_path, continue_on_error=False) assert execinfo.value def test_dir_to_json_same_dir_path(tmp_path, sas7bdat_dir): sas_files = [x for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, tmp_path) converter.dir_to_json(tmp_path) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".json"]) assert sas_counter == convert_counter def test_dir_to_json_same_dir_str(tmpdir, sas7bdat_dir): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, tmpdir) converter.dir_to_json(tmpdir) sas_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".json"]) assert sas_counter == convert_counter def test_dir_to_json_different_dir_path(tmp_path, sas7bdat_dir): converter.dir_to_json(sas7bdat_dir, tmp_path) sas_counter = len([name for name in sas7bdat_dir.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".json"]) assert sas_counter == convert_counter def test_dir_to_json_different_dir_str(tmpdir, sas7bdat_dir): converter.dir_to_json(str(sas7bdat_dir), tmpdir) sas_counter = len([name for name in Path(sas7bdat_dir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".json"]) assert sas_counter == convert_counter def test_dir_to_json_continue(tmp_path, caplog, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) converter.dir_to_json(tmp_path, continue_on_error=True) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) - 1 convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".json"]) assert sas_counter == convert_counter assert "Error converting" in caplog.text def test_dir_to_json_no_continue(tmp_path, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) with pytest.raises(Exception) as execinfo: converter.dir_to_json(tmp_path, continue_on_error=False) assert execinfo.value def test_dir_to_xml_same_dir_path(tmp_path, sas7bdat_dir): sas_files = [x for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) converter.dir_to_xml(tmp_path) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".xml"]) assert sas_counter == convert_counter def test_dir_to_xml_same_dir_str(tmpdir, sas7bdat_dir): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, tmpdir) converter.dir_to_xml(tmpdir) sas_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".xml"]) assert sas_counter == convert_counter def test_dir_to_xml_different_dir_path(tmp_path, sas7bdat_dir): converter.dir_to_xml(sas7bdat_dir, tmp_path) sas_counter = len([name for name in sas7bdat_dir.iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".xml"]) assert sas_counter == convert_counter def test_dir_to_xml_different_dir_str(tmpdir, sas7bdat_dir): converter.dir_to_xml(str(sas7bdat_dir), tmpdir) sas_counter = len([name for name in Path(sas7bdat_dir).iterdir() if name.suffix == ".sas7bdat"]) convert_counter = len([name for name in Path(tmpdir).iterdir() if name.suffix == ".xml"]) assert sas_counter == convert_counter def test_dir_to_xml_continue(tmp_path, caplog, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) converter.dir_to_xml(tmp_path, continue_on_error=True) sas_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".sas7bdat"]) - 1 convert_counter = len([name for name in tmp_path.iterdir() if name.suffix == ".xml"]) assert sas_counter == convert_counter assert "Error converting" in caplog.text def test_dir_to_xml_no_continue(tmp_path, sas7bdat_dir, bad_sas_file): sas_files = [str(x) for x in sas7bdat_dir.iterdir()] for sas_file in sas_files: shutil.copy(sas_file, str(tmp_path)) shutil.copy(bad_sas_file, str(tmp_path)) with pytest.raises(Exception) as execinfo: converter.dir_to_xml(tmp_path, continue_on_error=False) assert execinfo.value exception_data = [ ( "sas7bdat conversion error - Valid extension for to_csv conversion is: .csv", [".csv"], "to_csv", ), ( "sas7bdat conversion error - Valid extensions for to_csv conversion are: .csv, .txt", [".csv", ".txt"], "to_csv", ), ] @pytest.mark.parametrize("exception", exception_data) def test_file_extension_exception_message(exception): valid_message = exception[0] valid_extensions = exception[1] test_message = converter._file_extension_exception_message(exception[2], valid_extensions) assert valid_message == test_message def test_invalid_key_exception_message_no_optional(): valid_message = "Invalid key provided, expected keys are: sas7bdat_file, export_file" required_keys = ["sas7bdat_file", "export_file"] test_message = converter._invalid_key_exception_message(required_keys=required_keys) assert valid_message == test_message def test_invalid_key_exception_message_optional(): valid_message = "Invalid key provided, expected keys are: sas7bdat_file, export_file and optional keys are: root_node, first_node" required_keys = ["sas7bdat_file", "export_file"] optional_keys = ["root_node", "first_node"] test_message = converter._invalid_key_exception_message( required_keys=required_keys, optional_keys=optional_keys ) assert valid_message == test_message @pytest.mark.parametrize( "data", [ ( ( ".txt", ".csv", ), ".xml", ), ((".sas7bdat",), ".json"), ], ) def test_is_valid_extension_false(data): valid_extensions = data[0] file_extension = data[1] assert not converter._is_valid_extension(valid_extensions, file_extension) @pytest.mark.parametrize( "data", [ ( ( ".txt", ".csv", ), ".csv", ), ((".sas7bdat",), ".sas7bdat"), ], ) def test_is_valid_extension_true(data): valid_extensions = data[0] file_extension = data[1] assert converter._is_valid_extension(valid_extensions, file_extension) @pytest.fixture(params=["sas_file_1", "sas_file_2", "sas_file_3"]) def test_to_csv_path(tmp_path, request, expected_dir): sas_file = Path(request.getfixturevalue(request.param)) converted_file = tmp_path.joinpath("file1.csv") expected_file = expected_dir.joinpath("file1.csv") converter.to_csv(sas_file, converted_file) assert filecmp.cmp(converted_file, expected_file, shallow=False) @pytest.fixture(params=["sas_file_1", "sas_file_2", "sas_file_3"]) def test_to_csv_str(tmpdir, request, expected_dir): sas_file = request.getfixturevalue(request.param) converted_file = str(Path(tmpdir).joinpath("file1.csv")) expected_file = expected_dir.joinpath("file1.csv") converter.to_csv(sas_file, converted_file) assert filecmp.cmp(converted_file, expected_file, shallow=False) def test_to_csv_invalid_extension(): with pytest.raises(AttributeError) as execinfo: converter.to_csv("test.sas7bdat", "test.bad") assert "sas7bdat conversion error - Valid extension" in str(execinfo.value) def test_to_dataframe(sas_file_1): d = { "integer_row": [ 1.0, 2.0, 3.0, 4.0, 5.0, ], "text_row": [ "Some text", "Some more text", "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc lobortis, risus nec euismod condimentum, lectus ligula porttitor massa, vel ornare mauris arcu vel augue. Maecenas rhoncus consectetur nisl, ac convallis enim pellentesque efficitur. Praesent tristique . End of textlectus a dolor sodales, in porttitor felis auctor. Etiam dui mauris, commodo at venenatis eu, lacinia nec tellus. Curabitur dictum tincidunt convallis. Duis vestibulum mauris quis felis euismod bibendum. Nulla eget nunc arcu. Nam quis est urna. In eleifend ultricies ultrices. In lacinia auctor ex, sed commodo nisl fringilla sed. Fusce iaculis viverra eros, nec elementum velit aliquam non. Aenean sollicitudin consequat libero, eget mattis.", "Text", "Test", ], "float_row": [ 2.5, 17.23, 3.21, 100.9, 98.6, ], "date_row": [ "2018-01-02", "2018-02-05", "2017-11-21", "2016-05-19", "1999-10-25", ], } df = pd.DataFrame(data=d) df["date_row"] = pd.to_datetime(df["date_row"]) df = df[["integer_row", "text_row", "float_row", "date_row"]] df_file = converter.to_dataframe(sas_file_1) pd.testing.assert_frame_equal(df, df_file, check_datetimelike_compat=True) @pytest.fixture(params=["sas_file_1", "sas_file_2", "sas_file_3"]) def test_to_excel_path(tmp_path, request, expected_dir): sas_file = Path(request.getfixturevalue(request.param)) converted_file = tmp_path.joinpath("file1.xlsx") expected_file = expected_dir.joinpath("file1.xlsx") converter.to_excel(sas_file, converted_file) df_expected = pd.read_excel(expected_file, engine="openpyxl") df_converted = pd.read_excel(converted_file, engine="openpyxl") pd.testing.assert_frame_equal(df_expected, df_converted) @pytest.fixture(params=["sas_file_1", "sas_file_2", "sas_file_3"]) def test_to_excel_str(tmpdir, request, expected_dir): sas_file = request.getfixturevalue(request.param) converted_file = str(Path(tmpdir).joinpath("file1.xlsx")) expected_file = expected_dir.joinpath("file1.xlsx") converter.to_excel(sas_file, converted_file) df_expected = pd.read_excel(expected_file, engine="openpyxl") df_converted = pd.read_excel(converted_file, engine="openpyxl")
pd.testing.assert_frame_equal(df_expected, df_converted)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Feb 27 09:23:58 2021 @author: nathanielgates """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtick import gekko_load_follow as g1 import gekko_co_gen as g2 import gekko_tri_gen as g3 import utilities as util from time import time #%% Run models end = 11 # 5 # 14 # 11 # 9 # 7 # 9 # 5 # 11 time_steps = [int(2**i) for i in range(2, end)] imodes = [6, 9] # imodes = [6] # 0.76 min (for nodes = [0, 3, 4, 5] with end=5) # imodes = [9] # 5.03 min (for nodes = [0, 1, 2, 3] with end=5) # 0.91 min for imodes = [6], nodes = [3], end = 9 # 3.72 min for imodes = [6], nodes = [3], end = 11 (51 and 118 sec added) # 2.45 min for imodes = [6], nodes = [3], end = 11 (with GEKKO server) # 5.79 min for imodes = [6, 9], nodes = [2], end = 11, imode_9_lim = 64 (BYU) # 16.56min for imodes = [6, 9], nodes = [2], end = 11, imode_9_lim = 128 (BYU) # imode_9_lim = 128 # 64 imode_9_lim = 64 name1 = 'Load-follow'#'ing' name2 = 'Co-gen'#'eration' name3 = 'Tri-gen'#'eration' names = [name1, name2, name3] models = [g1, g2, g3] numbers = [1, 2, 3] # names = [ # # name1, # name2, # # name3 # ] # models = [ # # g1, # g2, # # g3 # ] # numbers = [ # # 1, # 2, # # 3 # ] # nodes = [0, 1, 2, 3, 4, 5] # 5min for N0-N5 and end=9 # nodes = [2, 3, 4, 5, 6] nodes = [2] d = {} df = {} for imode in imodes: print('\n---- iMode {} ----'.format(imode)) d[imode] = {} df[imode] = {} time_start = time() for n in time_steps: if (imode == 9) & (n > imode_9_lim): continue print('Timesteps: {}'.format(n)) t = np.linspace(0, 1, n) # Insert finer resolution at start add = [0.01]#[0.01]#, 0.02] t = np.array(list(sorted(set(list(t) + add)))) d[imode][n] = {} df[imode][n] = {} for node in nodes: print(' Nodes: {}'.format(node)) df[imode][n][node] = {} d[imode][n][node] = {} time1 = time() for model, name, number in zip(models, names, numbers): print(' Model: {}-{}'.format(number, name)) time1_a = time() # Solve the optimization prooblem sol, res = model.model(t, imode=imode, nodes=node, disp=True, solver=3) # solver=2) # Try this... time2_a = time() time_sum_a = time2_a - time1_a print(' Time: {:.2f}s'.format(time_sum_a)) df[imode][n][node][number] = sol d[imode][n][node][number] = res time2 = time() time_sum = time2 - time1 print(' Time: {:.2f}s'.format(time_sum)) time_end = time() time_tot = time_end - time_start print('Total time: {:.2f}min'.format(time_tot/60)) df_raw = df.copy() #%% Process data df = df_raw.copy() for imode in imodes: for n in time_steps: if (imode == 9) and (n > imode_9_lim): continue for node in nodes: df[imode][n][node] = (pd.DataFrame(df[imode][n][node]) .T .reset_index() .rename(columns={'index': 'number'}) ) df[imode][n] = pd.concat(df[imode][n]) df[imode] = pd.concat(df[imode]) df = (
pd.concat(df)
pandas.concat
# enables access to directories/files import os # for handling data import numpy as np from numpy import array import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile # graphing import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter from matplotlib import colors from matplotlib.ticker import PercentFormatter import seaborn as sns # statistics from statsmodels.graphics.gofplots import qqplot from scipy import stats import scikit_posthocs as sp from scipy.stats import zscore from scipy.stats import ks_2samp from statistics import mean import statsmodels.api as sm from statsmodels.formula.api import ols from scipy import stats from scipy.stats import zscore from scipy.stats import ks_2samp from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison import scikit_posthocs as sp from statsmodels.stats.anova import AnovaRM from statsmodels.stats.libqsturng import psturng import re from ast import literal_eval import more_itertools import math from matplotlib import lines from matplotlib.offsetbox import AnchoredText import imgkit # machine learning from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from xgboost import XGBRegressor from sklearn.metrics import explained_variance_score, r2_score from sklearn.metrics import median_absolute_error from sklearn.model_selection import StratifiedShuffleSplit from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import KFold, GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import cross_val_score from sklearn import preprocessing import scipy.cluster.hierarchy as hac import matplotlib.gridspec as gridspec import random import six from sklearn.preprocessing import LabelEncoder from matplotlib import colors from matplotlib.ticker import PercentFormatter from matplotlib import lines from matplotlib.offsetbox import AnchoredText def generate_dictionary_for_telomere_length_data(patharg): """ USAGE: telomere_data_dict = generate_dictionary_for_telomere_length_data(directory) Where the directory contains images of files containing telomere length data in a predefined format. This function is written specifically for the Excel file templates that I use, and will provide in this repository, but could be altered for any format. The individual telomere lengths column is extracted, cleansed of missing values & DAPI-intensity values; outliers (3 std devs from mean of column) are removed; and the telomere length values are standardized to each other by use of fluorescent beads which calibrate according to inherent differences between microscope imaging sessions. The individual's ID & timepoint (from filename) (KEY) is associated with its respective individual telomere length data (VALUE) as a KEY:VALUE pair in the dictionary. The dictionary can then be looped over to initialize all timepoint data for that individual for analysis, i.e visualizations, statistics, etc. """ # initialize dictionary to hold our data dict_astro_individ_telos_dfs = {} # loop through directory to grab files for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(f'{file.name} telomere data acquisition in progress..') try: df = pd.read_excel(file) except: print(f'{file.name} File not found..') return -1 df.rename(columns={'Unnamed: 3':'Individ Telos'}, inplace=True) # these numbers correspond to rows containing information about the DAPI counterstain, NOT telomeres, so we drop DAPI_values_to_drop=[5, 192, 379, 566, 753, 940, 1127, 1314, 1501, 1688, 1875, 2062, 2249, 2436, 2623, 2810, 2997, 3184, 3371, 3558, 3745, 3932, 4119, 4306, 4493, 4680, 4867, 5054, 5241, 5428] # grabbing individual telomere length data from the file & dropping DAPI info individual_telos_lengths = (df['Individ Telos']) individual_telos_lengths = individual_telos_lengths.drop(labels=DAPI_values_to_drop) # first pass at generating synthetic data for github exposition; to initialize actual # data, comment out the line below, and uncomment the .iloc[] line # individual_telos_lengths = individual_telos_lengths.sample(2500, random_state=1) individual_telos_lengths = individual_telos_lengths.iloc[7:5611] # ensure the telomere measurements are a numeric data type, drop any missing values, # make data into a dataframe telos_str_toNaN = pd.to_numeric(individual_telos_lengths, errors='coerce') individual_telos_cleaned = telos_str_toNaN.dropna(axis=0, how='any') telos_df = individual_telos_cleaned.to_frame(name=None) # remove any telomere measurements that lie beyond 3 standard deviations of the mean # the data is relatively normal in shape, & this process removes about ~10-20 telos from ~5520 # modest loss, acceptable to help standardize telos_individ_df = telos_df[(np.abs(stats.zscore(telos_df)) < 3).all(axis=1)] # logic clauses for recognizing which astronaut ID is in the sample name # different astronauts were imaging at different times and thus associated with # different Cy3 calibrations for the microscope, thus data is standardized according to Cy3 if ('5163' in file.name) or ('1536' in file.name): telos_individ_df_cy3Cal = telos_individ_df.div(59.86) elif '2171' in file.name or '4419' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(80.5) elif '7673' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.11) elif '2479' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.18) elif '1261' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.16) else: telos_individ_df_cy3Cal = telos_individ_df # average of all cy3 calibrated control telo measurements (11 age matched controls) # telos_individ_df_cy3Cal = telos_individ_df_cy3Cal.div(116.1848153) file_name_trimmed = file.name.replace('.xlsx', '') dict_astro_individ_telos_dfs[file_name_trimmed] = telos_individ_df_cy3Cal print('Done collecting all astronaut telomere length excel files') return dict_astro_individ_telos_dfs def astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone, axsNUMtwo): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone,axsNUMtwo].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') axs[axsNUMone,axsNUMtwo].set_title(f"Histogram of {astroname}'s Telomeres") axs[axsNUMone,axsNUMtwo].set_xlabel('Bins of Individ. Telomeres') axs[axsNUMone,axsNUMtwo].set_ylabel('Freqs of Individ. Telomeres') axs[axsNUMone,axsNUMtwo].xaxis.set_major_locator(plt.MaxNLocator(12)) def astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') axs[axsNUMone].set_title(f'Histogram of Individual Telomeres for {astroname}') axs[axsNUMone].set_xlabel('Bins of Individ. Telomeres') axs[axsNUMone].set_ylabel('Freqs of Individ. Telomeres') axs[axsNUMone].xaxis.set_major_locator(plt.MaxNLocator(19)) def gen_missing_values_andimpute_or_randomsampledown(n_cells, telosPercell, astro_df, option=None): if astro_df.size > 5520: astro_dfsampled = astro_df.sample(5520) return astro_dfsampled if astro_df.size > 25 and astro_df.size <= 2760: missing_data_difference = abs( (n_cells * telosPercell) - astro_df.size ) rsampled = astro_df.sample(missing_data_difference, replace=True, random_state=28) concat_ed = pd.concat([rsampled, astro_df], sort=False) np.random.shuffle(concat_ed.to_numpy()) concat_ed.reset_index(drop=True, inplace=True) return concat_ed if astro_df.size > 25 and astro_df.size < 5520: missing_data_difference = abs( (n_cells * telosPercell) - astro_df.size ) if option == 'rsamp': rsampled = astro_df.sample(missing_data_difference, random_state=28) concat_ed = pd.concat([rsampled, astro_df], sort=False) np.random.shuffle(concat_ed.to_numpy()) concat_ed.reset_index(drop=True, inplace=True) return concat_ed else: return astro_df else: return astro_df def statistics_between_timepoints(astro_pre, astro_mid1, astro_mid2, astro_post, astro_prename, astro_mid1name, astro_mid2name, astro_postname, test): print( astro_prename + ' vs ' + astro_mid1name, test(astro_pre, astro_mid1), '\n', astro_prename + ' vs ' + astro_mid2name, test(astro_pre, astro_mid2),'\n', astro_mid1name + ' vs ' + astro_postname, test(astro_mid1, astro_post),'\n', astro_mid1name + ' vs ' + astro_mid2name, test(astro_mid1, astro_mid2),'\n', astro_mid2name + ' vs ' + astro_postname, test(astro_mid2, astro_post),'\n', astro_prename + ' vs ' + astro_postname, test(astro_pre, astro_post),'\n', ) def statistics_between_timepoints_prepost_only(astro_pre, astro_post, astro_prename, astro_postname): print(astro_prename + ' compared vs ' + astro_postname, stats.mannwhitneyu(astro_pre, astro_post),'\n', ) def get_astro_number_from_id(astro_id): astro_num = '' if astro_id == '5163': astro_num = 99 synth = 'synthetic 1' elif astro_id == '1536': astro_num = 1 synth = 'synthetic 2' elif astro_id == '7673': astro_num = 2 synth = 'synthetic 3' elif astro_id == '2479': astro_num = 3 synth = 'synthetic 4' elif astro_id == '2171': astro_num = 4 synth = 'synthetic 5' elif astro_id == '1261': astro_num = 5 synth = 'synthetic 7' elif astro_id == '3228': astro_num = 6 synth = 'synthetic 8' elif astro_id == '2381': astro_num = 98 synth = 'synthetic 9' elif astro_id == '4819': astro_num = 7 synth = 'synthetic 10' elif astro_id == '1062': astro_num = 8 synth = 'synthetic 11' elif astro_id == '2494': astro_num = 9 synth = 'synthetic 12' elif astro_id == '4419': astro_num = 1011 synth = 'synthetic 99' return astro_num, synth def relative_flight_timepoint(name_key): if 'L' in name_key: flight_status = 'Pre-Flight' elif 'FD' in name_key: flight_status = 'Mid-Flight' elif 'R' in name_key: flight_status = 'Post-Flight' return flight_status def quartile_cts_rel_to_df1(df1, df2): df1 = pd.DataFrame(df1) df2 = pd.DataFrame(df2) quartile_1 = df2[df2 <= df1.quantile(0.25)].count() quartile_2_3 = df2[(df2 > df1.quantile(0.25)) & (df2 < df1.quantile(0.75))].count() quartile_4 = df2[df2 >= df1.quantile(0.75)].count() return quartile_1.values, quartile_2_3.values, quartile_4.values def get_timepoint(name_key): timepoint_5_char = ['L-270', 'L-180', 'FD140', 'FD260', 'R+105', 'R+180', 'R+270'] timepoint_4_char = ['L-60', 'FD45', 'FD90', 'R+60'] timepoint_3_char = ['R+5', 'R+7'] for timepoint in timepoint_5_char: if timepoint in name_key: timepoint = name_key[-5:] return timepoint.strip() for timepoint in timepoint_4_char: if timepoint in name_key: timepoint = name_key[-4:] return timepoint.strip() for timepoint in timepoint_3_char: if timepoint in name_key: timepoint = name_key[-3:] return timepoint.strip() def make_quartiles_columns(astro_df): pos_1, pos_2, pos_3 = 6, 7, 8 astro_id, timepoint, flight, telo_data = 1, 2, 3, 4 for i, row in astro_df.iterrows(): astro_id_4digit = row[astro_id] if row[flight] == 'Pre-Flight' and row[timepoint] == 'L-270': preFlight_telos = row[telo_data] astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, preFlight_telos)) elif row[flight] == 'Pre-Flight' and row[timepoint] == 'L-180': if 'L-270' in list(astro_df[astro_df['astro id'] == astro_id_4digit]['timepoint']): astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) elif 'L-270' not in list(astro_df[astro_df['astro id'] == astro_id_4digit]['timepoint']): preFlight_telos = row[telo_data] astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, preFlight_telos)) elif row[flight] == 'Pre-Flight': astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) elif row[flight] == 'Mid-Flight': astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) elif row[flight] == 'Post-Flight': astro_df.iat[i, pos_1], astro_df.iat[i, pos_2], astro_df.iat[i, pos_3] = (quartile_cts_rel_to_df1(preFlight_telos, row[telo_data])) else: print('unknown label in row[1] of the all patients df.. please check patient timepoint names') return astro_df def graphing_statistics_telomere_data(dict_astro_individ_telos_dfs): astro_list_of_IDs = ['5163', '2171', '1536', '7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062'] timepoint_series = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+180', 'R+270'] n=0 for idNO in astro_list_of_IDs: n+=1 # #initialize blank list of timepoints data = [[1, 0, 0, 0], [0]] emptydata = pd.DataFrame(data) astro_L270 = pd.DataFrame(data) astro_L180 = pd.DataFrame(data) astro_L60 = pd.DataFrame(data) astro_Mid1 = pd.DataFrame(data) astro_Mid2 = pd.DataFrame(data) astro_R7 = pd.DataFrame(data) astro_R60 = pd.DataFrame(data) astro_R180 = pd.DataFrame(data) astro_R270 = pd.DataFrame(data) astro_L270name = '' astro_L180name = '' astro_L60name = '' astro_Mid1name = '' astro_Mid2name = '' astro_R7name = '' astro_R60name = '' astro_R180name = '' astro_R270name = '' for j in timepoint_series: for i in dict_astro_individ_telos_dfs.keys(): if (idNO in i) and j == 'L-270' and ('L-270' in i): astro_L270 = dict_astro_individ_telos_dfs[i] astro_L270name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'L-180' and ('L-180' in i): astro_L180 = dict_astro_individ_telos_dfs[i] astro_L180name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'L-60' and ('L-60' in i): astro_L60 = dict_astro_individ_telos_dfs[i] astro_L60name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and (j == 'FD45' or j == 'FD90') and (j in i): astro_Mid1 = dict_astro_individ_telos_dfs[i] astro_Mid1name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and (j == 'FD140' or j == 'FD260') and (j in i): astro_Mid2 = dict_astro_individ_telos_dfs[i] astro_Mid2name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+7' and (j in i): astro_R7 = dict_astro_individ_telos_dfs[i] astro_R7name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+60' and (j in i): astro_R60 = dict_astro_individ_telos_dfs[i] astro_R60name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+180' and (j in i): astro_R180 = dict_astro_individ_telos_dfs[i] astro_R180name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') elif (idNO in i) and j == 'R+270' and (j in i): astro_R270 = dict_astro_individ_telos_dfs[i] astro_R270name = i.replace('mphase TeloFISH', '').replace('.xlsx', '') else: continue if idNO == '5163' or idNO == '2171' or idNO == '1536': if (astro_L270.size > 25 or astro_L180.size > 25) and (astro_Mid1.size > 25 and astro_Mid2.size > 25 ) and (astro_R180.size > 25 or astro_R270.size > 25): n_cells = 30 astro_L270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_L270, 'rsamp') astro_L180 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_L180, 'rsamp') astro_Mid1 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_Mid1, 'rsamp') astro_Mid2 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_Mid2, 'rsamp') astro_R180 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_R180, 'rsamp') astro_R270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_R270, 'rsamp') n_bins = 30 fig, axs = plt.subplots(2,2, sharey=True, tight_layout=False, figsize = (16, 12)) if astro_L270name != '': if astro_R270name != '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L270, astro_L270, astro_L270name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L270, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L270, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R270, astro_L270, astro_R270name, 1, 1) # print('stats') # statistics_between_timepoints(astro_L270, astro_Mid1, astro_Mid2, astro_R270, # astro_L270name, astro_Mid1name, astro_Mid2name, astro_R270name) elif astro_R270name == '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L270, astro_L270, astro_L270name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L270, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L270, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R180, astro_L270, astro_R180name, 1, 1) # print('stats') # statistics_between_timepoints(astro_L270, astro_Mid1, astro_Mid2, astro_R180, # astro_L270name, astro_Mid1name, astro_Mid2name, astro_R180name) elif astro_L270name == '': if astro_R270name == '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L180, astro_L180, astro_L180name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L180, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L180, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R180, astro_L180, astro_R180name, 1, 1) # print('randomly sampled stats') # statistics_between_timepoints(astro_L180, astro_Mid1, astro_Mid2, astro_R180, # astro_L180name, astro_Mid1name, astro_Mid2name, astro_R180name) elif astro_R270name != '': astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_L180, astro_L180, astro_L180name, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid1, astro_L180, astro_Mid1name, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_Mid2, astro_L180, astro_Mid2name, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astro_R270, astro_L180, astro_R270name, 1, 1) # print('randomly sampled stats') # statistics_between_timepoints(astro_L180, astro_Mid1, astro_Mid2, astro_R270, # astro_L180name, astro_Mid1name, astro_Mid2name, astro_R270name) else: continue # plt.savefig('Final telomere histogram random sampling dso'+idNO+'.pdf') plt.show() if idNO in ['7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062']: if (astro_L270.size > 25) and (astro_R270.size > 25): n_cells = 30 # astro_L270name = f'synthetic astronaut {n} L+270' # astro_R270name = f'synthetic astronaut {n} R+270' astro_L270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_L270, 'rsamp') astro_R270 = gen_missing_values_andimpute_or_randomsampledown(n_cells, 184, astro_R270, 'rsamp') n_bins = 30 fig, axs = plt.subplots(2, sharey=True, tight_layout=False, figsize = (12, 14)) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astro_L270, astro_L270, astro_L270name, 0) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astro_R270, astro_L270, astro_R270name, 1) # statistics_between_timepoints_prepost_only(astro_L270, astro_R270, astro_L270name, astro_R270name) else: continue # plt.savefig('Resampled telomere histogram dso'+idNO+'.pdf') plt.show() def grab_control_values_generate_dictionary(patharg): dict_mean_individ_telos_dfs = {} for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(file.name, 'telomere data acquisition in progress..') try: df = pd.read_excel(file) except: print('File not found..') return -1 df.rename(columns={'Unnamed: 3':'Mean Individ Telos'}, inplace=True) mean_values_of_individual_telomere_lengths = (df['Mean Individ Telos']) mean_values_of_individual_telomere_lengths = mean_values_of_individual_telomere_lengths.drop(labels=[5, 192, 379, 566, 753, 940, 1127, 1314, 1501, 1688, 1875, 2062, 2249, 2436, 2623, 2810, 2997, 3184, 3371, 3558, 3745, 3932, 4119, 4306, 4493, 4680, 4867, 5054, 5241, 5428]) mean_values_of_individual_telomere_lengths = mean_values_of_individual_telomere_lengths.iloc[7:5611] meantelos_str_toNaN = pd.to_numeric(mean_values_of_individual_telomere_lengths, errors='coerce') mean_individual_telos_cleaned = meantelos_str_toNaN.dropna(axis=0, how='any') mean_individ_df = mean_individual_telos_cleaned.to_frame(name=None) mean_individ_df = mean_individ_df[(np.abs(stats.zscore(mean_individ_df)) < 3).all(axis=1)] if '0397' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.285) elif '3907' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.179) elif '1826' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.143) elif '0100' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(59.86) elif '0912' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) elif '0646' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) else: mean_individ_df_cy3Cal = mean_individ_df file_name_trimmed = file.name.replace('.xlsx', '') mean_individ_df_cy3Cal = gen_missing_values_andimpute_or_randomsampledown(30, 184, mean_individ_df_cy3Cal, 'rsamp') dict_mean_individ_telos_dfs[file_name_trimmed] = mean_individ_df_cy3Cal print('data collection complete') return dict_mean_individ_telos_dfs def grab_control_telo_values_per_cell_generate_dictionary(patharg): dict_mean_individ_telos_dfs = {} for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(file.name, 'telomere data acquisition in progress..') try: df = pd.read_excel(file, skiprows=3) df = df.iloc[0:30, 12].to_frame() except: print('File not found..') return -1 mean_individ_df = df.dropna(axis=0, how='any') if '0397' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.285) elif '3907' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.179) elif '1826' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(2.143) elif '0100' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(59.86) elif '0912' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) elif '0646' in file.name: mean_individ_df_cy3Cal = mean_individ_df.div(80.5) else: mean_individ_df_cy3Cal = mean_individ_df file_name_trimmed = file.name.replace('.xlsx', '') mean_individ_df_cy3Cal = mean_individ_df_cy3Cal.div(116.1848153) dict_mean_individ_telos_dfs[file_name_trimmed] = mean_individ_df_cy3Cal print('data collection complete') return dict_mean_individ_telos_dfs def grab_astro_telo_values_per_cell_generate_dictionary(patharg): dict_astro_individ_telos_dfs = {} for file in os.scandir(patharg): if file.name.endswith('.xlsx') and file.name.startswith('~$') == False: print(f'{file.name} telomere data acquisition in progress..') try: df = pd.read_excel(file, skiprows=3) df = df.iloc[0:30, 12].to_frame() except: print(f'{file.name} File not found..') return -1 telos_individ_df = df.dropna(axis=0, how='any') if ('5163' in file.name) or ('1536' in file.name): telos_individ_df_cy3Cal = telos_individ_df.div(59.86) elif '2171' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(80.5) elif '7673' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.11) elif '2479' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.18) elif '1261' in file.name: telos_individ_df_cy3Cal = telos_individ_df.div(2.16) else: telos_individ_df_cy3Cal = telos_individ_df telos_individ_df_cy3Cal = telos_individ_df_cy3Cal.div(116.1848153) file_name_trimmed = file.name.replace('.xlsx', '') dict_astro_individ_telos_dfs[file_name_trimmed] = telos_individ_df_cy3Cal print('Done collecting all astronaut telomere length excel files') return dict_astro_individ_telos_dfs def raincloud_plot_astros_groups(x=None, y=None, data=None, groupby=None, iterable=None): group_df = data.groupby(groupby) for item in iterable: plot_df = group_df.get_group(item) if x == 'timepoint': #this line only needed for timepoint plot_df[x].cat.remove_unused_categories(inplace=True) ax = sns.set(font_scale=1) #bw = sigma ax = pt.RainCloud(x = x, y = y, data = plot_df, palette = "Set2", bw = .20, width_viol = .8, figsize = (8,6), move=0.21, orient = "h") plt.title(f'{item} telos', fontsize=16) def make_astronaut_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = gen_missing_values_andimpute_or_randomsampledown(30, 184, pd.Series(telo_value.values.reshape(-1,)), 'rsamp') data.append([astro_num, astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['astro number', 'astro id', 'timepoint', 'flight status', 'telo data', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df['Q1'] = 'telos preF Q1 <0.25' astro_df['Q2-3'] = 'telos preF Q2-3 >0.25 & <0.75' astro_df['Q4'] = 'telos preF Q4 >0.75' astro_df = astro_df.sort_values(['astro number', 'timepoint']).reset_index(drop=True) return astro_df def make_astronaut_cell_data_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = pd.Series(telo_value.values.reshape(-1,)) data.append([astro_num, astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['astro number', 'astro id', 'timepoint', 'flight status', 'telo data per cell', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df['Q1'] = 'telos preF Q1 <0.25' astro_df['Q2-3'] = 'telos preF Q2-3 >0.25 & <0.75' astro_df['Q4'] = 'telos preF Q4 >0.75' astro_df = astro_df.sort_values(['astro number', 'timepoint']).reset_index(drop=True) return astro_df def make_control_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] # astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = pd.Series(telo_value.values.reshape(-1,)) data.append([astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['control id', 'timepoint', 'flight status controls', 'telo data', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df = astro_df.sort_values(['control id', 'timepoint']).reset_index(drop=True) return astro_df def make_control_cell_data_dataframe(dict_astro_individ_telos_dfs): data = [] for name_key, telo_value in dict_astro_individ_telos_dfs.items(): astro_id = name_key[3:7] # astro_num, synth = get_astro_number_from_id(astro_id) time_point = get_timepoint(name_key) flight_status = relative_flight_timepoint(name_key) telo_value = pd.Series(telo_value.values.reshape(-1,)) data.append([astro_id, time_point, flight_status, telo_value, np.mean(telo_value.values)]) astro_df = pd.DataFrame(data, columns = ['control id', 'timepoint', 'flight status controls', 'telo data per cell', 'telo means']) sorter = ['L-270', 'L-180', 'L-60', 'FD45', 'FD90', 'FD140', 'FD260', 'R+5', 'R+7', 'R+60', 'R+105', 'R+180', 'R+270'] astro_df['timepoint'] = astro_df['timepoint'].astype('category') astro_df['timepoint'].cat.set_categories(sorter, inplace=True) astro_df = astro_df.sort_values(['control id', 'timepoint']).reset_index(drop=True) return astro_df def mid_split(row): if 'FD90' in row or 'FD45' in row: return 'Mid-Flight 1' elif 'FD140' in row or 'FD260' in row: return 'Mid-Flight 2' elif 'L' in row: return 'Pre-Flight' elif 'R' in row: return 'Post-Flight' def histogram_plot_groups(x=None, data=None, groupby=None, iterable=None): group_df = data.groupby(groupby) for item in iterable: plot_df = group_df.get_group(item) non_irrad = plot_df[plot_df['timepoint'] == '1 non irrad'][x] irrad_4_Gy = plot_df[plot_df['timepoint'] == '2 irrad @ 4 Gy'][x] three_B = plot_df[plot_df['timepoint'] == '3 B'][x] four_C = plot_df[plot_df['timepoint'] == '4 C'][x] n_bins = 70 fig, axs = plt.subplots(2, 2, sharey=True, tight_layout=False, figsize=(20, 13)) ax = sns.set_style(style="darkgrid",rc= {'patch.edgecolor': 'black'}) ax = sns.set(font_scale=1) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, non_irrad, non_irrad, f'patient #{item} 1 non rad', 0, 0) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, irrad_4_Gy, non_irrad, f'patient #{item} 2 irrad @ 4 Gy', 0, 1) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, three_B, non_irrad, f'patient #{item} 3 B', 1, 0) telo_mrp.histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, four_C, non_irrad, f'patient #{item} 4 C', 1, 1) def initialize_telo_data_1st_timepoint_variable(timepoint=None, df=None): if timepoint in list(df['timepoint'].unique()): variable = df[df['timepoint'] == str(timepoint)]['telo data exploded'] return variable elif timepoint not in list(df['timepoint'].unique()): variable = pd.DataFrame([[0,1],[0,1]]) return variable def initialize_telo_data_timepoint_or_blank(timepoint, df): if timepoint in list(df['timepoint'].unique()): timepoint_telo_data = df[df['timepoint'] == str(timepoint)]['telo data exploded'] name_id = str(df['astro id'].unique()[0]) name_timepoint = f' {timepoint}' name_total = 'dso' + name_id + name_timepoint return name_total, timepoint_telo_data elif timepoint not in list(df['timepoint'].unique()): timepoint_telo_data = pd.DataFrame([0,1],[0,1]) name = '' return name, timepoint_telo_data ######################################################################################################################## ######################################################################################################################## # FUNCTIONS FOR GRAPHING INDIVIDUAL TELOMERES ######################################################################################################################## ######################################################################################################################## def graph_four_histograms(quartile_ref, n_bins, df1, df2, df3, df4, name1, name2, name3, name4): n_bins = n_bins fig, axs = plt.subplots(2,2, sharey=True, sharex=True, constrained_layout=True, figsize = (8, 6)) sns.set_style(style="darkgrid",rc= {'patch.edgecolor': 'black'}) fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) plt.grid(False) plt.rc('xtick',labelsize=16) plt.rc('ytick',labelsize=16) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df1, quartile_ref, name1, 0, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df2, quartile_ref, name2, 0, 1) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df3, quartile_ref, name3, 1, 0) astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, df4, quartile_ref, name4, 1, 1) def graph_two_histograms(quartile_ref, n_bins, df1, df2, name1, name2, controls=None): n_bins = n_bins fig, axs = plt.subplots(2, sharey=True, constrained_layout=True, figsize = (8, 6)) sns.set_style(style="darkgrid",rc= {'patch.edgecolor': 'black'}) for ax in axs.flat: ax.label_outer() plt.rc('xtick',labelsize=16) plt.rc('ytick',labelsize=16) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, df1, quartile_ref, name1, 0) astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, df2, quartile_ref, name2, 1) # csfont = {'fontname':'sans-serif'} # plt.suptitle(f"Individual Telomere Length Distributions at Pre and Post-Flight: {name1[0:8]}", # y=.95, fontsize=14, **csfont) # if controls == True: # csfont = {'fontname':'sans-serif'} # plt.suptitle(f"Individual Telomere Length Distributions at Pre and Post-Flight: All Control Samples", # y=.95, fontsize=14, **csfont) def astronaut_histogram_stylizer_divyBins_byQuartile(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone, axsNUMtwo): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone,axsNUMtwo].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') modified_astroname = astroname.replace('astro', '') axs[axsNUMone,axsNUMtwo].set_title(f"{modified_astroname}", fontsize=16,) font_axes=16 if axsNUMone == 0 and axsNUMtwo == 0: axs[axsNUMone,axsNUMtwo].set_ylabel("Individual Telomere Counts", fontsize=font_axes) if axsNUMone == 1 and axsNUMtwo == 0: axs[axsNUMone,axsNUMtwo].set_ylabel("Individual Telomere Counts", fontsize=font_axes) axs[axsNUMone,axsNUMtwo].set_xlabel("Bins of Individual Telomeres (RFI)", fontsize=font_axes) if axsNUMone == 1 and axsNUMtwo == 1: axs[axsNUMone,axsNUMtwo].set_xlabel("Bins of Individual Telomeres (RFI)", fontsize=font_axes) axs[axsNUMone,axsNUMtwo].xaxis.set_major_locator(plt.MaxNLocator(7)) def astronaut_histogram_stylizer_divyBins_byQuartile_2Stacked(fig, axs, n_bins, astroDF, astroquartile, astroname, axsNUMone): astroDF = astroDF.to_numpy() astroquartile = astroquartile.to_numpy() N, bins, patches = axs[axsNUMone].hist(astroDF, bins=n_bins, range=(0, 400), edgecolor='black') for a in range(len(patches)): if bins[a] <= np.quantile(astroquartile, 0.25): patches[a].set_facecolor('#fdff38') elif np.quantile(astroquartile, 0.25) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.50): patches[a].set_facecolor('#d0fefe') elif np.quantile(astroquartile, 0.50) < bins[a] and bins[a] <= np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#d0fefe') elif bins[a] > np.quantile(astroquartile, 0.75): patches[a].set_facecolor('#ffbacd') axs[axsNUMone].set_title(f"{astroname}", fontsize=16,) font_axes=16 if axsNUMone == 0 or axsNUMone == 1: axs[axsNUMone].set_ylabel("Individual Telomere Counts", fontsize=font_axes) if axsNUMone == 1: axs[axsNUMone].set_xlabel("Bins of Individual Telomeres (RFI)", fontsize=font_axes) axs[axsNUMone].xaxis.set_major_locator(plt.MaxNLocator(7)) def make_histograms_colored_by_quartile_for_astronauts(exploded_telos_df=None, astro_ids=None, nbins=45): # astro_ids = ['5163', '2171', '1536', '7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062'] grouped_data = exploded_telos_df.groupby('astro id') # by looping through astronaut ids, we'll pull out their respective dataframes # once we have the astronauts respective dfs, we'll figure out the quartile df & for astro_id_num in astro_ids: if astro_id_num not in grouped_data.groups.keys(): break plot_df = grouped_data.get_group(astro_id_num) for timepoint in ['L-270', 'L-180']: first_timepoint = initialize_telo_data_1st_timepoint_variable(timepoint=timepoint, df=plot_df) if first_timepoint.size > 30: break quartile_ref = first_timepoint # okay, now we have the first timepoint as the reference for making quartile cutoffs! # now need to intialize other values! name_L270, astro_L270 = initialize_telo_data_timepoint_or_blank('L-270', plot_df) name_L180, astro_L180 = initialize_telo_data_timepoint_or_blank('L-180', plot_df) if '5163' == astro_id_num or '1536' == astro_id_num: name_Mid1, astro_Mid1 = initialize_telo_data_timepoint_or_blank('FD90', plot_df) name_Mid2, astro_Mid2 = initialize_telo_data_timepoint_or_blank('FD140', plot_df) if '2171' == astro_id_num: name_Mid1, astro_Mid1 = initialize_telo_data_timepoint_or_blank('FD45', plot_df) name_Mid2, astro_Mid2 = initialize_telo_data_timepoint_or_blank('FD260', plot_df) name_R180, astro_R180 = initialize_telo_data_timepoint_or_blank('R+180', plot_df) name_R270, astro_R270 = initialize_telo_data_timepoint_or_blank('R+270', plot_df) if ('5163' == astro_id_num) or ('2171' == astro_id_num) or ('1536' == astro_id_num): n_bins = n_bins if name_L270 != '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R270, name_L270, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R180, name_L270, name_Mid1, name_Mid2, name_R180) elif name_L270 == '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R270, name_L180, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R180, name_L180, name_Mid1, name_Mid2, name_R180) elif astro_id_num in ['7673', '4819', '3228', '2494', '2479', '2381', '1261', '1062']: n_bins = 60 graph_two_histograms(quartile_ref, n_bins, astro_L270, astro_R270, name_L270, name_R270) plt.savefig(f'../individual telomere length histogram distributions/png/dso{astro_id_num} histogram of individual telomere length distributions.png', dpi=600) plt.savefig(f'../individual telomere length histogram distributions/svg/dso{astro_id_num} histogram of individual telomere length distributions.svg', format='svg', dpi=1500) def initialize_encoded_telo_data_timepoint_or_blank(timepoint, df): if timepoint in list(df['timepoint'].unique()): timepoint_telo_data = df[df['timepoint'] == str(timepoint)]['telo data exploded'] name_id = str(df['encoded astro id'].unique()[0]) name_timepoint = f' {timepoint}' name_total = 'astro ' + name_id + name_timepoint return name_total, timepoint_telo_data elif timepoint not in list(df['timepoint'].unique()): timepoint_telo_data = pd.DataFrame([0,1],[0,1]) name = '' return name, timepoint_telo_data def make_histograms_colored_by_quartile_for_encoded_astronauts(exploded_telos_df=None, astro_ids=None, n_bins=60, save=True): grouped_data = exploded_telos_df.groupby('encoded astro id') for astro_id_num in astro_ids: if astro_id_num not in grouped_data.groups.keys(): break plot_df = grouped_data.get_group(astro_id_num) for timepoint in ['L-270', 'L-180']: first_timepoint = initialize_telo_data_1st_timepoint_variable(timepoint=timepoint, df=plot_df) if first_timepoint.size > 30: break quartile_ref = first_timepoint name_L270, astro_L270 = initialize_encoded_telo_data_timepoint_or_blank('L-270', plot_df) name_L180, astro_L180 = initialize_encoded_telo_data_timepoint_or_blank('L-180', plot_df) if 'A' == astro_id_num or 'C' == astro_id_num: name_Mid1, astro_Mid1 = initialize_encoded_telo_data_timepoint_or_blank('FD90', plot_df) name_Mid2, astro_Mid2 = initialize_encoded_telo_data_timepoint_or_blank('FD140', plot_df) if 'B' == astro_id_num: name_Mid1, astro_Mid1 = initialize_encoded_telo_data_timepoint_or_blank('FD45', plot_df) name_Mid2, astro_Mid2 = initialize_encoded_telo_data_timepoint_or_blank('FD260', plot_df) name_R180, astro_R180 = initialize_encoded_telo_data_timepoint_or_blank('R+180', plot_df) name_R270, astro_R270 = initialize_encoded_telo_data_timepoint_or_blank('R+270', plot_df) if ('B' == astro_id_num) or ('A' == astro_id_num) or ('C' == astro_id_num): n_bins = n_bins if name_L270 != '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R270, name_L270, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L270, astro_Mid1, astro_Mid2, astro_R180, name_L270, name_Mid1, name_Mid2, name_R180) elif name_L270 == '': if name_R270 != '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R270, name_L180, name_Mid1, name_Mid2, name_R270) elif name_R270 == '': graph_four_histograms(quartile_ref, n_bins, astro_L180, astro_Mid1, astro_Mid2, astro_R180, name_L180, name_Mid1, name_Mid2, name_R180) if save: plt.savefig(f'../MANUSCRIPT 2 ASTROS/figures/dso{astro_id_num} histogram of individual telomere length distributions.png', bbox_inches='tight', dpi=600) ######################################################################################################################## ######################################################################################################################## # FUNCTIONS FOR CORRELATING TELOMERES WITH ANALYTE DATA ######################################################################################################################## ######################################################################################################################## def select_astros_of_interest(analyte_df, telomere_df, astro_ids_of_interest, target): if 'astro id' in telomere_df.columns: telomere_df['astro id'] = telomere_df['astro id'].astype('str') if 'astro id' in analyte_df.columns: analyte_df['astro id'] = analyte_df['astro id'].astype('str') if 'sample type' in analyte_df.columns: analyte_df.drop('sample type', axis=1, inplace=True) # dropping unnecessary cols from telo df for col in ['astro number', 'timepoint']: if col in telomere_df.columns: telomere_df.drop([col], axis=1, inplace=True) trim_astro_df = telomere_df.copy() if 'all astros' in astro_ids_of_interest: # i.e as of 10/7/19 I only have n=4 (contains astro id col) & n=11 (no astro id) dataframes for analytes # I think when I received n=3 astros.. just type astro ids for astro_ids_of_interest, it will work properly # or.. if i receive n=11 dataframe with labeled astros.. # just rewrite this area to accept n=11 df w/ astro id col if 'astro id' in analyte_df.columns: (print("Possible error.. the astro id column is present.. all astros were requested but this df potentially" "contains less than all 11 astros.. drop astro id col and retry")) return else: # retain all astro ids selected_astros = trim_astro_df id_values = ['flight status'] elif 'all astros' not in astro_ids_of_interest: # subset astro ids of interest selected_astros = trim_astro_df[trim_astro_df['astro id'].isin(astro_ids_of_interest)].reset_index(drop=True) id_values = ['astro id', 'flight status'] return analyte_df, selected_astros, id_values def merge_analyte_telomere_data(analyte_df, selected_astros, id_values, telos_percent_change, target): # take mean telomere length values of all astronauts or per astros of interest & merge with analytes mean_selected_astros = selected_astros.groupby(id_values).agg('mean').reset_index() if telos_percent_change == 'yes': mean_selected_astros[target] = (mean_selected_astros[target] .apply(lambda row: make_telos_percent_change(row))) merge_analyte_df = analyte_df.merge(mean_selected_astros, on=id_values) # prepare to drop any columns w/ missing data indexer=['timepoint', target] for id_value in id_values: indexer.append(id_value) return merge_analyte_df, indexer def how_drop_missing_values(merge_analyte_df, how_drop_missing, indexer): # drop every analyte (columns) with missing data if how_drop_missing == 'by column': pivot_merge = (merge_analyte_df.pivot_table(index=indexer, columns='biochemistry analyte', values='measured analyte').reset_index()) pivot_merge.dropna(axis=1, inplace=True) cleaned_data = pivot_merge.melt(id_vars=indexer, var_name='biochemistry analyte', value_name='measured analyte').reset_index(drop=True) # drop missing data on per analyte/timepoint/astro (row) basis elif how_drop_missing == 'by melted row': cleaned_data = merge_analyte_df.dropna(axis=0) return cleaned_data def retain_flight_status(cleaned_data, retain_what_flight_status): # retaining analytes for which flight status if retain_what_flight_status == 'any': retained_data = cleaned_data elif bool(set(retain_what_flight_status) & set(['Pre-Flight', 'Mid-Flight', 'Post-Flight'])) == True: retained_data = cleaned_data[cleaned_data['flight status'].isin(retain_what_flight_status)].copy() elif retain_what_flight_status == 'require at least one per status': total_analytes = list(cleaned_data['biochemistry analyte'].unique()) analytes_3_unique_flight = [] groupby_analyte = cleaned_data.groupby('biochemistry analyte') for analyte in total_analytes: # make groups by analyte get_group_by_analyte = groupby_analyte.get_group(analyte) # look at unique flight status values per analyte g_f_s_t = list(get_group_by_analyte['flight status'].unique()) # if pre, mid, and post flight values in unique value list per analyte, then add this analyte to a list if 'Pre-Flight' in g_f_s_t and 'Mid-Flight' in g_f_s_t and 'Post-Flight' in g_f_s_t: analytes_3_unique_flight.append(analyte) # retain only analytes with at least one measurement per flight status analytes_only_3_unique_df = cleaned_data[cleaned_data['biochemistry analyte'].isin(analytes_3_unique_flight)].copy() return analytes_only_3_unique_df return retained_data def make_telos_percent_change(row): percent_chg_telos = ((row - 0.938117) / 0.938117) * 100 return percent_chg_telos def correlate_astro_analytes_telomeres_pipeline(analyte_df=None, telomere_df=None, target=None, astro_ids_of_interest=None, how_drop_missing=None, retain_what_flight_status=None, telos_percent_change='no'): """ High level fxn description Args: analyte_df (pandas dataframe): Contains either n=4 or n=11 biochemical analyte data in tidy data format. telomere_df (pandas dataframe): Must contain complete telomere length data in tidy data format. astro_ids_of_interest (str or list of str): Accepts either 'all astros' as str, whereby all astronaut data is used for correlating telo/analyte data, or a list of astro ids to subset data for analysis. how_drop_missing (str): Accepts either 'by column', which drops any analyte containing at least one missing value, or 'by melted row', which drops only single instances of missing values. retain_what_flight_status (str or list of tring): decides how to subset individual analytes based on what flight status labels they have Accepts: 'any', whereby no subselection is placed on analytes based on flight status, or: subset data by flight status (list of str) for all analytes as a GROUP i.e ['Pre-Flight'] or ['Pre-Flight', 'Post-Flight'] or: 'require at least one per status', where EACH analytes must have at least one measurement per flight status Returns: retained_data (pandas dataframe): Data subject to the processing steps described above. """ # selecting astros of interest & capturing id values for handling merges analyte_df, selected_astros, id_values = select_astros_of_interest(analyte_df, telomere_df, astro_ids_of_interest, target) # merging analyte & telomere data, capturing indexer for handling missing data merge_analyte_df, indexer = merge_analyte_telomere_data(analyte_df, selected_astros, id_values, telos_percent_change, target) # dropping missing values based on input cleaned_data = how_drop_missing_values(merge_analyte_df, how_drop_missing, indexer) # subsetting values based on flight status labels retained_data = retain_flight_status(cleaned_data, retain_what_flight_status) return retained_data def find_high_correlates_analytes_mean_telos(merged_analyte_blood_tidy_df, corr_cutoff, corr_loc=0, astro_ids=False, target=None): if astro_ids == False: corr_value_tests = [] grouped_by_analyte = merged_analyte_blood_tidy_df.groupby('biochemistry analyte') for group in list(merged_analyte_blood_tidy_df['biochemistry analyte'].unique()): corr_value = grouped_by_analyte.get_group(group).corr()[target][corr_loc] if abs(corr_value) > corr_cutoff: corr_value_tests.append([group, corr_value]) # print(f"{group}: {corr_value:.4f}") return corr_value_tests elif astro_ids == True: corr_value_requested = input('Please state index for correlation value in corr().. 0 or 1') corr_value_tests = [] astro_ids = list(merged_analyte_blood_tidy_df['astro id'].unique()) astro_id_group = merged_analyte_blood_tidy_df.groupby('astro id') for astro in astro_ids: individ_astro_df = astro_id_group.get_group(astro) analyte_grouped_by_individ = individ_astro_df.groupby('biochemistry analyte') analytes = list(individ_astro_df['biochemistry analyte'].unique()) for analyte in analytes: corr_value = analyte_grouped_by_individ.get_group(analyte).corr()[target][int(corr_value_requested)] corr_value_tests.append([astro, analyte, corr_value]) return corr_value_tests def plot_diverging_correlations(list_correlates=None, target_name=None, figsize=(11,7), dpi=600, color1='black', color2='green', fontsize=16, y_label_name='Blood biochemistry analytes', path_labels='', save=True): df = list_correlates.copy() x = df['correlation value'] df['colors'] = [color2 if x < 0 else color1 for x in df['correlation value']] df.sort_values('correlation value', inplace=True) df.reset_index(inplace=True, drop=True) plt.figure(figsize=figsize, dpi=dpi) plt.hlines(y=df.index, xmin=0, xmax=df['correlation value'], color=df['colors'], alpha=0.6, linewidth=7) # Decorations plt.yticks(df.index, df['biochemistry analyte'], fontsize=fontsize) plt.xticks(fontsize=fontsize) plt.xlabel(target_name, fontsize=fontsize) plt.ylabel(y_label_name, fontsize=fontsize) plt.grid(linestyle='-', alpha=.2, color='black') plt.tight_layout() my_xticks = np.array([-1, -.5, 0, .5, 1]) plt.xticks(my_xticks[::1]) if save: plt.savefig(f'../MANUSCRIPT 11 ASTROS/figures/11 astros diverging bars {y_label_name} {target_name} {path_labels} n=11.png', dpi=dpi, bbox_inches='tight') def analyze_biochem_analytes_target(df=None, target=None, melt_biochem_df=None, merge_telomere_biochem_data=False, astro_ids_of_interest='all astros', parse_correlation_values=True, abs_value_corr=0.6, parse_corr_min=0, parse_corr_max=0.8, color1='black', color2='green', fontsize=16, figsize=(9,5), y_label_name='Blood biochemistry analytes', path_labels='', save=True): if merge_telomere_biochem_data == True: # merge analyte & telomere data merged_df = correlate_astro_analytes_telomeres_pipeline(analyte_df=melt_biochem_df, telomere_df=df, target=target, astro_ids_of_interest=astro_ids_of_interest, how_drop_missing='by melted row', retain_what_flight_status='require at least one per status', telos_percent_change='no') elif merge_telomere_biochem_data == False: merged_df = df.copy() # find highly correlated analytes corr_value_tests = find_high_correlates_analytes_mean_telos(merged_df, abs_value_corr, corr_loc=0, astro_ids=False, target=target) # turn correlated analytes/mean telomere length into dataframe blood_n11_high_corr_values = pd.DataFrame(corr_value_tests, columns=['biochemistry analyte', 'correlation value']) if parse_correlation_values: blood_n11_high_corr_values = blood_n11_high_corr_values[(blood_n11_high_corr_values['correlation value'] < parse_corr_min) | (blood_n11_high_corr_values['correlation value'] > parse_corr_max)].copy() # plot diverging bars correlates plot_diverging_correlations(list_correlates=blood_n11_high_corr_values, target_name=target, figsize=figsize, color1=color1, color2=color2, save=save, y_label_name=y_label_name, fontsize=fontsize, path_labels=path_labels) return merged_df def scipy_anova_post_hoc_tests(df=None, flight_status_col='flight status', target='telo data per cell', sig_test=stats.f_oneway, post_hoc=sp.posthoc_ttest): g_1 = df[df[flight_status_col] == 'Pre-Flight'][target] g_2 = df[df[flight_status_col] == 'Mid-Flight'][target] g_3 = df[df[flight_status_col] == 'Post-Flight'][target] statistic, p_value = sig_test(g_1, g_2, g_3) print(f'ONE WAY ANOVA for telomere length: {p_value}') # if anova detects sig diff, perform post-hoc tests if p_value <= 0.05: print('bonferroni') display(sp.posthoc_ttest(df, val_col=target, group_col=flight_status_col, equal_var=True, p_adjust=None)) def telos_scipy_anova_post_hoc_tests(df0=None, time_col='flight status', target='individual telomeres', sig_test=stats.f_oneway, post_hoc=None, repeated_measures=False): df = df0.copy() df.rename({'telo data per cell': 'telo_data_per_cell', 'flight status': 'flight_status', 'Mean Telomere Length (qPCR)': 'Mean_Telomere_Length_(qPCR)', 'Telomerase Activity (qPCR)': 'Telomerase Activity (qPCR)', 'astro id': 'astro_id'}, axis=1, inplace=True) if ' ' in time_col: time_col = time_col.replace(' ', '_') if ' ' in target: target = target.replace(' ', '_') if repeated_measures == False: g_1 = df[df[time_col] == 'Pre-Flight'][target] g_2 = df[df[time_col] == 'Mid-Flight'][target] g_3 = df[df[time_col] == 'Post-Flight'][target] statistic, p_value = sig_test(g_1, g_2, g_3) print(f'ONE WAY ANOVA for telomere length: {p_value}') elif repeated_measures: results = AnovaRM(df, target, 'astro_id', within=[time_col], aggregate_func='mean').fit() # pvalue p_value = results.anova_table['Pr > F'][0] print(f'REPEATED MEASURES ANOVA for telomere length: {p_value}') # if anova detects sig diff, perform post-hoc tests if p_value <= 0.05: mc = MultiComparison(df[target], df[time_col]) mc_results = mc.tukeyhsd() print(mc_results) res = mc_results print(f'TukeyHSD pvalues: {list(psturng(np.abs(res.meandiffs / res.std_pairs), len(res.groupsunique), res.df_total))}') # print('\nbonferroni pvalues') # display(sp.posthoc_ttest(df, val_col=target, group_col=time_col, equal_var=False, # p_adjust='bonferroni')) def id_encode_letters(row): if row == '1536': row = 'A' elif row == '2171': row = 'B' return row def eval_make_test_comparisons(df=None, timepoints=None, test=None, test_name=None, target='individual telos'): timepoints = list(df['timepoint'].unique()) timept_pairs = [] row = [] df_list = [] for timept in timepoints: df_list.append(df[df['timepoint'] == timept][target]) for iter1, df in zip(timepoints, df_list): for iter2, i in zip(timepoints, range(len(df_list))): pair1, pair2 = f"{iter1}:{iter2}", f"{iter2}:{iter1}" if iter1 != iter2 and pair1 not in timept_pairs and pair2 not in timept_pairs: stat, pvalue = test(df, df_list[i]) print(f'{test_name} | {iter1} vs {iter2} {pvalue}') timept_pairs.append(pair1) timept_pairs.append(pair2) row.append([test_name, iter1, iter2, pvalue]) return timept_pairs, row def make_post_flight_df_and_merge(astro_df=None, exploded_telos=None, timepoint=None): """ parse out mean telomere length & #s short/long telomeres from specific post-flight (R+7, R+60, ... R+270) timepoints and merge with exploded_telos dataframe for machine learning prep """ # parsing out post-flight data of interest timepoint_df = astro_df[astro_df['timepoint'] == timepoint].copy() for col in ['telo means', 'Q1', 'Q4']: timepoint_df.rename({col: f'{timepoint} {col}'}, axis=1, inplace=True) timepoint_df.drop(['astro number', 'timepoint', 'flight status'], axis=1, inplace=True) # extracting pre-flight individual telomere data only exploded_telos_pref = exploded_telos[exploded_telos['flight status'] == 'Pre-Flight'].copy() exploded_telos_pref.drop(['astro number', 'flight status'], axis=1, inplace=True) merge_df = exploded_telos_pref.merge(timepoint_df, on=['astro id']) return merge_df class make_features(BaseEstimator, TransformerMixin): def __init__(self, make_log_individ_telos=False, make_log_target=False): self.make_log_individ_telos = make_log_individ_telos self.make_log_target = make_log_target def fit(self, X, y=None): return self def create_log_individ_telos(self, X, y=None): X['individual telos'] = np.log1p(X['individual telos']) return X def create_log_target(self, X, y=None): X['4 C telo means'] = np.log1p(X['4 C telo means']) return X def transform(self, X, y=None): if self.make_log_individ_telos: X = self.create_log_individ_telos(X) if self.make_log_target: X = self.create_log_target(X) return X class make_dummies(BaseEstimator, TransformerMixin): def __init__(self, drop_first=True, cols_to_dummify=['timepoint'], how_dummify='encode'): self.drop_first = drop_first self.cols_to_dummify = cols_to_dummify self.how_dummify=how_dummify def fit(self, X, y=None): return self def transf_dummies(self, X, y=None): dummies = pd.get_dummies(X, drop_first=self.drop_first, columns=self.cols_to_dummify) return dummies def label_encode(self, X, y=None): label_encoder = preprocessing.LabelEncoder() X['encoded_timepoint'] = label_encoder.fit_transform(X[self.cols_to_dummify].values.ravel()) X.drop(['timepoint'], axis=1, inplace=True) return X def transform(self, X, y=None): if self.how_dummify == 'get_dummies': X = self.transf_dummies(X) elif self.how_dummify == 'encode': X = self.label_encode(X) return X class clean_data(BaseEstimator, TransformerMixin): def __init__(self, drop_astro_id=True, timepoint='R+7', target='telo means'): self.drop_astro_id = drop_astro_id self.timepoint_target = f'{timepoint} {target}' self.timepoint = timepoint self.target = target def fit(self, X, y=None): return self def transform(self, X, y=None): # enforcing col types cols = list(X.columns) for col in cols: if 'individual telomeres' in col or 'telo means' in col: X[col] = X[col].astype('float64') else: X[col] = X[col].astype('int64') if self.drop_astro_id: X.drop(['astro id'], axis=1, inplace=True) X.reset_index(drop=True, inplace=True) target_cols = ['telo means', 'Q1', 'Q4'] target_cols.remove(self.target) for item in target_cols: for col in X.columns: if item in col: X.drop([col], axis=1, inplace=True) # if 'telo means' in self.target: # X.drop([f'{timepoint} Q1', f'{timepoint} Q4'], axis=1, inplace=True) # elif 'Q1' in self.target: # X.drop([f'{timepoint} Q1', f'{timepoint} Q4'], axis=1, inplace=True) # X = X[['encoded_timepoint', 'individual telomeres', self.timepoint_target]].copy() return X def cv_score_fit_mae_test(train_set=None, test_set=None, target=None, model=None, cv=5, scoring='neg_mean_absolute_error', verbose=True): random.seed(888) row = [] features = [col for col in train_set.columns if col != target and col != 'astro id'] X_train = train_set[features].copy() X_test = test_set[features].copy() y_train = train_set[target].copy() y_test = test_set[target].copy() # cv scores = -1 * cross_val_score(model, X_train, y_train, cv=5, scoring=scoring) if verbose: print(f'MAE per CV fold: \n{scores} \n') print(f'MEAN of MAE all folds: {scores.mean()}') print(f'STD of MAE all folds: {scores.std()}\n') # fitting the model model.fit(X_train, y_train) # predict y_test from X_test - this is using the train/test split w/o shuff;ing predict_y_test = model.predict(X_test) if verbose: print(f"MAE of predict_y_test & y_test: {mean_absolute_error(y_test, predict_y_test)}") print(f'R2 between predict_y_test & y_test: {r2_score(y_test, predict_y_test)}') row.append(['XGBoost', features, target, round(scores.mean(), 4), round(scores.std(), 4), round(mean_absolute_error(y_test, predict_y_test), 4), round(r2_score(y_test, predict_y_test), 4)]) return model, row def myMetric(x, y): r = stats.pearsonr(x, y)[0] return 1 - r def plot_dendogram(Z, target=None, indexer=None): with plt.style.context('fivethirtyeight' ): plt.figure(figsize=(10, 2.5)) plt.title(f'Dendrogram of clusters by {target}', fontsize=22, fontweight='bold') plt.xlabel('astro IDs', fontsize=22, fontweight='bold') plt.ylabel('distance', fontsize=22, fontweight='bold') hac.dendrogram(Z, labels=indexer, leaf_rotation=90., # rotates the x axis labels leaf_font_size=15., ) # font size for the x axis labels plt.show() def plot_results2(timeSeries, D, cut_off_level, y_size, x_size, verbose, time, target): result = pd.Series(hac.fcluster(D, cut_off_level, criterion='maxclust')) if verbose: clusters = result.unique() fig = plt.subplots(figsize=(x_size, y_size)) mimg = math.ceil(cut_off_level/2.0) gs = gridspec.GridSpec(mimg,2, width_ratios=[1,1]) cluster_indexed = pd.concat([result, timeSeries.reset_index(drop=True)], axis=1) columns = list(cluster_indexed.columns[1:]) columns = ['clusters'] + columns cluster_indexed.columns = columns for ipic, c in enumerate(clusters): clustered = cluster_indexed[cluster_indexed['clusters'] == c].copy() print(ipic, "Cluster number %d has %d elements" % (c, len(clustered['astro id']))) melt = clustered.melt(id_vars=['astro id', 'clusters'], var_name=time,value_name=target) ax1 = plt.subplot(gs[ipic]) sns.lineplot(x=time, y=target, hue='astro id', data=melt, legend=False, ax=ax1) ax1.set_title((f'Cluster number {c}'), fontsize=15, fontweight='bold') plt.tight_layout() return result def cluster_data_return_df(df, target='inversions', time='timepoint', cut_off_n=4, metric=myMetric, method='single', y_size=6, x_size=10, verbose=True): df = df.copy() label_enc = LabelEncoder() labels = list(df[time]) encoded_labels = list(LabelEncoder().fit_transform(df[time])) cypher_dict = dict(zip(encoded_labels, labels)) df[time] = LabelEncoder().fit_transform(df[time]) df = df.pivot(index='astro id', columns=time, values=target).reset_index() # run the clustering cluster_Z = hac.linkage(df, method=method, metric=metric) if verbose: plot_dendogram(cluster_Z, target=target, indexer=df.index) # return df bearing cluster groups indexed_clusters = plot_results2(df, cluster_Z, cut_off_n, y_size, x_size, verbose, time, target) # concat clusters to original df and return ready_concat = df.reset_index(drop=True) clustered_index_df = pd.concat([ready_concat, indexed_clusters], axis=1) clustered_index_df.columns = list(clustered_index_df.columns[:-1]) + [f'{target} cluster groups'] melted = clustered_index_df.melt(id_vars=['astro id', f'{target} cluster groups'], var_name=time, value_name=target) melted[time] = melted[time].apply(lambda row: cypher_dict[row]) return melted def fish_assign_clustering(row): cluster_dict = {'5163': 1, '2381': 1, '2494': 1, '1261': 2, '1536': 2, '7673': 2, '2171': 2, '4819': 2, '3228': 3, '1062': 3, '2479': 3} return cluster_dict[row] def qpcr_assign_cluster(row): cluster_grp_dict = {'2381': 1, '4819': 2, '5163': 2, '2171': 2, '3228': 2, '1062': 2, '2494': 2, '7673': 2, '2479': 3, '1261': 3, '1536': 3} return cluster_grp_dict[row] def graph_cluster_groups(df, time=None, target=None, hue=None, colors='Set1', n_cols=3, y_label_name=None, figsize=(7,3.2), fontsize=14, save=True, bbox_to_anchor=(0.5, 1.21), y_lim=None, path_labels='11 astros', markersize=13, markerscale=2, handlelength=1.22): colors = sns.color_palette(colors) plt.figure(figsize=figsize) ax = sns.lineplot(x=time, y=target, data=df, hue=hue, markers=True, palette=sns.color_palette(colors[:len(df[hue].unique())]), style=hue, **{'markersize': markersize, 'mec': 'black', 'mew': 1}) plt.setp(ax.get_xticklabels(), # rotation=45, fontsize=fontsize) ax.set_ylabel(f'{y_label_name}', fontsize=fontsize) ax.set_xlabel('', fontsize=fontsize) ax.tick_params(labelsize=fontsize) legend = ax.legend() legend.texts[0].set_text('Cluster groups') if y_lim != None: ax.set_ylim(y_lim) plt.legend(loc='upper center', bbox_to_anchor=bbox_to_anchor, handlelength=handlelength, ncol=n_cols, fancybox=True, fontsize=fontsize, markerscale=markerscale) if save: plt.savefig(f'../MANUSCRIPT 11 ASTROS/figures/{path_labels} lineplot {target} clustering.png', dpi=600, bbox_inches = "tight") def convert_mid_timepoint(row): if row == 'FD45' or row == 'FD90': return 'Mid-1' elif row == 'FD140' or row == 'FD260': return 'Mid-2' else: return row def set_categories_sort(telomere_df=None, time='timepoint', sort_list=None): df = telomere_df.copy() if sort_list == None: sort_list = ['L-270', 'L-180', 'L-60', 'R+7', 'R+60', 'R+180', 'R+270'] df[time] = df[time].astype('category') df[time].cat.set_categories(sort_list, inplace=True) return df def ext_telo_data_longitudinal_clustering(telomere_df=None, astro_id='astro id', telomere_col_name='telo means', col_to_pivot='timepoint', timepts_of_interest=None): df = telomere_df.copy() if timepts_of_interest == None: timepts_of_interest = ['L-270', 'L-180', 'L-60', 'R+7', 'R+60', 'R+180', 'R+270'] # parse cols of interest parsed_df = df[[astro_id, col_to_pivot, telomere_col_name]].copy() parsed_df[col_to_pivot] = parsed_df[col_to_pivot].astype('str') # pivot out timepoints pivot_df = parsed_df.pivot_table(index=[astro_id], columns=col_to_pivot, values=telomere_col_name).reset_index() pivot_df.set_index(astro_id, inplace=True) cluster_ready_df = pivot_df[timepts_of_interest].copy() return cluster_ready_df def rename_imputed_df(imputed_df=None, original_df=None): imputed_df.columns = original_df.columns imputed_df.index = original_df.index imputed_df.columns.name = '' return imputed_df def clustermap_plot(df=None, method='single', metric='correlation', color_map='PRGn', col_cluster=False, fontsize=14, z_score=0, y_label='Mean Telomere Length (Telo-FISH)', path_labels='11 astros', save=True): g = sns.clustermap(df, method=method, metric=metric, z_score=z_score, figsize=(7,7), cmap=color_map, col_cluster=col_cluster) # colorbar g.cax.set_position([-0.05, .2, .03, .45]) g.cax.set_ylabel(y_label, rotation=90, fontsize=fontsize) g.cax.tick_params(labelsize=12) # modifying y axis g.ax_heatmap.set_ylabel('Astronaut ID', fontsize=fontsize) g.ax_heatmap.set_xlabel('') labels = g.ax_heatmap.yaxis.get_majorticklabels() plt.setp(g.ax_heatmap.yaxis.get_majorticklabels(), fontsize=fontsize) plt.setp(g.ax_heatmap.yaxis.get_minorticklabels(), fontsize=fontsize) g.ax_heatmap.set_yticklabels(labels, rotation=0, fontsize=fontsize, va="center") # modifying x axis plt.setp(g.ax_heatmap.xaxis.get_majorticklabels(), rotation=45, fontsize=fontsize) for a in g.ax_row_dendrogram.collections: a.set_linewidth(1) for a in g.ax_col_dendrogram.collections: a.set_linewidth(1) if save: plt.savefig(f'../MANUSCRIPT 11 ASTROS/figures/{path_labels} {y_label} cluster map.png', dpi=600, bbox_inches = "tight") def flight_status(row): if 'FD90' in row or 'FD45' in row: return 'Mid-Flight' elif 'FD140' in row or 'FD260' in row: return 'Mid-Flight' elif 'L' in row: return 'Pre-Flight' elif 'R' in row: return 'Post-Flight' # def encode_timepts(row): # encode_dict = {'L-270' : 1, # 'R+7': 2, # 'R+270': 3} # return encode_dict[row] # def myMetric(x, y): # r = stats.pearsonr(x, y)[0] # return 1 - r # def plot_dendogram(Z, target=None, indexer=None): # with plt.style.context('fivethirtyeight' ): # plt.figure(figsize=(10, 2.5)) # plt.title(f'Dendrogram of clusters by {target}', fontsize=22, fontweight='bold') # plt.xlabel('astro IDs', fontsize=22, fontweight='bold') # plt.ylabel('distance', fontsize=22, fontweight='bold') # hac.dendrogram(Z, labels=indexer, leaf_rotation=90., # rotates the x axis labels # leaf_font_size=15., ) # font size for the x axis labels # plt.show() # def plot_results(timeSeries, D, cut_off_level, y_size, x_size, verbose): # result = pd.Series(hac.fcluster(D, cut_off_level, criterion='maxclust')) # if verbose: # clusters = result.unique() # fig = plt.subplots(figsize=(x_size, y_size)) # mimg = math.ceil(cut_off_level/2.0) # gs = gridspec.GridSpec(mimg,2, width_ratios=[1,1]) # cluster_indexed = pd.concat([result, timeSeries.reset_index()], axis=1) # cluster_indexed.rename({0: 'clusters'}, axis=1, inplace=True) # for ipic, c in enumerate(clusters): # clustered = cluster_indexed[cluster_indexed['clusters'] == c].copy() # print(ipic, "Cluster number %d has %d elements" % (c, len(clustered['astro id']))) # clustered.drop(['index'], axis=1, inplace=True) # melt = clustered.melt(id_vars=['astro id', 'clusters'], var_name='timepoint',value_name='telo means') # melt = set_categories_sort(telomere_df=melt, sort_list=['L-270', 'R+7', 'R+270']) # ax1 = plt.subplot(gs[ipic]) # melt # sns.lineplot(x='timepoint', y='telo means', hue='astro id', data=melt, legend=False, ax=ax1) # ax1.set_title((f'Cluster number {c}'), fontsize=15, fontweight='bold') # plt.tight_layout() # return result # def cluster_telomere_data_return_df(df=None, target='telo means', cut_off_n=4, # metric=myMetric, method='single', # y_size=6, x_size=10, verbose=True): # # astro_ids = df.index # # knn_telo_qpcr.reset_index(drop=True, inplace=True) # # run the clustering # cluster_Z = hac.linkage(df, method=method, metric=metric) # if verbose: # plot_dendogram(cluster_Z, target=target, indexer=df.index) # # return df bearing cluster groups # df0 = df.copy().reset_index() # indexed_clusters = plot_results(df0, cluster_Z, cut_off_n, y_size=y_size, x_size=x_size, verbose=verbose) # # concat clusters to original df and return # ready_concat = df.reset_index() # clustered_index_df = pd.concat([ready_concat, indexed_clusters], axis=1) # clustered_index_df.rename(columns={clustered_index_df.columns[-1]: f'{target} cluster groups', # 1: 'L-270', # 2: 'R+7', # 3: 'R+270'}, inplace=True) # melted = clustered_index_df.melt(id_vars=['astro id', f'{target} cluster groups'], # var_name='timepoint', value_name=target) # return melted # def graph_cluster_groups(df, target=None, hue=None, figsize=(7,3.2), ncol=3): # flatui = ["#9b59b6", "#2ecc71", "#e74c3c", "#95a5a6", "#34495e", "#3498db"] # plt.figure(figsize=figsize) # ax = sns.lineplot(x='timepoint', y=target, data=df, hue=hue, # palette=sns.color_palette(flatui[:len(df[hue].unique())]), # style=hue) # plt.setp(ax.get_xticklabels(), # # rotation=45, # fontsize=14) # if target == 'telo means': # ax.set_ylabel('Mean Telomere Length (Telo-FISH)', fontsize=14) # elif '(qPCR)' in target: # ax.set_ylabel('Mean Telomere Length (qPCR)', fontsize=14) # ax.set_xlabel('', fontsize=14) # ax.tick_params(labelsize=14) # legend = ax.legend() # legend.texts[0].set_text('Cluster groups') # plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.18), # ncol=ncol, fancybox=True, fontsize=14) # plt.savefig(f'11 astronauts CLUSTERING {target}.png', # dpi=600, bbox_inches = "tight") def combine_midflight(row): if 'mid-flight 1' in row or 'mid-flight 2' in row: row = 'mid-flight' return row else: return row def scipy_anova_post_hoc_tests(df=None, flight_status_col='flight status new', sig_test=stats.f_oneway, post_hoc=sp.posthoc_ttest, equal_var=False, pool_sd=False, repeated_measures=False): """ df should be melted by aberration type """ # make list of aberrations aberrations = list(df['aberration type'].unique()) # loop through aberrations & perform anovas between pre/mid/post for aberr in aberrations: if repeated_measures == False: g_1 = df[(df[flight_status_col] == 'Pre-Flight') & (df['aberration type'] == aberr)]['count per cell'] g_2 = df[(df[flight_status_col] == 'Mid-Flight') & (df['aberration type'] == aberr)]['count per cell'] g_3 = df[(df[flight_status_col] == 'Post-Flight') & (df['aberration type'] == aberr)]['count per cell'] statistic, p_value = sig_test(g_1, g_2, g_3) print(aberr, p_value) elif repeated_measures: results = AnovaRM(df[df['aberration type'] == aberr].copy(), 'count per cell', 'astro id', within=[flight_status_col], aggregate_func='mean').fit() # pvalue p_value = results.anova_table['Pr > F'][0] # if anova detects sig diff, perform post-hoc tests if p_value <= 0.05: display(sp.posthoc_ttest(df[df['aberration type'] == aberr], val_col='count per cell', group_col='flight status new', equal_var=equal_var, p_adjust='bonferroni', pool_sd=pool_sd)) print('\n') def rename_aberr(row): if row == 'sister chromatid exchanges': return 'classic SCEs' elif row == 'total inversions': return 'inversions' elif row == 'satellite associations': return 'sat. associations' else: return row def rename_flights(row): if row == 'pre-flight': return 'Pre-Flight' elif row == 'mid-flight': return 'Mid-Flight' elif row == 'post-flight': return 'Post-Flight' def pull_telofish_df(): telof_df = pd.read_csv('../data/compiled and processed data/exploded_cells_astros_df.csv') telof_df_grouped = telof_df.groupby(by=['astro id', 'timepoint', 'flight status']).agg('mean').reset_index() telof_df_grouped['astro id'] = telof_df_grouped['astro id'].astype('int64') return telof_df_grouped def pull_qpcr_df(): # astronauts telomere qpcr df qpcr_df = pd.read_excel('../data/raw data/qpcr_telomere_astros.xlsx', usecols=[0, 1, 2]) qpcr_df.dropna(axis=0, inplace=True) qpcr_df['astro id'] = qpcr_df['astro id'].astype('int64') qpcr_df['flight status'] = qpcr_df['timepoint'].apply(lambda row: flight_status(row)) qpcr_grouped = qpcr_df.groupby(by=['astro id', 'timepoint', 'flight status']).agg('mean').reset_index() qpcr_grouped['timepoint'] = qpcr_grouped['timepoint'].apply(lambda row: convert_mid_timepoint(row)) return qpcr_grouped def pull_aberr_df(): melt_all_astro_chr_aberr =
pd.read_csv('../data/compiled and processed data/All_astronauts_chromosome_aberration_data_tidy_data.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 9 17:02:59 2018 @author: bruce compared with version 1.6.4 the update is from correlation coefficient """ import pandas as pd import numpy as np from scipy import fftpack from scipy import signal import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap def correlation_matrix(corr_mx, cm_title): from matplotlib import pyplot as plt from matplotlib import cm as cm fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(corr_mx, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) #plt.title('cross correlation of test and retest') ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels #fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') plt.show() def correlation_matrix_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cs = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cs) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rank(corr_mx, cm_title): temp = corr_mx #output = (temp == temp.max(axis=1)[:,None]) # along row output = temp.rank(axis=1, ascending=False) fig, ax1 = plt.subplots() im1 = ax1.matshow(output, cmap=plt.cm.Wistia) #cs = ax1.matshow(output) fig.colorbar(im1) ax1.grid(False) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.title(cm_title) # show digit in matrix output = np.asarray(output) for i in range(22): for j in range(22): c = output[j,i] ax1.text(i, j, int(c), va='center', ha='center') plt.show() def correlation_matrix_comb(corr_mx, cm_title): fig, (ax2, ax3) = plt.subplots(1, 2) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ''' # graph 1 grayscale im1 = ax1.matshow(corr_mx, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im1, ax=ax1) ax1.grid(False) ax1.set_title(cm_title) ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # show digit in matrix corr_mx_array = np.asarray(corr_mx) for i in range(22): for j in range(22): c = corr_mx_array[j,i] ax1.text(i, j, round(c,2), va='center', ha='center') ''' # graph 2 yellowscale corr_mx_rank = corr_mx.rank(axis=1, ascending=False) cmap_grey = LinearSegmentedColormap.from_list('mycmap', ['white', 'black']) im2 = ax2.matshow(corr_mx, cmap='viridis') # colorbar need numpy version 1.13.1 fig.colorbar(im2, ax=ax2) ax2.grid(False) ax2.set_title(cm_title) ax2.set_xticks(np.arange(len(xlabels))) ax2.set_yticks(np.arange(len(ylabels))) ax2.set_xticklabels(xlabels,fontsize=6) ax2.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels # show digit in matrix corr_mx_rank = np.asarray(corr_mx_rank) for i in range(22): for j in range(22): c = corr_mx_rank[j,i] ax2.text(i, j, int(c), va='center', ha='center') # graph 3 # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows im3 = ax3.matshow(output, cmap='gray') # colorbar need numpy version 1.13.1 #fig.colorbar(im3, ax=ax3) ax3.grid(False) ax3.set_title(cm_title) ax3.set_xticks(np.arange(len(xlabels))) ax3.set_yticks(np.arange(len(ylabels))) ax3.set_xticklabels(xlabels,fontsize=6) ax3.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_tt_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() def correlation_matrix_rr_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() # shrink value for correlation matrix # in order to use colormap -> 10 scale def shrink_value_03_1(corr_in1): corr_out1 = corr_in1.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i in range (22): for j in range(22): if corr_in1.iloc[i, j] < 0.3: corr_out1.iloc[i, j] = 0.3 return corr_out1 def shrink_value_05_1(corr_in2): corr_out2 = corr_in2.copy() # here dataframe.copy() must be used, otherwise input can also be changed when changing output for i2 in range (22): for j2 in range(22): if corr_in2.iloc[i2, j2] < 0.5: corr_out2.iloc[i2, j2] = 0.5 return corr_out2 # not used!!!!!!!!!!!! # normalize the complex signal series def normalize_complex_arr(a): a_oo = a - a.real.min() - 1j*a.imag.min() # origin offsetted return a_oo/np.abs(a_oo).max() def improved_PCC(signal_in): output_corr = pd.DataFrame() for i in range(44): row_pcc_notremovemean = [] for j in range(44): sig_1 = signal_in.iloc[i, :] sig_2 = signal_in.iloc[j, :] pcc_notremovemean = np.abs(np.sum(sig_1 * sig_2) / np.sqrt(np.sum(sig_1*sig_1) * np.sum(sig_2 * sig_2))) row_pcc_notremovemean = np.append(row_pcc_notremovemean, pcc_notremovemean) output_corr = output_corr.append(pd.DataFrame(row_pcc_notremovemean.reshape(1,44)), ignore_index=True) output_corr = output_corr.iloc[22:44, 0:22] return output_corr ############################################################################### # import the pkl file #pkl_file=pd.read_pickle('/Users/bruce/Documents/uOttawa/Project/audio_brainstem_response/Data_BruceSunMaster_Studies/study2/study2DataFrame.pkl') df_EFR=pd.read_pickle('/home/bruce/Dropbox/4.Project/4.Code for Linux/df_EFR.pkl') # Mac # df_EFR=pd.read_pickle('/Users/bruce/Documents/uOttawa/Master‘s Thesis/4.Project/4.Code for Linux/df_EFR.pkl') # remove DC offset df_EFR_detrend = pd.DataFrame() for i in range(1408): # combine next two rows later df_EFR_detrend_data = pd.DataFrame(signal.detrend(df_EFR.iloc[i: i+1, 0:1024], type='constant').reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[i, 1024:1031].values.reshape(1,7)) df_EFR_detrend = df_EFR_detrend.append(pd.concat([df_EFR_detrend_data, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_detrend.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_detrend = df_EFR_detrend.reset_index(drop=True) df_EFR = df_EFR_detrend # Define window function win_kaiser = signal.kaiser(1024, beta=14) win_hamming = signal.hamming(1024) # average the df_EFR df_EFR_avg = pd.DataFrame() df_EFR_avg_win = pd.DataFrame() # average test1 and test2 for i in range(704): # combine next two rows later df_EFR_avg_t = pd.DataFrame(df_EFR.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows # without window function df_EFR_avg_t = pd.DataFrame(df_EFR_avg_t.iloc[0,:].values.reshape(1,1024)) # without window function # implement the window function df_EFR_avg_t_window = pd.DataFrame((df_EFR_avg_t.iloc[0,:] * win_hamming).values.reshape(1,1024)) df_EFR_label = pd.DataFrame(df_EFR.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_avg = df_EFR_avg.append(pd.concat([df_EFR_avg_t, df_EFR_label], axis=1, ignore_index=True)) df_EFR_avg_win = df_EFR_avg_win.append(pd.concat([df_EFR_avg_t_window, df_EFR_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_avg = df_EFR_avg.sort_values(by=["Condition", "Subject"]) df_EFR_avg = df_EFR_avg.reset_index(drop=True) df_EFR_avg_win.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_avg_win = df_EFR_avg_win.sort_values(by=["Condition", "Subject"]) df_EFR_avg_win = df_EFR_avg_win.reset_index(drop=True) # average all the subjects , test and retest and keep one sound levels # filter by 'a vowel and 85Db' df_EFR_avg_sorted = df_EFR_avg.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_avg_sorted = df_EFR_avg_sorted.reset_index(drop=True) df_EFR_avg_win_sorted = df_EFR_avg_win.sort_values(by=["Sound Level", "Vowel","Condition", "Subject"]) df_EFR_avg_win_sorted = df_EFR_avg_win_sorted.reset_index(drop=True) # filter55 65 75 sound levels and keep 85dB # keep vowel condition and subject df_EFR_avg_85 = pd.DataFrame(df_EFR_avg_sorted.iloc[528:, :]) df_EFR_avg_85 = df_EFR_avg_85.reset_index(drop=True) df_EFR_avg_win_85 = pd.DataFrame(df_EFR_avg_win_sorted.iloc[528:, :]) df_EFR_avg_win_85 = df_EFR_avg_win_85.reset_index(drop=True) # this part was replaced by upper part based on what I need to do ''' # average all the subjects , test and retest, different sound levels # filter by 'a vowel and 85Db' df_EFR_avg_sorted = df_EFR_avg.sort_values(by=["Vowel","Condition", "Subject", "Sound Level"]) df_EFR_avg_sorted = df_EFR_avg_sorted.reset_index(drop=True) # average sound levels and # keep vowel condition and subject df_EFR_avg_vcs = pd.DataFrame() for i in range(176): # combine next two rows later df_EFR_avg_vcs_t = pd.DataFrame(df_EFR_avg_sorted.iloc[4*i: 4*i+4, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows df_EFR_avg_vcs_label = pd.DataFrame(df_EFR_avg_sorted.iloc[4*i, 1024:1031].values.reshape(1,7)) df_EFR_avg_vcs = df_EFR_avg_vcs.append(pd.concat([df_EFR_avg_vcs_t, df_EFR_avg_vcs_label], axis=1, ignore_index=True), ignore_index=True) # set the title of columns df_EFR_avg_vcs.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) #df_EFR_avg_vcs = df_EFR_avg_vcs.sort_values(by=["Condition", "Subject"]) ''' ''' # filter by 'a vowel and 85Db' df_EFR_a_85_test1 = df_EFR[(df_EFR['Vowel'] == 'a vowel') & (df_EFR['Sound Level'] == '85')] df_EFR_a_85_test1 = df_EFR_a_85_test1.reset_index(drop=True) df_EFR_a_85_avg = pd.DataFrame() # average test1 and test2 for i in range(44): df_EFR_a_85_avg_t = pd.DataFrame(df_EFR_a_85_test1.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) df_EFR_a_85_label = pd.DataFrame(df_EFR_a_85_test1.iloc[2*i, 1024:1031].values.reshape(1,7)) df_EFR_a_85_avg = df_EFR_a_85_avg.append(pd.concat([df_EFR_a_85_avg_t, df_EFR_a_85_label], axis=1, ignore_index=True)) # set the title of columns df_EFR_a_85_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_EFR_a_85_avg = df_EFR_a_85_avg.sort_values(by=["Condition", "Subject"]) df_EFR_a_85_avg = df_EFR_a_85_avg.reset_index(drop=True) ''' ################################################## # Frequency Domain # parameters sampling_rate = 9606 # fs # sampling_rate = 9596.623 n = 1024 k = np.arange(n) T = n/sampling_rate # time of signal frq = k/T freq = frq[range(int(n/2))] n2 = 9606 k2 = np.arange(n2) T2 = n2/sampling_rate frq2 = k2/T2 freq2 = frq2[range(int(n2/2))] # zero padding # for df_EFR df_EFR_data = df_EFR.iloc[:, :1024] df_EFR_label = df_EFR.iloc[:, 1024:] df_EFR_mid = pd.DataFrame(np.zeros((1408, 95036))) df_EFR_withzero = pd.concat([df_EFR_data, df_EFR_mid, df_EFR_label], axis=1) # rename columns df_EFR_withzero.columns = np.append(np.arange(96060), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) # for df_EFR_avg_85 df_EFR_avg_85_data = df_EFR_avg_85.iloc[:, :1024] df_EFR_avg_85_label = df_EFR_avg_85.iloc[:, 1024:] df_EFR_avg_85_mid = pd.DataFrame(np.zeros((176, 8582))) df_EFR_avg_85_withzero =
pd.concat([df_EFR_avg_85_data, df_EFR_avg_85_mid, df_EFR_avg_85_label], axis=1)
pandas.concat
import pandas as pd import dash import dash_cytoscape as cyto import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output data=
pd.read_csv('EDGE.csv')
pandas.read_csv
import pandas as pd import numpy as np def build_raw(): df = pd.DataFrame() # Create columns to store data df.insert(0, "Iteracion", pd.Series([], dtype=int)) df.insert(1, "pos_gain", pd.Series([], dtype=float)) df.insert(2, "vel_gain", pd.Series([], dtype=float)) df.insert(3, "vel_integrator_gain", pd.Series([], dtype=float)) df.insert(4, "pos_estimate", pd.Series([], dtype=object)) df.insert(5, "input_pos", pd.Series([], dtype=object)) df.insert(6, "Iq_measured", pd.Series([], dtype=object)) df.insert(7, "vel_estimate", pd.Series([], dtype=object)) return df def add_raw(df, id, kp, kv, kvi, estimates, inputs, currents, vels): row = [id, kp, kv, kvi, estimates, inputs, currents, vels] df.loc[len(df)] = row return df def clean_data(data): gains = data.iloc[:, :4] estimates = data.iloc[:, 4] inputs = data.iloc[:, 5] currents = data.iloc[:, 6] vels = data.iloc[:, 7] #errors = ([np.subtract(inputs[i], estimates[i]) for i in range(inputs.size)]) sample_half = len(estimates[0])//2 errors = list(map(lambda i,e: np.subtract(i,e), inputs, estimates)) lag_error = [sum(filter(lambda e: e>0, iter)) for iter in errors[0:sample_half]] + [sum(filter(lambda e: e<0, iter)) for iter in errors[sample_half:]] ahead_error = [sum(filter(lambda e: e<0, iter)) for iter in errors[0:sample_half]] + [sum(filter(lambda e: e>0, iter)) for iter in errors[sample_half:]] err_sum = list(map(lambda l,a: np.add(np.abs(l), np.abs(a)), lag_error, ahead_error)) overshoot_error = list(map(lambda i,e: max(e)-max(i), inputs, estimates)) current_sum = [sum(np.abs(iter)) for iter in currents] curr_vel = list(map(lambda c,v: np.mean(np.abs(c))/np.mean(np.abs(v)), currents, vels)) df = gains df.insert(4, "lag_error", lag_error) df.insert(5, "ahead_error", ahead_error) df.insert(6, "error_sum", err_sum) df.insert(7, "overshoot_error", overshoot_error) df.insert(8, "current_sum", current_sum) df.insert(9, "curr_vel", curr_vel) return df def get_results(clean): top = clean[clean.error_sum == clean.error_sum.max()] top.insert(10, "mass", np.mean(clean.loc[:, 'curr_vel'])) return top def export_raw(rawdf): df = pd.DataFrame() # Create columns to store data id = pd.Series([], dtype=int) pos_gain = pd.Series([], dtype=float) vel_gain = pd.Series([], dtype=float) vel_integrator_gain =
pd.Series([], dtype=float)
pandas.Series
import sys, os sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.realpath(__file__)))) from scipy import stats from scipy.stats import distributions from fisher import pvalue import numpy as np import pandas as pd from decimal import Decimal import multiple_testing from multiple_testing import Bonferroni, Sidak, HolmBonferroni, BenjaminiHochberg, BH_fast_v3 import ratio class EnrichmentStudy(object): """ ToDo: change examples on website add REST API examples unify output of genome method vs compare samples Runs Fisher's exact test, as well as multiple corrections abundance_correction: Foreground vs Background abundance corrected genome: Foreground vs Proteome (no abundance correction) compare_samples: Foreground vs Background (no abundance correction) compare_groups: Foreground(replicates) vs Background(replicates), --> foreground_n and background_n need to be set characterize_foreground: Foreground only """ def __init__(self, pqo, args_dict, ui, assoc_dict, enrichment_method="genome", entity_type="-51", o_or_u_or_both="overrepresented", multitest_method="benjamini_hochberg", alpha=0.05, association_2_count_dict_background=None, background_n=None, indent=False): self.pqo = pqo self.args_dict = args_dict self.ui = ui self.method = enrichment_method self.assoc_dict = assoc_dict # self.obo_dag = obo_dag self.alpha = alpha self.multitest_method = multitest_method self.results = [] self.o_or_u_or_both = o_or_u_or_both self.entity_type = entity_type self.indent = indent # prepend GO-terms with a "." for each level ### prepare run for everyone but "rank_enrichment" if self.method != "rank_enrichment": self.an_set_foreground = self.ui.get_foreground_an_set() self.association_2_count_dict_foreground, self.association_2_ANs_dict_foreground, self.foreground_n = ratio.count_terms_v3(self.an_set_foreground, self.assoc_dict) if self.method == "genome": self.run_genome(association_2_count_dict_background, background_n) elif self.method == "rank_enrichment": self.df = self.run_rank_enrichment() elif self.method == "abundance_correction": self.run_abundance_correction() elif self.method == "compare_samples": self.run_compare_samples() elif self.method == "compare_groups": self.run_compare_groups() elif self.method == "characterize_foreground": self.run_characterize_foreground() else: raise NotImplementedError def run_abundance_correction(self): self.background_n = self.foreground_n self.association_2_count_dict_background, self.association_2_ANs_dict_background = ratio.count_terms_abundance_corrected(self.ui, self.assoc_dict) self.df = self.run_study(self.association_2_count_dict_foreground, self.association_2_count_dict_background, self.foreground_n, self.background_n) def run_genome(self, association_2_count_dict_background, background_n): self.association_2_count_dict_background, self.background_n = association_2_count_dict_background, background_n self.df = self.run_study_genome(self.association_2_count_dict_foreground, self.association_2_count_dict_background, self.foreground_n, self.background_n) def get_result(self, FDR_cutoff=None, fold_enrichment_for2background=None, p_value_uncorrected=None): self.df = self.filter_results(self.df, FDR_cutoff, fold_enrichment_for2background, p_value_uncorrected) # if self.method != "characterize_foreground": # since no p-values available # self.df["p_value"] = self.df["p_value"].apply(lambda x: "{:.2E}".format(Decimal(x))) # self.df["FDR"] = self.df["FDR"].apply(lambda x: "{:.2E}".format(Decimal(x))) return self.df def run_compare_samples(self): self.an_set_background = self.ui.get_background_an_set() self.association_2_count_dict_background, self.association_2_ANs_dict_background, self.background_n = ratio.count_terms_v3(self.an_set_background, self.assoc_dict) self.df = self.run_study(self.association_2_count_dict_foreground, self.association_2_count_dict_background, self.foreground_n, self.background_n) def run_compare_groups(self): self.foreground_n = self.ui.get_foreground_n() self.background_n = self.ui.get_background_n() self.an_redundant_foreground = self.ui.get_an_redundant_foreground() self.an_redundant_background = self.ui.get_an_redundant_background() self.association_2_count_dict_foreground, self.association_2_ANs_dict_foreground, unused_an_count = ratio.count_terms_v3(self.an_redundant_foreground, self.assoc_dict) self.association_2_count_dict_background, self.association_2_ANs_dict_background, unused_an_count = ratio.count_terms_v3(self.an_redundant_background, self.assoc_dict) self.df = self.run_study(self.association_2_count_dict_foreground, self.association_2_count_dict_background, self.foreground_n, self.background_n) def run_characterize_foreground(self): self.an_redundant_foreground = self.ui.get_an_redundant_foreground() self.association_2_count_dict_foreground, self.association_2_ANs_dict_foreground, unused_an_count = ratio.count_terms_v3(self.an_redundant_foreground, self.assoc_dict) self.df = self.characterize_foreground(self.association_2_count_dict_foreground, self.foreground_n) def characterize_foreground(self, association_2_count_dict_foreground, foreground_n): term_list, description_list, foreground_ids_list, foreground_count_list, ratio_in_foreground_list = [], [], [], [], [] for association, foreground_count in association_2_count_dict_foreground.items(): term_list.append(association) # description_list.append(self.pqo.function_an_2_description_dict[association]) ratio_in_foreground_list.append(self.calc_ratio(foreground_count, foreground_n)) foreground_ids_list.append(';'.join(self.association_2_ANs_dict_foreground[association])) foreground_count_list.append(foreground_count) df =
pd.DataFrame({"term": term_list, "ratio_in_foreground": ratio_in_foreground_list, "foreground_ids": foreground_ids_list, "foreground_count": foreground_count_list})
pandas.DataFrame
from __future__ import absolute_import import numpy as np import pandas as pd qty=10000 gauss = {'oneA': np.random.randn(qty), 'oneB': np.random.randn(qty), 'cats': np.random.randint(0,5,size=qty), 'hundredA': np.random.randn(qty)*100, 'hundredB': np.random.randn(qty)*100} gauss = pd.DataFrame(gauss) uniform = {'oneA': np.random.rand(qty), 'oneB': np.random.rand(qty), 'hundredA': np.random.rand(qty)*100, 'hundredB': np.random.rand(qty)*100} uniform = pd.DataFrame(uniform) bivariate = {'A1': np.hstack([np.random.randn(qty/2), np.random.randn(qty/2)+1]), 'A2': np.hstack([np.random.randn(qty/2), np.random.randn(qty/2)+2]), 'A3': np.hstack([np.random.randn(qty/2), np.random.randn(qty/2)+3]), 'A4': np.hstack([np.random.randn(qty/2), np.random.randn(qty/2)+4]), 'A5': np.hstack([np.random.randn(qty/2), np.random.randn(qty/2)+5]), 'B': np.random.randn(qty), 'C': np.hstack([np.zeros(qty/2), np.ones(qty/2)])} bivariate =
pd.DataFrame(bivariate)
pandas.DataFrame
""" Import as: import core.test.test_statistics as cttsta """ import logging from typing import List import numpy as np import pandas as pd import pytest import core.artificial_signal_generators as casgen import core.finance as cfinan import core.signal_processing as csproc import core.statistics as cstati import helpers.printing as hprint import helpers.unit_test as hut _LOG = logging.getLogger(__name__) class TestComputeMoments(hut.TestCase): def test1(self) -> None: series = self._get_series(seed=1) actual = cstati.compute_moments(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test2(self) -> None: series = self._get_series(seed=1) actual = cstati.compute_moments(series, prefix="moments_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for empty input. def test3(self) -> None: series = pd.Series([]) cstati.compute_moments(series) def test4(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.compute_moments(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.compute_moments(series, nan_mode="ffill_and_drop_leading") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for input of `np.nan`s. def test6(self) -> None: series = pd.Series([np.nan for i in range(10)]) cstati.compute_moments(series) def test7(self) -> None: """ Test series with `inf`. """ series = self._get_series(seed=1) # Place some `NaN` values in the series. series[4] = np.inf actual = cstati.compute_moments(series, nan_mode="ffill_and_drop_leading") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) @staticmethod def _get_series(seed: int) -> pd.Series: arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = arma_process.generate_sample( date_range_kwargs=date_range, seed=seed ) return series class TestComputeFracZero(hut.TestCase): def test1(self) -> None: data = [0.466667, 0.2, 0.13333, 0.2, 0.33333] index = [0, 1, 2, 3, 4] expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_zero(self._get_df(seed=1)) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test2(self) -> None: data = [ 0.4, 0.0, 0.2, 0.4, 0.4, 0.2, 0.4, 0.0, 0.6, 0.4, 0.6, 0.2, 0.0, 0.0, 0.2, ] index = pd.date_range(start="1-04-2018", periods=15, freq="30T") expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_zero(self._get_df(seed=1), axis=1) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test3(self) -> None: # Equals 20 / 75 = num_zeros / num_points. expected = 0.266666 actual = cstati.compute_frac_zero(self._get_df(seed=1), axis=None) np.testing.assert_almost_equal(actual, expected, decimal=3) def test4(self) -> None: series = self._get_df(seed=1)[0] expected = 0.466667 actual = cstati.compute_frac_zero(series) np.testing.assert_almost_equal(actual, expected, decimal=3) def test5(self) -> None: series = self._get_df(seed=1)[0] expected = 0.466667 actual = cstati.compute_frac_zero(series, axis=0) np.testing.assert_almost_equal(actual, expected, decimal=3) # Smoke test for empty input. def test6(self) -> None: series = pd.Series([]) cstati.compute_frac_zero(series) @staticmethod def _get_df(seed: int) -> pd.DataFrame: nrows = 15 ncols = 5 num_nans = 15 num_infs = 5 num_zeros = 20 # np.random.seed(seed=seed) mat = np.random.randn(nrows, ncols) mat.ravel()[np.random.choice(mat.size, num_nans, replace=False)] = np.nan mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = np.inf mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = -np.inf mat.ravel()[np.random.choice(mat.size, num_zeros, replace=False)] = 0 # index = pd.date_range(start="01-04-2018", periods=nrows, freq="30T") df = pd.DataFrame(data=mat, index=index) return df class TestComputeFracNan(hut.TestCase): def test1(self) -> None: data = [0.4, 0.133333, 0.133333, 0.133333, 0.2] index = [0, 1, 2, 3, 4] expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_nan(self._get_df(seed=1)) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test2(self) -> None: data = [ 0.4, 0.0, 0.2, 0.4, 0.2, 0.2, 0.2, 0.0, 0.4, 0.2, 0.6, 0.0, 0.0, 0.0, 0.2, ] index = pd.date_range(start="1-04-2018", periods=15, freq="30T") expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_nan(self._get_df(seed=1), axis=1) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test3(self) -> None: # Equals 15 / 75 = num_nans / num_points. expected = 0.2 actual = cstati.compute_frac_nan(self._get_df(seed=1), axis=None) np.testing.assert_almost_equal(actual, expected, decimal=3) def test4(self) -> None: series = self._get_df(seed=1)[0] expected = 0.4 actual = cstati.compute_frac_nan(series) np.testing.assert_almost_equal(actual, expected, decimal=3) def test5(self) -> None: series = self._get_df(seed=1)[0] expected = 0.4 actual = cstati.compute_frac_nan(series, axis=0) np.testing.assert_almost_equal(actual, expected, decimal=3) # Smoke test for empty input. def test6(self) -> None: series = pd.Series([]) cstati.compute_frac_nan(series) @staticmethod def _get_df(seed: int) -> pd.DataFrame: nrows = 15 ncols = 5 num_nans = 15 num_infs = 5 num_zeros = 20 # np.random.seed(seed=seed) mat = np.random.randn(nrows, ncols) mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = np.inf mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = -np.inf mat.ravel()[np.random.choice(mat.size, num_zeros, replace=False)] = 0 mat.ravel()[np.random.choice(mat.size, num_nans, replace=False)] = np.nan # index = pd.date_range(start="01-04-2018", periods=nrows, freq="30T") df = pd.DataFrame(data=mat, index=index) return df class TestComputeNumFiniteSamples(hut.TestCase): @staticmethod # Smoke test for empty input. def test1() -> None: series = pd.Series([]) cstati.count_num_finite_samples(series) class TestComputeNumUniqueValues(hut.TestCase): @staticmethod # Smoke test for empty input. def test1() -> None: series = pd.Series([]) cstati.count_num_unique_values(series) class TestComputeDenominatorAndPackage(hut.TestCase): @staticmethod # Smoke test for empty input. def test1() -> None: series = pd.Series([]) cstati._compute_denominator_and_package(reduction=1, data=series) class TestTTest1samp(hut.TestCase): # Smoke test for empty input. def test1(self) -> None: series =
pd.Series([])
pandas.Series
# This is the (main) script which runs the beta and club convergence tests # Before running this, you should download the data from NASS, per the instructions in the paper, and run prep_tool.py # Importing required modules import pandas as pd import numpy as np import statsmodels.api as stats from matplotlib import pyplot as plt import plotly.figure_factory as ff # Importing the time series data data_all = pd.read_csv('C:/Users/User/Documents/Data/Cornvergence/Corn_Counties_Yield_All_TimeSeries.csv') data_belt = pd.read_csv('C:/Users/User/Documents/Data/Cornvergence/Corn_Counties_Yield_Belt_TimeSeries.csv') # Creating counties directories for future use counties_all = data_all.County counties_belt = data_belt.County # Creating the dataframes for the beta convergence test df_belt = pd.DataFrame(columns = ['County', 'Rate', 'Initial']) for i in range(len(data_belt.County)): rate = np.log(data_belt['2015'][i] / data_belt['1991'][i]) init = np.log(data_belt['1991'][i]) row = np.transpose([data_belt.County[i], rate, init]).reshape(1,3) row = pd.DataFrame(row, columns = df_belt.columns) df_belt = pd.concat([df_belt, row], axis = 0) df_all = pd.DataFrame(columns = ['County', 'Rate', 'Initial']) for i in range(len(data_all.County)): rate = np.log(data_all['2015'][i] / data_all['1991'][i]) init = np.log(data_all['1991'][i]) row = np.transpose([data_all.County[i], rate, init]).reshape(1,3) row = pd.DataFrame(row, columns = df_all.columns) df_all = pd.concat([df_all, row], axis = 0) Y_belt = df_belt.Rate.astype(float) / 24 Y_belt = pd.DataFrame(Y_belt, columns = ['Rate']) X_belt = df_belt['Initial'] X_belt = stats.add_constant(X_belt) Y_all = df_all.Rate.astype(float) / 24 Y_all = pd.DataFrame(Y_all, columns = ['Rate']) X_all = df_all['Initial'] X_all = stats.add_constant(X_all) # Performing the beta convergence test and recording results model_belt = stats.OLS(Y_belt.astype(float), X_belt.astype(float)) results_belt = model_belt.fit() print(results_belt.summary()) file = open('C:/Users/User/Documents/Data/Cornvergence/beta_convergence_test_results_belt.txt', 'w') file.write(results_belt.summary().as_text()) file.close() threshold = 0.05 if (results_belt.params.Initial < 0) and (results_belt.pvalues.Initial < threshold): print('\n---> There is sufficient evidence to support the hypothesis of beta convergence in the corn belt! <---\n') model_all = stats.OLS(Y_all.astype(float), X_all.astype(float)) results_all = model_all.fit() print(results_all.summary()) file = open('C:/Users/User/Documents/Data/Cornvergence/beta_convergence_test_results_all.txt', 'w') file.write(results_all.summary().as_text()) file.close() threshold = 0.05 if (results_all.params.Initial < 0) and (results_all.pvalues.Initial < threshold): print('\n---> There is sufficient evidence to support the hypothesis of beta convergence everywhere! <---\n') # Drawing the scatter plots x_belt = X_belt['Initial'].values.astype(float) y_belt = Y_belt['Rate'].values.astype(float) plt.figure(figsize = (6,5)) plt.scatter(x_belt, y_belt, marker = '.', color = 'black') plt.xlabel('Initial Level (Ln)') plt.ylabel('Growth Rate') plt.title('Yield Growth Rate as a function of Initial Yield', fontsize = 13) plt.savefig('C:/Users/User/Documents/Data/Cornvergence/beta_convergence_plot_belt.eps') xx_belt = stats.add_constant(x_belt) mod_belt = stats.OLS(y_belt, xx_belt) res_belt = mod_belt.fit() b = res_belt.params[0] m = res_belt.params[1] line = m * x_belt + b plt.plot(x_belt, line, color = 'black') plt.savefig('C:/Users/User/Documents/Data/Cornvergence/beta_convergence_plot_belt_line.eps') x_all = X_all['Initial'].values.astype(float) y_all = Y_all['Rate'].values.astype(float) plt.figure(figsize = (6,5)) plt.scatter(x_all, y_all, marker = '.', color = 'red') plt.scatter(x_belt, y_belt, marker = '.', color = 'black') plt.xlabel('Initial Level (Ln)') plt.ylabel('Growth Rate') plt.title('Yield Growth Rate as a function of Initial Yield', fontsize = 13) plt.savefig('C:/Users/User/Documents/Data/Cornvergence/beta_convergence_plot_all.eps') xx_all = stats.add_constant(x_all) mod_all = stats.OLS(y_all, xx_all) res_all = mod_all.fit() b = res_all.params[0] m = res_all.params[1] line2 = m * x_all + b plt.plot(x_belt, line, color = 'black') plt.plot(x_all, line2, color = 'red') plt.savefig('C:/Users/User/Documents/Data/Cornvergence/beta_convergence_plot_all_line.eps') # Now we move on to sigma convergence by calculating annual sample standard deviations and coefficients of variation sigma_belt = [np.std(data_belt[str(i)]) for i in range(1991,2016)] cv_belt = [np.std(data_belt[str(i)]) / np.mean(data_belt[str(i)]) for i in range(1991,2016)] sigma_all = [np.std(data_all[str(i)]) for i in range(1991,2016)] cv_all = [np.std(data_all[str(i)]) / np.mean(data_all[str(i)]) for i in range(1991,2016)] # Write sigma convergence results to file sigmastats = [['Corn Belt - STD', sigma_belt[0] - sigma_belt[len(sigma_belt)-1]], ['Corn Belt - CV', cv_belt[0] - cv_belt[len(cv_belt)-1]], ['All - STD', sigma_all[0] - sigma_all[len(sigma_all)-1]], ['All - CV', cv_all[0] - cv_all[len(cv_all)-1]]] cols = ['Measure', 'Difference'] for i in range(1991,2016): cols.append(str(i)) sigmastats[0].append(sigma_belt[i-1991]) sigmastats[1].append(cv_belt[i-1991]) sigmastats[2].append(sigma_all[i-1991]) sigmastats[3].append(cv_all[i-1991]) sigma_df = pd.DataFrame(sigmastats, columns = cols) sigma_df.to_csv('C:/Users/User/Documents/Data/Cornvergence/sigma_stats.txt', index = False) # Club Convergence (via Phillips and Sul, 2007) # Resetting the index for convenience data_all = data_all.set_index('County') data_belt = data_belt.set_index('County') # First, create the matrix X_{it} years = [i for i in range(1991, 2016)] vals_all = [sum(data_all[str(year)]) for year in years] vals_belt = [sum(data_belt[str(year)]) for year in years] little_h_all = np.zeros(np.shape(data_all)) for i in range(len(data_all)): for j in range(len(years)): little_h_all[i,j] = data_all.values[i,j] / ((1 / len(data_all)) * vals_all[j]) little_h_belt = np.zeros(np.shape(data_belt)) for i in range(len(data_belt)): for j in range(len(years)): little_h_belt[i,j] = data_belt.values[i,j] / ((1 / len(data_belt)) * vals_belt[j]) # Second, find the cross sectional variance of X_{it} BIG_H_ALL = np.zeros((1, len(years))) BIG_H_BELT = np.zeros((1, len(years))) for i in range(len(years)): s_all = 0 s_belt = 0 for j in range(len(data_all)): s_all += (little_h_all[j,i] - 1) ** 2 BIG_H_ALL[0,i] = s_all / len(data_all) for j in range(len(data_belt)): s_belt += (little_h_belt[j,i] - 1) ** 2 BIG_H_BELT[0,i] = s_belt / len(data_belt) # Third, run regression to obtain estiamtes \hat{a} and \hat{b} -- we choose var = 5 based on observing sigma_all and sigma_belt var = 5 ratios_all = [np.log(BIG_H_ALL[0,0] / BIG_H_ALL[0,t]) for t in range(var,len(years))] ratios_belt = [np.log(BIG_H_BELT[0,0] / BIG_H_BELT[0,t]) for t in range(var,len(years))] LHS_all = [ratios_all[t] - 2*(np.log(np.log(t+var))) for t in range(len(ratios_all))] LHS_all = pd.DataFrame(LHS_all, columns = ['LHS']) RHS_all = [np.log(t) for t in range(var,len(years))] RHS_all = pd.DataFrame(RHS_all, columns = ['RHS']) RHS_all = stats.add_constant(RHS_all) LHS_belt = [ratios_belt[t] - 2*(np.log(np.log(t+var))) for t in range(len(ratios_belt))] LHS_belt = pd.DataFrame(LHS_belt, columns = ['LHS']) RHS_belt = [np.log(t) for t in range(var,len(years))] RHS_belt = pd.DataFrame(RHS_belt, columns = ['RHS']) RHS_belt = stats.add_constant(RHS_belt) club_model_all = stats.OLS(LHS_all, RHS_all) club_results_all = club_model_all.fit() print(club_results_all.summary()) file = open('C:/Users/User/Documents/Data/Cornvergence/club_results_all.txt', 'w') file.write(club_results_all.summary().as_text()) file.close() club_model_belt = stats.OLS(LHS_belt, RHS_belt) club_results_belt = club_model_belt.fit() print(club_results_belt.summary()) file = open('C:/Users/User/Documents/Data/Cornvergence/club_results_belt.txt', 'w') file.write(club_results_belt.summary().as_text()) file.close() # Given the results for \hat{a} and \hat{b}, we may use a club convergence algorithm to determine club membership # We define a function for determining convergence club membership def clubbing(idx, dataset): club_vals = [sum(dataset[str(year)][0:idx+1]) for year in years] club_h = np.zeros(np.shape(dataset)) for i in range(idx): for j in range(len(years)): club_h[i,j] = dataset.values[i,j] / ((1 / (idx+1)) * club_vals[j]) club_H = np.zeros((1, len(years))) for i in range(len(years)): s = 0 for j in range(idx): s += (club_h[j,i] - 1) ** 2 club_H[0,i] = s / idx var = 5 ratios = [np.log(club_H[0,0] / club_H[0,t]) for t in range(var,len(years))] LHS = [ratios[t] - 2*(np.log(np.log(t+var))) for t in range(len(ratios))] LHS = pd.DataFrame(LHS, columns = ['LHS']) RHS = [np.log(t) for t in range(var,len(years))] RHS = pd.DataFrame(RHS, columns = ['RHS']) RHS = stats.add_constant(RHS) club_model = stats.OLS(LHS, RHS) club_results = club_model.fit() beta = club_results.params[1] return beta # Creating the convergence clubs # Plots of the ranked final year ordered yields basis_all = [i for i in range(1,len(data_all)+1)] plt.figure(figsize = (6,5)) plt.plot(basis_all, data_all['2015'], color = 'black') plt.xlabel('County Rank') plt.ylabel('Yield (BU / ACRE)') plt.title('Ordered Plot of County Yields - All', fontsize = 13) plt.savefig('C:/Users/User/Documents/Data/Cornvergence/2015_plot_all.eps') basis_belt = [i for i in range(1,len(data_belt)+1)] plt.figure(figsize = (6,5)) plt.plot(basis_belt, data_belt['2015'], color = 'black') plt.xlabel('County Rank') plt.ylabel('Yield (BU / ACRE)') plt.title('Ordered Plot of County Yields - Corn Belt', fontsize = 13) plt.savefig('C:/Users/User/Documents/Data/Cornvergence/2015_plot_belt.eps') # Club membership algorithm using the function above - all counties idx = 0 a = 0 clubs = [] remaining = [i for i in range(len(data_all))] while len(remaining) > 0: beta = 1 while beta > 0: idx += 1 print(a+idx) if (a + idx) == max(remaining): clubs.append(remaining) remaining = [] beta = -1 else: beta = clubbing(idx, data_all) if beta < 0: club = [i for i in range(a,a+idx)] clubs.append(club) for item in club: remaining.remove(item) data_all = data_all.iloc[idx:len(data_all), :] print(data_all) a += idx idx = 0 # List names of members of clubs all_clubs = clubs all_members = [] for club in clubs: group = [counties_all[idx] for idx in club] all_members.append(group) # Club membership algorithm using the function above - corn belt idx = 1 a = 0 clubs = [] remaining = [i for i in range(len(data_belt))] while len(remaining) > 0: beta = 1 while beta > 0: idx += 1 print(a+idx) if (a + idx) == max(remaining): clubs.append(remaining) remaining = [] beta = -1 else: beta = clubbing(idx, data_belt) if beta < 0: if idx == 2: idx = 1 club = [i for i in range(a,a+idx)] clubs.append(club) for item in club: remaining.remove(item) data_belt = data_belt.iloc[idx:len(data_belt), :] print(data_belt) a += idx idx = 1 # List names of members of clubs belt_clubs = clubs belt_members = [] for club in clubs: group = [counties_belt[idx] for idx in club] belt_members.append(group) # Write clubs with members to txt file for reference all_members =
pd.DataFrame(all_members)
pandas.DataFrame
""" timedelta support tools """ import re from datetime import timedelta import numpy as np import pandas.tslib as tslib from pandas import compat, _np_version_under1p7 from pandas.core.common import (ABCSeries, is_integer, is_integer_dtype, is_timedelta64_dtype, _values_from_object, is_list_like, isnull) repr_timedelta = tslib.repr_timedelta64 repr_timedelta64 = tslib.repr_timedelta64 def to_timedelta(arg, box=True, unit='ns'): """ Convert argument to timedelta Parameters ---------- arg : string, timedelta, array of strings (with possible NAs) box : boolean, default True If True returns a Series of the results, if False returns ndarray of values unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number Returns ------- ret : timedelta64/arrays of timedelta64 if parsing succeeded """ if _np_version_under1p7: raise ValueError("to_timedelta is not support for numpy < 1.7") def _convert_listlike(arg, box, unit): if isinstance(arg, (list,tuple)): arg = np.array(arg, dtype='O') if is_timedelta64_dtype(arg): value = arg.astype('timedelta64[ns]') elif is_integer_dtype(arg): unit = _validate_timedelta_unit(unit) # these are shortcutable value = arg.astype('timedelta64[{0}]'.format(unit)).astype('timedelta64[ns]') else: try: value = tslib.array_to_timedelta64(_ensure_object(arg),unit=unit) except: value = np.array([ _coerce_scalar_to_timedelta_type(r, unit=unit) for r in arg ]) if box: from pandas import Series value = Series(value,dtype='m8[ns]') return value if arg is None: return arg elif isinstance(arg, ABCSeries): from pandas import Series values = _convert_listlike(arg.values, box=False, unit=unit) return Series(values, index=arg.index, name=arg.name, dtype='m8[ns]') elif is_list_like(arg): return _convert_listlike(arg, box=box, unit=unit) # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit) def _validate_timedelta_unit(arg): """ provide validation / translation for timedelta short units """ if re.search("Y|W|D",arg,re.IGNORECASE) or arg == 'M': return arg.upper() elif re.search("h|m|s|ms|us|ns",arg,re.IGNORECASE): return arg.lower() raise ValueError("invalid timedelta unit {0} provided".format(arg)) _short_search = re.compile( "^\s*(?P<neg>-?)\s*(?P<value>\d*\.?\d*)\s*(?P<unit>d|s|ms|us|ns)?\s*$",re.IGNORECASE) _full_search = re.compile( "^\s*(?P<neg>-?)\s*(?P<days>\d+)?\s*(days|d|day)?,?\s*(?P<time>\d{2}:\d{2}:\d{2})?(?P<frac>\.\d+)?\s*$",re.IGNORECASE) _nat_search = re.compile( "^\s*(nat|nan)\s*$",re.IGNORECASE) _whitespace = re.compile('^\s*$') def _coerce_scalar_to_timedelta_type(r, unit='ns'): """ convert strings to timedelta; coerce to np.timedelta64""" if isinstance(r, compat.string_types): # we are already converting to nanoseconds converter = _get_string_converter(r, unit=unit) r = converter() unit='ns' return tslib.convert_to_timedelta(r,unit) def _get_string_converter(r, unit='ns'): """ return a string converter for r to process the timedelta format """ # treat as a nan if _whitespace.search(r): def convert(r=None, unit=None): return tslib.iNaT return convert m = _short_search.search(r) if m: def convert(r=None, unit=unit, m=m): if r is not None: m = _short_search.search(r) gd = m.groupdict() r = float(gd['value']) u = gd.get('unit') if u is not None: unit = u.lower() if gd['neg']: r *= -1 return tslib.cast_from_unit(r, unit) return convert m = _full_search.search(r) if m: def convert(r=None, unit=None, m=m): if r is not None: m = _full_search.search(r) gd = m.groupdict() # convert to seconds value = float(gd['days'] or 0) * 86400 time = gd['time'] if time: (hh,mm,ss) = time.split(':') value += float(hh)*3600 + float(mm)*60 + float(ss) frac = gd['frac'] if frac: value += float(frac) if gd['neg']: value *= -1 return tslib.cast_from_unit(value, 's') return convert m = _nat_search.search(r) if m: def convert(r=None, unit=None, m=m): return tslib.iNaT return convert # no converter raise ValueError("cannot create timedelta string converter for [{0}]".format(r)) def _possibly_cast_to_timedelta(value, coerce=True): """ try to cast to timedelta64, if already a timedeltalike, then make sure that we are [ns] (as numpy 1.6.2 is very buggy in this regards, don't force the conversion unless coerce is True if coerce='compat' force a compatibilty coercerion (to timedeltas) if needeed """ # coercion compatability if coerce == 'compat' and _np_version_under1p7: def convert(td, dtype): # we have an array with a non-object dtype if hasattr(td,'item'): td = td.astype(np.int64).item() if td == tslib.iNaT: return td if dtype == 'm8[us]': td *= 1000 return td if
isnull(td)
pandas.core.common.isnull
import pandas as pd import numpy as np from sklearn import preprocessing from sklearn.preprocessing import scale class Preprocessing(): def __init__(self, train, test): #classification column self._clsTrain = train.columns[-1] #only categorical features obj_dfTrain = train.select_dtypes(include=['object']).copy() self._objectListTrain = obj_dfTrain.columns.values #remove classification column self._objectListTrain = np.delete(self._objectListTrain, -1) #classification test column self._clsTest = test.columns[-1] # ronly categorical features test set obj_dfTest = test.select_dtypes(include=['object']).copy() self._objectListTest= obj_dfTest.columns.values #remove classification column from test set self._objectListTest = np.delete(self._objectListTest, -1) ''' def __init__(self): print("Preprocessing void") ''' def getCls(self): return self._clsTrain, self._clsTest #one-hot encoding function def preprocessingOneHot(self,train,test): #print(self._objectListTrain) train =
pd.get_dummies(train, columns=self._objectListTrain)
pandas.get_dummies
import unittest import pandas as pd from featurefilter import FeatureCorrelationFilter def test_fit_high_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 1], 'B': [0, 1]}) filter_ = FeatureCorrelationFilter() train_df = filter_.fit(train_df) assert filter_.columns_to_drop == ['B'] def test_excluding_target_column(): train_df = pd.DataFrame({'A': [0, 1], 'B': [0, 1], 'Y': [0, 1]}) filter_ = FeatureCorrelationFilter(target_column='Y') train_df = filter_.fit(train_df) assert filter_.columns_to_drop == ['B'] def test_high_negative_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 1], 'B': [0, -1], 'Y': [0, 1]}) test_df = pd.DataFrame({'A': [0, 0], 'B': [0, 0], 'Y': [0, 1]}) filter_ = FeatureCorrelationFilter(target_column='Y') train_df = filter_.fit_transform(train_df) test_df = filter_.transform(test_df) assert train_df.equals(pd.DataFrame({'A': [0, 1], 'Y': [0, 1]})) assert test_df.equals(
pd.DataFrame({'A': [0, 0], 'Y': [0, 1]})
pandas.DataFrame
import os import json from collections import Counter, defaultdict import pandas as pd import networkx as nx import statistics import math from sklearn.metrics import cohen_kappa_score import seaborn as sns import pandas import matplotlib.pyplot as plt ANNOTATION_TASKS = ["participants", "subevents"] TASK_TO_INDEX = { 'participants' : 0, 'subevents' : 1 } def load_user_annotations(user_annotations_folder, annotation_task, batches, verbose=0): """ Load the user annotations for a) one annotation task b) n batches :rtype: dict :return: mapping from (src, tgt) -> value """ user_annotations = dict() index = TASK_TO_INDEX[annotation_task] for batch in batches: folder_path = os.path.join(user_annotations_folder, batch) anno_json_path = os.path.join(folder_path, 'annotations', 'annotations.json') index_json_path = os.path.join(folder_path, 'annotations', 'id_to_edge.json') assert os.path.exists(anno_json_path) with open(anno_json_path) as infile: anno = json.load(infile) with open(index_json_path) as infile: id_to_edge = json.load(infile) for id_, values in anno.items(): if id_ == 'the_end': continue if values == False: string_value = 'dk' elif type(values) == list: string_value = values[index] edge = id_to_edge[id_] # edges is (parent, child) if string_value in {'dk', 'ns'}: value = string_value elif string_value in {'1', '2', '3', '4', '5', '6', '7'}: value = int(string_value) else: raise Exception(f'provided annotation {string_value} for id {id_} is not valid. Please inspect.') key = tuple(edge) if key in user_annotations: print() print(f'found existing annotation for {key}: skipping') continue user_annotations[tuple(edge)] = value if verbose >= 1: print() print(f'folder {user_annotations_folder}') print(f'annotation task: {annotation_task}') print(f'batches: {batches}') print(f'# of items annotated: {len(user_annotations)}') print(Counter(user_annotations.values())) return user_annotations def combine_annotations(users, batches, main_anno_folder, verbose=0): edge_to_user_to_task_to_value = dict() for user in users: for task in ANNOTATION_TASKS: print() print(f'working on task {task} for user {user}') user_annotations_folder = os.path.join(main_anno_folder, user) edge_to_value = load_user_annotations(user_annotations_folder=user_annotations_folder, annotation_task=task, batches=batches, verbose=verbose) for edge, value in edge_to_value.items(): if edge not in edge_to_user_to_task_to_value: info = {user : {task : None} for user in users for task in ANNOTATION_TASKS} edge_to_user_to_task_to_value[edge] = info edge_to_user_to_task_to_value[edge][user][task] = value return edge_to_user_to_task_to_value def obtain_kappa_score(output_folder, users, annotation_task): """ :param output_folder: :param annotation_task: :return: """ user_one, user_two = users path = os.path.join(output_folder, f'{annotation_task}_{user_one}.json') with open(path) as infile: info_user_one = json.load(infile) path = os.path.join(output_folder, f'{annotation_task}_{user_two}.json') with open(path) as infile: info_user_two = json.load(infile) assert set(info_user_one) == set(info_user_two) labels_user_one = [] labels_user_two = [] for key in info_user_one: labels_user_one.append(info_user_one[key]) labels_user_two.append(info_user_two[key]) kappa = cohen_kappa_score(y1=labels_user_one, y2=labels_user_two) return kappa def compute_agreement(edge_to_user_to_task_to_value, annotation_task, output_folder, verbose=0): """ create a table in which the user agreement for a particular task is shown """ category_to_edges = defaultdict(list) filtered_user_to_edge_to_value = defaultdict(dict) num_cat_other = 0 for edge, user_to_task_to_value in edge_to_user_to_task_to_value.items(): user_to_value = {user: task_to_value[annotation_task] for user, task_to_value in user_to_task_to_value.items()} values = list(user_to_value.values()) if values == ['dk' , 'dk']: if verbose >= 2: print(f'discarded {edge} {annotation_task} because both annotators indicated "dk"') continue if values == ['ns' , 'ns']: if verbose >= 2: print(f'discarded {edge} {annotation_task} because both annotators indicated "ns"') continue category = "other" if all([type(value) == int for value in values]): category = abs(values[0] - values[1]) # we focus on two annotators if category == "other": num_cat_other += 1 continue category_to_edges[category].append(edge) for user, value in user_to_value.items(): edge_string = '---'.join([id_ for id_ in edge]) filtered_user_to_edge_to_value[user][edge_string] = value num_annotations = [] for user, annotations in filtered_user_to_edge_to_value.items(): num_annotations.append(len(annotations)) assert len(set(num_annotations)) == 1, f'this set should only have one value: {num_annotations}' for user, annotations in filtered_user_to_edge_to_value.items(): json_path = os.path.join(output_folder, f'{annotation_task}_{user}.json') with open(json_path, 'w') as outfile: json.dump(annotations, outfile) if verbose: print() print(f'number of items in category "other": {num_cat_other}') print('i.e., one annotator specified an integer and the other dk or ns') # create table list_of_lists = [] headers = ['Delta between annotations', 'Number of items'] for category, edges in category_to_edges.items(): one_row = [category, len(edges)] list_of_lists.append(one_row) df = pd.DataFrame(list_of_lists, columns=headers) df = df.sort_values('Delta between annotations') # cumulative relative frequency num_items = sum(df['Number of items']) cum_rel_freq_values = [] cum_rel_freq = 0 for index, row in df.iterrows(): rel_freq = 100 * (row['Number of items'] / num_items) cum_rel_freq += rel_freq cum_rel_freq_values.append(cum_rel_freq) df['Cumulative Rel Freq'] = cum_rel_freq_values # export table excel_path = os.path.join(output_folder, f'agreement_{annotation_task}.xlsx') df.to_excel(excel_path, index=False) if verbose >= 1: print() print(f'saved agreement for {annotation_task} to {excel_path}') latex_path = os.path.join(output_folder, f'agreement_{annotation_task}.tex') df.to_latex(latex_path, index=False) if verbose >= 1: print() print(f'saved agreement for {annotation_task} to {latex_path}') def load_graph_from_edgelist(path_to_edge_list, verbose=0): """ :param str path_to_edge_list: load graph from edge list """ g = nx.read_edgelist(path_to_edge_list, create_using=nx.DiGraph()) if verbose: print() print(f'loaded edge list from: {path_to_edge_list}') print(nx.info(g)) return g def update_sample_graph_with_annotations(sample_graph, edge_to_user_to_task_to_value, verbose=0): """ :param sample_graph: the directed graph selected for annotation :param edge_to_user_to_task_to_value: a mapping from edge to user to task to value :return: the same graph but with the annotations added as attributes to the edges """ all_edge_attrs = {} for edge, user_to_task_to_value in edge_to_user_to_task_to_value.items(): edge_attrs = {task : {} for task in ANNOTATION_TASKS} for user, task_to_value in user_to_task_to_value.items(): for task, value in task_to_value.items(): edge_attrs[task][user] = value all_edge_attrs[edge] = edge_attrs nx.set_edge_attributes(sample_graph, all_edge_attrs) if verbose: print() print(f'update edge attributes for {len(all_edge_attrs)} edges') return sample_graph def get_average_edge_value(g, edge, annotation_task, users, verbose=0): """ :param g: :param edge: :param annotation_task: :return: """ values = [] u, v = edge attrs = g.get_edge_data(u, v) if attrs: for user, value in attrs[annotation_task].items(): if type(value) == int: values.append(value) if len(values) != len(users): values = [] if values: avg = sum(values) / len(values) else: avg = None if verbose >= 4: if values: print(values) return avg def determine_candidate_basic_levels(g, annotation_task, users, verbose=0): """ Determine nodes with: a) annotations in edges from children to candidate basic level b) annotations in edges from candidate basic levels to superordinate events for debugging purposes: a) edge sport:67 -from Q13406554 (sports competition) -to Q16510064 (sporting event) -edge in JSON ["Q13406554", "Q16510064"] -participants: Piek: 3, Antske: 3 -subevents: Piek: 3, Antske: 3 b) edge sport:34 -from Q16510064 (sporting event) -to Q46190676 (tennis event) - edge in JSON ["Q16510064", "Q46190676"] -participants: Piek: 3, Antske: 2 -subevents: Piek: 3, Antske: 4 :rtype: dict :return: mapping from event_id -> { “children” -> avg from edges, “parents” -> avg from edges } """ ev_to_anno_info = {} for node in g.nodes(): children = g.successors(node) parents = g.predecessors(node) children_edges = [(node, child) for child in children] assert len(children_edges) == len(set(children_edges)) parent_edges = [(parent, node) for parent in parents] assert len(parent_edges) == len(set(parent_edges)) for parent, child in children_edges + parent_edges: assert g.has_edge(parent, child), f'{(parent, child)} not found in graph' if any([not children_edges, not parent_edges]): continue children_avgs = [] children_edges_to_value = dict() for children_edge in children_edges: child_edge_avg = get_average_edge_value(g, children_edge, annotation_task, users, verbose=verbose) if child_edge_avg is not None: children_avgs.append(child_edge_avg) children_edges_to_value[children_edge] = child_edge_avg parent_avgs = [] parent_edges_to_value = dict() for parent_edge in parent_edges: parent_edge_avg = get_average_edge_value(g, parent_edge, annotation_task, users, verbose=verbose) if parent_edge_avg is not None: parent_avgs.append(parent_edge_avg) parent_edges_to_value[parent_edge] = parent_edge_avg if any([not children_avgs, not parent_avgs]): continue children_value = sum(children_avgs) / len(children_avgs) parent_value = sum(parent_avgs) / len(parent_avgs) delta = children_value - parent_value result = { 'children': children_value, 'children_edges_to_value' : children_edges_to_value, 'parents': parent_value, 'parents_edges_to_value' : parent_edges_to_value, 'delta' : delta } if verbose >= 3: print() print(node) print('children', children_edges) print('children averages', children_avgs) print('parents', parent_edges) print('parent averages', parent_avgs) print(result) ev_to_anno_info[node] = result if verbose: print() print(f'collected relevant BLE annotation information for {len(ev_to_anno_info)} nodes') return ev_to_anno_info def ble_analysis(candidate_ble_info, node_to_depth, output_folder, verbose=0): """ :param candidate_ble_info: :param annotation_task: :param output_folder: """ list_of_lists = [] headers = ['Node ID', 'Node Depth', 'Delta subevents', 'Delta participants'] for node in candidate_ble_info['subevents']: # ugly hack to get iterable of relevant nodes delta_subevents = candidate_ble_info['subevents'][node]['delta'] delta_participants = candidate_ble_info['participants'][node]['delta'] one_row = [node, node_to_depth[node], round(delta_subevents, 1), round(delta_participants, 1), ] list_of_lists.append(one_row) df = pd.DataFrame(list_of_lists, columns=headers) df = df.sort_values('Delta subevents', ascending=False) excel_path = f'{output_folder}/ble_delta.xlsx' df.to_excel(excel_path, index=False) tex_path = f'{output_folder}/ble_delta.tex' df.to_latex(tex_path, index=False) if verbose: print() print('saved BLE delta table to') print(excel_path) print(tex_path) return df def analyze_df(df, turning_point, annotation_task, verbose=0): """ :param df: :return: """ low = [] high = [] for index, row in df.iterrows(): task_value = row[f'Delta {annotation_task}'] depth = row['Node Depth'] if task_value >= turning_point: high.append(depth) else: low.append(depth) high_avg_depth = statistics.mean(high) low_avg_depth = statistics.mean(low) if verbose >= 1: print() print('turning point', turning_point) print('on or above turning point', len(high)) print('below turning point', len(low)) print('average depth') print('high', round(high_avg_depth,2)) print('low', round(low_avg_depth,2)) print('high distribution', sorted(Counter(high).items())) print('high standard deviation', statistics.stdev(high)) print('low distribution', sorted(Counter(low).items())) print('low standard deviation', statistics.stdev(low)) def create_dot_of_ble_candidate(ble_candidate_info, ev_coll_obj, output_path=None, verbose=0): """ :param dict ble_candidate_info: see output determine_candidate_basic_levels {'children': 5.25, 'children_edges_to_value': {('Q3270632', 'Q4582333'): 6.5, ('Q3270632', 'Q1152547'): 4.0}, 'parents': 5.5, 'parents_edges_to_value': {('Q18608583', 'Q3270632'): 4.5, ('Q1079023', 'Q3270632'): 6.5}, 'delta': -0.25}} """ g = nx.DiGraph() keys = ['children_edges_to_value', 'parents_edges_to_value'] nodes = set() for key in keys: for (u, v) in ble_candidate_info[key]: nodes.update((u, v)) for node in nodes: uri = f'http://www.wikidata.org/entity/{node}' ev_obj = ev_coll_obj.event_type_id_to_event_type_obj[uri] g.add_node(node, label=ev_obj.label_to_show) for key in keys: edges = ble_candidate_info[key] for (u, v), weight in edges.items(): g.add_edge(u, v, label=weight) if output_path is not None: p = nx.drawing.nx_pydot.to_pydot(g) p.write_png(output_path) if verbose >= 3: print() print(f'written output to {output_path}') def create_heatmap(piek_json, antske_json, output_path=None, verbose=0): """ """ # initialize dataframe likert_values = [1, 2, 3, 4, 5, 6, 7] df =
pandas.DataFrame()
pandas.DataFrame
#code will get the proper values like emyield, marketcap, cacl, etc, and supply a string and value to put back into the dataframe. import pandas as pd import numpy as np import logging import inspect from scipy import stats from dateutil.relativedelta import relativedelta from datetime import datetime from scipy import stats import math class quantvaluedata: #just contains functions, will NEVEFR actually get the data def __init__(self,allitems=None): if allitems is None: self.allitems=[] else: self.allitems=allitems return def get_value(self,origdf,key,i=-1): if key not in origdf.columns and key not in self.allitems and key not in ['timedepositsplaced','fedfundssold','interestbearingdepositsatotherbanks']: logging.error(key+' not found in allitems') #logging.error(self.allitems) return None df=origdf.copy() df=df.sort_values('yearquarter') if len(df)==0: ##logging.error("empty dataframe") return None if key not in df.columns: #logging.error("column not found:"+key) return None interested_quarter=df['yearquarter'].iloc[-1]+i+1#because if we want the last quarter we need them equal if not df['yearquarter'].isin([interested_quarter]).any(): #if the quarter we are interested in is not there return None s=df['yearquarter']==interested_quarter df=df[s] if len(df)>1: logging.error(df) logging.error("to many rows in df") exit() pass value=df[key].iloc[0] if pd.isnull(value): return None return float(value) def get_sum_quarters(self,df,key,seed,length): values=[] #BIG BUG, this was origionally -length-1, which was always truncating the array and producing nans. periods=range(seed,seed-length,-1) for p in periods: values.append(self.get_value(df,key,p)) #logging.info('values:'+str(values)) if pd.isnull(values).any(): #return None if any of the values are None return None else: return float(np.sum(values)) def get_market_cap(self,statements_df,prices_df,seed=-1): total_shares=self.get_value(statements_df,'weightedavedilutedsharesos',seed) if pd.isnull(total_shares): return None end_date=statements_df['end_date'].iloc[seed] if seed==-1: #get the latest price but see if there was a split between the end date and now s=pd.to_datetime(prices_df['date'])>pd.to_datetime(end_date) tempfd=prices_df[s] splits=tempfd['split_ratio'].unique() adj=pd.Series(splits).product() #multiply all the splits together to get the total adjustment factor from the last total_shares total_shares=total_shares*adj last_price=prices_df.sort_values('date').iloc[-1]['close'] price=float(last_price) market_cap=price*float(total_shares) return market_cap else: marketcap=self.get_value(statements_df,'marketcap',seed) if pd.isnull(marketcap): return None else: return marketcap def get_netdebt(self,statements_df,seed=-1): shorttermdebt=self.get_value(statements_df,'shorttermdebt',seed) longtermdebt=self.get_value(statements_df,'longtermdebt',seed) capitalleaseobligations=self.get_value(statements_df,'capitalleaseobligations',seed) cashandequivalents=self.get_value(statements_df,'cashandequivalents',seed) restrictedcash=self.get_value(statements_df,'restrictedcash',seed) fedfundssold=self.get_value(statements_df,'fedfundssold',seed) interestbearingdepositsatotherbanks=self.get_value(statements_df,'interestbearingdepositsatotherbanks',seed) timedepositsplaced=self.get_value(statements_df,'timedepositsplaced',seed) s=pd.Series([shorttermdebt,longtermdebt,capitalleaseobligations,cashandequivalents,restrictedcash,fedfundssold,interestbearingdepositsatotherbanks,timedepositsplaced]).astype('float') if pd.isnull(s).all(): #return None if everything is null return None m=pd.Series([1,1,1,-1,-1,-1,-1]) netdebt=s.multiply(m).sum() return float(netdebt) def get_enterprise_value(self,statements_df,prices_df,seed=-1): #calculation taken from https://intrinio.com/data-tag/enterprisevalue marketcap=self.get_market_cap(statements_df,prices_df,seed) netdebt=self.get_netdebt(statements_df,seed) totalpreferredequity=self.get_value(statements_df,'totalpreferredequity',seed) noncontrollinginterests=self.get_value(statements_df,'noncontrollinginterests',seed) redeemablenoncontrollinginterest=self.get_value(statements_df,'redeemablenoncontrollinginterest',seed) s=pd.Series([marketcap,netdebt,totalpreferredequity,noncontrollinginterests,redeemablenoncontrollinginterest]) if pd.isnull(s).all() or pd.isnull(marketcap): return None return float(s.sum()) def get_ebit(self,df,seed=-1,length=4): ebit=self.get_sum_quarters(df,'totaloperatingincome',seed,length) if pd.notnull(ebit): return float(ebit) totalrevenue=self.get_sum_quarters(df,'totalrevenue',seed,length) provisionforcreditlosses=self.get_sum_quarters(df,'provisionforcreditlosses',seed,length) totaloperatingexpenses=self.get_sum_quarters(df,'totaloperatingexpenses',seed,length) s=pd.Series([totalrevenue,provisionforcreditlosses,totaloperatingexpenses]) if pd.isnull(s).all(): return None ebit=(s.multiply(pd.Series([1,-1,-1]))).sum() if pd.notnull(ebit): return float(ebit) return None def get_emyield(self,statements_df,prices_df,seed=-1,length=4): ebit=self.get_ebit(statements_df,seed,length) enterprisevalue=self.get_enterprise_value(statements_df,prices_df,seed) if pd.isnull([ebit,enterprisevalue]).any() or enterprisevalue==0: return None return float(ebit/enterprisevalue) def get_scalednetoperatingassets(self,statements_df,seed=-1): """ SNOA = (Operating Assets Operating Liabilities) / Total Assets where OA = total assets cash and equivalents OL = total assets ST debt LT debt minority interest - preferred stock - book common oa=ttmsdfcompany.iloc[-1]['totalassets']-ttmsdfcompany.iloc[-1]['cashandequivalents'] ol=ttmsdfcompany.iloc[-1]['totalassets']-ttmsdfcompany.iloc[-1]['netdebt']-ttmsdfcompany.iloc[-1]['totalequityandnoncontrollinginterests'] snoa=(oa-ol)/ttmsdfcompany.iloc[-1]['totalassets'] """ totalassets=self.get_value(statements_df,'totalassets',seed) cashandequivalents=self.get_value(statements_df,'cashandequivalents',seed) netdebt=self.get_netdebt(statements_df,seed) totalequityandnoncontrollinginterests=self.get_value(statements_df,'totalequityandnoncontrollinginterests',seed) if pd.isnull(totalassets) or totalassets==0: return None s=pd.Series([totalassets,cashandequivalents]) m=pd.Series([1,-1]) oa=s.multiply(m).sum() s=pd.Series([totalassets,netdebt,totalequityandnoncontrollinginterests]) m=pd.Series([1,-1,-1]) ol=s.multiply(m).sum() scalednetoperatingassets=(oa-ol)/totalassets return float(scalednetoperatingassets) def get_scaledtotalaccruals(self,statements_df,seed=-1,length=4): netincome=self.get_sum_quarters(statements_df,'netincome',seed,length) netcashfromoperatingactivities=self.get_sum_quarters(statements_df,'netcashfromoperatingactivities',seed,length) start_assets=self.get_value(statements_df,'cashandequivalents',seed-length) end_assets=self.get_value(statements_df,'cashandequivalents',seed) if pd.isnull([start_assets,end_assets]).any(): return None totalassets=np.mean([start_assets,end_assets]) if pd.isnull(totalassets): return None num=pd.Series([netincome,netcashfromoperatingactivities]) if pd.isnull(num).all(): return None m=pd.Series([1,-1]) num=num.multiply(m).sum() den=totalassets if den==0: return None scaledtotalaccruals=num/den return float(scaledtotalaccruals) def get_grossmargin(self,statements_df,seed=-1,length=4): totalrevenue=self.get_sum_quarters(statements_df, 'totalrevenue', seed, length) totalcostofrevenue=self.get_sum_quarters(statements_df, 'totalcostofrevenue', seed, length) if pd.isnull([totalrevenue,totalcostofrevenue]).any() or totalcostofrevenue==0: return None grossmargin=(totalrevenue-totalcostofrevenue)/totalcostofrevenue return float(grossmargin) def get_margingrowth(self,statements_df,seed=-1,length1=20,length2=4): grossmargins=[] for i in range(seed,seed-length1,-1): grossmargins.append(self.get_grossmargin(statements_df, i, length2)) grossmargins=pd.Series(grossmargins) if pd.isnull(grossmargins).any(): return None growth=grossmargins.pct_change(periods=1) growth=growth[pd.notnull(growth)] if len(growth)==0: return None grossmargingrowth=stats.gmean(1+growth)-1 if pd.isnull(grossmargingrowth): return None return float(grossmargingrowth) def get_marginstability(self,statements_df,seed=-1,length1=20,length2=4): #length1=how far back to go, how many quarters to get 20 quarters #length2=for each quarter, how far back to go 4 quarters grossmargins=[] for i in range(seed,seed-length1,-1): grossmargins.append(self.get_grossmargin(statements_df, i, length2)) grossmargins=pd.Series(grossmargins) if pd.isnull(grossmargins).any() or grossmargins.std()==0: return None marginstability=grossmargins.mean()/grossmargins.std() if pd.isnull(marginstability): return None return float(marginstability) def get_cacl(self,df,seed=-1): a=self.get_value(df,'totalcurrentassets',seed) l=self.get_value(df,'totalcurrentliabilities',seed) if pd.isnull([a,l]).any() or l==0: return None else: return a/l def get_tatl(self,df,seed=-1): a=self.get_value(df,'totalassets',seed) l=self.get_value(df,'totalliabilities',seed) if pd.isnull([a,l]).any() or l==0: return None else: return a/l def get_longterm_cacl(self,df,seed=-1,length=20): ltcacls=[] for i in range(seed,seed-length,-1): ltcacls.append(self.get_cacl(df,i)) ltcacls=pd.Series(ltcacls) if pd.isnull(ltcacls).any(): return None return stats.gmean(1+ltcacls)-1 #not totally sure we need the 1+, and the -1 11/9/17 def get_longterm_tatl(self,df,seed=-1,length=20): lttatls=[] for i in range(seed,seed-length,-1): lttatls.append(self.get_tatl(df,i)) lttatls=pd.Series(lttatls) if pd.isnull(lttatls).any(): return None return stats.gmean(1+lttatls)-1 #not totally sure we need the 1+, and the -1 11/9/17 def get_capex(self,df,seed=-1,length=4): purchaseofplantpropertyandequipment=self.get_sum_quarters(df,'purchaseofplantpropertyandequipment',seed,length) saleofplantpropertyandequipment=self.get_sum_quarters(df,'saleofplantpropertyandequipment',seed,length) s=pd.Series([purchaseofplantpropertyandequipment,saleofplantpropertyandequipment]) if pd.isnull(s).all(): return None m=pd.Series([-1,-1]) capex=(s*m).sum() if capex is None: return None return float(capex) def get_freecashflow(self,df,seed=-1): netcashfromoperatingactivities=self.get_value(df,'netcashfromoperatingactivities',seed) capex=self.get_capex(df,seed,length=1) s=pd.Series([netcashfromoperatingactivities,capex]) if pd.isnull(s).all(): return None m=pd.Series([1,-1]) fcf=(s*m).sum() return float(fcf) #add a length2 paramater so we take the sums of cash flows def get_cashflowonassets(self,df,seed=-1,length1=20,length2=4): cfoas=[] for i in range(seed,seed-length1,-1): start_assets=self.get_value(df,'totalassets',i-length2) end_assets=self.get_value(df,'totalassets',i) fcfs=[] for k in range(i,i-length2,-1): fcf=self.get_freecashflow(df,k) fcfs.append(fcf) if pd.isnull(fcfs).any(): return None total_fcf=pd.Series(fcfs).sum() avg_assets=pd.Series([start_assets,end_assets]).mean() if pd.isnull([total_fcf,avg_assets]).any() or avg_assets==0: return None else: cfoas.append(total_fcf/avg_assets) if pd.isnull(cfoas).any(): return None else: if pd.isnull(stats.gmean(1+pd.Series(cfoas))-1): return None else: return stats.gmean(1+pd.Series(cfoas))-1 #we want to punish variability because the higher number the better def get_roa(self,df,seed=-1,length=4): netincome=self.get_sum_quarters(df,'netincome',seed,length) start_assets=self.get_value(df,'totalassets',seed-length) end_assets=self.get_value(df,'totalassets',seed) if pd.isnull([start_assets,end_assets]).any(): return None totalassets=pd.Series([start_assets,end_assets]).mean() if pd.isnull([netincome,totalassets]).any() or totalassets==0: return None roa=netincome/totalassets return float(roa) def get_roc(self,df,seed=-1,length=4): ebit=self.get_ebit(df,seed,length) dividends=self.get_sum_quarters(df,'paymentofdividends',seed,length) start_debt=self.get_netdebt(df,seed-length) end_debt=self.get_netdebt(df,seed) netdebt=pd.Series([start_debt,end_debt]).mean() start_equity=self.get_value(df,'totalequity',seed-length) end_equity=self.get_value(df,'totalequity',seed) totalequity=pd.Series([start_equity,end_equity]).mean() num=
pd.Series([ebit,dividends])
pandas.Series
# coding=utf-8 # !/usr/bin/env python3 import os, re import numpy as np import pandas as pd def svLen(sv_data): data_grab = re.compile("^.*SVLEN=(?P<sv_len>-?[0-9]+).*$") if 'SVLEN' in str(sv_data['INFO'].iloc[0]): data_info = data_grab.search(sv_data['INFO'].iloc[0]).groupdict() sv_len = data_info['sv_len'] else: # if the sv_type is not DEL, INS, DUP or INV, we prefer to preserve it thus default sv_len 51 (>50). sv_len = 51 return int(sv_len) def svType(sv_data): data_grab = re.compile("^.*SVTYPE=(?P<sv_type>[a-zA-Z]+).*$") if 'SVTYPE' in str(sv_data['INFO'].iloc[0]): data_info = data_grab.search(sv_data['INFO'].iloc[0]).groupdict() sv_type = data_info['sv_type'] else: sv_type = 'None' return sv_type def readvcf(file_name): count_num = 0 with open(file_name,'r') as f1: for row in f1: if '#' in row: count_num = count_num + 1 # print(count_num) rawData = pd.read_csv(file_name,skiprows=count_num-1,sep='\t') rawData = rawData.set_index('#CHROM') rawData.index.name = 'CHROM' # print(rawData.loc['chr1']) return rawData def typeCalculate(file_name): if 'vcf' in file_name: sv_data = readvcf(file_name) else: sv_data = pd.read_csv(file_name) # print(sv_data) # dnsv_filter_data =pd.DataFrame(columns=dnsv_data.columns) sv_type_list = [] for i in range(sv_data.shape[0]): print(i) # sv_len =svLen(sv_data.iloc[[i]]) # if sv_len>10000: sv_type = svType(sv_data.iloc[[i]]) sv_type_list.append(sv_type) sv_type_list = pd.Series(sv_type_list) print(sv_type_list.value_counts()) return def process_bar(i): num = i // 2 if i == 100: process = "\r[%3s%%]: |%-50s|\n" % (i, '|' * num) else: process = "\r[%3s%%]: |%-50s|" % (i, '|' * num) print(process, end='', flush=True) def calcultateImprecise(file_name): data = pd.read_csv(file_name) imprecise_ins = pd.DataFrame(columns=data.columns) imprecise_del = pd.DataFrame(columns=data.columns) imprecise = pd.DataFrame(columns=data.columns) process_count = 0; process_path = data.shape[0]/100 for i in range(data.shape[0]): if i >= process_path * process_count: process_bar(process_count+1) process_count = process_count + 1 sv_type =svType(data.iloc[[i]]) if 'IMPRECISE' in data['INFO'].iloc[i]: imprecise = pd.concat([imprecise, data.iloc[[i]]]) if sv_type == 'INS': imprecise_ins = pd.concat([imprecise_ins, data.iloc[[i]]]) elif sv_type == 'DEL': imprecise_del = pd.concat([imprecise_del , data.iloc[[i]]]) print('ins',imprecise_ins) print('del',imprecise_del) print('all',imprecise) # deimprecise.to_csv(out_dir,index=None) return def filterImprecise(file_name,out_dir): data = pd.read_csv(file_name) deimprecise_ins = pd.DataFrame(columns=data.columns) deimprecise_del = pd.DataFrame(columns=data.columns) deimprecise = pd.DataFrame(columns=data.columns) process_count = 0; process_path = data.shape[0]/100 for i in range(data.shape[0]): if i >= process_path * process_count: process_bar(process_count+1) process_count = process_count + 1 sv_type =svType(data.iloc[[i]]) if 'IMPRECISE' not in data['INFO'].iloc[i]: deimprecise = pd.concat([deimprecise, data.iloc[[i]]]) if sv_type == 'INS': deimprecise_ins =
pd.concat([deimprecise_ins, data.iloc[[i]]])
pandas.concat
## # Many of my features are taken from or inspired by public kernels. The # following is a probably incomplete list of these kernels: # - https://www.kaggle.com/ggeo79/j-coupling-lightbgm-gpu-dihedral-angle for # the idea to use dihedral angles on 3J couplings. # - https://www.kaggle.com/titericz/giba-r-data-table-simple-features-1-17-lb # mostly for distance features. # - https://www.kaggle.com/kmat2019/effective-feature provides the idea to # compute cosine angles between scalar coupling atoms and their nearest # neighbors. # - https://www.kaggle.com/seriousran/just-speed-up-calculate-distance-from-benchmark # for an efficient distance calculation between scalar coupling atoms. # # Running this script will give some warnings related to the # 'explicit valance..' rdkit error. The problem is dicussed here # https://www.kaggle.com/c/champs-scalar-coupling/discussion/94274#latest-572435 # I hadn't gotten around to implementing the proper solutions discussed there. import gc import numpy as np import pandas as pd from itertools import combinations from glob import glob import deepchem as dc from rdkit.Chem import rdmolops, ChemicalFeatures from xyz2mol import read_xyz_file, xyz2mol from utils import print_progress import constants as C #mol_feat_columns = ['ave_bond_length', 'std_bond_length', 'ave_atom_weight'] xyz_filepath_list = os.listdir(C.RAW_DATA_PATH + 'structures') xyz_filepath_list.sort() ## Functions to create the RDKit mol objects def mol_from_xyz(filepath, add_hs=True, compute_dist_centre=False): """Wrapper function for calling xyz2mol function.""" charged_fragments = True # alternatively radicals are made # quick is faster for large systems but requires networkx # if you don't want to install networkx set quick=False and # uncomment 'import networkx as nx' at the top of the file quick = True atomicNumList, charge, xyz_coordinates = read_xyz_file(filepath) mol, dMat = xyz2mol(atomicNumList, charge, xyz_coordinates, charged_fragments, quick, check_chiral_stereo=False) return mol, np.array(xyz_coordinates), dMat def get_molecules(): """ Constructs rdkit mol objects derrived from the .xyz files. Also returns: - mol ids (unique numerical ids) - set of molecule level features - arrays of xyz coordinates - euclidean distance matrices - graph distance matrices. All objects are returned in dictionaries with 'mol_name' as keys. """ mols, mol_ids, mol_feats = {}, {}, {} xyzs, dist_matrices, graph_dist_matrices = {}, {}, {} print('Create molecules and distance matrices.') for i in range(C.N_MOLS): print_progress(i, C.N_MOLS) filepath = xyz_filepath_list[i] mol_name = filepath.split('/')[-1][:-4] mol, xyz, dist_matrix = mol_from_xyz(filepath) mols[mol_name] = mol xyzs[mol_name] = xyz dist_matrices[mol_name] = dist_matrix mol_ids[mol_name] = i # make padded graph distance matrix dataframes n_atoms = len(xyz) graph_dist_matrix = pd.DataFrame(np.pad( rdmolops.GetDistanceMatrix(mol), [(0, 0), (0, C.MAX_N_ATOMS - n_atoms)], 'constant' )) graph_dist_matrix['molecule_id'] = n_atoms * [i] graph_dist_matrices[mol_name] = graph_dist_matrix # compute molecule level features adj_matrix = rdmolops.GetAdjacencyMatrix(mol) atomic_num_list, _, _ = read_xyz_file(filepath) dists = dist_matrix.ravel()[np.tril(adj_matrix).ravel()==1] mol_feats[mol_name] = pd.Series( [np.mean(dists), np.std(dists), np.mean(atomic_num_list)], index=mol_feat_columns ) return mols, mol_ids, mol_feats, xyzs, dist_matrices, graph_dist_matrices ## Functions to create features at the scalar coupling level. def map_atom_info(df, atom_idx, struct_df): """Adds xyz-coordinates of atom_{atom_idx} to 'df'.""" df = pd.merge(df, struct_df, how = 'left', left_on = ['molecule_name', f'atom_index_{atom_idx}'], right_on = ['molecule_name', 'atom_index']) df = df.drop('atom_index', axis=1) df = df.rename(columns={'atom': f'atom_{atom_idx}', 'x': f'x_{atom_idx}', 'y': f'y_{atom_idx}', 'z': f'z_{atom_idx}'}) return df def add_dist(df, struct_df): """Adds euclidean distance between scalar coupling atoms to 'df'.""" df = map_atom_info(df, 0, struct_df) df = map_atom_info(df, 1, struct_df) p_0 = df[['x_0', 'y_0', 'z_0']].values p_1 = df[['x_1', 'y_1', 'z_1']].values df['dist'] = np.linalg.norm(p_0 - p_1, axis=1) df.drop(columns=['x_0', 'y_0', 'z_0', 'x_1', 'y_1', 'z_1'], inplace=True) return df def transform_per_atom_group(df, a_idx, col='dist', trans='mean'): """Apply transformation 'trans' on feature in 'col' to scalar coupling constants grouped at the atom level.""" return df.groupby( ['molecule_name', f'atom_index_{a_idx}'])[col].transform(trans) def inv_dist_per_atom(df, a_idx, d_col='dist', power=3): """Compute sum of inverse distances of scalar coupling constants grouped at the atom level.""" trans = lambda x: 1 / sum(x ** -power) return transform_per_atom_group(df, a_idx, d_col, trans=trans) def inv_dist_harmonic_mean(df, postfix=''): """Compute the harmonic mean of inverse distances of atom_0 and atom_1.""" c0, c1 = 'inv_dist0' + postfix, 'inv_dist1' + postfix return (df[c0] * df[c1]) / (df[c0] + df[c1]) def add_atom_counts(df, struct_df): """Add atom counts (total and per type) to 'df'.""" pd.options.mode.chained_assignment = None atoms_per_mol_df = struct_df.groupby(['molecule_name', 'atom']).count() atoms_per_mol_map = atoms_per_mol_df['atom_index'].unstack().fillna(0) atoms_per_mol_map = atoms_per_mol_map.astype(int).to_dict() df['num_atoms'] = 0 for a in atoms_per_mol_map: df[f'num_{a}_atoms'] = df['molecule_name'].map(atoms_per_mol_map[a]) df['num_atoms'] += df[f'num_{a}_atoms'] return df # source: https://stackoverflow.com/questions/20305272/dihedral-torsion-angle-from-four-points-in-cartesian-coordinates-in-python def dihedral(p): """Praxeolitic formula: 1 sqrt, 1 cross product""" p0 = p[0] p1 = p[1] p2 = p[2] p3 = p[3] b0 = -1.0*(p1 - p0) b1 = p2 - p1 b2 = p3 - p2 # normalize b1 so that it does not influence magnitude of vector # rejections that come next b1 /= np.linalg.norm(b1) # vector rejections v = b0 - np.dot(b0, b1)*b1 w = b2 - np.dot(b2, b1)*b1 # angle between v and w in a plane is the torsion angle # v and w may not be normalized but that's fine since tan is y/x x = np.dot(v, w) y = np.dot(np.cross(b1, v), w) return np.arctan2(y, x) def cosine_angle(p): p0, p1, p2 = p[0], p[1], p[2] v1, v2 = p0 - p1, p2 - p1 return np.dot(v1, v2) / np.sqrt(np.dot(v1, v1) * np.dot(v2, v2)) def add_sc_angle_features(df, xyzs, dist_matrices): """ Adds the following angle features to 'df': - diangle: for 3J couplings - cos_angle: for 2J couplings, angle between sc atom 0, atom in between sc atoms and sc atom 1 - cos_angle0: for all coupling types, cos angle between sc atoms and atom closest to atom 0 (except for 1J coupling) - cos_angle1: for all coupling types, cos angle between sc atoms and atom closest to atom 1 """ df['diangle'] = 0.0 df['cos_angle'] = 0.0 df['cos_angle0'] = 0.0 df['cos_angle1'] = 0.0 diangles, cos_angles, cos_angles0, cos_angles1 = {}, {}, {}, {} print('Add scalar coupling angle based features.') n = len(df) for i, (idx, row) in enumerate(df.iterrows()): print_progress(i, n, 500000) mol_name = row['molecule_name'] mol, xyz = mols[mol_name], xyzs[mol_name] dist_matrix = dist_matrices[mol_name] adj_matrix = rdmolops.GetAdjacencyMatrix(mol) idx0, idx1 = row['atom_index_0'], row['atom_index_1'] atom_ids = rdmolops.GetShortestPath(mol, idx0, idx1) if len(atom_ids)==4: diangles[idx] = dihedral(xyz[atom_ids,:]) elif len(atom_ids)==3: cos_angles[idx] = cosine_angle(xyz[atom_ids,:]) if row['type'] not in [0, 2]: neighbors0 = np.where(adj_matrix[idx0]==1)[0] if len(neighbors0) > 0: idx0_closest = neighbors0[ dist_matrix[idx0][neighbors0].argmin()] cos_angles0[idx] = cosine_angle( xyz[[idx0_closest, idx0, idx1],:]) neighbors1 = np.setdiff1d(np.where(adj_matrix[idx1]==1)[0], [idx0]) if len(neighbors1) > 0: idx1_closest = neighbors1[ dist_matrix[idx1][neighbors1].argmin()] cos_angles1[idx] = cosine_angle( xyz[[idx0, idx1, idx1_closest],:]) df['diangle'] = pd.Series(diangles).abs() df['cos_angle'] = pd.Series(cos_angles) df['cos_angle0'] = pd.Series(cos_angles0) df['cos_angle1'] = pd.Series(cos_angles1) df.fillna(0., inplace=True) return df def add_sc_features(df, structures_df, mol_feats, xyzs, dist_matrices, mol_ids): """Add scalar coupling edge and molecule level features to 'df'.""" # add euclidean distance between scalar coupling atoms df = add_dist(df, structures_df) # compute distance normalized by scalar coupling type mean and std gb_type_dist = df.groupby('type')['dist'] df['normed_dist'] = ((df['dist'] - gb_type_dist.transform('mean')) / gb_type_dist.transform('std')) # add distance features adjusted for atom radii and electronegativity df['R0'] = df['atom_0'].map(C.ATOMIC_RADIUS) df['R1'] = df['atom_1'].map(C.ATOMIC_RADIUS) df['E0'] = df['atom_0'].map(C.ELECTRO_NEG) df['E1'] = df['atom_1'].map(C.ELECTRO_NEG) df['dist_min_rad'] = df['dist'] - df['R0'] - df['R1'] df['dist_electro_neg_adj'] = df['dist'] * (df['E0'] + df['E1']) / 2 df.drop(columns=['R0','R1','E0','E1'], inplace=True) # map scalar coupling types to integers and add dummy variables df['type'] = df['type'].map(C.TYPES_MAP) df = pd.concat((df, pd.get_dummies(df['type'], prefix='type')), axis=1) # add angle related features df = add_sc_angle_features(df, xyzs, dist_matrices) # add molecule level features mol_feat_df = pd.concat(mol_feats, axis=1).T mol_feat_dict = mol_feat_df.to_dict() for f in mol_feat_columns: df[f] = df['molecule_name'].map(mol_feat_dict[f]) # add atom counts per molecule df = add_atom_counts(df, structures_df) # add molecule ids df['molecule_id'] = df['molecule_name'].map(mol_ids) return df def store_train_and_test(all_df): """Split 'all_df' back to train and test and store the resulting dfs.""" train_df = all_df.iloc[:C.N_SC_TRAIN] test_df = all_df.iloc[C.N_SC_TRAIN:] train_df.drop(columns='molecule_name', inplace=True) test_df.drop(columns='molecule_name', inplace=True) test_df.drop(columns='scalar_coupling_constant', inplace=True) # Add scalar coupling contributions to train and normalize contribs_df = pd.read_csv( C.RAW_DATA_PATH + 'scalar_coupling_contributions.csv') train_df = pd.concat((train_df, contribs_df[C.CONTRIB_COLS]), axis=1) train_df[[C.TARGET_COL, 'fc']] = \ (train_df[[C.TARGET_COL, 'fc']] - C.SC_MEAN) / C.SC_STD train_df[C.CONTRIB_COLS[1:]] = train_df[C.CONTRIB_COLS[1:]] / C.SC_STD train_df.to_csv(C.PROC_DATA_PATH + 'train_proc_df.csv') test_df.to_csv(C.PROC_DATA_PATH + 'test_proc_df.csv') ## Functions to create atom and bond level features def one_hot_encoding(x, set): one_hot = [int(x == s) for s in set] return one_hot def get_bond_features(mol, eucl_dist): """ Compute the following features for each bond in 'mol': - bond type: categorical {1: single, 2: double, 3: triple, 4: aromatic} (one-hot) - is conjugated: bool {0, 1} - is in ring: bool {0, 1} - euclidean distance: float - normalized eucl distance: float """ n_bonds = mol.GetNumBonds() features = np.zeros((n_bonds, C.N_BOND_FEATURES)) bond_idx = np.zeros((n_bonds, 2)) for n, e in enumerate(mol.GetBonds()): i = e.GetBeginAtomIdx() j = e.GetEndAtomIdx() dc_e_feats = dc.feat.graph_features.bond_features(e).astype(int) features[n, :6] = dc_e_feats features[n, 6] = eucl_dist[i, j] bond_idx[n] = i, j sorted_idx = bond_idx[:,0].argsort() dists = features[:, 6] features[:, 7] = (dists - dists.mean()) / dists.std() # normed_dist return features[sorted_idx], bond_idx[sorted_idx] def get_atom_features(mol, dist_matrix): """ Compute the following features for each atom in 'mol': - atom type: H, C, N, O, F (one-hot) - degree: 1, 2, 3, 4, 5 (one-hot) - Hybridization: SP, SP2, SP3, UNSPECIFIED (one-hot) - is aromatic: bool {0, 1} - formal charge: int - atomic number: float - average bond length: float - average weight of neigboring atoms: float - donor: bool {0, 1} - acceptor: bool {0, 1} """ n_atoms = mol.GetNumAtoms() features = np.zeros((n_atoms, C.N_ATOM_FEATURES)) adj_matrix = rdmolops.GetAdjacencyMatrix(mol) for a in mol.GetAtoms(): idx = a.GetIdx() if sum(adj_matrix[idx]) > 0: ave_bond_length = np.mean(dist_matrix[idx][adj_matrix[idx]==1]) ave_neighbor_wt = np.mean( [n.GetAtomicNum() for n in a.GetNeighbors()]) else: ave_bond_length, ave_neighbor_wt = 0.0, 0.0 sym = a.GetSymbol() a_feats = one_hot_encoding(sym, C.SYMBOLS) \ + one_hot_encoding(a.GetDegree(), C.DEGREES) \ + one_hot_encoding(a.GetHybridization(), C.HYBRIDIZATIONS) \ + [a.GetIsAromatic(), a.GetFormalCharge(), a.GetAtomicNum(), ave_bond_length, ave_neighbor_wt] features[idx, :len(a_feats)] = np.array(a_feats) feat_factory = ChemicalFeatures.BuildFeatureFactory(C.FDEF) try: chem_feats = feat_factory.GetFeaturesForMol(mol) for t in range(len(chem_feats)): if chem_feats[t].GetFamily() == 'Donor': for i in chem_feats[t].GetAtomIds(): features[i, -2] = 1 elif chem_feats[t].GetFamily() == 'Acceptor': for i in chem_feats[t].GetAtomIds(): features[i, -1] = 1 except RuntimeError as e: print(e) return features def get_atom_and_bond_features(mols, mol_ids, dist_matrices): atom_features, bond_features = [], [] bond_idx, atom_to_m_id, bond_to_m_id = [], [], [] print('Get atom and bond features.') for it, m_name in enumerate(mols): print_progress(it, C.N_MOLS) m_id, mol = mol_ids[m_name], mols[m_name] dist_matrix = dist_matrices[m_name] n_atoms, n_bonds = mol.GetNumAtoms(), mol.GetNumBonds() atom_features.append(get_atom_features(mol, dist_matrix)) e_feats, b_idx = get_bond_features(mol, dist_matrix) bond_features.append(e_feats) bond_idx.append(b_idx) atom_to_m_id.append(np.repeat(m_id, n_atoms)) bond_to_m_id.append(np.repeat(m_id, n_bonds)) atom_features = pd.DataFrame( np.concatenate(atom_features), columns=C.ATOM_FEATS) bond_features = pd.DataFrame( np.concatenate(bond_features), columns=C.BOND_FEATS) bond_idx = np.concatenate(bond_idx) bond_features['idx_0'] = bond_idx[:,0] bond_features['idx_1'] = bond_idx[:,1] atom_features['molecule_id'] = np.concatenate(atom_to_m_id) bond_features['molecule_id'] = np.concatenate(bond_to_m_id) return atom_features, bond_features def store_atom_and_bond_features(atom_df, bond_df): atom_df.to_csv(C.PROC_DATA_PATH + 'atom_df.csv') bond_df.to_csv(C.PROC_DATA_PATH + 'bond_df.csv') ## Functions to store distance matrices def store_graph_distances(graph_dist_matrices): graph_dist_df = pd.concat(graph_dist_matrices) graph_dist_df.reset_index(drop=True, inplace=True) graph_dist_df.replace(1e8, 10, inplace=True) # fix for one erroneous atom graph_dist_df = graph_dist_df.astype(int) graph_dist_df.to_csv(C.PROC_DATA_PATH + 'graph_dist_df.csv') def store_eucl_distances(dist_matrices, atom_df): dist_df = pd.DataFrame(np.concatenate( [np.pad(dm, [(0,0), (0, C.MAX_N_ATOMS-dm.shape[1])], mode='constant') for dm in dist_matrices.values()] )) dist_df['molecule_id'] = atom_df['molecule_id'] dist_df.to_csv(C.PROC_DATA_PATH + 'dist_df.csv') ## Functions to compute cosine angles for all bonds def _get_combinations(idx_0_group): s = list(idx_0_group['idx_1'])[1:] return [list(combinations(s, r))[-1] for r in range(len(s), 0, -1)] def get_all_cosine_angles(bond_df, structures_df, mol_ids, store=True): """Compute cosine angles between all bonds. Grouped at the bond level.""" bond_idx = bond_df[['molecule_id', 'idx_0', 'idx_1']].astype(int) in_out_idx = pd.concat(( bond_idx, bond_idx.rename(columns={'idx_0': 'idx_1', 'idx_1': 'idx_0'}) ), sort=False) gb_mol_0_bond_idx = in_out_idx.groupby(['molecule_id', 'idx_0']) angle_idxs = [] print('Get cosine angle indices.') for it, (mol_id, idx_0) in enumerate(gb_mol_0_bond_idx.groups): # iterate over all atoms (atom_{idx0}) print_progress(it, gb_mol_0_bond_idx.ngroups, print_iter=500000) idx_0_group = gb_mol_0_bond_idx.get_group((mol_id, idx_0)) combs = _get_combinations(idx_0_group) for i, comb in enumerate(combs): # iterate over all bonds of the atom_{idx0} (bond_{idx_0, idx_1}) idx_1 = idx_0_group['idx_1'].iloc[i] for idx_2 in comb: # iterate over all angles between bonds with bond_{idx_0, idx_1} # as base angle_idxs.append((mol_id, idx_0, idx_1, idx_2)) angle_cols = ['molecule_id', 'atom_index_0', 'atom_index_1', 'atom_index_2'] angle_df = pd.DataFrame(angle_idxs, columns=angle_cols) angle_df['molecule_name'] = angle_df['molecule_id'].map( {v:k for k,v in mol_ids.items()}) angle_df.drop(columns='molecule_id', inplace=True) for i in range(3): angle_df = map_atom_info(angle_df, i, structures_df) drop_cols = ['atom_0', 'atom_1', 'atom_2', 'molecule_id_x', 'molecule_id_y'] angle_df.drop(columns=drop_cols, inplace=True) for c in ['x', 'y', 'z']: angle_df[f'{c}_0_1'] = \ angle_df[f'{c}_0'].values - angle_df[f'{c}_1'].values angle_df[f'{c}_0_2'] = \ angle_df[f'{c}_0'].values - angle_df[f'{c}_2'].values def cos_angles(v1, v2): return (v1 * v2).sum(1) / np.sqrt((v1 ** 2).sum(1) * (v2 ** 2).sum(1)) angle_df['cos_angle'] = cos_angles( angle_df[['x_0_1', 'y_0_1', 'z_0_1']].values, angle_df[['x_0_2', 'y_0_2', 'z_0_2']].values ) angle_df = angle_df[['molecule_id', 'atom_index_0', 'atom_index_1', 'atom_index_2', 'cos_angle']] gb_mol_angle = angle_df.groupby('molecule_id') gb_mol_bond_idx = bond_idx.groupby('molecule_id') angle_to_in_bond, angle_to_out_bond = [], [] print('Get cosine angles.') for i, mol_id in enumerate(mol_ids.values()): print_progress(i, C.N_MOLS) b_df = gb_mol_bond_idx.get_group(mol_id) a_df = gb_mol_angle.get_group(mol_id) b_in_idxs = b_df[['idx_0', 'idx_1']].values b_out_idxs = b_df[['idx_1', 'idx_0']].values a1 = a_df[['atom_index_0', 'atom_index_1', 'cos_angle']].values a2 = a_df[['atom_index_0', 'atom_index_2', 'cos_angle']].values for a in np.concatenate((a1, a2)): if any(np.all(b_in_idxs==a[:2], axis=1)): a_to_in_idx = np.where(np.all(b_in_idxs==a[:2], axis=1))[0][0] angle_to_in_bond.append((mol_id, a_to_in_idx, a[-1])) if any(np.all(b_out_idxs==a[:2], axis=1)): a_to_out_idx = np.where(np.all(b_out_idxs==a[:2], axis=1))[0][0] angle_to_out_bond.append((mol_id, a_to_out_idx, a[-1])) angle_in_df = pd.DataFrame( angle_to_in_bond, columns=['molecule_id', 'b_idx', 'cos_angle']) angle_out_df = pd.DataFrame( angle_to_out_bond, columns=['molecule_id', 'b_idx', 'cos_angle']) if store: store_angles(angle_in_df, angle_out_df) return angle_in_df, angle_out_df def store_angles(angle_in_df, angle_out_df): angle_in_df.to_csv(C.PROC_DATA_PATH + 'angle_in_df.csv') angle_out_df.to_csv(C.PROC_DATA_PATH + 'angle_out_df.csv') def process_and_store_structures(structures_df, mol_ids): structures_df['molecule_id'] = structures_df['molecule_name'].map(mol_ids) structures_df.to_csv(C.PROC_DATA_PATH + 'structures_proc_df.csv') return structures_df def _clear_memory(var_strs): for var_str in var_strs: del globals()[var_str] gc.collect() if __name__=='__main__': # import data train_df = pd.read_csv(C.RAW_DATA_PATH + 'train.csv', index_col=0) test_df = pd.read_csv(C.RAW_DATA_PATH + 'test.csv', index_col=0) structures_df =
pd.read_csv(C.RAW_DATA_PATH + 'structures.csv')
pandas.read_csv
import numpy as np import pandas as pd from . import util as DataUtil from . import cols as DataCol """ The main data loader. TODO: population & common special dates """ class DataCenter: def __init__(self): self.__kabko = None self.__dates_global = pd.DataFrame([], columns=DataCol.DATES_GLOBAL) self.__dates_local = pd.DataFrame([], columns=DataCol.DATES_LOCAL) self.__date_names_global = np.array([]) self.__date_names_local = np.array([]) self.__population_global = None self.__covid_local = None self.raw_global = None self.data_global = None def load_covid_local( self, df, kabko_col="kabko", date_col="date", rename_cols={ "infected": DataCol.I, "infectious": DataCol.I, "recovered": DataCol.R, "dead": DataCol.D }, drop_cols=["infected_total"], drop_first_col=False, exclude_kabkos=[ "AWAK BUAH KAPAL", "RS LAPANGAN INDRAPURA" ] ): df = df.copy() labels = [DataCol.I, DataCol.R, DataCol.D] df.loc[:, date_col] = pd.to_datetime(df[date_col]) drop_cols = [df.columns[0], *drop_cols] if drop_first_col else drop_cols df.drop(columns=drop_cols, axis=1, inplace=True) df.drop(df.index[df[kabko_col].isin(exclude_kabkos)], inplace=True) rename_cols = { kabko_col: DataCol.KABKO, date_col: DataCol.DATE, **rename_cols } df.rename(columns=rename_cols, inplace=True) df.loc[:, labels] = df[labels].astype(DataUtil.DEFAULT_DTYPE) self.__covid_local = df self.__kabko = df[kabko_col].unique() return self.__covid_local @property def kabko(self): if self.__kabko is None: if self.__covid_local is None: raise Exception("Please set/load covid data first") self.load_covid_local(self.__covid_local) return self.__kabko @property def covid_local(self): return self.__covid_local def load_vaccine( self, df, date_col="date", labels_orig=[ "people_vaccinated", "people_fully_vaccinated" ] ): if labels_orig: df = df[[date_col, *labels_orig]] df = df.copy() df.loc[:, date_col] = pd.to_datetime(df[date_col]) rename_cols = { date_col: DataCol.DATE, **dict(zip(labels_orig, [ DataCol.VAC_PEOPLE, DataCol.VAC_FULL ])) } df.rename(columns=rename_cols, inplace=True) df.set_index(DataCol.DATE, inplace=True) self.__vaccine = df return self.__vaccine @property def vaccine(self): return self.__vaccine def load_test( self, df, date_col="Date", label_orig="Cumulative total" ): if label_orig: df = df[[date_col, label_orig]] df = df.copy() df.loc[:, date_col] = pd.to_datetime(df[date_col]) rename_cols = { date_col: DataCol.DATE, label_orig: DataCol.TEST } df.rename(columns=rename_cols, inplace=True) df.set_index(DataCol.DATE, inplace=True) self.__test = df return self.__test @property def test(self): return self.__test def load_covid_global( self, df, date_col="date", label_orig="total_cases" ): if label_orig: df = df[[date_col, label_orig]] df = df.copy() df.loc[:, date_col] = pd.to_datetime(df[date_col]) rename_cols = { date_col: DataCol.DATE, label_orig: DataCol.I_TOT_GLOBAL } df.rename(columns=rename_cols, inplace=True) df.set_index(DataCol.DATE, inplace=True) self.__covid_global = df return self.__covid_global @property def covid_global(self): return self.__covid_global def load_dates( self, df, name=None, name_col="name", start_col="start", end_col="end", val_col="value" ): if name is None and DataCol.NAME not in df.columns and name_col not in df.columns: raise Exception("Provide name argument if dataframe doesn't have name column") if name is not None and (DataCol.NAME in df.columns or name_col in df.columns): raise Exception("Dataframe already has name column but name argument was given") df = DataUtil.prepare_dates( df, name_col=name_col, start_col=start_col, end_col=end_col, val_col=val_col ) if name is not None and DataCol.NAME not in df.columns: df[DataCol.NAME] = pd.Series(np.array(len(df) * [name]), dtype=str) if DataCol.KABKO not in df.columns: df = df[DataCol.DATES_GLOBAL] self.__dates_global = pd.concat([self.__dates_global, df]) self.__date_names_global = self.__dates_global[DataCol.NAME].unique() else: df = df[DataCol.DATES_LOCAL] self.__dates_local = pd.concat([self.__dates_local, df]) self.__date_names_local= self.__dates_local[DataCol.NAME].unique() self.__date_names = np.unique(np.concatenate([self.__date_names_global, self.__date_names_local])) return df @property def dates_global(self): return self.__dates_global @property def dates_local(self): return self.__dates_local @property def date_names_global(self): return self.__date_names_global @property def date_names_local(self): return self.__date_names_local @property def date_names(self): return self.__date_names def get_covid_kabko( self, kabko ): covid = self.covid_local.loc[ self.covid_local[DataCol.KABKO] == kabko, [ DataCol.DATE, *DataCol.IRD ] ].copy() # del covid["kabko"] covid.set_index(DataCol.DATE, inplace=True) covid.sort_index(ascending=True, inplace=True) return covid def get_dates_kabko( self, kabko ): dates = pd.concat([ self.dates_global.copy(), self.dates_local[self.dates_local[DataCol.KABKO] == kabko][DataCol.DATES_GLOBAL] ]) return dates def load_population( self, df, kabko_col="kabko", label_orig="semua" ): if label_orig: df = df[[kabko_col, label_orig]] df = df.copy() rename_cols = { kabko_col: DataCol.KABKO, label_orig: DataCol.N } df.rename(columns=rename_cols, inplace=True) self.__population = df self.__population_global = self.get_population_kabko("INDONESIA") return self.__population @property def population(self): return self.__population @property def population_global(self): return self.__population_global def get_population_kabko( self, kabko ): return self.population[self.population[DataCol.KABKO] == kabko][DataCol.N].values[0] def set_global_ts( self, vaccine, test, covid_global ): self.__vaccine = vaccine self.__test = test self.__covid_global = covid_global # Full of defaults # For custom, DIY def load_excel( self, path, ): self.load_covid_global(pd.read_excel(path, sheet_name="covid_indo")) self.load_covid_local(pd.read_excel(path, sheet_name="covid_jatim")) self.load_vaccine(
pd.read_excel(path, sheet_name="vaccine")
pandas.read_excel
from django.shortcuts import render from django.contrib import messages from .models import iabgInputForm from .custom_apps.intersight_rest import intersight_get from .custom_apps.as_built import create_word_doc_paragraph, create_word_doc_table, create_word_doc_title import pandas as pd import os from .forms import iabgForm # Create your views here. def index(request): return render(request,'is_abg/index.html') def charts(request): return render(request,'is_abg/charts.html') def broken(request): return render(request,'is_abg/broke.html') def ua(request): return render(request,'is_abg/utilities-animation.html') def ub(request): return render(request,'is_abg/utilities-border.html') def uo(request): return render(request,'is_abg/utilities-other.html') def uc(request): return render(request,'is_abg/utilities-color.html') def buttons(request): return render(request,'is_abg/buttons.html') def cards(request): return render(request,'is_abg/cards.html') def tables(request): return render(request,'is_abg/tables.html') def abg(request): # if this is a POST request we need to process the form data if request.method == 'POST': # create a form instance and populate it with data from the request: form = iabgForm(request.POST) # check whether it's valid: if form.is_valid(): for i in iabgInputForm.objects.all(): i.delete() post = form.save(commit=False) post.save() for i in iabgInputForm.objects.all(): blade_server = intersight_get(resource_path='/compute/Blades', private_key=i.private_api_key, public_key=i.public_api_key) compute_summary = intersight_get( resource_path='/compute/PhysicalSummaries', private_key=i.private_api_key, public_key=i.public_api_key, query_params={ "$select": "AvailableMemory,CpuCapacity,Dn,Firmware,Model,Name,OperPowerState,OperState" }) rack_server = intersight_get(resource_path='/compute/RackUnits', private_key=i.private_api_key, public_key=i.public_api_key) physical_ports = intersight_get( resource_path='/ether/PhysicalPorts', private_key=i.private_api_key, public_key=i.public_api_key, query_params={ "$filter": "OperState eq 'up'", "$orderby": "Dn", "$select": "AggregatePortId,Mode,Dn,OperSpeed,OperState,PeerDn,TransceiverType" }) fc_ports = intersight_get(resource_path='/fc/PhysicalPorts', private_key=i.private_api_key, public_key=i.public_api_key, query_params={ "$filter": "OperState eq 'up'", "$orderby": "Dn", "$select": "PortChannelId,OperSpeed,Dn,Mode,OperState,Wwn" }) firmware_running = intersight_get(resource_path='/firmware/RunningFirmwares', private_key=i.private_api_key, public_key=i.public_api_key, query_params={ "$orderby": "Type", "$select": "Dn,Type,Version,PackageVersion,ObjectType,Component"}) hyperflex_cluster = intersight_get(resource_path='/hyperflex/Clusters', private_key=i.private_api_key, public_key=i.public_api_key, query_params={ "$select": "Summary"}) hyperflex_node = intersight_get(resource_path='/hyperflex/Nodes', private_key=i.private_api_key, public_key=i.public_api_key, query_params={ "$select": "DisplayVersion,HostName,Ip,ModelNumber,Role,SerialNumber,Status,Version"}) hyperflex_health = intersight_get(resource_path='/hyperflex/Healths', private_key=i.private_api_key, public_key=i.public_api_key, query_params={"$select": "ResiliencyDetails"}) service_profile = intersight_get(resource_path='/ls/ServiceProfiles', private_key=i.private_api_key, public_key=i.public_api_key, query_params={"$filter": "AssignState eq 'assigned'", "$orderby": "OperState"}) management_address = intersight_get(resource_path='/management/Interfaces', private_key=i.private_api_key, public_key=i.public_api_key, query_params={"$select": "Dn,Ipv4Address,Ipv4Mask,Ipv4Gateway,MacAddress"}) if firmware_running == None: return render(request, 'is_abg/broke.html') management_df = pd.DataFrame.from_dict(management_address['Results']) management_df = management_df.drop(columns=['ClassId', 'Moid', 'ObjectType']) service_profile_df = pd.DataFrame.from_dict(service_profile['Results']) service_profile_df = service_profile_df.drop(columns=['ClassId', 'Moid', 'ObjectType', 'Owners', 'DeviceMoId', 'DomainGroupMoid','CreateTime','PermissionResources', 'RegisteredDevice', 'Rn', 'SharedScope', 'Tags', 'ModTime', 'AccountMoid']) hyperflex_health_df = pd.DataFrame.from_dict(hyperflex_health['Results']) hyperflex_node_df = pd.DataFrame.from_dict(hyperflex_node['Results']) hyperflex_node_df = hyperflex_node_df.drop(columns=['ClassId', 'Moid', 'ObjectType']) firmware_running_df = pd.DataFrame.from_dict(firmware_running['Results']) firmware_running_df = firmware_running_df.drop(columns=['ClassId', 'Moid', 'ObjectType']) fc_ports_df =
pd.DataFrame.from_dict(fc_ports['Results'])
pandas.DataFrame.from_dict
import requests import json import pandas as pd import os.path from warnings import warn from bs4 import BeautifulSoup from openpyxl import load_workbook from openpyxl.styles import PatternFill import seaborn as sns class SessionWithUrlBase(requests.Session): """ from https://github.com/quintel/third-party/blob/master/Python_ETM_API/ETM_API.py Helper class to store the base url. This allows us to only type the relevant additional information. from: https://stackoverflow.com/questions/42601812/python-requests-url-base-in-session """ def __init__(self, url_base=None, *args, **kwargs): super(SessionWithUrlBase, self).__init__(*args, **kwargs) if url_base is None: url_base = "https://engine.energytransitionmodel.com/api/v3" self.url_base = url_base def request(self, method, url, **kwargs): modified_url = self.url_base + url return super(SessionWithUrlBase, self).request(method, modified_url, **kwargs) class ETMapi: def __init__( self, area_code="nl", scenario_id=None, end_year=2050, source="api-WB", url_base=None, ): self.session = SessionWithUrlBase(url_base=url_base) self.source = source self.area_code = area_code self.end_year = end_year self.browse_url = "https://pro.energytransitionmodel.com/scenarios/" self.headers = { "Content-Type": "application/json", } self.verbose = True self.debug = False self.user_values = dict() # some default metrics to query self.gqueries = [ "dashboard_reduction_of_co2_emissions_versus_1990", "dashboard_renewability", "dashboard_energy_import_netto", ] self.scenario_id = scenario_id @property def scenario_id(self): return self._scenario_id @scenario_id.setter def scenario_id(self, value): self._scenario_id = self.id_extractor(value) def get_title(self, scenario_id): if scenario_id is not None: r = self.session.get(f"/scenarios/{scenario_id}/") if r.status_code != 200: raise ValueError("Response not 200") di = json.loads(r.content) title = di["title"] else: title = "" return title def create_new_scenario(self, title, use_custom_values=False): """ POST-method to create a scenario in ETM using ETM v3 API. Converts non-strings to strings. Pushes the setup as json in correct format voor ETM v3 API. arguments: area_code (optional, one of the existing area codes (use etm.area_codes() to obtain)) title (title of scenario) end_year (interger end year) source (paper trail, recommended to use) scenario_id (refference scenario) verbose (false turns off all print and warn) returns: requests response object """ scenario_setup = { "scenario": { "area_code": str(self.area_code), "title": str(title), "end_year": str(self.end_year), "source": str(self.source), "scenario_id": None, } } url = "/scenarios/" r = self.session.post(url, json=scenario_setup, headers=self.headers) if r.status_code == 200: api_url = json.loads(r.content)["url"] self.scenario_id = api_url.split("/")[-1] self.browse_url += self.scenario_id if use_custom_values: p = self._change_inputs() if not p.status_code == 200: raise ValueError(f"Response not succesful: {p.json()['errors']}") if self.verbose: print() print("Browsable URL to scenario:") print(self.browse_url) if not r.status_code == 200: raise ValueError(f"Response not succesful: {r.status_code}") if self.debug: return r else: pass def _change_inputs(self): """ Change inputs to ETM bases on self.user_values. """ input_data = { "scenario": {"user_values": self.user_values}, "detailed": True, "gqueries": self.gqueries, } url = "/scenarios/" p = self.session.put( url + self.scenario_id, json=input_data, headers=self.headers ) # update metrics self.metrics = pd.DataFrame.from_dict(p.json()["gqueries"], orient="index") return p def update_inputs(self, debug=False): """Basicly ._change_inputs but does not return p out of debug""" p = self._change_inputs() if debug: return p else: pass def get_areas(self, filepath=None, refresh=False, save_csv=True): """ Use ETM v3 API to request all areas and from that extract only the area codes, to use in other ETM v3 API reuqests. arguments: filepath: specify location to save to / read from (default: /etm_ref/) refresh: specify true to force refresh, checks for existing file on path location to prevent errors from trying to load non-existing files save_cvs: caches the api response to a csv to speed up the process if called again. returns set with areas (as atribute) (saves csv to save requests and allow browsing of codes) """ if filepath is None: filepath = "etm_ref/areacodes.csv" if refresh or not os.path.isfile(filepath): url = "/areas/" r = self.session.get(url) r_list = json.loads(r.content) self.areas_raw = r_list # create a set to refer to if needed (drops dupes & sorts) areas = set([item["area"] for item in r_list if item["useable"]]) df = pd.DataFrame(r_list) if save_csv: df.to_csv(filepath) else: df = pd.read_csv(filepath, index_col=0) areas = set(df["area"]) self.areas = areas return areas def get_area_settings(area_code): """ Gets the area settings based on the area code. argument: area_code (as defined by ETM) returns: requests response object """ request_url = ( f"https://engine.energytransitionmodel.com/api/v3/areas/{area_code}" ) response = requests.get(request_url) return response def generate_input_worksheet( self, filepath=None, scenario_list=None, prettify=False ): if scenario_list is None: scenario_list = [self.scenario_id] if filepath is None: filepath = "latest_generated_worksheet.xlsx" if self.scenario_id is not None: filepath = f"latest_generated_worksheet_{self.scenario_id}.xlsx" # load in front-end variables based on scraped contents ref = pd.read_csv("etm_ref/clean_scraped_inputs.csv", index_col=0) # take only what we are interested in df = ref[["key", "group", "subgroup", "translated_name", "unit"]].copy() df.columns = ["key", "Section", "Subsection", "Slider name", "Unit"] for sid in scenario_list: self.scenario_id = sid # use setter col_name = self.title + f" ({self.scenario_id})" df.loc[:, col_name] =
pd.Series(dtype="float64")
pandas.Series
#General import streamlit as st import pandas as pd import math #Models from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegressionCV from sklearn.svm import LinearSVC #Preprocessing from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline #Metrics from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score,recall_score,precision_score from tempfile import NamedTemporaryFile import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from sklearn.tree import plot_tree import base64 from sklearn.metrics import plot_confusion_matrix from fpdf import FPDF #SESSION STATE INITIALIZATION if "light" not in st.session_state: st.session_state.light = "red" if "warning" not in st.session_state: st.session_state.warning = "Undefined Error" if "model" not in st.session_state: st.session_state.model= "To_be_selected" if 'page' not in st.session_state: st.session_state.page = 0 if "selected_var" not in st.session_state: st.session_state.selected_var=[] if "df" not in st.session_state: st.session_state.df= 0 if "model_type" not in st.session_state: st.session_state.model_type="To_be_selected" ################################################## #IMPORT CSS #with open('style.css') as f: #st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) #################################################### #Train-test Split by date #Assumes the column Target to exist def train_test_by_var(X,y,var): df= pd.concat([X,y],axis=1) df.sort_values(by=var,inplace=True) y = df["Target"] X= df.drop(["Target"],axis=1) train_instances= int(math.modf((X.shape[0]/100)*80)[1]) return X.iloc[0:train_instances,:], X.iloc[train_instances: ,:] , y[0:train_instances], y[train_instances :] if Metrics_explanation: st.write("**Accuracy**") ############################################################## #Application def app(): #Progress bar st.markdown( """ <style> .stProgress > div > div > div > div { background-image: linear-gradient(to right, #5b61f9 , #5b61f9); } </style>""", unsafe_allow_html=True, ) my_bar = st.progress(100) #Title and description st.markdown('<h1 style="color: #5b61f9;">Model results</h1>', unsafe_allow_html=True) st.write('Those are the performances of your Model.') #Metrics_explanation = st.button("Find More about Metrics") st.write("**Accuracy**" +": " + "Percentage of well classified rows.") st.write("**Precision**" +": " + "Probability that an object predicted to be true is actually true.") st.write("**Recall**" +": " + "Measure of how many true elements were detected.") # Import dataframe from session state, adding month for sort the data and check if it is already there to solve strange bug to_keep= st.session_state.selected_var if "Month" not in to_keep: to_keep.append("Month") df= st.session_state.df[to_keep] #Divided Target and Predictors X=df.drop(["Target"],axis=1) y= df["Target"] #identify numeric and not numeric categorical_var= X.select_dtypes(exclude='number').columns.tolist()# include other datatypes numerical_var= X.select_dtypes(include="number").columns.tolist() if "Month" in categorical_var: categorical_var.remove("Month") if "Month" in categorical_var: numerical_var.remove("Month") # Top 9 classes + "other" for el in X[categorical_var].columns: if len(list(X[categorical_var][el].value_counts())) > 10: a = list(X[categorical_var][el].value_counts()[:10].index.tolist()) X[el][X[categorical_var][el].isin(a) == False] = "Other" #Select the model to be used- Here you can change/add/delete models models={ "Perceptron": MLPClassifier(solver='adam', alpha=1e-5), "SVM": LinearSVC(), "Ensemble": GradientBoostingClassifier(), "Logistic Regression": LogisticRegressionCV(), "Simple Tree": DecisionTreeClassifier(), "Random Forest": RandomForestClassifier() } model= models[st.session_state.model] #Pipeline creation #1) Steps numerical_steps=[("Imputer_num",SimpleImputer(strategy="mean"))] categorical_steps=[("Impupter_cat",SimpleImputer(strategy= "most_frequent")),("Encoder",OneHotEncoder(sparse=False))] #2) Pipes numerical_pipe= Pipeline(numerical_steps) categorical_pipe= Pipeline(categorical_steps) #3) Transformer transformer= ColumnTransformer([("Numerical Transformation",numerical_pipe,numerical_var), ("Categorical Transformation",categorical_pipe,categorical_var)], remainder="passthrough") Final_Pipe= Pipeline([("Transformer",transformer),("Model",model)]) #Splitting data #X_train, X_test, y_train, y_test = train_test_split(X, y) X_train, X_test, y_train, y_test= train_test_by_var(X,y,"Month") X_train,X_test = X_train.drop(["Month"],axis=1), X_test.drop(["Month"],axis=1) #Fitting model Final_Pipe.fit(X_train, y_train) predictions = Final_Pipe.predict(X_test) ####################################################### #START REPORT ######################################################## #General Metrics st.markdown('<h2 style="color: #5B61F9;">Metrics</h2>', unsafe_allow_html=True) col1, col2, col3 = st.columns(3) col1.metric("Accuracy", str(accuracy_score(y_test,predictions))[:4]) col2.metric("Precision", str(precision_score(y_test, predictions))[:4]) col3.metric("Recall", str(recall_score(y_test, predictions))[:4]) st.markdown('<h2 style="color: #5B61F9;">Confusion Matrix</h2>', unsafe_allow_html=True) a = plot_confusion_matrix(Final_Pipe, X_test, y_test,cmap="Purples") st.pyplot(a.figure_) figs=[] figs.append(a.figure_) #Trees specific metrics: if st.session_state.model=="Random Forest" or st.session_state.model=="Simple Tree": st.markdown('<h2 style="color: #5B61F9;">Features Importance</h2>', unsafe_allow_html=True) df1 = pd.get_dummies(X_train) feature_importance = (Final_Pipe[1].feature_importances_) forest_importances =
pd.Series(feature_importance, index=df1.columns)
pandas.Series
# Licensed to Elasticsearch B.V under one or more agreements. # Elasticsearch B.V licenses this file to you under the Apache 2.0 License. # See the LICENSE file in the project root for more information import warnings import numpy as np import pandas as pd from pandas.core.dtypes.common import ( is_float_dtype, is_bool_dtype, is_integer_dtype, is_datetime_or_timedelta_dtype, is_string_dtype, ) from pandas.core.dtypes.inference import is_list_like from typing import NamedTuple, Optional class Field(NamedTuple): """Holds all information on a particular field in the mapping""" index: str es_field_name: str is_source: bool es_dtype: str es_date_format: Optional[str] pd_dtype: type is_searchable: bool is_aggregatable: bool is_scripted: bool aggregatable_es_field_name: str @property def is_numeric(self) -> bool: return is_integer_dtype(self.pd_dtype) or is_float_dtype(self.pd_dtype) @property def is_timestamp(self) -> bool: return is_datetime_or_timedelta_dtype(self.pd_dtype) @property def is_bool(self) -> bool: return
is_bool_dtype(self.pd_dtype)
pandas.core.dtypes.common.is_bool_dtype
#!/usr/bin/env python """Simple check of a csv file against the ledger file Just to make sure nothing slipped through. It might have a high false-positive rate, since it only compares some absolute numbers without checking any additional info, but I think this could be good enough to make sure that I do not forget any major expense :) Do this once every 4 weeks! """ import subprocess from io import StringIO import argparse import pandas as pd parser = argparse.ArgumentParser() parser.add_argument("file", help="CSV file to check against the default ledger file") parser.add_argument("--verbose", "-v", action="store_true", help="More output") args = parser.parse_args() VERBOSE = args.verbose csv_file = args.file # 1. Read the CSV into a pd.DataFrame df = pd.read_csv( csv_file, skiprows=12, skipfooter=2, skip_blank_lines=True, encoding="ISO-8859-1", delimiter=";", decimal=",", thousands=".", dtype=dict(Buchungstag=str, Valuta=str), engine="python", ) df.Buchungstag = pd.to_datetime(df.Buchungstag, format="%d%m%Y") df.Valuta = pd.to_datetime(df.Valuta, format="%d%m%Y") df["SollHaben"] = df[" "] df["signed-amount"] = [ u * (1 if s == "H" else -1) for u, s in zip(df["Umsatz"], df["SollHaben"]) ] df["ledger-string"] = [f"{a:.2f}€" for a in df["signed-amount"]] if not VERBOSE: df.drop( [ "Konto-Nr.", "BLZ", "Valuta", "Kundenreferenz", " ", "IBAN", "BIC", "Währung", "ledger-string", "Umsatz", "SollHaben", ], axis=1, inplace=True, ) # Check if for each entry there is a corresponding ledger entry for row in df[::-1].iterrows(): date = row[1].Buchungstag query = [ "ledger", "csv", "--begin", (date -
pd.Timedelta(days=4)
pandas.Timedelta
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti = date_range("20130101", periods=3, tz=tz_naive_fixture) dta = dti.array result = dta - dti expected = dti - dti tm.assert_index_equal(result, expected) tdi = result result = dta + tdi expected = dti + tdi tm.assert_index_equal(result, expected) result = dta - tdi expected = dti - tdi tm.assert_index_equal(result, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range("20130101", periods=3) dti_tz = date_range("20130101", periods=3).tz_localize("US/Eastern") dti_tz2 = date_range("20130101", periods=3).tz_localize("UTC") expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) msg = "DatetimeArray subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dti_tz - dti with pytest.raises(TypeError, match=msg): dti - dti_tz with pytest.raises(TypeError, match=msg): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range("20130101", periods=3) dti2 = date_range("20130101", periods=4) msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]) dti2 = DatetimeIndex(["2012-01-02", "2012-01-03", np.nan]) expected = TimedeltaIndex(["1 days", np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) # ------------------------------------------------------------------- # TODO: Most of this block is moved from series or frame tests, needs # cleanup, box-parametrization, and de-duplication @pytest.mark.parametrize("op", [operator.add, operator.sub]) def test_timedelta64_equal_timedelta_supported_ops(self, op, box_with_array): ser = Series( [ Timestamp("20130301"), Timestamp("20130228 23:00:00"), Timestamp("20130228 22:00:00"), Timestamp("20130228 21:00:00"), ] ) obj = box_with_array(ser) intervals = ["D", "h", "m", "s", "us"] def timedelta64(*args): # see casting notes in NumPy gh-12927 return np.sum(list(starmap(np.timedelta64, zip(args, intervals)))) for d, h, m, s, us in product(*([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(obj, nptd) rhs = op(obj, pytd) tm.assert_equal(lhs, rhs) def test_ops_nat_mixed_datetime64_timedelta64(self): # GH#11349 timedelta_series = Series([NaT, Timedelta("1s")]) datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") # subtraction tm.assert_series_equal( datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta ) tm.assert_series_equal( datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp ) tm.assert_series_equal( -single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp ) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta, ) tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( -single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) msg = "cannot subtract a datelike" with pytest.raises(TypeError, match=msg): timedelta_series - single_nat_dtype_datetime # addition tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp, ) def test_ufunc_coercions(self): idx = date_range("2011-01-01", periods=3, freq="2D", name="x") delta = np.timedelta64(1, "D") exp = date_range("2011-01-02", periods=3, freq="2D", name="x") for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" exp = date_range("2010-12-31", periods=3, freq="2D", name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" # When adding/subtracting an ndarray (which has no .freq), the result # does not infer freq idx = idx._with_freq(None) delta = np.array( [np.timedelta64(1, "D"), np.timedelta64(2, "D"), np.timedelta64(3, "D")] ) exp = DatetimeIndex(["2011-01-02", "2011-01-05", "2011-01-08"], name="x") for result in [idx + delta, np.add(idx, delta)]: tm.assert_index_equal(result, exp) assert result.freq == exp.freq exp = DatetimeIndex(["2010-12-31", "2011-01-01", "2011-01-02"], name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == exp.freq def test_dti_add_series(self, tz_naive_fixture, names): # GH#13905 tz = tz_naive_fixture index = DatetimeIndex( ["2016-06-28 05:30", "2016-06-28 05:31"], tz=tz, name=names[0] ) ser = Series([Timedelta(seconds=5)] * 2, index=index, name=names[1]) expected = Series(index + Timedelta(seconds=5), index=index, name=names[2]) # passing name arg isn't enough when names[2] is None expected.name = names[2] assert expected.dtype == index.dtype result = ser + index tm.assert_series_equal(result, expected) result2 = index + ser tm.assert_series_equal(result2, expected) expected = index + Timedelta(seconds=5) result3 = ser.values + index tm.assert_index_equal(result3, expected) result4 = index + ser.values
tm.assert_index_equal(result4, expected)
pandas._testing.assert_index_equal
#!/usr/bin/env python # coding: utf-8 # systems tools import os import shutil import sys import time import sys import signal import random # multiprocess import threading import psutil #format import string import json #sqlite import sqlite3 #args import argparse #maths import numpy as np #FIFO from collections import deque #plot import pandas as pd import seaborn as sns from IPython.display import display import matplotlib #aux lib import statsTools #initialization: args + sqlite connection def init(): #parsing arguments parser = argparse.ArgumentParser(description='plot graphs with the data processed in a json file.') parser.add_argument('--dir', default="./results", help='directory to parse (one directory per experiment)') args = parser.parse_args() print("DIR:{0}".format(args.dir)) return(args) #plot the figures for cexample stats def cexample_plot(flowStats_pd): #Panda values (separating anycast and unicast) print("-- Cexample flows") #flowStats_pd = flowStats_pd[flowStats_pd['nbmotes'] < 200].reset_index() #common sns config sns.set_theme(style="ticks") #PDR plot = sns.violinplot(x='nbmotes', y='pdr', hue='sixtop_anycast',cut=0, legend_out=True, data=flowStats_pd) plot.legend(handles=plot.legend_.legendHandles, labels=['without anycast', 'with anycast']) plot.set_xlabel("Number of motes") plot.set_ylabel("Packet Delivery Ratio") #plot.set(yscale="log") #plot.set(ylim=(1e-2,1)) plot.set(ylim=(0,1)) plot.figure.savefig("plots/cexample_pdr.pdf") plot.set_xticks(np.arange(50, 100, 10)) plot.figure.clf() #PDR plot = sns.violinplot(x='nbmotes', y='delay_ms', hue='sixtop_anycast',cut=0,data=flowStats_pd) plot.legend(handles=plot.legend_.legendHandles, labels=['without anycast', 'with anycast']) plot.set_xlabel("Number of motes") plot.set_ylabel("Delay (in ms)") plot.figure.savefig("plots/cexample_delay.pdf") plot.figure.clf() #Efficiency plot = sns.violinplot(x='nbmotes', y='nb_l2tx_raw', hue='sixtop_anycast',cut=0,data=flowStats_pd) plot.legend(handles=plot.legend_.legendHandles, labels=['without anycast', 'with anycast']) plot.set_xlabel("Number of motes") plot.set_ylabel("Number of transmissions per message") plot.figure.savefig("plots/cexample_nb_l2tx.pdf") plot.figure.clf() print("") print("") #plot the figures for cexample stats def l2tx_plot(l2txStats_pd): #Panda values (separating anycast and unicast) print("-- l2txStats statistics") print(l2txStats_pd) #common sns config sns.set_theme(style="ticks") #PDR for acks vs. data packets plot = sns.scatterplot(x='PDRData', y='PDRAck', data=l2txStats_pd) plot.set_xlabel("Packet Delivery Ratio (data)") plot.set_ylabel("Packet Delivery Ratio (ack)") plot.figure.savefig("plots/l2tx_pdr_bidirect.pdf") plot.figure.clf() #hidden receiver problem secondaryrx_pd = l2txStats_pd[(l2txStats_pd['priority_rx'] == 1)]; plot = sns.scatterplot(x='PDRData', y='RatioHiddenRx', data=secondaryrx_pd) plot.set_xlabel("Packet Delivery Ratio (data)") plot.set_ylabel("Ratio of False Negatives") plot.set(yscale="log") plot.set(ylim=(1e-3,1)) plot.figure.savefig("plots/l2tx_hidden_receiver_falseneg.pdf") plot.figure.clf() #CCA / SFD identification vs. link PDR plot = sns.scatterplot(x='PDRData', y='intrpt_RatioCCA', data=secondaryrx_pd) display(secondaryrx_pd) plot.set_xlabel("Packet Delivery Ratio (data)") plot.set_ylabel("Ratio CCA / Start of Frame interruptions") plot.set(ylim=(0,1)) plot.figure.savefig("plots/l2tx_ratioCCA-SFD_PDR.pdf") plot.figure.clf() #CCAratio vs. hidden receivers plot = sns.scatterplot(x='RatioHiddenRx', y='intrpt_RatioCCA', data=secondaryrx_pd) display(secondaryrx_pd) plot.set_xlabel("Ratio of false negatives ACK detection (hidden receivers)") plot.set_ylabel("Ratio CCA / Start of Frame interruptions") plot.set(ylim=(0,1)) plot.figure.savefig("plots/l2tx_ratioCCA-SFD_hiddenrx.pdf") plot.figure.clf() print("") print("") if __name__ == "__main__": #no type 3 font matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 #parameters args = init() #init flowStats = None l2txStats = None #prepare the stats for pandas for experiment in os.listdir(args.dir): json_filename = os.path.join(args.dir, experiment, "stats.json") if os.path.isfile(json_filename) is True: print(json_filename) with open(json_filename) as json_file: datafile = json.load(json_file) #organizes the stats for cexample flowStats = statsTools.cexample_compute_agg(experiment, datafile, flowStats) #compute the stats for l2tx l2txStats = statsTools.l2tx_compute(datafile, l2txStats) cex_packets_pd = pd.DataFrame.from_dict(datafile['cex_packets']) for index, row in cex_packets_pd[(cex_packets_pd['cex_src'] == '054332ff03d88982')].iterrows(): print("seqnum {}".format(row['seqnum'])) display(row['l2_transmissions']) #plot the figures for cexample flowStats_pd = pd.DataFrame.from_dict(flowStats) display(flowStats_pd) #cexample_plot(flowStats_pd) #plot the figures for link stats l2txStats_pd =
pd.DataFrame.from_dict(l2txStats)
pandas.DataFrame.from_dict
''' Note at bottom ''' # Listing all the imports import cv2 import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import time import imutils import math # pipeline is the module which has all the below functions written import pipeline as ppl # image height and image width ----> GLOBAL img_ht = 512 img_wd = 512 path_toCollect = './test_images' path_toSave = './prc_test_images' train_data = pd.read_csv('sample_submission.csv') newDataframe_cols = ['id_code','diagnosis'] trained_data =
pd.DataFrame(columns=newDataframe_cols)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import collections import unittest import warnings import pandas as pd import numpy as np from qiime2 import Artifact from qiime2.metadata import (Metadata, CategoricalMetadataColumn, NumericMetadataColumn) from qiime2.core.testing.util import get_dummy_plugin, ReallyEqualMixin class TestInvalidMetadataConstruction(unittest.TestCase): def test_non_dataframe(self): with self.assertRaisesRegex( TypeError, 'Metadata constructor.*DataFrame.*not.*Series'): Metadata(pd.Series([1, 2, 3], name='col', index=pd.Index(['a', 'b', 'c'], name='id'))) def test_no_ids(self): with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({}, index=pd.Index([], name='id'))) with self.assertRaisesRegex(ValueError, 'Metadata.*at least one ID'): Metadata(pd.DataFrame({'column': []}, index=pd.Index([], name='id'))) def test_invalid_id_header(self): # default index name with self.assertRaisesRegex(ValueError, r'Index\.name.*None'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c']))) with self.assertRaisesRegex(ValueError, r'Index\.name.*my-id-header'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name='my-id-header'))) def test_non_str_id(self): with self.assertRaisesRegex( TypeError, 'non-string metadata ID.*type.*float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', np.nan, 'c'], name='id'))) def test_non_str_column_name(self): with self.assertRaisesRegex( TypeError, 'non-string metadata column name.*type.*' 'float.*nan'): Metadata(pd.DataFrame( {'col': [1, 2, 3], np.nan: [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_empty_id(self): with self.assertRaisesRegex( ValueError, 'empty metadata ID.*at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '', 'c'], name='id'))) def test_empty_column_name(self): with self.assertRaisesRegex( ValueError, 'empty metadata column name.*' 'at least one character'): Metadata(pd.DataFrame( {'col': [1, 2, 3], '': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_pound_sign_id(self): with self.assertRaisesRegex( ValueError, "metadata ID.*begins with a pound sign.*'#b'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', '#b', 'c'], name='id'))) def test_id_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata ID 'sample-id'.*conflicts.*reserved.*" "ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'sample-id', 'c'], name='id'))) def test_column_name_conflicts_with_id_header(self): with self.assertRaisesRegex( ValueError, "metadata column name 'featureid'.*conflicts.*" "reserved.*ID header"): Metadata(pd.DataFrame( {'col': [1, 2, 3], 'featureid': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_duplicate_ids(self): with self.assertRaisesRegex(ValueError, "Metadata IDs.*unique.*'a'"): Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'a'], name='id'))) def test_duplicate_column_names(self): data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] with self.assertRaisesRegex(ValueError, "Metadata column names.*unique.*'col1'"): Metadata(pd.DataFrame(data, columns=['col1', 'col2', 'col1'], index=pd.Index(['a', 'b', 'c'], name='id'))) def test_unsupported_column_dtype(self): with self.assertRaisesRegex( TypeError, "Metadata column 'col2'.*unsupported.*dtype.*bool"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [True, False, True]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_unsupported_type(self): with self.assertRaisesRegex( TypeError, "CategoricalMetadataColumn.*strings or missing " r"values.*42\.5.*float.*'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 42.5]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_categorical_column_empty_str(self): with self.assertRaisesRegex( ValueError, "CategoricalMetadataColumn.*empty strings.*" "column 'col2'"): Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', '', 'bar']}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_numeric_column_infinity(self): with self.assertRaisesRegex( ValueError, "NumericMetadataColumn.*positive or negative " "infinity.*column 'col2'"): Metadata(pd.DataFrame( {'col1': ['foo', 'bar', 'baz'], 'col2': [42, float('+inf'), 4.3]}, index=pd.Index(['a', 'b', 'c'], name='id'))) class TestMetadataConstructionAndProperties(unittest.TestCase): def assertEqualColumns(self, obs_columns, exp): obs = [(name, props.type) for name, props in obs_columns.items()] self.assertEqual(obs, exp) def test_minimal(self): md = Metadata(pd.DataFrame({}, index=pd.Index(['a'], name='id'))) self.assertEqual(md.id_count, 1) self.assertEqual(md.column_count, 0) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('a',)) self.assertEqualColumns(md.columns, []) def test_single_id(self): index = pd.Index(['id1'], name='id') df = pd.DataFrame({'col1': [1.0], 'col2': ['a'], 'col3': ['foo']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 1) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1',)) self.assertEqualColumns(md.columns, [('col1', 'numeric'), ('col2', 'categorical'), ('col3', 'categorical')]) def test_no_columns(self): index = pd.Index(['id1', 'id2', 'foo'], name='id') df = pd.DataFrame({}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 0) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'foo')) self.assertEqualColumns(md.columns, []) def test_single_column(self): index = pd.Index(['id1', 'a', 'my-id'], name='id') df = pd.DataFrame({'column': ['foo', 'bar', 'baz']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 1) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'a', 'my-id')) self.assertEqualColumns(md.columns, [('column', 'categorical')]) def test_retains_column_order(self): # Supply DataFrame constructor with explicit column ordering instead of # a dict. index = pd.Index(['id1', 'id2', 'id3'], name='id') columns = ['z', 'a', 'ch'] data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'], [3.0, 'c', '42'] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'id3')) self.assertEqualColumns(md.columns, [('z', 'numeric'), ('a', 'categorical'), ('ch', 'categorical')]) def test_supported_id_headers(self): case_insensitive = { 'id', 'sampleid', 'sample id', 'sample-id', 'featureid', 'feature id', 'feature-id' } exact_match = { '#SampleID', '#Sample ID', '#OTUID', '#OTU ID', 'sample_name' } # Build a set of supported headers, including exact matches and headers # with different casing. headers = set() for header in case_insensitive: headers.add(header) headers.add(header.upper()) headers.add(header.title()) for header in exact_match: headers.add(header) count = 0 for header in headers: index = pd.Index(['id1', 'id2'], name=header) df = pd.DataFrame({'column': ['foo', 'bar']}, index=index) md = Metadata(df) self.assertEqual(md.id_header, header) count += 1 # Since this test case is a little complicated, make sure that the # expected number of comparisons are happening. self.assertEqual(count, 26) def test_recommended_ids(self): index = pd.Index(['c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'], name='id') df = pd.DataFrame({'col1': ['foo', 'bar']}, index=index) md = Metadata(df) self.assertEqual(md.id_count, 2) self.assertEqual(md.column_count, 1) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID')) self.assertEqualColumns(md.columns, [('col1', 'categorical')]) def test_non_standard_characters(self): index = pd.Index(['©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5'], name='id') columns = ['↩c@l1™', 'col(#2)', "#col'3", '"<col_4>"', 'col\t \r\n5'] data = [ ['ƒoo', '(foo)', '#f o #o', 'fo\ro', np.nan], ["''2''", 'b#r', 'ba\nr', np.nan, np.nan], ['b"ar', 'c\td', '4\r\n2', np.nan, np.nan], ['b__a_z', '<42>', '>42', np.nan, np.nan], ['baz', np.nan, '42'] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) self.assertEqual(md.id_count, 5) self.assertEqual(md.column_count, 5) self.assertEqual(md.id_header, 'id') self.assertEqual( md.ids, ('©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5')) self.assertEqualColumns(md.columns, [('↩c@l1™', 'categorical'), ('col(#2)', 'categorical'), ("#col'3", 'categorical'), ('"<col_4>"', 'categorical'), ('col\t \r\n5', 'numeric')]) def test_missing_data(self): index = pd.Index(['None', 'nan', 'NA', 'foo'], name='id') df = pd.DataFrame(collections.OrderedDict([ ('col1', [1.0, np.nan, np.nan, np.nan]), ('NA', [np.nan, np.nan, np.nan, np.nan]), ('col3', ['null', 'N/A', np.nan, 'NA']), ('col4', np.array([np.nan, np.nan, np.nan, np.nan], dtype=object))]), index=index) md = Metadata(df) self.assertEqual(md.id_count, 4) self.assertEqual(md.column_count, 4) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('None', 'nan', 'NA', 'foo')) self.assertEqualColumns(md.columns, [('col1', 'numeric'), ('NA', 'numeric'), ('col3', 'categorical'), ('col4', 'categorical')]) def test_does_not_cast_ids_or_column_names(self): index = pd.Index(['0.000001', '0.004000', '0.000000'], dtype=object, name='id') columns = ['42.0', '1000', '-4.2'] data = [ [2.0, 'b', 2.5], [1.0, 'b', 4.2], [3.0, 'c', -9.999] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 3) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('0.000001', '0.004000', '0.000000')) self.assertEqualColumns(md.columns, [('42.0', 'numeric'), ('1000', 'categorical'), ('-4.2', 'numeric')]) def test_mixed_column_types(self): md = Metadata( pd.DataFrame({'col0': [1.0, 2.0, 3.0], 'col1': ['a', 'b', 'c'], 'col2': ['foo', 'bar', '42'], 'col3': ['1.0', '2.5', '-4.002'], 'col4': [1, 2, 3], 'col5': [1, 2, 3.5], 'col6': [1e-4, -0.0002, np.nan], 'col7': ['cat', np.nan, 'dog'], 'col8': ['a', 'a', 'a'], 'col9': [0, 0, 0]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertEqual(md.id_count, 3) self.assertEqual(md.column_count, 10) self.assertEqual(md.id_header, 'id') self.assertEqual(md.ids, ('id1', 'id2', 'id3')) self.assertEqualColumns(md.columns, [('col0', 'numeric'), ('col1', 'categorical'), ('col2', 'categorical'), ('col3', 'categorical'), ('col4', 'numeric'), ('col5', 'numeric'), ('col6', 'numeric'), ('col7', 'categorical'), ('col8', 'categorical'), ('col9', 'numeric')]) def test_case_insensitive_duplicate_ids(self): index = pd.Index(['a', 'b', 'A'], name='id') df = pd.DataFrame({'column': ['1', '2', '3']}, index=index) metadata = Metadata(df) self.assertEqual(metadata.ids, ('a', 'b', 'A')) def test_case_insensitive_duplicate_column_names(self): index = pd.Index(['a', 'b', 'c'], name='id') df = pd.DataFrame({'column': ['1', '2', '3'], 'Column': ['4', '5', '6']}, index=index) metadata = Metadata(df) self.assertEqual(set(metadata.columns), {'column', 'Column'}) def test_categorical_column_leading_trailing_whitespace_value(self): md1 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', ' bar ', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) self.assertEqual(md1, md2) def test_leading_trailing_whitespace_id(self): md1 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [4, 5, 6]}, index=pd.Index(['a', ' b ', 'c'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) self.assertEqual(md1, md2) def test_leading_trailing_whitespace_column_name(self): md1 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], ' col2 ': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': [4, 5, 6]}, index=pd.Index(['a', 'b', 'c'], name='id'))) self.assertEqual(md1, md2) class TestSourceArtifacts(unittest.TestCase): def setUp(self): self.md = Metadata(pd.DataFrame( {'col': [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'], name='id'))) def test_no_source_artifacts(self): self.assertEqual(self.md.artifacts, ()) def test_add_zero_artifacts(self): self.md._add_artifacts([]) self.assertEqual(self.md.artifacts, ()) def test_add_artifacts(self): # First two artifacts have the same data but different UUIDs. artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) self.md._add_artifacts([artifact1]) artifact2 = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) artifact3 = Artifact.import_data('IntSequence1', [1, 2, 3, 4]) self.md._add_artifacts([artifact2, artifact3]) self.assertEqual(self.md.artifacts, (artifact1, artifact2, artifact3)) def test_add_non_artifact(self): artifact = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) with self.assertRaisesRegex(TypeError, "Artifact object.*42"): self.md._add_artifacts([artifact, 42]) # Test that the object hasn't been mutated. self.assertEqual(self.md.artifacts, ()) def test_add_duplicate_artifact(self): artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) artifact2 = Artifact.import_data('IntSequence1', [1, 2, 3, 4]) self.md._add_artifacts([artifact1, artifact2]) with self.assertRaisesRegex( ValueError, "Duplicate source artifacts.*artifact: Mapping"): self.md._add_artifacts([artifact1]) # Test that the object hasn't been mutated. self.assertEqual(self.md.artifacts, (artifact1, artifact2)) class TestRepr(unittest.TestCase): def test_singular(self): md = Metadata(pd.DataFrame({'col1': [42]}, index=pd.Index(['a'], name='id'))) obs = repr(md) self.assertIn('Metadata', obs) self.assertIn('1 ID x 1 column', obs) self.assertIn("col1: ColumnProperties(type='numeric')", obs) def test_plural(self): md = Metadata(pd.DataFrame({'col1': [42, 42], 'col2': ['foo', 'bar']}, index=pd.Index(['a', 'b'], name='id'))) obs = repr(md) self.assertIn('Metadata', obs) self.assertIn('2 IDs x 2 columns', obs) self.assertIn("col1: ColumnProperties(type='numeric')", obs) self.assertIn("col2: ColumnProperties(type='categorical')", obs) def test_column_name_padding(self): data = [[0, 42, 'foo']] index = pd.Index(['my-id'], name='id') columns = ['col1', 'longer-column-name', 'c'] md = Metadata(pd.DataFrame(data, index=index, columns=columns)) obs = repr(md) self.assertIn('Metadata', obs) self.assertIn('1 ID x 3 columns', obs) self.assertIn( "col1: ColumnProperties(type='numeric')", obs) self.assertIn( "longer-column-name: ColumnProperties(type='numeric')", obs) self.assertIn( "c: ColumnProperties(type='categorical')", obs) class TestEqualityOperators(unittest.TestCase, ReallyEqualMixin): def setUp(self): get_dummy_plugin() def test_type_mismatch(self): md = Metadata( pd.DataFrame({'col1': [1.0, 2.0, 3.0], 'col2': ['a', 'b', 'c'], 'col3': ['foo', 'bar', '42']}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) mdc = md.get_column('col1') self.assertIsInstance(md, Metadata) self.assertIsInstance(mdc, NumericMetadataColumn) self.assertReallyNotEqual(md, mdc) def test_id_header_mismatch(self): data = {'col1': ['foo', 'bar'], 'col2': [42, 43]} md1 = Metadata(pd.DataFrame( data, index=pd.Index(['id1', 'id2'], name='id'))) md2 = Metadata(pd.DataFrame( data, index=pd.Index(['id1', 'id2'], name='ID'))) self.assertReallyNotEqual(md1, md2) def test_source_mismatch(self): # Metadata created from an artifact vs not shouldn't compare equal, # even if the data is the same. artifact = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) md_from_artifact = artifact.view(Metadata) md_no_artifact = Metadata(md_from_artifact.to_dataframe()) pd.testing.assert_frame_equal(md_from_artifact.to_dataframe(), md_no_artifact.to_dataframe()) self.assertReallyNotEqual(md_from_artifact, md_no_artifact) def test_artifact_mismatch(self): # Metadata created from different artifacts shouldn't compare equal, # even if the data is the same. artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) artifact2 = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) md1 = artifact1.view(Metadata) md2 = artifact2.view(Metadata) pd.testing.assert_frame_equal(md1.to_dataframe(), md2.to_dataframe()) self.assertReallyNotEqual(md1, md2) def test_id_mismatch(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['1'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_column_name_mismatch(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'c': '2'}, index=pd.Index(['0'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_column_type_mismatch(self): md1 = Metadata(pd.DataFrame({'col1': ['42', '43']}, index=pd.Index(['id1', 'id2'], name='id'))) md2 = Metadata(pd.DataFrame({'col1': [42, 43]}, index=pd.Index(['id1', 'id2'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_column_order_mismatch(self): index = pd.Index(['id1', 'id2'], name='id') md1 = Metadata(pd.DataFrame([[42, 'foo'], [43, 'bar']], index=index, columns=['z', 'a'])) md2 = Metadata(pd.DataFrame([['foo', 42], ['bar', 43]], index=index, columns=['a', 'z'])) self.assertReallyNotEqual(md1, md2) def test_data_mismatch(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '3'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'b': '2'}, index=pd.Index(['0'], name='id'))) self.assertReallyNotEqual(md1, md2) def test_equality_without_artifact(self): md1 = Metadata(pd.DataFrame({'a': '1', 'b': '3'}, index=pd.Index(['0'], name='id'))) md2 = Metadata(pd.DataFrame({'a': '1', 'b': '3'}, index=pd.Index(['0'], name='id'))) self.assertReallyEqual(md1, md2) def test_equality_with_artifact(self): artifact = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) md1 = artifact.view(Metadata) md2 = artifact.view(Metadata) self.assertReallyEqual(md1, md2) def test_equality_with_missing_data(self): md1 = Metadata(pd.DataFrame( {'col1': [1, np.nan, 4.2], 'col2': [np.nan, 'foo', np.nan]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'col1': [1, np.nan, 4.2], 'col2': [np.nan, 'foo', np.nan]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertReallyEqual(md1, md2) class TestToDataframe(unittest.TestCase): def test_minimal(self): df = pd.DataFrame({}, index=pd.Index(['id1'], name='id')) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) def test_id_header_preserved(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='#SampleID')) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) self.assertEqual(obs.index.name, '#SampleID') def test_dataframe_copy(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) self.assertIsNot(obs, df) def test_retains_column_order(self): index = pd.Index(['id1', 'id2'], name='id') columns = ['z', 'a', 'ch'] data = [ [1.0, 'a', 'foo'], [2.0, 'b', 'bar'] ] df = pd.DataFrame(data, index=index, columns=columns) md = Metadata(df) obs = md.to_dataframe() pd.testing.assert_frame_equal(obs, df) self.assertEqual(obs.columns.tolist(), ['z', 'a', 'ch']) def test_missing_data(self): # Different missing data representations should be normalized to np.nan index = pd.Index(['None', 'nan', 'NA', 'id1'], name='id') df = pd.DataFrame(collections.OrderedDict([ ('col1', [42.5, np.nan, float('nan'), 3]), ('NA', [np.nan, 'foo', float('nan'), None]), ('col3', ['null', 'N/A', np.nan, 'NA']), ('col4', np.array([np.nan, np.nan, np.nan, np.nan], dtype=object))]), index=index) md = Metadata(df) obs = md.to_dataframe() exp = pd.DataFrame(collections.OrderedDict([ ('col1', [42.5, np.nan, np.nan, 3.0]), ('NA', [np.nan, 'foo', np.nan, np.nan]), ('col3', ['null', 'N/A', np.nan, 'NA']), ('col4', np.array([np.nan, np.nan, np.nan, np.nan], dtype=object))]), index=index) pd.testing.assert_frame_equal(obs, exp) self.assertEqual(obs.dtypes.to_dict(), {'col1': np.float64, 'NA': object, 'col3': object, 'col4': object}) self.assertTrue(np.isnan(obs['col1']['NA'])) self.assertTrue(np.isnan(obs['NA']['NA'])) self.assertTrue(np.isnan(obs['NA']['id1'])) def test_dtype_int_normalized_to_dtype_float(self): index = pd.Index(['id1', 'id2', 'id3'], name='id') df = pd.DataFrame({'col1': [42, -43, 0], 'col2': [42.0, -43.0, 0.0], 'col3': [42, np.nan, 0]}, index=index) self.assertEqual(df.dtypes.to_dict(), {'col1': np.int64, 'col2': np.float64, 'col3': np.float64}) md = Metadata(df) obs = md.to_dataframe() exp = pd.DataFrame({'col1': [42.0, -43.0, 0.0], 'col2': [42.0, -43.0, 0.0], 'col3': [42.0, np.nan, 0.0]}, index=index) pd.testing.assert_frame_equal(obs, exp) self.assertEqual(obs.dtypes.to_dict(), {'col1': np.float64, 'col2': np.float64, 'col3': np.float64}) class TestGetColumn(unittest.TestCase): def setUp(self): get_dummy_plugin() def test_column_name_not_found(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) with self.assertRaisesRegex(ValueError, "'col3'.*not a column.*'col1', 'col2'"): md.get_column('col3') def test_artifacts_are_propagated(self): A = Artifact.import_data('Mapping', {'a': '1', 'b': '3'}) md = A.view(Metadata) obs = md.get_column('b') exp = CategoricalMetadataColumn( pd.Series(['3'], name='b', index=pd.Index(['0'], name='id'))) exp._add_artifacts([A]) self.assertEqual(obs, exp) self.assertEqual(obs.artifacts, (A,)) def test_categorical_column(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) obs = md.get_column('col2') exp = CategoricalMetadataColumn( pd.Series(['foo', 'bar'], name='col2', index=pd.Index(['id1', 'id2'], name='id'))) self.assertEqual(obs, exp) def test_numeric_column(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['id1', 'id2'], name='id')) md = Metadata(df) obs = md.get_column('col1') exp = NumericMetadataColumn( pd.Series([42, 2.5], name='col1', index=pd.Index(['id1', 'id2'], name='id'))) self.assertEqual(obs, exp) def test_id_header_preserved(self): df = pd.DataFrame({'col1': [42, 2.5], 'col2': ['foo', 'bar']}, index=pd.Index(['a', 'b'], name='#OTU ID')) md = Metadata(df) obs = md.get_column('col1') exp = NumericMetadataColumn( pd.Series([42, 2.5], name='col1', index=pd.Index(['a', 'b'], name='#OTU ID'))) self.assertEqual(obs, exp) self.assertEqual(obs.id_header, '#OTU ID') class TestGetIDs(unittest.TestCase): def test_default(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) actual = metadata.get_ids() expected = {'S1', 'S2', 'S3'} self.assertEqual(actual, expected) def test_incomplete_where(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='sampleid')) metadata = Metadata(df) where = "Subject='subject-1' AND SampleType=" with self.assertRaises(ValueError): metadata.get_ids(where) where = "Subject=" with self.assertRaises(ValueError): metadata.get_ids(where) def test_invalid_where(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='sampleid')) metadata = Metadata(df) where = "not-a-column-name='subject-1'" with self.assertRaises(ValueError): metadata.get_ids(where) def test_empty_result(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) where = "Subject='subject-3'" actual = metadata.get_ids(where) expected = set() self.assertEqual(actual, expected) def test_simple_expression(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) where = "Subject='subject-1'" actual = metadata.get_ids(where) expected = {'S1', 'S2'} self.assertEqual(actual, expected) where = "Subject='subject-2'" actual = metadata.get_ids(where) expected = {'S3'} self.assertEqual(actual, expected) where = "Subject='subject-3'" actual = metadata.get_ids(where) expected = set() self.assertEqual(actual, expected) where = "SampleType='gut'" actual = metadata.get_ids(where) expected = {'S1', 'S3'} self.assertEqual(actual, expected) where = "SampleType='tongue'" actual = metadata.get_ids(where) expected = {'S2'} self.assertEqual(actual, expected) def test_more_complex_expressions(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) where = "Subject='subject-1' OR Subject='subject-2'" actual = metadata.get_ids(where) expected = {'S1', 'S2', 'S3'} self.assertEqual(actual, expected) where = "Subject='subject-1' AND Subject='subject-2'" actual = metadata.get_ids(where) expected = set() self.assertEqual(actual, expected) where = "Subject='subject-1' AND SampleType='gut'" actual = metadata.get_ids(where) expected = {'S1'} self.assertEqual(actual, expected) def test_query_by_id(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'SampleType': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) actual = metadata.get_ids(where="id='S2' OR id='S1'") expected = {'S1', 'S2'} self.assertEqual(actual, expected) def test_query_by_alternate_id_header(self): metadata = Metadata(pd.DataFrame( {}, index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID'))) obs = metadata.get_ids(where="\"#OTU ID\" IN ('id2', 'id3')") exp = {'id2', 'id3'} self.assertEqual(obs, exp) def test_no_columns(self): metadata = Metadata( pd.DataFrame({}, index=pd.Index(['a', 'b', 'my-id'], name='id'))) obs = metadata.get_ids() exp = {'a', 'b', 'my-id'} self.assertEqual(obs, exp) def test_query_mixed_column_types(self): df = pd.DataFrame({'Name': ['Foo', 'Bar', 'Baz', 'Baaz'], # numbers that would sort incorrectly as strings 'Age': [9, 10, 11, 101], 'Age_Str': ['9', '10', '11', '101'], 'Weight': [80.5, 85.3, np.nan, 120.0]}, index=pd.Index(['S1', 'S2', 'S3', 'S4'], name='id')) metadata = Metadata(df) # string pattern matching obs = metadata.get_ids(where="Name LIKE 'Ba_'") exp = {'S2', 'S3'} self.assertEqual(obs, exp) # string comparison obs = metadata.get_ids(where="Age_Str >= 11") exp = {'S1', 'S3'} self.assertEqual(obs, exp) # numeric comparison obs = metadata.get_ids(where="Age >= 11") exp = {'S3', 'S4'} self.assertEqual(obs, exp) # numeric comparison with missing data obs = metadata.get_ids(where="Weight < 100") exp = {'S1', 'S2'} self.assertEqual(obs, exp) def test_column_with_space_in_name(self): df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'], 'Sample Type': ['gut', 'tongue', 'gut']}, index=pd.Index(['S1', 'S2', 'S3'], name='id')) metadata = Metadata(df) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') metadata.get_ids() # The list of captured warnings should be empty self.assertFalse(w) class TestMerge(unittest.TestCase): def setUp(self): get_dummy_plugin() def test_merging_nothing(self): md = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) with self.assertRaisesRegex(ValueError, 'At least one Metadata.*nothing to merge'): md.merge() def test_merging_two(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': [7, 8, 9], 'd': [10, 11, 12]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) obs = md1.merge(md2) exp = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'd': [10, 11, 12]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertEqual(obs, exp) def test_merging_three(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': [7, 8, 9], 'd': [10, 11, 12]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md3 = Metadata(pd.DataFrame( {'e': [13, 14, 15], 'f': [16, 17, 18]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) obs = md1.merge(md2, md3) exp = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'd': [10, 11, 12], 'e': [13, 14, 15], 'f': [16, 17, 18]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertEqual(obs, exp) def test_merging_unaligned_indices(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': [9, 8, 7], 'd': [12, 11, 10]}, index=pd.Index(['id3', 'id2', 'id1'], name='id'))) md3 = Metadata(pd.DataFrame( {'e': [13, 15, 14], 'f': [16, 18, 17]}, index=pd.Index(['id1', 'id3', 'id2'], name='id'))) obs = md1.merge(md2, md3) exp = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'd': [10, 11, 12], 'e': [13, 14, 15], 'f': [16, 17, 18]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) self.assertEqual(obs, exp) def test_inner_join(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': [7, 8, 9], 'd': [10, 11, 12]}, index=pd.Index(['id2', 'X', 'Y'], name='id'))) md3 = Metadata(pd.DataFrame( {'e': [13, 14, 15], 'f': [16, 17, 18]}, index=pd.Index(['X', 'id3', 'id2'], name='id'))) # Single shared ID. obs = md1.merge(md2, md3) exp = Metadata(pd.DataFrame( {'a': [2], 'b': [5], 'c': [7], 'd': [10], 'e': [15], 'f': [18]}, index=pd.Index(['id2'], name='id'))) self.assertEqual(obs, exp) # Multiple shared IDs. obs = md1.merge(md3) exp = Metadata(pd.DataFrame( {'a': [2, 3], 'b': [5, 6], 'e': [15, 14], 'f': [18, 17]}, index=pd.Index(['id2', 'id3'], name='id'))) self.assertEqual(obs, exp) def test_index_and_column_merge_order(self): md1 = Metadata(pd.DataFrame( [[1], [2], [3], [4]], index=pd.Index(['id1', 'id2', 'id3', 'id4'], name='id'), columns=['a'])) md2 = Metadata(pd.DataFrame( [[5], [6], [7]], index=pd.Index(['id4', 'id3', 'id1'], name='id'), columns=['b'])) md3 = Metadata(pd.DataFrame( [[8], [9], [10]], index=pd.Index(['id1', 'id4', 'id3'], name='id'), columns=['c'])) obs = md1.merge(md2, md3) exp = Metadata(pd.DataFrame( [[1, 7, 8], [3, 6, 10], [4, 5, 9]], index=pd.Index(['id1', 'id3', 'id4'], name='id'), columns=['a', 'b', 'c'])) self.assertEqual(obs, exp) # Merging in different order produces different ID/column order. obs = md2.merge(md1, md3) exp = Metadata(pd.DataFrame( [[5, 4, 9], [6, 3, 10], [7, 1, 8]], index=pd.Index(['id4', 'id3', 'id1'], name='id'), columns=['b', 'a', 'c'])) self.assertEqual(obs, exp) def test_id_column_only(self): md1 = Metadata(pd.DataFrame({}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame({}, index=pd.Index(['id2', 'X', 'id1'], name='id'))) md3 = Metadata(pd.DataFrame({}, index=pd.Index(['id1', 'id3', 'id2'], name='id'))) obs = md1.merge(md2, md3) exp = Metadata( pd.DataFrame({}, index=pd.Index(['id1', 'id2'], name='id'))) self.assertEqual(obs, exp) def test_merged_id_column_name(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2]}, index=pd.Index(['id1', 'id2'], name='sample ID'))) md2 = Metadata(pd.DataFrame( {'b': [3, 4]}, index=pd.Index(['id1', 'id2'], name='feature ID'))) obs = md1.merge(md2) exp = Metadata(pd.DataFrame( {'a': [1, 2], 'b': [3, 4]}, index=pd.Index(['id1', 'id2'], name='id'))) self.assertEqual(obs, exp) def test_merging_preserves_column_types(self): # Test that column types remain the same even if a categorical column # *could* be reinterpreted as numeric after the merge. md1 = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [np.nan, np.nan, np.nan]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': ['1', 'foo', '3'], 'd': np.array([np.nan, np.nan, np.nan], dtype=object)}, index=pd.Index(['id1', 'id4', 'id3'], name='id'))) obs = md1.merge(md2) exp = Metadata(pd.DataFrame( {'a': [1, 3], 'b': [np.nan, np.nan], 'c': ['1', '3'], 'd': np.array([np.nan, np.nan], dtype=object)}, index=pd.Index(['id1', 'id3'], name='id'))) self.assertEqual(obs, exp) self.assertEqual(obs.columns['a'].type, 'numeric') self.assertEqual(obs.columns['b'].type, 'numeric') self.assertEqual(obs.columns['c'].type, 'categorical') self.assertEqual(obs.columns['d'].type, 'categorical') def test_no_artifacts(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2]}, index=pd.Index(['id1', 'id2'], name='id'))) md2 = Metadata(pd.DataFrame( {'b': [3, 4]}, index=pd.Index(['id1', 'id2'], name='id'))) metadata = md1.merge(md2) self.assertEqual(metadata.artifacts, ()) def test_with_artifacts(self): artifact1 = Artifact.import_data('Mapping', {'a': '1', 'b': '2'}) artifact2 = Artifact.import_data('Mapping', {'d': '4'}) md_from_artifact1 = artifact1.view(Metadata) md_from_artifact2 = artifact2.view(Metadata) md_no_artifact = Metadata(pd.DataFrame( {'c': ['3', '42']}, index=pd.Index(['0', '1'], name='id'))) # Merge three metadata objects -- the first has an artifact, the second # does not, and the third has an artifact. obs_md = md_from_artifact1.merge(md_no_artifact, md_from_artifact2) exp_df = pd.DataFrame( {'a': '1', 'b': '2', 'c': '3', 'd': '4'}, index=pd.Index(['0'], name='id')) exp_md = Metadata(exp_df) exp_md._add_artifacts((artifact1, artifact2)) self.assertEqual(obs_md, exp_md) self.assertEqual(obs_md.artifacts, (artifact1, artifact2)) def test_disjoint_indices(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': [7, 8, 9], 'd': [10, 11, 12]}, index=pd.Index(['X', 'Y', 'Z'], name='id'))) with self.assertRaisesRegex(ValueError, 'no IDs shared'): md1.merge(md2) def test_duplicate_columns(self): md1 = Metadata(pd.DataFrame( {'a': [1, 2], 'b': [3, 4]}, index=pd.Index(['id1', 'id2'], name='id'))) md2 = Metadata(pd.DataFrame( {'c': [5, 6], 'b': [7, 8]}, index=pd.Index(['id1', 'id2'], name='id'))) with self.assertRaisesRegex(ValueError, "columns overlap: 'b'"): md1.merge(md2) def test_duplicate_columns_self_merge(self): md = Metadata(pd.DataFrame( {'a': [1, 2], 'b': [3, 4]}, index=pd.Index(['id1', 'id2'], name='id'))) with self.assertRaisesRegex(ValueError, "columns overlap: 'a', 'b'"): md.merge(md) class TestFilterIDs(unittest.TestCase): def setUp(self): get_dummy_plugin() def test_supports_iterable(self): md = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) obs = md.filter_ids(iter({'a', 'c'})) exp = Metadata(pd.DataFrame( {'col1': [1, 3], 'col2': ['foo', 'baz']}, index=pd.Index(['a', 'c'], name='id'))) self.assertEqual(obs, exp) def test_keep_all(self): md = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) obs = md.filter_ids({'a', 'b', 'c'}) self.assertEqual(obs, md) self.assertIsNot(obs, md) def test_keep_multiple(self): md = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) obs = md.filter_ids({'a', 'c'}) exp = Metadata(pd.DataFrame( {'col1': [1, 3], 'col2': ['foo', 'baz']}, index=pd.Index(['a', 'c'], name='id'))) self.assertEqual(obs, exp) def test_keep_one(self): md = Metadata(pd.DataFrame( {'col1': [1, 2, 3], 'col2': ['foo', 'bar', 'baz']}, index=pd.Index(['a', 'b', 'c'], name='id'))) obs = md.filter_ids({'b'}) exp = Metadata(pd.DataFrame( {'col1': [2], 'col2': ['bar']}, index=pd.Index(['b'], name='id'))) self.assertEqual(obs, exp) def test_filtering_preserves_column_types(self): # Test that column types remain the same even if a categorical column # *could* be reinterpreted as numeric after the filter. md = Metadata(pd.DataFrame( {'a': [1, 2, 3], 'b': [np.nan, np.nan, np.nan], 'c': ['1', 'foo', '3'], 'd': np.array([np.nan, np.nan, np.nan], dtype=object)}, index=pd.Index(['id1', 'id2', 'id3'], name='id'))) obs = md.filter_ids({'id1', 'id3'}) exp = Metadata(pd.DataFrame( {'a': [1, 3], 'b': [np.nan, np.nan], 'c': ['1', '3'], 'd': np.array([np.nan, np.nan], dtype=object)}, index=pd.Index(['id1', 'id3'], name='id'))) self.assertEqual(obs, exp) self.assertEqual(obs.columns['a'].type, 'numeric') self.assertEqual(obs.columns['b'].type, 'numeric') self.assertEqual(obs.columns['c'].type, 'categorical') self.assertEqual(obs.columns['d'].type, 'categorical') def test_alternate_id_header(self): md = Metadata(pd.DataFrame( {'col1': [1, 2, 3, 4], 'col2': ['foo', 'bar', 'baz', 'bazz']}, index=pd.Index(['a', 'b', 'c', 'd'], name='#Sample ID'))) obs = md.filter_ids({'b', 'd'}) exp = Metadata(pd.DataFrame( {'col1': [2, 4], 'col2': ['bar', 'bazz']}, index=
pd.Index(['b', 'd'], name='#Sample ID')
pandas.Index
from pathlib import Path import epimargin.plots as plt import flat_table import numpy as np import pandas as pd import seaborn as sns from epimargin.estimators import analytical_MPVS from epimargin.etl.commons import download_data from epimargin.etl.covid19india import state_code_lookup from epimargin.models import SIR from epimargin.smoothing import notched_smoothing sns.set(style = "whitegrid") # root = Path(__file__).parent # data = root/"data" data = Path("./data").resolve() CI = 0.95 window = 14 gamma = 0.2 infectious_period = 5 smooth = notched_smoothing(window) num_sims = 50000 # load admin data on population IN_age_structure = { # WPP2019_POP_F01_1_POPULATION_BY_AGE_BOTH_SEXES 0: 116_880, 5: 117_982 + 126_156 + 126_046, 18: 122_505 + 117_397, 30: 112_176 + 103_460, 40: 90_220 + 79_440, 50: 68_876 + 59_256 + 48_891, 65: 38_260 + 24_091, 75: 15_084 + 8_489 + 3_531 + 993 + 223 + 48, } # normalize age_structure_norm = sum(IN_age_structure.values()) IN_age_ratios = np.array([v/age_structure_norm for (k, v) in IN_age_structure.items()]) split_by_age = lambda v: (v * IN_age_ratios).astype(int) # from Karnataka COVID_age_ratios = np.array([0.01618736, 0.07107746, 0.23314877, 0.22946212, 0.18180406, 0.1882451 , 0.05852026, 0.02155489]) india_pop = pd.read_csv(data/"india_pop.csv", names = ["state", "population"], index_col = "state").to_dict()["population"] india_pop["Odisha"] = india_pop["Orissa"] india_pop["Puducherry"] = india_pop["Pondicherry"] india_pop["Uttarakhand"] = india_pop["Uttaranchal"] # load covid19 india data download_data(data, 'timeseries.json', "https://api.covid19india.org/v3/") with (data/'timeseries.json').open("rb") as fp: df = flat_table.normalize(pd.read_json(fp)).fillna(0) df.columns = df.columns.str.split('.', expand = True) dates = np.squeeze(df["index"][None].values) df = df.drop(columns = "index").set_index(dates).stack([1, 2]).drop("UN", axis = 1) # load Rt data # Rt = pd.read_csv("data/Rt_timeseries_india.csv") # date = "2020-12-24" # for state in set(df.loc[date, :, :].columns) - {"TT", "LA", "SK", "NL"}: # for state in ["TN"]: # N = india_pop[state_code_lookup[state].replace("&", "and")] # T = df[state].loc[date, "total", "confirmed"] # R = df[state].loc[date, "total", "recovered"] # D = df[state].loc[date, "total", "deceased"] # model = SIR( # name = state, # population = N - D, # dT0 = np.ones(num_sims) * df[state].loc[date, "delta", "confirmed"], # Rt0 = Rt[(Rt.state == state) & (Rt.date == date)].Rt.iloc[0], # I0 = np.ones(num_sims) * (T - R - D), # R0 = np.ones(num_sims) * R, # D0 = np.ones(num_sims) * D, # random_seed = 0 # ) # i = 0 # while np.mean(model.dT[-1]) > 0: # model.parallel_forward_epi_step(num_sims = num_sims) # i += 1 # print(state, i, np.mean(model.dT[-1]), np.std(model.dT[-1])) # dT = np.array([_.mean().astype(int) for _ in model.dT]) # dTx = (dT * COVID_age_ratios[..., None]).astype(int) # Tx = (T * COVID_age_ratios).astype(int)[..., None] + dTx.cumsum(axis = 1) # Nx = split_by_age(N) # lambda_x = dT/(Nx[..., None] - Tx) # pd.DataFrame(lambda_x).to_csv(data/f"{state}_age_hazards.csv") # pd.DataFrame(model.dT).T.to_csv(data/f"{state}_sims.csv") ###################### # sero scaling TN_sero_breakdown = np.array([0.311, 0.311, 0.311, 0.320, 0.333, 0.320, 0.272, 0.253]) # from TN sero, assume 0-18 sero = 18-30 sero TN_pop = india_pop["<NAME>"] TN_seropos = split_by_age(TN_pop) @ TN_sero_breakdown/TN_pop #KA_seropos = 0.467 # statewide from KA private survey KA_seropos = 0.273 # statewide from KA govt survey scaled_Rt = { "TN": 0.9271785447646147, # "KA": 1.1929944867195017 "KA": 0.9636985404892338 } simulation_start = pd.Timestamp("Jan 1, 2021") smoothing = notched_smoothing(14) num_sims = 10000 for (state, date, seropos, sero_breakdown) in ( ("TN", "October 23, 2020", TN_seropos, TN_sero_breakdown), #("KA", "2020-07-22", KA_seropos, IN_age_ratios) # ("KA", "2020-09-16", KA_seropos, IN_age_ratios), ): N = india_pop[state_code_lookup[state].replace("&", "and")] # scaling dT_conf = df[state].loc[:, "delta", "confirmed"] dT_conf_smooth = pd.Series(smoothing(dT_conf), index = dT_conf.index) T_conf_smooth = dT_conf_smooth.cumsum().astype(int) T = T_conf_smooth[date] T_sero = (N * seropos) T_ratio = T_sero/T # grab time series R = df[state].loc[simulation_start, "total", "recovered"] D = df[state].loc[simulation_start, "total", "deceased"] # run Rt estimation on scaled timeseries (Rt_dates, Rt_est, *_) = analytical_MPVS(T_ratio * dT_conf_smooth, CI = CI, smoothing = lambda _:_, totals = False) Rt = dict(zip(Rt_dates, Rt_est)) model = SIR( name = state, population = N, dT0 = np.ones(num_sims) * (dT_conf_smooth[simulation_start] * T_ratio).astype(int), Rt0 = Rt[simulation_start] * N/(N - T_sero), I0 = np.ones(num_sims) * (T_sero - R - D), R0 = np.ones(num_sims) * R, D0 = np.ones(num_sims) * D, random_seed = 0 ) i = 0 print(Rt[simulation_start], Rt[simulation_start] * N/(N - T_ratio * T_conf_smooth[simulation_start])) while np.mean(model.dT[-1]) > 0: model.parallel_forward_epi_step(num_sims = num_sims) i += 1 print(state, i, np.mean(model.dT[-1]), np.std(model.dT[-1])) # plot simulation plt.scatter(dT_conf["April 1, 2020":simulation_start].index, dT_conf["April 1, 2020":simulation_start].values*T_ratio, label = "seroprevalence-scaled cases (pre-simulation)", color = "black", s = 5) # plt.scatter(dT_conf[simulation_start:].index, dT_conf[simulation_start:].values*T_ratio, color = "grey", label = "seroprevalence-scaled cases (post-simulation)", s = 5) # t = pd.Timestamp(date) dates = pd.date_range(simulation_start, simulation_start + pd.Timedelta(len(model.dT) - 1, "days")) # dates = pd.date_range(t, pd.Timestamp("April 1, 2021")) n = len(dates) plt.plot(dates, np.array([_.mean().astype(int) for _ in model.dT][:n]), label = "mean simulated daily cases", color = "rebeccapurple") plt.fill_between(dates, [_.min().astype(int) for _ in model.dT][:n], [_.max().astype(int) for _ in model.dT][:n], label = "simulation range", alpha = 0.3, color = "rebeccapurple") plt.vlines(pd.Timestamp(date), 1, 1e6, linestyles = "dashed", label = "date of seroprevalence study") plt.legend(handlelength = 1, framealpha = 1) plt.semilogy() plt.xlim(pd.Timestamp("April 1, 2020"), dates[-1]) plt.ylim(1, 1e6) plt.PlotDevice().xlabel("\ndate").ylabel("new daily cases\n").annotate("Daily Cases: Scaled Data & Simulation - Tamil Nadu, no vaccination") plt.show() # calculate hazards dT = np.array([_.mean().astype(int) for _ in model.dT]) S = np.array([_.mean().astype(int) for _ in model.S]) dTx = (dT * sero_breakdown[..., None]).astype(int) Sx = (S * COVID_age_ratios[..., None]).astype(int) lambda_x = dTx/Sx Pr_covid_t = np.zeros(lambda_x.shape) Pr_covid_pre_t = np.zeros(lambda_x.shape) Pr_covid_t[:, 0] = lambda_x[:, 0] Pr_covid_pre_t[:, 0] = lambda_x[:, 0] for t in range(1, len(lambda_x[0, :])): Pr_covid_t[:, t] = lambda_x[:, t] * (1 - Pr_covid_pre_t[:, t-1]) Pr_covid_pre_t[:, t] = Pr_covid_pre_t[:, t-1] + lambda_x[:, t] * (1 - Pr_covid_pre_t[:, t-1]) plt.figure() for _ in range(8): plt.plot(Pr_covid_pre_t[_, :], label = f"agecat:{_}") plt.title(f"{state}: Pr(covid before t) - Tamil Nadu, no vaccination") plt.legend() plt.show() plt.figure() for _ in range(8): plt.plot(Pr_covid_t[_, :], label = f"agecat:{_}") plt.title(f"{state}: Pr(covid at t) - Tamil Nadu, no vaccination") plt.legend() plt.show() # Tx = (T * sero_breakdown).astype(int)[..., None] + dTx.cumsum(axis = 1) # Nx = split_by_age(N) # lambda_x = dTx/(Nx[..., None] - Tx)
pd.DataFrame(lambda_x)
pandas.DataFrame
""" @Author: <NAME> @Email: <EMAIL> """ import matplotlib.pyplot as plt plt.switch_backend('agg') plt.rcParams['axes.unicode_minus'] = False import seaborn as sns import pandas as pd def simple_multi_line_plot(figpath, x_list, y_list, line_names=None, x_label=None, y_label=None, title=None): """ Args: x_list (list): [array-like, ...] y_list (list): [array-like, ...] """ lineNum = len(x_list) line_names = ['line'+str(i) for i in range(lineNum)] if line_names is None else line_names x_label = 'x' if x_label is None else x_label y_label = 'y' if y_label is None else y_label title = 'Simple Line Plot' if title is None else title df = pd.concat([
pd.DataFrame({x_label: x_list[i], y_label: y_list[i], 'lines': line_names[i]})
pandas.DataFrame
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2020/3/24 15:00 Desc: 生意社网站采集大宗商品现货价格及相应基差数据, 数据时间段从 20110104-至今 备注:现期差 = 现货价格 - 期货价格(这里的期货价格为结算价) 黄金为 元/克, 白银为 元/千克, 玻璃现货为 元/平方米, 鸡蛋现货为 元/公斤, 鸡蛋期货为 元/500千克, 其余为 元/吨. 焦炭现货规格是: 一级冶金焦; 焦炭期货规格: 介于一级和二级之间, 焦炭现期差仅供参考. 铁矿石现货价格是: 湿吨, 铁矿石期货价格是: 干吨 网页地址: http://www.100ppi.com/sf/ 历史数据可以通过修改 url 地址来获取, 比如: http://www.100ppi.com/sf/day-2017-09-12.html 发现生意社的 bugs: 1. 2018-09-12 周三 数据缺失是因为生意社源数据在该交易日缺失: http://www.100ppi.com/sf/day-2018-09-12.html """ import datetime import re import time import warnings import pandas as pd from akshare.futures import cons from akshare.futures.requests_fun import pandas_read_html_link from akshare.futures.symbol_var import chinese_to_english calendar = cons.get_calendar() def futures_spot_price_daily(start_day=None, end_day=None, vars_list=cons.contract_symbols): """ 获取某段时间大宗商品现货价格及相应基差 :param start_day: str 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param end_day: str 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param vars_list: list 合约品种如 [RB, AL]; 默认参数为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD """ start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date(cons.get_latest_data_date(datetime.datetime.now())) ) df_list = [] while start_day <= end_day: print(start_day) temp_df = futures_spot_price(start_day, vars_list) if temp_df is False: return
pd.concat(df_list)
pandas.concat
# External Libraries from datetime import date import pandas as pd pd.options.mode.chained_assignment = None import os from pathlib import Path import logging, coloredlogs # Internal Libraries import dicts_and_lists as dal import Helper # ------ Logger ------- # logger = logging.getLogger('get_past_datasets.py') coloredlogs.install(level='DEBUG') folder = 'past_data/2017_2018/' months = ['october', 'november', 'december', 'january', 'february', 'march', 'april', 'may', 'june'] for month in months: url = 'https://www.basketball-reference.com/leagues/NBA_2018_games-'+ month + '.html' df_url = pd.read_html(url)[0] df_url = df_url.rename(columns= { 'Visitor/Neutral' : 'AwayTeam', 'Home/Neutral' : 'HomeTeam', 'PTS' : 'AwayPoints', 'PTS.1' : 'HomePoints' } ) df_url = df_url.drop(['Unnamed: 6', 'Unnamed: 7', 'Attend.', 'Notes'], axis=1) # Remove non interesting columns df_url = df_url.dropna(subset=['AwayPoints', 'HomePoints']) # Remove rows containing games not yet played my_file = Path(os.getcwd() + '/' + folder + month + '_data.csv') if not my_file.exists(): # If current data is not present in past_data folder, add it df_url.to_csv(my_file, index=False) # Save the df as .csv logger.info(f'An update has been made: {month}_data.csv has been created.') logger.info(f'{month}_data.csv is up to date.') # Create a big dataset october_df = pd.read_csv(folder + 'october_data.csv') november_df = pd.read_csv(folder + 'november_data.csv') december_df = pd.read_csv(folder + 'december_data.csv') january_df = pd.read_csv(folder + 'january_data.csv') february_df =
pd.read_csv(folder + 'february_data.csv')
pandas.read_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346:
pd.Timestamp("2013-04-13 00:00:00")
pandas.Timestamp
import pandas as pd import psycopg2 import pickle import numpy as np # counterS = 0 # global counterS # global valGlob # from sqlalchemy import create_engine # -*- coding: utf-8 -*- import os import sys import copy # fileName = '/Users/alessandro/Documents/PhD/OntoHistory/WDTaxo_October2014.csv' # connection parameters def get_db_params(): params = { 'database': 'wikidb', 'user': 'postgres', 'password': '<PASSWORD>', 'host': 'localhost', 'port': '5432' } conn = psycopg2.connect(**params) return conn # create table def create_table(): ###statement table query query_table = """CREATE TABLE IF NOT EXISTS tempData AS (SELECT p.itemId, p.revId, (p.timestamp::timestamp) AS tS, t.statementId, t.statProperty, t.statvalue FROM (SELECT itemId, revId, timestamp FROM revisionData_201710) p, (SELECT revId, statementId, statProperty, statvalue FROM statementsData_201710 WHERE statProperty = 'P279' OR statProperty = 'P31') t WHERE p.revId = t.revId)""" queryStatData = """CREATE TABLE IF NOT EXISTS statementDated AS (SELECT p.itemid, p.statproperty, p.statvalue, p.statementid, p.revid, t.timestamp, t.username FROM statementsData_201710 p LEFT JOIN revisionData_201710 t ON p.revid::int = t.revid::int);""" conn = None try: conn = get_db_params() cur = conn.cursor() cur.execute(query_table) cur.close() conn.commit() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() conn = None try: conn = get_db_params() cur = conn.cursor() cur.execute(queryStatData) cur.close() conn.commit() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def queryexecutor(): # dictStats = {} # conn = get_db_params() # cur = conn.cursor() for i in range(13, 18): for j in range(1, 10): date = "20" + str(i) + "-0" + str(j) + "-01" if j == 1: yr = i-1 datePrev = "20" + str(yr) + "-12-01" else: datePrev = "20" + str(i) + "-0" + str(j-1) + "-01" print(date) try: queryStart = """ SELECT * INTO timetable_temp FROM revisionData_201710 WHERE (timestamp > '"""+ datePrev + """ 00:00:00' AND timestamp < '"""+ date + """ 00:00:00'); """ conn = get_db_params() cur = conn.cursor() cur.execute(queryStart) cur.close() conn.commit() queryBig = """ WITH revTempo AS (SELECT itemid, revid, timestamp, username FROM timetable_temp WHERE (username NOT IN (SELECT bot_name FROM bot_list) AND username !~ '([0-9]{1,3}[.]){3}[0-9]{1,3}|(([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])[.]){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])[.]){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]))')) SELECT username, COUNT(*) AS noEdits, COUNT(DISTINCT itemid) AS itemDiv, (COUNT(*)/COUNT(DISTINCT itemid)::float) AS editRatio FROM revTempo GROUP BY username; """ #EXTRACT(EPOCH FROM ('2016-10-01 00:00:00'::timestamp - MIN(timestamp))) AS oldEdit, # print(query) df = pd.DataFrame() for chunk in pd.read_sql(queryBig, con=conn, chunksize=1000): df = df.append(chunk) #columns: username, noEdits, itemDiv, editRatio df['timeframe'] = date queryOntoedit=""" SELECT username, COUNT(*) AS noOntoedit FROM (SELECT * FROM timetable_temp WHERE itemId IN (SELECT DISTINCT statvalue FROM tempData) OR itemId IN (SELECT DISTINCT itemId FROM tempData WHERE statproperty != 'P31')) poopi GROUP BY username; """ # print(query) df_ontoedits = pd.DataFrame() for chunk in pd.read_sql(queryOntoedit, con=conn, chunksize=1000): df_ontoedits = df_ontoedits.append(chunk) #columns: username, noOntoedit df = df.merge(df_ontoedits, how='left') queryPropedit=""" SELECT username, COUNT(*) AS noPropEdits FROM timetable_temp WHERE itemId ~* '[P][0-9]{1,}' GROUP BY username; """ # print(query) df_Propedits = pd.DataFrame() for chunk in pd.read_sql(queryPropedit, con=conn, chunksize=1000): df_Propedits = df_Propedits.append(chunk) #columns: username, noPropEdits df = df.merge(df_Propedits, how='left') queryCommedit=""" SELECT user_name AS username, COUNT(*) AS noCommEdits FROM revision_pages_201710 WHERE (time_stamp > '"""+ datePrev + """ 00:00:00' AND time_stamp < '"""+ date + """ 00:00:00') AND (user_name NOT IN (SELECT bot_name FROM bot_list)) AND item_id !~* 'Property:P*' GROUP BY user_name; """ # print(query) df_Commedits = pd.DataFrame() for chunk in pd.read_sql(queryCommedit, con=conn, chunksize=1000): df_Commedits = df_Commedits.append(chunk) #columns: username, noCommEdits df = df.merge(df_Commedits, how='left') queryTaxo = """ SELECT username, COUNT(*) AS noTaxoEdits FROM statementDated WHERE (timestamp > '"""+ datePrev + """ 00:00:00' AND timestamp < '"""+ date + """ 00:00:00') AND username NOT IN (SELECT bot_name FROM bot_list) AND (statProperty = 'P31' or statProperty = 'P279') AND username !~ '([0-9]{1,3}[.]){3}[0-9]{1,3}|(([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])[.]){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])[.]){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]))') GROUP BY username """ # print(query) df_Taxedits = pd.DataFrame() for chunk in pd.read_sql(queryTaxo, con=conn, chunksize=1000): df_Taxedits = df_Taxedits.append(chunk) #columns: username, noTaxoEdits df = df.merge(df_Taxedits, how='left') queryBatch = """ SELECT user_name AS username, COUNT(*) AS noBatchedit FROM (SELECT * FROM revision_history_tagged WHERE automated_tool = 't' AND (time_stamp > '"""+ datePrev + """ 00:00:00' AND time_stamp < '"""+ date + """ 00:00:00')) AS pippo GROUP BY user_name """ # print(query) df_Batchedits =
pd.DataFrame()
pandas.DataFrame
""" Created on 12:10 at 09/07/2021 @author: bo """ import numpy as np import os import pandas as pd import matplotlib.pyplot as plt import math import time import pickle import seaborn as sns from scipy.interpolate import interp1d def get_spectrum(path): with open(path, 'r') as f: data = f.readlines() data = data[10:-5] data_array = [np.array(v.split("\n")[0].split(",")).astype("float32") for v in data] return np.array(data_array) def get_minerals_siamese(path): with open(path, 'r') as f: data = f.readlines() data = np.array([v.split("\n")[0] for v in data]) return data def convert_chemical(v): c = v.replace("+^", "+}").replace("^", "^{") cc = c.split("_") for i, _cc in enumerate(cc): try: _dd = int(_cc[0]) _cc = "_{" + _cc + "}" except ValueError: if i != 0 and i != len(cc) - 1: if "^" in _cc: _cc = _cc + "}" cc[i] = _cc value = "".join(cc) value = value.replace("&#183;", '') if "&#" in value: value = value.split(" ")[0] value = value.replace("-^{}", "}").replace("-^{", "}") value = value.replace("}}", "}").replace("{{", "{") # .replace("-^{}", "}").replace("-^{", "}") return value def get_chemical(path): with open(path, 'r') as f: data = f.readlines() ch = data[2].split("=")[1].split("\n")[0] if ch[-1] == "_": ch = ch[:-1] ch = convert_chemical(ch) return ch def give_all_raw(path2read="../rs_dataset/", print_info=True): siamese_minerals = get_minerals_siamese(path2read + "minerals.txt") path_0 = path2read + "unrated_unoriented_unoriented.csv" path_1 = path2read + "poor_unoriented_unoriented.csv" path_2 = path2read + "fair_unoriented_unoriented.csv" path_3 = path2read + "ignore_unoriented_unoriented.csv" path_4 = path2read + "excellent_unoriented_unoriented_raw.csv" for i, path in enumerate([path_0, path_1, path_2, path_3, path_4]): _data = give_subset_of_spectrums(path, None, "raw", print_info=print_info) if i == 0: data = _data else: data = pd.concat([data, _data]) name = np.array([v.lower() for v in data.name.to_numpy()]) select_index = [iterr for iterr, v in enumerate(name) if v in siamese_minerals] data_subset = data.iloc[select_index] names = data_subset.name.to_numpy() unique_name, unique_count = np.unique(names, return_counts=True) if print_info: print("There are %d unique minerals with %d spectra" % (len(unique_name), len(names))) print("with the smallest number of spectra: %d and largest number of spectra %d" % (np.min(unique_count), np.max(unique_count))) return data_subset def give_subset_of_spectrums(path, laser=None, raw_preprocess="raw", unrate=False, print_info=True): """Give a subset of spectrums Args: path: the csv file for all the data laser: int, for the low resolution:either 532, 785 or 780, for the excellent resolution: 532, 780, 514, 785 raw_preprocess: int, either 0 or 1, where 1 corresponds to raw data and 0 corresponds to preprocessed data """ data =
pd.read_csv(path)
pandas.read_csv
import tasks import pandas as pd from . import base from typing import TypeVar, Generic, Dict from hashlib import sha1 T = TypeVar(tasks.FetchAppleReportTask) class AppleReportProcessor(Generic[T], base.ReportProcessor[T]): @property def added_columns(self) -> Dict[str, any]: return { **super().added_columns, 'org_id': self.task.org_id, 'org_name': self.task.org_name, 'converted_currency': self.task.currency, 'product': None, 'product_id': None, 'product_name': None, 'product_platform': None, 'product_os': None, } def process(self): super().process() report = self.task.report if 'orgId' in report: assert len(report.orgId.unique()) == 1 and report.orgId.unique()[0] == self.task.org_id report.drop(columns='orgId', inplace=True) # we already store this off using our 'org_id' column # map v2 column names to v1 column names report.rename( columns={ 'installs': 'conversions', 'latOnInstalls': 'conversionsLATon', 'latOffInstalls': 'conversionsLAToff', 'newDownloads': 'conversionsNewDownloads', 'redownloads': 'conversionsRedownloads' }, inplace=True ) report['app_display_name'] = report.adamId.map(self.task.app_id_display_names) if not self.task.keep_empty_app_display_names: report.drop(report.index[report.app_display_name.isnull()], inplace=True) if 'countriesOrRegions' in report: report.drop(columns='countriesOrRegions', inplace=True) if 'countryOrRegionServingStateReasons' in report: report.drop(columns='countryOrRegionServingStateReasons', inplace=True) report['platform'] = 'ios' report['product_id'] = report.adamId.apply(lambda i: str(i) if not pd.isna(i) else None) self.add_product_canonical_columns(report=report) class AppleCreativeSetsReportProcessor(AppleReportProcessor): def process(self): super().process() if self.task.report.empty: return self.task.report.adGroupCreativeSetId = self.task.report.adGroupCreativeSetId.astype(
pd.Int64Dtype()
pandas.Int64Dtype
import random import pandas as pd from tqdm import tqdm from shared.utils import make_dirs from shared.utils import load_from_json import sys class Training_Data_Generator(object): """ Class for generating ground-truth dataset used for feature learning :param random_seed: parameter used for reproducibility :param num_samples: total number of negative samples :param neg_type: negative samples type (simple or hard) :param query_type: query type (faq or user_query) :param loss_type: the loss type as method used for BERT Fine-tuning (softmax or triplet loss) :param hard_filepath: the absolut path to hard negatives filepath """ def __init__(self, random_seed=5, num_samples=24, neg_type='simple', query_type='faq', loss_type='triplet', hard_filepath=''): self.random_seed = random_seed self.num_samples = num_samples self.hard_filepath = hard_filepath self.neg_type = neg_type self.query_type = query_type self.loss_type = loss_type self.pos_labels = [] self.neg_labels = [] self.num_pos_labels = 0 self.num_neg_labels = 0 self.id2qa = dict() self.id2negids = dict() self.df = pd.DataFrame() self.seq_len_df = pd.DataFrame() self.df_pos = pd.DataFrame() self.df_neg = pd.DataFrame() if self.query_type == 'faq': self.hard_filepath = self.hard_filepath + "/hard_negatives_faq.json" elif self.query_type == "user_query": self.hard_filepath = self.hard_filepath + "/hard_negatives_user_query.json" else: raise ValueError('error, no query_type found for {}'.format(query_type)) def generate_pos_labels(self, query_answer_pairs): """ Generate positive labels from qa pairs :param qa_pairs: list of dicts :return: list of positive labels """ qap_df = pd.DataFrame.from_records(query_answer_pairs) qap_by_query_type = qap_df[qap_df['query_type'] == self.query_type] pos_labels = [] for _, row in qap_by_query_type.iterrows(): id = row['id'] qa_pair = { "id": id, "label": 1, "question": row['question'], "answer": row['answer'], "query_type": row['query_type'] } pos_labels.append(qa_pair) self.id2qa[id] = (qa_pair['question'], qa_pair['answer'], qa_pair['query_type']) return pos_labels def get_id2negids(self, id2qa): """ Generate random negative sample ids for qa pairs :param id2qa: dictionary (id: key, question-answer (tuple): value) :return: dictionary (id: key, neg_ids: value) """ random.seed(self.random_seed) id2negids = dict() total_qa = len(id2qa) ids = id2qa.keys() for id, qa in id2qa.items(): neg_ids = random.sample([x for x in ids if x != id and x !=0], self.num_samples) id2negids[id] = neg_ids return id2negids def generate_neg_labels(self, id2negids): """ Generate negative labels from id2negids :param id2negids: dictionary (id: key, neg_ids: value) :return: list of negative labels as dictionaries """ neg_labels = [] for k, v in id2negids.items(): for id in v: neg_label = dict() neg_label['id'] = str(k) neg_label['question'] = self.id2qa[k][0] neg_answer = self.id2qa[id][1] neg_label['answer'] = neg_answer neg_label['label'] = 0 neg_label['query_type'] = self.id2qa[id][2] neg_labels.append(neg_label) return neg_labels def get_seq_len_df(self, query_answer_pairs): """ Get sequence length in dataframe """ seq_len = [] for qa in tqdm(query_answer_pairs): qa['q_len'] = len(qa['question']) qa['a_len'] = len(qa['answer']) seq_len.append(qa) seq_len_df =
pd.DataFrame(seq_len)
pandas.DataFrame
import bs4 as bs from urllib.request import Request, urlopen import pandas as pd import os import re import sys website = 'https://www.thecarconnection.com' template = 'https://images.hgmsites.net/' def fetch(page, addition=''): return bs.BeautifulSoup(urlopen(Request(page + addition, headers={'User-Agent': 'Opera/9.80 (X11; Linux i686; Ub' 'untu/14.10) Presto/2.12.388 Version/12.16'})).read(), 'lxml') def all_makes(): all_makes_list = [] for a in fetch(website, "/new-cars").find_all("a", {"class": "add-zip"}): all_makes_list.append(a['href']) return all_makes_list def make_menu(listed): make_menu_list = [] for make in listed: for div in fetch(website, make).find_all("div", {"class": "name"}): make_menu_list.append(div.find_all("a")[0]['href']) return make_menu_list def model_menu(listed): model_menu_list = [] for make in listed: soup = fetch(website, make) for div in soup.find_all("a", {"class": "btn avail-now first-item"}): model_menu_list.append(div['href']) for div in soup.find_all("a", {"class": "btn 1"})[:8]: model_menu_list.append(div['href']) model_menu_list = [i.replace('overview', 'specifications') for i in model_menu_list] return model_menu_list def specs_and_pics(listed): picture_tab = [i.replace('specifications', 'photos') for i in listed] specifications_table = pd.DataFrame() for row, pic in zip(listed, picture_tab): soup = fetch(website, row) specifications_df = pd.DataFrame(columns=[soup.find_all("title")[0].text[:-15]]) try: specifications_df.loc['Make', :] = soup.find_all('a', {'id': 'a_bc_1'})[0].text.strip() specifications_df.loc['Model', :] = soup.find_all('a', {'id': 'a_bc_2'})[0].text.strip() specifications_df.loc['Year', :] = soup.find_all('a', {'id': 'a_bc_3'})[0].text.strip() specifications_df.loc['MSRP', :] = soup.find_all('span', {'class': 'msrp'})[0].text except: print('Problem with {}.'.format(website + row)) for div in soup.find_all("div", {"class": "specs-set-item"}): row_name = div.find_all("span")[0].text row_value = div.find_all("span")[1].text specifications_df.loc[row_name] = row_value fetch_pics_url = str(fetch(website, pic)) try: for ix, photo in enumerate(re.findall('sml.+?_s.jpg', fetch_pics_url)[:150], 1): specifications_df.loc[f'Picture {ix}', :] = photo.replace('\\', '') specifications_table = pd.concat([specifications_table, specifications_df], axis=1, sort=False) except: print('Error with {}.'.format(template + photo)) return specifications_table def run(directory): os.chdir(directory) a = all_makes() b = make_menu(a) c = model_menu(b) pd.DataFrame(c).to_csv('c.csv', header=None) d =
pd.read_csv('c.csv', index_col=0, header=None)
pandas.read_csv
import itertools from math import sqrt from typing import List, Sequence import torch import torch.nn.functional as F # import torch should be first. Unclear issue, mentionned here: https://github.com/pytorch/pytorch/issues/2083 import numpy as np import os import csv import time import heapq import fiona # keep this import. it sets GDAL_DATA to right value import rasterio from PIL import Image import torchvision import ttach as tta from collections import OrderedDict, defaultdict import pandas as pd import geopandas as gpd from fiona.crs import to_string from omegaconf.errors import ConfigKeyError from tqdm import tqdm from rasterio import features from shapely.geometry import Polygon from rasterio.windows import Window from rasterio.plot import reshape_as_image from pathlib import Path from omegaconf.listconfig import ListConfig from utils.logger import dict_path from utils.metrics import ComputePixelMetrics from models.model_choice import net from utils import augmentation from utils.geoutils import vector_to_raster, clip_raster_with_gpkg from utils.utils import load_from_checkpoint, get_device_ids, get_key_def, \ list_input_images, add_metadata_from_raster_to_sample, _window_2D, read_modalities, find_first_file from utils.verifications import add_background_to_num_class, validate_num_classes, assert_crs_match try: import boto3 except ModuleNotFoundError: pass # Set the logging file from utils import utils logging = utils.get_logger(__name__) def _pad_diff(arr, w, h, arr_shape): """ Pads img_arr width or height < samples_size with zeros """ w_diff = arr_shape - w h_diff = arr_shape - h if len(arr.shape) > 2: padded_arr = np.pad(arr, ((0, w_diff), (0, h_diff), (0, 0)), "constant", constant_values=np.nan) else: padded_arr = np.pad(arr, ((0, w_diff), (0, h_diff)), "constant", constant_values=np.nan) return padded_arr def _pad(arr, chunk_size): """ Pads img_arr """ aug = int(round(chunk_size * (1 - 1.0 / 2.0))) if len(arr.shape) > 2: padded_arr = np.pad(arr, ((aug, aug), (aug, aug), (0, 0)), mode='reflect') else: padded_arr = np.pad(arr, ((aug, aug), (aug, aug)), mode='reflect') return padded_arr def ras2vec(raster_file, output_path): # Create a generic polygon schema for the output vector file i = 0 feat_schema = {'geometry': 'Polygon', 'properties': OrderedDict([('value', 'int')]) } class_value_domain = set() out_features = [] print(" - Processing raster file: {}".format(raster_file)) with rasterio.open(raster_file, 'r') as src: raster = src.read(1) mask = raster != 0 # Vectorize the polygons polygons = features.shapes(raster, mask, transform=src.transform) # Create shapely polygon featyres for polygon in polygons: feature = {'geometry': { 'type': 'Polygon', 'coordinates': None}, 'properties': OrderedDict([('value', 0)])} feature['geometry']['coordinates'] = polygon[0]['coordinates'] value = int(polygon[1]) # Pixel value of the class (layer) class_value_domain.add(value) feature['properties']['value'] = value i += 1 out_features.append(feature) print(" - Writing output vector file: {}".format(output_path)) num_layers = list(class_value_domain) # Number of unique pixel value for num_layer in num_layers: polygons = [feature for feature in out_features if feature['properties']['value'] == num_layer] layer_name = 'vector_' + str(num_layer).rjust(3, '0') print(" - Writing layer: {}".format(layer_name)) with fiona.open(output_path, 'w', crs=to_string(src.crs), layer=layer_name, schema=feat_schema, driver='GPKG') as dest: for polygon in polygons: dest.write(polygon) print("") print("Number of features written: {}".format(i)) def gen_img_samples(src, chunk_size, step, *band_order): """ Args: src: input image (rasterio object) chunk_size: image tile size step: stride used during inference (in pixels) *band_order: ignore Returns: generator object """ for row in range(0, src.height, step): for column in range(0, src.width, step): window = Window.from_slices(slice(row, row + chunk_size), slice(column, column + chunk_size)) if band_order: window_array = reshape_as_image(src.read(band_order[0], window=window)) else: window_array = reshape_as_image(src.read(window=window)) if window_array.shape[0] < chunk_size or window_array.shape[1] < chunk_size: window_array = _pad_diff(window_array, window_array.shape[0], window_array.shape[1], chunk_size) window_array = _pad(window_array, chunk_size) yield window_array, row, column @torch.no_grad() def segmentation(param, input_image, label_arr, num_classes: int, gpkg_name, model, chunk_size: int, device, scale: List, BGR_to_RGB: bool, tp_mem, debug=False, ): """ Args: param: parameter dict input_image: opened image (rasterio object) label_arr: numpy array of label if available num_classes: number of classes gpkg_name: geo-package name if available model: model weights chunk_size: image tile size device: cuda/cpu device scale: scale range BGR_to_RGB: True/False tp_mem: memory temp file for saving numpy array to disk debug: True/False Returns: """ xmin, ymin, xmax, ymax = (input_image.bounds.left, input_image.bounds.bottom, input_image.bounds.right, input_image.bounds.top) xres, yres = (abs(input_image.transform.a), abs(input_image.transform.e)) mx = chunk_size * xres my = chunk_size * yres padded = chunk_size * 2 h = input_image.height w = input_image.width h_ = h + padded w_ = w + padded dist_samples = int(round(chunk_size * (1 - 1.0 / 2.0))) # switch to evaluate mode model.eval() # initialize test time augmentation transforms = tta.Compose([tta.HorizontalFlip(), ]) # construct window for smoothing WINDOW_SPLINE_2D = _window_2D(window_size=padded, power=2.0) WINDOW_SPLINE_2D = torch.as_tensor(np.moveaxis(WINDOW_SPLINE_2D, 2, 0), ).type(torch.float) WINDOW_SPLINE_2D = WINDOW_SPLINE_2D.to(device) fp = np.memmap(tp_mem, dtype='float16', mode='w+', shape=(h_, w_, num_classes)) sample = {'sat_img': None, 'map_img': None, 'metadata': None} cnt = 0 subdiv = 2 step = int(chunk_size / subdiv) total_inf_windows = int(np.ceil(input_image.height / step) * np.ceil(input_image.width / step)) img_gen = gen_img_samples(src=input_image, chunk_size=chunk_size, step=step) start_seg = time.time() print_log = True for img in tqdm(img_gen, position=1, leave=False, desc=f'Inferring on window slices of size {chunk_size}', total=total_inf_windows): row = img[1] col = img[2] sub_image = img[0] image_metadata = add_metadata_from_raster_to_sample(sat_img_arr=sub_image, raster_handle=input_image, raster_info={}) sample['metadata'] = image_metadata totensor_transform = augmentation.compose_transforms(param, dataset="tst", input_space=BGR_to_RGB, scale=scale, aug_type='totensor', print_log=print_log) sample['sat_img'] = sub_image sample = totensor_transform(sample) inputs = sample['sat_img'].unsqueeze_(0) inputs = inputs.to(device) if inputs.shape[1] == 4 and any("module.modelNIR" in s for s in model.state_dict().keys()): ############################ # Test Implementation of the NIR ############################ # Init NIR TODO: make a proper way to read the NIR channel # and put an option to be able to give the idex of the NIR channel # Extract the NIR channel -> [batch size, H, W] since it's only one channel inputs_NIR = inputs[:, -1, ...] # add a channel to get the good size -> [:, 1, :, :] inputs_NIR.unsqueeze_(1) # take out the NIR channel and take only the RGB for the inputs inputs = inputs[:, :-1, ...] # Suggestion of implementation # inputs_NIR = data['NIR'].to(device) inputs = [inputs, inputs_NIR] # outputs = model(inputs, inputs_NIR) ############################ # End of the test implementation module ############################ output_lst = [] for transformer in transforms: # augment inputs augmented_input = transformer.augment_image(inputs) augmented_output = model(augmented_input) if isinstance(augmented_output, OrderedDict) and 'out' in augmented_output.keys(): augmented_output = augmented_output['out'] logging.debug(f'Shape of augmented output: {augmented_output.shape}') # reverse augmentation for outputs deaugmented_output = transformer.deaugment_mask(augmented_output) deaugmented_output = F.softmax(deaugmented_output, dim=1).squeeze(dim=0) output_lst.append(deaugmented_output) outputs = torch.stack(output_lst) outputs = torch.mul(outputs, WINDOW_SPLINE_2D) outputs, _ = torch.max(outputs, dim=0) outputs = outputs.permute(1, 2, 0) outputs = outputs.reshape(padded, padded, num_classes).cpu().numpy().astype('float16') outputs = outputs[dist_samples:-dist_samples, dist_samples:-dist_samples, :] fp[row:row + chunk_size, col:col + chunk_size, :] = \ fp[row:row + chunk_size, col:col + chunk_size, :] + outputs cnt += 1 fp.flush() del fp fp = np.memmap(tp_mem, dtype='float16', mode='r', shape=(h_, w_, num_classes)) pred_img = np.zeros((h_, w_), dtype=np.uint8) for row, col in tqdm(itertools.product(range(0, input_image.height, step), range(0, input_image.width, step)), leave=False, total=total_inf_windows, desc="Writing to array"): arr1 = fp[row:row + chunk_size, col:col + chunk_size, :] / (2 ** 2) arr1 = arr1.argmax(axis=-1).astype('uint8') pred_img[row:row + chunk_size, col:col + chunk_size] = arr1 pred_img = pred_img[:h, :w] end_seg = time.time() - start_seg logging.info('Segmentation operation completed in {:.0f}m {:.0f}s'.format(end_seg // 60, end_seg % 60)) if debug: logging.debug(f'Bin count of final output: {np.unique(pred_img, return_counts=True)}') gdf = None if label_arr is not None: start_seg_ = time.time() feature = defaultdict(list) cnt = 0 for row in tqdm(range(0, h, chunk_size), position=2, leave=False): for col in tqdm(range(0, w, chunk_size), position=3, leave=False): label = label_arr[row:row + chunk_size, col:col + chunk_size] pred = pred_img[row:row + chunk_size, col:col + chunk_size] pixelMetrics = ComputePixelMetrics(label.flatten(), pred.flatten(), num_classes) eval = pixelMetrics.update(pixelMetrics.iou) feature['id_image'].append(gpkg_name) for c_num in range(num_classes): feature['L_count_' + str(c_num)].append(int(np.count_nonzero(label == c_num))) feature['P_count_' + str(c_num)].append(int(np.count_nonzero(pred == c_num))) feature['IoU_' + str(c_num)].append(eval['iou_' + str(c_num)]) feature['mIoU'].append(eval['macro_avg_iou']) x_1, y_1 = (xmin + (col * xres)), (ymax - (row * yres)) x_2, y_2 = (xmin + ((col * xres) + mx)), y_1 x_3, y_3 = x_2, (ymax - ((row * yres) + my)) x_4, y_4 = x_1, y_3 geom = Polygon([(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)]) feature['geometry'].append(geom) feature['length'].append(geom.length) feature['pointx'].append(geom.centroid.x) feature['pointy'].append(geom.centroid.y) feature['area'].append(geom.area) cnt += 1 gdf = gpd.GeoDataFrame(feature, crs=input_image.crs) end_seg_ = time.time() - start_seg_ logging.info('Benchmark operation completed in {:.0f}m {:.0f}s'.format(end_seg_ // 60, end_seg_ % 60)) input_image.close() return pred_img, gdf def classifier(params, img_list, model, device, working_folder): """ Classify images by class :param params: :param img_list: :param model: :param device: :return: """ weights_file_name = params['inference']['state_dict_path'] num_classes = params['global']['num_classes'] bucket = params['global']['bucket_name'] classes_file = weights_file_name.split('/')[:-1] if bucket: class_csv = '' for folder in classes_file: class_csv = os.path.join(class_csv, folder) bucket.download_file(os.path.join(class_csv, 'classes.csv'), 'classes.csv') with open('classes.csv', 'rt') as file: reader = csv.reader(file) classes = list(reader) else: class_csv = '' for c in classes_file: class_csv = class_csv + c + '/' with open(class_csv + 'classes.csv', 'rt') as f: reader = csv.reader(f) classes = list(reader) classified_results = np.empty((0, 2 + num_classes)) for image in img_list: img_name = os.path.basename(image['tif']) # TODO: pathlib model.eval() if bucket: img = Image.open(f"Images/{img_name}").resize((299, 299), resample=Image.BILINEAR) else: img = Image.open(image['tif']).resize((299, 299), resample=Image.BILINEAR) to_tensor = torchvision.transforms.ToTensor() img = to_tensor(img) img = img.unsqueeze(0) with torch.no_grad(): img = img.to(device) outputs = model(img) _, predicted = torch.max(outputs, 1) top5 = heapq.nlargest(5, outputs.cpu().numpy()[0]) top5_loc = [] for i in top5: top5_loc.append(np.where(outputs.cpu().numpy()[0] == i)[0][0]) logging.info(f"Image {img_name} classified as {classes[0][predicted]}") logging.info('Top 5 classes:') for i in range(0, 5): logging.info(f"\t{classes[0][top5_loc[i]]} : {top5[i]}") classified_results = np.append(classified_results, [np.append([image['tif'], classes[0][predicted]], outputs.cpu().numpy()[0])], axis=0) csv_results = 'classification_results.csv' if bucket: np.savetxt(csv_results, classified_results, fmt='%s', delimiter=',') bucket.upload_file(csv_results, os.path.join(working_folder, csv_results)) # TODO: pathlib else: np.savetxt(os.path.join(working_folder, csv_results), classified_results, fmt='%s', # TODO: pathlib delimiter=',') def calc_inference_chunk_size(gpu_devices_dict: dict, max_pix_per_mb_gpu: int = 200): """ Calculate maximum chunk_size that could fit on GPU during inference based on thumb rule with hardcoded "pixels per MB of GPU RAM" as threshold. Threshold based on inference with a large model (Deeplabv3_resnet101) :param gpu_devices_dict: dictionary containing info on GPU devices as returned by lst_device_ids (utils.py) :param max_pix_per_mb_gpu: Maximum number of pixels that can fit on each MB of GPU (better to underestimate) :return: returns a downgraded evaluation batch size if the original batch size is considered too high """ # get max ram for smallest gpu smallest_gpu_ram = min(gpu_info['max_ram'] for _, gpu_info in gpu_devices_dict.items()) # rule of thumb to determine max chunk size based on approximate max pixels a gpu can handle during inference max_chunk_size = sqrt(max_pix_per_mb_gpu * smallest_gpu_ram) max_chunk_size_rd = int(max_chunk_size - (max_chunk_size % 256)) logging.info(f'Images will be split into chunks of {max_chunk_size_rd}') return max_chunk_size_rd def main(params: dict) -> None: """ Function to manage details about the inference on segmentation task. 1. Read the parameters from the config given. 2. Read and load the state dict from the previous training or the given one. 3. Make the inference on the data specifies in the config. ------- :param params: (dict) Parameters found in the yaml config file. """ # since = time.time() # PARAMETERS mode = get_key_def('mode', params, expected_type=str) task = get_key_def('task_name', params['task'], expected_type=str) model_name = get_key_def('model_name', params['model'], expected_type=str).lower() num_classes = len(get_key_def('classes_dict', params['dataset']).keys()) modalities = read_modalities(get_key_def('modalities', params['dataset'], expected_type=str)) BGR_to_RGB = get_key_def('BGR_to_RGB', params['dataset'], expected_type=bool) num_bands = len(modalities) debug = get_key_def('debug', params, default=False, expected_type=bool) # SETTING OUTPUT DIRECTORY try: state_dict = Path(params['inference']['state_dict_path']).resolve(strict=True) except FileNotFoundError: logging.info( f"\nThe state dict path directory '{params['inference']['state_dict_path']}' don't seem to be find," + f"we will try to locate a state dict path in the '{params['general']['save_weights_dir']}' " + f"specify during the training phase" ) try: state_dict = Path(params['general']['save_weights_dir']).resolve(strict=True) except FileNotFoundError: raise logging.critical( f"\nThe state dict path directory '{params['general']['save_weights_dir']}'" + f" don't seem to be find either, please specify the path to a state dict" ) # TODO add more detail in the parent folder working_folder = state_dict.parent.joinpath(f'inference_{num_bands}bands') logging.info("\nThe state dict path directory used '{}'".format(working_folder)) Path.mkdir(working_folder, parents=True, exist_ok=True) # LOGGING PARAMETERS TODO put option not just mlflow experiment_name = get_key_def('project_name', params['general'], default='gdl-training') try: tracker_uri = get_key_def('uri', params['tracker'], default=None, expected_type=str) Path(tracker_uri).mkdir(exist_ok=True) run_name = get_key_def('run_name', params['tracker'], default='gdl') # TODO change for something meaningful run_name = '{}_{}_{}'.format(run_name, mode, task) logging.info(f'\nInference and log files will be saved to: {working_folder}') # TODO change to fit whatever inport from mlflow import log_params, set_tracking_uri, set_experiment, start_run, log_artifact, log_metrics # tracking path + parameters logging set_tracking_uri(tracker_uri) set_experiment(experiment_name) start_run(run_name=run_name) log_params(dict_path(params, 'general')) log_params(dict_path(params, 'dataset')) log_params(dict_path(params, 'data')) log_params(dict_path(params, 'model')) log_params(dict_path(params, 'inference')) # meaning no logging tracker as been assigned or it doesnt exist in config/logging except ConfigKeyError: logging.info( "\nNo logging tracker as been assigned or the yaml config doesnt exist in 'config/tracker'." "\nNo tracker file will be save in that case." ) # MANDATORY PARAMETERS img_dir_or_csv = get_key_def( 'img_dir_or_csv_file', params['inference'], default=params['general']['raw_data_csv'], expected_type=str ) if not (Path(img_dir_or_csv).is_dir() or Path(img_dir_or_csv).suffix == '.csv'): raise logging.critical( FileNotFoundError( f'\nCouldn\'t locate .csv file or directory "{img_dir_or_csv}" containing imagery for inference' ) ) # load the checkpoint try: # Sort by modification time (mtime) descending sorted_by_mtime_descending = sorted( [os.path.join(state_dict, x) for x in os.listdir(state_dict)], key=lambda t: -os.stat(t).st_mtime ) last_checkpoint_save = find_first_file('checkpoint.pth.tar', sorted_by_mtime_descending) if last_checkpoint_save is None: raise FileNotFoundError # change the state_dict state_dict = last_checkpoint_save except FileNotFoundError as e: logging.error(f"\nNo file name 'checkpoint.pth.tar' as been found at '{state_dict}'") raise e task = get_key_def('task_name', params['task'], expected_type=str) # TODO change it next version for all task if task not in ['classification', 'segmentation']: raise logging.critical( ValueError(f'\nTask should be either "classification" or "segmentation". Got {task}') ) # OPTIONAL PARAMETERS dontcare_val = get_key_def("ignore_index", params["training"], default=-1, expected_type=int) num_devices = get_key_def('num_gpus', params['training'], default=0, expected_type=int) default_max_used_ram = 25 max_used_ram = get_key_def('max_used_ram', params['training'], default=default_max_used_ram, expected_type=int) max_used_perc = get_key_def('max_used_perc', params['training'], default=25, expected_type=int) scale = get_key_def('scale_data', params['augmentation'], default=[0, 1], expected_type=ListConfig) raster_to_vec = get_key_def('ras2vec', params['inference'], False) # FIXME not implemented with hydra # benchmark (ie when gkpgs are inputted along with imagery) dontcare = get_key_def("ignore_index", params["training"], -1) attribute_field = get_key_def('attribute_field', params['dataset'], None, expected_type=str) attr_vals = get_key_def('attribute_values', params['dataset'], None, expected_type=Sequence) if debug: logging.warning(f'\nDebug mode activated. Some debug features may mobilize extra disk space and ' f'cause delays in execution.') # Assert that all values are integers (ex.: to benchmark single-class model with multi-class labels) if attr_vals: for item in attr_vals: if not isinstance(item, int): raise ValueError(f'\nValue "{item}" in attribute_values is {type(item)}, expected int.') logging.info(f'\nInferences will be saved to: {working_folder}\n\n') if not (0 <= max_used_ram <= 100): logging.warning(f'\nMax used ram parameter should be a percentage. Got {max_used_ram}. ' f'Will set default value of {default_max_used_ram} %') max_used_ram = default_max_used_ram # AWS bucket = None bucket_file_cache = [] bucket_name = get_key_def('bucket_name', params['AWS']) # list of GPU devices that are available and unused. If no GPUs, returns empty dict gpu_devices_dict = get_device_ids(num_devices, max_used_ram_perc=max_used_ram, max_used_perc=max_used_perc) if gpu_devices_dict: chunk_size = calc_inference_chunk_size(gpu_devices_dict=gpu_devices_dict, max_pix_per_mb_gpu=50) logging.info(f"\nNumber of cuda devices requested: {num_devices}. " f"\nCuda devices available: {gpu_devices_dict}. " f"\nUsing {list(gpu_devices_dict.keys())[0]}\n\n") device = torch.device(f'cuda:{list(range(len(gpu_devices_dict.keys())))[0]}') else: chunk_size = get_key_def('chunk_size', params['inference'], default=512, expected_type=int) logging.warning(f"\nNo Cuda device available. This process will only run on CPU") device = torch.device('cpu') # CONFIGURE MODEL num_classes_backgr = add_background_to_num_class(task, num_classes) model, loaded_checkpoint, model_name = net(model_name=model_name, num_bands=num_bands, num_channels=num_classes_backgr, dontcare_val=dontcare_val, num_devices=1, net_params=params, inference_state_dict=state_dict) try: model.to(device) except RuntimeError: logging.info(f"\nUnable to use device. Trying device 0") device = torch.device(f'cuda' if gpu_devices_dict else 'cpu') model.to(device) # CREATE LIST OF INPUT IMAGES FOR INFERENCE try: # check if the data folder exist raw_data_dir = get_key_def('raw_data_dir', params['dataset']) my_data_path = Path(raw_data_dir).resolve(strict=True) logging.info("\nImage directory used '{}'".format(my_data_path)) data_path = Path(my_data_path) except FileNotFoundError: raw_data_dir = get_key_def('raw_data_dir', params['dataset']) raise logging.critical( "\nImage directory '{}' doesn't exist, please change the path".format(raw_data_dir) ) list_img = list_input_images( img_dir_or_csv, bucket_name, glob_patterns=["*.tif", "*.TIF"], in_case_of_path=str(data_path) ) # VALIDATION: anticipate problems with imagery and label (if provided) before entering main for loop valid_gpkg_set = set() for info in tqdm(list_img, desc='Validating imagery'): # validate_raster(info['tif'], num_bands, meta_map) if 'gpkg' in info.keys() and info['gpkg'] and info['gpkg'] not in valid_gpkg_set: validate_num_classes(vector_file=info['gpkg'], num_classes=num_classes, attribute_name=attribute_field, ignore_index=dontcare, attribute_values=attr_vals) assert_crs_match(info['tif'], info['gpkg']) valid_gpkg_set.add(info['gpkg']) logging.info('\nSuccessfully validated imagery') if valid_gpkg_set: logging.info('\nSuccessfully validated label data for benchmarking') if task == 'classification': classifier(params, list_img, model, device, working_folder) # FIXME: why don't we load from checkpoint in classification? elif task == 'segmentation': gdf_ = [] gpkg_name_ = [] # TODO: Add verifications? if bucket: bucket.download_file(loaded_checkpoint, "saved_model.pth.tar") # TODO: is this still valid? model, _ = load_from_checkpoint("saved_model.pth.tar", model) else: model, _ = load_from_checkpoint(loaded_checkpoint, model) # Save tracking TODO put option not just mlflow if 'tracker_uri' in locals() and 'run_name' in locals(): mode = get_key_def('mode', params, expected_type=str) task = get_key_def('task_name', params['task'], expected_type=str) run_name = '{}_{}_{}'.format(run_name, mode, task) # tracking path + parameters logging set_tracking_uri(tracker_uri) set_experiment(experiment_name) start_run(run_name=run_name) log_params(dict_path(params, 'inference')) log_params(dict_path(params, 'dataset')) log_params(dict_path(params, 'model')) # LOOP THROUGH LIST OF INPUT IMAGES for info in tqdm(list_img, desc='Inferring from images', position=0, leave=True): img_name = Path(info['tif']).name local_gpkg = Path(info['gpkg']) if 'gpkg' in info.keys() and info['gpkg'] else None gpkg_name = local_gpkg.stem if local_gpkg else None if bucket: local_img = f"Images/{img_name}" bucket.download_file(info['tif'], local_img) inference_image = f"Classified_Images/{img_name.split('.')[0]}_inference.tif" else: local_img = Path(info['tif']) Path.mkdir(working_folder.joinpath(local_img.parent.name), parents=True, exist_ok=True) inference_image = working_folder.joinpath(local_img.parent.name, f"{img_name.split('.')[0]}_inference.tif") temp_file = working_folder.joinpath(local_img.parent.name, f"{img_name.split('.')[0]}.dat") raster = rasterio.open(local_img, 'r') logging.info(f'\nReading original image: {raster.name}') inf_meta = raster.meta label = None if local_gpkg: logging.info(f'\nBurning label as raster: {local_gpkg}') local_img = clip_raster_with_gpkg(raster, local_gpkg) raster.close() raster = rasterio.open(local_img, 'r') logging.info(f'\nReading clipped image: {raster.name}') inf_meta = raster.meta label = vector_to_raster(vector_file=local_gpkg, input_image=raster, out_shape=(inf_meta['height'], inf_meta['width']), attribute_name=attribute_field, fill=0, # background value in rasterized vector. attribute_values=attr_vals) if debug: logging.debug(f'\nUnique values in loaded label as raster: {np.unique(label)}\n' f'Shape of label as raster: {label.shape}') pred, gdf = segmentation(param=params, input_image=raster, label_arr=label, num_classes=num_classes_backgr, gpkg_name=gpkg_name, model=model, chunk_size=chunk_size, device=device, scale=scale, BGR_to_RGB=BGR_to_RGB, tp_mem=temp_file, debug=debug) if gdf is not None: gdf_.append(gdf) gpkg_name_.append(gpkg_name) if local_gpkg and 'tracker_uri' in locals(): pixelMetrics = ComputePixelMetrics(label, pred, num_classes_backgr) log_metrics(pixelMetrics.update(pixelMetrics.iou)) log_metrics(pixelMetrics.update(pixelMetrics.dice)) pred = pred[np.newaxis, :, :].astype(np.uint8) inf_meta.update({"driver": "GTiff", "height": pred.shape[1], "width": pred.shape[2], "count": pred.shape[0], "dtype": 'uint8', "compress": 'lzw'}) logging.info(f'\nSuccessfully inferred on {img_name}\nWriting to file: {inference_image}') with rasterio.open(inference_image, 'w+', **inf_meta) as dest: dest.write(pred) del pred try: temp_file.unlink() except OSError as e: logging.warning(f'File Error: {temp_file, e.strerror}') if raster_to_vec: start_vec = time.time() inference_vec = working_folder.joinpath(local_img.parent.name, f"{img_name.split('.')[0]}_inference.gpkg") ras2vec(inference_image, inference_vec) end_vec = time.time() - start_vec logging.info('Vectorization completed in {:.0f}m {:.0f}s'.format(end_vec // 60, end_vec % 60)) if len(gdf_) >= 1: if not len(gdf_) == len(gpkg_name_): raise logging.critical(ValueError('\nbenchmarking unable to complete')) all_gdf =
pd.concat(gdf_)
pandas.concat
import os import pandas as pd import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from typing import Union, Optional, List, Dict from tqdm import tqdm from .basic_predictor import BasicPredictor from .utils import inverse_preprocess_data from common_utils_dev import to_parquet, to_abs_path COMMON_CONFIG = { "data_dir": to_abs_path(__file__, "../../../storage/dataset/dataset/v001/train"), "exp_dir": to_abs_path(__file__, "../../../storage/experiments/v001"), "test_data_dir": to_abs_path( __file__, "../../../storage/dataset/dataset/v001/test" ), } DATA_CONFIG = { "checkpoint_dir": "./check_point", "generate_output_dir": "./generated_output", "base_feature_assets": ["BTC-USDT"], } MODEL_CONFIG = { "lookback_window": 120, "batch_size": 512, "lr": 0.0001, "epochs": 10, "print_epoch": 1, "print_iter": 50, "save_epoch": 1, "criterion": "l2", "criterion_params": {}, "load_strict": False, "model_name": "BackboneV1", "model_params": { "in_channels": 86, "n_blocks": 5, "n_block_layers": 10, "growth_rate": 12, "dropout": 0.1, "channel_reduction": 0.5, "activation": "tanhexp", "normalization": "bn", "seblock": True, "sablock": True, }, } class PredictorV1(BasicPredictor): """ Functions: train(): train the model with train_data generate(save_dir: str): generate predictions & labels with test_data predict(X: torch.Tensor): gemerate prediction with given data """ def __init__( self, data_dir=COMMON_CONFIG["data_dir"], test_data_dir=COMMON_CONFIG["test_data_dir"], d_config={}, m_config={}, exp_dir=COMMON_CONFIG["exp_dir"], device="cuda", pin_memory=False, num_workers=8, mode="train", default_d_config=DATA_CONFIG, default_m_config=MODEL_CONFIG, ): super().__init__( data_dir=data_dir, test_data_dir=test_data_dir, d_config=d_config, m_config=m_config, exp_dir=exp_dir, device=device, pin_memory=pin_memory, num_workers=num_workers, mode=mode, default_d_config=default_d_config, default_m_config=default_m_config, ) def _invert_to_prediction(self, pred_abs_factor, pred_sign_factor): multiply = ((pred_sign_factor >= 0.5) * 1.0) + ((pred_sign_factor < 0.5) * -1.0) return pred_abs_factor * multiply def _compute_train_loss(self, train_data_dict): # Set train mode self.model.train() self.model.zero_grad() # Set loss pred_abs_factor, pred_sign_factor = self.model( x=train_data_dict["X"], id=train_data_dict["ID"] ) # Y loss loss = self.criterion(pred_abs_factor, train_data_dict["Y"].view(-1).abs()) * 10 loss += self.binary_criterion( pred_sign_factor, (train_data_dict["Y"].view(-1) >= 0) * 1.0 ) return ( loss, self._invert_to_prediction( pred_abs_factor=pred_abs_factor, pred_sign_factor=pred_sign_factor ), ) def _compute_test_loss(self, test_data_dict): # Set eval mode self.model.eval() # Set loss pred_abs_factor, pred_sign_factor = self.model( x=test_data_dict["X"], id=test_data_dict["ID"] ) # Y loss loss = self.criterion(pred_abs_factor, test_data_dict["Y"].view(-1).abs()) * 10 loss += self.binary_criterion( pred_sign_factor, (test_data_dict["Y"].view(-1) >= 0) * 1.0 ) return ( loss, self._invert_to_prediction( pred_abs_factor=pred_abs_factor, pred_sign_factor=pred_sign_factor ), ) def _step(self, train_data_dict): loss, _ = self._compute_train_loss(train_data_dict=train_data_dict) loss.backward() self.optimizer.step() return loss def _display_info(self, train_loss, test_loss, test_predictions, test_labels): pred_norm = test_predictions[test_predictions >= 0].abs().mean() label_norm = test_labels[test_labels >= 0].abs().mean() # Print loss info print( f""" [+] train_loss: {train_loss:.2f}, test_loss: {test_loss:.2f} | [+] pred_norm: {pred_norm:.2f}, label_norm: {label_norm:.2f}""" ) def _build_abs_bins(self, df): abs_bins = {} for column in df.columns: _, abs_bins[column] = pd.qcut( df[column].abs(), 10, labels=False, retbins=True ) abs_bins[column] = np.concatenate([[0], abs_bins[column][1:-1], [np.inf]]) return pd.DataFrame(abs_bins) def _build_probabilities(self, pred_sign_factor): return ((pred_sign_factor - 0.5) * 2).abs() def train(self): for epoch in range(self.model_config["epochs"]): if epoch <= self.last_epoch: continue for iter_ in tqdm(range(len(self.train_data_loader))): # Optimize train_data_dict = self._generate_train_data_dict() train_loss = self._step(train_data_dict=train_data_dict) # Display losses if epoch % self.model_config["print_epoch"] == 0: if iter_ % self.model_config["print_iter"] == 0: test_data_dict = self._generate_test_data_dict() test_loss, test_predictions = self._compute_test_loss( test_data_dict=test_data_dict ) self._display_info( train_loss=train_loss, test_loss=test_loss, test_predictions=test_predictions, test_labels=test_data_dict["Y"], ) # Store the check-point if (epoch % self.model_config["save_epoch"] == 0) or ( epoch == self.model_config["epochs"] - 1 ): self._save_model(model=self.model, epoch=epoch) def generate(self, save_dir=None): assert self.mode in ("test") self.model.eval() if save_dir is None: save_dir = self.data_config["generate_output_dir"] # Mutate 1 min to handle logic, entry: open, exit: open index = self.test_data_loader.dataset.index index = index.set_levels(index.levels[0] + pd.Timedelta(minutes=1), level=0) predictions = [] labels = [] probabilities = [] for idx in tqdm(range(len(self.test_data_loader))): test_data_dict = self._generate_test_data_dict() pred_abs_factor, pred_sign_factor = self.model( x=test_data_dict["X"], id=test_data_dict["ID"] ) preds = self._invert_to_prediction( pred_abs_factor=pred_abs_factor, pred_sign_factor=pred_sign_factor ) predictions += preds.view(-1).cpu().tolist() labels += test_data_dict["Y"].view(-1).cpu().tolist() probabilities += ( self._build_probabilities(pred_sign_factor=pred_sign_factor) .view(-1) .cpu() .tolist() ) predictions = (
pd.Series(predictions, index=index)
pandas.Series
import math import numpy as np import pandas as pd from typing import Any, Callable, Dict, List import pydynamo_brain.analysis as pdAnalysis from pydynamo_brain.model import FullState # Provide the length of the branch, and the length to the last branch. def branchLengths(fullState: FullState, branchIDList: List[str], **kwargs: Any) -> pd.DataFrame: result = {} for treeIdx, tree in enumerate(fullState.trees): fullLengths, lastBranchLengths = [], [] for branchID in branchIDList: branch = tree.getBranchByID(branchID) if branch is None: fullLengths.append(math.nan) lastBranchLengths.append(math.nan) else: full, last = branch.worldLengths() fullLengths.append(full) lastBranchLengths.append(last) result['length_%02d' % (treeIdx + 1)] = fullLengths result['lengthToLastBranch_%02d' % (treeIdx + 1)] = lastBranchLengths return pd.DataFrame(data=result, index=branchIDList).sort_index(axis=1) # For each branch, calculate filo type, and add as an int. # @see FiloTypes.py for mapping from that to meaning of the values. def branchType(fullState: FullState, branchIDList: List[str], **kwargs: Any) -> pd.DataFrame: nTrees = len(fullState.trees) filoTypes, added, subtracted, transitioned, masterChanged, masterNodes = \ pdAnalysis.addedSubtractedTransitioned(fullState.trees, **kwargs) intFiloTypes = filoTypes.astype(int) colNames = [('branchType_%02d' % (i + 1)) for i in range(nTrees)] return
pd.DataFrame(data=intFiloTypes.T, index=branchIDList, columns=colNames)
pandas.DataFrame
from itertools import product import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.validation import quality_mapping def test_ok_user_flagged(): assert quality_mapping.DESCRIPTION_MASK_MAPPING['OK'] == 0 assert quality_mapping.DESCRIPTION_MASK_MAPPING['USER FLAGGED'] == 1 def test_description_dict_version_compatibility(): for dict_ in quality_mapping.BITMASK_DESCRIPTION_DICT.values(): assert dict_['VERSION IDENTIFIER 0'] == 1 << 1 assert dict_['VERSION IDENTIFIER 1'] == 1 << 2 assert dict_['VERSION IDENTIFIER 2'] == 1 << 3 def test_latest_version_flag(): # test valid while only identifiers 0 - 2 present last_identifier = max( int(vi.split(' ')[-1]) for vi in quality_mapping.DESCRIPTION_MASK_MAPPING.keys() if vi.startswith('VERSION IDENTIFIER')) assert last_identifier == 2 assert (quality_mapping.LATEST_VERSION_FLAG == quality_mapping.LATEST_VERSION << 1) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask(flag_val): flag, mask = flag_val mask |= quality_mapping.LATEST_VERSION_FLAG ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([ mask, mask, quality_mapping.LATEST_VERSION_FLAG, mask, quality_mapping.LATEST_VERSION_FLAG])) @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_none(flag_invert): assert quality_mapping.convert_bool_flags_to_flag_mask( None, *flag_invert) is None @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_adds_latest_version(flag_invert): ser = pd.Series([0, 0, 0, 1, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask( ser, *flag_invert) assert (flags & quality_mapping.LATEST_VERSION_FLAG).all() @pytest.fixture() def ignore_latest_version(mocker): mocker.patch( 'solarforecastarbiter.validation.quality_mapping.LATEST_VERSION_FLAG', 0) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([mask, mask, 0, mask, 0])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_no_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, False) assert_series_equal(flags, pd.Series([0, 0, mask, 0, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return pd.Series([True, True, False, False]) out = f(_return_mask=True) assert_series_equal(out, pd.Series([latest, latest, mask, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags_tuple(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return pd.Series([True, True, False, False]), None out = f(_return_mask=True) assert_series_equal(out[0], pd.Series([latest, latest, mask, mask])) assert out[1] is None @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags_noop(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest inp = pd.Series([True, True, False, False]) @quality_mapping.mask_flags(flag) def f(): return inp out = f() assert_series_equal(out, inp) @pytest.mark.parametrize('flag,expected', [ (0b10, 1), (0b11, 1), (0b10010, 1), (0b10010010, 1), (0b100, 2), (0b110, 3), (0b1110001011111, 7) ]) def test_get_version(flag, expected): assert quality_mapping.get_version(flag) == expected def test_has_data_been_validated(): flags = pd.Series([0, 1, 2, 7]) out = quality_mapping.has_data_been_validated(flags) assert_series_equal(out, pd.Series([False, False, True, True])) @pytest.mark.parametrize('flag,desc,result', [ (0, 'OK', True), (1, 'OK', False), (2, 'OK', True), (3, 'OK', False), (0, 'USER FLAGGED', False), (3, 'USER FLAGGED', True), (0, 'CLEARSKY', False), (16, 'OK', False), (1, 'USER FLAGGED', True), (16, 'NIGHTTIME', True), (33, 'CLEARSKY', True), (33, 'NIGHTTIME', False), (33, ['OK', 'NIGHTTIME'], False), (33, ('OK', 'CLEARSKY', 'USER FLAGGED'), True), (2, ('OK', 'NIGHTTIME'), True), (9297, 'USER FLAGGED', True) ]) def test_check_if_single_value_flagged(flag, desc, result): flag |= quality_mapping.LATEST_VERSION_FLAG out = quality_mapping.check_if_single_value_flagged(flag, desc) assert out == result @pytest.mark.parametrize('flag', [0, 1]) def test_check_if_single_value_flagged_validation_error(flag): with pytest.raises(ValueError): quality_mapping.check_if_single_value_flagged(flag, 'OK') @pytest.mark.parametrize('desc', [33, b'OK', [1, 2], []]) def test_check_if_single_value_flagged_type_error(desc): with pytest.raises(TypeError): quality_mapping.check_if_single_value_flagged(2, desc) @pytest.mark.parametrize('desc', ['NOPE', 'MAYBE', ['YES', 'NO']]) def test_check_if_single_value_flagged_key_error(desc): with pytest.raises(KeyError): quality_mapping.check_if_single_value_flagged(2, desc) @pytest.mark.parametrize('flags,expected', [ (pd.Series([0, 1, 0]), pd.Series([False, False, False])), (pd.Series([2, 2, 2]), pd.Series([True, True, True])), (pd.Series([3, 2, 2]), pd.Series([False, True, True])), (pd.Series([3, 34, 130]), pd.Series([False, False, False])) ]) def test_which_data_is_ok(flags, expected): out = quality_mapping.which_data_is_ok(flags) assert_series_equal(out, expected) DESCRIPTIONS = ['USER FLAGGED', 'NIGHTTIME', 'CLEARSKY', 'SHADED', 'UNEVEN FREQUENCY', 'LIMITS EXCEEDED', 'CLEARSKY EXCEEDED', 'STALE VALUES', 'INTERPOLATED VALUES', 'CLIPPED VALUES', 'INCONSISTENT IRRADIANCE COMPONENTS', 'DAILY VALIDATION APPLIED'] DERIVED_DESCRIPTIONS = ['DAYTIME', 'DAYTIME STALE VALUES', 'DAYTIME INTERPOLATED VALUES'] @pytest.mark.parametrize('flag,expected', [ (2, pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], index=DESCRIPTIONS, dtype=bool)), (3, pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], index=DESCRIPTIONS, dtype=bool)), (35, pd.Series([1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], index=DESCRIPTIONS, dtype=bool)), (2 | 1 << 13 | 1 << 12 | 1 << 10, pd.Series([0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0], index=DESCRIPTIONS, dtype=bool)) ]) def test_check_for_all_descriptions(flag, expected): out = quality_mapping.check_for_all_descriptions(flag) assert_series_equal(out, expected) @pytest.mark.parametrize('flag', [0, 1]) def test_check_for_all_validation_fail(flag): with pytest.raises(ValueError): quality_mapping.check_for_all_descriptions(flag) def test_convert_mask_into_dataframe(): flags = (pd.Series([0, 0, 1, 1 << 12, 1 << 9 | 1 << 7 | 1 << 5]) | quality_mapping.LATEST_VERSION_FLAG) columns = DESCRIPTIONS + ['NOT VALIDATED'] + DERIVED_DESCRIPTIONS expected = pd.DataFrame([[0] * 13 + [1, 0, 0], [0] * 13 + [1, 0, 0], [1] + [0] * 12 + [1, 0, 0], [0] * 9 + [1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]], columns=columns, dtype=bool) out = quality_mapping.convert_mask_into_dataframe(flags) assert_frame_equal(out, expected) def test_convert_mask_into_dataframe_w_unvalidated(): flags = (pd.Series([0, 0, 1, 1 << 12, 1 << 9 | 1 << 7 | 1 << 5]) | quality_mapping.LATEST_VERSION_FLAG) flags.iloc[0] = 0 columns = DESCRIPTIONS + ['NOT VALIDATED'] + DERIVED_DESCRIPTIONS expected = pd.DataFrame([[0] * 12 + [1, 0, 0, 0], [0] * 13 + [1, 0, 0], [1] + [0] * 12 + [1, 0, 0], [0] * 9 + [1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]], columns=columns, dtype=bool) out = quality_mapping.convert_mask_into_dataframe(flags) assert_frame_equal(out, expected, check_like=True) def test_convert_mask_into_dataframe_all_unvalidated(): flags = pd.Series([0, 0, 1, 1, 0]) columns = ['NOT VALIDATED'] expected = pd.DataFrame([[1]] * 5, columns=columns, dtype=bool) out = quality_mapping.convert_mask_into_dataframe(flags) assert_frame_equal(out, expected, check_like=True) def test_convert_flag_frame_to_strings(): frame = pd.DataFrame({'FIRST': [True, False, False], 'SECOND': [False, False, True], 'THIRD': [True, False, True]}) expected = pd.Series(['FIRST, THIRD', 'OK', 'SECOND, THIRD']) out = quality_mapping.convert_flag_frame_to_strings(frame) assert_series_equal(expected, out) @pytest.mark.parametrize('expected,desc', [ (pd.Series([1, 0, 0, 0], dtype=bool), 'OK'), (pd.Series([0, 1, 0, 1], dtype=bool), 'USER FLAGGED'), (pd.Series([0, 0, 1, 0], dtype=bool), 'CLEARSKY EXCEEDED'), (pd.Series([0, 0, 0, 1], dtype=bool), 'CLEARSKY'), (pd.Series([0, 0, 0, 1], dtype=bool), 'CLIPPED VALUES'), (pd.Series([0, 0, 0, 0], dtype=bool), 'STALE VALUES'), ]) def test_check_if_series_flagged(expected, desc): flags =
pd.Series([2, 3, 2 | 1 << 9, 2 | 1 << 5 | 1 << 12 | 1])
pandas.Series
from math import sqrt import numpy as np import pandas as pd from sklearn.cross_decomposition import PLSRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import Classes.Configurations as cfg import os import seaborn as sns; sns.set() import matplotlib.pyplot as plt def partial_leasts_square_regression(x, y, train_split_percentage, file_name): # Define X and Y matrix after cleaned by PCA and Mahalanobis distance x_df = pd.DataFrame(x) y_df = pd.DataFrame(y) # split data to train and test x_test, x_train, y_test, y_train = train_test_split(x_df, y_df, test_size=train_split_percentage, random_state=0) # Train one PLS model for each Y parameter parameters = len(y_df.columns) models = [] rmsec = [] r2cal = [] rmsecv = [] r2cv = [] for i in range(parameters): if cfg.sigma_detection: x_sigma, y_sigma = do_sigma_pls(x_df, y_df.iloc[:, i], train_split_percentage) if cfg.polarization_test: x_sigma_r, y_sigma_r = polarization_reducer_by_amplitude_groups(x_sigma, y_sigma) i_model, i_rmsec, i_r2c, i_rmsecv, i_r2cv = do_pls(x_sigma_r, y_sigma_r, train_split_percentage) models.append(i_model) rmsec.append(i_rmsec) r2cal.append(i_r2c) rmsecv.append(i_rmsecv) r2cv.append(i_r2cv) med_x_pred_polarized(x_sigma_r, y_sigma_r, i_rmsec, i_r2c, i_rmsecv, i_r2cv, i_model, file_name + '\Figures\sigma_' + y_df.columns[i], i + 200, y_df.columns[i]) sigma_data_to_excel(file_name + '\SigmaReport_' + y_df.columns[i], pd.concat([x_sigma_r, y_sigma_r], axis=1, sort=False)) else: i_model, i_rmsec, i_r2c, i_rmsecv, i_r2cv = do_pls(x_sigma, y_sigma, train_split_percentage) models.append(i_model) rmsec.append(i_rmsec) r2cal.append(i_r2c) rmsecv.append(i_rmsecv) r2cv.append(i_r2cv) med_x_pred_sigma(x_sigma, y_sigma, i_rmsec, i_r2c, i_rmsecv, i_r2cv, i_model, file_name + '\Figures\sigma_' + y_df.columns[i], i + 200, y_df.columns[i]) sigma_data_to_excel(file_name + '\SigmaReport_' + y_df.columns[i], pd.concat([x_sigma, y_sigma], axis=1, sort=False)) else: if cfg.polarization_test: x_df_r, y_df_r = polarization_reducer_by_amplitude_groups(x_df, y_df.iloc[:, i]) i_model, i_rmsec, i_r2c, i_rmsecv, i_r2cv = do_pls(x_df_r, y_df_r, train_split_percentage) models.append(i_model) rmsec.append(i_rmsec) r2cal.append(i_r2c) rmsecv.append(i_rmsecv) r2cv.append(i_r2cv) med_x_pred_polarized(x_df_r, y_df_r, i_rmsec, i_r2c, i_rmsecv, i_r2cv, i_model, file_name + '\Figures\polarized_' + y_df.columns[i], i + 200, y_df.columns[i]) else: i_model, i_rmsec, i_r2c, i_rmsecv, i_r2cv = do_pls(x_df, y_df.iloc[:, i], train_split_percentage) models.append(i_model) rmsec.append(i_rmsec) r2cal.append(i_r2c) rmsecv.append(i_rmsecv) r2cv.append(i_r2cv) df_models_summary = pd.DataFrame( pd.concat([pd.DataFrame(list(y_df.columns)), pd.DataFrame(rmsec), pd.DataFrame(r2cal), pd.DataFrame(rmsecv), pd.DataFrame(r2cv)], axis=1)) s = pd.Series(['Parameter', 'RMSEC', 'R2CAL', 'RMSECV', 'R2CV']) df_models_summary = df_models_summary.transpose().set_index(s) df_y_resume = pd.DataFrame(y_df.describe().dropna()) df_indexes = pd.DataFrame(pd.concat([df_y_resume, df_models_summary], axis=0)) return df_indexes, df_models_summary, df_y_resume, models, x_train, y_train, x_test, y_test def do_pls(data_x, data_y, train_split_percentage): latent_variables = [] x_test, x_train, y_test, y_train = train_test_split(data_x, data_y, test_size=train_split_percentage, random_state=0) for i in range(20): pls = PLSRegression(n_components=(i + 1), scale=True) pls.fit(x_train, y_train) predicted_cv_y = pls.predict(x_test) mean_squared_error_cv = sqrt(mean_squared_error(y_test, predicted_cv_y)) latent_variables.append(mean_squared_error_cv) best_factor = np.argmin(latent_variables) pls2 = PLSRegression(n_components=(best_factor + 1), scale=True) pls2.fit(x_train, y_train) predicted_cal = pls2.predict(x_train) rmsec = sqrt(mean_squared_error(y_train, predicted_cal)) r2c = pls2.score(x_train, y_train) predicted_cv_y = pls2.predict(x_test) rmsecv = sqrt(mean_squared_error(y_test, predicted_cv_y)) r2v = pls2.score(x_test, y_test) plsfinal = PLSRegression(n_components=(best_factor + 1), scale=True) plsfinal.fit(data_x, data_y) return plsfinal, rmsec, r2c, rmsecv, r2v def do_sigma_pls(data_x, data_y, train_split_percentage): latent_variables = [] x_test, x_train, y_test, y_train = train_test_split(data_x, data_y, test_size=train_split_percentage, random_state=0) for i in range(20): pls = PLSRegression(n_components=(i + 1), scale=True) pls.fit(x_train, y_train) predicted_cv_y = pls.predict(x_test) mean_squared_error_cv = sqrt(mean_squared_error(y_test, predicted_cv_y)) latent_variables.append(mean_squared_error_cv) best_factor = np.argmin(latent_variables) pls_sigma = PLSRegression(n_components=(best_factor + 1), scale=True) pls_sigma.fit(data_x, data_y) predicted_cv_y_sigma = pd.DataFrame(pls_sigma.predict(data_x)) data_labels = pd.DataFrame(data_y.index) data_x = pd.DataFrame(data_x).reset_index(drop=True) data_y = pd.DataFrame(data_y).reset_index(drop=True) if cfg.sigma_percentage: percentual_error = pd.DataFrame(abs(data_y.iloc[:, 0] - predicted_cv_y_sigma.iloc[:, 0])) percentual_error = pd.DataFrame((percentual_error.iloc[:, 0] * 100) / data_y.iloc[:, 0]) df_x = pd.DataFrame(pd.DataFrame(pd.concat([data_x, percentual_error], axis=1))) df_x = df_x.drop(df_x[df_x.iloc[:, -1] > cfg.sigma_confidence].index) df_x.drop(df_x.columns[len(df_x.columns) - 1], axis=1, inplace=True) df_y = pd.DataFrame(pd.DataFrame(pd.concat([data_y, data_labels, percentual_error], axis=1))) df_y = df_y.drop(df_y[df_y.iloc[:, -1] > cfg.sigma_confidence].index) df_x.set_index(df_y.iloc[:, 1], inplace=True) df_y.set_index(df_x.index, inplace=True) df_y.drop(df_y.columns[len(df_y.columns) - 1], axis=1, inplace=True) return df_x, df_y else: abs_error = pd.DataFrame(abs(data_y.iloc[:, 0] - predicted_cv_y_sigma.iloc[:, 0])) df_x = pd.DataFrame(pd.DataFrame(pd.concat([data_x, abs_error], axis=1))) df_x = df_x.drop(df_x[df_x.iloc[:, -1] > cfg.sigma_confidence].index) df_x.drop(df_x.columns[len(df_x.columns) - 1], axis=1, inplace=True) df_y = pd.DataFrame(pd.DataFrame(pd.concat([data_y, abs_error], axis=1))) df_y = df_y.drop(df_y[df_y.iloc[:, -1] > cfg.sigma_confidence].index) df_x.set_index(df_y.iloc[:, 1], inplace=True) df_y.set_index(df_x.index, inplace=True) df_y.drop(df_y.columns[len(df_y.columns) - 1], axis=1, inplace=True) return df_x, df_y def run_pls(x, model): y_hat = model.predict(x) return y_hat def remove_rows_with_zeros(x, y): df_x =
pd.DataFrame(x)
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43":
pandas.StringDtype()
pandas.StringDtype
# Python infrastrukturelementer import subprocess import sys from typing import Dict, List, Set, Tuple, IO from enum import IntEnum # Kommandolinje- og databasehåndtering import click import fire.cli from fire.cli import firedb from fire.api.model import ( # Typingelementer fra databaseAPIet: Koordinat, Punkt, PunktInformation, PunktInformationType, Sag, Sagsevent, Sagsinfo, Srid, ) from sqlalchemy.orm import aliased from sqlalchemy.orm.exc import NoResultFound # Beregning import numpy as np import statsmodels.api as sm from math import sqrt from pyproj import Proj from scipy import stats # Datahåndtering import pandas as pd import xlsxwriter import xmltodict from datetime import datetime # ------------------------------------------------------------------------------ @click.group() def mtl(): """Motoriseret trigonometrisk nivellement: Arbejdsflow, beregning og analyse""" pass # ------------------------------------------------------------------------------ def get_observation_strings( filinfo: List[Tuple[str, float]], verbose: bool = False ) -> List[str]: """Pil observationsstrengene ud fra en række råfiler""" kol = IntEnum( "kol", "fra til dato tid L dH journal T setups sky sol vind sigt kommentar", start=0, ) observationer = list() for fil in filinfo: filnavn = fil[0] spredning = fil[1] if verbose: print("Læser " + filnavn + " med spredning ", spredning) try: with open(filnavn, "rt", encoding="utf-8") as obsfil: for line in obsfil: if "#" != line[0]: continue line = line.lstrip("#").strip() # Check at observationen er i et af de kendte formater tokens = line.split(" ", 13) assert len(tokens) in (9, 13, 14), ( "Malform input line: " + line + " i fil: " + filnavn ) # Bring observationen på kanonisk 14-feltform. for i in range(len(tokens), 13): tokens.append(0) if len(tokens) < 14: tokens.append('""') tokens[13] = tokens[13].lstrip('"').strip().rstrip('"') # Korriger de rædsomme dato/tidsformater tid = " ".join((tokens[kol.dato], tokens[kol.tid])) try: isotid = datetime.strptime(tid, "%d.%m.%Y %H.%M") except ValueError: sys.exit( "Argh - ikke-understøttet datoformat: '" + tid + "' i fil: " + filnavn ) # Reorganiser søjler og omsæt numeriske data fra strengrepræsentation til tal reordered = [ tokens[kol.journal], tokens[kol.fra], tokens[kol.til], float(tokens[kol.dH]), float(tokens[kol.L]), int(tokens[kol.setups]), spredning, tokens[kol.kommentar], isotid, float(tokens[kol.T]), int(tokens[kol.sky]), int(tokens[kol.sol]), int(tokens[kol.vind]), int(tokens[kol.sigt]), filnavn, ] observationer.append(reordered) except FileNotFoundError: print("Kunne ikke læse filen '" + filnavn + "'") return observationer # ------------------------------------------------------------------------------ def punkt_information(ident: str) -> PunktInformation: """Find alle informationer for et fikspunkt""" pi = aliased(PunktInformation) pit = aliased(PunktInformationType) try: punktinfo = ( firedb.session.query(pi) .filter(pit.name.startswith("IDENT:"), pi.tekst == ident) .first() ) except NoResultFound: fire.cli.print(f"Error! {ident} not found!", fg="red", err=True) sys.exit(1) if punktinfo is not None: fire.cli.print(f"Fandt {ident}", fg="green", err=False) else: fire.cli.print(f"Fandt ikke {ident}", fg="cyan", err=False) return punktinfo # ------------------------------------------------------------------------------ def punkt_kote(punktinfo: PunktInformation, koteid: int) -> Koordinat: """Find aktuelle koordinatværdi for koordinattypen koteid""" if punktinfo is None: return None for koord in punktinfo.punkt.koordinater: if koord.sridid != koteid: continue if koord.registreringtil is None: return koord return None # ------------------------------------------------------------------------------ def punkt_geometri(punktinfo: PunktInformation, ident: str) -> Tuple[float, float]: """Find placeringskoordinat for punkt""" if punktinfo is None: return (11, 56) try: geom = firedb.hent_geometri_objekt(punktinfo.punktid) # Turn the string "POINT (lon lat)" into the tuple "(lon, lat)" geo = eval(str(geom.geometri).lstrip("POINT").strip().replace(" ", ",")) # TODO: Perhaps just return (56,11) Kattegat pain instead assert len(geo) == 2, "Bad geometry format: " + str(geom.geometri) except NoResultFound: fire.cli.print(f"Error! Geometry for {ident} not found!", fg="red", err=True) sys.exit(1) return geo # ------------------------------------------------------------------------------ # TODO: Bør nok være en del af API # ------------------------------------------------------------------------------ def hent_sridid(db, srid: str) -> int: srider = db.hent_srider() for s in srider: if s.name == srid: return s.sridid # TODO: kast en undtagelse (throw an exception) return 0 # ------------------------------------------------------------------------------ def find_path(graph: Dict[str, Set[str]], start: str, end: str, path=[]): """ Mikroskopisk backtracking netkonnektivitetstest. Baseret på et essay af GvR fra https://www.python.org/doc/essays/graphs/, men her moderniseret fra Python 1.5 til 3.7 og modificeret til at arbejde på dict-over-set (originalen brugte dict-over-list) """ path = path + [start] if start == origin: return path if start not in graph: return None for node in graph[start]: if node not in path: newpath = path_to_origin(graph, node, origin, path) if newpath: return newpath return None # ------------------------------------------------------------------------------ # Eksempel: # # graph = { # 'A': {'B', 'C'}, # 'B': {'C', 'D'}, # 'C': {'D'}, # 'D': {'C'}, # 'E': {'F'}, # 'F': {'C'}, # 'G': {} # } # # print (path_to_origin (graph, 'A', 'C')) # print (path_to_origin (graph, 'A', 'G')) # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ def find_nyetablerede(projektnavn): """Opbyg oversigt over nyetablerede punkter""" print("Finder nyetablerede punkter") try: nyetablerede = pd.read_excel( projektnavn + ".xlsx", sheet_name="Nyetablerede punkter", usecols="A:E", dtype={ "Foreløbigt navn": np.object, "Endeligt navn": np.object, "φ": np.float64, "λ": np.float64, "Foreløbig kote": np.float64, }, ) except: nyetablerede = pd.DataFrame( columns=["Foreløbigt navn", "Endeligt navn", "φ", "λ", "Foreløbig kote"], ) assert nyetablerede.shape[0] == 0, "Forventede tom dataframe" # Sæt 'Foreløbigt navn'-søjlen som index, så vi kan adressere # som nyetablerede.at[punktnavn, elementnavn] return nyetablerede.set_index("Foreløbigt navn") # ------------------------------------------------------------------------------ def find_inputfiler(navn)-> List[Tuple[str, float]]: """Opbyg oversigt over alle input-filnavne og deres tilhørende spredning""" try: inputfiler = pd.read_excel( navn + ".xlsx", sheet_name="Filoversigt", usecols="C:E" ) except: sys.exit("Kan ikke finde filoversigt i projektfil") inputfiler = inputfiler[inputfiler["Filnavn"].notnull()] # Fjern blanklinjer filnavne = inputfiler["Filnavn"] spredning = inputfiler["σ"] assert len(filnavne) > 0, "Ingen inputfiler anført" return list(zip(filnavne, spredning)) # ------------------------------------------------------------------------------ def importer_observationer(): """Opbyg dataframe med observationer importeret fra rådatafil""" print("Importerer observationer") observationer = pd.DataFrame( get_observation_strings(find_inputfiler()), columns=[ "journal", "fra", "til", "dH", "L", "opst", "σ", "kommentar", "hvornår", "T", "sky", "sol", "vind", "sigt", "kilde", ], ) return observationer.sort_values(by="journal").set_index("journal").reset_index() # ------------------------------------------------------------------------------ def find_observationer(navn): """Opbyg dataframe med allerede importerede observationer""" print("Læser observationer") try: observationer = pd.read_excel( navn + ".xlsx", sheet_name="Observationer", usecols="A:P" ) except: observationer = importer_observationer() return observationer # ------------------------------------------------------------------------------ def opbyg_punktoversigt(navn, nyetablerede, alle_punkter, nye_punkter): # Læs den foreløbige punktoversigt, for at kunne se om der skal gås i databasen try: punktoversigt = pd.read_excel( navn + ".xlsx", sheet_name="Punktoversigt", usecols="A:L" ) except: punktoversigt = pd.DataFrame( columns=[ "punkt", "fix", "upub", "år", "kote", "σ", "ny", "ny σ", "Δ", "kommentar", "φ", "λ", ] ) assert punktoversigt.shape[0] == 0, "Forventede tom dataframe" print("Opbygger punktoversigt") # Find og tilføj de punkter, der mangler i punktoversigten. manglende_punkter = set(alle_punkter) - set(punktoversigt["punkt"]) pkt = list(punktoversigt["punkt"]) + list(manglende_punkter) # Forlæng punktoversigt, så der er plads til alle punkter punktoversigt = punktoversigt.reindex(range(len(pkt))) punktoversigt["punkt"] = pkt # Geninstaller 'punkt'-søjlen som indexsøjle punktoversigt = punktoversigt.set_index("punkt") # Hent kote og placering fra databasen hvis vi ikke allerede har den print("Checker for manglende kote og placering") koteid = np.nan for punkt in alle_punkter: if not pd.isna(punktoversigt.at[punkt, "kote"]): continue if punkt in nye_punkter: continue # Vi undgår tilgang til databasen hvis vi allerede har alle koter # ved først at hente koteid når vi ved vi har brug for den if np.isnan(koteid): koteid = hent_sridid(firedb, "EPSG:5799") # TODO: Klar det med try:..except i stedet assert koteid != 0, "DVR90 (EPSG:5799) ikke fundet i srid-tabel" info = punkt_information(punkt) kote = punkt_kote(info, koteid) if kote is not None: punktoversigt.at[punkt, "kote"] = kote.z punktoversigt.at[punkt, "σ"] = kote.sz punktoversigt.at[punkt, "år"] = kote.registreringfra.year geom = punkt_geometri(info, punkt) if pd.isna(punktoversigt.at[punkt, "φ"]): punktoversigt.at[punkt, "φ"] = geom[1] punktoversigt.at[punkt, "λ"] = geom[0] # Nyetablerede punkter er ikke i databasen, så hent eventuelle manglende # koter og placeringskoordinater i fanebladet 'Nyetablerede punkter' for punkt in nye_punkter: if pd.isna(punktoversigt.at[punkt, "kote"]): punktoversigt.at[punkt, "kote"] = nyetablerede.at[punkt, "<NAME>"] if
pd.isna(punktoversigt.at[punkt, "φ"])
pandas.isna
import pandas as pd import praw import os import sqlite3 r_cid = os.getenv('reddit_api') r_csec = os.getenv('reddit_api_sec') r_uag = os.getenv('reddit_user') def get_reddit(cid= r_cid, csec= r_csec, uag= r_uag, subreddit='wallstreetbets'): #connect to sqlite database conn = sqlite3.connect('stocks.sqlite') #connect to reddit reddit = praw.Reddit(client_id= cid, client_secret= csec, user_agent= uag) #get the new reddit posts posts = reddit.subreddit(subreddit).top('day', limit=100) #load the posts into a pandas dataframe p = [] for post in posts: if post.selftext != "": p.append([post.title, post.score, post.selftext]) else: p.append([post.title, post.score, post.url]) #create dataframe from list posts_df =
pd.DataFrame(p,columns=['title', 'score', 'post'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Jun 7 10:15:21 2019 @author: Hamid.t """ # importing libararies for calculations import pandas as pd import numpy as np # importing libraries for plots import matplotlib.pyplot as plt import seaborn as sns #importing libraries for laoding the dataset from sklearn.datasets import load_breast_cancer #importing libraries to calculate ROC from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve import os # preparing directories for saving plots os.makedirs('./plots/pairs', exist_ok=True) os.makedirs('./plots/comparative scatter', exist_ok=True) # loading data cancer = load_breast_cancer() y = cancer.target X = pd.DataFrame(cancer.data) # setting colum names X.columns= cancer.feature_names y_plot=pd.DataFrame(y) y_plot.columns=['diagnosis'] X_plot=X y_plot['diagnosis'].replace(1,'M',inplace=True) y_plot['diagnosis'].replace(0,'B',inplace=True) # droppinh empty rows before plotting X_plot.dropna(inplace=True) y_plot.dropna(inplace=True) frames=[X_plot,y_plot] data_com=
pd.concat(frames,axis=1)
pandas.concat
""" Author: <NAME> Last Updated: 21 jan 22 Purpose: Create heatmaps from google location history data. """ ##Libraries import json import pandas as pd import shapely.geometry as sg import datetime as dt import folium from folium.plugins import HeatMap, heat_map import os from dateutil import parser ##Setup pd.set_option('display.max_colwidth', None) os.chdir(r"C:\Users\gabee\OneDrive\Documents\Programming\Python\Google Location History") ##Variables dataURI = "C:/Users/gabee/OneDrive/Documents/Data/Google/Takeout/Location History/Records.json" worldBox = sg.box(-140, -20, 140, 70) ##Helper functions def pPrint(dictObj): print(json.dumps(dictObj, indent=4, sort_keys=True)) def extract_activity(record): try: return record["activity"][0]["activity"][0]["type"] except: return "MISSING" def parseData(json): #https://github.com/gboeing/data-visualization/blob/main/location-history/google-location-history-simple.ipynb #Datetime format df = pd.read_json(json) # parse lat, lon, and timestamp from the dict inside the locations column df['lat'] = df['locations'].map(lambda x: x['latitudeE7']) df['lon'] = df['locations'].map(lambda x: x['longitudeE7']) df['timestamp'] = df['locations'].map(lambda x: x['timestamp']) df['timestamp'] =
pd.to_datetime(df['timestamp'])
pandas.to_datetime
from __future__ import division import numpy as np import pandas as pd import pickle import os from math import ceil import matplotlib import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import seaborn as sns import warnings from sklearn.metrics import r2_score warnings.simplefilter("ignore") # colors = ["#3366cc", "#dc3912", "#109618", "#990099", "#ff9900"] colors = sns.color_palette('muted') labels = ['Remaining', 'First','Last'] def density_plot(df, Accuracy_base, Accuracy_LSTM, Accuracy_NG, save_fig, Out_put_name,model_name_list, Mean_or_median): model = model_name_list sns.set(font_scale=1.5) sns.set_style("white", {"legend.frameon": True}) plt.figure(figsize=(14, 7)) ax1 = plt.subplot(1, 2, 1) cols1 = [df, Accuracy_base, Accuracy_LSTM, Accuracy_NG] for i in range(len(cols1)): data = cols1[i]['first'] sns.kdeplot(data, ax=ax1, shade=True, color=colors[i], label=model[i],linewidth=2) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 1: if 'duration' in Out_put_name: plt.text(med - 0.02, 3.0, '{}'.format(round(med, 3)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) elif i== 2: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.1, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.1, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 0: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.3, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 3: if 'duration' in Out_put_name: plt.text(med - 0.02, 3.0, '{}'.format(round(med, 3)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) plt.xlim(0, 1.0) plt.ylim(0, 3.5) if 'location' in Out_put_name: ax1.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.xlabel('Prediction accuracy', fontsize=20) else: plt.xlabel('R'+r'$^2$', fontsize=20) plt.ylabel('Density', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) #, loc='upper right' else: plt.legend(fontsize=18) # plt.title('First activities',fontsize=20) # plt.text(-0.1, 1.05, '(a)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax1.transAxes) ax2 = plt.subplot(1, 2, 2) for i in range(len(cols1)): data = cols1[i]['Middle'] sns.kdeplot(data, ax=ax2, shade=True, color=colors[i], label=model[i], linewidth=2) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2, alpha = 1) if i == 1: if 'duration' in Out_put_name: plt.text(med - 0.01, 3.3, '{}'.format(round(med, 3)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i== 2: if 'duration' in Out_put_name: plt.text(med + 0.023, 3.0, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 0: if 'duration' in Out_put_name: plt.text(med + 0.01, 3.0, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.0, '{}%'.format(round(med* 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 3: if 'duration' in Out_put_name: plt.text(med + 0.01, 3.3, '{}'.format(round(med, 3)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med* 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) plt.xlim(0, 1.0) plt.ylim(0, 3.5) if 'location' in Out_put_name: ax2.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.xlabel('Prediction accuracy', fontsize=20) else: plt.xlabel('R'+r'$^2$', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) plt.ylabel('Density', fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) #, loc='upper right' else: plt.legend(fontsize=18) # plt.title('Remaining activities',fontsize=20) # plt.text(-0.1, 1.05, '(b)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax2.transAxes) plt.tight_layout() if save_fig == 0: plt.show() else: plt.savefig('img/' + Out_put_name, dpi=200) def density_plot_duration_error(df, Accuracy_base, Accuracy_LSTM, save_fig, Out_put_name, model_name_list, Mean_or_median): model = model_name_list sns.set(font_scale=1.5) sns.set_style("white", {"legend.frameon": True}) plt.figure(figsize=(14, 7)) ax1 = plt.subplot(1, 2, 1) cols1 = [df, Accuracy_base, Accuracy_LSTM] for i in range(len(cols1)): data = cols1[i]['first'] sns.kdeplot(data, ax=ax1, shade=True, color=colors[i], label=model[i]) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 0: plt.text(med + 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 2: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) # plt.xlim(0, 1.0) # plt.ylim(0, 3.5) # ax1.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) # plt.xlabel('Prediction Accuracy', fontsize=20) plt.ylabel('Density (Users)', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) # , loc='upper right' else: plt.legend(fontsize=18, loc='center right') # plt.title('First Activities', fontsize=20) # plt.text(-0.1, 1.05, '(a)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax1.transAxes) ax2 = plt.subplot(1, 2, 2) for i in range(len(cols1)): data = cols1[i]['Remaining'] sns.kdeplot(data, ax=ax2, shade=True, color=colors[i], label=model[i]) if Mean_or_median == 'Mean': med = data.mean() else: med = data.median() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 1: if 'duration' in Out_put_name: plt.text(med - 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 2: if 'duration' in Out_put_name: plt.text(med + 0.023, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) # plt.xlim(0, 1.0) # plt.ylim(0, 3.5) # ax2.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.yticks(fontsize=20) plt.xticks(fontsize=20) # plt.xlabel('Prediction Accuracy', fontsize=20) plt.ylabel('Density (User-level)', fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) # , loc='upper right' else: plt.legend(fontsize=18, loc='center right') # plt.title('Remaining Activities', fontsize=20) # plt.text(-0.1, 1.05, '(b)', fontdict={'size': 20, 'weight': 'bold'}, # transform=ax2.transAxes) plt.tight_layout() if save_fig == 0: plt.show() else: plt.savefig('img/' + Out_put_name, dpi=200) def density_plot_not_seperate_mid_first(df, Accuracy_base, Accuracy_LSTM, save_fig, Out_put_name, model_name_list): model = model_name_list sns.set(font_scale=1.5) sns.set_style("white", {"legend.frameon": True}) plt.figure(figsize=(7, 7)) ax1 = plt.subplot(1, 1, 1) cols1 = [df, Accuracy_base, Accuracy_LSTM] for i in range(len(cols1)): data = cols1[i]['all'] sns.kdeplot(data, ax=ax1, shade=True, color=colors[i], label=model[i]) med = data.mean() plt.axvline(med, color=colors[i], linestyle='dashed', linewidth=2) if i == 0: plt.text(med + 0.02, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) elif i == 2: if 'duration' in Out_put_name: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med + 0.02, 3.0, '{}%'.format(round(med * 100, 1)), horizontalalignment='left', verticalalignment='center', fontsize=18, color=colors[i]) else: plt.text(med - 0.01, 3.3, '{}%'.format(round(med * 100, 1)), horizontalalignment='right', verticalalignment='center', fontsize=18, color=colors[i]) plt.xlim(0, 1.0) plt.ylim(0, 3.5) ax1.set_xticklabels([str(i) + '%' for i in range(0, 101, 20)]) plt.xlabel('Prediction Accuracy', fontsize=20) plt.ylabel('Density (Users)', fontsize=20) plt.yticks(fontsize=20) plt.xticks(fontsize=20) if 'location' in Out_put_name: plt.legend(fontsize=18) # , loc='upper right' else: plt.legend(fontsize=18) # plt.tight_layout() if save_fig == 0: plt.show() else: plt.savefig('img/' + Out_put_name, dpi=200) def data_process_continuous(data): error_first_temp = (data['Predict1'].loc[data['activity_index']==0] - data['Ground_truth'].loc[data['activity_index']==0])/3600 Accuracy_first_temp = sum(np.array(data['Correct'].loc[data['activity_index']==0]))/data['Correct'].loc[data['activity_index']==0].count() data_temp = data.loc[data['activity_index']!=0] # data_temp = data error_Remaining_temp = (data_temp['Predict1'] - data_temp['Ground_truth'])/3600 Accuracy_temp = sum(np.array(data_temp['Correct']))/data_temp['Correct'].count() accuracy_all = sum(np.array(data['Correct']))/data['Correct'].count() return error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp,accuracy_all def calculate_error(result_df): # correct error data result_df.loc[result_df['Predict_duration'] > 86400, 'Predict_duration'] = 86400 result_df.loc[result_df['Predict_duration'] <= 0, 'Predict_duration'] = 1 ###### result_df['error_sq'] = (result_df['Predict_duration'] - result_df['Ground_truth_duration']) ** 2 result_df['error_abs'] = np.abs(result_df['Predict_duration'] - result_df['Ground_truth_duration']) RMSE = np.sqrt(np.mean(result_df['error_sq'])) MAPE = np.mean(result_df['error_abs'] / result_df['Ground_truth_duration']) MAE = np.mean(result_df['error_abs']) if len(result_df) > 0: R_sq = r2_score(result_df['Ground_truth_duration'], result_df['Predict_duration']) else: R_sq = None return RMSE, MAPE, MAE, R_sq def r_sq_for_two_parts(data,y_mean): data['RES'] = (data['Ground_truth_duration'] - data['Predict_duration'])**2 data['TOT'] = (data['Ground_truth_duration'] - y_mean)**2 R_sq = 1 - sum(data['RES'])/sum(data['TOT']) return R_sq def data_process_continuous_R_sq(data): _, _, _, R_sq_all = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_Remaining = data.loc[data['activity_index']!=0].copy() mean_y = np.mean(data['Ground_truth_duration']) R_sq_first = r_sq_for_two_parts(data_first, mean_y) if len(data_Remaining)>0: R_sq_Remaining = r_sq_for_two_parts(data_Remaining, mean_y) else: R_sq_Remaining = None return R_sq_first, R_sq_Remaining, R_sq_all def data_process_continuous_RMSE(data): RMSE_all, _, _, _ = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_Remaining = data.loc[data['activity_index']!=0].copy() RMSE_first, _, _, R_sq_first = calculate_error(data_first) RMSE_Remaining, _, _, R_sq_Remaining = calculate_error(data_Remaining) return RMSE_first, RMSE_Remaining, RMSE_all def data_process_continuous_MAPE(data): _, MAPE_all, _, _ = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_Remaining = data.loc[data['activity_index']!=0].copy() _, MAPE_first, _, R_sq_first = calculate_error(data_first) _, MAPE_Remaining, _, R_sq_Remaining = calculate_error(data_Remaining) return MAPE_first, MAPE_Remaining, MAPE_all def data_process_discrete(data): error_first_temp = (data['Predict1'].loc[data['activity_index']==0] - data['Ground_truth'].loc[data['activity_index']==0]) Accuracy_first_temp = sum(np.array(data['Correct'].loc[data['activity_index']==0]))/data['Correct'].loc[data['activity_index']==0].count() data_temp = data.loc[data['activity_index']!=0] # data_temp = data error_Remaining_temp = (data_temp['Predict1'] - data_temp['Ground_truth']) Accuracy_temp = sum(np.array(data_temp['Correct']))/data_temp['Correct'].count() accuracy_all = sum(np.array(data['Correct'])) / data['Correct'].count() return error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp, accuracy_all def generate_accuracy_file(individual_ID_list, output_fig, duration_error): error_list=[] total=0 error_Remaining = pd.DataFrame({'Remaining':[]}) error_first = pd.DataFrame({'first':[]}) error_Remaining_base = pd.DataFrame({'Remaining':[]}) error_first_base = pd.DataFrame({'first':[]}) Accuracy = {'Card_ID':[], 'Remaining':[],'first':[],'all':[]} Accuracy_base = {'Card_ID':[], 'Remaining':[],'first':[],'all':[]} Accuracy_LSTM = {'Card_ID': [], 'Remaining': [], 'first': [], 'all': []} Accuracy_NG = {'Card_ID': [], 'Remaining': [], 'first': [], 'all': []} # data Card_ID_used = [] # individual_ID_list = individual_ID_list[0:80] #############IOHMM for Card_ID in individual_ID_list: # if output_fig == 'duration': # file_name = data_path + 'results/result_' + str(Card_ID) + 'test' + '.csv' # else: # file_name = data_path + 'results/result_Location_' + str(Card_ID) + 'test' + '.csv' file_name = data_path + 'results/result_con_dur+loc_' + str(Card_ID) + 'test' + '.csv' if os.path.exists(file_name) == False: print(Card_ID,'does not exist for IOHMM') continue else: Card_ID_used.append(Card_ID) data = pd.read_csv(file_name) if output_fig == 'duration': if duration_error == 'RMSE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_RMSE(data) elif duration_error == 'MAPE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_MAPE(data) else: R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_R_sq(data) Accuracy['first'].append(R_sq_first) Accuracy['Remaining'].append(R_sq_Remaining) Accuracy['all'].append(R_sq_all) Accuracy['Card_ID'].append(Card_ID) else: error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp, accuracy_all = data_process_discrete(data) #print (error_first_temp) error_first = pd.concat([error_first, error_first_temp], axis = 0) error_Remaining = pd.concat([error_Remaining, error_Remaining_temp], axis = 0) Accuracy['first'].append(Accuracy_first_temp) Accuracy['Remaining'].append(Accuracy_temp) Accuracy['all'].append(accuracy_all) Accuracy['Card_ID'].append(Card_ID) # data ############## LSTM Card_ID_used_for_base = list(set(Card_ID_used)) for Card_ID in Card_ID_used_for_base: if output_fig == 'duration': # file_name = data_path + 'results/result_LSTM' + str(Card_ID) + 'test' + '.csv' file_name = data_path + 'results/result_LSTM_con_dur' + str(Card_ID) + 'test' + '.csv' #file_name = data_path + 'results/result_NGRAM_con_dur_' + str(Card_ID) + '.csv' else: file_name = data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'test' + '.csv' #file_name = data_path + 'results/result_NGRAM_location_' + str(Card_ID) + '.csv' if os.path.exists(file_name) == False: print(Card_ID,'does not exist for LSTM') continue data = pd.read_csv(file_name) if output_fig == 'duration': if duration_error == 'RMSE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_RMSE(data) elif duration_error == 'MAPE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_MAPE(data) else: R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_R_sq(data) Accuracy_LSTM['first'].append(R_sq_first) Accuracy_LSTM['Remaining'].append(R_sq_Remaining) Accuracy_LSTM['all'].append(R_sq_all) Accuracy_LSTM['Card_ID'].append(Card_ID) else: error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp, accuracy_all = data_process_discrete(data) #print (error_first_temp) error_first = pd.concat([error_first, error_first_temp], axis = 0) error_Remaining = pd.concat([error_Remaining, error_Remaining_temp], axis = 0) Accuracy_LSTM['first'].append(Accuracy_first_temp) Accuracy_LSTM['Remaining'].append(Accuracy_temp) Accuracy_LSTM['all'].append(accuracy_all) Accuracy_LSTM['Card_ID'].append(Card_ID) ############## NG Card_ID_used_for_base = list(set(Card_ID_used)) for Card_ID in Card_ID_used_for_base: if output_fig == 'duration': # file_name = data_path + 'results/result_LSTM' + str(Card_ID) + 'test' + '.csv' #file_name = data_path + 'results/result_LSTM_con_dur' + str(Card_ID) + 'test' + '.csv' file_name = data_path + 'results/result_NGRAM_con_dur_' + str(Card_ID) + '.csv' else: #file_name = data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'test' + '.csv' file_name = data_path + 'results/result_NGRAM_location_' + str(Card_ID) + '.csv' if os.path.exists(file_name) == False: print(Card_ID,'does not exist for NG') continue data = pd.read_csv(file_name) if output_fig == 'duration': if duration_error == 'RMSE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_RMSE(data) elif duration_error == 'MAPE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_MAPE(data) else: R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_R_sq(data) Accuracy_NG['first'].append(R_sq_first) Accuracy_NG['Remaining'].append(R_sq_Remaining) Accuracy_NG['all'].append(R_sq_all) Accuracy_NG['Card_ID'].append(Card_ID) else: error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp, accuracy_all = data_process_discrete(data) #print (error_first_temp) error_first = pd.concat([error_first, error_first_temp], axis = 0) error_Remaining = pd.concat([error_Remaining, error_Remaining_temp], axis = 0) Accuracy_NG['first'].append(Accuracy_first_temp) Accuracy_NG['Remaining'].append(Accuracy_temp) Accuracy_NG['all'].append(accuracy_all) Accuracy_NG['Card_ID'].append(Card_ID) ############## MC for Card_ID in Card_ID_used_for_base: if output_fig == 'duration': # file_name = data_path + 'results/result_MC' + str(Card_ID) + '.csv' file_name = data_path + 'results/result_LR' + str(Card_ID) + 'test.csv' else: file_name = data_path + 'results/result_Location_MC' + str(Card_ID) + '.csv' if not os.path.exists(file_name): print(Card_ID, 'does not exist for Base') continue data = pd.read_csv(file_name) if output_fig == 'duration': if duration_error == 'RMSE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_RMSE(data) elif duration_error == 'MAPE': R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_MAPE(data) else: R_sq_first, R_sq_Remaining, R_sq_all = data_process_continuous_R_sq(data) Accuracy_base['first'].append(R_sq_first) Accuracy_base['Remaining'].append(R_sq_Remaining) Accuracy_base['all'].append(R_sq_all) Accuracy_base['Card_ID'].append(Card_ID) else: error_first_temp, Accuracy_first_temp, error_Remaining_temp, Accuracy_temp, accuracy_all = data_process_discrete(data) # print (error_first_temp) error_first_base = pd.concat([error_first_base, error_first_temp], axis=0) error_Remaining_base =
pd.concat([error_Remaining_base, error_Remaining_temp], axis=0)
pandas.concat
#%% # --------------------------------- # 사전 준비(데이터 등 기타) # ---------------------------------- import numpy as np import pandas as pd # train_x는 학습 데이터, train_y는 목적 변수, test_x는 테스트 데이터 # pandas의 DataFrame, Series을 사용합니다. (numpy의 array로 사용하기도 합니다.) train =
pd.read_csv('../input/sample-data/train.csv')
pandas.read_csv
import os import random import numpy as np import pandas as pd import scanpy as sc from tqdm import tqdm from multiprocessing import Pool, RLock class Sampling: def sample(self, ncells=10000, pop_fp=None, sim_fp=None, cache=True, return_data=False): print (f"Simulation: {self.network_name} Sampling Cells...", flush=True) cells_meta, gene_expr = self.sampling_cells(ncells, sim_fp) print (f"Simulation: {self.network_name} Sampling Molecules...", flush=True) lib_sizes = self.sampling_molecules(gene_expr, pop_fp) cells_meta = self.clean_cells_metadata(cells_meta, lib_sizes) cells_meta = cells_meta.reset_index(drop=True) if cache: print (f"Simulation: {self.network_name} Caching....", flush=True) cells_meta.to_csv(os.path.join(self.metadata_dir, 'cells_metadata.csv.gz'), compression='gzip', index=False) if return_data: fp = os.path.join(self.metadata_dir, 'gene_expression.csv.gz') gene_expr = pd.read_csv(fp, dtype=np.int16) return cells_meta, gene_expr else: return None, None def sampling_cells(self, ncells, sim_fp): if sim_fp is None: sim_fp = os.path.join(self.results_dir, 'simulated_counts.csv.gz') self.cell_sim_meta = pd.read_csv(f'{self.results_dir}/cell_metadata.csv.gz') self.cell_sim_meta = self.cell_sim_meta.reset_index().rename(columns={'index': 'cell_i'}) if ncells > self.cell_sim_meta.shape[0]: raise Exception(f"Simulation: {self.network_name} Number of cells requested is greater than the number of cells simulated. Sample fewer cells...") cells_meta = [] cells = np.array([i for i in range(self.cell_sim_meta.shape[0])]) cells_meta = self.get_cells_meta() cells = self.sample_cells_per_grna(cells_meta, ncells) cells_meta = cells_meta.iloc[cells] gene_expr = self.load_cells(cells, sim_fp) return cells_meta, gene_expr def sampling_molecules(self, gene_expr, pop_fp=None): if pop_fp is None: pop = sc.read_loom(self.pop_fp) else: pop = sc.read_loom(pop_fp) realcounts = pop.X.toarray() cell_umi = pop.obs.total_counts.values lib_size = self.calc_library_size(cell_umi, gene_expr) self.downsampling(realcounts, gene_expr, lib_size) return lib_size def clean_cells_metadata(self, meta, lib_sizes): meta['lib_size'] = lib_sizes meta['grna'] = meta['sim_label'].apply(lambda x: "_".join(x.split('_')[0:2])) meta['target_gene'] = meta['sim_label'].apply(lambda x: x.split('-grna')[0]) if self.crispr_type == 'knockout': meta['is_cell_perturbed'] = meta['sim_label'].apply(lambda x: x.split('_')[-1]) meta.loc[meta.target_gene == self.ctrl_label, 'is_cell_perturbed'] = self.ctrl_label else: meta['is_cell_perturbed'] = 'PRT' meta.loc[meta.target_gene == self.ctrl_label, 'is_cell_perturbed'] = self.ctrl_label meta = meta.reset_index(drop=True) return meta def load_cells(self, sampled_cells, sim_fp): df =
pd.read_csv(sim_fp, dtype=np.int16)
pandas.read_csv
from finrl_meta.data_processors.processor_alpaca import AlpacaProcessor as Alpaca from finrl_meta.data_processors.processor_wrds import WrdsProcessor as Wrds from finrl_meta.data_processors.processor_yahoofinance import YahooFinanceProcessor as YahooFinance from finrl_meta.data_processors.processor_binance import BinanceProcessor as Binance from finrl_meta.data_processors.processor_ricequant import RiceQuantProcessor as RiceQuant from finrl_meta.data_processors.processor_joinquant import JoinquantProcessor from finrl_meta.data_processors.processor_tusharepro import TushareProProcessor as Tusharepro import pandas as pd import numpy as np import os class DataProcessor(): def __init__(self, data_source, **kwargs): self.data_source = data_source self.dataframe = pd.DataFrame() if self.data_source == 'alpaca': try: # users should input values: kwargs['API_KEY'], kwargs['API_SECRET'], kwargs['APCA_API_BASE_URL'], kwargs['API'] self.processor = Alpaca(data_source, **kwargs) print('Alpaca successfully connected') except: raise ValueError('Please input correct account info for alpaca!') elif self.data_source == "joinquant": try: # users should input values: kwargs['username'], kwargs['password'] self.processor = JoinquantProcessor(data_source, **kwargs) print('Joinquant successfully connected') except: raise ValueError('Please input correct account info for joinquant!') elif self.data_source == 'ricequant': try: # users should input values: kwargs['username'], kwargs['password'] self.processor = RiceQuant(data_source, **kwargs) print('Ricequant successfully connected') except: raise ValueError('Please input correct account info for ricequant!') elif self.data_source == 'wrds': try: # users should input values: kwargs['if_offline'] self.processor = Wrds(data_source, **kwargs) print('Wrds successfully connected') except: raise ValueError('Please input correct account info for wrds!') elif self.data_source == 'yahoofinance': try: self.processor = YahooFinance(data_source, **kwargs) print('Yahoofinance successfully connected') except: raise ValueError('Please input correct account info for yahoofinance!') elif self.data_source == 'binance': try: self.processor = Binance(data_source, **kwargs) print('Binance successfully connected') except: raise ValueError('Please input correct account info for binance!') elif self.data_source == "tusharepro": try: # users should input values: kwargs['token'], choose to input values: kwargs['adj'] self.processor = Tusharepro(data_source, **kwargs) print('tusharepro successfully connected') except: raise ValueError('Please input correct account info for tusharepro!') else: raise ValueError('Data source input is NOT supported yet.') def download_data(self, ticker_list, start_date, end_date, time_interval): self.processor.download_data(ticker_list=ticker_list, start_date=start_date, end_date=end_date, time_interval=time_interval) self.dataframe = self.processor.dataframe def clean_data(self): self.processor.dataframe = self.dataframe self.processor.clean_data() self.dataframe = self.processor.dataframe def add_technical_indicator(self, tech_indicator_list): self.tech_indicator_list = tech_indicator_list self.processor.add_technical_indicator(tech_indicator_list) self.dataframe = self.processor.dataframe def add_turbulence(self): self.processor.add_turbulence() self.dataframe = self.processor.dataframe def add_vix(self): self.processor.add_vix() self.dataframe = self.processor.dataframe def df_to_array(self, if_vix) -> np.array: price_array, tech_array, turbulence_array = self.processor.df_to_array(self.tech_indicator_list, if_vix) # fill nan with 0 for technical indicators tech_nan_positions = np.isnan(tech_array) tech_array[tech_nan_positions] = 0 return price_array, tech_array, turbulence_array def run(self, ticker_list, start_date, end_date, time_interval, technical_indicator_list, if_vix, cache=False): if time_interval == "1s" and self.data_source != "binance": raise ValueError("Currently 1s interval data is only supported with 'binance' as data source") cache_csv = '_'.join(ticker_list + [self.data_source, start_date, end_date, time_interval]) + '.csv' cache_dir = './cache' cache_path = os.path.join(cache_dir, cache_csv) if cache and os.path.isfile(cache_path): print('Using cached file {}'.format(cache_path)) self.tech_indicator_list = technical_indicator_list self.dataframe =
pd.read_csv(cache_path)
pandas.read_csv
""" Tasks ------- Search and transform jsonable structures, specifically to make it 'easy' to make tabular/csv output for other consumers. Example ~~~~~~~~~~~~~ *give me a list of all the fields called 'id' in this stupid, gnarly thing* >>> Q('id',gnarly_data) ['id1','id2','id3'] Observations: --------------------- 1) 'simple data structures' exist and are common. They are tedious to search. 2) The DOM is another nested / treeish structure, and jQuery selector is a good tool for that. 3a) R, Numpy, Excel and other analysis tools want 'tabular' data. These analyses are valuable and worth doing. 3b) Dot/Graphviz, NetworkX, and some other analyses *like* treeish/dicty things, and those analyses are also worth doing! 3c) Some analyses are best done using 'one-off' and custom code in C, Python, or another 'real' programming language. 4) Arbitrary transforms are tedious and error prone. SQL is one solution, XSLT is another, 5) the XPATH/XML/XSLT family is.... not universally loved :) They are very complete, and the completeness can make simple cases... gross. 6) For really complicated data structures, we can write one-off code. Getting 80% of the way is mostly okay. There will always have to be programmers in the loop. 7) Re-inventing SQL is probably a failure mode. So is reinventing XPATH, XSLT and the like. Be wary of mission creep! Re-use when possible (e.g., can we put the thing into a DOM using 8) If the interface is good, people can improve performance later. Simplifying --------------- 1) Assuming 'jsonable' structures 2) keys are strings or stringlike. Python allows any hashable to be a key. for now, we pretend that doesn't happen. 3) assumes most dicts are 'well behaved'. DAG, no cycles! 4) assume that if people want really specialized transforms, they can do it themselves. """ from __future__ import print_function from collections import namedtuple import csv import itertools from itertools import product from operator import attrgetter as aget, itemgetter as iget import operator import sys from pandas.compat import map, u, callable, Counter import pandas.compat as compat ## note 'url' appears multiple places and not all extensions have same struct ex1 = { 'name': 'Gregg', 'extensions': [ {'id':'hello', 'url':'url1'}, {'id':'gbye', 'url':'url2', 'more': dict(url='url3')}, ] } ## much longer example ex2 = {u('metadata'): {u('accessibilities'): [{u('name'): u('accessibility.tabfocus'), u('value'): 7}, {u('name'): u('accessibility.mouse_focuses_formcontrol'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret'), u('value'): False}, {u('name'): u('accessibility.win32.force_disabled'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.startlinksonly'), u('value'): False}, {u('name'): u('accessibility.usebrailledisplay'), u('value'): u('')}, {u('name'): u('accessibility.typeaheadfind.timeout'), u('value'): 5000}, {u('name'): u('accessibility.typeaheadfind.enabletimeout'), u('value'): True}, {u('name'): u('accessibility.tabfocus_applies_to_xul'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.flashBar'), u('value'): 1}, {u('name'): u('accessibility.typeaheadfind.autostart'), u('value'): True}, {u('name'): u('accessibility.blockautorefresh'), u('value'): False}, {u('name'): u('accessibility.browsewithcaret_shortcut.enabled'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.enablesound'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.prefillwithselection'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.soundURL'), u('value'): u('beep')}, {u('name'): u('accessibility.typeaheadfind'), u('value'): False}, {u('name'): u('accessibility.typeaheadfind.casesensitive'), u('value'): 0}, {u('name'): u('accessibility.warn_on_browsewithcaret'), u('value'): True}, {u('name'): u('accessibility.usetexttospeech'), u('value'): u('')}, {u('name'): u('accessibility.accesskeycausesactivation'), u('value'): True}, {u('name'): u('accessibility.typeaheadfind.linksonly'), u('value'): False}, {u('name'): u('isInstantiated'), u('value'): True}], u('extensions'): [{u('id'): u('216ee7f7f4a5b8175374cd62150664efe2433a31'), u('isEnabled'): True}, {u('id'): u('1aa53d3b720800c43c4ced5740a6e82bb0b3813e'), u('isEnabled'): False}, {u('id'): u('01ecfac5a7bd8c9e27b7c5499e71c2d285084b37'), u('isEnabled'): True}, {u('id'): u('1c01f5b22371b70b312ace94785f7b0b87c3dfb2'), u('isEnabled'): True}, {u('id'): u('fb723781a2385055f7d024788b75e959ad8ea8c3'), u('isEnabled'): True}], u('fxVersion'): u('9.0'), u('location'): u('zh-CN'), u('operatingSystem'): u('WINNT Windows NT 5.1'), u('surveyAnswers'): u(''), u('task_guid'): u('d69fbd15-2517-45b5-8a17-bb7354122a75'), u('tpVersion'):
u('1.2')
pandas.compat.u
import datetime import matplotlib.pyplot as plt import mpl_finance import numpy as np import pandas as pd import tushare as ts from lib.token import TOKEN from setting import split_span # setting pro api, please use your own token, back for work test ts.set_token(TOKEN) PRO = ts.pro_api() def date_split(start_date, end_date, span=split_span): """ utility func to split dates into a list of time spans Parameters ---------- start_date: str start date with format yyyymmdd end_date: str end date with format yyyymmdd span:int days of time span, must > 1 or there will be bug Returns ------- list of start/end date tuples ("yyyymmdd", "yyyymmdd") """ start_date = datetime.datetime.strptime(start_date, "%Y%m%d") end_date = datetime.datetime.strptime(end_date, "%Y%m%d") time_spans = [] while (end_date - start_date).days > span: s = datetime.datetime.strftime(start_date, "%Y%m%d") start_date = start_date + datetime.timedelta(span) e = datetime.datetime.strftime(start_date - datetime.timedelta(1), "%Y%m%d") time_spans.append((s, e)) s = datetime.datetime.strftime(start_date, "%Y%m%d") e = datetime.datetime.strftime(end_date, "%Y%m%d") time_spans.append((s, e)) return time_spans def hist_data_down(stock_id, start_date, end_date): """ utility func to download historical trade data Parameters ---------- stock_id: str stock id code start_date: str start date with format yyyymmdd end_date: str end date with format yyyymmdd Returns ------- df of stock trade history data """ time_spans = date_split(start_date, end_date) dfs = [] for start, end in reversed(time_spans): try: d = PRO.daily(ts_code=stock_id, start_date=start, end_date=end) dfs.append(d) except: raise RuntimeError("{} to {} download error".format(start, end)) df =
pd.concat(dfs, axis=0)
pandas.concat
import requests import pandas as pd import pickle import datetime import guithread import numpy as np import concurrent.futures import time from os import makedirs from config import text_width, max_thread_count class Acquisition(guithread.GUIThread): def __init__(self, filename='default.csv', brain_region='All', species='All', cell_type='All'): self.filename = filename self.brain_region, self.species, self.cell_type = brain_region, species, cell_type self.session = requests.Session() self.params_widg = {} if brain_region != 'All': self.params_widg['brain_region'] = 'brain_region:' + brain_region if species != 'All': self.params_widg['species'] = 'species:' + species if cell_type != 'All': self.params_widg['cell_type'] = 'cell_type:' + cell_type self.params = {} self.params['page'] = 0 self.params['size'] = 500 fq = [] first = 0 for key, value in self.params_widg.items(): if first == 0: first = 1 self.params['q'] = value else: fq.append(value) self.params['fq'] = fq if brain_region == 'All' and species == 'All' and cell_type == 'All': self.url = 'http://neuromorpho.org/api/neuron' else: self.url = 'http://neuromorpho.org/api/neuron/select' super().__init__() def get_first_page(self): brain_region, species, cell_type = self.brain_region, self.species, self.cell_type s = self.session first_page_response = s.get(self.url, params=self.params) print(first_page_response.json()) if first_page_response.status_code == 404 or first_page_response.status_code == 500: self.print_to_textbox("Unable to get CSV! Status code: " + str(first_page_response.status_code)) return 0 elif 'status' in first_page_response.json() and first_page_response.json()['status'] == 500: self.print_to_textbox("Unable to get CSV! Status code: " + str(first_page_response.json()['status'])) return 0 print(str(first_page_response.request.url)) print(first_page_response.status_code) return first_page_response.json()['page']['totalPages'], first_page_response.json()['page']['totalElements'] def get_morphometry(self, np_array): morphometry = [] for i in np_array: url = "http://neuromorpho.org/api/morphometry/id/" + str(i) response = self.session.get(url) response.raise_for_status() json_data = response.json() morphometry.append(json_data) if response.status_code == 200: text_status_code = '\u2705' else: text_status_code = '\u274C' self.print_to_textbox('Querying cells {} -> status code: {} {}'.format( str(i), response.status_code, text_status_code) ) return morphometry def run(self): file_name = "" try: brain_region, species, cell_type = self.brain_region, self.species, self.cell_type s = self.session starttime = datetime.datetime.now() self.set_progress(0) self.print_to_textbox(brain_region + '\n' + species + '\n' + cell_type + '\n') totalPages, totalElements = self.get_first_page() self.print_to_textbox("Getting Neurons - total elements:" + str(totalElements) + "\nDo you want to continue?") timer = 10 while self.is_paused and not self.is_killed: time.sleep(1) timer -= 1 self.print_to_textbox("Will continue in: " + str(timer) + " seconds") if timer == 0: break if self.is_killed: self.print_to_textbox("CANCELLED!!!") self.print_to_textbox("\n" + "#" * text_width + "\n") self.set_progress(0) return 0 self.print_to_textbox("Continuing...") df_dict = { 'NeuronID': list(), 'Neuron Name': list(), 'Archive': list(), 'Note': list(), 'Age Scale': list(), 'Gender': list(), 'Age Classification': list(), 'Brain Region': list(), 'Cell Type': list(), 'Species': list(), 'Strain': list(), 'Scientific Name': list(), 'Stain': list(), 'Experiment Condition': list(), 'Protocol': list(), 'Slicing Direction': list(), 'Reconstruction Software': list(), 'Objective Type': list(), 'Original Format': list(), 'Domain': list(), 'Attributes': list(), 'Magnification': list(), 'Upload Date': list(), 'Deposition Date': list(), 'Shrinkage Reported': list(), 'Shrinkage Corrected': list(), 'Reported Value': list(), 'Reported XY': list(), 'Reported Z': list(), 'Corrected Value': list(), 'Corrected XY': list(), 'Corrected Z': list(), 'Slicing Thickness': list(), 'Min Age': list(), 'Max Age': list(), 'Min Weight': list(), 'Max Weight': list(), 'Png URL': list(), 'Reference PMID': list(), 'Reference DOI': list(), 'Physical Integrity': list()} self.print_to_textbox("Getting Neurons - total pages:" + str(totalPages)) progress_step = 20.0/totalPages for pageNum in range(totalPages): self.params['page'] = pageNum response = s.get(self.url, params=self.params) if response.status_code == 200: text_status_code = '\u2705' else: text_status_code = '\u274C' self.print_to_textbox('Querying page {} -> status code: {} {}'.format( pageNum, response.status_code, text_status_code)) if response.status_code == 200: # only parse successful requests data = response.json() for row in data['_embedded']['neuronResources']: df_dict['NeuronID'].append(str(row['neuron_id'])) df_dict['Neuron Name'].append(str(row['neuron_name'])) df_dict['Archive'].append(str(row['archive'])) df_dict['Note'].append(str(row['note'])) df_dict['Age Scale'].append(str(row['age_scale'])) df_dict['Gender'].append(str(row['gender'])) df_dict['Age Classification'].append(str(row['age_classification'])) df_dict['Brain Region'].append(str(row['brain_region'])) df_dict['Cell Type'].append(str(row['cell_type'])) df_dict['Species'].append(str(row['species'])) df_dict['Strain'].append(str(row['strain'])) df_dict['Scientific Name'].append(str(row['scientific_name'])) df_dict['Stain'].append(str(row['stain'])) df_dict['Experiment Condition'].append(str(row['experiment_condition'])) df_dict['Protocol'].append(str(row['protocol'])) df_dict['Slicing Direction'].append(str(row['slicing_direction'])) df_dict['Reconstruction Software'].append(str(row['reconstruction_software'])) df_dict['Objective Type'].append(str(row['objective_type'])) df_dict['Original Format'].append(str(row['original_format'])) df_dict['Domain'].append(str(row['domain'])) df_dict['Attributes'].append(str(row['attributes'])) df_dict['Magnification'].append(str(row['magnification'])) df_dict['Upload Date'].append(str(row['upload_date'])) df_dict['Deposition Date'].append(str(row['deposition_date'])) df_dict['Shrinkage Reported'].append(str(row['shrinkage_reported'])) df_dict['Shrinkage Corrected'].append(str(row['shrinkage_corrected'])) df_dict['Reported Value'].append(str(row['reported_value'])) df_dict['Reported XY'].append(str(row['reported_xy'])) df_dict['Reported Z'].append(str(row['reported_z'])) df_dict['Corrected Value'].append(str(row['corrected_value'])) df_dict['Corrected XY'].append(str(row['corrected_xy'])) df_dict['Corrected Z'].append(str(row['corrected_z'])) df_dict['Slicing Thickness'].append(str(row['slicing_thickness'])) df_dict['Min Age'].append(str(row['min_age'])) df_dict['Max Age'].append(str(row['max_age'])) df_dict['Min Weight'].append(str(row['min_weight'])) df_dict['Max Weight'].append(str(row['max_weight'])) df_dict['Png URL'].append(str(row['png_url'])) df_dict['Reference PMID'].append(str(row['reference_pmid'])) df_dict['Reference DOI'].append(str(row['reference_doi'])) df_dict['Physical Integrity'].append(str(row['physical_Integrity'])) self.set_progress(pageNum * progress_step) self.set_progress(20) self.print_to_textbox("Creating neuron Data Frame") neurons_df = pd.DataFrame(df_dict) self.set_progress(25) self.print_to_textbox("Pickling neurons") makedirs("./output", exist_ok=True) neurons_df.to_pickle("./output/neurons.pkl") self.set_progress(30) # the ID number of previously obtained neurons is used to obtain their morphometric details np_array = neurons_df['NeuronID'].to_numpy() np_arrays = np.array_split(np_array, max_thread_count) self.print_to_textbox("Getting morphometry") morphometry = [] progress_step = 40.0 / np_array.size progress_value = 0.0 with concurrent.futures.ThreadPoolExecutor(max_workers=max_thread_count) as executor: futures = [] for n in np_arrays: futures.append(executor.submit(self.get_morphometry, np_array=n)) for future in concurrent.futures.as_completed(futures): morphometry.extend(future.result()) print(morphometry) self.set_progress(70) self.print_to_textbox("Creating morphometry Data Frame") df_dict = {} df_dict['NeuronID'] = [] df_dict['Surface'] = [] df_dict['Volume'] = [] df_dict['Soma surface'] = [] df_dict['Number of stems'] = [] df_dict['Number of bifurcations'] = [] df_dict['Number of branches'] = [] df_dict['Width'] = [] df_dict['Height'] = [] df_dict['Depth'] = [] df_dict['Diameter'] = [] df_dict['Euclidian distance'] = [] df_dict['Path distance'] = [] df_dict['Branch order'] = [] df_dict['Contraction'] = [] df_dict['Fragmentation'] = [] df_dict['Partition asymmetry'] = [] df_dict['Pk classic'] = [] df_dict['Bifurcation angle local'] = [] df_dict['Fractal dimension'] = [] df_dict['Bifurcation angle remote'] = [] df_dict['Length'] = [] for row in morphometry: df_dict['NeuronID'].append(str(row['neuron_id'])) df_dict['Surface'].append(str(row['surface'])) df_dict['Volume'].append(str(row['volume'])) df_dict['Soma surface'].append(str(row['soma_Surface'])) df_dict['Number of stems'].append(str(row['n_stems'])) df_dict['Number of bifurcations'].append(str(row['n_bifs'])) df_dict['Number of branches'].append(str(row['n_branch'])) df_dict['Width'].append(str(row['width'])) df_dict['Height'].append(str(row['height'])) df_dict['Depth'].append(str(row['depth'])) df_dict['Diameter'].append(str(row['diameter'])) df_dict['Euclidian distance'].append(str(row['eucDistance'])) df_dict['Path distance'].append(str(row['pathDistance'])) df_dict['Branch order'].append(str(row['branch_Order'])) df_dict['Contraction'].append(str(row['contraction'])) df_dict['Fragmentation'].append(str(row['fragmentation'])) df_dict['Partition asymmetry'].append(str(row['partition_asymmetry'])) df_dict['Pk classic'].append(str(row['pk_classic'])) df_dict['Bifurcation angle local'].append(str(row['bif_ampl_local'])) df_dict['Fractal dimension'].append(str(row['fractal_Dim'])) df_dict['Bifurcation angle remote'].append(str(row['bif_ampl_remote'])) df_dict['Length'].append(str(row['length'])) morphometry_df = pd.DataFrame(df_dict) self.set_progress(75) self.print_to_textbox("Pickling morphometry") morphometry_df.to_pickle("./output/morphometry.pkl") # the following is a list of steps used to currate the morphometric data # and merge the two obtained dataframes (general neuron parameters and morphometric data) # this results in the creation of final .pkl and .csv files at the end of the notebook neurons = open("./output/morphometry.pkl", "rb") neurons_df = pickle.load(neurons) neurons.close() self.set_progress(80) self.print_to_textbox(neurons_df) neurons_df = neurons_df.replace({'Soma surface': {'None': ''}}, regex=True) neurons_df["Surface"] = pd.to_numeric(neurons_df["Surface"], downcast="float") neurons_df["Volume"] = pd.to_numeric(neurons_df["Volume"], downcast="float") neurons_df["Soma surface"] = pd.to_numeric(neurons_df["Soma surface"], downcast="float") neurons_df["Number of stems"] = pd.to_numeric(neurons_df["Number of stems"], downcast="float") neurons_df["Number of bifurcations"] = pd.to_numeric(neurons_df["Number of bifurcations"], downcast="float") neurons_df["Number of branches"] = pd.to_numeric(neurons_df["Number of branches"], downcast="float") neurons_df["Width"] = pd.to_numeric(neurons_df["Width"], downcast="float") neurons_df["Height"] = pd.to_numeric(neurons_df["Height"], downcast="float") neurons_df["Depth"] = pd.to_numeric(neurons_df["Depth"], downcast="float") neurons_df["Diameter"] = pd.to_numeric(neurons_df["Diameter"], downcast="float") neurons_df["Euclidian distance"] = pd.to_numeric(neurons_df["Euclidian distance"], downcast="float") neurons_df["Path distance"] = pd.to_numeric(neurons_df["Path distance"], downcast="float") neurons_df["Branch order"] = pd.to_numeric(neurons_df["Branch order"], downcast="float") neurons_df["Contraction"] = pd.to_numeric(neurons_df["Contraction"], downcast="float") neurons_df["Fragmentation"] = pd.to_numeric(neurons_df["Fragmentation"], downcast="float") neurons_df["Partition asymmetry"] = pd.to_numeric(neurons_df["Partition asymmetry"], downcast="float") neurons_df["Pk classic"] = pd.to_numeric(neurons_df["Pk classic"], downcast="float") neurons_df["Bifurcation angle local"] = pd.to_numeric(neurons_df["Bifurcation angle local"], downcast="float") neurons_df["Fractal dimension"] = pd.to_numeric(neurons_df["Fractal dimension"], downcast="float") neurons_df["Number of branches"] = pd.to_numeric(neurons_df["Number of branches"], downcast="float") neurons_df["Bifurcation angle remote"] = pd.to_numeric(neurons_df["Bifurcation angle remote"], downcast="float") neurons_df["Length"] =
pd.to_numeric(neurons_df["Length"], downcast="float")
pandas.to_numeric
#!/usr/bin/env python # coding: utf-8 # In[6]: import cx_Oracle import time from datetime import date import pandas as pd import os import numpy import omdtfn as odt #conn= MySQLdb.connect("localhost","root","admin","omdb") #df_mysql = pd.read_sql("select * from sitedb",conn) omdb = os.getcwd() + "\\" + "OMDB.csv" pntxt = os.getcwd() + "\\" + "Periodic_Notification.txt" pth = os.getcwd() + "\\" + "WRT1.csv" pth2 = os.getcwd() + "\\" + "WRT2.csv" #lambda <args> : <return Value> if <condition > ( <return value > if <condition> else <return value>) TS = lambda x : '2G' if ('2G SITE DOWN' in x) else ('3G' if ('3G SITE DOWN' in x) else ('4G' if ('4G SITE DOWN' in x) else ('MF' if ('MAIN' in x) else ('DC' if ('VOLTAGE' in x) else ('TM' if ('TEMPERATURE' in x) else ('SM' if ('SMOKE' in x) else ('GN' if ('GEN' in x) else ('GN' if ('GENSET' in x) else ('TH' if ('THEFT' in x) else ('2_CELL' if ('2G CELL DOWN' in x) else ('3_CELL' if ('3G CELL DOWN' in x) else ('4_CELL' if ('4G CELL DOWN' in x) else "NA")))))))))))) def write2txt(flname,txt): fo = open(flname,"w+") txt = fo.write(txt) fo.close() class omdf: def __init__(self,dic): self.df = pd.DataFrame(dic) self.arr = self.df.to_numpy() self.lst = list(self.df.columns.values) self.aList = [] def df_addcol_lamda(self): self.df['cat'] = self.df.apply(lambda row: TS(row.Summary), axis = 1) return self.df.to_dict() def df_addcol_fdic(self,d,newcolname): self.df[newcolname] = self.df['scode'].map(d) return self.df.to_dict() def df_apply_on_col(self,newcolname): self.df[newcolname] = self.df.apply(lambda x : x.CustomAttr15[0:5], axis = 1) return self.df.to_dict() def df_remove_col_by_list(self,lis): ndf = self.df[lis] return ndf.to_dict() def PNPW(dic,lis): ndf = pd.DataFrame(dic) ar = ndf.to_numpy() lcol = (ar).shape[1] j = 0 G2T = 0 G3T = 0 G4T = 0 heap = "" for i in lis: g2 = ndf[ndf['cat'].str.contains('MF') & ndf['Zone'].str.contains(lis[j])] g3 = ndf[ndf['cat'].str.contains('DL') & ndf['Zone'].str.contains(lis[j])] G2T = g2.shape[0] + G2T G3T = g3.shape[0] + G3T hd = str(lis[j]) + ": " + str(g2.shape[0]) + "/" + str(g3.shape[0]) if j == 0: heap = hd else: heap = heap + '\n' + hd j = j + 1 reg = 'Region: ' + 'MF/DL' Nat = 'National: ' + str(G2T) + '/' + str(G3T) heaps = reg + '\n' + Nat + '\n' + '\n' + heap return heaps def ByCat(dic,lis,strval): ndf = pd.DataFrame(dic) ar = ndf.to_numpy() lcol = (ar).shape[1] j = 0 G2T = 0 heap = "" for i in lis: g2 = ndf[ndf['cat'].str.contains(strval) & ndf['Zone'].str.contains(lis[j])] G2T = g2.shape[0] + G2T hd = str(lis[j]) + ": " + str(g2.shape[0]) if j == 0: heap = hd else: heap = heap + '\n' + hd j = j + 1 heaps = "National: " + str(G2T) + '\n' + '\n' + heap return heaps def PN_Format(dic,lis): ndf = pd.DataFrame(dic) ar = ndf.to_numpy() lcol = (ar).shape[1] j = 0 G2T = 0 G3T = 0 G4T = 0 heap = "" for i in lis: g2 = ndf[ndf['cat'].str.contains('2G') & ndf['Zone'].str.contains(lis[j])] g3 = ndf[ndf['cat'].str.contains('3G') & ndf['Zone'].str.contains(lis[j])] g4 = ndf[ndf['cat'].str.contains('4G') & ndf['Zone'].str.contains(lis[j])] G2T = g2.shape[0] + G2T G3T = g3.shape[0] + G3T G4T = g4.shape[0] + G4T hd = str(lis[j]) + ": " + str(g2.shape[0]) + "/" + str(g3.shape[0]) + "/" + str(g4.shape[0]) if j == 0: heap = hd else: heap = heap + '\n' + hd j = j + 1 hd = "Update of Site Down at " + odt.hrmin() + ' On ' + odt.dtmnyr() reg = 'Region: ' + '2G/3G/4G' Nat = 'National: ' + str(G2T) + '/' + str(G3T) + '/' + str(G4T) heaps = hd + '\n' + '\n' + reg + '\n' + Nat + '\n' + '\n' + heap return heaps def PN(dicc): ls1 = ['CustomAttr15','Resource','Summary','LastOccurrence','BCCH'] ls2 = ['Code','Zone'] dfsingle = pd.DataFrame(dicc) dfomdb = pd.read_csv(omdb) dfs = dfsingle[ls1] dfdb = dfomdb[ls2] x1 = omdf(dfs) dfs1 = x1.df_addcol_lamda() dfx = pd.DataFrame(dfs1) dfx.to_csv(pth) x2 = omdf(dfs1) dfs2 = pd.DataFrame(x2.df_apply_on_col('Code')) mergedDf = dfs2.merge(dfdb, on='Code') #dff = mergedDf[mergedDf['BCCH'].str.contains('YES')] mergedDf.to_csv(pth2) ls3 = ['DHK_S','DHK_N','DHK_M','CTG_S','CTG_N','CTG_M','COM','NOA','SYL','MYM','BAR','KHL','KUS','RAJ','RANG'] #print(ByCat(mergedDf.to_dict(),ls3,"4G")) txt = PN_Format(mergedDf.to_dict(),ls3) txtpw = PNPW(mergedDf.to_dict(),ls3) #print(txtpw) #write2txt(pntxt,txt) return txt def semqry1(tbl,usr, pas, selcol): conn = cx_Oracle.connect(usr, pas, 'ossam-cluster-scan.robi.com.bd:1721/RBPB.robi.com.bd') print(conn.version) tim = time.localtime() tdy = date.today() foldr = os.getcwd() + "\\download\\" + tdy.strftime('%m%d%y') + time.strftime("%H%M", tim) + '_' + tbl + '.csv' dy_p = odt.day_minus(1) dy_f = odt.day_plus(1) Q1 = "FROM " + tbl + " WHERE TYPE=1 AND SUMMARY LIKE 'ERI-RRU THEFT' " Q2 = "AND (LASTOCCURRENCE BETWEEN TO_DATE('" + dy_p + "','DD-MM-RRRR') AND TO_DATE('" + dy_f + "','DD-MM-RRRR'))" QF = "SELECT" + selcol + Q1 + Q2 print(QF) print('----------------') df =
pd.read_sql(QF, con=conn)
pandas.read_sql
"""Parser utils This script provides functions used by seqQscorer to parse input files. Methods ------- get_FastQC_features(feature_file_path) parses the RAW features from the FastQC tool parse_BowtieSE(lines) parses the MAP features from Bowtie2 from single-end sequencing samples parse_BowtiePE(lines) parses the MAP features from Bowtie2 from paired-end sequencing samples get_Bowtie_features(feature_file_path) directly used by seqQscorer, parses Bowtie2 input and defines the run type get_readsAnno_features(feature_file_path) parses the LOC features from ChIPseeker get_TSS_features(feature_file_path) parses the TSS features from ChIPpeakAnno generate_input_data(indir, feature_sets, run_type, medians, noVerbose=True, restrict=None) given the input directory this function reads in the feature sets for all samples provided by the user date: 2020-11-02 author: <NAME> """ import os import numpy as np import pandas as pd global FastQC_value_map FastQC_value_map = {'FAIL': 0, 'WARN': 1, 'PASS': 2} def get_RAW_features(feature_file_path): features = {} with open(feature_file_path, 'r') as feature_file: for line in feature_file: line = line.strip().split('\t') feature_name = line[1].replace(' ', '_') value = FastQC_value_map.get(line[0], np.nan) features['FastQC_'+feature_name] = value return features def parse_BowtieSE(lines): lines = lines.split('\n') features = {} features['BowtieSE_no_mapping'] = float(lines[2].split('(')[1].split('%')[0]) features['BowtieSE_uniquely'] = float(lines[3].split('(')[1].split('%')[0]) features['BowtieSE_multiple'] = float(lines[4].split('(')[1].split('%')[0]) features['BowtieSE_overall'] = float(lines[5].split('%')[0]) # for mixed Bowtie features['BowtieMI_no_mapping'] = features['BowtieSE_no_mapping'] features['BowtieMI_uniquely'] = features['BowtieSE_uniquely'] features['BowtieMI_multiple'] = features['BowtieSE_multiple'] features['BowtieMI_overall'] = features['BowtieSE_overall'] return features def parse_BowtiePE(lines): lines = lines.split('\n') features = {} features['BowtiePE_con_no_mapping'] = float(lines[2].split('(')[1].split('%')[0]) features['BowtiePE_con_uniquely'] = float(lines[3].split('(')[1].split('%')[0]) features['BowtiePE_con_multiple'] = float(lines[4].split('(')[1].split('%')[0]) features['BowtiePE_dis_uniquely'] = float(lines[7].split('(')[1].split('%')[0]) features['BowtiePE_cod_no_mapping'] = float(lines[11].split('(')[1].split('%')[0]) features['BowtiePE_cod_uniquely'] = float(lines[12].split('(')[1].split('%')[0]) features['BowtiePE_cod_multiple'] = float(lines[13].split('(')[1].split('%')[0]) features['BowtiePE_overall'] = float(lines[14].split('%')[0]) # for mixed Bowtie features['BowtieMI_no_mapping'] = features['BowtiePE_con_no_mapping'] features['BowtieMI_uniquely'] = features['BowtiePE_con_uniquely'] features['BowtieMI_multiple'] = features['BowtiePE_con_multiple'] features['BowtieMI_overall'] = features['BowtiePE_overall'] # for SE Bowtie features['BowtieSE_no_mapping'] = features['BowtiePE_con_no_mapping'] features['BowtieSE_uniquely'] = features['BowtiePE_con_uniquely'] features['BowtieSE_multiple'] = features['BowtiePE_con_multiple'] features['BowtieSE_overall'] = features['BowtiePE_overall'] return features def get_MAP_features(feature_file_path): lines = open(feature_file_path, 'r').read() if 'concordantly' in lines and 'discordantly' in lines: return parse_BowtiePE(lines) else: return parse_BowtieSE(lines) def get_LOC_features(feature_file_path): features = {} with open(feature_file_path, 'r') as f: f.readline() for line in f: line = line.strip().split('\t') feature_name = line[1] feature_name = feature_name.replace('"', '') feature_name = feature_name.replace("'", '') feature_name = feature_name.replace(' (<=300)', '') feature_name = feature_name.replace(' ', '_') feature_name = 'readsAnno_'+feature_name features[feature_name] = float(line[2]) return features def get_TSS_features(feature_file_path): tss = pd.read_csv(feature_file_path, sep='\t') tss_dist = list(map(str,tss['tss_dist'])) feature_names = ['TSS_'+name if name[0] == '-' else 'TSS_+'+name for name in tss_dist] feature_values = list(tss['perc']) return dict(zip(feature_names, feature_values)) def generate_input_data(indir, feature_sets, run_type, medians, noVerbose=True, restrict=None): print('Parsing input data...') # initialize the specific parser functions parsers = {} parsers['RAW'] = get_RAW_features parsers['MAP'] = get_MAP_features parsers['LOC'] = get_LOC_features parsers['TSS'] = get_TSS_features # parse input data and create an input data frame if indir[-1] != '/': indir += '/' parsed_input = {} for subdir, dirs, files in os.walk(indir): for feature_file in files: file_path = indir + feature_file sample_ID = feature_file[:-4] if restrict != None: if restrict != sample_ID: continue feature_set = feature_file[-3:] if os.path.exists(file_path): if feature_file[-4:] in [ '.'+fs for fs in feature_sets ]: if not sample_ID in parsed_input: parsed_input[sample_ID] = {} features = parsers[feature_set](file_path) parsed_input[sample_ID].update(features) feature_prefix = {'RAW': 'FastQC', 'MAP': 'BowtieMI', 'LOC': 'readsAnno', 'TSS': 'TSS'} if run_type != 'generic': feature_prefix['MAP'] = 'BowtieSE' if run_type == 'single-end' else 'BowtiePE' feature_cols = [] for abbr in feature_sets: prefix = feature_prefix[abbr] col_names = list(filter(lambda x: x[:len(prefix)] == prefix, medians.keys())) feature_cols += col_names feature_cols = sorted(feature_cols) missing = False input_data = dict( (col, []) for col in ['sampleID'] + feature_cols ) for sample in parsed_input: input_data['sampleID'].append(sample) for col in feature_cols: if col in parsed_input[sample]: input_data[col].append(parsed_input[sample][col]) else: missing = True input_data[col].append(np.nan) if col in feature_cols and not noVerbose: print('\nWarning! The feature "%s" is missing for %s'%(col, sample)) if missing and not noVerbose: print('\nMissing values will be imputed by median.') print('However, you might check your input data.\n') input_data =
pd.DataFrame(input_data)
pandas.DataFrame
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods for running multiquantiles experiments and plotting the results.""" import enum import functools import time import matplotlib.pyplot as plt import numpy as np import pandas as pd from dp_multiq import base from dp_multiq import csmooth from dp_multiq import ind_exp from dp_multiq import joint_exp from dp_multiq import smooth from dp_multiq import tree class ErrorMetric(enum.Enum): MISCLASSIFIED_POINTS = 1 DISTANCE = 2 _ERROR_FUNCS = { ErrorMetric.MISCLASSIFIED_POINTS: base.misclassified_points_error, ErrorMetric.DISTANCE: lambda _, true_qs, est_qs: base.distance_error(true_qs, est_qs) } _ERROR_LABELS = { ErrorMetric.MISCLASSIFIED_POINTS: "avg # misclassified points", ErrorMetric.DISTANCE: "avg distance" } class QuantilesEstimationMethod(enum.Enum): JOINT_EXP = 1 IND_EXP = 2 APP_IND_EXP = 3 SMOOTH = 4 CSMOOTH = 5 LAP_TREE = 6 GAUSS_TREE = 7 _PARTIAL_METHODS = { QuantilesEstimationMethod.JOINT_EXP: joint_exp.joint_exp, QuantilesEstimationMethod.IND_EXP: ind_exp.ind_exp, QuantilesEstimationMethod.APP_IND_EXP: ind_exp.ind_exp, QuantilesEstimationMethod.SMOOTH: smooth.smooth, QuantilesEstimationMethod.CSMOOTH: csmooth.csmooth, QuantilesEstimationMethod.LAP_TREE: tree.tree, QuantilesEstimationMethod.GAUSS_TREE: tree.tree } _PLOT_LABELS = { QuantilesEstimationMethod.JOINT_EXP: "JointExp", QuantilesEstimationMethod.IND_EXP: "IndExp", QuantilesEstimationMethod.APP_IND_EXP: "AppIndExp", QuantilesEstimationMethod.SMOOTH: "Smooth", QuantilesEstimationMethod.CSMOOTH: "CSmooth", QuantilesEstimationMethod.LAP_TREE: "LapTree", QuantilesEstimationMethod.GAUSS_TREE: "GaussTree" } _PLOT_LINESTYLES = { QuantilesEstimationMethod.JOINT_EXP: "-", QuantilesEstimationMethod.IND_EXP: "--", QuantilesEstimationMethod.APP_IND_EXP: "--", QuantilesEstimationMethod.SMOOTH: "-.", QuantilesEstimationMethod.CSMOOTH: "-.", QuantilesEstimationMethod.LAP_TREE: ":", QuantilesEstimationMethod.GAUSS_TREE: ":" } _PLOT_COLORS = { QuantilesEstimationMethod.JOINT_EXP: "lightseagreen", QuantilesEstimationMethod.IND_EXP: "mediumpurple", QuantilesEstimationMethod.APP_IND_EXP: "darkorange", QuantilesEstimationMethod.SMOOTH: "cornflowerblue", QuantilesEstimationMethod.CSMOOTH: "violet", QuantilesEstimationMethod.LAP_TREE: "firebrick", QuantilesEstimationMethod.GAUSS_TREE: "peru" } def synthetic_comparison(methods, error_func, data_type, num_samples, data_low, data_high, num_trials, num_quantiles_range, eps, delta, swap, ts_matrix): """Returns errors and times from running experients on synthetic data. Args: methods: Array of private quantiles algorithms to test. error_func: Function for computing quantile estimation error. data_type: Type of synthetic data to use, either uniform or gaussian. num_samples: Number of samples to use in each trial. data_low: Lower bound for data, used by private quantiles algorithms. data_high: Upper bound for data, used by private quantiles algorithms. num_trials: Number of trials to average over. num_quantiles_range: Array of numbers of quantiles to estimate. eps: Privacy parameter epsilon. delta: Privacy parameter delta, used only by smooth. swap: If true, uses swap privacy definition. Otherwise uses add-remove. ts_matrix: Matrix of smooth sensitivity parameters passed to CSmooth, where ts_matrix[i,j] corresponds to quantile j+1 of num_quantiles_range[i] quantiles. Returns: Arrays errors and times storing, respectively, average number of misclassified points and time in seconds for each of the five methods and each num_quantiles in num_quantiles_range, for the specified synthetic data. """ max_num_quantiles = len(num_quantiles_range) num_methods = len(methods) errors = np.zeros((num_methods, max_num_quantiles)) times = np.zeros((num_methods, max_num_quantiles)) for num_quantiles_idx in range(max_num_quantiles): num_quantiles = num_quantiles_range[num_quantiles_idx] qs = np.linspace(0, 1, num_quantiles + 2)[1:-1] ts = ts_matrix[num_quantiles_idx] errors[:, num_quantiles_idx], times[:, num_quantiles_idx] = comparison( methods, error_func, np.empty(0), data_type, num_samples, data_low, data_high, num_trials, qs, eps, delta, swap, ts) print("Finished num_quantiles = " + str(num_quantiles)) return errors, times def real_comparison(methods, error_func, data_type, num_samples, data_low, data_high, num_trials, num_quantiles_range, eps, delta, swap, ts_matrix): """Returns errors and times from running experiments on real data. Args: methods: Array of private quantiles algorithms to test. error_func: Function for computing quantile estimation error. data_type: Type of real data to use, either ratings or pages. num_samples: Number of samples to use in each trial. data_low: Lower bound for data, used by private quantiles algorithms. data_high: Upper bound for data, used by private quantiles algorithms. num_trials: Number of trials to average over. num_quantiles_range: Array of number of quantiles to estimate. eps: Privacy parameter epsilon. delta: Privacy parameter delta, used only by Smooth. swap: If true, uses swap privacy definition. Otherwise uses add-remove. ts_matrix: Matrix of smooth sensitivity parameters passed to CSmooth, where ts_matrix[i,j] corresponds to quantile j+1 of num_quantiles_range[i] quantiles. Returns: Arrays errors and times storing, respectively, average number of misclassified points and time in seconds for each of the five methods and each num_quantiles in num_quantiles_range, for the specified real data. """ max_num_quantiles = len(num_quantiles_range) num_methods = len(methods) errors = np.zeros((num_methods, max_num_quantiles)) times = np.zeros((num_methods, max_num_quantiles)) if data_type == "ratings": data = pd.read_csv("books.csv", usecols=["average_rating"]) data = pd.to_numeric(data["average_rating"], errors="coerce").to_numpy() data = data[~np.isnan(data)] else: data =
pd.read_csv("books.csv", usecols=[" num_pages"])
pandas.read_csv
#!/usr/bin/env python3 from asyncore import loop import math import datetime import argparse from pkgutil import get_data import shutil from webbrowser import get from numpy import fft import urllib3 import argparse import requests import re import os import pandas as pd import urllib3 from alive_progress import alive_bar from bs4 import BeautifulSoup from colorama import Fore, Style from datetime import date from geographiclib.geodesic import Geodesic work_dir = os.getcwd() # pandas init dfColumns = ['name', 'callsign', 'frequency', 'boundary', 'upper_fl', 'lower_fl', 'class'] df_fir =
pd.DataFrame(columns=dfColumns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 9 20:45:27 2021 @author: HaoLI """ import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from numpy import mean from numpy import std from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import roc_curve, auc, roc_auc_score ###计算roc和auc from sklearn.model_selection import train_test_split from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from xgboost import Booster from xgboost import DMatrix import datetime import time from sklearn.preprocessing import StandardScaler # plot feature importance manually from numpy import loadtxt from matplotlib import pyplot from imblearn.over_sampling import RandomOverSampler from sklearn.preprocessing import MinMaxScaler, LabelEncoder import lightgbm as lgb # check and set the working directory os.getcwd() #os.chdir('/Users/HaoLI/Dropbox/FinTech/raw_data') os.chdir('/Users/HaoLI/Stata/credit/data') df = pd.read_csv('data1210rename_use.csv') col_names = list(df.columns.values[3:30]) col_names.remove('default_geq_1') #X中不能包含目标函数y col_names.remove('default_geq_2') col_names.remove('default_geq_3') base_col_names = col_names[0:13] # for baseline model 仅仅包含银行数据+早中晚,而不包含消费数据 df_fillna = df.fillna(0) # fill NA with 0. 无消费以0计 X = df_fillna[col_names] y = df_fillna.default_geq_1 # Target variable X_base = df_fillna[base_col_names] y_base = df_fillna.default_geq_1 # Target variable #Specifying the parameter n_estimators=100 learning_rate=0.1 max_depth=6 num_leaves=16 feature_fraction=1 bagging_fraction=1 verbosity=20 num_boost_round=20000 verbose_eval=1000 early_stopping_rounds=200 reg_alpha=2 reg_lambda=15 reduction_rate=[] for random_state in range(0,15): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = random_state) #如果 random_state = None (默认值),会随机选择一个种子,这样每次都会得到不同的数据划分。给 random_state 设置相同的值,那么当别人重新运行你的代码的时候就能得到完全一样的结果,复现和你一样的过程。 X_base_train, X_base_test, y_base_train, y_base_test = train_test_split(X_base, y_base, test_size = 0.30, random_state = random_state) ros = RandomOverSampler(random_state=0) X_train, y_train = ros.fit_resample(X_train, y_train) X_base_train, y_base_train = ros.fit_resample(X_base_train, y_base_train) #min_max_scaler = MinMaxScaler() #X_train = min_max_scaler.fit_transform(X_train) #X_test = min_max_scaler.fit_transform(X_test) #sc = StandardScaler() #X_train = sc.fit_transform(X_train) #X_test = sc.fit_transform(X_test) #converting the dataset into proper LGB format train_matrix=lgb.Dataset(X_train, label=y_train) valid_matrix= lgb.Dataset(X_test, label=y_test) train_matrix_base=lgb.Dataset(X_base_train, label=y_base_train) valid_matrix_base= lgb.Dataset(X_base_test, label=y_base_test) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', "n_estimators":n_estimators, 'learning_rate': learning_rate,#较小的学习率,较大的决策树个数 'max_depth': max_depth,#树的最大深度,防止过拟合 'num_leaves': num_leaves, 'feature_fraction': feature_fraction, #每次选择所有的特征训练树 'bagging_fraction': bagging_fraction, } classifier=lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=num_boost_round, verbose_eval=verbose_eval, early_stopping_rounds=early_stopping_rounds) y_train_pred = classifier.predict(X_train) y_test_pred = classifier.predict(X_test) #可以加weight 0.5 fullmodelperc = np.percentile(y_test_pred,[95,90,80,70,60,50] ) full_rej_perc_5 = fullmodelperc[0] full_rej_perc_10 = fullmodelperc[1] full_rej_perc_20 = fullmodelperc[2] full_rej_perc_30 = fullmodelperc[3] full_rej_perc_40 = fullmodelperc[4] full_rej_perc_50 = fullmodelperc[5] classifier=lgb.train(params, train_set=train_matrix_base, valid_sets=valid_matrix_base, num_boost_round=num_boost_round, verbose_eval=verbose_eval, early_stopping_rounds=early_stopping_rounds) y_base_train_pred = classifier.predict(X_base_train) y_base_test_pred = classifier.predict(X_base_test)#可以加weight 0.5 basemodelperc = np.percentile(y_base_test_pred,[95,90,80,70,60,50] ) base_rej_perc_5 = basemodelperc[0] base_rej_perc_10 = basemodelperc[1] base_rej_perc_20 = basemodelperc[2] base_rej_perc_30 = basemodelperc[3] base_rej_perc_40 = basemodelperc[4] base_rej_perc_50 = basemodelperc[5] print("full model rejection rate[5,10,20,30,40,50]: %s"%fullmodelperc )# get percentile of array y_test_pred print("baseline model rejection rate[5,10,20,30,40,50]: %s"%basemodelperc )# get percentile of array y_test_pred #记录base model该循环中的rejection rate为5%,10%,20%,30%,40%,50%时候的违约率 df_base = np.vstack((y_test,y_base_test_pred)) df_base = pd.DataFrame(df_base) df_base = df_base.transpose() df_base.columns = ["label", "pred_prob"] def_rate_5_base = df_base[df_base["pred_prob"]<=base_rej_perc_5]['label'].sum()/(df_base.shape[0]*0.95) #计算rejection rate为5%时候的违约率,test中的 def_rate_10_base = df_base[df_base["pred_prob"]<=base_rej_perc_10]['label'].sum()/(df_base.shape[0]*0.9) #计算rejection rate为10%时候的违约率,test中的 def_rate_20_base = df_base[df_base["pred_prob"]<=base_rej_perc_20]['label'].sum()/(df_base.shape[0]*0.8) #计算rejection rate为20%时候的违约率,test中的 def_rate_30_base = df_base[df_base["pred_prob"]<=base_rej_perc_30]['label'].sum()/(df_base.shape[0]*0.7) #计算rejection rate为30%时候的违约率,test中的 def_rate_40_base = df_base[df_base["pred_prob"]<=base_rej_perc_40]['label'].sum()/(df_base.shape[0]*0.6) #计算rejection rate为40%时候的违约率,test中的 def_rate_50_base = df_base[df_base["pred_prob"]<=base_rej_perc_50]['label'].sum()/(df_base.shape[0]*0.5) #计算rejection rate为50%时候的违约率,test中的 #记录full model该循环中的rejection rate为5%,10%,20%,30%,40%,50%时候的违约率 df_full = np.vstack((y_test,y_test_pred)) df_full =
pd.DataFrame(df_full)
pandas.DataFrame
import math import io import json import os import string import configargparse import numpy as np import pandas as pd import spacy from sklearn.feature_extraction.text import TfidfVectorizer # -------------------------------------------------------------------------------- # Classes # https://github.com/taki0112/Vector_Similarity class TS_SS: def Cosine(self, vec1: np.ndarray, vec2: np.ndarray): return np.dot(vec1, vec2.T)/(np.linalg.norm(vec1) * np.linalg.norm(vec2)) def VectorSize(self, vec: np.ndarray): return np.linalg.norm(vec) def Euclidean(self, vec1: np.ndarray, vec2: np.ndarray): return np.linalg.norm(vec1-vec2) def Theta(self, vec1: np.ndarray, vec2: np.ndarray): return np.arccos(self.Cosine(vec1, vec2)) + np.radians(10) def Triangle(self, vec1: np.ndarray, vec2: np.ndarray): theta = np.radians(self.Theta(vec1, vec2)) return (self.VectorSize(vec1) * self.VectorSize(vec2) * np.sin(theta))/2 def Magnitude_Difference(self, vec1: np.ndarray, vec2: np.ndarray): return abs(self.VectorSize(vec1) - self.VectorSize(vec2)) def Sector(self, vec1: np.ndarray, vec2: np.ndarray): ED = self.Euclidean(vec1, vec2) MD = self.Magnitude_Difference(vec1, vec2) theta = self.Theta(vec1, vec2) return math.pi * (ED + MD)**2 * theta/360 def __call__(self, vec1: np.ndarray, vec2: np.ndarray): try: m = self.Triangle(vec1, vec2) * self.Sector(vec1, vec2) v = m.item((0, 0)) return 0 if np.isnan(v) else v except: pass return 0 # -------------------------------------------------------------------------------- # Methods def is_interactive(): return __name__ == '__main__' def corpus_dir(): return os.path.join(os.path.dirname(__file__), 'corpus') def load_corpus(task): corpus = [] # The text of the file goes here labels = [] # The name of the file goes here task_dir = os.path.join(corpus_dir(), task) for currentDir, _, files in os.walk(task_dir): # Get the absolute path of the currentDir parameter currentDir = os.path.abspath(currentDir) # Traverse through all files for fileName in files: fullPath = os.path.join(currentDir, fileName) with io.open(fullPath, 'r', encoding='utf-8', errors='ignore') as f: contents = f.read() if 'orig' not in fileName: corpus.append(contents) labels.append(fileName) else: # The original is the first entry corpus.insert(0, contents) labels.insert(0, fileName) return corpus, labels def load_metadata(): fileName = os.path.join(corpus_dir(), 'corpus-final09.xls') df = pd.read_excel(fileName, index_col=0, sheet_name='File list') return df def filter_tokens(doc): for token in doc: if ( not token.is_punct and not token.is_space ): yield token # -------------------------------------------------------------------------------- # Lambda entry def run(options): # Load the metadata mdf = load_metadata() # Load the sources corpus, labels = load_corpus(options.task) # Have spaCy process the documents - with just basic tokenizing nlp = spacy.load("en_core_web_sm", exclude=['ner', 'lemmatizer', 'textcat']) docs = [ ' '.join([t.norm_ for t in filter_tokens(doc)]) for doc in nlp.pipe(corpus) ] # Prepare a TF-IDF vectorizer that reads sing words and two-word pairs tfidf_vectorizer = TfidfVectorizer(ngram_range=(1, 2), sublinear_tf=True) tfidf_vectors = tfidf_vectorizer.fit_transform(docs) # Peek at the raw values # df = pd.DataFrame(tfidf_vectors.T.todense(), # index=tfidf_vectorizer.get_feature_names()) # print(df) # Score similarity similarity = TS_SS() input_vector = tfidf_vectors[0].todense() _scores = [ similarity(input_vector, tfidf_vectors[i].todense()) for i in range(1, len(docs)) ] # Create a Pandas series from the scores ts_ss_scores =
pd.Series(_scores, index=labels[1:], name='difference')
pandas.Series
import logging import os import numpy as np import pandas as pd from tardis.plasma.properties.base import (PreviousIterationProperty, ProcessingPlasmaProperty) from tardis.plasma.properties import PhiSahaNebular, PhiSahaLTE __all__ = ['PreviousElectronDensities', 'PreviousBetaSobolev', 'HeliumNLTE', 'HeliumNumericalNLTE'] logger = logging.getLogger(__name__) class PreviousElectronDensities(PreviousIterationProperty): outputs = ('previous_electron_densities',) def set_initial_value(self, kwargs): initial_value = np.ones(len(kwargs['abundance'].columns))*1000000.0 self._set_initial_value(initial_value) class PreviousBetaSobolev(PreviousIterationProperty): outputs = ('previous_beta_sobolev',) def set_initial_value(self, kwargs): try: lines = len(kwargs['atomic_data'].lines) except: lines = len(kwargs['atomic_data']._lines) initial_value = np.ones((lines, len(kwargs['abundance'].columns))) self._set_initial_value(initial_value) class HeliumNLTE(ProcessingPlasmaProperty): outputs = ('helium_population',) def calculate(self, level_boltzmann_factor, electron_densities, ionization_data, beta_rad, g, g_electron, w, t_rad, t_electrons, delta, zeta_data, number_density, partition_function): helium_population = level_boltzmann_factor.ix[2].copy() # He I excited states he_one_population = self.calculate_helium_one(g_electron, beta_rad, partition_function, ionization_data, level_boltzmann_factor, electron_densities, g, w, t_rad, t_electrons) helium_population.ix[0].update(he_one_population) #He I metastable states helium_population.ix[0].ix[1] *= (1 / w) helium_population.ix[0].ix[2] *= (1 / w) #He I ground state helium_population.ix[0].ix[0] = 0.0 #He II excited states he_two_population = level_boltzmann_factor.ix[2,1].mul( (g.ix[2,1].ix[0]**(-1))) helium_population.ix[1].update(he_two_population) #He II ground state helium_population.ix[1].ix[0] = 1.0 #He III states helium_population.ix[2].ix[0] = self.calculate_helium_three(t_rad, w, zeta_data, t_electrons, delta, g_electron, beta_rad, partition_function, ionization_data, electron_densities) unnormalised = helium_population.sum() normalised = helium_population.mul(number_density.ix[2] / unnormalised) helium_population.update(normalised) return helium_population @staticmethod def calculate_helium_one(g_electron, beta_rad, partition_function, ionization_data, level_boltzmann_factor, electron_densities, g, w, t_rad, t_electron): (partition_function_index, ionization_data_index, partition_function, ionization_data) = HeliumNLTE.filter_with_helium_index(2, 1, partition_function, ionization_data) phis = (1 / PhiSahaLTE.calculate(g_electron, beta_rad, partition_function, ionization_data)) * electron_densities * \ (1.0/g.ix[2,1,0]) * (1/w) * (t_rad/t_electron)**(0.5) return level_boltzmann_factor.ix[2].ix[0].mul(
pd.DataFrame(phis.ix[2].ix[1].values)
pandas.DataFrame
######################################## ### IMPORT MODULES ### ######################################## from geopy.distance import great_circle from collections import defaultdict import sys import matplotlib.pyplot as plt import pandas as pd import numpy as np from random import uniform from scipy.interpolate import griddata ######################################## ### LOAD DATA ### ######################################## # Prepare Transit Data Tables df_transit =
pd.read_csv('dataset/full_routes.csv')
pandas.read_csv
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from functools import partial from threading import Thread from typing import Callable from joblib import Parallel, delayed from joblib._parallel_backends import MultiprocessingBackend import pandas as pd from queue import Queue class ParallelExt(Parallel): def __init__(self, *args, **kwargs): maxtasksperchild = kwargs.pop("maxtasksperchild", None) super(ParallelExt, self).__init__(*args, **kwargs) if isinstance(self._backend, MultiprocessingBackend): self._backend_args["maxtasksperchild"] = maxtasksperchild def datetime_groupby_apply(df, apply_func, axis=0, level="datetime", resample_rule="M", n_jobs=-1, skip_group=False): """datetime_groupby_apply This function will apply the `apply_func` on the datetime level index. Parameters ---------- df : DataFrame for processing apply_func : apply_func for processing the data axis : which axis is the datetime level located level : which level is the datetime level resample_rule : How to resample the data to calculating parallel n_jobs : n_jobs for joblib Returns: pd.DataFrame """ def _naive_group_apply(df): return df.groupby(axis=axis, level=level).apply(apply_func) if n_jobs != 1: dfs = ParallelExt(n_jobs=n_jobs)( delayed(_naive_group_apply)(sub_df) for idx, sub_df in df.resample(resample_rule, axis=axis, level=level) ) return
pd.concat(dfs, axis=axis)
pandas.concat
from __future__ import annotations import sys from collections import namedtuple from datetime import datetime from textwrap import TextWrapper from typing import List, Dict, Any, Union, Optional, Type from colorama import Fore, Style, Back from pandas import DataFrame, Series from formulacli.banners import Banner, DESCRIPTION from formulacli.drivers import fetch_drivers, fetch_driver from formulacli.exceptions import ExitException from formulacli.img_converter import convert_image from formulacli.news import fetch_top_stories from formulacli.result_tables import fetch_results if sys.platform in ['linux', 'linux2', 'darwin']: from getch import getch as read_key elif sys.platform == 'win32': from msvcrt import getch as read_key Command = namedtuple("Command", ['cmd', 'label']) Option = namedtuple("Option", ['opt', 'label']) Message = namedtuple("Message", ['msg', 'type']) BANNER = Banner() class Context: history: List[Any] = [] messages: List[Message] = [] block_render: bool = True def __init__(self) -> None: self.state: Dict[str, Any] = { 'name': "context", 'next_ctx': self, 'next_ctx_args': {}, 'command': '', 'custom_commands': [], 'menu_options': [], 'show_banner': False, 'string_input': False } def __str__(self): return self.state['name'] def render(self) -> None: if self.state['show_banner']: print(self.banner) self.show_options() self.event() print() self.show_messages() print("Press h for help.") self.state['command'] = cmd = self.get_commands() if cmd.lower() in ['q', 'quit', 'exit']: raise ExitException if cmd.lower() in ['m', 'menu']: self.state['next_ctx'] = MainContext self.state['next_ctx_args'] = {} return if cmd.lower() in ['b', 'back']: try: Context.history.pop() self.state['next_ctx'] = Context.history[-1] self.state['next_ctx_args'] = {} except IndexError: self.state['next_ctx'] = MainContext self.state['next_ctx_args'] = {} return if cmd.lower() in ['?', 'h', 'help']: self.show_help() self.state['next_ctx'] = Context.history[-1] return if cmd.lower() == '\'': self.state['string_input'] = True self.action_handler() def action_handler(self) -> None: pass def event(self) -> None: pass def add_to_history(self) -> None: Context.history.append(self) def show_options(self) -> None: template = "[{opt}] {label}" for option in self.state['menu_options']: self._pprint(template.format(opt=option.opt, label=option.label), margin=2) print() def show_messages(self) -> None: messages: List[Message] = Context.messages while messages: message: Message = messages.pop() if message.type == 'error': self._pprint(f"{Fore.RED}{message.msg}{Style.RESET_ALL}", margin=10) elif message.type == 'success': self._pprint(f"{Fore.LIGHTGREEN_EX}{message.msg}{Style.RESET_ALL}", margin=10) elif message.type == 'debug': self._pprint(f"{Fore.LIGHTCYAN_EX}{message.msg}{Style.RESET_ALL}", margin=10) def show_help(self) -> None: commands: List[Command] = [] commands += [Command(cmd='\'', label="Write command")] commands += self.state['custom_commands'] if len(Context.history) > 1: commands.append(Command(cmd='b', label="Back")) commands += [ Command(cmd='h', label="Show commands"), Command(cmd='m', label="Menu"), Command(cmd='q', label="Quit") ] commands_df =
DataFrame(commands, columns=["Commands", "?"])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 5 20:03:05 2018 @author: gtrancourt """ import numpy as np import os from pandas import DataFrame from skimage import transform, img_as_bool, img_as_int, img_as_ubyte, img_as_float32 import skimage.io as io from skimage.measure import label, marching_cubes_lewiner, mesh_surface_area, regionprops import zipfile #import cv2 def Trim_Individual_Stack(large_stack, small_stack): print("***trimming stack***") dims = np.array(binary_stack.shape, dtype='float') / np.array(raw_pred_stack.shape, dtype='float') if np.all(dims <= 2): return large_stack else: if dims[1] > 2: if (large_stack.shape[1]-1)/2 == small_stack.shape[1]: large_stack = np.delete(large_stack, large_stack.shape[1]-1, axis=1) else: if (large_stack.shape[1]-2)/2 == small_stack.shape[1]: large_stack = np.delete(large_stack, np.arange(large_stack.shape[1]-2, large_stack.shape[1]), axis=1) if dims[2] > 2: if (large_stack.shape[2]-1)/2 == small_stack.shape[2]: large_stack = np.delete(large_stack, large_stack.shape[2]-1, axis=2) else: if (large_stack.shape[2]-2)/2 == small_stack.shape[2]: large_stack = np.delete(large_stack, np.arange(large_stack.shape[2]-2, large_stack.shape[2]), axis=2) return large_stack #%% #Pixel dimmension px_edge = 0.1625 #µm vx_volume = px_edge**3 #Define de values of the different tissues epid_value = 51 #69 bg_value = 204 #177 spongy_value = 0 palisade_value = 0 if spongy_value == palisade_value: mesophyll_value = spongy_value else: mesophyll_value = [spongy_value, palisade_value] ias_value = 255 vein_value = 102 # 147 bs_value = 153 #%% #Load segmented image base_folder_name = '/run/media/gtrancourt/GTR_Touro/Vitis_Shade_Drought/DONE_Klara/' sample_name = 'C_I_12_Strip2_' folder_name = 'MLresults/' binary_filename = sample_name + 'BINARY-8bit.tif' raw_ML_prediction_name = sample_name + 'fullstack_prediction.tif' filepath = base_folder_name + sample_name + '/' #%% # Check if the file has already been processed -- Just in case! if os.path.isfile(filepath + sample_name + 'RESULTS.txt'): print('This file has already been processed!') assert False #%% # Load the ML segmented stack raw_pred_stack = io.imread(filepath + folder_name + raw_ML_prediction_name) print((np.unique(raw_pred_stack[100]))) io.imshow(raw_pred_stack[100]) # Trim at the edges -- The ML does a bad job there # Here I remove 50 slices at the beginning and the end, # and 40 pixels at the left and right edges trim_slices = 80 trim_column = 40 raw_pred_stack = raw_pred_stack[trim_slices:-trim_slices,:,trim_column:-trim_column] io.imshow(raw_pred_stack[100]) #%% # Sometimes, the output values are different than what is written above. # This is a way to assign values. But you have to double-check that the other is right. #mesophyll_value, bg_value, epid_value, vein_value, ias_value = np.split(np.unique(raw_pred_stack[100]), len(np.unique(raw_pred_stack[100]))) #Define de values of the different tissues epid_value = 64 bg_value = 191 mesophyll_value = 0 ias_value = 255 vein_value = 128 #%% ################### ## EPIDERMIS ################### # Label all of the epidermis regions unique_epidermis_volumes = label(raw_pred_stack == epid_value, connectivity=1) props_of_unique_epidermis = regionprops(unique_epidermis_volumes) io.imshow(unique_epidermis_volumes[100]) #%% # Find the size and properties of the epidermis regions epidermis_area = np.zeros(len(props_of_unique_epidermis)) epidermis_label = np.zeros(len(props_of_unique_epidermis)) epidermis_centroid = np.zeros([len(props_of_unique_epidermis),3]) for regions in np.arange(len(props_of_unique_epidermis)): epidermis_area[regions] = props_of_unique_epidermis[regions].area epidermis_label[regions] = props_of_unique_epidermis[regions].label epidermis_centroid[regions] = props_of_unique_epidermis[regions].centroid # Find the two largest epidermis ordered_epidermis = np.argsort(epidermis_area) print('The two largest values below should be in the same order of magnitude') print((epidermis_area[ordered_epidermis[-4:]])) print('The center of the epidermis should be more or less the same on the 1st and 3rd columns') print((epidermis_centroid[ordered_epidermis[-4:]])) two_largest_epidermis = (unique_epidermis_volumes == ordered_epidermis[-1]+1) | (unique_epidermis_volumes == ordered_epidermis[-2]+1) #Check if it's correct #io.imsave(filepath + folder_name + 'test_epidermis.tif', # img_as_ubyte(two_largest_epidermis)) io.imshow(two_largest_epidermis[100]) #%% # Get the values again: makes it cleaner unique_epidermis_volumes = label(two_largest_epidermis, connectivity=1) props_of_unique_epidermis = regionprops(unique_epidermis_volumes) epidermis_area = np.zeros(len(props_of_unique_epidermis)) epidermis_label = np.zeros(len(props_of_unique_epidermis)) epidermis_centroid = np.zeros([len(props_of_unique_epidermis),3]) for regions in np.arange(len(props_of_unique_epidermis)): epidermis_area[regions] = props_of_unique_epidermis[regions].area epidermis_label[regions] = props_of_unique_epidermis[regions].label epidermis_centroid[regions] = props_of_unique_epidermis[regions].centroid #io.imshow(unique_epidermis_volumes[100]) # Transform the array to 8-bit: no need for the extra precision as there are only 3 values unique_epidermis_volumes = np.array(unique_epidermis_volumes, dtype='uint8') # Find the fvalues of each epidermis: assumes adaxial epidermis is at the top of the image adaxial_epidermis_value = unique_epidermis_volumes[100,:,100][(unique_epidermis_volumes[100,:,100] != 0).argmax()] abaxial_epidermis_value = int(np.arange(start=1,stop=3)[np.arange(start=1,stop=3) != adaxial_epidermis_value]) # Compute volume epidermis_adaxial_volume = epidermis_area[adaxial_epidermis_value - 1] * (px_edge * (px_edge*2)**2) epidermis_abaxial_volume = epidermis_area[abaxial_epidermis_value - 1] * (px_edge * (px_edge*2)**2) # Tichkness return a 2D array, i.e. the thcikness of each column epidermis_abaxial_thickness = np.sum((unique_epidermis_volumes == abaxial_epidermis_value), axis=1) * (px_edge*2) epidermis_adaxial_thickness = np.sum((unique_epidermis_volumes == adaxial_epidermis_value), axis=1) * (px_edge*2) #%% ################### ## VEINS ################### # Get the veins volumes unique_vein_volumes = label(raw_pred_stack == vein_value, connectivity=1) props_of_unique_veins = regionprops(unique_vein_volumes) io.imshow(unique_vein_volumes[100]) #%% veins_area = np.zeros(len(props_of_unique_veins)) veins_label = np.zeros(len(props_of_unique_veins)) veins_centroid = np.zeros([len(props_of_unique_veins),3]) for regions in np.arange(len(props_of_unique_veins)): veins_area[regions] = props_of_unique_veins[regions].area veins_label[regions] = props_of_unique_veins[regions].label veins_centroid[regions] = props_of_unique_veins[regions].centroid # Find the largest veins ordered_veins = np.argsort(veins_area) #veins_area[ordered_veins[-80:]] #veins_area[ordered_veins[:1000]] #veins_centroid[ordered_veins[-4:]] #print(np.sum(veins_area <= 1000)) # I found that for my images, a threshold of 100000 (1e5) pixel^3 removed # the noise left by the segmentation method and kept only the largest veins. # This should be adjusted depending on the species/images/maginification. large_veins_ids = veins_label[veins_area > 100000] largest_veins = np.in1d(unique_vein_volumes, large_veins_ids).reshape(raw_pred_stack.shape) # Get the values again vein_volume = np.sum(largest_veins) * (px_edge * (px_edge*2)**2) #Check if it's correct #io.imsave(base_folder_name + sample_name + '/' + folder_name + 'test_veins.tif', # img_as_ubyte(largest_veins)) io.imshow(largest_veins[100]) #%% ################### ## AIRSPACE ################### ######################################### ## CREATE THE FULLSIZE SEGMENTED STACK ## ######################################### # My segmenteation procedure used a reduced size stack, since my original # images are too big to be handled. I do want to use my original images for # their quality and details, so I use the binary image and add on top of it # the background, epidermis, and veins that have been segmented. That way, I # keep the detail I want at the airspace-cell interface, while still having a # good background, epidermis, and vein segmentation to remove the tissues that # are not need for some traits. ############################## ## LOADING THE BINARY STACK ## ## IN ORIGINAL SIZE ## ############################## # I've started compressing my files. The code below extracts the file, # loads it into memory, and then deletes the file (it's still in memory). # The commented code at the end loads the uncompressed image. #Load the compressed binary stack in the original dimensions binary_zip = zipfile.ZipFile(filepath + binary_filename + '.zip', 'r') binary_zip.extractall(filepath) #binary_raw = binary_zip.open(filepath + sample_name + '/' + binary_filename) # Open the image binary_stack = img_as_bool(io.imread(filepath + sample_name + '/' + binary_filename)) # Trim the edges binary_stack = binary_stack[trim_slices:-trim_slices,:,:] binary_stack = binary_stack[:,:,(trim_column*2):(-trim_column*2)] # Delete the uncompressed file os.remove(base_folder_name + sample_name + '/' + sample_name + '/' + binary_filename) os.rmdir(base_folder_name + sample_name + '/' + sample_name) io.imshow(binary_stack[100]) #binary_stack = img_as_bool(io.imread(base_folder_name + sample_name + '/' + binary_filename)) #%% #Check and trim the binary stack if necessary # This is to match the dimensions between all images # Basically, it trims odds numbered dimension so to be able to divide/multiply them by 2. binary_stack = Trim_Individual_Stack(binary_stack, raw_pred_stack) # TO MANUALLY DELETE SOME SLICES #binary_stack = np.delete(binary_stack, 910, axis=1) #binary_stack = np.delete(binary_stack, 482, axis=0) #binary_stack = np.delete(binary_stack, np.arange(0, 160*2), axis=2) #%% # This cell creates an empty array filled with the backgroud color (177), then # adds all of the leaf to it. Looping over each slice (this is more memory # efficient than working on the whole stack), it takes the ML segmented image, # resize the slice, and adds it to the empty array. bg_value_new = 177 vein_value_new = 147 ias_value_new = 255 large_segmented_stack = np.full(shape=binary_stack.shape, fill_value=bg_value_new, dtype='uint8') # Assign an array filled with the background value 177. for idx in np.arange(large_segmented_stack.shape[0]): # Creates a boolean 2D array of the veins (from the largest veins id'ed earlier) temp_veins = img_as_bool(transform.resize(largest_veins[idx], [binary_stack.shape[1], binary_stack.shape[2]], anti_aliasing=False, order=0)) # Creates a 2D array with the epidermis being assinged values 30 or 60 temp_epid = transform.resize(unique_epidermis_volumes[idx], [binary_stack.shape[1], binary_stack.shape[2]], anti_aliasing=False, preserve_range=True, order=0) * 30 # Creates a 2D mask of only the leaf to remove the backgroud from the # original sized binary image. leaf_mask = img_as_bool(transform.resize(raw_pred_stack[idx] != bg_value, [binary_stack.shape[1], binary_stack.shape[2]], anti_aliasing=False, order=0)) large_segmented_stack[idx][leaf_mask] = binary_stack[idx][leaf_mask] * ias_value_new #binary_stack is a boolean, so you need to multiply it. large_segmented_stack[idx][temp_veins] = vein_value_new #vein_value large_segmented_stack[idx][temp_epid != 0] = temp_epid[temp_epid != 0] io.imshow(large_segmented_stack[100]) print('### Validate the values in the stack ###') print((np.unique(large_segmented_stack[100]))) io.imsave(base_folder_name + sample_name + '/' + sample_name +'SEGMENTED.tif', large_segmented_stack, imagej=True) #%% ################################################ ## COMPUTE TRAITS ON THE ORIGINAL SIZED STACK ## ################################################ # Load the large segmented stack to re-run the calculations if needed #large_segmented_stack = io.imread(base_folder_name + sample_name + '/' + sample_name +'SEGMENTED.tif') # #io.imshow(large_segmented_stack[100]) #print(np.unique(large_segmented_stack[100])) #large_segmented_stack = np.delete(large_segmented_stack, np.arange(0,500), axis=0) #%% # Redefine the values for the different tissues as used in the segmented image. # The epidermis will be defined later. bg_value = 177 spongy_value = 0 palisade_value = 0 if spongy_value == palisade_value: mesophyll_value = spongy_value else: mesophyll_value = [spongy_value, palisade_value] ias_value = 255 vein_value = 147 # Find the values of each epidermis: assumes adaxial epidermis is at the top of the image adaxial_epidermis_value = large_segmented_stack[100,:,100][(large_segmented_stack[100,:,100] != bg_value).argmax()] if adaxial_epidermis_value == 30: abaxial_epidermis_value = 60 else: if adaxial_epidermis_value == 60: abaxial_epidermis_value = 30 #Measure the different volumes leaf_volume = np.sum(large_segmented_stack != bg_value) * vx_volume mesophyll_volume = np.sum((large_segmented_stack != bg_value) & (large_segmented_stack != adaxial_epidermis_value) & (large_segmented_stack != abaxial_epidermis_value)) * vx_volume cell_volume = np.sum(large_segmented_stack == mesophyll_value) * vx_volume air_volume = np.sum(large_segmented_stack == ias_value) * vx_volume epidermis_abaxial_volume = np.sum(large_segmented_stack == abaxial_epidermis_value) * vx_volume epidermis_adaxial_volume = np.sum(large_segmented_stack == adaxial_epidermis_value) * vx_volume vein_volume = np.sum(large_segmented_stack == vein_value) * vx_volume print(leaf_volume) print((cell_volume + air_volume + epidermis_abaxial_volume + epidermis_adaxial_volume + vein_volume)) #Measure the thickness of the leaf, the epidermis, and the mesophyll leaf_thickness = np.sum(np.array(large_segmented_stack != bg_value, dtype='bool'), axis=1) * px_edge mesophyll_thickness = np.sum((large_segmented_stack != bg_value) & (large_segmented_stack != adaxial_epidermis_value) & (large_segmented_stack != abaxial_epidermis_value), axis=1) * px_edge epidermis_abaxial_thickness = np.sum(large_segmented_stack == abaxial_epidermis_value, axis=1) * px_edge epidermis_adaxial_thickness = np.sum(large_segmented_stack == adaxial_epidermis_value, axis=1) * px_edge print((np.median(leaf_thickness),leaf_thickness.mean(),leaf_thickness.std())) print((np.median(mesophyll_thickness),mesophyll_thickness.mean(),mesophyll_thickness.std())) print((np.median(epidermis_adaxial_thickness),epidermis_adaxial_thickness.mean(),epidermis_adaxial_thickness.std())) print((np.median(epidermis_abaxial_thickness),epidermis_abaxial_thickness.mean(),epidermis_abaxial_thickness.std())) #%% # Leaf area # I was lazy here as I assume the leaf is parallel to the border of the image. leaf_area = large_segmented_stack.shape[0] * large_segmented_stack.shape[2] * (px_edge**2) #Caluculate Surface Area (adapted from <NAME>' code) # This take quite a lot of RAM # This gives 1% less surface than from BoneJ's results, # but way way faster (even if it's not that fast)!!! ias_vert_faces = marching_cubes_lewiner(large_segmented_stack == ias_value) ias_SA = mesh_surface_area(ias_vert_faces[0],ias_vert_faces[1]) true_ias_SA = ias_SA * (px_edge**2) print(('IAS surface area: '+str(true_ias_SA)+' µm**2')) print(('or '+str(float(true_ias_SA/1000000))+' mm**2')) # end Matt's code # NOTE ON SA CODE ABOVE # The same procedure as for epidermises and veins could be done, i.e. using the # label() function to identify all of the un-connected airspace volumes and # compute the surface area on each of them. That way we can get the surface # area of the largest airspace and the connectivity term presented in Earles # et al. (2018) (Beyond porosity - Bromeliad paper). print(('Sm: '+str(true_ias_SA/leaf_area))) print(('Ames/Vmes: '+str(true_ias_SA/(mesophyll_volume-vein_volume)))) # Write the data into a data frame data_out = {'LeafArea':leaf_area, 'LeafThickness':leaf_thickness.mean(), 'LeafThickness_SD':leaf_thickness.std(), 'MesophyllThickness':mesophyll_thickness.mean(), 'MesophyllThickness_SD':mesophyll_thickness.std(), 'ADEpidermisThickness':epidermis_adaxial_thickness.mean(), 'ADEpidermisThickness_SD':epidermis_adaxial_thickness.std(), 'ABEpidermisThickness':epidermis_abaxial_thickness.mean(), 'ABEpidermisThickness_SD':epidermis_abaxial_thickness.std(), 'LeafVolume':leaf_volume, 'MesophyllVolume':mesophyll_volume, 'ADEpidermisVolume':epidermis_adaxial_volume, 'ABEpidermisVolume':epidermis_abaxial_volume, 'VeinVolume':vein_volume, 'CellVolume':cell_volume, 'IASVolume':air_volume, 'IASSurfaceArea':true_ias_SA, '_SLICEStrimmed':trim_slices, '_X_VALUEStrimme':trim_column*2} results_out =
DataFrame(data_out, index={sample_name})
pandas.DataFrame
import os import numpy as np import pandas as pd from tqdm import tqdm from pathlib import Path from glob import glob from datetime import datetime import libs.dirs as dirs import libs.commons as commons # from libs.index import IndexManager import libs.utils as utils class IterInfo: def __init__(self, datasetFolder, indexPath, iterFolder): self.datasetFolder = datasetFolder self.iterFolder = iterFolder self.indexPath = indexPath self.iteration = 0 self.completed_iter = False class IterationManager: ''' Iteration loop organizer class. Manages a iteration loop folder, containing a iter_info.pickle file that saves a IterInfo object that has details about the current loop state. Constructor arguments: unlabeledFolder: Folder containing the unlabeled images. unlabeledIndexPath: Path to the csv Index of the unlabeled images in unlabeledFolder loopFolder: Folder where the iteration folders and info will be saved ''' def __init__(self, unlabeledFolder, unlabeledIndexPath, loopFolder=dirs.iter_folder): self.unlabeledFolder = unlabeledFolder self.unlabeledIndexPath = unlabeledIndexPath self.loopFolder = Path(loopFolder) self.iterInfoPath = self.loopFolder / "iter_info.pickle" self.load_info() def load_info(self): if self.iterInfoPath.is_file(): self.iterInfo = utils.load_pickle(self.iterInfoPath) else: self.iterInfo = IterInfo(self.unlabeledFolder, self.unlabeledIndexPath, self.loopFolder) dirs.create_folder(self.loopFolder) utils.save_pickle(self.iterInfo, self.iterInfoPath) return self.iterInfo def new_iteration(self): ''' create new iteration folder v sample new images v update iter_info v label images merge new labels (manual) to annotated dataset train model set boundaries automatic annotation merge new labels (automatic) to annotated dataset update iter_info, iteration complete Executes the following operations: Check if it is the first iteration; Load base index, create folders and iter_info; Sample images ''' if self.iterInfo.completed_iter == False and self.iterInfo.iteration != 0: raise ValueError("Current iteration has not finished. Resolve it and try again.") self.iterInfo.iteration += 1 self.iterInfo.completed_iter = False print("Starting iteration {}.".format(self.iterInfo.iteration)) self.iterInfo.currentIterFolder = self.loopFolder / "iteration_{}".format(self.iterInfo.iteration) dirs.create_folder(self.iterInfo.currentIterFolder) print("Iteration setup finished.\nCall sample_images method for next step: sample and label images.") def sample_images(self, seed=None): ''' Sample a percentage (1%) of the unlabeled images for labeling. Saves sampled images to 'iteration_#/sampled_images/'. Sampled images index is saved to 'iteration_#/sampled_images.csv'. ''' self.samplesIndexPath = self.iterInfo.currentIterFolder / \ "sampled_images_iteration_{}.csv".format(self.iterInfo.iteration) # Check if samples index already exists: probably means sample_images was # already executed this iteration if self.samplesIndexPath.is_file(): raise FileExistsError( "Sampled index already exists.\nHas sampling been already performed this iteration?\n \ To perform new sampling, delete sampled_images folder and index and run sample_images\ method again.") # TODO: REMEMBER to Remove fixed seed when using sampler outside of testing self.sampler = SampleImages(self.unlabeledIndexPath, self.iterInfo.currentIterFolder, seed=seed) self.sampler.sample(percentage=0.01) self.sampler.save_to_index(self.samplesIndexPath) def merge_labeled_dataset(self): pass def train_model(self): pass class SampleImages: ''' Sample images from a folder or an index determined by source. Sampled images are copied to destFolder / 'sampled_images'/. ''' def __init__(self, source, destFolder, seed=None, verbose=True): self.date = datetime.now() self.source = Path(source) self.destFolder = Path(destFolder) self.imageFolder = self.destFolder / "sampled_images" self.percentage = None self.seed = seed self.verbose = verbose self.index = None np.random.seed(self.seed) dirs.create_folder(self.destFolder) dirs.create_folder(self.imageFolder) def sample(self, percentage=0.01, sample_min=None): self.percentage = percentage self.sample_min = sample_min if self.source.is_dir(): # Sample files from directory self._sample_from_folder() elif self.source.suffix == ".csv": # Sample files from entries in a csv index self._sample_from_index() else: raise ValueError("Source must be a folder or csv index path.") if self.verbose: print("{}/{} images copied to \"{}\".".format(self.numSuccess, self.numSamples, self.destFolder)) if self.numSuccess != self.numSamples: print("{} image paths did not exist and were not copied.".format(self.numSamples-self.numSuccess)) def _sample_routine(self): self.numImages = len(self.imageList) # Choose a number of images to sample self.numSamples = int(self.numImages*self.percentage) if self.sample_min is not None: self.numSamples = np.clip(self.numSamples, self.sample_min, None) # Uniform sampling of a percentage of total images self.sampleIndexes = np.random.choice(self.numImages, size=self.numSamples, replace=False) # Copy images to dest path print("Copying images...") self.imageSourcePaths = np.array(self.imageList)[self.sampleIndexes] self.imageDestPaths = [] self.numSuccess = 0 for i in tqdm(range(self.numSamples)): imagePath = self.imageSourcePaths[i] destPath = self.get_image_dest_path(imagePath) success = utils.copy_files(imagePath, destPath) self.numSuccess += success self.imageDestPaths.append(destPath) print("\nImage copying finished.") def _sample_from_folder(self): self.index = None # Get video paths in dataset folder (all videos) self.imageList = glob(str(self.source) + "/**" + "/*.jpg", recursive=True) self.imageList = list(map(utils.func_strip, self.imageList)) self._sample_routine() return self.imageSourcePaths def _sample_from_index(self): self.index =
pd.read_csv(self.source, dtype=str)
pandas.read_csv
import os import sys import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.ticker as ticker from matplotlib.dates import date2num as d2n from collections.abc import Iterable import numpy as np month_dict = {"01": "Jan", "02": "Feb", "03": "Mar", "04": "Apr", "05": "May", "06": "Jun", "07": "Jul", "08": "Aug", "09": "Sep", "10": "Oct", "11": "Nov", "12": "Dec"} from datetime import datetime, timedelta def get_xticks_and_xlabels(dfs, col="Date"): date_df =
pd.concat([df["Date"] for df in dfs])
pandas.concat
import datetime import re import pandas as pd import numpy as np def mix_freq(lf_data, hf_data, xlag, ylag, horizon, start_date=None, end_date=None): """ Set up data for mixed-frequency regression Args: lf_data (Series): Low-frequency time series hf_data (Series): High-frequency time series xlag (int or str): Number of high frequency lags ylag (int or str): Number of low-frequency lags horizon (int): start_date (date): Date on which to start estimation end_date (date); Date on which to end estimation Returns: """ ylag = calculate_lags(ylag, lf_data) xlag = calculate_lags(xlag, hf_data) min_date_y = lf_data.index[ylag] min_date_x = hf_data.index[xlag + horizon] if min_date_y < min_date_x: min_date_y = next(d for d in list(lf_data.index) if d > min_date_x) if (start_date is None) or (start_date < min_date_y): start_date = min_date_y if end_date is None: end_date = lf_data.index[-2] max_date = lf_data.index[-1] if max_date > hf_data.index[-1]: max_date = next(d for d in reversed(list(lf_data.index)) if d < hf_data.index[-1]) if end_date > max_date: end_date = max_date forecast_start_date = lf_data.index[lf_data.index.get_loc(end_date) + 1] ylags = None if ylag > 0: # N.B. ylags will be a dataframe because there can be more than 1 lag ylags = pd.concat([lf_data.shift(l) for l in range(1, ylag + 1)], axis=1) x_rows = [] for lfdate in lf_data.loc[start_date:max_date].index: start_hf = hf_data.index.get_loc(lfdate, method='bfill') # @todo Find a more efficient way x_rows.append(hf_data.iloc[start_hf - horizon: start_hf - xlag - horizon: -1].values) x = pd.DataFrame(data=x_rows, index=lf_data.loc[start_date:max_date].index) return (lf_data.loc[start_date:end_date], ylags.loc[start_date:end_date] if ylag > 0 else None, x.loc[start_date:end_date], lf_data[forecast_start_date:max_date], ylags[forecast_start_date:max_date] if ylag > 0 else None, x.loc[forecast_start_date:]) def calculate_lags(lag, time_series): if isinstance(lag, str): return parse_lag_string(lag, data_freq(time_series)[0]) else: return lag def data_freq(time_series): """ Determine frequency of given time series Args: time_series (Series): Series with datetime index Returns: string: frequency specifier """ try: freq = time_series.index.freq return freq.freqstr or pd.infer_freq(time_series.index) except AttributeError: return pd.infer_freq(time_series.index) def parse_lag_string(lag_string, freq): """ Determine number of lags from lag string Args: lag_string: String indicating number of lags (eg, "3M", "2Q") freq (string): Frequency of series to be lagged Returns: """ freq_map = { 'd': {'m': 30, 'd': 1}, 'b': {'m': 22, 'b': 1}, 'm': {'q': 3, 'm': 1}, 'q': {'y': 4}, 'a': {'y': 1} } m = re.match('(\d+)(\w)', lag_string) duration = int(m.group(1)) period = m.group(2).lower() return duration * freq_map[freq.lower()][period] if __name__ == '__main__': lf_data =
pd.read_csv('./tests/data/gdp.csv', parse_dates=['DATE'])
pandas.read_csv
from functools import partial from itertools import product from string import ascii_letters import numpy as np from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, period_range, ) from .pandas_vb_common import tm method_blocklist = { "object": { "median", "prod", "sem", "cumsum", "sum", "cummin", "mean", "max", "skew", "cumprod", "cummax", "pct_change", "min", "var", "mad", "describe", "std", "quantile", }, "datetime": { "median", "prod", "sem", "cumsum", "sum", "mean", "skew", "cumprod", "cummax", "pct_change", "var", "mad", "describe", "std", }, } class ApplyDictReturn: def setup(self): self.labels = np.arange(1000).repeat(10) self.data = Series(np.random.randn(len(self.labels))) def time_groupby_apply_dict_return(self): self.data.groupby(self.labels).apply( lambda x: {"first": x.values[0], "last": x.values[-1]} ) class Apply: param_names = ["factor"] params = [4, 5] def setup(self, factor): N = 10 ** factor # two cases: # - small groups: small data (N**4) + many labels (2000) -> average group # size of 5 (-> larger overhead of slicing method) # - larger groups: larger data (N**5) + fewer labels (20) -> average group # size of 5000 labels = np.random.randint(0, 2000 if factor == 4 else 20, size=N) labels2 = np.random.randint(0, 3, size=N) df = DataFrame( { "key": labels, "key2": labels2, "value1": np.random.randn(N), "value2": ["foo", "bar", "baz", "qux"] * (N // 4), } ) self.df = df def time_scalar_function_multi_col(self, factor): self.df.groupby(["key", "key2"]).apply(lambda x: 1) def time_scalar_function_single_col(self, factor): self.df.groupby("key").apply(lambda x: 1) @staticmethod def df_copy_function(g): # ensure that the group name is available (see GH #15062) g.name return g.copy() def time_copy_function_multi_col(self, factor): self.df.groupby(["key", "key2"]).apply(self.df_copy_function) def time_copy_overhead_single_col(self, factor): self.df.groupby("key").apply(self.df_copy_function) class Groups: param_names = ["key"] params = ["int64_small", "int64_large", "object_small", "object_large"] def setup_cache(self): size = 10 ** 6 data = { "int64_small": Series(np.random.randint(0, 100, size=size)), "int64_large": Series(np.random.randint(0, 10000, size=size)), "object_small": Series( tm.makeStringIndex(100).take(np.random.randint(0, 100, size=size)) ), "object_large": Series( tm.makeStringIndex(10000).take(np.random.randint(0, 10000, size=size)) ), } return data def setup(self, data, key): self.ser = data[key] def time_series_groups(self, data, key): self.ser.groupby(self.ser).groups def time_series_indices(self, data, key): self.ser.groupby(self.ser).indices class GroupManyLabels: params = [1, 1000] param_names = ["ncols"] def setup(self, ncols): N = 1000 data = np.random.randn(N, ncols) self.labels = np.random.randint(0, 100, size=N) self.df = DataFrame(data) def time_sum(self, ncols): self.df.groupby(self.labels).sum() class Nth: param_names = ["dtype"] params = ["float32", "float64", "datetime", "object"] def setup(self, dtype): N = 10 ** 5 # with datetimes (GH7555) if dtype == "datetime": values = date_range("1/1/2011", periods=N, freq="s") elif dtype == "object": values = ["foo"] * N else: values = np.arange(N).astype(dtype) key = np.arange(N) self.df = DataFrame({"key": key, "values": values}) self.df.iloc[1, 1] = np.nan # insert missing data def time_frame_nth_any(self, dtype): self.df.groupby("key").nth(0, dropna="any") def time_groupby_nth_all(self, dtype): self.df.groupby("key").nth(0, dropna="all") def time_frame_nth(self, dtype): self.df.groupby("key").nth(0) def time_series_nth_any(self, dtype): self.df["values"].groupby(self.df["key"]).nth(0, dropna="any") def time_series_nth_all(self, dtype): self.df["values"].groupby(self.df["key"]).nth(0, dropna="all") def time_series_nth(self, dtype): self.df["values"].groupby(self.df["key"]).nth(0) class DateAttributes: def setup(self): rng = date_range("1/1/2000", "12/31/2005", freq="H") self.year, self.month, self.day = rng.year, rng.month, rng.day self.ts = Series(np.random.randn(len(rng)), index=rng) def time_len_groupby_object(self): len(self.ts.groupby([self.year, self.month, self.day])) class Int64: def setup(self): arr = np.random.randint(-1 << 12, 1 << 12, (1 << 17, 5)) i = np.random.choice(len(arr), len(arr) * 5) arr = np.vstack((arr, arr[i])) i = np.random.permutation(len(arr)) arr = arr[i] self.cols = list("abcde") self.df = DataFrame(arr, columns=self.cols) self.df["jim"], self.df["joe"] = np.random.randn(2, len(self.df)) * 10 def time_overflow(self): self.df.groupby(self.cols).max() class CountMultiDtype: def setup_cache(self): n = 10000 offsets = np.random.randint(n, size=n).astype("timedelta64[ns]") dates = np.datetime64("now") + offsets dates[np.random.rand(n) > 0.5] = np.datetime64("nat") offsets[np.random.rand(n) > 0.5] = np.timedelta64("nat") value2 = np.random.randn(n) value2[np.random.rand(n) > 0.5] = np.nan obj = np.random.choice(list("ab"), size=n).astype(object) obj[np.random.randn(n) > 0.5] = np.nan df = DataFrame( { "key1": np.random.randint(0, 500, size=n), "key2": np.random.randint(0, 100, size=n), "dates": dates, "value2": value2, "value3": np.random.randn(n), "ints": np.random.randint(0, 1000, size=n), "obj": obj, "offsets": offsets, } ) return df def time_multi_count(self, df): df.groupby(["key1", "key2"]).count() class CountMultiInt: def setup_cache(self): n = 10000 df = DataFrame( { "key1": np.random.randint(0, 500, size=n), "key2": np.random.randint(0, 100, size=n), "ints": np.random.randint(0, 1000, size=n), "ints2": np.random.randint(0, 1000, size=n), } ) return df def time_multi_int_count(self, df): df.groupby(["key1", "key2"]).count() def time_multi_int_nunique(self, df): df.groupby(["key1", "key2"]).nunique() class AggFunctions: def setup_cache(self): N = 10 ** 5 fac1 = np.array(["A", "B", "C"], dtype="O") fac2 = np.array(["one", "two"], dtype="O") df = DataFrame( { "key1": fac1.take(np.random.randint(0, 3, size=N)), "key2": fac2.take(np.random.randint(0, 2, size=N)), "value1": np.random.randn(N), "value2": np.random.randn(N), "value3": np.random.randn(N), } ) return df def time_different_str_functions(self, df): df.groupby(["key1", "key2"]).agg( {"value1": "mean", "value2": "var", "value3": "sum"} ) def time_different_numpy_functions(self, df): df.groupby(["key1", "key2"]).agg( {"value1": np.mean, "value2": np.var, "value3": np.sum} ) def time_different_python_functions_multicol(self, df): df.groupby(["key1", "key2"]).agg([sum, min, max]) def time_different_python_functions_singlecol(self, df): df.groupby("key1").agg([sum, min, max]) class GroupStrings: def setup(self): n = 2 * 10 ** 5 alpha = list(map("".join, product(ascii_letters, repeat=4))) data = np.random.choice(alpha, (n // 5, 4), replace=False) data = np.repeat(data, 5, axis=0) self.df = DataFrame(data, columns=list("abcd")) self.df["joe"] = (np.random.randn(len(self.df)) * 10).round(3) self.df = self.df.sample(frac=1).reset_index(drop=True) def time_multi_columns(self): self.df.groupby(list("abcd")).max() class MultiColumn: def setup_cache(self): N = 10 ** 5 key1 = np.tile(np.arange(100, dtype=object), 1000) key2 = key1.copy() np.random.shuffle(key1) np.random.shuffle(key2) df = DataFrame( { "key1": key1, "key2": key2, "data1": np.random.randn(N), "data2": np.random.randn(N), } ) return df def time_lambda_sum(self, df): df.groupby(["key1", "key2"]).agg(lambda x: x.values.sum()) def time_cython_sum(self, df): df.groupby(["key1", "key2"]).sum() def time_col_select_lambda_sum(self, df): df.groupby(["key1", "key2"])["data1"].agg(lambda x: x.values.sum()) def time_col_select_numpy_sum(self, df): df.groupby(["key1", "key2"])["data1"].agg(np.sum) class Size: def setup(self): n = 10 ** 5 offsets = np.random.randint(n, size=n).astype("timedelta64[ns]") dates = np.datetime64("now") + offsets self.df = DataFrame( { "key1": np.random.randint(0, 500, size=n), "key2": np.random.randint(0, 100, size=n), "value1": np.random.randn(n), "value2": np.random.randn(n), "value3": np.random.randn(n), "dates": dates, } ) self.draws = Series(np.random.randn(n)) labels = Series(["foo", "bar", "baz", "qux"] * (n // 4)) self.cats = labels.astype("category") def time_multi_size(self): self.df.groupby(["key1", "key2"]).size() def time_category_size(self): self.draws.groupby(self.cats).size() class Shift: def setup(self): N = 18 self.df = DataFrame({"g": ["a", "b"] * 9, "v": list(range(N))}) def time_defaults(self): self.df.groupby("g").shift() def time_fill_value(self): self.df.groupby("g").shift(fill_value=99) class FillNA: def setup(self): N = 100 self.df = DataFrame( {"group": [1] * N + [2] * N, "value": [np.nan, 1.0] * N} ).set_index("group") def time_df_ffill(self): self.df.groupby("group").fillna(method="ffill") def time_df_bfill(self): self.df.groupby("group").fillna(method="bfill") def time_srs_ffill(self): self.df.groupby("group")["value"].fillna(method="ffill") def time_srs_bfill(self): self.df.groupby("group")["value"].fillna(method="bfill") class GroupByMethods: param_names = ["dtype", "method", "application", "ncols"] params = [ ["int", "float", "object", "datetime", "uint"], [ "all", "any", "bfill", "count", "cumcount", "cummax", "cummin", "cumprod", "cumsum", "describe", "ffill", "first", "head", "last", "mad", "max", "min", "median", "mean", "nunique", "pct_change", "prod", "quantile", "rank", "sem", "shift", "size", "skew", "std", "sum", "tail", "unique", "value_counts", "var", ], ["direct", "transformation"], [1, 2, 5, 10], ] def setup(self, dtype, method, application, ncols): if method in method_blocklist.get(dtype, {}): raise NotImplementedError # skip benchmark if ncols != 1 and method in ["value_counts", "unique"]: # DataFrameGroupBy doesn't have these methods raise NotImplementedError if application == "transformation" and method in [ "head", "tail", "unique", "value_counts", "size", ]: # DataFrameGroupBy doesn't have these methods raise NotImplementedError ngroups = 1000 size = ngroups * 2 rng = np.arange(ngroups).reshape(-1, 1) rng = np.broadcast_to(rng, (len(rng), ncols)) taker = np.random.randint(0, ngroups, size=size) values = rng.take(taker, axis=0) if dtype == "int": key = np.random.randint(0, size, size=size) elif dtype == "uint": key = np.random.randint(0, size, size=size, dtype=dtype) elif dtype == "float": key = np.concatenate( [np.random.random(ngroups) * 0.1, np.random.random(ngroups) * 10.0] ) elif dtype == "object": key = ["foo"] * size elif dtype == "datetime": key = date_range("1/1/2011", periods=size, freq="s") cols = [f"values{n}" for n in range(ncols)] df = DataFrame(values, columns=cols) df["key"] = key if len(cols) == 1: cols = cols[0] if application == "transformation": if method == "describe": raise NotImplementedError self.as_group_method = lambda: df.groupby("key")[cols].transform(method) self.as_field_method = lambda: df.groupby(cols)["key"].transform(method) else: self.as_group_method = getattr(df.groupby("key")[cols], method) self.as_field_method = getattr(df.groupby(cols)["key"], method) def time_dtype_as_group(self, dtype, method, application, ncols): self.as_group_method() def time_dtype_as_field(self, dtype, method, application, ncols): self.as_field_method() class GroupByCythonAgg: """ Benchmarks specifically targetting our cython aggregation algorithms (using a big enough dataframe with simple key, so a large part of the time is actually spent in the grouped aggregation). """ param_names = ["dtype", "method"] params = [ ["float64"], [ "sum", "prod", "min", "max", "mean", "median", "var", "first", "last", "any", "all", ], ] def setup(self, dtype, method): N = 1_000_000 df = DataFrame(np.random.randn(N, 10), columns=list("abcdefghij")) df["key"] = np.random.randint(0, 100, size=N) self.df = df def time_frame_agg(self, dtype, method): self.df.groupby("key").agg(method) class Cumulative: param_names = ["dtype", "method"] params = [ ["float64", "int64", "Float64", "Int64"], ["cummin", "cummax", "cumsum"], ] def setup(self, dtype, method): N = 500_000 vals = np.random.randint(-10, 10, (N, 5)) null_vals = vals.astype(float, copy=True) null_vals[::2, :] = np.nan null_vals[::3, :] = np.nan df = DataFrame(vals, columns=list("abcde"), dtype=dtype) null_df = DataFrame(null_vals, columns=list("abcde"), dtype=dtype) keys = np.random.randint(0, 100, size=N) df["key"] = keys null_df["key"] = keys self.df = df self.null_df = null_df def time_frame_transform(self, dtype, method): self.df.groupby("key").transform(method) def time_frame_transform_many_nulls(self, dtype, method): self.null_df.groupby("key").transform(method) class RankWithTies: # GH 21237 param_names = ["dtype", "tie_method"] params = [ ["float64", "float32", "int64", "datetime64"], ["first", "average", "dense", "min", "max"], ] def setup(self, dtype, tie_method): N = 10 ** 4 if dtype == "datetime64": data = np.array([Timestamp("2011/01/01")] * N, dtype=dtype) else: data = np.array([1] * N, dtype=dtype) self.df = DataFrame({"values": data, "key": ["foo"] * N}) def time_rank_ties(self, dtype, tie_method): self.df.groupby("key").rank(method=tie_method) class Float32: # GH 13335 def setup(self): tmp1 = (np.random.random(10000) * 0.1).astype(np.float32) tmp2 = (np.random.random(10000) * 10.0).astype(np.float32) tmp = np.concatenate((tmp1, tmp2)) arr = np.repeat(tmp, 10) self.df = DataFrame({"a": arr, "b": arr}) def time_sum(self): self.df.groupby(["a"])["b"].sum() class String: # GH#41596 param_names = ["dtype", "method"] params = [ ["str", "string[python]"], [ "sum", "prod", "min", "max", "mean", "median", "var", "first", "last", "any", "all", ], ] def setup(self, dtype, method): cols = list("abcdefghjkl") self.df = DataFrame( np.random.randint(0, 100, size=(1_000_000, len(cols))), columns=cols, dtype=dtype, ) def time_str_func(self, dtype, method): self.df.groupby("a")[self.df.columns[1:]].agg(method) class Categories: def setup(self): N = 10 ** 5 arr = np.random.random(N) data = {"a": Categorical(np.random.randint(10000, size=N)), "b": arr} self.df =
DataFrame(data)
pandas.DataFrame
import nose import os import string from distutils.version import LooseVersion from datetime import datetime, date, timedelta from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range from pandas.compat import range, lrange, StringIO, lmap, lzip, u, zip import pandas.util.testing as tm from pandas.util.testing import ensure_clean from pandas.core.config import set_option import numpy as np from numpy import random from numpy.random import randn from numpy.testing import assert_array_equal from numpy.testing.decorators import slow import pandas.tools.plotting as plotting def _skip_if_no_scipy(): try: import scipy except ImportError: raise nose.SkipTest("no scipy") @tm.mplskip class TestSeriesPlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' def tearDown(self): tm.close() @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) _check_plot_works(self.ts.plot, rot=0) _check_plot_works(self.ts.plot, style='.', logy=True) _check_plot_works(self.ts.plot, style='.', logx=True) _check_plot_works(self.ts.plot, style='.', loglog=True) _check_plot_works(self.ts[:10].plot, kind='bar') _check_plot_works(self.iseries.plot) _check_plot_works(self.series[:5].plot, kind='bar') _check_plot_works(self.series[:5].plot, kind='line') _check_plot_works(self.series[:5].plot, kind='barh') _check_plot_works(self.series[:10].plot, kind='barh') _check_plot_works(Series(randn(10)).plot, kind='bar', color='black') @slow def test_plot_figsize_and_title(self): # figsize and title import matplotlib.pyplot as plt ax = self.series.plot(title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) @slow def test_bar_colors(self): import matplotlib.pyplot as plt import matplotlib.colors as colors default_colors = plt.rcParams.get('axes.color_cycle') custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(kind='bar') rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(default_colors[i % len(default_colors)]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() ax = df.plot(kind='bar', color=custom_colors) rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(custom_colors[i]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot(kind='bar', colormap='jet') rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() # Test colormap functionality ax = df.plot(kind='bar', colormap=cm.jet) rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() df.ix[:, [0]].plot(kind='bar', color='DodgerBlue') @slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot(kind='bar', linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # stacked ax = df.plot(kind='bar', stacked=True, linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # subplots axes = df.plot(kind='bar', linewidth=2, subplots=True) for ax in axes: for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot(log=True, kind='bar') assert_array_equal(ax.yaxis.get_ticklocs(), expected) def test_rotation(self): df = DataFrame(randn(5, 5)) ax = df.plot(rot=30) for l in ax.get_xticklabels(): self.assertEqual(l.get_rotation(), 30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_hist(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) _check_plot_works(self.ts.hist, by=self.ts.index.month) import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_layout(self): n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n)}) with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): import matplotlib.pyplot as plt n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) tm.close() _check_plot_works(df.height.hist, by=df.gender, layout=(1, 2)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(1, 4)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(4, 1)) tm.close() @slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf, close x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.get_axes() self.assertEqual(len(axes), 2) @slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with tm.assertRaises(ValueError): x.plot(style='k--', color='k') @slow def test_hist_by_no_extra_plots(self): import matplotlib.pyplot as plt n = 10 df = DataFrame({'gender': tm.choice(['Male', 'Female'], size=n), 'height': random.normal(66, 4, size=n)}) axes = df.height.hist(by=df.gender) self.assertEqual(len(plt.get_fignums()), 1) def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure, close fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with tm.assertRaises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @slow def test_kde(self): _skip_if_no_scipy() _check_plot_works(self.ts.plot, kind='kde') _check_plot_works(self.ts.plot, kind='density') ax = self.ts.plot(kind='kde', logy=True) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_kwargs(self): _skip_if_no_scipy() from numpy import linspace _check_plot_works(self.ts.plot, kind='kde', bw_method=.5, ind=linspace(-100,100,20)) _check_plot_works(self.ts.plot, kind='density', bw_method=.5, ind=linspace(-100,100,20)) ax = self.ts.plot(kind='kde', logy=True, bw_method=.5, ind=linspace(-100,100,20)) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_color(self): _skip_if_no_scipy() ax = self.ts.plot(kind='kde', logy=True, color='r') lines = ax.get_lines() self.assertEqual(len(lines), 1) self.assertEqual(lines[0].get_color(), 'r') @slow def test_autocorrelation_plot(self): from pandas.tools.plotting import autocorrelation_plot _check_plot_works(autocorrelation_plot, self.ts) _check_plot_works(autocorrelation_plot, self.ts.values) @slow def test_lag_plot(self): from pandas.tools.plotting import lag_plot _check_plot_works(lag_plot, self.ts) _check_plot_works(lag_plot, self.ts, lag=5) @slow def test_bootstrap_plot(self): from pandas.tools.plotting import bootstrap_plot _check_plot_works(bootstrap_plot, self.ts, size=10) def test_invalid_plot_data(self): s = Series(list('abcd')) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) @slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) def test_invalid_kind(self): s = Series([1, 2]) with tm.assertRaises(ValueError): s.plot(kind='aasdf') @slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @tm.mplskip class TestDataFramePlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') def tearDown(self): tm.close() @slow def test_plot(self): df = tm.makeTimeDataFrame() _check_plot_works(df.plot, grid=False) _check_plot_works(df.plot, subplots=True) _check_plot_works(df.plot, subplots=True, use_index=False) df = DataFrame({'x': [1, 2], 'y': [3, 4]}) self._check_plot_fails(df.plot, kind='line', blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) _check_plot_works(df.plot, subplots=True, title='blah') _check_plot_works(df.plot, title='blah') tuples = lzip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples([(u('\u03b1'), 0), (u('\u03b1'), 1), (u('\u03b2'), 2), (u('\u03b2'), 3), (u('\u03b3'), 4), (u('\u03b3'), 5), (u('\u03b4'), 6), (u('\u03b4'), 7)], names=['i0', 'i1']) columns = MultiIndex.from_tuples([('bar', u('\u0394')), ('bar', u('\u0395'))], names=['c0', 'c1']) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title=u('\u03A3')) def test_nonnumeric_exclude(self): import matplotlib.pyplot as plt df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}) ax = df.plot() self.assertEqual(len(ax.get_lines()), 1) # B was plotted @slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b') self.assertEqual(ax.xaxis.get_label().get_text(), 'a') @slow def test_explicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b', label='LABEL') self.assertEqual(ax.xaxis.get_label().get_text(), 'LABEL') @slow def test_plot_xy(self): import matplotlib.pyplot as plt # columns.inferred_type == 'string' df = tm.makeTimeDataFrame() self._check_data(df.plot(x=0, y=1), df.set_index('A')['B'].plot()) self._check_data(df.plot(x=0), df.set_index('A').plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x='A', y='B'), df.set_index('A').B.plot()) self._check_data(df.plot(x='A'), df.set_index('A').plot()) self._check_data(df.plot(y='B'), df.B.plot()) # columns.inferred_type == 'integer' df.columns = lrange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @slow def test_xcompat(self): import pandas as pd import matplotlib.pyplot as plt df = tm.makeTimeDataFrame() ax = df.plot(x_compat=True) lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['xaxis.compat'] = True ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex))
tm.close()
pandas.util.testing.close
# -*- coding: utf-8 -*- # @Author : BoPo # @Time : 2021/10/11 17:28 # @Function: import json import httpx import pandas as pd from tenacity import stop_after_attempt, wait_fixed, retry from mootdx.consts import return_last_value @retry(wait=wait_fixed(2), retry_error_callback=return_last_value, stop=stop_after_attempt(5)) def fq_factor(method: str, symbol: str) -> pd.DataFrame: zh_sina_a_stock_hfq_url = "https://finance.sina.com.cn/realstock/company/{}/hfq.js" zh_sina_a_stock_qfq_url = "https://finance.sina.com.cn/realstock/company/{}/qfq.js" client = httpx.Client(verify=False) if method == "hfq": res = client.get(zh_sina_a_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame(json.loads(res.text.split("=")[1].split("\n")[0])["data"]) if hfq_factor_df.shape[0] == 0: raise ValueError("sina hfq factor not available") hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] hfq_factor_df.reset_index(inplace=True) # hfq_factor_df = hfq_factor_df.set_index('date') return hfq_factor_df else: res = client.get(zh_sina_a_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame(json.loads(res.text.split("=")[1].split("\n")[0])["data"]) if qfq_factor_df.shape[0] == 0: raise ValueError("sina hfq factor not available") qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index =
pd.to_datetime(qfq_factor_df.date)
pandas.to_datetime
import sys import os import pandas as pd class UserError(Exception): """Errors regarding operations on user field of credentials.""" pass class IAM: """Identity and Access Manager""" # credentials storage path _path: str = "credentials.csv" # local timezone _tz_local: str = 'utc' # needed columns in credentials dataframe _columns: list = ["user", "role", "password", "creation"] def __init__(self, path: str = "credentials.csv", tz_local = "utc"): """Parameters: - path: path of a csv file containing credentials with columns user, role, password, creation; - tz_local: local timezone used for timestamps.""" self._path = path self._tz_local = tz_local def _df_is_valid(self, /, df: pd.DataFrame) -> bool: for col in self._columns: if col not in df.columns.tolist(): # missing column return False # df is valid return True def _read_df(self, check: bool = True) -> pd.DataFrame: # read df if os.path.exists(self._path): df = pd.read_csv(self._path, usecols=self._columns) else: df = pd.DataFrame(columns=self._columns) # check df validity if check and not self._df_is_valid(df): raise RuntimeError(f"credentials dataframe stored in {self._path} is not valid") return df def _write_df(self, /, df: pd.DataFrame) -> None: df.loc[:, self._columns].to_csv(self._path, index=False) def is_registered(self, user: str) -> bool: """Check if user is already registered.""" if user not in self._read_df(check=True).user.tolist(): return False return True def _registration_is_valid(self, user: str, errors: str = "strict", invert: bool = False) -> bool: """Check registration validity. A registration is considered valid when `invert` is True and `user` is not registered or `invert` is False and `user` is registered. If `errors` is strict an exception is raised on invalid registration, if it is `ignore` only a False boolean value is returned.""" if invert == self.is_registered(user): if errors == "strict": raise UserError(f"user \"{user}\" is {'already' if invert else 'not'} registered") elif errors == "ignore": return False else: raise ValueError("invalid error mode") return True def _get_column(self, column: str, user: str, errors: str = "strict"): """Get a value from a specific column and user.""" if not self._registration_is_valid(user, errors): # return here only if errors is not strict, otherwise _registration_is_valid # throws an exception on invalid registration return "" return self._read_df(check=True).loc[lambda x: x.user == user, column].values[0] def add_user(self, user: str, password: str, role: str = "", errors: str = "strict") -> None: """Add a new user to credential store. If user is already registered a UserError is raised when `errors` is "strict" or nothing is done if `errors` is \"ignore\".""" if not self._registration_is_valid(user, errors, invert=True): # return here only if errors is not strict, otherwise _registration_is_valid # throws an exception on invalid registration return # append new user df = self._read_df(check=True).append({"user": user, "role": role, "password": password, "creation":
pd.Timestamp.utcnow()
pandas.Timestamp.utcnow
# FORMULACIÓ PRÒPIA # LLIBRERIES import numpy as np from mpmath import mp # per tenir més decimals mp.dps = 50 import pandas as pd import matplotlib.pyplot as plt from scipy.sparse import csc_matrix, coo_matrix from scipy.sparse import lil_matrix, diags, hstack, vstack from scipy.sparse.linalg import spsolve, factorized np.set_printoptions(linewidth=2000, edgeitems=1000, suppress=True)
pd.set_option('display.max_rows', 5000)
pandas.set_option
import pandas as pd if __name__ == '__main__': tennet_delta_df =
pd.read_csv('../data/tennet_balans_delta/tennet_balans_delta_2021.csv')
pandas.read_csv
from typing import List, Optional, Union from geopandas.array import points_from_xy import numpy as np import netCDF4 import pandas as pd import geopandas as gpd import shapely.vectorized from scipy.spatial import cKDTree from pathlib import Path # from joblib import Parallel, delayed import typer import shapely from shapely.geometry import Point # from pyproj import crs # import pyproj from powergenome.params import DATA_PATHS, IPM_SHAPEFILE_PATH, IPM_GEOJSON_PATH from powergenome.transmission import haversine from powergenome.nrelatb import investment_cost_calculator, fetch_atb_costs from powergenome.util import reverse_dict_of_lists, init_pudl_connection, find_centroid from powergenome.price_adjustment import inflation_price_adjustment import math CWD = Path.cwd() VCE_DATA_PATH = Path("/Volumes/Extreme SSD/princeton_data") VCE_WIND_PATH = VCE_DATA_PATH / "PRINCETON-Wind-Data-2012" VCE_SOLAR_PATH = VCE_DATA_PATH / "PRINCETON-Solar-Data-2012" ATB_USD_YEAR = 2018 ATB_DATA_YEAR = 2020 pudl_engine, pudl_out = init_pudl_connection() cost_multiplier_region_map = { "TRE": ["ERC_PHDL", "ERC_REST", "ERC_WEST"], "FRCC": ["FRCC"], "MISW": ["MIS_WUMS", "MIS_MNWI", "MIS_IA"], "MISE": ["MIS_LMI"], "PJMC": ["PJM_COMD"], "MISC": ["MIS_IL", "MIS_MO", "S_D_AECI", "MIS_INKY"], "SPPN": ["MIS_MAPP", "SPP_WAUE", "SPP_NEBR", "MIS_MIDA"], "SPPC": ["SPP_N"], "SPPS": ["SPP_WEST", "SPP_SPS"], "MISS": ["MIS_AMSO", "MIS_WOTA", "MIS_LA", "MIS_AR", "MIS_D_MS"], "SRSE": ["S_SOU"], "SRCA": ["S_VACA"], "PJMD": ["PJM_Dom"], "PJMW": ["PJM_West", "PJM_AP", "PJM_ATSI"], "PJME": ["PJM_WMAC", "PJM_EMAC", "PJM_SMAC", "PJM_PENE", "PJM_NJLand"], "SRCE": ["S_C_TVA", "S_C_KY"], "NYUP": [ "NY_Z_A", "NY_Z_B", "NY_Z_C&E", "NY_Z_D", "NY_Z_F", "NY_Z_G-I", ], "NYCW": ["NY_Z_J", "NY_Z_K"], "ISNE": ["NENG_ME", "NENGREST", "NENG_CT"], "RMRG": ["WECC_CO"], "BASN": ["WECC_ID", "WECC_WY", "WECC_UT", "WECC_NNV"], "NWPP": ["WECC_PNW", "WECC_MT"], "CANO": ["WEC_CALN", "WEC_BANC"], "CASO": ["WECC_IID", "WECC_SCE", "WEC_LADW", "WEC_SDGE"], "SRSG": ["WECC_AZ", "WECC_NM", "WECC_SNV"], } rev_cost_mult_region_map = reverse_dict_of_lists(cost_multiplier_region_map) tx_capex_region_map = { "wecc": [ "WECC_AZ", "WECC_CO", "WECC_ID", "WECC_MT", "WECC_NM", "WECC_NNV", "WECC_PNW", "WECC_SNV", "WECC_UT", "WECC_WY", ], "ca": [ "WEC_BANC", "WEC_CALN", "WEC_LADW", "WEC_SDGE", "WECC_IID", "WECC_SCE", ], "tx": [ "ERC_PHDL", "ERC_REST", "ERC_WEST", ], "upper_midwest": [ "MIS_MAPP", "SPP_WAUE", "MIS_MNWI", "MIS_MIDA", "MIS_IA", "MIS_IL", "MIS_INKY", ], "lower_midwest": [ "SPP_N", "SPP_WEST", "SPP_SPS", "SPP_NEBR", ], "miso_s": [ "MIS_LA", "MIS_WOTA", "MIS_AMSO", "MIS_AR", "MIS_MO", "S_D_AECI", "MIS_D_MS", ], "great_lakes": [ "MIS_WUMS", "MIS_LMI", ], "pjm_s": [ "PJM_AP", "PJM_ATSI", "PJM_COMD", "PJM_Dom", "PJM_West", "S_C_KY", ], "pj_pa": [ "PJM_PENE", "PJM_WMAC", ], "pjm_md_nj": ["PJM_EMAC", "PJM_SMAC", "PJM_NJLand"], "ny": [ "NY_Z_A", "NY_Z_B", "NY_Z_C&E", "NY_Z_D", "NY_Z_F", "NY_Z_G-I", "NY_Z_J", ], "tva": [ "S_C_TVA", ], "south": [ "S_SOU", ], "fl": ["FRCC"], "vaca": ["S_VACA"], "ne": [ "NY_Z_K", "NENG_CT", "NENG_ME", "NENGREST", ], } rev_region_mapping = reverse_dict_of_lists(tx_capex_region_map) spur_costs_2013 = { "wecc": 3900, "ca": 3900 * 2.25, # According to Reeds docs, CA is 2.25x the rest of WECC "tx": 3900, "upper_midwest": 3900, "lower_midwest": 3800, "miso_s": 3900 * 2.25, "great_lakes": 4100, "pjm_s": 3900 * 2.25, "pj_pa": 3900 * 2.25, "pjm_md_nj": 3900 * 2.25, "ny": 3900 * 2.25, "tva": 3800, "south": 4950, "fl": 4100, "vaca": 3800, "ne": 3900 * 2.25, } spur_costs_2017 = { region: inflation_price_adjustment(cost, 2013, ATB_USD_YEAR) for region, cost in spur_costs_2013.items() } tx_costs_2013 = { "wecc": 1350, "ca": 1350 * 2.25, # According to Reeds docs, CA is 2.25x the rest of WECC "tx": 1350, "upper_midwest": 900, "lower_midwest": 900, "miso_s": 1750, "great_lakes": 1050, "pjm_s": 1350, "pj_pa": 1750, "pjm_md_nj": 4250, # Bins are $1500 wide - assume max bin is $750 above max "ny": 2750, "tva": 1050, "south": 1350, "fl": 1350, "vaca": 900, "ne": 4250, # Bins are $1500 wide - assume max bin is $750 above max } tx_costs_2017 = { region: inflation_price_adjustment(cost, 2013, ATB_USD_YEAR) for region, cost in tx_costs_2013.items() } spur_line_wacc = 0.069 spur_line_investment_years = 60 def load_atb_capex_wacc(): settings = { "atb_cap_recovery_years": 20, "atb_financial_case": "Market", "atb_cost_case": "Mid", "atb_usd_year": 2017, "target_usd_year": ATB_USD_YEAR, "pv_ac_dc_ratio": 1.34, "cost_multiplier_region_map": cost_multiplier_region_map, "atb_data_year": ATB_DATA_YEAR, "atb_new_gen": [ ["UtilityPV", "LosAngeles", "Mid", 1], ["LandbasedWind", "LTRG4", "Mid", 1], ], } atb_costs = fetch_atb_costs(pudl_engine, settings) solarpv_2030_capex = atb_costs.query( "technology=='UtilityPV' & cost_case=='Mid'" # " & financial_case=='Market' "& basis_year==2030 & tech_detail=='LosAngeles'" )["capex_mw"].values[0] wind_2030_capex = atb_costs.query( "technology=='LandbasedWind' & cost_case=='Mid'" # " & financial_case=='Market' "& basis_year==2030" # & tech_detail=='LTRG1'" )["capex_mw"].values[0] solarpv_2030_wacc = atb_costs.query( "technology=='UtilityPV' & cost_case=='Mid'" # " & financial_case=='Market' "& basis_year==2030 & tech_detail=='LosAngeles'" )["wacc_nominal"].values[0] wind_2030_wacc = atb_costs.query( "technology=='LandbasedWind' & cost_case=='Mid'" # " & financial_case=='Market' "& basis_year==2030" # & tech_detail=='LTRG1'" )["wacc_nominal"].values[0] solarpv_2030_fom = atb_costs.query( "technology=='UtilityPV' & cost_case=='Mid'" # " & financial_case=='Market' "& basis_year==2030 & tech_detail=='LosAngeles'" )["fixed_o_m_mw"].values[0] wind_2030_fom = atb_costs.query( "technology=='LandbasedWind' & cost_case=='Mid'" # " & financial_case=='Market' "& basis_year==2030" # & tech_detail=='LTRG1'" )["fixed_o_m_mw"].values[0] financials_dict = { "capex_mw": {"wind": wind_2030_capex, "solarpv": solarpv_2030_capex}, "wacc": {"wind": wind_2030_wacc, "solarpv": solarpv_2030_wacc}, "fom_mw": {"wind": wind_2030_fom, "solarpv": solarpv_2030_fom}, } return financials_dict def load_regional_cost_multipliers(): regional_cost_multipliers = pd.read_csv( "AEO_2020_regional_cost_corrections.csv", index_col=0 ) regional_cost_multipliers = regional_cost_multipliers.fillna(1) return regional_cost_multipliers def load_site_locations(folder=Path.cwd(), as_gdf=True): site_locations = pd.read_csv(folder / "RUC_LatLonSites.csv", dtype={"Site": str}) site_locations["Site"] = site_locations["Site"].str.zfill(6) if as_gdf: site_locations = gpd.GeoDataFrame( site_locations, crs="EPSG:4326", geometry=gpd.points_from_xy( site_locations.Longitude, site_locations.Latitude, ), ) return site_locations def fix_geometries(gdf): region_polys = {} fixed_regions = {} for region in gdf.index: region_polys[region] = [] try: for i in range(len(gdf.loc[region, "geometry"])): region_polys[region].append( shapely.geometry.Polygon(gdf.loc[region, "geometry"][i].exterior) ) except TypeError: region_polys[region].append( shapely.geometry.Polygon(gdf.loc[region, "geometry"].exterior) ) fixed_regions[region] = shapely.geometry.MultiPolygon(region_polys[region]) gdf.geometry = [x for x in fixed_regions.values()] return gdf def load_substations(min_kv=161): substation_gdf = gpd.read_file( CWD / "Electric_Substations" / "Electric_Substations.shp" ) # substation_gdf = substation_gdf.to_crs(epsg=4326) substation_gdf = substation_gdf.loc[ (substation_gdf["TYPE"] == "SUBSTATION") & (substation_gdf["STATUS"].isin(["IN SERVICE", "UNDER CONST"])) & (substation_gdf["MAX_VOLT"] >= min_kv), ["ID", "MAX_VOLT", "MIN_VOLT", "geometry", "STATE"], ] substation_gdf = substation_gdf.rename( columns={"ID": "substation_id", "STATE": "substation_state"} ) substation_gdf["latitude"] = substation_gdf.geometry.y substation_gdf["longitude"] = substation_gdf.geometry.x return substation_gdf def load_ipm_shapefile(filetype="geojson"): """Load the IPM shapefile or geojson file. Parameters ---------- filetype : str, optional Either "shp" or "geojson", by default "shp" Returns ------- GeoDataFrame IPM_Region (region names) and geometry columns """ print("loading IPM shapefile") if filetype.lower() == "shp": file_path = IPM_SHAPEFILE_PATH elif filetype.lower() == "geojson": file_path = IPM_GEOJSON_PATH else: raise ValueError( f"Parameter 'filetype' must be 'shp' or 'geojson', not {filetype}" ) ipm_regions = gpd.read_file(file_path) ipm_regions = ipm_regions.to_crs(epsg=4326) ipm_regions = fix_geometries(ipm_regions) return ipm_regions def load_metro_areas_shapefile(): shpfile_path = ( CWD / "USA_Core_Based_Statistical_Area" # / "USA_Core_Based_Statistical_Area.shp" ) metro_areas = gpd.read_file(shpfile_path) metro_areas = metro_areas.to_crs(epsg=4326) corrected_metro_centroids = pd.read_csv( CWD.parent / "bin" / "msa_urban_centroids.csv" ) corrected_metro_centroids["CBSA_ID"] = corrected_metro_centroids["CBSA_ID"].astype( "str" ) corrected_metro_centroids = corrected_metro_centroids.set_index("CBSA_ID") corrected_metro_centroids = gpd.GeoDataFrame( corrected_metro_centroids, geometry=points_from_xy( corrected_metro_centroids["msa_longitude"], corrected_metro_centroids["msa_latitude"], ), crs="EPSG:4326", ) metro_areas["center"] = find_centroid(metro_areas) metro_areas["corrected_center"] = metro_areas["CBSA_ID"].map( corrected_metro_centroids["geometry"] ) metro_areas["msa_center"] = metro_areas["center"] metro_areas.loc[~metro_areas["corrected_center"].isna(), "center"] = metro_areas[ "corrected_center" ] keep_cols = [ "CBSA_ID", "NAME", "CBSA_TYPE", "POPULATION", "center", "msa_center", "geometry", ] # metro_areas["geometry"] = metro_areas["center"] metro_areas = metro_areas.loc[:, keep_cols] metro_areas["metro_id"] = metro_areas["CBSA_ID"] metro_areas.columns = metro_areas.columns.str.lower() metro_areas["state"] = metro_areas["name"].str.split(", ").str[-1] metro_areas = metro_areas.loc[~metro_areas.state.isin(["AK", "HI", "PR"]), :] NY_Z_J_lon_lat = (-73.930488, 40.695448) NY_Z_K_lon_lat = (-73.008906, 40.840391) extra_metros = pd.DataFrame( [["NY_Z_J", 1e6], ["NY_Z_K", 1e6]], columns=["metro_id", "population"] ) extra_metros = gpd.GeoDataFrame( extra_metros, geometry=points_from_xy(*zip(NY_Z_J_lon_lat, NY_Z_K_lon_lat)), crs="EPSG:4326", ) extra_metros["center"] = extra_metros["geometry"] metro_areas = pd.concat([metro_areas, extra_metros], ignore_index=True, sort=False) return metro_areas def load_us_states_gdf(): us_states = gpd.read_file( "https://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_5m.json" ) drop_states = ["Puerto Rico", "Alaska", "Hawaii"] us_states = us_states.loc[~(us_states["NAME"].isin(drop_states)), :] us_states = us_states.reset_index(drop=True) return us_states def load_cpa_gdf(sheet, target_crs, slope_filter=None, layer=None): # if layer is not None: # cpa_gdf = gpd.read_file(filepath, layer=layer) # else: # cpa_gdf = gpd.read_file(filepath) cpa_gdf = pd.read_excel("NZA_CandidateProjectArea_Base_PG.xlsx", sheet_name=sheet) if slope_filter: cpa_gdf = cpa_gdf.loc[cpa_gdf["m_slope"] <= slope_filter, :] cpa_gdf = cpa_gdf.reset_index(drop=True) cpa_gdf = gpd.GeoDataFrame( cpa_gdf, geometry=gpd.points_from_xy(cpa_gdf.CENTROID_X, cpa_gdf.CENTROID_Y), crs="EPSG:4326", ) cpa_gdf = cpa_gdf.to_crs(target_crs) # centroid = find_centroid(cpa_gdf) cpa_gdf["Latitude"] = cpa_gdf.CENTROID_Y cpa_gdf["Longitude"] = cpa_gdf.CENTROID_X cpa_gdf["cpa_id"] = cpa_gdf.index return cpa_gdf def load_gen_profiles(site_list, resource, variable): if resource.lower() == "wind": resource = "Wind" resource_path = VCE_WIND_PATH elif resource.lower() == "solarpv": resource = "SolarPV" resource_path = VCE_SOLAR_PATH site_profiles = {} for s in site_list: fpath = f"Site_{s}_{resource}.nc4" site_data = netCDF4.Dataset(resource_path / fpath) gen_profile = np.array(site_data[variable]) site_profiles[s] = gen_profile df =
pd.DataFrame(site_profiles)
pandas.DataFrame
"""Analyze trades""" import sqlite3 from contextlib import closing from datetime import datetime import pandas as pd select_sql = """ SELECT * FROM trades WHERE time >= ? AND time <= ? """ def load_trades(db_file, start_time, end_time): """Load trades from db_file in given time range.""" conn = sqlite3.connect(db_file) with closing(conn) as db: df = pd.read_sql(select_sql, db, params=(start_time, end_time)) # We can't use detect_types=sqlite3.PARSE_DECLTYPES here since Go is # inserting time zone and Python's sqlite3 doesn't handle it. # See https://bugs.python.org/issue29099 df["time"] =
pd.to_datetime(df["time"])
pandas.to_datetime
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Biota Technology. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import division from unittest import TestCase, main import numpy as np import pandas as pd import matplotlib.pyplot as plt from sourcetracker._sourcetracker import (intersect_and_sort_samples, collapse_source_data, subsample_dataframe, validate_gibbs_input, validate_gibbs_parameters, collate_gibbs_results, get_samples, generate_environment_assignments, cumulative_proportions, single_sink_feature_table, ConditionalProbability, gibbs_sampler, gibbs) from sourcetracker._plot import plot_heatmap class TestValidateGibbsInput(TestCase): def setUp(self): self.index = ['s%s' % i for i in range(5)] self.columns = ['f%s' % i for i in range(4)] def test_no_errors_(self): # A table where nothing is wrong, no changes expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) exp_sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) obs = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs, sources) # Sources and sinks. sinks = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sinks = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) pd.util.testing.assert_frame_equal(obs_sinks, exp_sinks) def test_float_data(self): # Data is float, expect rounding. data = np.random.uniform(0, 1, size=20).reshape(5, 4) sources = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sources = pd.DataFrame(np.zeros(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) data = np.random.uniform(0, 1, size=20).reshape(5, 4) + 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sources = pd.DataFrame(np.ones(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) # Sources and sinks. data = np.random.uniform(0, 1, size=20).reshape(5, 4) + 5 sinks = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sinks = \ pd.DataFrame(5 * np.ones(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) pd.util.testing.assert_frame_equal(obs_sinks, exp_sinks) def test_negative_data(self): # Values less than 0, expect errors. data = np.random.uniform(0, 1, size=20).reshape(5, 4) - 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources) data = -1 * np.random.randint(0, 20, size=20).reshape(5, 4) sources = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources) # Sources and sinks. data = np.random.randint(0, 10, size=20).reshape(5, 4) + 1 sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sinks = pd.DataFrame(-10 * data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) def test_nan_data(self): # nans, expect errors. data = np.random.uniform(0, 1, size=20).reshape(5, 4) data[3, 2] = np.nan sources = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources) # Sources and sinks. data = np.random.randint(0, 10, size=20).reshape(5, 4) + 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) data[1, 3] = np.nan sinks = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) def test_non_numeric_data(self): # data contains at least some non-numeric columns, expect errors. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sources.iloc[2, 2] = '3.a' self.assertRaises(ValueError, validate_gibbs_input, sources) # Sources and sinks. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sinks = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sinks.iloc[2, 2] = '3' self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) def test_columns_identical(self): # Columns are identical, no error expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) data = np.random.randint(0, 10, size=200).reshape(50, 4) sinks = pd.DataFrame(data.astype(np.int32), index=['s%s' % i for i in range(50)], columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, sources) pd.util.testing.assert_frame_equal(obs_sinks, sinks) def test_columns_non_identical(self): # Columns are not identical, error expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) data = np.random.randint(0, 10, size=200).reshape(50, 4) sinks = pd.DataFrame(data.astype(np.int32), index=['s%s' % i for i in range(50)], columns=['feature%s' % i for i in range(4)]) self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) class TestValidateGibbsParams(TestCase): def test_acceptable_inputs(self): # All values acceptable, expect no errors. alpha1 = .001 alpha2 = .1 beta = 10 restarts = 10 draws_per_restart = 1 burnin = 100 delay = 1 self.assertTrue(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) alpha1 = alpha2 = beta = 0 self.assertTrue(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) def test_not_acceptable_inputs(self): # One of the float params is negative. alpha1 = -.001 alpha2 = .1 beta = 10 restarts = 10 draws_per_restart = 1 burnin = 100 delay = 1 self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # One of the int params is 0. alpha1 = .001 restarts = 0 self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # One of the int params is a float. restarts = 1.34 self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # A param is a string. restarts = '3.2232' self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # A param is a nan. restarts = 3 alpha1 = np.nan self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) class TestIntersectAndSortSamples(TestCase): def test_partially_overlapping_tables(self): # Test an example where there are unshared samples present in both # feature and sample tables. Notice that order is different between # the samples that are shared between both tables. The order of samples # in the returned tables is set by the ordering done in np.intersect1d. sdata_c1 = [3.1, 'red', 5] sdata_c2 = [3.6, 'yellow', 7] sdata_c3 = [3.9, 'yellow', -2] sdata_c4 = [2.5, 'red', 5] sdata_c5 = [6.7, 'blue', 10] samples = ['s1', 's4', 's2', 's3', 'sX'] headers = ['pH', 'color', 'day'] stable = pd.DataFrame([sdata_c1, sdata_c4, sdata_c2, sdata_c3, sdata_c5], index=samples, columns=headers) fdata = np.arange(90).reshape(9, 10) samples = ['s%i' % i for i in range(3, 12)] columns = ['o%i' % i for i in range(1, 11)] ftable = pd.DataFrame(fdata, index=samples, columns=columns) exp_ftable = pd.DataFrame(fdata[[1, 0], :], index=['s4', 's3'], columns=columns) exp_stable = pd.DataFrame([sdata_c4, sdata_c3], index=['s4', 's3'], columns=headers) obs_stable, obs_ftable = intersect_and_sort_samples(stable, ftable) pd.util.testing.assert_frame_equal(obs_stable, exp_stable) pd.util.testing.assert_frame_equal(obs_ftable, exp_ftable) # No shared samples, expect a ValueError. ftable.index = ['ss%i' % i for i in range(9)] self.assertRaises(ValueError, intersect_and_sort_samples, stable, ftable) # All samples shared, expect no changes. fdata = np.arange(50).reshape(5, 10) samples = ['s1', 's4', 's2', 's3', 'sX'] columns = ['o%i' % i for i in range(10)] ftable = pd.DataFrame(fdata, index=samples, columns=columns) exp_ftable = ftable.loc[stable.index, :] exp_stable = stable obs_stable, obs_ftable = intersect_and_sort_samples(stable, ftable) pd.util.testing.assert_frame_equal(obs_stable, exp_stable) pd.util.testing.assert_frame_equal(obs_ftable, exp_ftable) class TestGetSamples(TestCase): def tests(self): # Make a dataframe which contains mixed data to test. col0 = ['a', 'a', 'a', 'a', 'b'] col1 = [3, 2, 3, 1, 3] col2 = ['red', 'red', 'blue', 255, 255] headers = ['sample_location', 'num_reps', 'color'] samples = ['s1', 's2', 's3', 's4', 's5'] sample_metadata = \ pd.DataFrame.from_dict({k: v for k, v in zip(headers, [col0, col1, col2])}) sample_metadata.index = samples obs = get_samples(sample_metadata, 'sample_location', 'b') exp = pd.Index(['s5'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) obs = get_samples(sample_metadata, 'sample_location', 'a') exp = pd.Index(['s1', 's2', 's3', 's4'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) obs = get_samples(sample_metadata, 'color', 255) exp = pd.Index(['s4', 's5'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) obs = get_samples(sample_metadata, 'num_reps', 3) exp = pd.Index(['s1', 's3', 's5'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) class TestCollapseSourceData(TestCase): def test_example1(self): # Simple example with 'sum' as collapse mode. samples = ['sample1', 'sample2', 'sample3', 'sample4'] category = 'pH' values = [3.0, 0.4, 3.0, 3.0] stable = pd.DataFrame(values, index=samples, columns=[category]) fdata = np.array([[10, 50, 10, 70], [0, 25, 10, 5], [0, 25, 10, 5], [100, 0, 10, 5]]) ftable = pd.DataFrame(fdata, index=stable.index, columns=map(str, np.arange(4))) source_samples = ['sample1', 'sample2', 'sample3'] method = 'sum' obs = collapse_source_data(stable, ftable, source_samples, category, method) exp_data = np.vstack((fdata[1, :], fdata[0, :] + fdata[2, :])) exp_index = [0.4, 3.0] exp = pd.DataFrame(exp_data.astype(np.int32), index=exp_index, columns=map(str, np.arange(4))) exp.index.name = 'collapse_col' pd.util.testing.assert_frame_equal(obs, exp) # Example with collapse mode 'mean'. This will cause non-integer values # to be present, which the validate_gibbs_input should catch. source_samples = ['sample1', 'sample2', 'sample3', 'sample4'] method = 'mean' obs = collapse_source_data(stable, ftable, source_samples, category, method) exp_data = np.vstack((fdata[1, :], fdata[[0, 2, 3], :].mean(0))).astype(np.int32) exp_index = [0.4, 3.0] exp = pd.DataFrame(exp_data.astype(np.int32), index=exp_index, columns=map(str, np.arange(4))) exp.index.name = 'collapse_col' pd.util.testing.assert_frame_equal(obs, exp) def test_example2(self): # Test on another arbitrary example. data = np.arange(200).reshape(20, 10) oids = ['o%s' % i for i in range(20)] sids = ['s%s' % i for i in range(10)] ftable = pd.DataFrame(data.T, index=sids, columns=oids) _stable = \ {'s4': {'cat1': '2', 'cat2': 'x', 'cat3': 'A', 'cat4': 'D'}, 's0': {'cat1': '1', 'cat2': 'y', 'cat3': 'z', 'cat4': 'D'}, 's1': {'cat1': '1', 'cat2': 'x', 'cat3': 'A', 'cat4': 'C'}, 's3': {'cat1': '2', 'cat2': 'y', 'cat3': 'z', 'cat4': 'A'}, 's2': {'cat1': '2', 'cat2': 'x', 'cat3': 'A', 'cat4': 'D'}, 's6': {'cat1': '1', 'cat2': 'y', 'cat3': 'z', 'cat4': 'R'}, 's5': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}, 's7': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}, 's9': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}, 's8': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}} stable = pd.DataFrame(_stable).T category = 'cat4' source_samples = ['s4', 's9', 's0', 's2'] method = 'sum' obs = collapse_source_data(stable, ftable, source_samples, category, method) exp_index = np.array(['0', 'D']) exp_data = np.array([[9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199], [6, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576]], dtype=np.int32) exp = pd.DataFrame(exp_data, index=exp_index, columns=oids) exp.index.name = 'collapse_col' pd.util.testing.assert_frame_equal(obs, exp) class TestSubsampleDataframe(TestCase): def test_no_errors_expected(self): # Testing this function deterministically is hard because cython is # generating the PRNG calls. We'll settle for ensuring that the sums # are correct. fdata = np.array([[10, 50, 10, 70], [0, 25, 10, 5], [0, 25, 10, 5], [100, 0, 10, 5]]) ftable = pd.DataFrame(fdata, index=['s1', 's2', 's3', 's4'], columns=map(str, np.arange(4))) n = 30 obs = subsample_dataframe(ftable, n) self.assertTrue((obs.sum(axis=1) == n).all()) def test_subsample_with_replacement(self): # Testing this function deterministically is hard because cython is # generating the PRNG calls. We'll settle for ensuring that the sums # are correct. fdata = np.array([[10, 50, 10, 70], [0, 25, 10, 5], [0, 25, 10, 5], [100, 0, 10, 5]]) ftable = pd.DataFrame(fdata, index=['s1', 's2', 's3', 's4'], columns=map(str, np.arange(4))) n = 30 obs = subsample_dataframe(ftable, n, replace=True) self.assertTrue((obs.sum(axis=1) == n).all()) def test_shape_doesnt_change(self): # Test that when features are removed by subsampling, the shape of the # table does not change. Although rarifaction is stochastic, the # probability that the below table does not lose at least one feature # during rarefaction (and thus satisfy as the test of the condition we) # are interested in) is nearly 0. fdata = np.array([[0, 0, 0, 1e4], [0, 0, 1, 1e4], [0, 1, 0, 1e4], [1, 0, 0, 1e4]]).astype(int) ftable = pd.DataFrame(fdata, index=['s1', 's2', 's3', 's4'], columns=map(str, np.arange(4))) n = 10 obs = subsample_dataframe(ftable, n) self.assertTrue((obs.sum(axis=1) == n).all()) self.assertEqual(obs.shape, ftable.shape) class TestDataAggregationFunctions(TestCase): '''Test that returned data is collated and written correctly.''' def test_cumulative_proportions(self): # 4 draws, 4 sources + unknown, 3 sinks sink1_envcounts = np.array([[10, 100, 15, 0, 25], [150, 0, 0, 0, 0], [30, 30, 30, 30, 30], [0, 11, 7, 35, 97]]) sink2_envcounts = np.array([[100, 10, 15, 0, 25], [100, 0, 50, 0, 0], [0, 60, 30, 30, 30], [7, 11, 0, 35, 97]]) sink3_envcounts = np.array([[100, 10, 10, 5, 25], [70, 20, 30, 30, 0], [10, 30, 50, 30, 30], [0, 27, 100, 20, 3]]) all_envcounts = [sink1_envcounts, sink2_envcounts, sink3_envcounts] sink_ids = np.array(['sink1', 'sink2', 'sink3']) source_ids = np.array(['source1', 'source2', 'source3', 'source4']) cols = list(source_ids) + ['Unknown'] prp_r1 = np.array([190, 141, 52, 65, 152]) / 600. prp_r2 = np.array([207, 81, 95, 65, 152]) / 600. prp_r3 = np.array([180, 87, 190, 85, 58]) / 600. prp_data = np.vstack([prp_r1, prp_r2, prp_r3]) prp_std_data = np.zeros((3, 5), dtype=np.float64) prp_std_data[0, 0] = (np.array([10, 150, 30, 0]) / 600.).std() prp_std_data[0, 1] = (np.array([100, 0, 30, 11]) / 600.).std() prp_std_data[0, 2] = (np.array([15, 0, 30, 7]) / 600.).std() prp_std_data[0, 3] = (np.array([0, 0, 30, 35]) / 600.).std() prp_std_data[0, 4] = (np.array([25, 0, 30, 97]) / 600.).std() prp_std_data[1, 0] = (np.array([100, 100, 0, 7]) / 600.).std() prp_std_data[1, 1] = (np.array([10, 0, 60, 11]) / 600.).std() prp_std_data[1, 2] = (np.array([15, 50, 30, 0]) / 600.).std() prp_std_data[1, 3] = (np.array([0, 0, 30, 35]) / 600.).std() prp_std_data[1, 4] = (np.array([25, 0, 30, 97]) / 600.).std() prp_std_data[2, 0] = (np.array([100, 70, 10, 0]) / 600.).std() prp_std_data[2, 1] = (np.array([10, 20, 30, 27]) / 600.).std() prp_std_data[2, 2] = (np.array([10, 30, 50, 100]) / 600.).std() prp_std_data[2, 3] = (np.array([5, 30, 30, 20]) / 600.).std() prp_std_data[2, 4] = (np.array([25, 0, 30, 3]) / 600.).std() exp_prp = pd.DataFrame(prp_data, index=sink_ids, columns=cols) exp_prp_std = pd.DataFrame(prp_std_data, index=sink_ids, columns=cols) obs_prp, obs_prp_std = cumulative_proportions(all_envcounts, sink_ids, source_ids) pd.util.testing.assert_frame_equal(obs_prp, exp_prp) pd.util.testing.assert_frame_equal(obs_prp_std, exp_prp_std) def test_single_sink_feature_table(self): # 4 draws, depth of sink = 10, 5 sources + Unknown. final_env_assignments = np.array([[5, 0, 0, 0, 2, 0, 1, 0, 3, 1], [1, 1, 3, 3, 2, 2, 1, 1, 1, 1], [4, 1, 4, 4, 4, 4, 1, 1, 3, 2], [2, 1, 0, 5, 5, 5, 5, 1, 0, 2]]) # notice that each row is the same - they are determined by # `generate_taxon_sequence` before the `gibbs_sampler` runs. final_taxon_assignments = \ np.array([[0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100]]) # we are allowing more taxa than we have found in this sample, i.e. the # largest value in `final_taxon_assignments` will be smaller than the # largest index in the columns of the final table. nfeatures = 1250 nsources = 5 data = np.zeros((nsources + 1, nfeatures), dtype=np.int32) # for the purpose of this test code, I'll increment data taxa by taxa. data[np.array([5, 1, 4, 2]), 0] += 1 data[0, 3] += 3 data[1, 3] += 3 data[3, 3] += 1 data[4, 3] += 1 data[np.array([0, 3, 4, 5]), 227] += 1 data[0, 550] += 1 data[1, 550] += 3 data[2, 550] += 3 data[4, 550] += 2 data[5, 550] += 3 data[0, 999] += 2 data[1, 999] += 4 data[3, 999] += 2 data[1, 1100] += 2 data[2, 1100] += 2 exp_sources = ['source%s' % i for i in range(nsources)] + ['Unknown'] feature_ids = ['f%s' % i for i in range(1250)] exp =
pd.DataFrame(data, index=exp_sources, columns=feature_ids)
pandas.DataFrame
import pandas as pd import numpy as np import scipy.io from netCDF4 import Dataset # create tmp2m for each year for year in range(1979, 2021): print('preprocessing year:', year) lat = np.arange(-90, 91) lon = np.arange(0, 360) times = pd.date_range('{}-01-01'.format(year), '{}-12-31'.format(year)) t_regrid = scipy.io.loadmat('regrid_{}.mat'.format(year))['regrid'] m = np.swapaxes(t_regrid, 0, 1) lat, lon, dates = np.meshgrid(lat, lon, times, indexing='ij') dates = dates.flatten() lat = lat.flatten() lon = lon.flatten() arrays = [lat, lon, dates] tuples = list(zip(*arrays)) indexnames = ['lat', 'lon', 'start_date'] index = pd.MultiIndex.from_tuples(tuples, names=indexnames) s = pd.Series(m.flatten(), index=index) s = s.to_frame() s.columns = ['tmp2m'] s = s.dropna() s.to_hdf('tmp2m.{}.verif.h5'.format(year), key='data') # create tmp2m covering western us # combine all the western us data and save it into one pandas dataframe w_us =
pd.read_hdf('western_us_mask.h5')
pandas.read_hdf
import subprocess from io import StringIO from datetime import datetime, timedelta import os import logging import math import humanize import pandas as pd import numpy as np from params import SQUEUE_USER, UPLOAD_DIR # Data sources are: # SLURM (on ACCRE at Vanderbilt) # Local Filesystem (as configured for DAX upload queue) # # Note that this app does not access XNAT or REDCap or any external source # # Data is cached in a pickle file named results.pkl. This data is written when the # app first starts and then any time the user clicks Refresh Data. It is read # any time the user changes the data filtering. logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S') SQUEUE_CMD = 'squeue -u '+','.join(SQUEUE_USER)+' --format="%all"' DFORMAT = '%Y-%m-%d %H:%M:%S' # we concat diskq status and squeue status to make a single status # squeue states: CG,F, PR, S, ST # diskq statuses: JOB_RUNNING, JOB_FAILED, NEED_TO_RUN, COMPLETE, # UPLOADING, READY_TO_COMPLETE, READY_TO_UPLOAD STATUS_MAP = { 'COMPLETENONE': 'COMPLETE', 'JOB_FAILEDNONE': 'FAILED', 'JOB_RUNNINGCD': 'RUNNING', 'JOB_RUNNINGCG': 'RUNNING', 'JOB_RUNNINGF': 'RUNNING', 'JOB_RUNNINGR': 'RUNNING', 'JOB_RUNNINGNONE': 'RUNNING', 'JOB_RUNNINGPD': 'PENDING', 'NONENONE': 'WAITING', 'READY_TO_COMPLETENONE': 'COMPLETE', 'READY_TO_UPLOADNONE': 'COMPLETE'} JOB_TAB_COLS = [ 'LABEL', 'PROJECT', 'STATUS', 'PROCTYPE', 'USER', 'JOBID', 'TIME', 'WALLTIME', 'LASTMOD'] SQUEUE_COLS = [ 'NAME', 'ST', 'STATE', 'PRIORITY', 'JOBID', 'MIN_MEMORY', 'TIME', 'SUBMIT_TIME', 'START_TIME', 'TIME_LIMIT', 'TIME_LEFT', 'USER'] # Get fresh data from slurm and disk def get_job_data(): # TODO: run each load in separate threads # Load tasks in diskq logging.debug('loading diskq') diskq_df = load_diskq_queue() # load squeue logging.debug('loading squeue') squeue_df = load_slurm_queue() # TODO: load xnat if we want to identify lost jobs in a separate tab # merge squeue data into task queue logging.debug('merging data') if diskq_df.empty and squeue_df.empty: logging.debug('both empty') df = pd.DataFrame(columns=diskq_df.columns.union(squeue_df.columns)) elif diskq_df.empty: logging.debug('diskq empty') df = squeue_df.reindex(squeue_df.columns.union(diskq_df.columns), axis=1) elif squeue_df.empty: logging.debug('squeue empty') df = diskq_df.reindex(diskq_df.columns.union(squeue_df.columns), axis=1) else: df =
pd.merge(diskq_df, squeue_df, how='outer', on=['LABEL', 'USER'])
pandas.merge
# multivariate multihead multistep from keras.layers import Flatten from keras.layers import ConvLSTM2D from keras.layers.merge import concatenate from numpy import array from numpy import hstack from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import Reshape import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import os import gc import joblib import functions as func from sklearn.model_selection import RandomizedSearchCV from keras.utils import to_categorical from sklearn.pipeline import Pipeline from sklearn.metrics import make_scorer from sklearn.preprocessing import StandardScaler import time from sklearn.metrics import fbeta_score from sklearn.metrics import r2_score from keras.models import Sequential from keras.layers import LSTM from keras.layers import RepeatVector from keras.layers import TimeDistributed from keras.wrappers.scikit_learn import KerasClassifier from keras.wrappers.scikit_learn import KerasRegressor from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.optimizers import Adam from keras.constraints import maxnorm from keras.layers import Dropout from sklearn.linear_model import LogisticRegression from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import RandomForestRegressor from sklearn.multioutput import MultiOutputRegressor import pickle import tensorflow as tf def R2_measure(y_true, y_pred): return r2_score(y_true, y_pred) def f2_measure(y_true, y_pred): return fbeta_score(y_true, y_pred, labels=[1, 2], beta=2, average='micro') def split_sequences(data, n_steps, n_step_out): data = data.values X, y = list(), list() for i in range(len(data)): end_ix = i + n_steps*6 if end_ix > len(data): break Kx = np.empty((1, 12)) for index in np.arange(i, i+(n_steps*6), step=6, dtype=int): eachhour = index + 6 if eachhour > len(data) or i+(n_steps*6) > len(data): break a = data[index: eachhour, : (-1*n_step_out)] hourlymean_x = np.round(np.mean(a, axis=0), decimals=2) hourlymean_y = data[eachhour-1, (-1*n_step_out):] hourlymean_x = hourlymean_x.reshape((1, hourlymean_x.shape[0])) if index != i: Kx = np.append(Kx, hourlymean_x, axis=0) else: Kx = hourlymean_x X.append(Kx) y.append(hourlymean_y) # print(np.array(X).shape) return np.array(X), np.array(y) def temporal_horizon(df, pd_steps, target): for pd_steps in [1, 3, 6, 12, 24, 36, 48, 60, 72]: pd_steps = pd_steps * 6 target_values = df[[target]] target_values = target_values.drop( target_values.index[0: pd_steps], axis=0) target_values.index = np.arange(0, len(target_values[target])) df['Target_'+target+'_t'+str(pd_steps)] = target_values df = df.drop(df.index[len(df.index)-(72*6): len(df.index)], axis=0) return df def create_reg_LSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Reshape(target_shape=( n_steps_in*totalsets, n_features), input_shape=(n_steps_in*n_features*totalsets,))) model.add(tf.keras.layers.LSTM(neurons, activation=activation, return_sequences=True, kernel_constraint=tf.keras.constraints.MaxNorm(weight_constraint))) model.add(tf.keras.layers.Dropout(dropout_rate)) # , return_sequences=True)) model.add(tf.keras.layers.LSTM(neurons, activation=activation)) # model.add(Dense(neurons, activation=activation)) # Adding new layer model.add(tf.keras.layers.Dense(n_steps_out)) opt = tf.keras.optimizers.Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) # model.save(save_weights_only=True, best_model_only=True) print('model: ' + str(model)) return model def create_reg_NN_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): model = Sequential() model.add(Dense(neurons, activation=activation, kernel_constraint=maxnorm(weight_constraint), input_shape=(n_steps_in*n_features*totalsets,))) model.add(Dropout(dropout_rate)) model.add(Dense(neurons, activation=activation)) model.add(Dense(neurons, activation=activation)) # adding new layer model.add(Dense(n_steps_out)) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) print('model: ' + str(model)) return model def create_reg_endecodeLSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, activation='sigmoid'): model = Sequential() model.add(Reshape(target_shape=( n_steps_in*totalsets, n_features), input_shape=(n_steps_in*n_features*totalsets,))) model.add(LSTM(neurons, activation=activation, input_shape=(n_steps_in*totalsets, n_features))) model.add(RepeatVector(1)) model.add(LSTM(neurons, activation=activation, return_sequences=True)) model.add(TimeDistributed(Dense(n_steps_out))) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) return model def create_reg_CNNenLSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, activation='sigmoid'): model = Sequential() model.add(Reshape(target_shape=( n_steps_in*totalsets, n_features), input_shape=(n_steps_in*n_features*totalsets,))) model.add(Conv1D(64, 1, activation=activation, input_shape=(n_steps_in*totalsets, n_features))) model.add(MaxPooling1D()) model.add(Flatten()) model.add(RepeatVector(1)) model.add(LSTM(neurons, activation=activation, return_sequences=True)) model.add(TimeDistributed(Dense(100, activation=activation))) model.add(TimeDistributed(Dense(n_steps_out))) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) return model def create_reg_ConvLSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, activation='sigmoid'): # reshape from [samples, timesteps] into [samples, timesteps, rows, columns, features(channels)] model = Sequential() model.add(Reshape(target_shape=( n_steps_in, totalsets, n_features, 1), input_shape=(n_steps_in*n_features*totalsets,))) model.add(ConvLSTM2D(64, (1, 3), activation=activation, input_shape=(n_steps_in, totalsets, n_features, 1))) model.add(Flatten()) model.add(RepeatVector(1)) model.add(LSTM(neurons, activation=activation, return_sequences=True)) model.add(TimeDistributed(Dense(100, activation=activation))) model.add(TimeDistributed(Dense(n_steps_out))) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) return model def algofind(model_name, input_dim, cat, n_features, n_steps_out, params, n_jobs): if cat == 0: if model_name == 'endecodeLSTM': activation, neurons, batch_size, epochs, learn_rate, n_steps_in = params model = KerasRegressor(build_fn=create_reg_endecodeLSTM_model, input_dim=input_dim, activation=activation, epochs=epochs, batch_size=batch_size, neurons=neurons, n_steps_in=int(n_steps_in), learn_rate=learn_rate, n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'CNNLSTM': activation, neurons, batch_size, epochs, learn_rate, n_steps_in = params model = KerasRegressor(build_fn=create_reg_CNNenLSTM_model, input_dim=input_dim, activation=activation, epochs=epochs, batch_size=batch_size, neurons=neurons, n_steps_in=int(n_steps_in), learn_rate=learn_rate, n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'ConvEnLSTM': # activation, neuron, bach size, epoch, learning rate, n_steps_in activation, neurons, batch_size, epochs, learn_rate, n_steps_in = params model = KerasRegressor(build_fn=create_reg_ConvLSTM_model, input_dim=input_dim, activation=activation, epochs=epochs, batch_size=batch_size, neurons=neurons, n_steps_in=int(n_steps_in), learn_rate=learn_rate, n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'NN': activation, neurons, batch_size, epochs, learn_rate, dropout_rate, weight_constraint, n_steps_in = params model = KerasRegressor(build_fn=create_reg_NN_model, epochs=epochs, batch_size=batch_size, input_dim=input_dim, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), neurons=neurons, learn_rate=learn_rate, dropout_rate=dropout_rate, weight_constraint=weight_constraint, activation=activation, verbose=0) elif model_name == 'LSTM': # _oneSonde activation, neurons, batch_size, epochs, learn_rate, dropout_rate, weight_constraint, n_steps_in = params model = KerasRegressor(build_fn=create_reg_LSTM_model, epochs=epochs, batch_size=batch_size, input_dim=input_dim, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), neurons=neurons, learn_rate=learn_rate, dropout_rate=dropout_rate, weight_constraint=weight_constraint, activation=activation, verbose=0) elif model_name == 'DT': min_samples_split, max_features, criterion, max_depth, min_samples_leaf, n_steps = params model = MultiOutputRegressor(DecisionTreeRegressor(max_depth=max_depth, criterion=criterion, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features)) elif model_name == 'RF': max_features, n_estimators, max_depth, min_samples_leaf, min_samples_split, bootstrap, n_steps = params model = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth, bootstrap=bootstrap, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features)) elif model_name == 'DT_onereg': # split, maxfeatures, criterion, minsampleleaf, maxdepth, lag min_samples_split, max_features, criterion, max_depth, min_samples_leaf, n_steps = params model = DecisionTreeRegressor(max_depth=max_depth, criterion=criterion, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, n_jobs=n_jobs) elif model_name == 'RF_onereg': # maxfeature, n_estimator, maxdepth, minsampleleaf, min_samplesplit, bootstrap, lag max_features, n_estimators, max_depth, min_samples_leaf, min_samples_split, bootstrap, n_steps = params model = RandomForestRegressor(max_depth=max_depth, bootstrap=bootstrap, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, n_jobs=n_jobs) elif model_name == 'SVC': epsilon, gamma, C, n_steps = params model = MultiOutputRegressor( SVR(epsilon=epsilon, gamma=gamma, C=C)) return model totalsets = 2 def main(): # models = ['endecodeLSTM', 'CNNLSTM', 'ConvEnLSTM', # 'NN', 'SVC', 'RF_onereg', 'DT_onereg'] models = ['LSTM'] # save the models later # 'DOcategory', 'pHcategory','ph', 'dissolved_oxygen', targets = ['dissolved_oxygen', 'ph'] path = 'Sondes_data/train_Summer/' # files = [f for f in os.listdir(path) if f.endswith( # ".csv") and f.startswith('leavon')] # leavon files = ['osugi.csv', 'utlcp.csv', 'leoc_1.csv', 'leavon.csv'] n_job = -1 PrH_index = 0 for model_name in models: print(model_name) for target in targets: print(target) if target.find('category') > 0: cat = 1 directory = 'Results/bookThree/2sondes/output_Cat_' + \ model_name+'/final_models/' data = {'target_names': 'target_names', 'method_names': 'method_names', 'window_nuggets': 'window_nuggets', 'temporalhorizons': 'temporalhorizons', 'CV': 'CV', 'file_names': 'file_names', 'F1_0': 'F1_0', 'F1_1': 'F1_1', 'P_0': 'P_0', 'P_1': 'P_1', 'R_0': 'R_0', 'R_1': 'R_1', 'acc0_1': 'acc0_1', 'F1_0_1': 'F1_0_1', 'F1_all': 'F1_all', 'fbeta': 'fbeta'} else: cat = 0 directory = 'Results/bookThree/2sondes/output_Reg_' + \ model_name+'/final_models/' data = {'target_names': 'target_names', 'method_names': 'method_names', 'window_nuggets': 'window_nuggets', 'temporalhorizons': 'temporalhorizons', 'CV': 'CV', 'file_names': 'file_names', 'mape': 'mape', 'me': 'me', 'mae': 'mae', 'mse': 'mse', 'rmse': 'rmse', 'R2': 'R2'} if not os.path.exists(directory): os.makedirs(directory) print(directory) directoryresult = directory + 'Results/' if not os.path.exists(directoryresult): os.makedirs(directoryresult) # resultFileName = 'results_'+target+str(time.time())+'.csv' for file in files: method = 'OrgData' params = func.trained_param_grid[ 'param_grid_'+model_name+str(cat)] n_steps_in = func.getlags_window( model_name, params['param_'+target+'_'+str(PrH_index)], cat) print(n_steps_in) dataset =
pd.read_csv(path+file)
pandas.read_csv
#!/usr/bin/env python3 import argparse import glob import numpy as np import os import pandas as pd import quaternion import sys import trimesh import json from tqdm import tqdm from scipy.spatial.distance import cdist import warnings warnings.filterwarnings("ignore") __dir__ = os.path.normpath( os.path.join( os.path.dirname(os.path.realpath(__file__)), '..') ) sys.path[1:1] = [__dir__] top_classes = { "03211117": "display", "04379243": "table", "02747177": "trashbin", "03001627": "chair", # "04256520": "sofa", "02808440": "bathtub", "02933112": "cabinet", "02871439": "bookshelf" } from shapefit.utils.utils import get_validation_appearance, get_symmetries, get_gt_dir, \ get_scannet, get_shapenet, make_M_from_tqs, make_tqs_from_M # helper function to calculate difference between two quaternions def calc_rotation_diff(q, q00): rotation_dot = np.dot(quaternion.as_float_array(q00), quaternion.as_float_array(q)) rotation_dot_abs = np.abs(rotation_dot) try: error_rotation_rad = 2 * np.arccos(rotation_dot_abs) except: return 0.0 error_rotation = np.rad2deg(error_rotation_rad) return error_rotation def rotation_error(row): q = quaternion.quaternion(*row[:4]) q_gt = quaternion.quaternion(*row[4:8]) sym = row[-1] if sym == "__SYM_ROTATE_UP_2": m = 2 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) elif sym == "__SYM_ROTATE_UP_4": m = 4 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) elif sym == "__SYM_ROTATE_UP_INF": m = 36 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) else: return calc_rotation_diff(q, q_gt) def print_to_(verbose, log_file, string): if verbose: print(string) sys.stdout.flush() with open(log_file, 'a+') as f: f.write(string + '\n') def get_init_mesh(scan_id, key): path = glob.glob(os.path.join( '/home/ishvlad/workspace/Scan2CAD/MeshDeformation/ARAP/', 'arap_output_GT', scan_id, key + '*', 'init.obj' )) if len(path) == 0: return None return trimesh.load_mesh(path[0], process=False) def DAME(mesh_1, mesh_2, k=0.59213): def dihedral(mesh): unique_faces, _ = np.unique(np.sort(mesh.faces, axis=1), axis=0, return_index=True) parts_bitriangles_map = [] bitriangles = {} for face in unique_faces: edge_1 = tuple(sorted([face[0], face[1]])) if edge_1 not in bitriangles: bitriangles[edge_1] = set([face[0], face[1], face[2]]) else: bitriangles[edge_1].add(face[2]) edge_2 = tuple(sorted([face[1], face[2]])) if edge_2 not in bitriangles: bitriangles[edge_2] = set([face[0], face[1], face[2]]) else: bitriangles[edge_2].add(face[0]) edge_3 = tuple(sorted([face[0], face[2]])) if edge_3 not in bitriangles: bitriangles[edge_3] = set([face[0], face[1], face[2]]) else: bitriangles[edge_3].add(face[1]) bitriangles_aligned = np.empty((len(mesh.edges_unique), 4), dtype=int) for j, edge in enumerate(mesh.edges_unique): bitriangle = [*sorted(edge)] bitriangle += [x for x in list(bitriangles[tuple(sorted(edge))]) if x not in bitriangle] bitriangles_aligned[j] = bitriangle vertices_bitriangles_aligned = mesh.vertices[bitriangles_aligned] normals_1 = np.cross((vertices_bitriangles_aligned[:, 2] - vertices_bitriangles_aligned[:, 0]), (vertices_bitriangles_aligned[:, 2] - vertices_bitriangles_aligned[:, 1])) normals_1 = normals_1 / np.sqrt(np.sum(normals_1 ** 2, axis=1)[:, None]) normals_2 = np.cross((vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 0]), (vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 1])) normals_2 = normals_2 / np.sqrt(np.sum(normals_2 ** 2, axis=1)[:, None]) n1_n2_arccos = np.arccos(np.sum(normals_1 * normals_2, axis=1).clip(-1, 1)) n1_n2_signs = np.sign( np.sum(normals_1 * (vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 1]), axis=1)) D_n1_n2 = n1_n2_arccos * n1_n2_signs return D_n1_n2 D_mesh_1 = dihedral(mesh_1) D_mesh_2 = dihedral(mesh_2) mask_1 = np.exp((k * D_mesh_1) ** 2) per_edge = np.abs(D_mesh_1 - D_mesh_2) * mask_1 result = np.sum(per_edge) / len(mesh_1.edges_unique) return result, per_edge def calc_ATSD(dists, border): return np.minimum(dists.min(1), border).mean() def calc_F1(dists, border): return np.sum(dists.min(1) < border) / len(dists) def calc_CD(dists, border): return max(np.minimum(dists.min(1), border).mean(), np.minimum(dists.min(0), border).mean()) def calc_metric(scan_mesh, shape_mesh, method='all', border=0.1): area = border * 2 # get scan bbox bbox = np.array([shape_mesh.vertices.min(0), shape_mesh.vertices.max(0)]) bbox += [[-area], [area]] batch = np.array([np.diag(bbox[0]), np.diag(bbox[1]), np.eye(3), -np.eye(3)]) slice_mesh = scan_mesh.copy() # xyz for i in range(3): slice_mesh = slice_mesh.slice_plane(batch[0, i], batch[2, i]) slice_mesh = slice_mesh.slice_plane(batch[1, i], batch[3, i]) if len(slice_mesh.vertices) == 0: if method == 'all': return {'ATSD': border, 'CD': border, 'F1': 0.0} else: return border scan_vertices = np.array(slice_mesh.vertices) if len(scan_vertices) > 20000: scan_vertices = scan_vertices[::len(scan_vertices) // 20000] dists = cdist(np.array(shape_mesh.vertices), scan_vertices, metric='minkowski', p=1) if method == 'ATSD': return calc_ATSD(dists, border) elif method == 'CD': return calc_CD(dists, border) elif method == 'F1': return calc_F1(dists, border) else: return { 'ATSD': calc_ATSD(dists, border), 'CD': calc_CD(dists, border), 'F1': calc_F1(dists, border), } def metric_on_deformation(options): output_name = options.output_name + '_' + str(options.border) + \ '_' + str(options.val_set) + '_' + str(options.metric_type) if options.output_type == 'align': # load needed models appearance = get_validation_appearance(options.val_set) # LOAD list of all aligned scenes csv_files = glob.glob(os.path.join(options.input_dir, '*.csv')) scenes = [x.split('/')[-1][:-4] for x in csv_files] # Which scenes do we want to calculate? scenes = np.intersect1d(scenes, list(appearance.keys())) batch = [] for s in scenes: df_scan = pd.read_csv( os.path.join(options.input_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str} ) # Filter: take only objects from appearance df_scan['key'] = df_scan.objectCategory + '_' + df_scan.alignedModelId df_scan = df_scan[np.in1d(df_scan['key'].values, list(appearance[s].keys()))] batch.extend([{ 'scan_id': s, 'key': row['key'], 'objectCategory': row['objectCategory'], 'alignedModelId': row['alignedModelId'], 'path': 'path to origin ShapeNet mesh', 'object_num': i, 'T': [row['tx'], row['ty'], row['tz']], 'Q': [row['qw'], row['qx'], row['qy'], row['qz']], 'S': [row['sx'], row['sy'], row['sz']] } for i, row in df_scan.iterrows()]) df = pd.DataFrame(batch) else: # LOAD list of all aligned scenes in_files = glob.glob(os.path.join(options.input_dir, 'scene*/*/approx.obj')) if len(in_files) == 0: in_files = glob.glob(os.path.join(options.input_dir, '*/scene*/*/approx.obj')) info = [] for x in in_files: parts = x.split('/')[-3:-1] if len(parts[1].split('_')) == 3: category_id, shape_id, object_num = parts[1].split('_') else: category_id, shape_id = parts[1].split('_') object_num = -1 row = [ parts[0], # scan_id category_id + '_' + shape_id, # key category_id, shape_id, object_num, x, # path ] info.append(row) df = pd.DataFrame(info, columns=['scan_id', 'key', 'objectCategory', 'alignedModelId', 'object_num', 'path']) transform_files = ['/'.join(x.split('/')[:-1]) + '/transform.json' for x in in_files] Ts, Qs, Ss = [], [], [] for f in transform_files: if os.path.exists(f): matrix = np.array(json.load(open(f, 'rb'))['transform']) else: Ts.append(None) Qs.append(None) Ss.append(None) continue t, q, s = make_tqs_from_M(matrix) q = quaternion.as_float_array(q) Ts.append(t) Qs.append(q) Ss.append(s) df['T'] = Ts df['Q'] = Qs df['S'] = Ss metrics = {} batch = df.groupby('scan_id') if options.verbose: batch = tqdm(batch, desc='Scenes') # CALCULATE METRICS for scan_id, df_scan in batch: scan_mesh = get_scannet(scan_id, 'mesh') scan_batch = df_scan.iterrows() if options.verbose: scan_batch = tqdm(scan_batch, total=len(df_scan), desc='Shapes', leave=False) for i, row in scan_batch: if options.output_type == 'align': shape_mesh = get_shapenet(row['objectCategory'], row['alignedModelId'], 'mesh') else: try: shape_mesh = trimesh.load_mesh(row['path']) except Exception: metrics[i] = {'ATSD': np.nan, 'CD': np.nan, 'F1': np.nan} continue if row['T'] is None: metrics[i] = {'ATSD': np.nan, 'CD': np.nan, 'F1': np.nan} continue T = make_M_from_tqs(row['T'], row['Q'], row['S']) shape_mesh.apply_transform(T) metrics[i] = calc_metric(scan_mesh, shape_mesh, border=options.border) df_final = df.merge(pd.DataFrame(metrics).T, left_index=True, right_index=True) df_final.to_csv(output_name + '.csv') if len(df_final) == 0: print_to_(options.verbose, output_name + '.log', 'No aligned shapes') return df_final = df_final[~pd.isna(df_final['ATSD'])] # Calculate INSTANCE accuracy acc = df_final[['ATSD', 'CD', 'F1']].mean().values acc[-1] *= 100 print_string = '#' * 57 + '\nINSTANCE MEAN. ATSD: {:>4.2f}, CD: {:>4.2f}, F1: {:6.2f}\n'.format( *acc) + '#' * 57 print_to_(options.verbose, output_name + '.log', print_string) df_final['name'] = [top_classes.get(x, 'zother') for x in df_final.objectCategory] df_class = df_final.groupby('name').mean()[['ATSD', 'CD', 'F1']] print_string = '###' + ' ' * 7 + 'CLASS' + ' ' * 4 + '# ATSD # CD # F1 ###' print_to_(options.verbose, output_name + '.log', print_string) for name, row in df_class.iterrows(): print_string = '###\t{:10} # {:>4.2f} # {:>4.2f} # {:6.2f} ###'.format( name, row['ATSD'], row['CD'], row['F1']*100 ) print_to_(options.verbose, output_name + '.log', print_string) acc = df_class.mean().values acc[-1] *= 100 print_string = '#' * 57 + '\n CLASS MEAN. ATSD: {:>4.2f}, CD: {:>4.2f}, F1: {:6.2f}\n'.format( *acc) + '#' * 57 print_to_(options.verbose, output_name + '.log', print_string) def metric_on_alignment(options): output_name = options.output_name + '_' + str(options.border) + \ '_' + str(options.val_set) + '_' + str(options.metric_type) if options.output_type == 'deform': raise Exception # LOAD list of all aligned scenes csv_files = glob.glob(os.path.join(options.input_dir, '*.csv')) scenes = [x.split('/')[-1][:-4] for x in csv_files] # Which scenes do we want to calculate? appearances_cad = get_validation_appearance(options.val_set) df_appearance = pd.DataFrame(np.concatenate([ [(k, kk, appearances_cad[k][kk]) for kk in appearances_cad[k]] for k in appearances_cad ]), columns=['scan_id', 'key', 'count']) scenes = np.intersect1d(scenes, list(set(df_appearance.scan_id))) # LOAD GT and target alignments gt_dir = get_gt_dir('align') batch = [] batch_gt = [] for s in scenes: df = pd.read_csv(os.path.join(gt_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str}) df['scan_id'] = s # Filter: take only objects from appearance df['key'] = df.objectCategory + '_' + df.alignedModelId df = df[np.in1d(df['key'].values, list(appearances_cad[s].keys()))] batch_gt.append(df) df = pd.read_csv(os.path.join(options.input_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str}) df['scan_id'] = s # Filter: take only objects from appearance df['key'] = df.objectCategory + '_' + df.alignedModelId df = df[np.in1d(df['key'].values, list(appearances_cad[s].keys()))] batch.append(df) df_alignment = pd.concat(batch) df_alignment.reset_index(drop=True, inplace=True) df_alignment_gt =
pd.concat(batch_gt)
pandas.concat
import numpy as np from scipy import sparse import matplotlib.pyplot as plt import pandas as pd from IPython import display import time from datetime import datetime from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import GridSearchCV #Obtain data from CSVs fundementalsData = pd.read_csv("./nyse/fundamentals.csv").dropna() pricesData = pd.read_csv("./nyse/prices.csv") #Convert data to dataframes fundementalsDataFrame = pd.DataFrame(fundementalsData) pricesDataFrame =
pd.DataFrame(pricesData)
pandas.DataFrame
# coding: utf-8 # In[1]: # Import all packages import os import numpy as np import pandas as pd from IPython.display import display # In[2]: # Global parameters / values dataAux_dir = "../data_aux/" results_dir = "../results/" Klaeger_filename = "Klaeger.csv" Huang_filename = "Huang.csv" Annes100_filename = "Annes100.csv" Annes500_filename = "Annes500.csv" # Name of column of official gene symbols geneSymbolColumn = "GeneSymbol" # Thresholds for converting kinase activity metrics to boolean values # - use_diff: bool # Use difference between STF1081 and another compound as value to threshold # For Annes and Huang datasets: use the absolute difference and compare to threshold diff_percent_thresh # For Klaeger dataset: use fold difference and compare to threshold diff_fold_thresh # - diff_percent_thresh: int or float # Threshold absolute difference (% control (Annes) or % activity remaining (Huang)) between a less toxic compound # and STF1081 at which a target (kinase) is considered a potential target for the toxicity of STF1081 # - diff_fold_thresh: int or float # Threshold fold difference (Kd_app) between a less toxic compound and STF1081 at which a target (kinase) # is considered a potential target for the toxicity of STF1081 # - min_percent_thresh: int or float # Threshold % control (Annes) or % activity remaining (Huang) at which a target is considered to be inhibited by STF1081 # - max_percent_thresh: int or float # Threshold % control (Annes) or % activity remaining (Huang) at which a target is considered to be not inhibited by # a less toxic compound use_diff = True diff_percent_thresh = 20 diff_fold_thresh = 20 min_percent_thresh = 25 max_percent_thresh = 75 # Compare 100nM STF1081 to 100nM STF1285 (Annes100_filename) or 500nM STF1285 (Annes500_filename) Annes_filename = Annes100_filename # In[3]: ## Read in data df1 = pd.read_csv(os.path.join(dataAux_dir, Klaeger_filename)) df2 = pd.read_csv(os.path.join(dataAux_dir, Huang_filename)) df3 = pd.read_csv(os.path.join(dataAux_dir, Annes_filename)) # ## Boolean filtering # # Add new column `bool` to each DataFrame that indicates whether target is both inhibited by STF1081 and *not* inhibited by a less toxic compound. Find the intersection across all datasets. # In[4]: df1['bool'] = np.nan df2['bool'] = np.nan df3['bool'] = np.nan # In[5]: if use_diff: df1['bool'] = df1['CC401'] / df1['STF1081'] >= diff_fold_thresh df2['bool'] = df2['HTH01091'] - df2['STF1081'] >= diff_percent_thresh df3['bool'] = df3['STF1285'] - df3['STF1081'] >= diff_percent_thresh else: df1.loc[np.isinf(df1['CC401']) & (df1['STF1081'] < np.inf), 'bool'] = True df2.loc[(df2['HTH01091'] >= max_percent_thresh) & (df2['STF1081'] <= min_percent_thresh), 'bool'] = True df3.loc[(df3['STF1285'] >= max_percent_thresh) & (df3['STF1081'] <= min_percent_thresh), 'bool'] = True # In[6]: intersect =
pd.merge(df1, df2, how='inner', on=[geneSymbolColumn, 'bool'])
pandas.merge
import flask import web3 from flask_cors import CORS from flask import request import pandas as pd from flask import request import hashlib import base64 BUFF_SIZE = 65536 num_file = 0 app = flask.Flask(__name__) app.config["DEBUG"] = True CORS(app) csv_file = "file.csv" bdd = pd.DataFrame() #fonction d'initialisation de la bdd pour les test def init_bdd(): global bdd bdd = pd.DataFrame({"file":["file1","file2"],"licence":[1,5],"price":[1,1]}) bdd['hash'] = bdd.apply(calcul_hash,axis=1) #calcul le hash d'un item def calcul_hash(item): global num_file num_file+=1 return str(num_file) #route pour ajouter un nouveau produit @app.route('/new_product', methods=['POST']) def add_product(): global num_file global bdd num_file +=1 my_json = request.get_json() print("\n\n",my_json,"\n\n",request.data) public_key = my_json['public_key'] product = my_json['file'] my_b = bytes(product,'utf-8') my_str = base64.b64decode(my_b).decode('utf-8') my_final_b = bytes(my_str,'utf-8') print(my_final_b) #licence = my_json['number'] price = my_json['price'] file_name = "new_file_"+str(num_file) new_file = open(file_name,"wb") new_file.write(my_final_b) new_file.close() #calcul du hash du produit m = hashlib.sha256() file_r = open(file_name,"rb") while True: data = file_r.read(BUFF_SIZE) if not data: break m.update(data) file_r.close() my_hash = m.hexdigest() #ajout du produit à la bdd bdd = bdd.append({"file":file_name,"licence":1,"price":price, "hash":my_hash},ignore_index=True) save_bdd() return flask.jsonify(my_hash) #route pour ajouter une nouvelle licence à un produit @app.route('/new_licence', methods=['POST']) def add_licence(): global bdd my_json = request.get_json() license = my_json["number"] price = my_json["price"] hash = my_json["hash"] file = bdd[bdd["hash"]==hash]["hash"].iloc[0] #get id du produit, le nombre d'unité et le prix associé à ce nombre bdd = bdd.append({"file":file,"licence":license,"price":price, "hash":hash},ignore_index=True) save_bdd() return flask.jsonify(True) #retourne une pièce à partir d'un hash @app.route('/piece_from_hash', methods=['POST']) def get_piece_from_hash(): my_json = request.get_json() item = bdd[bdd["hash"]==my_json['hash']] if len(item)>0: file_name = item["file"].iloc[0] my_file = open(file_name) data = my_file.read() return flask.jsonify(data) else: return flask.jsonify(False) #retourne une pièce à partir d'un hash @app.route('/price_from_hash', methods=['POST']) def get_price_from_hash(): my_json = request.get_json() item = bdd[bdd["hash"]==my_json['hash']] if len(item)>0: return flask.jsonify(item[["licence","price"]].to_dict("records")) else: return flask.jsonify(False) #rertourne l'ensemble des pièces et leurs prix (front pour afficher) @app.route('/all_piece', methods=['GET']) def get_all_piece(): return flask.jsonify(bdd.to_dict("records")) #load the BDD def load_bdd(): global bdd bdd =
pd.read_csv(csv_file)
pandas.read_csv
import numpy as np import pandas as pd from collections import OrderedDict from pandas.api.types import is_numeric_dtype, is_object_dtype, is_categorical_dtype from typing import List, Optional, Tuple, Callable def inspect_df(df: pd.DataFrame) -> pd.DataFrame: """ Show column types and null values in DataFrame df """ resdict = OrderedDict() # Inspect nulls null_series = df.isnull().sum() resdict["column"] = null_series.index resdict["null_fraction"] = np.round(null_series.values / len(df), 3) resdict["nulls"] = null_series.values # Inspect types types = df.dtypes.values type_names = [t.name for t in types] resdict["type"] = type_names # Is numeric? is_numeric = [] for col in df.columns: is_numeric.append(is_numeric_dtype(df[col])) resdict["is_numeric"] = is_numeric # Dataframe resdf = pd.DataFrame(resdict) resdf.sort_values("null_fraction", inplace=True) resdf.reset_index(inplace=True, drop=True) return resdf def summarize_df(df: pd.DataFrame) -> pd.DataFrame: """ Show stats; - rows: - column types - columns - number of columns - number of cols containing NaN's """ # Original DataFrame (nrows, _) = df.shape # Stats of DataFrame stats = inspect_df(df) data_types = np.unique(stats["type"].values) resdict = OrderedDict() # Column: data types resdict["type"] = data_types ncols_type = [] ncols_nan = [] n_nans = [] n_total = [] for dt in data_types: # Column: number of columns with type nc = len(stats[stats["type"] == dt]) ncols_type.append(nc) # Column: number of columns with NaNs nan_cols = stats[(stats["type"] == dt) & (stats["nulls"] > 0)] ncols_nan.append(len(nan_cols)) # Column: number of NaNs n_nans.append(nan_cols["nulls"].sum()) # Column: total number of values n_total.append(nc * nrows) # Prepare dict for the df resdict["ncols"] = ncols_type resdict["ncols_w_nans"] = ncols_nan resdict["n_nans"] = n_nans resdict["n_total"] = n_total # Proportions of NaNs in each column group. # Division by zero shouldn't occur nan_frac = np.array(n_nans) / np.array(n_total) resdict["nan_frac"] = np.round(nan_frac, 2) resdf = pd.DataFrame(resdict) resdf.sort_values("type", inplace=True) resdf.reset_index(inplace=True, drop=True) return resdf def add_datefields( df: pd.DataFrame, column: str, drop_original: bool = False, inplace: bool = False, attrs: Optional[List[str]] = None, ) -> pd.DataFrame: """ Add attributes of the date to dataFrame df """ raw_date = df[column] # Pandas datetime attributes if attrs is None: attributes = [ "dayofweek", "dayofyear", "is_month_end", "is_month_start", "is_quarter_end", "is_quarter_start", "quarter", "week", ] else: attributes = attrs # Return new? if inplace: resdf = df else: resdf = df.copy(deep=True) # Could probably be optimized with pd.apply() for attr in attributes: new_column = f"{column}_{attr}" # https://stackoverflow.com/questions/2612610/ new_vals = [getattr(d, attr) for d in raw_date] resdf[new_column] = new_vals if drop_original: resdf.drop(columns=column, inplace=True) return resdf def add_nan_columns( df: pd.DataFrame, inplace: bool = False, column_list: Optional[List[str]] = None ) -> pd.DataFrame: """ For each column containing NaNs, add a boolean column specifying if the column is NaN. Can be used if the data is later imputated. """ if column_list is not None: nan_columns = column_list else: # Get names of columns containing at least one NaN temp = df.isnull().sum() != 0 nan_columns = temp.index[temp.values] # Return new? if inplace: resdf = df else: resdf = df.copy(deep=True) for column in nan_columns: new_column = f"{column}_isnull" nans = df[column].isnull() resdf[new_column] = nans return resdf def numeric_nans(df: pd.DataFrame) -> pd.DataFrame: """ Inspect numerical NaN values of a DataFrame df """ stats = inspect_df(df) nan_stats = stats.loc[stats["is_numeric"] & (stats["nulls"] > 0)].copy(deep=True) len_uniques = [] uniques = [] for row in nan_stats["column"].values: uniq = np.unique(df[row][df[row].notnull()].values) len_uniques.append(len(uniq)) uniques.append(uniq) nan_stats["num_uniques"] = len_uniques nan_stats["uniques"] = uniques nan_stats.reset_index(inplace=True, drop=True) return nan_stats def categorize_df( df: pd.DataFrame, columns: Optional[List[str]] = None, inplace: bool = False, drop_original: bool = True, ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Categorize values in columns, and replace value with category. If no columns are given, default to all 'object' columns """ if columns is not None: cat_cols = columns else: cat_cols = df.columns[[dt.name == "object" for dt in df.dtypes.values]] if inplace: resdf = df else: resdf = df.copy(deep=True) df_codes = [] df_cats = [] n_cats = [] for column in cat_cols: new_column = f"{column}_cat" cat_column = df[column].astype("category") # By default, NaN is -1. We convert to zero by incrementing all. col_codes = cat_column.cat.codes + 1 resdf[new_column] = col_codes # DataFrame with the codes df_codes.append(col_codes) df_cats.append(cat_column.cat.categories) n_cats.append(len(np.unique(col_codes))) cat_dict = OrderedDict() cat_dict["column"] = cat_cols # MyPy picks up an error in the next line. Bug is where? # Additionally, Flake8 will report the MyPy ignore as an error cat_dict["n_categories"] = n_cats # type: ignore[assignment] # noqa: F821,F821 cat_dict["categories"] = df_cats cat_dict["codes"] = df_codes cat_df = pd.DataFrame(cat_dict) if drop_original: resdf.drop(columns=cat_cols, inplace=True) return (resdf, cat_df) def replace_numeric_nulls( df: pd.DataFrame, columns: Optional[List[str]] = None, function: Callable = np.median, inplace: bool = False, ) -> pd.DataFrame: """ Replace nulls in all numerical column with the median (default) or another callable function that works on NumPy arrays """ if columns is None: columns = [ colname for colname, column in df.items() if is_numeric_dtype(column) ] if inplace: resdf = df else: resdf = df.copy(deep=True) fillers = OrderedDict() for column in columns: values = resdf[resdf[column].notnull()][column].values fillers[column] = function(values) resdf.fillna(value=fillers, inplace=True) return resdf def object_nan_to_empty(df: pd.DataFrame, inplace: bool = False) -> pd.DataFrame: """ Replace NaN in Pandas object columns with an empty string indicating a missing value. """ columns = [colname for colname, column in df.items() if
is_object_dtype(column)
pandas.api.types.is_object_dtype
from IPython.display import display import pandas as pd import pyomo.environ as pe import numpy as np import csv import os import shutil class inosys: def __init__(self, inp_folder, ref_bus, dshed_cost = 1000000, rshed_cost = 500, phase = 3, vmin=0.85, vmax=1.15, sbase = 1, sc_fa = 1): ''' Initialise the investment and operation problem. :param str inp_folder: The input directory for the data. It expects to find several CSV files detailing the system input data (Default current folder) :param float dshed_cost: Demand Shedding Price (Default 1000000) :param float rshed_cost: Renewable Shedding Price (Default 500) :param int phase: Number of Phases (Default 3) :param float vmin: Minimum node voltage (Default 0.85) :param float vmax: Maximum node voltage (Default 1.15) :param float sbase: Base Apparent Power (Default 1 kW) :param int ref_bus: Reference node :param float sc_fa: Scaling Factor (Default 1) :Example: >>> import pyeplan >>> sys_inv = pyeplan.inosys("wat_inv", ref_bus = 260) ''' self.cgen = pd.read_csv(inp_folder + os.sep + 'cgen_dist.csv') self.egen =
pd.read_csv(inp_folder + os.sep + 'egen_dist.csv')
pandas.read_csv
import tensorflow as tf import numpy as np import random from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import TimeSeriesSplit from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import AdaBoostClassifier from keras.models import Sequential from keras.layers import Dense, Activation, LSTM, Dropout from keras.utils import to_categorical from keras import optimizers from keras import metrics from keras import backend as K from datetime import datetime, timedelta import pandas as pd from copy import deepcopy ## <NAME> ## <NAME> ## <NAME> seed = 123 random.seed(seed) np.random.seed(seed) class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.session = K.get_session() self.graph = tf.get_default_graph() self.SetStartDate(2018,8,1) #Set Start Date self.SetEndDate(2018,11,21) #Set End Date self.SetCash(100000) #Set Strategy Cash ## start the Keras/ Tensorflow session self.session = K.get_session() self.graph = tf.get_default_graph() ## set the currency pair that we are trading, and the correlated currency pair self.currency = "AUDUSD" self.AddForex(self.currency, Resolution.Daily) self.correl_currency = "USDCHF" self.AddForex(self.correl_currency, Resolution.Daily) ## define a long list, short list and portfolio self.long_list, self.short_list = [], [] # Initialise indicators self.rsi = RelativeStrengthIndex(9) self.bb = BollingerBands(14, 2, 2) self.macd = MovingAverageConvergenceDivergence(12, 26, 9) self.stochastic = Stochastic(14, 3, 3) self.ema = ExponentialMovingAverage(9) ## Arrays to store the past indicators prev_rsi, prev_bb, prev_macd, lower_bb, upper_bb, sd_bb, prev_stochastic, prev_ema = [],[],[],[],[],[],[],[] ## Make history calls for both currency pairs self.currency_data = self.History([self.currency], 150, Resolution.Daily) # Drop the first 20 for indicators to warm up self.correl_data = self.History([self.correl_currency], 150, Resolution.Daily) ## save the most recent open and close ytd_open = self.currency_data["open"][-1] ytd_close = self.currency_data["close"][-1] ## remove yesterday's data. We will query this onData self.currency_data = self.currency_data[:-1] self.correl_data = self.correl_data[:-1] ## iterate over past data to update the indicators for tup in self.currency_data.loc[self.currency].itertuples(): # making Ibasedatabar for stochastic bar = QuoteBar(tup.Index, self.currency, Bar(tup.bidclose, tup.bidhigh, tup.bidlow, tup.bidopen), 0, Bar(tup.askclose, tup.askhigh, tup.asklow, tup.askopen), 0, timedelta(days=1) ) self.stochastic.Update(bar) prev_stochastic.append(float(self.stochastic.ToString())) self.rsi.Update(tup.Index, tup.close) prev_rsi.append(float(self.rsi.ToString())) self.bb.Update(tup.Index, tup.close) prev_bb.append(float(self.bb.ToString())) lower_bb.append(float(self.bb.LowerBand.ToString())) upper_bb.append(float(self.bb.UpperBand.ToString())) sd_bb.append(float(self.bb.StandardDeviation.ToString())) self.macd.Update(tup.Index, tup.close) prev_macd.append(float(self.macd.ToString())) self.ema.Update(tup.Index, tup.close) prev_ema.append(float(self.ema.ToString())) ## Forming the Indicators df ## This is common to the Price Prediction rsi_df = pd.DataFrame(prev_rsi, columns = ["rsi"]) macd_df = pd.DataFrame(prev_macd, columns = ["macd"]) upper_bb_df = pd.DataFrame(upper_bb, columns = ["upper_bb"]) lower_bb_df = pd.DataFrame(lower_bb, columns = ["lower_bb"]) sd_bb_df = pd.DataFrame(sd_bb, columns = ["sd_bb"]) stochastic_df = pd.DataFrame(prev_stochastic, columns = ["stochastic"]) ema_df =
pd.DataFrame(prev_ema, columns=["ema"])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[3]: import requests import pandas as pd import json from tqdm import tqdm PATH = '../../' PATH_STATS = "../../data/france/stats/" # In[5]: # Download data from Santé publique France and export it to local files def download_data_hosp_fra_clage(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/08c18e08-6780-452d-9b8c-ae244ad529b3") with open(PATH + 'data/france/donnees-hosp-fra-clage.csv', 'wb') as f: f.write(data.content) def download_data_opencovid(): data = requests.get("https://raw.githubusercontent.com/opencovid19-fr/data/master/dist/chiffres-cles.csv") with open(PATH + 'data/france/donnees-opencovid.csv', 'wb') as f: f.write(data.content) def download_data_vue_ensemble(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/d3a98a30-893f-47f7-96c5-2f4bcaaa0d71") with open(PATH + 'data/france/synthese-fra.csv', 'wb') as f: f.write(data.content) def download_data_variants(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/848debc4-0e42-4e3b-a176-afc285ed5401") #https://www.data.gouv.fr/fr/datasets/r/c43d7f3f-c9f5-436b-9b26-728f80e0fd52 data_reg = requests.get("https://www.data.gouv.fr/fr/datasets/r/5ff0cad6-f150-47ea-a4e0-57e354c1b2a4") #https://www.data.gouv.fr/fr/datasets/r/73e8851a-d851-43f8-89e4-6178b35b7127 with open(PATH + 'data/france/donnees-variants.csv', 'wb') as f: f.write(data.content) with open(PATH + 'data/france/donnees-variants-reg.csv', 'wb') as f: f.write(data.content) def download_data_variants_deps(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/4d3e5a8b-9649-4c41-86ec-5420eb6b530c") #https://www.data.gouv.fr/fr/datasets/r/16f4fd03-797f-4616-bca9-78ff212d06e8 with open(PATH + 'data/france/donnees-variants-deps.csv', 'wb') as f: f.write(data.content) def download_data_vacsi_fra(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/efe23314-67c4-45d3-89a2-3faef82fae90") with open(PATH + 'data/france/donnees-vacsi-fra.csv', 'wb') as f: f.write(data.content) def download_data_vacsi_reg(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/735b0df8-51b4-4dd2-8a2d-8e46d77d60d8") with open(PATH + 'data/france/donnees-vacsi-reg.csv', 'wb') as f: f.write(data.content) def download_data_vacsi_dep(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/4f39ec91-80d7-4602-befb-4b522804c0af") with open(PATH + 'data/france/donnees-vacsi-dep.csv', 'wb') as f: f.write(data.content) def download_data_obepine(): data = requests.get("https://www.data.gouv.fr/fr/datasets/r/031b79a4-5ee1-4f40-a804-b8abec3e99a6") #https://www.data.gouv.fr/fr/datasets/r/ba71be57-5932-4298-81ea-aff3a12a440c with open(PATH + 'data/france/donnees_obepine_regions.csv', 'wb') as f: f.write(data.content) def download_data_donnees_vaccination_par_pathologie(): data = requests.get("https://datavaccin-covid.ameli.fr/explore/dataset/donnees-vaccination-par-pathologie/download/?format=csv&timezone=Europe/Berlin&lang=fr&use_labels_for_header=true&csv_separator=%3B") with open(PATH + 'data/france/donnees-vaccination-par-pathologie.csv', 'wb') as f: f.write(data.content) def import_data_donnees_vaccination_par_pathologie(): df = pd.read_csv(PATH + 'data/france/donnees-vaccination-par-pathologie.csv', sep=None) return df def download_donnees_vaccination_par_tranche_dage_type_de_vaccin_et_departement(): data = requests.get("https://datavaccin-covid.ameli.fr/explore/dataset/donnees-vaccination-par-tranche-dage-type-de-vaccin-et-departement/download/?format=csv&timezone=Europe/Berlin&lang=fr&use_labels_for_header=true&csv_separator=%3B") with open(PATH + 'data/france/donnees-tranche-dage-departement.csv', 'wb') as f: f.write(data.content) def import_donnees_vaccination_par_tranche_dage_type_de_vaccin_et_departement(): df = pd.read_csv(PATH + 'data/france/donnees-tranche-dage-departement.csv', sep=None) return df def import_data_obepine(): df = pd.read_csv(PATH + 'data/france/donnees_obepine_regions.csv', sep=None) df_reg_pop = pd.read_csv(PATH + 'data/france/population_grandes_regions.csv', sep=",") df = df.merge(right=df_reg_pop, left_on="Code_Region", right_on="code") return df def import_data_metropoles(): df_metro = pd.read_csv(PATH + 'data/france/donnes-incidence-metropoles.csv', sep=",") epci = pd.read_csv(PATH + 'data/france/metropole-epci.csv', sep=";", encoding="'windows-1252'") df_metro = df_metro.merge(epci, left_on='epci2020', right_on='EPCI').drop(['EPCI'], axis=1) return df_metro def import_data_hosp_clage(): df_hosp = pd.read_csv(PATH + 'data/france/donnes-hospitalieres-clage-covid19.csv', sep=";") df_hosp = df_hosp.groupby(["reg", "jour", "cl_age90"]).first().reset_index() df_reg_pop = pd.read_csv(PATH + 'data/france/population_grandes_regions.csv', sep=",") df_hosp = df_hosp.merge(df_reg_pop, left_on="reg", right_on="code") return df_hosp def import_data_tests_viros(): df = pd.read_csv(PATH + 'data/france/tests_viro-dep-quot.csv', sep=";") df_reg_pop = pd.read_csv(PATH + 'data/france/population_grandes_regions.csv', sep=",") df_dep_reg = pd.read_csv(PATH + 'data/france/departments_regions_france_2016.csv', sep=",") df["dep"] = df["dep"].astype(str) df["dep"] = df["dep"].astype('str').str.replace(r"^([1-9])$", lambda m: "0"+m.group(0), regex=True) df_dep_reg["departmentCode.astype"] = df_dep_reg.departmentCode.astype(str) df = df.merge(df_dep_reg, left_on="dep", right_on="departmentCode", how="left") df = df.merge(df_reg_pop, left_on="regionCode", right_on="code", how="left") return df def import_data_hosp_ad_age(): df = pd.read_csv('https://www.data.gouv.fr/fr/datasets/r/dc7663c7-5da9-4765-a98b-ba4bc9de9079', sep=";") return df def import_data_new(): df_new = pd.read_csv(PATH + 'data/france/donnes-hospitalieres-covid19-nouveaux.csv', sep=";") return df_new def import_data_df(): df = pd.read_csv(PATH + 'data/france/donnes-hospitalieres-covid19.csv', sep=";") return df def import_data_variants(): df_variants = pd.read_csv(PATH + 'data/france/donnees-variants.csv', sep=";") df_variants["jour"] = df_variants.semaine.apply(lambda x: x[11:]) #df_variants = df_variants[df_variants.cl_age90==0] return df_variants def import_data_variants_deps(): df_variants = pd.read_csv(PATH + 'data/france/donnees-variants-deps.csv', sep=";") df_variants["jour"] = df_variants.semaine.apply(lambda x: x[11:]) #df_variants = df_variants[df_variants.cl_age90==0] return df_variants def import_data_variants_regs(): df_variants = pd.read_csv(PATH + 'data/france/donnees-variants-regs.csv', sep=";") df_variants["jour"] = df_variants.semaine.apply(lambda x: x[11:]) df_variants = df_variants[df_variants.cl_age90==0] df_reg_pop = pd.read_csv(PATH + 'data/france/population_grandes_regions.csv', sep=",") df_variants = df_variants.merge(df_reg_pop, left_on="reg", right_on="code") return df_variants def import_data_tests_sexe(): df = pd.read_csv(PATH + 'data/france/tests_viro-fra-covid19.csv', sep=";") return df def import_data_vue_ensemble(): df = pd.read_csv(PATH + 'data/france/synthese-fra.csv', sep=",") df = df.sort_values(["date"]) with open(PATH_STATS + 'vue-ensemble.json', 'w') as outfile: dict_data = {"cas": int(df["total_cas_confirmes"].diff().values[-1]), "update": df.date.values[-1][-2:] + "/" + df.date.values[-1][-5:-3]} json.dump(dict_data, outfile) return df def import_data_opencovid(): df = pd.read_csv(PATH + 'data/france/donnees-opencovid.csv', sep=",") """with open(PATH_STATS + 'opencovid.json', 'w') as outfile: dict_data = {"cas": int(df["cas_confirmes"].values[-1]), "update": df.index.values[-1][-2:] + "/" + df.index.values[-1][-5:-3]} json.dump(dict_data, outfile)""" return df def import_data_vacsi_a_fra(): df = pd.read_csv(PATH + 'data/france/donnees-vacsi-a-fra.csv', sep=";") df = df[df.clage_vacsi != 0] return df def import_data_vacsi_reg(): df = pd.read_csv(PATH + 'data/france/donnees-vacsi-reg.csv', sep=";") return df def import_data_vacsi_dep(): df = pd.read_csv(PATH + 'data/france/donnees-vacsi-dep.csv', sep=";") return df def import_data_vacsi_fra(): df = pd.read_csv(PATH + 'data/france/donnees-vacsi-fra.csv', sep=";") return df def import_data_vacsi_a_reg(): df = pd.read_csv(PATH + 'data/france/donnees-vacsi-a-reg.csv', sep=";") df = df[df.clage_vacsi != 0] return df def import_data_vacsi_a_dep(): df = pd.read_csv(PATH + 'data/france/donnees-vacsi-a-dep.csv', sep=";") df = df[df.clage_vacsi != 0] return df def import_data_hosp_fra_clage(): df = pd.read_csv(PATH + 'data/france/donnees-hosp-fra-clage.csv', sep=";").groupby(["cl_age90", "jour"]).sum().reset_index() df = df[df.cl_age90 != 0] return df def download_data(): pbar = tqdm(total=8) download_data_vacsi_fra() download_data_vacsi_reg() download_data_vacsi_dep() url_metadata = "https://www.data.gouv.fr/fr/organizations/sante-publique-france/datasets-resources.csv" url_geojson = "https://raw.githubusercontent.com/gregoiredavid/france-geojson/master/departements.geojson" url_deconf = "https://www.data.gouv.fr/fr/datasets/r/f2d0f955-f9c4-43a8-b588-a03733a38921" url_opencovid = "https://raw.githubusercontent.com/opencovid19-fr/data/master/dist/chiffres-cles.csv" url_vacsi_a_fra = "https://www.data.gouv.fr/fr/datasets/r/54dd5f8d-1e2e-4ccb-8fb8-eac68245befd" url_vacsi_a_reg = "https://www.data.gouv.fr/fr/datasets/r/c3ccc72a-a945-494b-b98d-09f48aa25337" url_vacsi_a_dep = "https://www.data.gouv.fr/fr/datasets/r/83cbbdb9-23cb-455e-8231-69fc25d58111" pbar.update(1) metadata = requests.get(url_metadata) pbar.update(2) geojson = requests.get(url_geojson) pbar.update(3) with open(PATH + 'data/france/metadata.csv', 'wb') as f: f.write(metadata.content) pbar.update(4) with open(PATH + 'data/france/dep.geojson', 'wb') as f: f.write(geojson.content) pbar.update(5) df_metadata = pd.read_csv(PATH + 'data/france/metadata.csv', sep=";") url_data = "https://www.data.gouv.fr/fr/datasets/r/63352e38-d353-4b54-bfd1-f1b3ee1cabd7" #df_metadata[df_metadata['url'].str.contains("/donnees-hospitalieres-covid19")]["url"].values[0] #donnees-hospitalieres-classe-age-covid19-2020-10-14-19h00.csv url_data_new = "https://www.data.gouv.fr/fr/datasets/r/6fadff46-9efd-4c53-942a-54aca783c30c" #df_metadata[df_metadata['url'].str.contains("/donnees-hospitalieres-nouveaux")]["url"].values[0] url_tests = df_metadata[df_metadata['url'].str.contains("/donnees-tests-covid19-labo-quotidien")]["url"].values[0] url_metropoles = "https://www.data.gouv.fr/fr/datasets/r/61533034-0f2f-4b16-9a6d-28ffabb33a02" #df_metadata[df_metadata['url'].str.contains("/sg-metro-opendata")]["url"].max() url_incidence = df_metadata[df_metadata['url'].str.contains("/sp-pe-tb-quot")]["url"].values[0] url_tests_viro = df_metadata[df_metadata['url'].str.contains("/sp-pos-quot-dep")]["url"].values[0] url_sursaud = df_metadata[df_metadata['url'].str.contains("sursaud.*quot.*dep")]["url"].values[0] url_data_clage = df_metadata[df_metadata['url'].str.contains("/donnees-hospitalieres-classe-age-covid19")]["url"].values[0] url_data_sexe = "https://www.data.gouv.fr/fr/datasets/r/dd0de5d9-b5a5-4503-930a-7b08dc0adc7c" #df_metadata[df_metadata['url'].str.contains("/sp-pos-quot-fra")]["url"].values[0] pbar.update(6) data = requests.get(url_data) data_new = requests.get(url_data_new) data_tests = requests.get(url_tests) data_metropoles = requests.get(url_metropoles) data_deconf = requests.get(url_deconf) data_sursaud = requests.get(url_sursaud) data_incidence = requests.get(url_incidence) data_opencovid = requests.get(url_opencovid) data_vacsi_a_fra = requests.get(url_vacsi_a_fra) data_vacsi_a_reg = requests.get(url_vacsi_a_reg) data_vacsi_a_dep = requests.get(url_vacsi_a_dep) data_tests_viro = requests.get(url_tests_viro) data_clage = requests.get(url_data_clage) data_sexe = requests.get(url_data_sexe) pbar.update(7) with open(PATH + 'data/france/donnes-hospitalieres-covid19.csv', 'wb') as f: f.write(data.content) with open(PATH + 'data/france/donnes-hospitalieres-covid19-nouveaux.csv', 'wb') as f: f.write(data_new.content) with open(PATH + 'data/france/donnes-tests-covid19-quotidien.csv', 'wb') as f: f.write(data_tests.content) with open(PATH + 'data/france/donnes-incidence-metropoles.csv', 'wb') as f: f.write(data_metropoles.content) with open(PATH + 'data/france/indicateurs-deconf.csv', 'wb') as f: f.write(data_deconf.content) with open(PATH + 'data/france/sursaud-covid19-departement.csv', 'wb') as f: f.write(data_sursaud.content) with open(PATH + 'data/france/taux-incidence-dep-quot.csv', 'wb') as f: f.write(data_incidence.content) with open(PATH + 'data/france/tests_viro-dep-quot.csv', 'wb') as f: f.write(data_tests_viro.content) with open(PATH + 'data/france/donnes-hospitalieres-clage-covid19.csv', 'wb') as f: f.write(data_clage.content) with open(PATH + 'data/france/tests_viro-fra-covid19.csv', 'wb') as f: f.write(data_sexe.content) with open(PATH + 'data/france/donnees-opencovid.csv', 'wb') as f: f.write(data_opencovid.content) with open(PATH + 'data/france/donnees-vacsi-a-fra.csv', 'wb') as f: f.write(data_vacsi_a_fra.content) with open(PATH + 'data/france/donnees-vacsi-a-reg.csv', 'wb') as f: f.write(data_vacsi_a_reg.content) with open(PATH + 'data/france/donnees-vacsi-a-dep.csv', 'wb') as f: f.write(data_vacsi_a_dep.content) pbar.update(8) # Import data from previously exported files to dataframes def import_data(): pbar = tqdm(total=8) pbar.update(1) df = pd.read_csv(PATH + 'data/france/donnes-hospitalieres-covid19.csv', sep=";") df.dep = df.dep.astype(str) df_sursaud = pd.read_csv(PATH + 'data/france/sursaud-covid19-departement.csv', sep=";") df_sursaud["dep"] = df_sursaud["dep"].astype('str').str.replace(r"^([1-9])$", lambda m: "0"+m.group(0), regex=True) df_new = pd.read_csv(PATH + 'data/france/donnes-hospitalieres-covid19-nouveaux.csv', sep=";") df_tests = pd.read_csv(PATH + 'data/france/donnes-tests-covid19-quotidien.csv', sep=";") df_deconf = pd.read_csv(PATH + 'data/france/indicateurs-deconf.csv', sep=",") df_incid = pd.read_csv(PATH + 'data/france/taux-incidence-dep-quot.csv', sep=";") df_incid["dep"] = df_incid["dep"].astype('str') df_incid["dep"] = df_incid["dep"].astype('str').str.replace(r"^([1-9])$", lambda m: "0"+m.group(0), regex=True) df_tests_viro = pd.read_csv(PATH + 'data/france/tests_viro-dep-quot.csv', sep=";") df_tests_viro["dep"] = df_tests_viro["dep"].astype('str').str.replace(r"^([1-9])$", lambda m: "0"+m.group(0), regex=True) pbar.update(2) df_tests_viro["dep"] = df_tests_viro["dep"].astype('str') pop_df_incid = df_incid["pop"] lits_reas = pd.read_csv(PATH + 'data/france/lits_rea.csv', sep=",") df_regions = pd.read_csv(PATH + 'data/france/departments_regions_france_2016.csv', sep=",") df_reg_pop = pd.read_csv(PATH + 'data/france/population_grandes_regions.csv', sep=",") df_dep_pop = pd.read_csv(PATH + 'data/france/dep-pop.csv', sep=";") ### df = df.merge(df_regions, left_on='dep', right_on='departmentCode') df = df.merge(df_reg_pop, left_on='regionName', right_on='regionName') df = df.merge(df_dep_pop, left_on='dep', right_on='dep') df = df[df["sexe"] == 0] df['hosp_nonrea'] = df['hosp'] - df['rea'] df = df.merge(lits_reas, left_on="departmentName", right_on="nom_dpt") #df_tests_viro = df_tests_viro[df_tests_viro["cl_age90"] == 0] df_incid = df_incid.merge(df_regions, left_on='dep', right_on='departmentCode') if "pop" in df_tests_viro.columns: df_incid = df_incid.merge(df_tests_viro[df_tests_viro["cl_age90"] == 0].drop("pop", axis=1).drop("P", axis=1).drop("cl_age90", axis=1), left_on=['jour', 'dep'], right_on=['jour', 'dep']) else: df_incid = df_incid.merge(df_tests_viro[df_tests_viro["cl_age90"] == 0].drop("P", axis=1).drop("cl_age90", axis=1), left_on=['jour', 'dep'], right_on=['jour', 'dep']) df_new = df_new.merge(df_regions, left_on='dep', right_on='departmentCode') df_new = df_new.merge(df_reg_pop, left_on='regionName', right_on='regionName') df_new = df_new.merge(df_dep_pop, left_on='dep', right_on='dep') df_new['incid_hosp_nonrea'] = df_new['incid_hosp'] - df_new['incid_rea'] df_sursaud = df_sursaud.merge(df_regions, left_on='dep', right_on='departmentCode') df_sursaud = df_sursaud.merge(df_reg_pop, left_on='regionName', right_on='regionName') df_sursaud = df_sursaud.merge(df_dep_pop, left_on='dep', right_on='dep') df_sursaud = df_sursaud[df_sursaud["sursaud_cl_age_corona"] == "0"] df_sursaud["taux_covid"] = df_sursaud["nbre_pass_corona"] / df_sursaud["nbre_pass_tot"] pbar.update(3) df['rea_pop'] = df['rea']/df['regionPopulation']*100000 df['rea_deppop'] = df['rea']/df['departmentPopulation']*100000 df['rad_pop'] = df['rad']/df['regionPopulation']*100000 df['dc_pop'] = df['dc']/df['regionPopulation']*100000 df['dc_deppop'] = df['dc']/df['departmentPopulation']*100000 df['hosp_pop'] = df['hosp']/df['regionPopulation']*100000 df['hosp_deppop'] = df['hosp']/df['departmentPopulation']*100000 df['hosp_nonrea_pop'] = df['hosp_nonrea']/df['regionPopulation']*100000 pbar.update(4) df_confirmed = pd.read_csv(PATH + 'data/data_confirmed.csv') pbar.update(5) deps = list(dict.fromkeys(list(df['departmentCode'].values))) for d in deps: for col in ["dc", "rad", "rea", "hosp_nonrea", "hosp"]: vals = df[df["dep"] == d][col].diff() df.loc[vals.index,col+"_new"] = vals df.loc[vals.index,col+"_new_deppop"] = vals / df.loc[vals.index,"departmentPopulation"]*100000 df_tests = df_tests.drop(['nb_test_h', 'nb_pos_h', 'nb_test_f', 'nb_pos_f'], axis=1) df_tests = df_tests[df_tests['clage_covid'] == "0"] pbar.update(6) # Correction du 14/05 (pas de données) #cols_to_change = df.select_dtypes(include=np.number).columns.tolist() #cols_to_change = [s for s in df.columns.tolist() if "new" in s] df['jour'] = df['jour'].str.replace(r'(.*)/(.*)/(.*)',r'\3-\2-\1') dates = sorted(list(dict.fromkeys(list(df['jour'].values)))) for dep in
pd.unique(df_incid["dep"].values)
pandas.unique
__author__ = "<NAME>" import logging import os import re import sqlite3 import pandas import numpy import gzip from pyarrow import parquet as pq from genomic_tools_lib import Logging, Utilities from genomic_tools_lib.data_management import TextFileTools from genomic_tools_lib.miscellaneous import matrices, PandasHelpers from genomic_tools_lib.file_formats import Parquet def get_file_map(args): r = re.compile(args.parquet_genotype_pattern) files = os.listdir(args.parquet_genotype_folder) files = {int(r.search(f).groups()[0]):os.path.join(args.parquet_genotype_folder, f) for f in files if r.search(f)} p = {} for k,v in files.items(): g = pq.ParquetFile(v) p[k] = g return p n_ = re.compile("^(\d+)$") def run(args): if os.path.exists(args.output): logging.info("Output already exists, either delete it or move it") return logging.info("Getting parquet genotypes") file_map = get_file_map(args) logging.info("Getting genes") with sqlite3.connect(args.model_db) as connection: # Pay heed to the order. This avoids arbitrariness in sqlite3 loading of results. extra =
pandas.read_sql("SELECT * FROM EXTRA order by gene", connection)
pandas.read_sql
import unittest import numpy as np import pandas as pd from pyvvo import cluster class TestCluster(unittest.TestCase): def test_euclidean_distance_sum_squared_array(self): # All numbers are one away, so squares will be 1. Sum of squares # a1 = np.array((1, 2, 3)) a2 = np.array((2, 1, 4)) self.assertEqual(3, cluster.euclidean_distance_squared(a1, a2)) def test_euclidean_distance_sum_squared_series(self): s1 = pd.Series((1, 10, 7, 5), index=['w', 'x', 'y', 'z']) s2 = pd.Series((3, 5, -1, 10), index=['w', 'x', 'y', 'z']) # 4+25+64+25 = 118 self.assertEqual(118, cluster.euclidean_distance_squared(s1, s2)) def test_euclidean_distance_sum_squared_dataframe(self): d1 = pd.DataFrame({'c1': [1, 2, 3], 'c2': [1, 4, 9]}) d2 = pd.DataFrame({'c1': [2, 3, 4], 'c2': [0, -2, 7]}) # row one: 1 + 1 # row two: 1 + 36 # row three: 1 + 4 expected = pd.Series([2, 37, 5]) actual = cluster.euclidean_distance_squared(d1, d2) self.assertTrue(expected.equals(actual)) def test_euclidean_distance_sum_squared_df_series(self): v1 = pd.Series([1, 2, 3], index=['x', 'y', 'z']) v2 = pd.DataFrame({'x': [1, 2, 3], 'y': [1, 2, 3], 'z': [1, 2, 3]}) # row one: 0+1+4 # row two: 1 + 0 + 1 # row three: 4 + 1 + 0 expected = pd.Series([5, 2, 5]) actual = cluster.euclidean_distance_squared(v1, v2) actual2 = cluster.euclidean_distance_squared(v2, v1) for s in [actual, actual2]: with self.subTest(): self.assertTrue(expected.equals(s)) def test_find_best_cluster_1(self): # Simple test to exactly match one row in cluster data. cluster_data = pd.DataFrame({'x': [0.6, 0.5, 0.4, 0.3], 'y': [0.6, 0.5, 0.4, 0.3], 'z': [1.0, 1.0, 1.0, 1.0]}) # Selection data should match the second row. selection_data = pd.Series([0.5, 0.5], index=['x', 'y']) # Run, use four clusters (so each row becomes a cluster). best_data, _, _ = cluster.find_best_cluster(cluster_data, selection_data, 4, 42) # since we're using 4 clusters, best_data should return a single # row. self.assertTrue(best_data.iloc[0].equals(cluster_data.iloc[1])) def test_find_best_cluster_2(self): # Simple test to match a pair of rows. cluster_data = pd.DataFrame({'x': [0.51, 0.50, 0.33, 0.30], 'y': [0.49, 0.50, 0.28, 0.30], 'z': [1.00, 1.00, 1.00, 1.00]}) # Selection data should put us closest to last two rows. selection_data = pd.Series([0.1, 0.1], index=['x', 'y']) # Run, use two clusters. best_data, _, _ = cluster.find_best_cluster(cluster_data, selection_data, 2, 42) # Using two clusters, best_data should have two rows. self.assertTrue(best_data.equals(cluster_data.iloc[-2:])) def test_find_best_cluster_3(self): # Clusters influenced by last column (z). cluster_data = pd.DataFrame({'x': [0.10, 0.11, 0.10, 0.11], 'y': [0.10, 0.11, 0.10, 0.11], 'z': [1.00, 2.00, 8.00, 9.00]}) # Just use a z to select. selection_data = pd.Series([3], index=['z']) # Run, use two clusters. best_data, _, _ = cluster.find_best_cluster(cluster_data, selection_data, 2, 42) # Using two clusters, best_data should have two rows. self.assertTrue(best_data.equals(cluster_data.iloc[0:2])) def test_feature_scale_1(self): # Simple Series x = pd.Series([1, 2, 3, 4]) x_ref = None expected = pd.Series([0, 1/3, 2/3, 1]) actual = cluster.feature_scale(x, x_ref) self.assertTrue(expected.equals(actual)) def test_feature_scale_2(self): # Simple DataFrame x = pd.DataFrame({'one': [1, 2, 3, 4], 'two': [-1, -2, -3, -4]}) x_ref = None expected = pd.DataFrame({'one': [0, 1/3, 2/3, 1], 'two': [1, 2/3, 1/3, 0]}) actual = cluster.feature_scale(x, x_ref) self.assertTrue(expected.equals(actual)) def test_feature_scale_3(self): # Scale Series given reference series. x = pd.Series([2, 4, 6, 8]) x_ref = pd.Series([1, 3, 5, 10]) expected = pd.Series([1/9, 3/9, 5/9, 7/9]) actual = cluster.feature_scale(x, x_ref) self.assertTrue(expected.equals(actual)) def test_feature_scale_4(self): # DataFrame with all 0 column. x = pd.DataFrame({'a': [0, 0, 0, 0], 'b': [10, 0, 5, 3]}) expected = pd.DataFrame({'a': [0.0, 0.0, 0.0, 0.0], 'b': [1.0, 0.0, 0.5, 0.3]}) actual = cluster.feature_scale(x, None) self.assertTrue(expected.equals(actual)) def test_feature_scale_5(self): # All zero reference. x =
pd.Series([1, 2, 3, 4])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_PO Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 #parameters for oil palm plantation. Source: Khasanah et al. (2015) tf_palmoil = 26 a_nucleus = 2.8167 b_nucleus = 6.8648 a_plasma = 2.5449 b_plasma = 5.0007 c_cont_po_nucleus = 0.5448 #carbon content in biomass c_cont_po_plasma = 0.5454 tf = 201 a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') t = range(0,tf,1) c_firewood_energy_S1nu = df1nu['Firewood_other_energy_use'].values c_firewood_energy_S1pl = df1pl['Firewood_other_energy_use'].values c_firewood_energy_Enu = df3nu['Firewood_other_energy_use'].values c_firewood_energy_Epl = df3pl['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') c_pellets_Enu = dfEnu['Wood_pellets'].values c_pellets_Epl = dfEpl['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') tf = 201 t = np.arange(tf) def decomp(t,remainAGB): return (1-(1-np.exp(-a*t))**b)*remainAGB #set zero matrix output_decomp = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp[i:,i] = decomp(t[:len(t)-i],remain_part) print(output_decomp[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix[:,i] = np.diff(output_decomp[:,i]) i = i + 1 print(subs_matrix[:,:4]) print(len(subs_matrix)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix = subs_matrix.clip(max=0) print(subs_matrix[:,:4]) #make the results as absolute values subs_matrix = abs(subs_matrix) print(subs_matrix[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix) subs_matrix = np.vstack((zero_matrix, subs_matrix)) print(subs_matrix[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot = (tf,1) decomp_emissions = np.zeros(matrix_tot) i = 0 while i < tf: decomp_emissions[:,0] = decomp_emissions[:,0] + subs_matrix[:,i] i = i + 1 print(decomp_emissions[:,0]) #%% #Step (4): Dynamic stock model of in-use wood materials from dynamic_stock_model import DynamicStockModel df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') #product lifetime #building materials B = 35 TestDSM1nu = DynamicStockModel(t = df1nu['Year'].values, i = df1nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM1pl = DynamicStockModel(t = df1pl['Year'].values, i = df1pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3nu = DynamicStockModel(t = df3nu['Year'].values, i = df3nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3pl = DynamicStockModel(t = df3pl['Year'].values, i = df3pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) CheckStr1nu, ExitFlag1nu = TestDSM1nu.dimension_check() CheckStr1pl, ExitFlag1nu = TestDSM1pl.dimension_check() CheckStr3nu, ExitFlag3nu = TestDSM3nu.dimension_check() CheckStr3pl, ExitFlag3pl = TestDSM3pl.dimension_check() Stock_by_cohort1nu, ExitFlag1nu = TestDSM1nu.compute_s_c_inflow_driven() Stock_by_cohort1pl, ExitFlag1pl = TestDSM1pl.compute_s_c_inflow_driven() Stock_by_cohort3nu, ExitFlag3nu = TestDSM3nu.compute_s_c_inflow_driven() Stock_by_cohort3pl, ExitFlag3pl = TestDSM3pl.compute_s_c_inflow_driven() S1nu, ExitFlag1nu = TestDSM1nu.compute_stock_total() S1pl, ExitFlag1pl = TestDSM1pl.compute_stock_total() S3nu, ExitFlag3nu = TestDSM3nu.compute_stock_total() S3pl, ExitFlag3pl = TestDSM3pl.compute_stock_total() O_C1nu, ExitFlag1nu = TestDSM1nu.compute_o_c_from_s_c() O_C1pl, ExitFlag1pl = TestDSM1pl.compute_o_c_from_s_c() O_C3nu, ExitFlag3nu = TestDSM3nu.compute_o_c_from_s_c() O_C3pl, ExitFlag3pl = TestDSM3pl.compute_o_c_from_s_c() O1nu, ExitFlag1nu = TestDSM1nu.compute_outflow_total() O1pl, ExitFlag1pl = TestDSM1pl.compute_outflow_total() O3nu, ExitFlag3nu = TestDSM3nu.compute_outflow_total() O3pl, ExitFlag3pl = TestDSM3pl.compute_outflow_total() DS1nu, ExitFlag1nu = TestDSM1nu.compute_stock_change() DS1pl, ExitFlag1pl = TestDSM1pl.compute_stock_change() DS3nu, ExitFlag3nu = TestDSM3nu.compute_stock_change() DS3pl, ExitFlag3pl = TestDSM3pl.compute_stock_change() Bal1nu, ExitFlag1nu = TestDSM1nu.check_stock_balance() Bal1pl, ExitFlag1pl = TestDSM1pl.check_stock_balance() Bal3nu, ExitFlag3nu = TestDSM3nu.check_stock_balance() Bal3pl, ExitFlag3pl = TestDSM3pl.check_stock_balance() #print output flow print(TestDSM1nu.o) print(TestDSM1pl.o) print(TestDSM3nu.o) print(TestDSM3pl.o) #plt.plot(TestDSM1.s) #plt.xlim([0, 100]) #plt.ylim([0,50]) #plt.show() #%% #Step (5): Biomass growth A = range(0,tf_palmoil,1) #calculate the biomass and carbon content of palm oil trees over time def Y_nucleus(A): return (44/12*1000*c_cont_po_nucleus*(a_nucleus*A + b_nucleus)) output_Y_nucleus = np.array([Y_nucleus(Ai) for Ai in A]) print(output_Y_nucleus) def Y_plasma(A): return (44/12*1000*c_cont_po_plasma*(a_plasma*A + b_plasma)) output_Y_plasma = np.array([Y_plasma(Ai) for Ai in A]) print(output_Y_plasma) ##8 times 25-year cycle of new AGB of oil palm, one year gap between the cycle #nucleus counter = range(0,8,1) y_nucleus = [] for i in counter: y_nucleus.append(output_Y_nucleus) flat_list_nucleus = [] for sublist in y_nucleus: for item in sublist: flat_list_nucleus.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_nucleus = flat_list_nucleus[:len(flat_list_nucleus)-7] #plasma y_plasma = [] for i in counter: y_plasma.append(output_Y_plasma) flat_list_plasma = [] for sublist in y_plasma: for item in sublist: flat_list_plasma.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_plasma = flat_list_plasma[:len(flat_list_plasma)-7] #plotting t = range (0,tf,1) plt.xlim([0, 200]) plt.plot(t, flat_list_nucleus) plt.plot(t, flat_list_plasma, color='seagreen') plt.fill_between(t, flat_list_nucleus, flat_list_plasma, color='darkseagreen', alpha=0.4) plt.xlabel('Time (year)') plt.ylabel('AGB (tCO2-eq/ha)') plt.show() ###Yearly Sequestration ###Nucleus #find the yearly sequestration by calculating the differences between elements in list 'flat_list_nucleus(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_nucleus = [p - q for q, p in zip(flat_list_nucleus, flat_list_nucleus[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_nuclues' with 0 values flat_list_nucleus = [0 if i < 0 else i for i in flat_list_nucleus] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_nucleus.insert(0,var) #make 'flat_list_nucleus' elements negative numbers to denote sequestration flat_list_nucleus = [ -x for x in flat_list_nucleus] print(flat_list_nucleus) #Plasma #find the yearly sequestration by calculating the differences between elements in list 'flat_list_plasma(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_plasma = [t - u for u, t in zip(flat_list_plasma, flat_list_plasma[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_plasma' with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) flat_list_plasma = [0 if i < 0 else i for i in flat_list_plasma] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_plasma.insert(0,var) #make 'flat_list_plasma' elements negative numbers to denote sequestration flat_list_plasma = [ -x for x in flat_list_plasma] print(flat_list_plasma) #%% #Step(6): post-harvest processing of wood/palm oil #post-harvest wood processing df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_HWP_S1nu = df1nu['PH_Emissions_HWP'].values PH_Emissions_HWP_S1pl = df1pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Enu = df3pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Epl = df3pl['PH_Emissions_HWP'].values #post-harvest palm oil processing df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_PO_S1nu = df1nu['PH_Emissions_PO'].values PH_Emissions_PO_S1pl = df1pl['PH_Emissions_PO'].values PH_Emissions_PO_Enu = df3pl['PH_Emissions_PO'].values PH_Emissions_PO_Epl = df3pl['PH_Emissions_PO'].values #%% #Step (7_1): landfill gas decomposition (CH4) #CH4 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') tf = 201 t = np.arange(tf) def decomp_CH4_S1nu(t,remainAGB_CH4_S1nu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S1nu #set zero matrix output_decomp_CH4_S1nu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S1nu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S1nu[i:,i] = decomp_CH4_S1nu(t[:len(t)-i],remain_part_CH4_S1nu) print(output_decomp_CH4_S1nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S1nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S1nu[:,i] = np.diff(output_decomp_CH4_S1nu[:,i]) i = i + 1 print(subs_matrix_CH4_S1nu[:,:4]) print(len(subs_matrix_CH4_S1nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S1nu = subs_matrix_CH4_S1nu.clip(max=0) print(subs_matrix_CH4_S1nu[:,:4]) #make the results as absolute values subs_matrix_CH4_S1nu = abs(subs_matrix_CH4_S1nu) print(subs_matrix_CH4_S1nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S1nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S1nu) subs_matrix_CH4_S1nu = np.vstack((zero_matrix_CH4_S1nu, subs_matrix_CH4_S1nu)) print(subs_matrix_CH4_S1nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S1nu = (tf,1) decomp_tot_CH4_S1nu = np.zeros(matrix_tot_CH4_S1nu) i = 0 while i < tf: decomp_tot_CH4_S1nu[:,0] = decomp_tot_CH4_S1nu[:,0] + subs_matrix_CH4_S1nu[:,i] i = i + 1 print(decomp_tot_CH4_S1nu[:,0]) #S1pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') tf = 201 t = np.arange(tf) def decomp_CH4_S1pl(t,remainAGB_CH4_S1pl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S1pl #set zero matrix output_decomp_CH4_S1pl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S1pl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S1pl[i:,i] = decomp_CH4_S1pl(t[:len(t)-i],remain_part_CH4_S1pl) print(output_decomp_CH4_S1pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S1pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S1pl[:,i] = np.diff(output_decomp_CH4_S1pl[:,i]) i = i + 1 print(subs_matrix_CH4_S1pl[:,:4]) print(len(subs_matrix_CH4_S1pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S1pl = subs_matrix_CH4_S1pl.clip(max=0) print(subs_matrix_CH4_S1pl[:,:4]) #make the results as absolute values subs_matrix_CH4_S1pl= abs(subs_matrix_CH4_S1pl) print(subs_matrix_CH4_S1pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S1pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S1pl) subs_matrix_CH4_S1pl = np.vstack((zero_matrix_CH4_S1pl, subs_matrix_CH4_S1pl)) print(subs_matrix_CH4_S1pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S1pl = (tf,1) decomp_tot_CH4_S1pl = np.zeros(matrix_tot_CH4_S1pl) i = 0 while i < tf: decomp_tot_CH4_S1pl[:,0] = decomp_tot_CH4_S1pl[:,0] + subs_matrix_CH4_S1pl[:,i] i = i + 1 print(decomp_tot_CH4_S1pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CH4_Enu(t,remainAGB_CH4_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Enu #set zero matrix output_decomp_CH4_Enu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Enu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Enu[i:,i] = decomp_CH4_Enu(t[:len(t)-i],remain_part_CH4_Enu) print(output_decomp_CH4_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Enu[:,i] = np.diff(output_decomp_CH4_Enu[:,i]) i = i + 1 print(subs_matrix_CH4_Enu[:,:4]) print(len(subs_matrix_CH4_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Enu = subs_matrix_CH4_Enu.clip(max=0) print(subs_matrix_CH4_Enu[:,:4]) #make the results as absolute values subs_matrix_CH4_Enu = abs(subs_matrix_CH4_Enu) print(subs_matrix_CH4_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Enu) subs_matrix_CH4_Enu = np.vstack((zero_matrix_CH4_Enu, subs_matrix_CH4_Enu)) print(subs_matrix_CH4_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Enu = (tf,1) decomp_tot_CH4_Enu= np.zeros(matrix_tot_CH4_Enu) i = 0 while i < tf: decomp_tot_CH4_Enu[:,0] = decomp_tot_CH4_Enu[:,0] + subs_matrix_CH4_Enu[:,i] i = i + 1 print(decomp_tot_CH4_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CH4_Epl(t,remainAGB_CH4_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Epl #set zero matrix output_decomp_CH4_Epl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Epl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Epl[i:,i] = decomp_CH4_Epl(t[:len(t)-i],remain_part_CH4_Epl) print(output_decomp_CH4_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Epl[:,i] = np.diff(output_decomp_CH4_Epl[:,i]) i = i + 1 print(subs_matrix_CH4_Epl[:,:4]) print(len(subs_matrix_CH4_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Epl = subs_matrix_CH4_Epl.clip(max=0) print(subs_matrix_CH4_Epl[:,:4]) #make the results as absolute values subs_matrix_CH4_Epl = abs(subs_matrix_CH4_Epl) print(subs_matrix_CH4_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Epl) subs_matrix_CH4_Epl = np.vstack((zero_matrix_CH4_Epl, subs_matrix_CH4_Epl)) print(subs_matrix_CH4_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Epl = (tf,1) decomp_tot_CH4_Epl = np.zeros(matrix_tot_CH4_Epl) i = 0 while i < tf: decomp_tot_CH4_Epl[:,0] = decomp_tot_CH4_Epl[:,0] + subs_matrix_CH4_Epl[:,i] i = i + 1 print(decomp_tot_CH4_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CH4_S1nu,label='CH4_S1nu') plt.plot(t,decomp_tot_CH4_S1pl,label='CH4_S1pl') plt.plot(t,decomp_tot_CH4_Enu,label='CH4_Enu') plt.plot(t,decomp_tot_CH4_Epl,label='CH4_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (7_2): landfill gas decomposition (CO2) #CO2 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') tf = 201 t = np.arange(tf) def decomp_CO2_S1nu(t,remainAGB_CO2_S1nu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S1nu #set zero matrix output_decomp_CO2_S1nu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S1nu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S1nu[i:,i] = decomp_CO2_S1nu(t[:len(t)-i],remain_part_CO2_S1nu) print(output_decomp_CO2_S1nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S1nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S1nu[:,i] = np.diff(output_decomp_CO2_S1nu[:,i]) i = i + 1 print(subs_matrix_CO2_S1nu[:,:4]) print(len(subs_matrix_CO2_S1nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S1nu = subs_matrix_CO2_S1nu.clip(max=0) print(subs_matrix_CO2_S1nu[:,:4]) #make the results as absolute values subs_matrix_CO2_S1nu = abs(subs_matrix_CO2_S1nu) print(subs_matrix_CO2_S1nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S1nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S1nu) subs_matrix_CO2_S1nu = np.vstack((zero_matrix_CO2_S1nu, subs_matrix_CO2_S1nu)) print(subs_matrix_CO2_S1nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S1nu = (tf,1) decomp_tot_CO2_S1nu = np.zeros(matrix_tot_CO2_S1nu) i = 0 while i < tf: decomp_tot_CO2_S1nu[:,0] = decomp_tot_CO2_S1nu[:,0] + subs_matrix_CO2_S1nu[:,i] i = i + 1 print(decomp_tot_CO2_S1nu[:,0]) #S1pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') tf = 201 t = np.arange(tf) def decomp_CO2_S1pl(t,remainAGB_CO2_S1pl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S1pl #set zero matrix output_decomp_CO2_S1pl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S1pl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S1pl[i:,i] = decomp_CO2_S1pl(t[:len(t)-i],remain_part_CO2_S1pl) print(output_decomp_CO2_S1pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S1pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S1pl[:,i] = np.diff(output_decomp_CO2_S1pl[:,i]) i = i + 1 print(subs_matrix_CO2_S1pl[:,:4]) print(len(subs_matrix_CO2_S1pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S1pl = subs_matrix_CO2_S1pl.clip(max=0) print(subs_matrix_CO2_S1pl[:,:4]) #make the results as absolute values subs_matrix_CO2_S1pl= abs(subs_matrix_CO2_S1pl) print(subs_matrix_CO2_S1pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S1pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S1pl) subs_matrix_CO2_S1pl = np.vstack((zero_matrix_CO2_S1pl, subs_matrix_CO2_S1pl)) print(subs_matrix_CO2_S1pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S1pl = (tf,1) decomp_tot_CO2_S1pl = np.zeros(matrix_tot_CO2_S1pl) i = 0 while i < tf: decomp_tot_CO2_S1pl[:,0] = decomp_tot_CO2_S1pl[:,0] + subs_matrix_CO2_S1pl[:,i] i = i + 1 print(decomp_tot_CO2_S1pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CO2_Enu(t,remainAGB_CO2_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Enu #set zero matrix output_decomp_CO2_Enu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Enu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Enu[i:,i] = decomp_CO2_Enu(t[:len(t)-i],remain_part_CO2_Enu) print(output_decomp_CO2_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Enu[:,i] = np.diff(output_decomp_CO2_Enu[:,i]) i = i + 1 print(subs_matrix_CO2_Enu[:,:4]) print(len(subs_matrix_CO2_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Enu = subs_matrix_CO2_Enu.clip(max=0) print(subs_matrix_CO2_Enu[:,:4]) #make the results as absolute values subs_matrix_CO2_Enu = abs(subs_matrix_CO2_Enu) print(subs_matrix_CO2_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Enu) subs_matrix_CO2_Enu = np.vstack((zero_matrix_CO2_Enu, subs_matrix_CO2_Enu)) print(subs_matrix_CO2_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Enu = (tf,1) decomp_tot_CO2_Enu= np.zeros(matrix_tot_CO2_Enu) i = 0 while i < tf: decomp_tot_CO2_Enu[:,0] = decomp_tot_CO2_Enu[:,0] + subs_matrix_CO2_Enu[:,i] i = i + 1 print(decomp_tot_CO2_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CO2_Epl(t,remainAGB_CO2_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Epl #set zero matrix output_decomp_CO2_Epl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Epl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Epl[i:,i] = decomp_CO2_Epl(t[:len(t)-i],remain_part_CO2_Epl) print(output_decomp_CO2_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Epl[:,i] = np.diff(output_decomp_CO2_Epl[:,i]) i = i + 1 print(subs_matrix_CO2_Epl[:,:4]) print(len(subs_matrix_CO2_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Epl = subs_matrix_CO2_Epl.clip(max=0) print(subs_matrix_CO2_Epl[:,:4]) #make the results as absolute values subs_matrix_CO2_Epl = abs(subs_matrix_CO2_Epl) print(subs_matrix_CO2_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Epl) subs_matrix_CO2_Epl = np.vstack((zero_matrix_CO2_Epl, subs_matrix_CO2_Epl)) print(subs_matrix_CO2_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Epl = (tf,1) decomp_tot_CO2_Epl = np.zeros(matrix_tot_CO2_Epl) i = 0 while i < tf: decomp_tot_CO2_Epl[:,0] = decomp_tot_CO2_Epl[:,0] + subs_matrix_CO2_Epl[:,i] i = i + 1 print(decomp_tot_CO2_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CO2_S1nu,label='CO2_S1nu') plt.plot(t,decomp_tot_CO2_S1pl,label='CO2_S1pl') plt.plot(t,decomp_tot_CO2_Enu,label='CO2_Enu') plt.plot(t,decomp_tot_CO2_Epl,label='CO2_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (8): Sum the emissions and sequestration (net carbon balance), CO2 and CH4 are separated #https://stackoverflow.com/questions/52703442/python-sum-values-from-multiple-lists-more-than-two #C_loss + C_remainAGB + C_remainHWP + PH_Emissions_PO Emissions_PF_PO_S1nu = [c_firewood_energy_S1nu, decomp_emissions[:,0], TestDSM1nu.o, PH_Emissions_PO_S1nu, PH_Emissions_HWP_S1nu, decomp_tot_CO2_S1nu[:,0]] Emissions_PF_PO_S1pl = [c_firewood_energy_S1pl, decomp_emissions[:,0], TestDSM1pl.o, PH_Emissions_PO_S1pl, PH_Emissions_HWP_S1pl, decomp_tot_CO2_S1pl[:,0]] Emissions_PF_PO_Enu = [c_firewood_energy_Enu, c_pellets_Enu, decomp_emissions[:,0], TestDSM3nu.o, PH_Emissions_PO_Enu, PH_Emissions_HWP_Enu, decomp_tot_CO2_Enu[:,0]] Emissions_PF_PO_Epl = [c_firewood_energy_Epl, c_pellets_Epl, decomp_emissions[:,0], TestDSM3pl.o, PH_Emissions_PO_Epl, PH_Emissions_HWP_Epl, decomp_tot_CO2_Epl[:,0]] Emissions_PF_PO_S1nu = [sum(x) for x in zip(*Emissions_PF_PO_S1nu)] Emissions_PF_PO_S1pl = [sum(x) for x in zip(*Emissions_PF_PO_S1pl)] Emissions_PF_PO_Enu = [sum(x) for x in zip(*Emissions_PF_PO_Enu)] Emissions_PF_PO_Epl = [sum(x) for x in zip(*Emissions_PF_PO_Epl)] #CH4_S1nu Emissions_CH4_PF_PO_S1nu = decomp_tot_CH4_S1nu[:,0] #CH4_S1pl Emissions_CH4_PF_PO_S1pl = decomp_tot_CH4_S1pl[:,0] #CH4_Enu Emissions_CH4_PF_PO_Enu = decomp_tot_CH4_Enu[:,0] #CH4_Epl Emissions_CH4_PF_PO_Epl = decomp_tot_CH4_Epl[:,0] #%% #Step (9): Generate the excel file (emissions_seq_scenarios.xlsx) from Step (8) calculation #print year column year = [] for x in range (0, tf): year.append(x) print (year) #print CH4 emission column import itertools lst = [0] Emissions_CH4 = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst)) print(Emissions_CH4) #print emission ref lst1 = [0] Emission_ref = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst1)) print(Emission_ref) #replace the first element with 1 to denote the emission reference as year 0 (for dynGWP calculation) Emission_ref[0] = 1 print(Emission_ref) Col1 = year Col2_S1nu = Emissions_PF_PO_S1nu Col2_S1pl = Emissions_PF_PO_S1pl Col2_Enu = Emissions_PF_PO_Enu Col2_Epl = Emissions_PF_PO_Epl Col3_S1nu = Emissions_CH4_PF_PO_S1nu Col3_S1pl = Emissions_CH4_PF_PO_S1pl Col3_Enu = Emissions_CH4_PF_PO_Enu Col3_Epl = Emissions_CH4_PF_PO_Epl Col4 = flat_list_nucleus Col5 = Emission_ref Col6 = flat_list_plasma #S1 df1_nu = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S1nu,'kg_CH4':Col3_S1nu,'kg_CO2_seq':Col4,'emission_ref':Col5}) df1_pl = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S1pl,'kg_CH4':Col3_S1pl,'kg_CO2_seq':Col6,'emission_ref':Col5}) #E df3_nu = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_Enu,'kg_CH4':Col3_Enu,'kg_CO2_seq':Col4,'emission_ref':Col5}) df3_pl = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_Epl,'kg_CH4':Col3_Epl,'kg_CO2_seq':Col6,'emission_ref':Col5}) writer = pd.ExcelWriter('emissions_seq_PF_PO_EC.xlsx', engine = 'xlsxwriter') df1_nu.to_excel(writer, sheet_name = 'S1_nucleus', header=True, index=False ) df1_pl.to_excel(writer, sheet_name = 'S1_plasma', header=True, index=False) df3_nu.to_excel(writer, sheet_name = 'E_nucleus', header=True, index=False) df3_pl.to_excel(writer, sheet_name = 'E_plasma', header=True, index=False) writer.save() writer.close() #%% ## DYNAMIC LCA - wood-based scenarios # Step (10): Set General Parameters for Dynamic LCA calculation # General Parameters aCH4 = 0.129957e-12; # methane - instantaneous radiative forcing per unit mass [W/m2 /kgCH4] TauCH4 = 12; # methane - lifetime (years) aCO2 = 0.0018088e-12; # CO2 - instantaneous radiative forcing per unit mass [W/m2 /kgCO2] TauCO2 = [172.9, 18.51, 1.186]; # CO2 parameters according to Bern carbon cycle-climate model aBern = [0.259, 0.338, 0.186]; # CO2 parameters according to Bern carbon cycle-climate model a0Bern = 0.217; # CO2 parameters according to Bern carbon cycle-climate model tf = 202 #until 202 because we want to get the DCF(t-i) until DCF(201) to determine the impact from the emission from the year 200 (There is no DCF(0)) #%% #Step (11): Bern 2.5 CC Model, determine atmospheric load (C(t)) for GHG (CO2 and CH4) t = range(0,tf,1) ## CO2 calculation formula # time dependant atmospheric load for CO2, Bern model def C_CO2(t): return a0Bern + aBern[0]*np.exp(-t/TauCO2[0]) + aBern[1]*np.exp(-t/TauCO2[1]) + aBern[2]*np.exp(-t/TauCO2[2]) output_CO2 = np.array([C_CO2(ti) for ti in t]) print(output_CO2) ## CH4 calculation formula # time dependant atmospheric load for non-CO2 GHGs (Methane) def C_CH4(t): return np.exp(-t/TauCH4) output_CH4 = np.array([C_CH4(ti) for ti in t]) plt.xlim([0, 200]) plt.ylim([0,1.1]) plt.plot(t, output_CO2, output_CH4) plt.xlabel('Time (year)') plt.ylabel('Fraction of CO$_2$') plt.show() output_CH4.size #%% #determine the C(t) for CO2 s = [] t = np.arange(0,tf,1) for i in t: s.append(quad(C_CO2,i-1,i)) res_list_CO2 = [x[0] for x in s] len(res_list_CO2) #%% #determine the C(t) for CH4 s = [] for i in t: s.append(quad(C_CH4,i-1,i)) res_list_CH4 = [p[0] for p in s] #plot plt.xlim([0, 200]) plt.ylim([0,1.5]) plt.plot(t, res_list_CO2, res_list_CH4) plt.show() #%% #Step (12): Determine dynamic characterization factors (DCF) for CO2 and CH4 DCF_inst_CO2 = aCO2 * np.array(res_list_CO2) print(DCF_inst_CO2) DCF_inst_CH4 = aCH4 * np.array(res_list_CH4) plt.xlim([0, 200]) plt.ylim([0,4e-15]) plt.plot(t, DCF_inst_CO2, DCF_inst_CH4) plt.xlabel('Time (year)') plt.ylabel('DCF_inst (10$^{-15}$ W/m$^2$.kg CO$_2$)') plt.show() len(DCF_inst_CO2) #%% #Step (13): import emission data from emissions_seq_scenarios.xlsx (Step (9)) ##wood-based #read S1_nucleus df = pd.read_excel('emissions_seq_PF_PO_EC.xlsx', 'S1_nucleus') # can also index sheet by name or fetch all sheets emission_CO2_S1nu = df['kg_CO2'].tolist() emission_CH4_S1nu = df['kg_CH4'].tolist() emission_CO2_seq_S1nu = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read S1_plasma df = pd.read_excel('emissions_seq_PF_PO_EC.xlsx', 'S1_plasma') emission_CO2_S1pl = df['kg_CO2'].tolist() emission_CH4_S1pl = df['kg_CH4'].tolist() emission_CO2_seq_S1pl = df['kg_CO2_seq'].tolist() #read E_nucleus df = pd.read_excel('emissions_seq_PF_PO_EC.xlsx', 'E_nucleus') # can also index sheet by name or fetch all sheets emission_CO2_Enu = df['kg_CO2'].tolist() emission_CH4_Enu = df['kg_CH4'].tolist() emission_CO2_seq_Enu = df['kg_CO2_seq'].tolist() #read E_plasma df = pd.read_excel('emissions_seq_PF_PO_EC.xlsx', 'E_plasma') emission_CO2_Epl = df['kg_CO2'].tolist() emission_CH4_Epl = df['kg_CH4'].tolist() emission_CO2_seq_Epl = df['kg_CO2_seq'].tolist() #%% #Step (14): import emission data from the counter-use of non-renewable materials/energy scenarios (NR) #read S1_nucleus df = pd.read_excel('NonRW_PF_PO_EC.xlsx', 'PF_PO_S1nu') # can also index sheet by name or fetch all sheets emission_NonRW_S1nu = df['NonRW_emissions'].tolist() emission_Diesel_S1nu = df['Diesel_emissions'].tolist() emission_NonRW_seq_S1nu = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read S1_plasma df = pd.read_excel('NonRW_PF_PO_EC.xlsx', 'PF_PO_S1pl') emission_NonRW_S1pl = df['NonRW_emissions'].tolist() emission_Diesel_S1pl = df['Diesel_emissions'].tolist() emission_NonRW_seq_S1pl = df['kg_CO2_seq'].tolist() #read E_nucleus df = pd.read_excel('NonRW_PF_PO_EC.xlsx', 'PF_PO_Enu') # can also index sheet by name or fetch all sheets emission_NonRW_Enu = df['NonRW_emissions'].tolist() emission_Diesel_Enu = df['Diesel_emissions'].tolist() emission_NonRW_seq_Enu = df['kg_CO2_seq'].tolist() #read E_plasma df = pd.read_excel('NonRW_PF_PO_EC.xlsx', 'PF_PO_Epl') emission_NonRW_Epl = df['NonRW_emissions'].tolist() emission_Diesel_Epl = df['Diesel_emissions'].tolist() emission_NonRW_seq_Epl = df['kg_CO2_seq'].tolist() #%% #Step (15): Determine the time elapsed dynamic characterization factors, DCF(t-ti), for CO2 and CH4 #DCF(t-i) CO2 matrix = (tf-1,tf-1) DCF_CO2_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CO2_ti[i+1,t] = DCF_inst_CO2[t-i] i = i + 1 print(DCF_CO2_ti) #sns.heatmap(DCF_CO2_ti) DCF_CO2_ti.shape #DCF(t-i) CH4 matrix = (tf-1,tf-1) DCF_CH4_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CH4_ti[i+1,t] = DCF_inst_CH4[t-i] i = i + 1 print(DCF_CH4_ti) #sns.heatmap(DCF_CH4_ti) DCF_CH4_ti.shape #%% #Step (16): Calculate instantaneous global warming impact (GWI) ##wood-based #S1_nucleus t = np.arange(0,tf-1,1) matrix_GWI_S1nu = (tf-1,3) GWI_inst_S1nu = np.zeros(matrix_GWI_S1nu) for t in range(0,tf-1): GWI_inst_S1nu[t,0] = np.sum(np.multiply(emission_CO2_S1nu,DCF_CO2_ti[:,t])) GWI_inst_S1nu[t,1] = np.sum(np.multiply(emission_CH4_S1nu,DCF_CH4_ti[:,t])) GWI_inst_S1nu[t,2] = np.sum(np.multiply(emission_CO2_seq_S1nu,DCF_CO2_ti[:,t])) matrix_GWI_tot_S1nu = (tf-1,1) GWI_inst_tot_S1nu = np.zeros(matrix_GWI_tot_S1nu) GWI_inst_tot_S1nu[:,0] = np.array(GWI_inst_S1nu[:,0] + GWI_inst_S1nu[:,1] + GWI_inst_S1nu[:,2]) print(GWI_inst_tot_S1nu[:,0]) t = np.arange(0,tf-1,1) #S1_plasma t = np.arange(0,tf-1,1) matrix_GWI_S1pl = (tf-1,3) GWI_inst_S1pl = np.zeros(matrix_GWI_S1pl) for t in range(0,tf-1): GWI_inst_S1pl[t,0] = np.sum(np.multiply(emission_CO2_S1pl,DCF_CO2_ti[:,t])) GWI_inst_S1pl[t,1] = np.sum(np.multiply(emission_CH4_S1pl,DCF_CH4_ti[:,t])) GWI_inst_S1pl[t,2] = np.sum(np.multiply(emission_CO2_seq_S1pl,DCF_CO2_ti[:,t])) matrix_GWI_tot_S1pl = (tf-1,1) GWI_inst_tot_S1pl = np.zeros(matrix_GWI_tot_S1pl) GWI_inst_tot_S1pl[:,0] = np.array(GWI_inst_S1pl[:,0] + GWI_inst_S1pl[:,1] + GWI_inst_S1pl[:,2]) print(GWI_inst_tot_S1pl[:,0]) #E_nucleus t = np.arange(0,tf-1,1) matrix_GWI_Enu = (tf-1,3) GWI_inst_Enu = np.zeros(matrix_GWI_Enu) for t in range(0,tf-1): GWI_inst_Enu[t,0] = np.sum(np.multiply(emission_CO2_Enu,DCF_CO2_ti[:,t])) GWI_inst_Enu[t,1] = np.sum(np.multiply(emission_CH4_Enu,DCF_CH4_ti[:,t])) GWI_inst_Enu[t,2] = np.sum(np.multiply(emission_CO2_seq_Enu,DCF_CO2_ti[:,t])) matrix_GWI_tot_Enu = (tf-1,1) GWI_inst_tot_Enu = np.zeros(matrix_GWI_tot_Enu) GWI_inst_tot_Enu[:,0] = np.array(GWI_inst_Enu[:,0] + GWI_inst_Enu[:,1] + GWI_inst_Enu[:,2]) print(GWI_inst_tot_Enu[:,0]) #E_plasma t = np.arange(0,tf-1,1) matrix_GWI_Epl = (tf-1,3) GWI_inst_Epl = np.zeros(matrix_GWI_Epl) for t in range(0,tf-1): GWI_inst_Epl[t,0] = np.sum(np.multiply(emission_CO2_Epl,DCF_CO2_ti[:,t])) GWI_inst_Epl[t,1] = np.sum(np.multiply(emission_CH4_Epl,DCF_CH4_ti[:,t])) GWI_inst_Epl[t,2] = np.sum(np.multiply(emission_CO2_seq_Epl,DCF_CO2_ti[:,t])) matrix_GWI_tot_Epl = (tf-1,1) GWI_inst_tot_Epl = np.zeros(matrix_GWI_tot_Epl) GWI_inst_tot_Epl[:,0] = np.array(GWI_inst_Epl[:,0] + GWI_inst_Epl[:,1] + GWI_inst_Epl[:,2]) print(GWI_inst_tot_Epl[:,0]) ##NonRW #S1_nucleus t = np.arange(0,tf-1,1) matrix_GWI_NonRW_S1nu = (tf-1,3) GWI_inst_NonRW_S1nu = np.zeros(matrix_GWI_NonRW_S1nu) for t in range(0,tf-1): GWI_inst_NonRW_S1nu[t,0] = np.sum(np.multiply(emission_NonRW_S1nu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S1nu[t,1] = np.sum(np.multiply(emission_Diesel_S1nu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S1nu[t,2] = np.sum(np.multiply(emission_NonRW_seq_S1nu,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_S1nu = (tf-1,1) GWI_inst_tot_NonRW_S1nu = np.zeros(matrix_GWI_tot_NonRW_S1nu) GWI_inst_tot_NonRW_S1nu[:,0] = np.array(GWI_inst_NonRW_S1nu[:,0] + GWI_inst_NonRW_S1nu[:,1] + GWI_inst_NonRW_S1nu[:,2]) print(GWI_inst_tot_NonRW_S1nu[:,0]) t = np.arange(0,tf-1,1) #S1_plasma t = np.arange(0,tf-1,1) matrix_GWI_NonRW_S1pl = (tf-1,3) GWI_inst_NonRW_S1pl = np.zeros(matrix_GWI_NonRW_S1pl) for t in range(0,tf-1): GWI_inst_NonRW_S1pl[t,0] = np.sum(np.multiply(emission_NonRW_S1pl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S1pl[t,1] = np.sum(np.multiply(emission_Diesel_S1pl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S1pl[t,2] = np.sum(np.multiply(emission_NonRW_seq_S1pl,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_S1pl = (tf-1,1) GWI_inst_tot_NonRW_S1pl = np.zeros(matrix_GWI_tot_NonRW_S1pl) GWI_inst_tot_NonRW_S1pl[:,0] = np.array(GWI_inst_NonRW_S1pl[:,0] + GWI_inst_NonRW_S1pl[:,1] + GWI_inst_NonRW_S1pl[:,2]) print(GWI_inst_tot_NonRW_S1pl[:,0]) #E_nucleus t = np.arange(0,tf-1,1) matrix_GWI_NonRW_Enu = (tf-1,3) GWI_inst_NonRW_Enu = np.zeros(matrix_GWI_NonRW_Enu) for t in range(0,tf-1): GWI_inst_NonRW_Enu[t,0] = np.sum(np.multiply(emission_NonRW_Enu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Enu[t,1] = np.sum(np.multiply(emission_Diesel_Enu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Enu[t,2] = np.sum(np.multiply(emission_NonRW_seq_Enu,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_Enu = (tf-1,1) GWI_inst_tot_NonRW_Enu = np.zeros(matrix_GWI_tot_NonRW_Enu) GWI_inst_tot_NonRW_Enu[:,0] = np.array(GWI_inst_NonRW_Enu[:,0] + GWI_inst_NonRW_Enu[:,1] + GWI_inst_NonRW_Enu[:,2]) print(GWI_inst_tot_NonRW_Enu[:,0]) #E_plasma t = np.arange(0,tf-1,1) matrix_GWI_NonRW_Epl = (tf-1,3) GWI_inst_NonRW_Epl = np.zeros(matrix_GWI_NonRW_Epl) for t in range(0,tf-1): GWI_inst_NonRW_Epl[t,0] = np.sum(np.multiply(emission_NonRW_Epl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Epl[t,1] = np.sum(np.multiply(emission_Diesel_Epl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Epl[t,2] = np.sum(np.multiply(emission_NonRW_seq_Epl,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_Epl = (tf-1,1) GWI_inst_tot_NonRW_Epl = np.zeros(matrix_GWI_tot_NonRW_Epl) GWI_inst_tot_NonRW_Epl[:,0] = np.array(GWI_inst_NonRW_Epl[:,0] + GWI_inst_NonRW_Epl[:,1] + GWI_inst_NonRW_Epl[:,2]) print(GWI_inst_tot_NonRW_Epl[:,0]) t = np.arange(0,tf-1,1) #create zero list to highlight the horizontal line for 0 def zerolistmaker(n): listofzeros = [0] * (n) return listofzeros #convert to flat list GWI_inst_tot_NonRW_S1nu = np.array([item for sublist in GWI_inst_tot_NonRW_S1nu for item in sublist]) GWI_inst_tot_NonRW_S1pl = np.array([item for sublist in GWI_inst_tot_NonRW_S1pl for item in sublist]) GWI_inst_tot_NonRW_Enu = np.array([item for sublist in GWI_inst_tot_NonRW_Enu for item in sublist]) GWI_inst_tot_NonRW_Epl = np.array([item for sublist in GWI_inst_tot_NonRW_Epl for item in sublist]) GWI_inst_tot_S1nu= np.array([item for sublist in GWI_inst_tot_S1nu for item in sublist]) GWI_inst_tot_S1pl = np.array([item for sublist in GWI_inst_tot_S1pl for item in sublist]) GWI_inst_tot_Enu = np.array([item for sublist in GWI_inst_tot_Enu for item in sublist]) GWI_inst_tot_Epl = np.array([item for sublist in GWI_inst_tot_Epl for item in sublist]) plt.plot(t, GWI_inst_tot_NonRW_S1nu, color='lightcoral', label='NR_M_EC_nucleus', ls='--') plt.plot(t, GWI_inst_tot_NonRW_S1pl, color='deeppink', label='NR_M_EC_plasma', ls='--') plt.plot(t, GWI_inst_tot_NonRW_Enu, color='royalblue', label='NR_E_nucleus', ls='--') plt.plot(t, GWI_inst_tot_NonRW_Epl, color='deepskyblue', label='NR_E_plasma', ls='--') plt.plot(t, GWI_inst_tot_S1nu, color='lightcoral', label='M_EC_nucleus') plt.plot(t, GWI_inst_tot_S1pl, color='deeppink', label='M_EC_plasma') plt.plot(t, GWI_inst_tot_Enu, color='royalblue', label='E_nucleus') plt.plot(t, GWI_inst_tot_Epl, color='deepskyblue', label='E_plasma') plt.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWI_inst_tot_NonRW_S1pl, GWI_inst_tot_NonRW_Enu, color='lightcoral', alpha=0.3) plt.grid(True) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.xlim(0,200) plt.ylim(-0.5e-9,1.4e-9) plt.title('Instantaneous GWI, PF_PO_EC') plt.xlabel('Time (year)') #plt.ylabel('GWI_inst (10$^{-13}$ W/m$^2$)') plt.ylabel('GWI_inst (W/m$^2$)') plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWI_inst_NonRW_PF_PO_EC', dpi=300) plt.show() #%% #Step (17): Calculate cumulative global warming impact (GWI) ##Wood-based GWI_cum_S1nu = np.cumsum(GWI_inst_tot_S1nu) GWI_cum_S1pl = np.cumsum(GWI_inst_tot_S1pl) GWI_cum_Enu = np.cumsum(GWI_inst_tot_Enu) GWI_cum_Epl = np.cumsum(GWI_inst_tot_Epl) ##NonRW GWI_cum_NonRW_S1nu = np.cumsum(GWI_inst_tot_NonRW_S1nu) GWI_cum_NonRW_S1pl = np.cumsum(GWI_inst_tot_NonRW_S1pl) GWI_cum_NonRW_Enu = np.cumsum(GWI_inst_tot_NonRW_Enu) GWI_cum_NonRW_Epl = np.cumsum(GWI_inst_tot_NonRW_Epl) plt.xlabel('Time (year)') #plt.ylabel('GWI_cum (10$^{-11}$ W/m$^2$)') plt.ylabel('GWI_cum (W/m$^2$)') plt.xlim(0,200) plt.ylim(-0.3e-7,2e-7) plt.title('Cumulative GWI, PF_PO_EC') plt.plot(t, GWI_cum_NonRW_S1nu , color='lightcoral', label='NR_M_EC_nucleus', ls='--') plt.plot(t, GWI_cum_NonRW_S1pl, color='deeppink', label='NR_M_EC_plasma', ls='--') plt.plot(t, GWI_cum_NonRW_Enu, color='royalblue', label='NR_E_nucleus', ls='--') plt.plot(t, GWI_cum_NonRW_Epl, color='deepskyblue', label='NR_E_plasma', ls='--') plt.plot(t, GWI_cum_S1nu, color='lightcoral', label='M_EC_nucleus') plt.plot(t, GWI_cum_S1pl, color='deeppink', label='M_EC_plasma') plt.plot(t, GWI_cum_Enu, color='royalblue', label='E_nucleus') plt.plot(t, GWI_cum_Epl, color='deepskyblue', label='E_plasma') plt.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) plt.grid(True) #plt.fill_between(t, GWI_cum_NonRW_S1pl, GWI_cum_NonRW_Enu, color='lightcoral', alpha=0.3) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWI_cum_NonRW_PF_PO_EC', dpi=300) plt.show() #%% #Step (18): Determine the Instantenous and Cumulative GWI for the emission reference (1 kg CO2 emission at time zero) before performing dynamic GWP calculation t = np.arange(0,tf-1,1) matrix_GWI_ref = (tf-1,1) GWI_inst_ref = np.zeros(matrix_GWI_S1nu) for t in range(0,tf-1): GWI_inst_ref[t,0] = np.sum(np.multiply(emission_CO2_ref,DCF_CO2_ti[:,t])) #print(GWI_inst_ref[:,0]) len(GWI_inst_ref) #determine the GWI cumulative for the emission reference t = np.arange(0,tf-1,1) GWI_cum_ref = np.cumsum(GWI_inst_ref[:,0]) #print(GWI_cum_ref) plt.xlabel('Time (year)') plt.ylabel('GWI_cum_ref (10$^{-13}$ W/m$^2$.kgCO$_2$)') plt.plot(t, GWI_cum_ref) len(GWI_cum_ref) #%% #Step (19): Calculate dynamic global warming potential (GWPdyn) #convert the GWPdyn to tCO2 (divided by 1000) ##Wood-based GWP_dyn_cum_S1nu = [x/(y*1000) for x,y in zip(GWI_cum_S1nu, GWI_cum_ref)] GWP_dyn_cum_S1pl = [x/(y*1000) for x,y in zip(GWI_cum_S1pl, GWI_cum_ref)] GWP_dyn_cum_Enu = [x/(y*1000) for x,y in zip(GWI_cum_Enu, GWI_cum_ref)] GWP_dyn_cum_Epl = [x/(y*1000) for x,y in zip(GWI_cum_Epl, GWI_cum_ref)] ##NonRW GWP_dyn_cum_NonRW_S1nu = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_S1nu, GWI_cum_ref)] GWP_dyn_cum_NonRW_S1pl = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_S1pl, GWI_cum_ref)] GWP_dyn_cum_NonRW_Enu = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_Enu, GWI_cum_ref)] GWP_dyn_cum_NonRW_Epl = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_Epl, GWI_cum_ref)] fig=plt.figure() fig.show() ax=fig.add_subplot(111) ax.plot(t, GWP_dyn_cum_NonRW_S1nu, color='lightcoral', label='NR_M_EC_nucleus', ls='--') ax.plot(t, GWP_dyn_cum_NonRW_S1pl, color='deeppink', label='NR_M_EC_plasma', ls='--') ax.plot(t, GWP_dyn_cum_NonRW_Enu, color='royalblue', label='NR_E_nucleus', ls='--') ax.plot(t, GWP_dyn_cum_NonRW_Epl, color='deepskyblue', label='NR_E_plasma', ls='--') ax.plot(t, GWP_dyn_cum_S1nu, color='lightcoral', label='M_EC_nucleus') ax.plot(t, GWP_dyn_cum_S1pl, color='deeppink', label='M_EC_plasma') ax.plot(t, GWP_dyn_cum_Enu, color='royalblue', label='E_nucleus') ax.plot(t, GWP_dyn_cum_Epl, color='deepskyblue', label='E_plasma') ax.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWP_dyn_cum_NonRW_S1pl, GWP_dyn_cum_NonRW_Enu, color='lightcoral', alpha=0.3) plt.grid(True) ax.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax.set_xlabel('Time (year)') ax.set_ylabel('GWP$_{dyn}$ (t-CO$_2$-eq)') ax.set_xlim(0,200) ax.set_ylim(-250,1400) ax.set_title('Dynamic GWP, PF_PO_EC') plt.draw() plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_cum_NonRW_PF_PO_EC', dpi=300) #plt.show() #%% #Step (20): Exporting the data behind result graphs to Excel year = [] for x in range (0, 201): year.append(x) ### Create Column Col1 = year ##GWI_Inst #GWI_inst from wood-based scenarios Col_GI_1 = GWI_inst_tot_S1nu Col_GI_2 = GWI_inst_tot_S1pl Col_GI_5 = GWI_inst_tot_Enu Col_GI_6 = GWI_inst_tot_Epl #print(Col_GI_1) #print(np.shape(Col_GI_1)) #GWI_inst from counter use scenarios Col_GI_7 = GWI_inst_tot_NonRW_S1nu Col_GI_8 = GWI_inst_tot_NonRW_S1pl Col_GI_11 = GWI_inst_tot_NonRW_Enu Col_GI_12 = GWI_inst_tot_NonRW_Epl #print(Col_GI_7) #print(np.shape(Col_GI_7)) #create column results ##GWI_cumulative #GWI_cumulative from wood-based scenarios Col_GC_1 = GWI_cum_S1nu Col_GC_2 = GWI_cum_S1pl Col_GC_5 = GWI_cum_Enu Col_GC_6 = GWI_cum_Epl #GWI_cumulative from counter use scenarios Col_GC_7 = GWI_cum_NonRW_S1nu Col_GC_8 = GWI_cum_NonRW_S1pl Col_GC_11 = GWI_cum_NonRW_Enu Col_GC_12 = GWI_cum_NonRW_Epl #create column results ##GWPdyn #GWPdyn from wood-based scenarios Col_GWP_1 = GWP_dyn_cum_S1nu Col_GWP_2 = GWP_dyn_cum_S1pl Col_GWP_5 = GWP_dyn_cum_Enu Col_GWP_6 = GWP_dyn_cum_Epl #GWPdyn from counter use scenarios Col_GWP_7 = GWP_dyn_cum_NonRW_S1nu Col_GWP_8 = GWP_dyn_cum_NonRW_S1pl Col_GWP_11 = GWP_dyn_cum_NonRW_Enu Col_GWP_12 = GWP_dyn_cum_NonRW_Epl #Create colum results dfM_EC_GI = pd.DataFrame.from_dict({'Year':Col1,'M_EC_nucleus (W/m2)':Col_GI_1, 'M_EC_plasma (W/m2)':Col_GI_2, 'E_nucleus (W/m2)':Col_GI_5, 'E_plasma (W/m2)':Col_GI_6, 'NR_M_EC_nucleus (W/m2)':Col_GI_7, 'NR_M_EC_plasma (W/m2)':Col_GI_8, 'NR_E_nucleus (W/m2)':Col_GI_11, 'NR_E_plasma (W/m2)':Col_GI_12}) dfM_EC_GC = pd.DataFrame.from_dict({'Year':Col1,'M_EC_nucleus (W/m2)':Col_GC_1, 'M_EC_plasma (W/m2)':Col_GC_2, 'E_nucleus (W/m2)':Col_GC_5, 'E_plasma (W/m2)':Col_GC_6, 'NR_M_EC_nucleus (W/m2)':Col_GC_7, 'NR_M_EC_plasma (W/m2)':Col_GC_8, 'NR_E_nucleus (W/m2)':Col_GC_11, 'NR_E_plasma (W/m2)':Col_GC_12}) dfM_EC_GWP = pd.DataFrame.from_dict({'Year':Col1,'M_EC_nucleus (W/m2)':Col_GWP_1, 'M_EC_plasma (W/m2)':Col_GWP_2, 'E_nucleus (W/m2)':Col_GWP_5, 'E_plasma (W/m2)':Col_GWP_6, 'NR_M_EC_nucleus (W/m2)':Col_GWP_7, 'NR_M_EC_plasma (W/m2)':Col_GWP_8, 'NR_E_nucleus (W/m2)':Col_GWP_11, 'NR_E_plasma (W/m2)':Col_GWP_12}) #Export to excel writer = pd.ExcelWriter('GraphResults_PF_PO_EC.xlsx', engine = 'xlsxwriter') #GWI_inst dfM_EC_GI.to_excel(writer, sheet_name = 'GWI_Inst_PF_PO_EC', header=True, index=False ) #GWI cumulative dfM_EC_GC.to_excel(writer, sheet_name = 'Cumlative GWI_PF_PO_EC', header=True, index=False ) #GWP_dyn dfM_EC_GWP.to_excel(writer, sheet_name = 'GWPdyn_PF_PO_EC', header=True, index=False ) writer.save() writer.close() #%% #Step (21): Generate the excel file for the individual carbon emission and sequestration flows #print year column year = [] for x in range (0, 201): year.append(x) print (year) print(len(year)) division = 1000*44/12 division_CH4 = 1000*16/12 #Mnu_existing c_firewood_energy_S1nu = [x/division for x in c_firewood_energy_S1nu] decomp_emissions[:,0] = [x/division for x in decomp_emissions[:,0]] TestDSM1nu.o = [x/division for x in TestDSM1nu.o] PH_Emissions_PO_S1nu = [x/division for x in PH_Emissions_PO_S1nu] PH_Emissions_HWP_S1nu = [x/division for x in PH_Emissions_HWP_S1nu] #OC_storage_S1nu = [x/division for x in OC_storage_S1nu] flat_list_nucleus = [x/division for x in flat_list_nucleus] decomp_tot_CO2_S1nu[:,0] = [x/division for x in decomp_tot_CO2_S1nu[:,0]] decomp_tot_CH4_S1nu[:,0] = [x/division_CH4 for x in decomp_tot_CH4_S1nu[:,0]] #Mpl_existing c_firewood_energy_S1pl = [x/division for x in c_firewood_energy_S1pl] TestDSM1pl.o = [x/division for x in TestDSM1pl.o] PH_Emissions_PO_S1pl = [x/division for x in PH_Emissions_PO_S1pl] PH_Emissions_HWP_S1pl = [x/division for x in PH_Emissions_HWP_S1pl] #OC_storage_S1pl = [x/division for x in OC_storage_S1pl] flat_list_plasma = [x/division for x in flat_list_plasma] decomp_tot_CO2_S1pl[:,0] = [x/division for x in decomp_tot_CO2_S1pl[:,0]] decomp_tot_CH4_S1pl[:,0] = [x/division_CH4 for x in decomp_tot_CH4_S1pl[:,0]] #Enu c_firewood_energy_Enu = [x/division for x in c_firewood_energy_Enu] c_pellets_Enu = [x/division for x in c_pellets_Enu] TestDSM3nu.o = [x/division for x in TestDSM3nu.o] PH_Emissions_PO_Enu = [x/division for x in PH_Emissions_PO_Enu] PH_Emissions_HWP_Enu = [x/division for x in PH_Emissions_HWP_Enu] #OC_storage_Enu = [x/division for x in OC_storage_Enu] decomp_tot_CO2_Enu[:,0] = [x/division for x in decomp_tot_CO2_Enu[:,0]] decomp_tot_CH4_Enu[:,0] = [x/division_CH4 for x in decomp_tot_CH4_Enu[:,0]] #Epl c_firewood_energy_Epl = [x/division for x in c_firewood_energy_Epl] c_pellets_Epl = [x/division for x in c_pellets_Epl] TestDSM3pl.o = [x/division for x in TestDSM3pl.o] PH_Emissions_PO_Epl = [x/division for x in PH_Emissions_PO_Epl] PH_Emissions_HWP_Epl = [x/division for x in PH_Emissions_HWP_Epl] #OC_storage_Epl = [x/division for x in OC_storage_Epl] decomp_tot_CO2_Epl[:,0] = [x/division for x in decomp_tot_CO2_Epl[:,0]] decomp_tot_CH4_Epl[:,0] = [x/division_CH4 for x in decomp_tot_CH4_Epl[:,0]] #landfill aggregate flows Landfill_decomp_PF_PO_S1nu = decomp_tot_CH4_S1nu, decomp_tot_CO2_S1nu Landfill_decomp_PF_PO_S1pl = decomp_tot_CH4_S1pl, decomp_tot_CO2_S1pl Landfill_decomp_PF_PO_Enu = decomp_tot_CH4_Enu, decomp_tot_CO2_Enu Landfill_decomp_PF_PO_Epl = decomp_tot_CH4_Epl, decomp_tot_CO2_Epl Landfill_decomp_PF_PO_S1nu = [sum(x) for x in zip(*Landfill_decomp_PF_PO_S1nu)] Landfill_decomp_PF_PO_S1pl = [sum(x) for x in zip(*Landfill_decomp_PF_PO_S1pl)] Landfill_decomp_PF_PO_Enu = [sum(x) for x in zip(*Landfill_decomp_PF_PO_Enu)] Landfill_decomp_PF_PO_Epl = [sum(x) for x in zip(*Landfill_decomp_PF_PO_Epl)] Landfill_decomp_PF_PO_S1nu = [item for sublist in Landfill_decomp_PF_PO_S1nu for item in sublist] Landfill_decomp_PF_PO_S1pl = [item for sublist in Landfill_decomp_PF_PO_S1pl for item in sublist] Landfill_decomp_PF_PO_Enu = [item for sublist in Landfill_decomp_PF_PO_Enu for item in sublist] Landfill_decomp_PF_PO_Epl = [item for sublist in Landfill_decomp_PF_PO_Epl for item in sublist] #Wood processing aggregate flows OpProcessing_PF_PO_S1nu = [x + y for x, y in zip(PH_Emissions_PO_S1nu, PH_Emissions_HWP_S1nu)] OpProcessing_PF_PO_S1pl = [x + y for x, y in zip(PH_Emissions_PO_S1pl, PH_Emissions_HWP_S1pl)] OpProcessing_PF_PO_Enu = [x + y for x, y in zip(PH_Emissions_PO_Enu, PH_Emissions_HWP_Enu)] OpProcessing_PF_PO_Epl = [x + y for x, y in zip(PH_Emissions_PO_Epl, PH_Emissions_HWP_Epl)] Column1 = year Column2 = decomp_emissions[:,0] Column3 = flat_list_nucleus Column4 = flat_list_plasma #E_nu Column5 = c_firewood_energy_Enu Column5_1 = c_pellets_Enu Column6 = TestDSM3nu.o Column7 = OpProcessing_PF_PO_Enu #Column9_1 = OC_storage_Enu Column9 = Landfill_decomp_PF_PO_Enu #E_pl Column10 = c_firewood_energy_Epl Column10_1 = c_pellets_Epl Column11 = TestDSM3pl.o Column12 = OpProcessing_PF_PO_Epl #Column14_1 = OC_storage_Epl Column14 = Landfill_decomp_PF_PO_Epl #M_nu_existing Column15 = c_firewood_energy_S1nu Column16 = TestDSM1nu.o Column17 = OpProcessing_PF_PO_S1nu #Column19_1 = OC_storage_S1nu Column19 = Landfill_decomp_PF_PO_S1nu #M_pl_existing Column20 = c_firewood_energy_S1pl Column21 = TestDSM1pl.o Column22 = OpProcessing_PF_PO_S1pl #Column24_1 = OC_storage_S1pl Column24 = Landfill_decomp_PF_PO_S1pl #E_existing dfE_nu = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column3, #'9: Landfill storage (t-C)':Column9_1, 'F1-0: Residue decomposition (t-C)':Column2, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column5, 'F8-0: Operational stage/processing emissions (t-C)':Column7, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column6, 'F7-0: Landfill gas decomposition(t-C)':Column9, 'F4-0: Emissions from wood pellets use (t-C)':Column5_1}) dfE_pl = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column4, #'9: Landfill storage (t-C)':Column14_1, 'F1-0: Residue decomposition (t-C)':Column2, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column10, 'F8-0: Operational stage/processing emissions (t-C)':Column12, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column11, 'F7-0: Landfill gas decomposition (t-C)':Column14, 'F4-0: Emissions from wood pellets use (t-C)':Column10_1}) #M_existing dfM_nu_exst= pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column3, # '9: Landfill storage (t-C)':Column19_1, 'F1-0: Residue decomposition (t-C)':Column2, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column15, 'F8-0: Operational stage/processing emissions (t-C)':Column17, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column16, 'F7-0: Landfill gas decomposition (t-C)':Column19}) dfM_pl_exst = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column4, # '9: Landfill storage (t-C)':Column24_1, 'F1-0: Residue decomposition (t-C)':Column2, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column20, 'F8-0: Operational stage/processing emissions (t-C)':Column22, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column21, 'F7-0: Landfill gas decomposition (t-C)':Column24}) writer = pd.ExcelWriter('C_flows_PF_PO_EC.xlsx', engine = 'xlsxwriter') dfM_nu_exst.to_excel(writer, sheet_name = 'PF_PO_M_EC_nu', header=True, index=False ) dfM_pl_exst.to_excel(writer, sheet_name = 'PF_PO_M_EC_pl', header=True, index=False) dfE_nu.to_excel(writer, sheet_name = 'PF_PO_E_EC_nu', header=True, index=False) dfE_pl.to_excel(writer, sheet_name = 'PF_PO_E_EC_pl', header=True, index=False) writer.save() writer.close() #%% #Step (22): Plot of the individual carbon emission and sequestration flows for normal and symlog-scale graphs #PF_PO_M_EC_nu fig=plt.figure() fig.show() ax1=fig.add_subplot(111) #plot ax1.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax1.plot(t, OC_storage_S1nu, color='darkturquoise', label='9: Landfill storage') ax1.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax1.plot(t, c_firewood_energy_S1nu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax1.plot(t, OpProcessing_PF_PO_S1nu, color='orange', label='F8-0: Operational stage/processing emissions') ax1.plot(t, TestDSM1nu.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax1.plot(t, Landfill_decomp_PF_PO_S1nu, color='yellow', label='F7-0: Landfill gas decomposition') ax1.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax1.set_xlim(-1,200) ax1.set_yscale('symlog') ax1.set_xlabel('Time (year)') ax1.set_ylabel('C flows (t-C) (symlog)') ax1.set_title('Carbon flow, PF_PO_M_EC_nucleus (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_M_EC_nu f, (ax_a, ax_b) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_a.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_a.plot(t, OC_storage_S1nu, color='darkturquoise', label='9: Landfill storage') ax_a.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax_a.plot(t, c_firewood_energy_S1nu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_a.plot(t, OpProcessing_PF_PO_S1nu, color='orange', label='F8-0: Operational stage/processing emissions') ax_a.plot(t, TestDSM1nu.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax_a.plot(t, Landfill_decomp_PF_PO_S1nu, color='yellow', label='F7-0: Landfill gas decomposition') ax_b.plot(t, c_firewood_energy_S1nu, color='mediumseagreen') ax_b.plot(t, decomp_emissions[:,0], color='lightcoral') ax_b.plot(t, TestDSM1nu.o, color='royalblue') ax_b.plot(t, OpProcessing_PF_PO_S1nu, color='orange') #ax_b.plot(t, OC_storage_S1nu, color='darkturquoise') ax_b.plot(t, Landfill_decomp_PF_PO_S1nu, color='yellow') ax_b.plot(t, flat_list_nucleus, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_a.set_xlim(-1,200) ax_a.set_ylim(120, 150) ax_b.set_ylim(-25, 40) # hide the spines between ax and ax2 ax_a.spines['bottom'].set_visible(False) ax_b.spines['top'].set_visible(False) ax_a.xaxis.tick_top() ax_a.tick_params(labeltop=False) # don't put tick labels at the top ax_b.xaxis.tick_bottom() ax_a.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_a.transAxes, color='k', clip_on=False) ax_a.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_a.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_b.transAxes) # switch to the bottom axes ax_b.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_b.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_b.set_xlabel('Time (year)') ax_b.set_ylabel('C flows (t-C)') ax_a.set_ylabel('C flows (t-C)') ax_a.set_title('Carbon flow, PF_PO_M_EC_nucleus') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #plot for the individual carbon flows - test for symlog-scale graphs #PF_PO_M_EC_pl fig=plt.figure() fig.show() ax2=fig.add_subplot(111) #plot ax2.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax2.plot(t, OC_storage_S1pl, color='darkturquoise', label='9: Landfill storage') ax2.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax2.plot(t, c_firewood_energy_S1pl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax2.plot(t, OpProcessing_PF_PO_S1pl, color='orange', label='F8-0: Operational stage/processing emissions') ax2.plot(t, TestDSM1pl.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax2.plot(t, Landfill_decomp_PF_PO_S1pl, color='yellow', label='F7-0: Landfill gas decomposition') ax2.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax2.set_xlim(-1,200) ax2.set_yscale('symlog') ax2.set_xlabel('Time (year)') ax2.set_ylabel('C flows (t-C) (symlog)') ax2.set_title('Carbon flow, PF_PO_M_EC_plasma (symlog-scale)') plt.show() #%% #PF_PO_M_EC_pl f, (ax_c, ax_d) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_c.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_c.plot(t, OC_storage_S1pl, color='darkturquoise', label='9: Landfill storage') ax_c.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax_c.plot(t, c_firewood_energy_S1pl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_c.plot(t, OpProcessing_PF_PO_S1pl, color='orange', label='F8-0: Operational stage/processing emissions') ax_c.plot(t, TestDSM1pl.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax_c.plot(t, Landfill_decomp_PF_PO_S1pl, color='yellow', label='F7-0: Landfill gas decomposition') ax_d.plot(t, c_firewood_energy_S1pl, color='mediumseagreen') ax_d.plot(t, decomp_emissions[:,0], color='lightcoral') ax_d.plot(t, TestDSM1pl.o, color='royalblue') ax_d.plot(t, OpProcessing_PF_PO_S1pl, color='orange') #ax_d.plot(t, OC_storage_S1pl, color='darkturquoise') ax_d.plot(t, Landfill_decomp_PF_PO_S1pl, color='yellow') ax_d.plot(t, flat_list_plasma, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_c.set_xlim(-1,200) ax_c.set_ylim(120, 150) ax_d.set_ylim(-25, 40) # hide the spines between ax and ax2 ax_c.spines['bottom'].set_visible(False) ax_d.spines['top'].set_visible(False) ax_c.xaxis.tick_top() ax_c.tick_params(labeltop=False) # don't put tick labels at the top ax_d.xaxis.tick_bottom() ax_c.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_c.transAxes, color='k', clip_on=False) ax_c.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_c.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_d.transAxes) # switch to the bottom axes ax_d.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_d.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_d.set_xlabel('Time (year)') ax_d.set_ylabel('C flows (t-C)') ax_c.set_ylabel('C flows (t-C)') ax_c.set_title('Carbon flow, PF_PO_M_EC_plasma') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #plot for the individual carbon flows - test for symlog-scale graphs #PF_PO_E_EC_nu fig=plt.figure() fig.show() ax3=fig.add_subplot(111) #plot ax3.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax3.plot(t, OC_storage_Enu, color='darkturquoise', label='9: Landfill storage') ax3.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax3.plot(t, c_firewood_energy_Enu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax3.plot(t, OpProcessing_PF_PO_Enu, color='orange', label='F8-0: Operational stage/processing emissions') ax3.plot(t, Landfill_decomp_PF_PO_Enu, color='yellow', label='F7-0: Landfill gas decomposition') ax3.plot(t, c_pellets_Enu, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax3.plot(t, TestDSM3nu.o, color='royalblue', label='in-use stock output') ax3.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax3.set_xlim(-1,200) ax3.set_yscale('symlog') ax3.set_xlabel('Time (year)') ax3.set_ylabel('C flows (t-C) (symlog)') ax3.set_title('Carbon flow, PF_PO_E_EC_nucleus (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_E_EC_nu f, (ax_e, ax_f) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_e.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_e.plot(t, OC_storage_Enu, color='darkturquoise', label='9: Landfill storage') ax_e.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax_e.plot(t, c_firewood_energy_Enu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_e.plot(t, OpProcessing_PF_PO_Enu, color='orange', label='F8-0: Operational stage/processing emissions') ax_e.plot(t, Landfill_decomp_PF_PO_Enu, color='yellow', label='F7-0: Landfill gas decomposition') ax_e.plot(t, c_pellets_Enu, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax_e.plot(t, TestDSM3nu.o, color='royalblue', label='in-use stock output') ax_f.plot(t, c_firewood_energy_Enu, color='mediumseagreen') ax_f.plot(t, decomp_emissions[:,0], color='lightcoral') ax_f.plot(t, c_pellets_Enu, color='slategrey') #ax_f.plot(t, TestDSM3nu.o, color='royalblue') #ax_f.plot(t, OC_storage_Enu, color='darkturquoise') ax_f.plot(t, OpProcessing_PF_PO_Enu, color='orange') ax_f.plot(t, Landfill_decomp_PF_PO_Enu, color='yellow') ax_f.plot(t, flat_list_nucleus, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_e.set_xlim(-1,200) ax_e.set_ylim(90, 110) ax_f.set_ylim(-25, 40) # hide the spines between ax and ax2 ax_e.spines['bottom'].set_visible(False) ax_f.spines['top'].set_visible(False) ax_e.xaxis.tick_top() ax_e.tick_params(labeltop=False) # don't put tick labels at the top ax_f.xaxis.tick_bottom() ax_e.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_e.transAxes, color='k', clip_on=False) ax_e.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_e.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_f.transAxes) # switch to the bottom axes ax_f.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_f.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_f.set_xlabel('Time (year)') ax_f.set_ylabel('C flows (t-C)') ax_e.set_ylabel('C flows (t-C)') ax_e.set_title('Carbon flow, PF_PO_E_EC_nucleus') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #plot for the individual carbon flows - test for symlog-scale graphs #PF_PO_E_EC_pl fig=plt.figure() fig.show() ax4=fig.add_subplot(111) #plot ax4.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax4.plot(t, OC_storage_Epl, color='darkturquoise', label='9: Landfill storage') ax4.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax4.plot(t, c_firewood_energy_Epl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax4.plot(t, OpProcessing_PF_PO_Epl, color='orange', label='F8-0: Operational stage/processing emissions') ax4.plot(t, Landfill_decomp_PF_PO_Epl, color='yellow', label='F7-0: Landfill gas decomposition') ax4.plot(t, c_pellets_Epl, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax_4.plot(t, TestDSM3pl.o, color='royalblue', label='in-use stock output') ax4.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax4.set_xlim(-1,200) ax4.set_yscale('symlog') ax4.set_xlabel('Time (year)') ax4.set_ylabel('C flows (t-C) (symlog)') ax4.set_title('Carbon flow, PF_PO_E_EC_plasma (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_E_EC_pl f, (ax_g, ax_h) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_g.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_g.plot(t, OC_storage_Epl, color='darkturquoise', label='9: Landfill storage') ax_g.plot(t, decomp_emissions[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax_g.plot(t, c_firewood_energy_Epl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_g.plot(t, OpProcessing_PF_PO_Epl, color='orange', label='F8-0: Operational stage/processing emissions') ax_g.plot(t, Landfill_decomp_PF_PO_Epl, color='yellow', label='F7-0: Landfill gas decomposition') ax_g.plot(t, c_pellets_Epl, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax_g.plot(t, TestDSM3pl.o, color='royalblue', label='in-use stock output') ax_h.plot(t, c_firewood_energy_Epl, color='mediumseagreen') ax_h.plot(t, decomp_emissions[:,0], color='lightcoral') ax_h.plot(t, c_pellets_Epl, color='slategrey') #ax_h.plot(t, TestDSM3pl.o, color='royalblue') ax_h.plot(t, OpProcessing_PF_PO_Epl, color='orange') #ax_h.plot(t, OC_storage_Epl, color='darkturquoise') ax_h.plot(t, Landfill_decomp_PF_PO_Epl, color='yellow') ax_h.plot(t, flat_list_plasma, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_g.set_xlim(-1,200) ax_g.set_ylim(90, 110) ax_h.set_ylim(-25, 40) # hide the spines between ax and ax2 ax_g.spines['bottom'].set_visible(False) ax_h.spines['top'].set_visible(False) ax_g.xaxis.tick_top() ax_g.tick_params(labeltop=False) # don't put tick labels at the top ax_h.xaxis.tick_bottom() ax_g.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_g.transAxes, color='k', clip_on=False) ax_g.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_g.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_h.transAxes) # switch to the bottom axes ax_h.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_h.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_h.set_xlabel('Time (year)') ax_h.set_ylabel('C flows (t-C)') ax_g.set_ylabel('C flows (t-C)') ax_g.set_title('Carbon flow, PF_PO_E_EC_plasma') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #Step (23): Generate the excel file for the net carbon balance Agg_Cflow_PF_PO_S1nu = [c_firewood_energy_S1nu, decomp_emissions[:,0], TestDSM1nu.o, OpProcessing_PF_PO_S1nu, Landfill_decomp_PF_PO_S1nu, flat_list_nucleus] Agg_Cflow_PF_PO_S1pl = [c_firewood_energy_S1pl, decomp_emissions[:,0], TestDSM1pl.o, OpProcessing_PF_PO_S1pl, Landfill_decomp_PF_PO_S1pl, flat_list_plasma] Agg_Cflow_PF_PO_Enu = [c_firewood_energy_Enu, c_pellets_Enu, decomp_emissions[:,0], TestDSM3nu.o, OpProcessing_PF_PO_Enu, Landfill_decomp_PF_PO_Enu, flat_list_nucleus] Agg_Cflow_PF_PO_Epl = [c_firewood_energy_Epl, c_pellets_Epl, decomp_emissions[:,0], TestDSM3pl.o, OpProcessing_PF_PO_Epl, Landfill_decomp_PF_PO_Epl, flat_list_plasma] Agg_Cflow_PF_PO_S1nu = [sum(x) for x in zip(*Agg_Cflow_PF_PO_S1nu)] Agg_Cflow_PF_PO_S1pl = [sum(x) for x in zip(*Agg_Cflow_PF_PO_S1pl)] Agg_Cflow_PF_PO_Enu = [sum(x) for x in zip(*Agg_Cflow_PF_PO_Enu)] Agg_Cflow_PF_PO_Epl = [sum(x) for x in zip(*Agg_Cflow_PF_PO_Epl)] fig=plt.figure() fig.show() ax5=fig.add_subplot(111) # plot ax5.plot(t, Agg_Cflow_PF_PO_S1nu, color='orange', label='M_EC_nucleus') ax5.plot(t, Agg_Cflow_PF_PO_S1pl, color='darkturquoise', label='M_EC_plasma') ax5.plot(t, Agg_Cflow_PF_PO_Enu, color='lightcoral', label='E_EC_nucleus') ax5.plot(t, Agg_Cflow_PF_PO_Epl, color='mediumseagreen', label='E_EC_plasma') ax5.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax5.set_xlim(-1,200) ax5.set_yscale('symlog') ax5.set_xlabel('Time (year)') ax5.set_ylabel('C flows (t-C) (symlog)') ax5.set_title('Aggr. C-emissions/sequestration flow, PF_PO_EC (symlog-scale)') plt.show() #create column year year = [] for x in range (0, 201): year.append(x) print (year) #Create colum results dfM_EC_PF_PO = pd.DataFrame.from_dict({'Year':year,'M_EC_nucleus (t-C)':Agg_Cflow_PF_PO_S1nu, 'M_EC_plasma (t-C)':Agg_Cflow_PF_PO_S1pl, 'E_EC_nucleus (t-C)':Agg_Cflow_PF_PO_Enu, 'E_EC_plasma (t-C)':Agg_Cflow_PF_PO_Epl}) #Export to excel writer = pd.ExcelWriter('AggCFlow_PF_PO_EC.xlsx', engine = 'xlsxwriter') dfM_EC_PF_PO.to_excel(writer, sheet_name = 'PF_PO_EC', header=True, index=False) writer.save() writer.close() #%% #Step (24): Plot the net carbon balance f, (ax5a, ax5b) = plt.subplots(2, 1, sharex=True) # plot ax5a.plot(t, Agg_Cflow_PF_PO_S1nu, color='orange', label='M_EC_nucleus') ax5a.plot(t, Agg_Cflow_PF_PO_S1pl, color='darkturquoise', label='M_EC_plasma') ax5a.plot(t, Agg_Cflow_PF_PO_Enu, color='lightcoral', label='E_EC_nucleus') ax5a.plot(t, Agg_Cflow_PF_PO_Epl, color='mediumseagreen', label='E_EC_plasma') ax5a.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) ax5b.plot(t, Agg_Cflow_PF_PO_S1nu, color='orange', label='M_EC_nucleus') ax5b.plot(t, Agg_Cflow_PF_PO_S1pl, color='darkturquoise', label='M_EC_plasma') ax5b.plot(t, Agg_Cflow_PF_PO_Enu, color='lightcoral', label='E_EC_nucleus') ax5b.plot(t, Agg_Cflow_PF_PO_Epl, color='mediumseagreen', label='E_EC_plasma') ax5b.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) # zoom-in / limit the view to different portions of the data ax5a.set_xlim(-1,200) ax5a.set_ylim(200, 220) ax5b.set_ylim(-5, 50) # hide the spines between ax and ax2 ax5a.spines['bottom'].set_visible(False) ax5b.spines['top'].set_visible(False) ax5a.xaxis.tick_top() ax5a.tick_params(labeltop=False) # don't put tick labels at the top ax5b.xaxis.tick_bottom() ax5a.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax5a.transAxes, color='k', clip_on=False) ax5a.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax5a.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax5b.transAxes) # switch to the bottom axes ax5b.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax5b.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax5b.set_xlabel('Time (year)') ax5b.set_ylabel('C flows (t-C)') ax5a.set_ylabel('C flows (t-C)') ax5a.set_title('Net carbon balance, PF_PO_EC') plt.show() #%% # Step (25): Generate the excel file for documentation of individual carbon flows in the system definition (Fig. 1) #print year column year = [] for x in range (0, 201): year.append(x) print (year) df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') dfEnu =
pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu')
pandas.read_excel
from collections import Counter from itertools import repeat from pathlib import Path from typing import Tuple from ortools.linear_solver import pywraplp from concurrent.futures import ThreadPoolExecutor import multiprocessing import pandas as pd import numpy as np from ..document import Document from ..alignment import Alignment from ..amr import AMR def expand_graph(graph: AMR, corpus: Document) -> None: """ Expand the given `graph` by adding edges between all nodes in the same sentence, according to the provided `corpus`. This expansion is done **in place**. Parameters: graph (AMR): Graph to be expanded. corpus (Document): Corpus corresponding to the `graph`. """ for _, _, amr in corpus: for node1 in amr.nodes: for node2 in amr.nodes: u = graph.get_label_node(amr.get_node_label(node1)) v = graph.get_label_node(amr.get_node_label(node2)) if u == v or (node1, node2) in amr.edges(): # Don't expand if the edge already exists continue elif (u, v) not in graph.edges(): graph.add_edge(u, v, key='expansion', count=1) else: try: # Edge has already been expanded graph.edges[(u, v, 'expansion')]['count'] += 1 except KeyError: # The edge exists but it is not an expansion continue def calculate_node_data(corpus: Document, alignment: Alignment) -> Tuple[Counter, dict, dict, dict]: """ Compute the number of occurences of each node, along with their depth (distance to the root) in each sentence graph they occur. This also computes in which sentences each node occurs (their position in the given corpus). Finally, this uses the `alignment` to get the number of words (span length) aligned to each node. Parameters: corpus (Document): Corpus from which to extract the data. alignment (Alignment): Concept alignment data for the given `corpus`. Returns: tuple(Counter, dict, dict, dict): Number of occurences for each node. Their depths. Their positions and their span lengths. """ node_counts = Counter() node_depths = dict() node_positions = dict() span_lengths = dict() for i, doc in enumerate(corpus): doc_idx = alignment.get_sentence_position(doc.snt) doc_alignment = alignment[doc_idx] if doc_idx is not None else None for node in doc.amr.nodes(): try: node_label = doc.amr.nodes[node]['label'] except KeyError: node_label = node node_counts[node_label] += 1 if node_label not in node_depths: node_depths[node_label] = list() node_depths[node_label].append(doc.amr.get_node_depth(node)) if node_label not in node_positions: node_positions[node_label] = list() node_positions[node_label].append(i+1) if node_label not in span_lengths: span_lengths[node_label] = list() # Get alignment info if doc_alignment is not None: if node_label.startswith('NER:'): # Alignment for NER nodes is obtained from the first name (op1) aligned_concept = node_label.split('.')[2] else: aligned_concept = node_label try: span_len = len(doc_alignment[aligned_concept]) span_lengths[node_label].append(span_len) except KeyError: # No alignment for the concept found span_lengths[node_label].append(0) else: # No alignment information for the sentence span_lengths[node_label].append(0) return node_counts, node_depths, node_positions, span_lengths def get_node_features(amr: AMR, data: tuple) -> pd.DataFrame: """ Create the local representations (features) for each node in the given graph. Parameters: amr (AMR): Graph from which to compute the attributes. data (tuple): Node data tuple created from the LiuEtAl2015.calculate_node_data() function. Returns: pd.DataFrame: Nodes local representations (features). """ node_counts, node_depths, node_positions, span_lengths = data features_names = ['concept', 'n_freq_0', 'n_freq_1', 'n_freq_2', 'n_freq_5', 'n_freq_10', 'min_depth_1', 'min_depth_2', 'min_depth_3', 'min_depth_4', 'min_depth_5', 'avg_depth_1', 'avg_depth_2', 'avg_depth_3', 'avg_depth_4', 'avg_depth_5', 'n_fmst_pos_5', 'n_fmst_pos_6', 'n_fmst_pos_7', 'n_fmst_pos_10', 'n_fmst_pos_15', 'n_avg_pos_5', 'n_avg_pos_6', 'n_avg_pos_7', 'n_avg_pos_10', 'n_avg_pos_15', 'lngst_span_0', 'lngst_span_1', 'lngst_span_2', 'lngst_span_5', 'lngst_span_10', 'avg_span_0', 'avg_span_1', 'avg_span_2', 'avg_span_5', 'avg_span_10', 'ner', 'date', 'n_bias'] features = dict() for node in amr.nodes(): features[node] = list() try: # Concept node_label = amr.nodes[node]['label'] except KeyError: # Constant node_label = node # Concept feature features[node].append(node_label) # freq_0 freq = 1.0 if node_counts[node_label] == 0 else 0.0 features[node].append(freq) # freq_1, freq_2, freq_5, freq_10 for t in [1, 2, 5, 10]: freq = 1.0 if node_counts[node_label] >= t else 0.0 features[node].append(freq) # min_depth_1, min_depth_2, min_depth_3, min_depth_4, min_depth_5 for t in [1, 2, 3, 4, 5]: if node == amr.get_top(): # TOP node has depth 0 depth = 0.0 else: depth = 1.0 if min(node_depths[node_label]) >= t else 0.0 features[node].append(depth) # avg_depth_1, avg_depth_2, avg_depth_3, avg_depth_4, avg_depth_5 if node == amr.get_top(): avg_depth = 0.0 else: avg_depth = np.mean(node_depths[node_label]) for t in [1, 2, 3, 4, 5]: depth = 1.0 if avg_depth >= t else 0.0 features[node].append(depth) # fmst_pos_5, fmst_pos_6, fmst_pos_7, fmst_pos_10, fmst_pos_15 for t in [5, 6, 7, 10, 15]: if node_label in node_positions: pos = 1.0 if min(node_positions[node_label]) >= t else 0.0 else: # There is no information about this specific node pos = 0.0 features[node].append(pos) # avg_pos_5, avg_pos_6, avg_pos_7, avg_pos_10, avg_pos_15 if node_label in node_positions: avg_pos = np.mean(node_positions[node_label]) else: avg_pos = 0.0 for t in [5, 6, 7, 10, 15]: pos = 1.0 if avg_pos >= t else 0.0 features[node].append(pos) # lngst_span_0, lngst_span_1, lngst_span_2, lngst_span_5, lngst_span_10 for t in [0, 1, 2, 5, 10]: if node_label in span_lengths: span = 1.0 if max(span_lengths[node_label]) >= t else 0.0 else: span = 0.0 features[node].append(span) if node_label in span_lengths: avg_span = np.mean(span_lengths[node_label]) else: avg_span = 0.0 for t in [0, 1, 2, 5, 10]: span = 1.0 if avg_span >= t else 0.0 features[node].append(span) # ner ner = 1.0 if node_label.startswith('NER:') else 0.0 features[node].append(ner) # date date = 1.0 if node_label.startswith('DATE:') else 0.0 features[node].append(date) # bias features[node].append(1.0) return pd.DataFrame(features, index=features_names, dtype=np.float32).T def calculate_edge_data(corpus: Document) -> Tuple[Counter, dict]: """ Compute the number of occurences of each edge and in which sentences they occur (their position in the given corpus). Parameters: corpus (Document): Corpus from which to extract the data. Returns: tuple(Counter, dict): Number of occurences of each edge and their positions. """ edge_counts = Counter() edge_positions = dict() for i, doc in enumerate(corpus): for u, v, r in doc.amr.edges: try: u_label = doc.amr.nodes[u]['label'] except KeyError: u_label = u try: v_label = doc.amr.nodes[v]['label'] except KeyError: v_label = v edge_counts[u_label, v_label, r] += 1 if (u_label, v_label) not in edge_positions: edge_positions[(u_label, v_label)] = list() edge_positions[(u_label, v_label)].append(i+1) return edge_counts, edge_positions def get_edge_features(merged_graph: AMR, data: tuple, nodes_features: pd.DataFrame) -> pd.DataFrame: """ Create the local representations (features) for each edge in the given graph. Parameters: merged_graph (AMR): Graph from which to compute the attributes. data (tuple): Edge data tuple created by the LiuEtAl2015.calculate_edge_data() function. nodes_features (pd.DataFrame): Node local representations (features) for the given `merged_graph`. Returns: pd.DataFrame: Edges local representations (features). """ edge_counts, edge_positions = data features_names = ['label_1_05', 'label_1_066', 'label_1_075', 'label_2_05', 'label_2_066', 'label_2_075', 'e_freq_0', 'e_freq_1', 'e_freq_2', 'e_freq_5', 'e_freq_10', 'e_fmst_pos_5', 'e_fmst_pos_6', 'e_fmst_pos_7', 'e_fmst_pos_10', 'e_fmst_pos_15', 'e_avg_pos_5', 'e_avg_pos_6', 'e_avg_pos_7', 'e_avg_pos_10', 'e_avg_pos_15'] node1_names = nodes_features.add_prefix( 'node1_').columns[nodes_features.columns != 'bias'] node2_names = nodes_features.add_prefix( 'node2_').columns[nodes_features.columns != 'bias'] features_names.extend(node1_names) features_names.extend(node2_names) features_names.extend(['expansion', 'exp_freq_0', 'exp_freq_1', 'exp_freq_2', 'exp_freq_5', 'exp_freq_10', 'e_bias']) # Get all edges between each pair of nodes edges = dict() for u, v, r in merged_graph.edges: if (u, v) not in edges: edges[(u, v)] = list() edges[(u, v)].append(r) features = dict() for u, v in edges: features[(u, v)] = list() u_label = merged_graph.get_node_label(u) v_label = merged_graph.get_node_label(v) # label l_freqs = Counter({l: edge_counts[(u_label, v_label, l)] for l in edges[(u, v)]}) frequent_labels = l_freqs.most_common(2) # label_1_05, label_1_066, label_1_075 relative_freq = frequent_labels[0][1] * 1.0 / len(edges[(u, v)]) for t in [0.5, 0.66, 0.75]: label = 1.0 if relative_freq >= t else 0.0 features[(u, v)].append(label) # label_2_05, label_2_066, label_2_075 if len(frequent_labels) > 1: relative_freq = frequent_labels[1][1] * 1.0 / len(edges[(u, v)]) for t in [0.5, 0.66, 0.75]: label = 1.0 if relative_freq >= t else 0.0 features[(u, v)].append(label) else: features[(u, v)].extend(3*[0]) non_expanded_edges = [e for e in edges[(u, v)] if e != 'expansion'] # freq_0 freq = 1.0 if len(non_expanded_edges) == 0 else 0.0 features[(u, v)].append(freq) # freq_1, freq_2, freq_5, freq_10 for t in [1, 2, 5, 10]: freq = 1.0 if len(non_expanded_edges) >= t else 0.0 features[(u, v)].append(freq) try: positions = edge_positions[(u_label, v_label)] except KeyError: positions = [0.0] # fmst_pos_5, fmst_pos_6, fmst_pos_7, fmst_pos_10, fmst_pos_15 fmst_pos = min(positions) for t in [5, 6, 7, 10, 15]: pos = 1.0 if fmst_pos >= t else 0.0 features[(u, v)].append(pos) # avg_pos_5, avg_pos_6, avg_pos_7, avg_pos_10, avg_pos_15 avg_pos = np.mean(positions) for t in [5, 6, 7, 10, 15]: pos = 1.0 if avg_pos >= t else 0.0 features[(u, v)].append(pos) # nodes features node1_features = nodes_features.loc[u, nodes_features.columns != 'bias'] features[(u, v)].extend(node1_features) node2_features = nodes_features.loc[v, nodes_features.columns != 'bias'] features[(u, v)].extend(node2_features) # expansion expansion = 1.0 if 'expansion' in edges[(u, v)] else 0.0 features[(u, v)].append(expansion) # exp_freq_0 freq = 1.0 if len(edges[(u, v)]) == 0 else 0.0 features[(u, v)].append(freq) # exp_freq_1, exp_freq_2, exp_freq_5, exp_freq_10 for t in [1, 2, 5, 10]: freq = 1.0 if len(edges[(u, v)]) >= t else 0.0 features[(u, v)].append(freq) # bias features[(u, v)].append(1.0) return pd.DataFrame(features, index=features_names, dtype=np.float32).T def ilp_optimisation(node_features: pd.DataFrame, edge_features: pd.DataFrame, weights: np.array, top: str, nodes_cost: np.array = 0, edge_cost: np.array = 0) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Run ILP optimization to select nodes and edges according to their features and the given weights. Parameters: node_features (pd.DataFrame): Node local representations (features). edge_features (pd.DataFrame): Edge local representations (features). weights (np.array): Feature weights to calculate a score for each node/edge. top (str): Which node (variable) to use as the root of the graph. nodes_cost (np.array): Value to sum into the computed score for each node (`n` positions, `n` being the number of nodes). edges_cost (np.array): Value to sum into the computed score for each edge (`e` positions, `e` being the number of nodes). Returns: tuple(pd.DataFrame, pd.DataFrame): Selected nodes and selected edges. """ nodes_scores = np.dot(node_features, weights) + nodes_cost edge_scores = np.dot(edge_features, weights) + edge_cost solver = pywraplp.Solver('LiuEtAl2015', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) nodes_var = {n: solver.IntVar(0, 1, 'node[{}]'.format(n)) for n, _ in node_features.iterrows()} edges_var = {e: solver.IntVar(0, 1, 'edge[{}]'.format(e)) for e, _ in edge_features.iterrows()} flow_var = {(n1, n2): solver.IntVar(0, solver.Infinity(), 'flow[{}]'.format((n1, n2))) for n1, _ in node_features.iterrows() for n2, _ in node_features.iterrows()} # Constraints # If an edge is selected, both nodes have to be selected too for s, t in edges_var: edge_s_ct = solver.Constraint( 0, 1, 'ct_edge[{}][{}]'.format((s, t), s)) edge_s_ct.SetCoefficient(nodes_var[s], 1) edge_s_ct.SetCoefficient(edges_var[(s, t)], -1) if t != s: # Loops have only one constraint edge_t_ct = solver.Constraint( 0, 1, 'ct_edge[{}][{}]'.format((s, t), t)) edge_t_ct.SetCoefficient(nodes_var[t], 1) edge_t_ct.SetCoefficient(edges_var[(s, t)], -1) # Select at most one edge between two nodes # If there is more than one direction between the nodes if (t, s) in edges_var: self_loop_ct = solver.Constraint( 0, 1, 'ct_self_loop[{}][{}]'.format(s, t)) self_loop_ct.SetCoefficient(edges_var[(s, t)], 1) self_loop_ct.SetCoefficient(edges_var[(t, s)], 1) # Connectivity root_flow_ct = solver.Constraint(0, 0, 'root_flow_ct') for n, _ in node_features.iterrows(): root_flow_ct.SetCoefficient(flow_var[(top, n)], 1) if n != top: root_flow_ct.SetCoefficient(nodes_var[n], -1) flow_consumption_ct = solver.Constraint(0, 0, 'flow_consumption[{}]'.format(n)) for n2, _ in node_features.iterrows(): # Incoming flow flow_consumption_ct.SetCoefficient(flow_var[(n2, n)], 1) # Outgoing flow if n2 != top: flow_consumption_ct.SetCoefficient(flow_var[(n, n2)], -1) flow_consumption_ct.SetCoefficient(nodes_var[n], -1) # Flow must go through a selected edge for src, tgt in flow_var: if tgt != top: edge_flow_ct = solver.Constraint(0, solver.infinity(), 'edge_flow[{}]'.format((src, tgt))) if (src, tgt) in edges_var: edge_flow_ct.SetCoefficient( edges_var[(src, tgt)], nodes_scores.shape[0]) edge_flow_ct.SetCoefficient(flow_var[(src, tgt)], -1) # Force tree structure tree_ct = dict() for n, _ in node_features.iterrows(): tree_ct[n] = solver.Constraint(0, 1, 'tree[{}]'.format(n)) for (s, t), _ in edge_features.iterrows(): tree_ct[t].SetCoefficient(edges_var[(s, t)], 1) # Objective obj = solver.Objective() obj.SetMaximization() for i, v in enumerate(nodes_var): obj.SetCoefficient(nodes_var[v], nodes_scores[i]) for i, v in enumerate(edges_var): obj.SetCoefficient(edges_var[v], edge_scores[i]) solver.Solve() nodes = [True if nodes_var[n].solution_value() == 1.0 else False for n, _ in node_features.iterrows()] edges = [True if edges_var[e].solution_value() == 1.0 else False for e, _ in edge_features.iterrows()] return node_features.loc[nodes, :], edge_features.loc[edges, :] def graph_local_representations(graph: AMR, node_data: tuple, edge_data: tuple) -> pd.DataFrame: """ Concatenate the local representations of all nodes and edges in the given graph. Parameters: graph (AMR): Graph to which create the representations. node_data (tuple): Node data tuple created by the LiuEtAl2015.calculate_node_data() function. edge_data (tuple): Edge data tuple created by the LiuEtAl2015.calculate_edge_data() function. Returns: pd.DataFrame: Matrix containing all features for each node and edge in the `graph`. """ nodes_features = get_node_features(graph, node_data) edge_features = get_edge_features(graph, edge_data, nodes_features) return pd.concat([nodes_features, edge_features], axis=0).fillna(0.0) def prepare_training_data(training_path, gold_path, alignment): """ Create the training instances, one for each node/edge in each graph in both training_path and gold_path. Both training and gold paths must be aligned, so that the `gold_path` documents corresponds to the target value (the summary) of the `training_path` document. Parameters: training_path (Path): Training document. gold_path (Path): Target/summary document. alignment (Alignment): Concept alignments containing information of both train and target documents. Returns: DataFrame: Matrix containing the attributes representations for each node/edge in both training and gold documents. """ training_corpus = Document.read(training_path) training_graph = training_corpus.merge_graphs(collapse_ner=True, collapse_date=True) node_data = calculate_node_data(training_corpus, alignment) edge_data = calculate_edge_data(training_corpus) summary_corpus = Document.read(gold_path) gold_summary_graph = summary_corpus.merge_graphs(collapse_ner=True, collapse_date=True) sum_repr = graph_local_representations(gold_summary_graph, node_data, edge_data) sum_repr['name'] = training_path.stem sum_repr['type'] = 'target' train_repr = graph_local_representations(training_graph, node_data, edge_data) train_repr['name'] = training_path.stem train_repr['type'] = 'train' train_repr.at[training_graph.get_top(), 'top'] = True final_reprs = pd.concat([train_repr, sum_repr]) final_reprs['concept'] = final_reprs['concept'].replace(0.0, np.nan) return final_reprs def update_weights(weights: np.array, train: pd.DataFrame, gold: pd.DataFrame, top: str, loss: str = 'perceptron') -> Tuple[np.array, pd.DataFrame, pd.DataFrame]: """ Update a given array of weights via AdaGrad upon a given train-gold graph pair. The given loss function (perceptron or ramp) is used to compute how the array should be updated. Parameters: weights (np.array): Initial weight array. train (pd.DataFrame): Training instance (all local representations, nodes and edges, of a single merged AMR graph for the texts beign summarized) gold (pd.DataFrame): Target instance (all local representations, nodes and edges, of a single merged AMR graph for the gold summary) top (str): TOP node (variable) for the train graph. loss (str): Which loss function to use (perceptron or ramp). Returns: tuple(np.array, pd.DataFrame, pd.DataFrame): Triple with the updated weights, along with the selected edges (via ILP using the given weights) for both gold and train graphs, respectively (in the case of using a ramp loss function, otherwise None). """ train_nodes = train.loc[train['n_bias'] == 1.0, :] train_edges = train.loc[train['e_bias'] == 1.0, :] if loss == 'perceptron': gold_global = gold.sum(axis=0) ilp_n, ilp_e = ilp_optimisation(train_nodes, train_edges, weights, top) ilp_global = ilp_n.sum(axis=0) + ilp_e.sum(axis=0) gold_n, gold_e = None, None elif loss == 'ramp': # Set to 1 all nodes/edges that are in training, but not in target cost_idx = train.index.difference(gold.index) cost = pd.Series(0.0, index=train.index) cost.loc[cost_idx] = 1.0 # Run with negative costs gold_n, gold_e = ilp_optimisation(train_nodes, train_edges, weights, top, nodes_cost=-cost.loc[train_nodes.index], edge_cost=-cost.loc[train_edges.index]) gold_global = gold_n.sum(axis=0) + gold_e.sum(axis=0) # Run with positive cost ilp_n, ilp_e = ilp_optimisation(train_nodes, train_edges, weights, top, nodes_cost=cost.loc[train_nodes.index], edge_cost=cost.loc[train_edges.index]) ilp_global = ilp_n.sum(axis=0) + ilp_e.sum(axis=0) # Adagrad gradient = ilp_global - gold_global eta = 1.0 epsilon = 1.0 learning_rate = eta / np.sqrt(np.sum(gradient ** 2) + epsilon) new_weights = weights - learning_rate * gradient return new_weights, gold_e, ilp_e def train(training_path: Path, gold_path: Path, alignment: Alignment, loss: str) -> np.array: """ Train the weights for the scoring method using ILP and AdaGrad. The preprocessing is done parallelly. Each node/edge from each AMR graph is represented as a set of binary attributes. The importance score of a node/edge is given by the linear combination of its attributes given a weight vector. The weight vector is initialized as a vector of 1, then it is updated via AdaGrad using a loss function given as a parameter (perceptron or ramp) through supervised learning. Parameters: training_path (Path): The corpus to use as training. gold_path (Path): The corpus to use as target. alignment (Alignment): The concept alignments for both train and target corpora. loss (str): Which loss function to use (perceptron or ramp) Returns: array: Optimized weights for the scoring of nodes and edges. """ # Create training instances parallelly through the prepare_training_data functiontances with ThreadPoolExecutor(max_workers=multiprocessing.cpu_count() - 1) as executor: # Organize arguments for mapping train_filepaths = list() target_filepaths = list() for instance_path in training_path.iterdir(): train_filepaths.append(instance_path) target_filepaths.append(gold_path / instance_path.name) alignment_arg = repeat(alignment) # Create training and target representations result = executor.map(prepare_training_data, train_filepaths, target_filepaths, alignment_arg) # Combine all results from the parallel processing # Also provide one-hot encoding for concept attributes local_reprs_df = pd.get_dummies(
pd.concat(result)
pandas.concat
from Aligner import Aligner from utils import * import pandas as pd class annotation2MRPC_Aligner(Aligner): """ gets gold crowdsourced alignments in a csv format and convert them to a .tsv file that fits the huggingface 'transformers' MRPC format (a classification paraphrasing model) """ def __init__(self, data_path='.', mode='dev', log_file='results/dev_log.txt', metric_precompute=True, output_file = './dev.tsv', database='duc2004,duc2007,MultiNews'): super().__init__(data_path=data_path, mode=mode, log_file=log_file, metric_precompute=metric_precompute, output_file = output_file, database=database) self.filter_data = False self.use_stored_alignment_database = False self.alignment_database_list = [] self.docSentsOIE = True self.alignment_database = pd.DataFrame(columns=['Quality', '#1 ID', '#2 ID', '#1 String', '#2 String','database', 'topic', 'summaryFile', 'scuSentCharIdx', 'scuSentence', 'documentFile', 'docSentCharIdx', 'docSentText', 'docSpanOffsets', 'summarySpanOffsets', 'docSpanText', 'summarySpanText']) def main_filter(self, scu, doc_spans): scu_offset_str = offset_list2str(scu['scuOffsets']) id_scu = scu['topic'] + '_' + scu_offset_str for doc_span in doc_spans: doc_offset_str = offset_list2str(doc_span['docScuOffsets']) id_doc_sent = scu['topic'] + '_' + doc_span['documentFile'] + '_' + doc_offset_str label = 0 #label =0 for all. positive samples' label would be changed later self.alignment_database_list.append([label, id_scu, id_doc_sent, scu['scuText'], doc_span['docScuText'], scu['database'], scu['topic'], scu['summaryFile'], scu['scuSentCharIdx'], scu['scuSentence'], doc_span['documentFile'], doc_span['docSentCharIdx'], doc_span['docSentText'], offset_list2str( doc_span['docScuOffsets']), offset_list2str(scu['scuOffsets']), doc_span['docScuText'], scu['scuText']]) def metric_filter(self, scu): if self.filter_data: return super().metric_filter(scu) return self.doc_sents def scu_span_aligner(self): if self.use_stored_alignment_database: if self.mode == 'dev': self.alignment_database =
pd.read_pickle("./span_alignment_database_dev.pkl")
pandas.read_pickle
import zimp_clf_client import mlflow import pandas as pd import os import time import logging from zimp_clf_client.rest import ApiException from experiment.config import Config from sklearn.metrics import accuracy_score, balanced_accuracy_score, f1_score, precision_score, recall_score def get_or_create_mlflow_experiment(experiment_name): existing_exp = mlflow.get_experiment_by_name(experiment_name) if existing_exp is not None: return existing_exp exp_id = mlflow.create_experiment(experiment_name) return mlflow.get_experiment(exp_id) class Experiment: def __init__(self, config: Config): self.config = config # init classification API configuration = zimp_clf_client.Configuration() configuration.host = config.classification_service_url api_client = zimp_clf_client.ApiClient(configuration=configuration) api_client.rest_client.pool_manager.connection_pool_kw['retries'] = 10 # in case api is unstable self.train_api = zimp_clf_client.TrainingApi(api_client) self.predict_api = zimp_clf_client.PredictionApi(api_client) self.download_api = zimp_clf_client.DownloadApi(api_client) # init mlflow API mlflow.set_tracking_uri(config.mlflow_url) self.mlflow_experiment = get_or_create_mlflow_experiment(config.experiment_name) # resource paths self.train_path = os.path.join('resources', config.dataset, 'train.csv') self.test_path = os.path.join('resources', config.dataset, 'test.csv') def run(self): with mlflow.start_run(experiment_id=self.mlflow_experiment.experiment_id, run_name=self.config.run_name) as mlflow_run: mlflow.log_param('model_type', self.config.model_type) mlflow.log_param('zimp_mechanism', 'None') mlflow.log_param('random_seed', self.config.random_seed) mlflow.log_param('dataset', self.config.dataset) # TRAIN ref_time = time.time() self.train_api.clf_train_post(file=self.train_path, model_type=self.config.model_type, seed=self.config.random_seed, asynchronous='true') self.wait_for_train_completion() # poll api until training is completed mlflow.log_metric('train_time_sec', time.time() - ref_time) # EVAL TRAIN ref_time = time.time() self.predict_file_async(self.train_path, metric_prefix='train_') mlflow.log_metric('train_predict_time_sec', time.time() - ref_time) # EVAL TEST ref_time = time.time() self.predict_file_async(self.test_path, metric_prefix='test_') mlflow.log_metric('test_predict_time_sec', time.time() - ref_time) self.store_model() logging.debug(self.train_api.clf_training_status_get()) def exists_in_mlflow(self) -> bool: """ :return: True if a successful experiment exists in mlflow which has the same run name """ run_cnt = mlflow.search_runs( experiment_ids=[self.mlflow_experiment.experiment_id], filter_string=f'tags."mlflow.runName"="{self.config.run_name}" attributes.status="FINISHED"').shape[0] return run_cnt > 0 def store_model(self): """ retrieves trained model from clf-api and stores it in mlflow :return: """ model_path = 'resources/model' binary_file = self.download_api.clf_download_get(_preload_content=False).data with open(model_path, 'wb') as f: f.write(binary_file) mlflow.log_artifact(model_path) def predict_file_async(self, file_path, metric_prefix=""): """ sends complete file for prediction and polls for completion :param file_path: path to the file which should be predicted ('text', 'target') :return: """ tmp_file = 'prediction_input.csv' df_pred = pd.read_csv(file_path) df_pred['text'].to_csv(tmp_file, index=False) result_id = self.predict_api.clf_file_predict_proba_post(file=tmp_file)['resultId'] self.wait_for_predict_completion(file_path, result_id, metric_prefix) def get_predictions_for_file(self, file_path): """ retrieves predictions and related certainty for all texts in the supplied file :param file_path: path to the file which should be predicted ('text', 'target') :return: pandas df which contains loaded data plus prediction and certainty cols """ batch_size = 6 if self.config.model_type == 'BERT' else 128 # OOM-exception for BERT df_pred = pd.read_csv(file_path) df_pred['prediction'] = '' df_pred['certainty'] = 0 df_pred['target'] = df_pred['target'].astype(str) for idx in range(0, df_pred.shape[0], batch_size): clf_response = self.get_api_prediction({'n': 1, 'texts': df_pred.loc[idx:idx+batch_size-1, 'text'].tolist()}) df_pred.loc[idx:idx+batch_size-1, 'prediction'] = [res['labels'][0]['label'] for res in clf_response] df_pred.loc[idx:idx+batch_size-1, 'certainty'] = [res['labels'][0]['probability'] for res in clf_response] return df_pred def get_api_prediction(self, request_body): """ wrapper for predict_proba API call which adds a retry in case of gateway errors (may happen with slow bert model) :param request_body: :return: """ attempt_count = 0 while attempt_count < 10: if attempt_count > 0: logging.info("Retry API CALL") try: clf_response = self.predict_api.clf_m_predict_proba_post(body=request_body) except ApiException as e: logging.warning("Predict Call failed", e) attempt_count += 1 else: return clf_response raise ApiException(0, 'API-Call fails consistently. Pleas check logs') def safe_get_status(self): try: train_state = self.train_api.clf_training_status_get() return train_state['isTrained'] except ApiException as e: logging.warning("Status Call failed", e) return False def wait_for_train_completion(self): wait_time = 1 while True: if self.safe_get_status() : logging.info('Training completed.') break logging.info(f'Training not completed. Waiting for {int(wait_time)} seconds..') time.sleep(int(wait_time)) wait_time += 0.1 def safe_get_predictions(self, result_id, prediction_path): try: csv_file = self.download_api.clf_file_predictions_id_get(id=result_id, _preload_content=False).data with open(prediction_path, 'wb') as f: f.write(csv_file) except ApiException as e: logging.warning("Prediction Poll Call failed", e) if not os.path.exists(prediction_path): return
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import psutil import time import redis import pytz import pandas as pd import numpy as np import re import subprocess from apscheduler.schedulers.background import BackgroundScheduler def job_renew(): r1 = redis.StrictRedis(host='', port=6379, password='') r1.flushall() cpu_interval = 30 endpoint = "SERVER" refresh_interval = 300 #监控多台终端redisdb 状态 def redis_agent(): _redis_cli = r'C:\ProgramData\Redis\redis-cli' mem_regex = re.compile(r'(\w+):([0-9]+\.?[0-9]*\w)\r') #regex = re.compile(r'(\w+):([0-9]+\.?[0-9]*)\r') key_regex = re.compile(r'(\w+):(\w+\=?[0-9]*)\,') hosts = [] port = '6379' passwd = '' for host in hosts: _cmd = '%s -h %s -p %s -a %s info' % (_redis_cli, host, port, passwd) try: child = subprocess.Popen(_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) info = child.stdout.read().decode() except: info = '' memused = '' memmax = '' connected = '' memdict = dict(mem_regex.findall(info)) if memdict: if 'used_memory_rss_human' in memdict.keys(): memused = memdict['used_memory_rss_human'] if 'maxmemory_human' in memdict.keys(): memmax = memdict['maxmemory_human'] if 'connected_clients' in memdict.keys(): connected = memdict['connected_clients'] db0key = '' db1key = '' db2key = '' db3key = '' keydict = dict(key_regex.findall(info)) if keydict: if 'db0' in keydict.keys(): db0key = keydict['db0'] if 'db1' in keydict.keys(): db1key = keydict['db1'] if 'db2' in keydict.keys(): db2key = keydict['db2'] if 'db3' in keydict.keys(): db3key = keydict['db3'] print('DB:{} mem:{} used:{} conn:{} db0:{} db1:{} db2:{} db3:{}'.format(host,memmax,memused,connected,db0key,db1key,db2key,db3key)) print('##'*40) def job_agent(): payload = [] eps = ['EP1','EP2','EP3','EP4','EP5','EP6','EP7','EP8','EP9','EP10','EP11','EP12','EP13','EP14','EP15','EP16','EP17','EP18','EP19','EP20'] _rd = redis.StrictRedis(host=YOUHOSTIP, port=6379, password='', db=0, decode_responses=True) #datadict = {"Host":str(net_addrs_status)[lstart:lstart+lend],"Mem_total":round(mem_status.total/1024/1024/1024,1),"ts":int(time.time()),"CPU_up":round(100-cpu_status.idle,1),"Mem_up":mem_status.percent} for row in eps: try: datadict = _rd.hmget(row,['Host','Mem_total','ts','CPU_up','Mem_up']) if None not in datadict: payload.append(datadict) except: print('@{} {} is not on line'.format(time.strftime('%Y%m%d %H:%M:%S'),row)) if len(payload) == 0: print('@{} abvalable mechines nums:0'.format(time.strftime('%Y%m%d %H:%M:%S'))) elif len(payload) <= 5: #小于5台终端在线时不分配运行任务 data =
pd.DataFrame(payload)
pandas.DataFrame
import math import numpy as np import pandas as pd from footings.utils import dispatch_function def _month_diff(start, end): months = (end.year - start.year) * 12 + (end.month - start.month) if end.day > start.day: months += 1 return months def _day_diff(start, end): return (end - start).days @dispatch_function(key_parameters=("frequency",)) def freq_dispatcher( start_dt: pd.Timestamp, end_dt: pd.Timestamp, col_date_nm: str, frequency: str, end_duration: str = None, ): msg = "No registered function based on passed paramters and no default function." raise NotImplementedError(msg) @freq_dispatcher.register(frequency="Y") def _( start_dt: pd.Timestamp, end_dt: pd.Timestamp, col_date_nm: str, end_duration: str = None, ): periods = math.ceil(_month_diff(start_dt, end_dt) / 12) + 1 frame = pd.DataFrame() frame[col_date_nm] = pd.to_datetime( [start_dt + pd.DateOffset(years=period) for period in range(0, periods)] ) if end_duration is not None: frame[end_duration] = pd.to_datetime( [start_dt + pd.DateOffset(years=period) for period in range(1, periods + 1)] ) return frame @freq_dispatcher.register(frequency="Q") def _( start_dt: pd.Timestamp, end_dt: pd.Timestamp, col_date_nm: str, end_duration: str = None, ): periods = math.ceil(_month_diff(start_dt, end_dt) / 3) + 1 frame = pd.DataFrame() frame[col_date_nm] = pd.to_datetime( [start_dt + pd.DateOffset(months=period * 3) for period in range(0, periods)] ) if end_duration is not None: frame[end_duration] = pd.to_datetime( [ start_dt +
pd.DateOffset(months=period * 3)
pandas.DateOffset
# -*- coding: utf-8 -*- """ Created on Thu May 21 14:41:30 2020 @author: wjcongyu """ import _init_pathes import os import tensorflow as tf from configs.cfgs import cfg from models.risk_predictor import build_network from data_process.data_generator1 import DataGenerator from data_process.data_processor import readCsv from models.backend import find_weights_of_last import numpy as np import argparse import os.path as osp from tensorflow.keras import models as KM import pandas as pd import datetime parser = argparse.ArgumentParser() parser.add_argument('-train_subsets', '--train_subsets', help='the subsets for training.', type = str, default ='1;2;3') parser.add_argument('-eval_subsets', '--eval_subsets', help='the subset for test, others for training.', type = str, default ='4.lbl') parser.add_argument('-batch_size', '--batch_size', help='the mini-batch size.', type = int, default = 72) parser.add_argument('-cuda_device', '--cuda_device', help='runining on specified gpu', type = int, default = 0) parser.add_argument('-save_root', '--save_root', help='root path to save the prediction results.', type = str, default = 'eval_results')#1:yes 0:no parser.add_argument('-save_flag', '--save_flag', help='flag for saving result file name.', type = str, default = '')#1:yes 0:no parser.add_argument('-treatment', '--treatment', help='the treatment for prediction.', type = str, default ='0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0') parser.add_argument('-gt_ctimages', '--gt_ctimages', help='using ctimages or not.', type = int, default = 0)#1:yes 0:no def main(args): os.environ["CUDA_VISIBLE_DEVICES"] = str(args.cuda_device) eval_files = [] eval_subsets = args.eval_subsets.split(';') for i in range(len(eval_subsets)): eval_files.append(os.path.join(cfg.data_set, eval_subsets[i])) val_data_generator = DataGenerator(eval_files, cfg, train_mode=False) eval_sample_num = val_data_generator.load_dataset() treattype = {0:'WithoutTreatment', 1:'WithTreatment'} if args.treatment == '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0': model_dir_name = args.train_subsets +'_modelweights_'+ treattype[0] else: model_dir_name = args.train_subsets +'_modelweights_'+ treattype[1] if args.gt_ctimages==0: model_dir_name += '_Withoutimage' #model_dir_name = args.train_subsets +'_modelweights_'+ treattype[1] treatments = np.array(args.treatment.split(','), dtype=np.int32) treatment_names = {'1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1':'GT', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0':'NONE', '1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0':'MPN', '0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0':'CP', '0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0':'OV', '0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0':'TB', '0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0':'ABD', '0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0':'RV', '0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0':'XBJ', '0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0':'LQC', '0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0':'CPP', '0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0':'PPL', '0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0':'MFN', '0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0':'LFN', '0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0':'LZD', '0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0':'HPN', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0':'IGN', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0':'VC', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0':'ACN', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0':'ABX', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1':'HFNC'} model = build_network([ cfg.treatment_infosize, cfg.im_feedsize, cfg.patient_infosize], [cfg.time_range], False, name='risk_predictor') feature_idx = [19, 31] checkpoint_file = find_weights_of_last(os.path.join(cfg.CHECKPOINTS_ROOT, model_dir_name), 'risk_predictor') print('############################',os.path.join(cfg.CHECKPOINTS_ROOT, model_dir_name)) if checkpoint_file != '': print ('@@@@@@@@@@ loading pretrained from ', checkpoint_file) model.load_weights(checkpoint_file) else: assert('no weight file found!!!') print (model.summary()) #print layer information for i in range(len(model.layers)): layer = model.layers[i] print(i, layer.name, layer.output.shape) #define the output of the network to get outputs = [model.layers[i].output for i in feature_idx] pred_model = KM.Model(inputs=model.inputs, outputs=outputs) save_root = args.save_root if not osp.exists(save_root): os.mkdir(save_root) feature_significance = [] risk_reg_preds = [] gt_hitday = [] gt_eventindicator = [] gt_features = [] gt_covid_severity = [] gt_treatments = [] gt_pids = [] for step in range(eval_sample_num//(args.batch_size)+1): start = datetime.datetime.now() evbt_painfo, evbt_treatinfo, evbt_ims, evbt_treattimes,evbt_censor_indicator, evbt_severity, evbt_pids \ = val_data_generator.next_batch(args.batch_size) if args.treatment == '1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1': feed_treatinfo = evbt_treatinfo else: feed_treatinfo= np.zeros_like(evbt_treatinfo) feed_treatinfo[:,...] = treatments if args.gt_ctimages==0: feed_ims = tf.zeros_like(evbt_ims) else: feed_ims = evbt_ims feed = [feed_treatinfo, feed_ims, evbt_painfo] coff, reg_pred = pred_model(feed, training=False) end = datetime.datetime.now() print('processing time:', end-start) risk_reg_preds.append(reg_pred) feature_significance.append(coff) gt_hitday.append(evbt_treattimes) gt_eventindicator.append(evbt_censor_indicator) gt_features.append(evbt_painfo) gt_covid_severity.append(evbt_severity) gt_treatments.append(evbt_treatinfo) gt_pids.append(evbt_pids) risk_reg_preds = np.concatenate(risk_reg_preds, axis=0) feature_significance = np.concatenate(feature_significance, axis=0) gt_hitday = np.concatenate(gt_hitday, axis=0) gt_eventindicator = np.concatenate(gt_eventindicator, axis=0) gt_features = np.concatenate(gt_features, axis=0) gt_covid_severity = np.concatenate(gt_covid_severity, axis=0) gt_treatments = np.concatenate(gt_treatments, axis=0) gt_pids = np.concatenate(gt_pids, axis=0) pinfo_header = readCsv(eval_files[0])[0][1:48] pinfo_header = pinfo_header[0:2]+pinfo_header[3:] csv_file = os.path.join(save_root, '{0}_{1}_risk_reg_preds.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) save_data = pd.DataFrame(risk_reg_preds, columns=['day '+str(i) for i in range(cfg.time_range)]) save_data.to_csv(csv_file,header=True, index=False) csv_file = os.path.join(save_root, '{0}_{1}_gt_hitday.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) save_data = pd.DataFrame(gt_hitday, columns=['hit day']) save_data.to_csv(csv_file,header=True, index=False) csv_file = os.path.join(save_root, '{0}_{1}_indicator.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) save_data = pd.DataFrame(gt_eventindicator, columns=['indicator']) save_data.to_csv(csv_file,header=True, index=False) csv_file = os.path.join(save_root, '{0}_{1}_clinic_features.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) save_data = pd.DataFrame(gt_features, columns=pinfo_header) save_data.to_csv(csv_file,header=True, index=False) csv_file = os.path.join(save_root, '{0}_{1}_gt_severity.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) save_data = pd.DataFrame(gt_covid_severity, columns=['severity']) save_data.to_csv(csv_file,header=True, index=False) csv_file = os.path.join(save_root, '{0}_{1}_gt_treatment.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) treat_header = ['MPN','CP','OV','TB','ABD','RV','XBJ','LQC','CPP','PPL','MFN','LFN','LZD','HPN','IGN','VC','ACN','ABX','HFNC'] save_data = pd.DataFrame(gt_treatments, columns=treat_header) save_data.to_csv(csv_file,header=True, index=False) csv_file = os.path.join(save_root, '{0}_{1}_patient_ids.csv'.format(args.eval_subsets+args.save_flag, treatment_names[args.treatment])) save_data =
pd.DataFrame(gt_pids, columns=['pid'])
pandas.DataFrame
import time from itertools import product from typing import List, Dict, Tuple, Union import pandas as pd from scipy.spatial.distance import cosine from scipy.stats import ks_2samp, wasserstein_distance from sklearn.preprocessing import LabelEncoder from typeguard import typechecked from .Report import Report def validate_create_report_attributes(enable_patterns_report: bool, patterns_report_group_by_categorical_features: Union[str, List[str]], patterns_report_group_by_numerical_features: Union[str, List[str]], patterns_report_number_of_bins: Union[int, List[int]], enable_parallel_coordinates_plot: bool, cosine_similarity_threshold: float, parallel_coordinates_q1_threshold: float, parallel_coordinates_q2_threshold: float, parallel_coordinates_features: Union[str, List[str]], categorical_features: List[str], numerical_features: List[str], all_features: List[str]): if type(enable_patterns_report) is not bool: raise TypeError('provided enable_patterns_report is not valid. enable_patterns_report has to be a bool') if type(patterns_report_group_by_categorical_features) is str \ and patterns_report_group_by_categorical_features != 'all': raise AttributeError('''provided patterns_report_group_by_categorical_features is not valid. patterns_report_group_by_categorical_features has to be "all" if the provided value is a string''') if type(patterns_report_group_by_numerical_features) is str \ and patterns_report_group_by_numerical_features != 'all': raise AttributeError('''provided patterns_report_group_by_numerical_features is not valid. patterns_report_group_by_numerical_features has to be "all" if the provided value is a string''') if type(patterns_report_group_by_categorical_features) is list \ and len(patterns_report_group_by_categorical_features) > 0: unknown_features = [feature for feature in patterns_report_group_by_categorical_features if feature not in categorical_features] if len(unknown_features) > 0: raise AttributeError(f'''provided patterns_report_group_by_categorical_features is not valid. these features {unknown_features} do not exist in the categorical features''') if type(patterns_report_group_by_numerical_features) is list \ and len(patterns_report_group_by_numerical_features) > 0: unknown_features = [feature for feature in patterns_report_group_by_numerical_features if feature not in numerical_features] if len(unknown_features) > 0: raise AttributeError(f'''provided patterns_report_group_by_numerical_features is not valid. these features {unknown_features} do not exist in the numerical features''') if type(patterns_report_number_of_bins) is list \ and type(patterns_report_group_by_numerical_features) is str: raise AttributeError('''provided patterns_report_number_of_bins is not valid. patterns_report_number_of_bins can be a list of ints if a list of numerical features were provided in patterns_report_group_by_numerical_features''') if type(patterns_report_number_of_bins) is list \ and type(patterns_report_group_by_numerical_features) is list: if len(patterns_report_number_of_bins) != len(patterns_report_group_by_numerical_features): raise AttributeError('''provided patterns_report_number_of_bins is not valid. patterns_report_number_of_bins list length has to be equal to the number of features provided in patterns_report_group_by_numerical_features''') if type(enable_parallel_coordinates_plot) is not bool: raise TypeError( 'provided enable_parallel_coordinates_plot is not valid. enable_parallel_coordinates_plot has to be a bool') if type(cosine_similarity_threshold) is not float: raise TypeError( 'provided cosine_similarity_threshold is not valid. cosine_similarity_threshold has to be a float') if cosine_similarity_threshold <= 0.0 or cosine_similarity_threshold >= 1.0: raise AttributeError( 'provided cosine_similarity_threshold is not valid. cosine_similarity_threshold has to be between 0.0 and 1.0') if type(parallel_coordinates_q1_threshold) is not float: raise TypeError( 'provided parallel_coordinates_q1_threshold is not valid. parallel_coordinates_q1_threshold has to be a float') if type(parallel_coordinates_q2_threshold) is not float: raise TypeError( 'provided parallel_coordinates_q2_threshold is not valid. parallel_coordinates_q2_threshold has to be a float') if parallel_coordinates_q1_threshold <= 0.0 or parallel_coordinates_q1_threshold >= 1.0: raise AttributeError( 'provided parallel_coordinates_q1_threshold is not valid. parallel_coordinates_q1_threshold has to be between 0.0 and 1.0') if parallel_coordinates_q2_threshold <= 0.0 or parallel_coordinates_q2_threshold >= 1.0: raise AttributeError( 'provided parallel_coordinates_q2_threshold is not valid. parallel_coordinates_q2_threshold has to be between 0.0 and 1.0') if parallel_coordinates_q2_threshold <= parallel_coordinates_q1_threshold: raise AttributeError('''provided parallel_coordinates_q1_threshold and parallel_coordinates_q2_threshold are not valid. parallel_coordinates_q2_threshold has to greater than parallel_coordinates_q1_threshold''') if type(parallel_coordinates_features) is str and parallel_coordinates_features != 'auto': raise AttributeError('''provided parallel_coordinates_features is not valid. parallel_coordinates_features has to be "auto" if the provided value is a string''') if type(parallel_coordinates_features) is list and len(parallel_coordinates_features) > 0: unknown_features = [feature for feature in parallel_coordinates_features if feature not in all_features] if len(unknown_features) > 0: raise AttributeError(f'''provided parallel_coordinates_features is not valid. these features {unknown_features} do not exist in the dataframe''') if type(parallel_coordinates_features) is list and len(parallel_coordinates_features) < 2: raise AttributeError(f'''provided parallel_coordinates_features is not valid. parallel_coordinates_features has to contain at least two features to plot''') def validate_attributes(train_df, test_df, target_feature_name, error_column_name, error_classes, acceptable_error_class, numerical_features, categorical_features): if type(train_df) is not pd.DataFrame: raise TypeError('provided train_df is not valid. train_df has to be a pandas dataframe') if type(test_df) is not pd.DataFrame: raise TypeError('provided test_df is not valid. test_df has to be a pandas dataframe') train_columns = train_df.columns.to_list() test_columns = test_df.columns.to_list() if type(target_feature_name) is not str: raise TypeError(f'''provided target_feature_name is not valid. \ntarget_feature_name ({target_feature_name}) has to be a str''') if target_feature_name not in train_columns: raise AttributeError(f'provided target_feature_name ({target_feature_name}) is not train_df') if target_feature_name not in test_columns: raise AttributeError(f'provided target_feature_name ({target_feature_name}) is not test_df') if type(error_column_name) is not str: raise TypeError(f'''provided error_column_name is not valid. \ntest_error_column_name ({error_column_name}) has to be a str''') if error_column_name not in train_columns: raise AttributeError(f'provided error_column_name ({error_column_name}) is not train_df') if error_column_name not in test_columns: raise AttributeError(f'provided error_column_name ({error_column_name}) is not test_df') if acceptable_error_class is not None and type(acceptable_error_class) is not str: raise TypeError(f'''provided acceptable_error_class is not valid. \nacceptable_error_class ({acceptable_error_class}) has to be a str or None''') if acceptable_error_class is not None and acceptable_error_class not in error_classes: raise AttributeError(f'''provided acceptable_error_class is not valid. \n{acceptable_error_class} has to be defined in error_classes''') if numerical_features is None and categorical_features is None: raise AttributeError('''both numerical_features and categorical_features are not defined. \nyou need to provide one of them or both in order to proceed.''') def _cosine_similarity(vector_a, vector_b): return 1.0 - cosine(vector_a, vector_b) @typechecked class RegressionErrorAnalysisReport(Report): """ RegressionErrorAnalysisReport creates a report that analyzes the error in regression problems. Attributes ---------- title : str the title of the report output_directory : str the directory where the report folder will be created train_df : pd.DataFrame the training pandas dataframe of the regression problem which should include the target feature test_df : pd.DataFrame the testing pandas dataframe of the regression problem which should include the target feature and the error column in order to calculate the error class target_feature_name : str the name of the regression target feature error_column_name : str the name of the calculated error column 'Prediction - Target' (see example on github for more information) error_classes : Dict[str, Tuple] a dictionary containing the definition of the error classes that will be created. The key is the error_class name and the value is the minimum (inclusive) and maximum (exclusive) which will be used to calculate the error_class of the test observations. For example: error_classes = { 'EXTREME_UNDER_ESTIMATION': (-8.0, -4.0), returns 'EXTREME_UNDER_ESTIMATION' if -8.0 <= error < -4.0 'HIGH_UNDER_ESTIMATION': (-4.0, -3.0), returns 'HIGH_UNDER_ESTIMATION' if -4.0 <= error < -3.0 'MEDIUM_UNDER_ESTIMATION': (-3.0, -1.0), returns 'MEDIUM_UNDER_ESTIMATION' if -3.0 <= error < -1.0 'LOW_UNDER_ESTIMATION': (-1.0, -0.5), returns 'LOW_UNDER_ESTIMATION' if -1.0 <= error < -0.5 'ACCEPTABLE': (-0.5, 0.5), returns 'ACCEPTABLE' if -0.5 <= error < 0.5 'OVER_ESTIMATING': (0.5, 3.0) } returns 'OVER_ESTIMATING' if -0.5 <= error < 3.0 acceptable_error_class: str the name of the acceptable error class that was defined in error_classes numerical_features : List[str] default=None a list of the numerical features to be included in the report categorical_features : List[str] default=None a list of the categorical features to be included in the report subtitle : str default=None an optional subtitle to describe your report report_folder_name : str default=None the name of the folder that will contain all the generated report files. If not set, the title of the report will be used. encryption_secret : str default=None the 16 characters secret that will be used to encrypt the generated report data. If it is not set, the generated data won't be encrypted. generate_encryption_secret : bool default=False the encryption_secret will be generated and its value returned as output. you can also view encryption_secret to get the generated secret. Methods ------- create_report() creates the error analysis report """ def __init__(self, title: str, output_directory: str, train_df: pd.DataFrame, test_df: pd.DataFrame, target_feature_name: str, error_column_name: str, error_classes: Dict[str, Tuple[float, float]], acceptable_error_class: str, numerical_features: List[str] = None, categorical_features: List[str] = None, subtitle: str = None, report_folder_name: str = None, encryption_secret: str = None, generate_encryption_secret: bool = False): super().__init__(title, output_directory, subtitle, report_folder_name, encryption_secret, generate_encryption_secret) validate_attributes(train_df, test_df, target_feature_name, error_column_name, error_classes, acceptable_error_class, numerical_features, categorical_features) self.train_df = train_df.copy() self.test_df = test_df.copy() self.target_feature_name = target_feature_name self.error_column_name = error_column_name self.error_classes = error_classes.copy() self.acceptable_error_class = acceptable_error_class self.numerical_features = numerical_features[:] self.categorical_features = categorical_features[:] self._training_data_name = 'Training data' self._testing_data_name = 'Testing data' self._error_class_col_name = 'ERROR_CLASS' self._primary_datasets = [self._training_data_name, self.acceptable_error_class] self._secondary_datasets = [self._testing_data_name] self._secondary_datasets.extend(list(self.error_classes.keys())) self._template_name = 'regression-error-analysis-report' @typechecked def create_report(self, enable_patterns_report: bool = True, patterns_report_group_by_categorical_features: Union[str, List[str]] = 'all', patterns_report_group_by_numerical_features: Union[str, List[str]] = 'all', patterns_report_number_of_bins: Union[int, List[int]] = 10, enable_parallel_coordinates_plot: bool = True, cosine_similarity_threshold: float = 0.8, parallel_coordinates_q1_threshold: float = 0.25, parallel_coordinates_q2_threshold: float = 0.75, parallel_coordinates_features: Union[str, List[str]] = 'auto') -> None: """ Creates a report using the user defined data and the data calculated based on the error. :param enable_patterns_report: enables the patterns report. default: True :param patterns_report_group_by_categorical_features: categorical features to use in the patterns report. default: 'all' :param patterns_report_group_by_numerical_features: numerical features to use in the patterns report. default: 'all' :param patterns_report_number_of_bins: number of bins to use for each provided numerical feature or one number of bins to use for all provided numerical features. default: 10 :param enable_parallel_coordinates_plot: enables the parallel coordinates plot. default: True :param cosine_similarity_threshold: The cosine similarity threshold to decide if the categorical distribution of the primary and secondary datasets are similar. :param parallel_coordinates_q1_threshold: the first quantile threshold to be used if parallel_coordinates_features == 'auto'. default: 0.25 :param parallel_coordinates_q2_threshold: the second quantile threshold to be used if parallel_coordinates_features == 'auto'. default: 0.75 :param parallel_coordinates_features: The list of features to display on the parallel coordinates plot. default: 'auto' - If parallel_coordinates_features is set to 'auto', OlliePy will select the features with a distribution shift based on 3 thresholds: - cosine_similarity_threshold to be used to select categorical features if the cosine_similarity is lower than the threshold. - parallel_coordinates_q1_threshold and parallel_coordinates_q2_threshold which are two quantile values. if primary_quantile_1 >= secondary_quantile_2 or secondary_quantile_1 >= primary_quantile_2 then the numerical feature is selected and will be added to the plot. :return: None """ self.report_data['report'] = {} validate_create_report_attributes(enable_patterns_report, patterns_report_group_by_categorical_features, patterns_report_group_by_numerical_features, patterns_report_number_of_bins, enable_parallel_coordinates_plot, cosine_similarity_threshold, parallel_coordinates_q1_threshold, parallel_coordinates_q2_threshold, parallel_coordinates_features, self.categorical_features, self.numerical_features, self.train_df.columns.tolist()) tic = time.perf_counter() self._add_user_defined_data() self._add_error_class_to_test_df() self._add_datasets() self._add_statistical_tests(cosine_similarity_threshold) if self.categorical_features is not None and len(self.categorical_features) > 0: self._add_categorical_count_plot() if enable_parallel_coordinates_plot: self._add_parallel_coordinates_plot(cosine_similarity_threshold, parallel_coordinates_q1_threshold, parallel_coordinates_q2_threshold, parallel_coordinates_features) if enable_patterns_report: self._find_and_add_all_secondary_datasets_patterns(patterns_report_group_by_categorical_features, patterns_report_group_by_numerical_features, patterns_report_number_of_bins) toc = time.perf_counter() print(f"The report was created in {toc - tic:0.4f} seconds") if self.encryption_secret: print(f'Your encryption secret is {self.encryption_secret}') def _add_user_defined_data(self) -> None: """ Adds user defined data to the report. :return: None """ self._update_report({'primaryDatasets': self._primary_datasets}) self._update_report({'secondaryDatasets': self._secondary_datasets}) if self.numerical_features: if self.target_feature_name not in self.numerical_features: self.numerical_features.append(self.target_feature_name) self._update_report({'numericalFeatures': self.numerical_features}) if self.categorical_features: self._update_report({'categoricalFeatures': self.categorical_features}) self._update_report({'targetFeature': self.target_feature_name}) def _add_error_class_to_test_df(self) -> None: """ adds the error class to each observation in the test set (test_df) based on the error classes provided by the user. :return: None """ def add_error_class(error: float) -> str: for error_class, min_max in self.error_classes.items(): minimum, maximum = min_max if minimum <= error < maximum: return error_class return 'UNDEFINED_ERROR_CLASS' self.test_df[self._error_class_col_name] = self.test_df[self.error_column_name].apply(add_error_class) def _add_datasets(self) -> None: """ Adds datasets to reports (info, stats, numerical data). :return: None """ datasets_dict = {} def add_dataset(df: pd.DataFrame, dataset_name: str) -> None: """ Adds a dataset stats and data to the datasets_dict. :param df: pd.DataFrame, the selected dataset dataframe :param dataset_name: str, the dataset name :return: None """ stats = {} data = {} if self.numerical_features is not None and len(self.numerical_features) > 0: for feature in self.numerical_features: stats[feature] = { 'min': df.loc[:, feature].min(), 'mean': df.loc[:, feature].mean(), 'std': df.loc[:, feature].std(), 'median': df.loc[:, feature].median(), 'max': df.loc[:, feature].max(), 'count': int(df.loc[:, feature].count()), 'missingCount': int(df.loc[:, feature].isna().sum()), } data[feature] = df.loc[:, feature].values.tolist() if self.categorical_features is not None and len(self.categorical_features) > 0: for feature in self.categorical_features: stats[feature] = { 'uniqueCount': int(df.loc[:, feature].nunique()), 'missingCount': int(df.loc[:, feature].isna().sum()) } dataset_dict = {dataset_name: { 'info': { 'name': dataset_name, 'numberOfRows': df.shape[0], 'minError': df.loc[:, self.error_column_name].min(), 'meanError': df.loc[:, self.error_column_name].mean(), 'stdError': df.loc[:, self.error_column_name].std(), 'medianError': df.loc[:, self.error_column_name].median(), 'maxError': df.loc[:, self.error_column_name].max(), 'errors': df.loc[:, self.error_column_name].tolist(), 'stats': stats }, 'data': data }} datasets_dict.update(dataset_dict) add_dataset(self.train_df, self._training_data_name) add_dataset(self.test_df, self._testing_data_name) for error_class_name in self.error_classes.keys(): selected_df = self.test_df.loc[self.test_df[self._error_class_col_name] == error_class_name, :] add_dataset(selected_df, error_class_name) self._update_report({'datasets': datasets_dict}) def _count_categories_and_merge_count_dataframes(self, feature_name: str, primary_dataset: str, secondary_dataset: str, normalize=False) -> pd.DataFrame: """ It counts the different categories (of the provided feature) for the primary and secondary dataset then merge the count dataframes into a single dataframe that contains all the categories. It also fills missing values with 0. :param feature_name: the feature name :param primary_dataset: the primary dataset name :param secondary_dataset: the secondary dataset name :param normalize: whether to normalizr the categorical count, default:False :return: the merged dataframe """ if primary_dataset == self._training_data_name: primary_count_df = self.train_df.loc[:, feature_name].value_counts(normalize=normalize) else: primary_count_df = self.test_df.loc[ self.test_df[self._error_class_col_name] == primary_dataset, feature_name].value_counts( normalize=normalize) if secondary_dataset == self._testing_data_name: secondary_count_df = self.test_df.loc[:, feature_name].value_counts(normalize=normalize) else: secondary_count_df = self.test_df.loc[ self.test_df[self._error_class_col_name] == secondary_dataset, feature_name].value_counts( normalize=normalize) primary_count_df = primary_count_df.reset_index() \ .rename({feature_name: primary_dataset, 'index': feature_name}, axis=1) secondary_count_df = secondary_count_df.reset_index() \ .rename({feature_name: secondary_dataset, 'index': feature_name}, axis=1) merged_cat_count = primary_count_df.merge(secondary_count_df, on=feature_name, how='outer').fillna( 0).sort_values(by=primary_dataset, ascending=False) return merged_cat_count def _add_categorical_count_plot(self) -> None: """ Add the categorical count plots (stacked bar plot) data to the report :return: None """ def add_categorical_count_data(feature_dictionary: Dict, feature_name: str, primary_dataset: str, secondary_dataset: str) -> None: """ Calculate the value counts for each dataset and for that particular categorical feature. Then groups the value_counts() dataframes afterwards it computes the data needed for the stacked bar plot in plotly. :param feature_dictionary: the feature dictionary that will be added the categorical count plot data :param feature_name: the feature name :param primary_dataset: the primary dataset name :param secondary_dataset: the secondary dataset name :return: None """ merged_cat_count = self._count_categories_and_merge_count_dataframes(feature_name, primary_dataset, secondary_dataset, normalize=False) key = f'{primary_dataset}_{secondary_dataset}' title = f'{primary_dataset} vs {secondary_dataset}' categories = merged_cat_count.loc[:, feature_name].tolist() primary_data = merged_cat_count.loc[:, primary_dataset].tolist() secondary_data = merged_cat_count.loc[:, secondary_dataset].tolist() feature_dictionary.update({key: { 'title': title, 'categories': categories, 'series': [ { 'name': primary_dataset, 'color': '#8180FF', 'data': primary_data }, { 'name': secondary_dataset, 'color': '#FF938D', 'data': secondary_data } ] }}) categorical_count_dict = {} for feature in self.categorical_features: feature_dict = {} for primary_dataset_name, secondary_dataset_name in product(self._primary_datasets, self._secondary_datasets): if primary_dataset_name != secondary_dataset_name: add_categorical_count_data(feature_dict, feature, primary_dataset_name, secondary_dataset_name) categorical_count_dict.update({feature: feature_dict}) self._update_report({'categorical_count_plots': categorical_count_dict}) def _get_primary_secondary_datasets(self, primary_dataset: str, secondary_dataset: str) -> Tuple[ pd.DataFrame, pd.DataFrame]: """ Finds the correct primary and secondary datasets and return them. :param primary_dataset: the name of the primary dataset :param secondary_dataset: the name of the secondary dataset :return: primary_df, secondary_df """ if primary_dataset == self._training_data_name: primary_df = self.train_df.copy() primary_df.loc[:, self._error_class_col_name] = self._training_data_name else: primary_df = self.test_df.loc[self.test_df[self._error_class_col_name] == primary_dataset, :].copy() if secondary_dataset == self._testing_data_name: secondary_df = self.test_df.copy() secondary_df.loc[:, self._error_class_col_name] = self._testing_data_name else: secondary_df = self.test_df.loc[self.test_df[self._error_class_col_name] == secondary_dataset, :].copy() return primary_df, secondary_df def _add_parallel_coordinates_plot(self, cosine_similarity_threshold, parallel_coordinates_q1_threshold, parallel_coordinates_q2_threshold, parallel_coordinates_features) -> None: """ Check for suitable features (numerical based on quantiles(default: 0.25, 0.75) and categorical based on cosine similarity). Afterwards it adds the needed data for the plotly parallel coordinates plot. :param cosine_similarity_threshold: the cosine similarity threshold for the categorical features :param parallel_coordinates_q1_threshold: the first quantile threshold to be used if parallel_coordinates_features == 'auto'. default: 0.25 :param parallel_coordinates_q2_threshold: the second quantile threshold to be used if parallel_coordinates_features == 'auto'. default: 0.75 :param parallel_coordinates_features: The list of features to display on the parallel coordinates plot. default: 'auto' - If parallel_coordinates_features is set to 'auto', OlliePy will select the features with a distribution shift based on 3 thresholds: - cosine_similarity_threshold to be used to select categorical features if the cosine_similarity is lower than the threshold. - parallel_coordinates_q1_threshold and parallel_coordinates_q2_threshold which are two quantile values. if primary_quantile_1 >= secondary_quantile_2 or secondary_quantile_1 >= primary_quantile_2 then the numerical feature is selected and will be added to the plot. :return: """ def add_parallel_coordinates(parallel_coordinates_dictionary: Dict, primary_dataset: str, secondary_dataset: str) -> None: """ Decides which features will be added to the parallel coordinates plot based on predefined thresholds. Then prepares the data that is expected by the plotly parallel coordinates plot. :param parallel_coordinates_dictionary: the parallel coordinates data dictionary :param primary_dataset: the name of the primary dataset :param secondary_dataset: the name of the secondary dataset :return: None """ selected_features = [] if parallel_coordinates_features == 'auto' else parallel_coordinates_features first_quantile_threshold = parallel_coordinates_q1_threshold second_quantile_threshold = parallel_coordinates_q2_threshold primary_df, secondary_df = self._get_primary_secondary_datasets(primary_dataset, secondary_dataset) if self.categorical_features is not None and parallel_coordinates_features == 'auto': for categorical_feature in self.categorical_features: merged_cat_count = self._count_categories_and_merge_count_dataframes(categorical_feature, primary_dataset, secondary_dataset, normalize=True) primary_vector = merged_cat_count.loc[:, primary_dataset].tolist() secondary_vector = merged_cat_count.loc[:, secondary_dataset].tolist() cosine_similarity = _cosine_similarity(primary_vector, secondary_vector) if cosine_similarity < cosine_similarity_threshold: selected_features.append(categorical_feature) if self.numerical_features is not None and parallel_coordinates_features == 'auto': for numerical_feature in self.numerical_features: primary_q_1 = primary_df.loc[:, numerical_feature].quantile(first_quantile_threshold) primary_q_2 = primary_df.loc[:, numerical_feature].quantile(second_quantile_threshold) secondary_q_1 = secondary_df.loc[:, numerical_feature].quantile(first_quantile_threshold) secondary_q_2 = secondary_df.loc[:, numerical_feature].quantile(second_quantile_threshold) if primary_q_1 >= secondary_q_2 or secondary_q_1 >= primary_q_2: selected_features.append(numerical_feature) if len(selected_features) > 0: key = f'{primary_dataset}_{secondary_dataset}' combined_df =
pd.concat([primary_df, secondary_df], axis=0)
pandas.concat
from airflow import DAG import pandas as pd import datetime as dt from airflow.operators.python import PythonOperator from minio import Minio import os import glob import functions as f data_lake_server= f.var['data_lake_server_airflow'] data_lake_login= f.var['data_lake_login'] data_lake_password= f.var['data_lake_password'] client = Minio( endpoint= data_lake_server, access_key= data_lake_login, secret_key= data_lake_password, secure=False ) dag = DAG( dag_id="etl_client_clustering", description="ETL - Client Clustering DataFrame", start_date=dt.datetime(2021, 11, 29), schedule_interval= "@once") ##################### olist_customers_dataset ##################### def extract_customers(): # load data to a tmp folder client.fget_object( bucket_name= 'processing', object_name= 'olist_customers_dataset.parquet', file_path= 'tmp/olist_customers_dataset.parquet' ) extract_customers_task = PythonOperator( task_id= "extract_customers", python_callable= extract_customers, dag= dag) ##################### olist_orders_dataset ##################### def extract_orders(): # load data to a tmp folder client.fget_object( bucket_name= 'processing', object_name= 'olist_orders_dataset.parquet', file_path= 'tmp/olist_orders_dataset.parquet' ) extract_orders_task = PythonOperator( task_id= "extract_orders", python_callable= extract_orders, dag= dag) ##################### olist_order_items_dataset ##################### def extract_order_items(): # load data to a tmp folder client.fget_object( bucket_name= 'processing', object_name= 'olist_order_items_dataset.parquet', file_path= 'tmp/olist_order_items_dataset.parquet' ) extract_order_items_task = PythonOperator( task_id= "extract_order_items", python_callable= extract_order_items, dag= dag) ##################### olist_geolocation_dataset ##################### def extract_geolocation(): # load data to a tmp folder client.fget_object( bucket_name= 'processing', object_name= 'olist_geolocation_dataset.parquet', file_path= 'tmp/olist_geolocation_dataset.parquet' ) extract_geolocation_task = PythonOperator( task_id= "extract_geolocation", python_callable= extract_geolocation, dag= dag) def transform_data(): customers = pd.read_parquet('tmp/olist_customers_dataset.parquet') orders =
pd.read_parquet('tmp/olist_orders_dataset.parquet')
pandas.read_parquet