prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import time from typing import List import tushare as ts import pandas as pd from pandas import DataFrame, Series import os import csv import random from datetime import datetime, timedelta from utils.config_reader import ConfigReader from utils.log import logger from utils.common import get_file_list config_reader = ConfigReader('cfg/api.ini') token = config_reader.read_config('tushare', 'token') pro = ts.pro_api(token) def get_symbols_tushare(): df_list = [] t_d = datetime.today() print(t_d) exchanges = ['DCE', 'SHFE', 'CZCE', 'CFFEX', 'INE'] fields = 'ts_code,symbol,exchange,name,fut_code,multiplier,trade_unit,per_unit,quote_unit,list_date,delist_date' for e in exchanges: df = pro.fut_basic(exchange=e, fut_type='1', fields=fields) df['delist_date'] = pd.to_datetime(df['delist_date']) # df = df.loc[df['delist_date'] > t_d] df_list.append(df) combined_df = pd.concat(df_list) return combined_df def get_dominant_name_tushare(df: DataFrame, path, start_date: str, end_date: str): name_list = [] # https://tushare.pro/document/2?doc_id=134 e_d = {'CZCE': 'ZCE', 'SHFE': 'SHF', 'DCE': 'DCE', 'CFFEX': 'CFX', 'INE': 'INE'} df['exchange'] = df['exchange'].map(e_d) for e in df['exchange'].drop_duplicates(): if os.path.exists(os.path.join(path, e)): pass else: os.makedirs(os.path.join(path, e)) temp_df = df.loc[df.exchange == e] for f in temp_df['fut_code'].drop_duplicates(): dominant_symbol = f'{f}.{e}' name = pro.fut_mapping(ts_code=dominant_symbol, start_date=start_date, end_date=end_date) name = name.sort_values(by='trade_date', ascending=True) name = name.set_index(name['trade_date']) name.drop(columns=['trade_date'], inplace=True) name['mapping_ts_code'] = tushare_domin_adj(name['mapping_ts_code']) name_list.append(name) names =
pd.concat(name_list)
pandas.concat
# -*- coding: utf-8 -*- """ 13 July 2020 Author: <NAME> Dataset version update 03 Adding newly released datasets. """ import pandas as pd # Adding the new datasets released in June 2020 df = pd.read_csv(r"filepath\Aggregate-API.csv", sep = ";") df1 = pd.read_csv(r"filepath\API_Melaka_2019_cleaned.csv") df2 =
pd.read_csv(r"filepath\API_NS_2019_cleaned.csv")
pandas.read_csv
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from datetime import time from os.path import abspath, dirname, join from unittest import TestCase import typing import re import functools import itertools import pathlib from collections import abc import pytest import numpy as np import pandas as pd import pandas.testing as tm from pandas import Timedelta, read_csv from parameterized import parameterized import pytz from pytz import UTC from toolz import concat from exchange_calendars import get_calendar from exchange_calendars.calendar_utils import ( ExchangeCalendarDispatcher, _default_calendar_aliases, _default_calendar_factories, ) from exchange_calendars.errors import ( CalendarNameCollision, InvalidCalendarName, NoSessionsError, ) from exchange_calendars.exchange_calendar import ExchangeCalendar, days_at_time from .test_utils import T class FakeCalendar(ExchangeCalendar): name = "DMY" tz = "Asia/Ulaanbaatar" open_times = ((None, time(11, 13)),) close_times = ((None, time(11, 49)),) class CalendarRegistrationTestCase(TestCase): def setup_method(self, method): self.dummy_cal_type = FakeCalendar self.dispatcher = ExchangeCalendarDispatcher({}, {}, {}) def teardown_method(self, method): self.dispatcher.clear_calendars() def test_register_calendar(self): # Build a fake calendar dummy_cal = self.dummy_cal_type() # Try to register and retrieve the calendar self.dispatcher.register_calendar("DMY", dummy_cal) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(dummy_cal, retr_cal) # Try to register again, expecting a name collision with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) # Deregister the calendar and ensure that it is removed self.dispatcher.deregister_calendar("DMY") with self.assertRaises(InvalidCalendarName): self.dispatcher.get_calendar("DMY") def test_register_calendar_type(self): self.dispatcher.register_calendar_type("DMY", self.dummy_cal_type) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(self.dummy_cal_type, type(retr_cal)) def test_both_places_are_checked(self): dummy_cal = self.dummy_cal_type() # if instance is registered, can't register type with same name self.dispatcher.register_calendar("DMY", dummy_cal) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) self.dispatcher.deregister_calendar("DMY") # if type is registered, can't register instance with same name self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) def test_force_registration(self): self.dispatcher.register_calendar("DMY", self.dummy_cal_type()) first_dummy = self.dispatcher.get_calendar("DMY") # force-register a new instance self.dispatcher.register_calendar("DMY", self.dummy_cal_type(), force=True) second_dummy = self.dispatcher.get_calendar("DMY") self.assertNotEqual(first_dummy, second_dummy) class DefaultsTestCase(TestCase): def test_default_calendars(self): dispatcher = ExchangeCalendarDispatcher( calendars={}, calendar_factories=_default_calendar_factories, aliases=_default_calendar_aliases, ) # These are ordered aliases first, so that we can deregister the # canonical factories when we're done with them, and we'll be done with # them after they've been used by all aliases and by canonical name. for name in concat([_default_calendar_aliases, _default_calendar_factories]): self.assertIsNotNone( dispatcher.get_calendar(name), "get_calendar(%r) returned None" % name ) dispatcher.deregister_calendar(name) class DaysAtTimeTestCase(TestCase): @parameterized.expand( [ # NYSE standard day ( "2016-07-19", 0, time(9, 31), pytz.timezone("America/New_York"), "2016-07-19 9:31", ), # CME standard day ( "2016-07-19", -1, time(17, 1), pytz.timezone("America/Chicago"), "2016-07-18 17:01", ), # CME day after DST start ( "2004-04-05", -1, time(17, 1), pytz.timezone("America/Chicago"), "2004-04-04 17:01", ), # ICE day after DST start ( "1990-04-02", -1, time(19, 1), pytz.timezone("America/Chicago"), "1990-04-01 19:01", ), ] ) def test_days_at_time(self, day, day_offset, time_offset, tz, expected): days = pd.DatetimeIndex([pd.Timestamp(day, tz=tz)]) result = days_at_time(days, time_offset, tz, day_offset)[0] expected = pd.Timestamp(expected, tz=tz).tz_convert(UTC) self.assertEqual(result, expected) class ExchangeCalendarTestBase(object): # Override in subclasses. answer_key_filename = None calendar_class = None # Affects test_start_bound. Should be set to earliest date for which # calendar can be instantiated, or None if no start bound. START_BOUND: pd.Timestamp | None = None # Affects test_end_bound. Should be set to latest date for which # calendar can be instantiated, or None if no end bound. END_BOUND: pd.Timestamp | None = None # Affects tests that care about the empty periods between sessions. Should # be set to False for 24/7 calendars. GAPS_BETWEEN_SESSIONS = True # Affects tests that care about early closes. Should be set to False for # calendars that don't have any early closes. HAVE_EARLY_CLOSES = True # Affects tests that care about late opens. Since most do not, defaulting # to False. HAVE_LATE_OPENS = False # Affects test_for_breaks. True if one or more calendar sessions has a # break. HAVE_BREAKS = False # Affects test_session_has_break. SESSION_WITH_BREAK = None # None if no session has a break SESSION_WITHOUT_BREAK = T("2011-06-15") # None if all sessions have breaks # Affects test_sanity_check_session_lengths. Should be set to the largest # number of hours that ever appear in a single session. MAX_SESSION_HOURS = 0 # Affects test_minute_index_to_session_labels. # Change these if the start/end dates of your test suite don't contain the # defaults. MINUTE_INDEX_TO_SESSION_LABELS_START = pd.Timestamp("2011-01-04", tz=UTC) MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp("2011-04-04", tz=UTC) # Affects tests around daylight savings. If possible, should contain two # dates that are not both in the same daylight savings regime. DAYLIGHT_SAVINGS_DATES = ["2004-04-05", "2004-11-01"] # Affects test_start_end. Change these if your calendar start/end # dates between 2010-01-03 and 2010-01-10 don't match the defaults. TEST_START_END_FIRST = pd.Timestamp("2010-01-03", tz=UTC) TEST_START_END_LAST = pd.Timestamp("2010-01-10", tz=UTC) TEST_START_END_EXPECTED_FIRST = pd.Timestamp("2010-01-04", tz=UTC) TEST_START_END_EXPECTED_LAST = pd.Timestamp("2010-01-08", tz=UTC) @staticmethod def load_answer_key(filename): """ Load a CSV from tests/resources/{filename}.csv """ fullpath = join( dirname(abspath(__file__)), "./resources", filename + ".csv", ) return read_csv( fullpath, index_col=0, # NOTE: Merely passing parse_dates=True doesn't cause pandas to set # the dtype correctly, and passing all reasonable inputs to the # dtype kwarg cause read_csv to barf. parse_dates=[0, 1, 2], date_parser=lambda x: pd.Timestamp(x, tz=UTC), ) @classmethod def setup_class(cls): cls.answers = cls.load_answer_key(cls.answer_key_filename) cls.start_date = cls.answers.index[0] cls.end_date = cls.answers.index[-1] cls.calendar = cls.calendar_class(cls.start_date, cls.end_date) cls.one_minute = pd.Timedelta(1, "T") cls.one_hour = pd.Timedelta(1, "H") cls.one_day = pd.Timedelta(1, "D") cls.today = pd.Timestamp.now(tz="UTC").floor("D") @classmethod def teardown_class(cls): cls.calendar = None cls.answers = None def test_bound_start(self): if self.START_BOUND is not None: cal = self.calendar_class(self.START_BOUND, self.today) self.assertIsInstance(cal, ExchangeCalendar) start = self.START_BOUND - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): self.calendar_class(start, self.today) else: # verify no bound imposed cal = self.calendar_class(pd.Timestamp("1902-01-01", tz="UTC"), self.today) self.assertIsInstance(cal, ExchangeCalendar) def test_bound_end(self): if self.END_BOUND is not None: cal = self.calendar_class(self.today, self.END_BOUND) self.assertIsInstance(cal, ExchangeCalendar) end = self.END_BOUND + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): self.calendar_class(self.today, end) else: # verify no bound imposed cal = self.calendar_class(self.today, pd.Timestamp("2050-01-01", tz="UTC")) self.assertIsInstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self): # make sure that no session is longer than self.MAX_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.MAX_SESSION_HOURS) def test_calculated_against_csv(self): tm.assert_index_equal(self.calendar.schedule.index, self.answers.index) def test_adhoc_holidays_specification(self): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(self.calendar.adhoc_holidays) assert dti.tz is None def test_is_open_on_minute(self): one_minute = pd.Timedelta(minutes=1) m = self.calendar.is_open_on_minute for market_minute in self.answers.market_open[1:]: market_minute_utc = market_minute # The exchange should be classified as open on its first minute self.assertTrue(m(market_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # Decrement minute by one, to minute where the market was not # open pre_market = market_minute_utc - one_minute self.assertFalse(m(pre_market, _parse=False)) for market_minute in self.answers.market_close[:-1]: close_minute_utc = market_minute # should be open on its last minute self.assertTrue(m(close_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # increment minute by one minute, should be closed post_market = close_minute_utc + one_minute self.assertFalse(m(post_market, _parse=False)) def _verify_minute( self, calendar, minute, next_open_answer, prev_open_answer, next_close_answer, prev_close_answer, ): next_open = calendar.next_open(minute, _parse=False) self.assertEqual(next_open, next_open_answer) prev_open = self.calendar.previous_open(minute, _parse=False) self.assertEqual(prev_open, prev_open_answer) next_close = self.calendar.next_close(minute, _parse=False) self.assertEqual(next_close, next_close_answer) prev_close = self.calendar.previous_close(minute, _parse=False) self.assertEqual(prev_close, prev_close_answer) def test_next_prev_open_close(self): # for each session, check: # - the minute before the open (if gaps exist between sessions) # - the first minute of the session # - the second minute of the session # - the minute before the close # - the last minute of the session # - the first minute after the close (if gaps exist between sessions) opens = self.answers.market_open.iloc[1:-2] closes = self.answers.market_close.iloc[1:-2] previous_opens = self.answers.market_open.iloc[:-1] previous_closes = self.answers.market_close.iloc[:-1] next_opens = self.answers.market_open.iloc[2:] next_closes = self.answers.market_close.iloc[2:] for ( open_minute, close_minute, previous_open, previous_close, next_open, next_close, ) in zip( opens, closes, previous_opens, previous_closes, next_opens, next_closes ): minute_before_open = open_minute - self.one_minute # minute before open if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, minute_before_open, open_minute, previous_open, close_minute, previous_close, ) # open minute self._verify_minute( self.calendar, open_minute, next_open, previous_open, close_minute, previous_close, ) # second minute of session self._verify_minute( self.calendar, open_minute + self.one_minute, next_open, open_minute, close_minute, previous_close, ) # minute before the close self._verify_minute( self.calendar, close_minute - self.one_minute, next_open, open_minute, close_minute, previous_close, ) # the close self._verify_minute( self.calendar, close_minute, next_open, open_minute, next_close, previous_close, ) # minute after the close if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, close_minute + self.one_minute, next_open, open_minute, next_close, close_minute, ) def test_next_prev_minute(self): all_minutes = self.calendar.all_minutes # test 20,000 minutes because it takes too long to do the rest. for idx, minute in enumerate(all_minutes[1:20000]): self.assertEqual( all_minutes[idx + 2], self.calendar.next_minute(minute, _parse=False) ) self.assertEqual( all_minutes[idx], self.calendar.previous_minute(minute, _parse=False) ) # test a couple of non-market minutes if self.GAPS_BETWEEN_SESSIONS: for open_minute in self.answers.market_open[1:]: hour_before_open = open_minute - self.one_hour self.assertEqual( open_minute, self.calendar.next_minute(hour_before_open, _parse=False), ) for close_minute in self.answers.market_close[1:]: hour_after_close = close_minute + self.one_hour self.assertEqual( close_minute, self.calendar.previous_minute(hour_after_close, _parse=False), ) def test_date_to_session_label(self): m = self.calendar.date_to_session_label sessions = self.answers.index[:30] # first 30 sessions # test for error if request session prior to first calendar session. date = self.answers.index[0] - self.one_day error_msg = ( "Cannot get a session label prior to the first calendar" f" session ('{self.answers.index[0]}'). Consider passing" " `direction` as 'next'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "previous", _parse=False) # direction as "previous" dates = pd.date_range(sessions[0], sessions[-1], freq="D") last_session = None for date in dates: session_label = m(date, "previous", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # direction as "next" last_session = None for date in dates.sort_values(ascending=False): session_label = m(date, "next", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # test for error if request session after last calendar session. date = self.answers.index[-1] + self.one_day error_msg = ( "Cannot get a session label later than the last calendar" f" session ('{self.answers.index[-1]}'). Consider passing" " `direction` as 'previous'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "next", _parse=False) if self.GAPS_BETWEEN_SESSIONS: not_sessions = dates[~dates.isin(sessions)][:5] for not_session in not_sessions: error_msg = ( f"`date` '{not_session}' does not represent a session. Consider" " passing a `direction`." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "none", _parse=False) # test default behaviour with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, _parse=False) # non-valid direction (can only be thrown if gaps between sessions) error_msg = ( "'not a direction' is not a valid `direction`. Valid `direction`" ' values are "next", "previous" and "none".' ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "not a direction", _parse=False) def test_minute_to_session_label(self): m = self.calendar.minute_to_session_label # minute is prior to first session's open minute_before_first_open = self.answers.iloc[0].market_open - self.one_minute session_label = self.answers.index[0] minutes_that_resolve_to_this_session = [ m(minute_before_first_open, _parse=False), m(minute_before_first_open, direction="next", _parse=False), ] unique_session_labels = set(minutes_that_resolve_to_this_session) self.assertTrue(len(unique_session_labels) == 1) self.assertIn(session_label, unique_session_labels) with self.assertRaises(ValueError): m(minute_before_first_open, direction="previous", _parse=False) with self.assertRaises(ValueError): m(minute_before_first_open, direction="none", _parse=False) # minute is between first session's open and last session's close for idx, (session_label, open_minute, close_minute, _, _) in enumerate( self.answers.iloc[1:-2].itertuples(name=None) ): hour_into_session = open_minute + self.one_hour minute_before_session = open_minute - self.one_minute minute_after_session = close_minute + self.one_minute next_session_label = self.answers.index[idx + 2] previous_session_label = self.answers.index[idx] # verify that minutes inside a session resolve correctly minutes_that_resolve_to_this_session = [ m(open_minute, _parse=False), m(open_minute, direction="next", _parse=False), m(open_minute, direction="previous", _parse=False), m(open_minute, direction="none", _parse=False), m(hour_into_session, _parse=False), m(hour_into_session, direction="next", _parse=False), m(hour_into_session, direction="previous", _parse=False), m(hour_into_session, direction="none", _parse=False), m(close_minute), m(close_minute, direction="next", _parse=False), m(close_minute, direction="previous", _parse=False), m(close_minute, direction="none", _parse=False), session_label, ] if self.GAPS_BETWEEN_SESSIONS: minutes_that_resolve_to_this_session.append( m(minute_before_session, _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_before_session, direction="next", _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_after_session, direction="previous", _parse=False) ) self.assertTrue( all( x == minutes_that_resolve_to_this_session[0] for x in minutes_that_resolve_to_this_session ) ) minutes_that_resolve_to_next_session = [ m(minute_after_session, _parse=False), m(minute_after_session, direction="next", _parse=False), next_session_label, ] self.assertTrue( all( x == minutes_that_resolve_to_next_session[0] for x in minutes_that_resolve_to_next_session ) ) self.assertEqual( m(minute_before_session, direction="previous", _parse=False), previous_session_label, ) if self.GAPS_BETWEEN_SESSIONS: # Make sure we use the cache correctly minutes_that_resolve_to_different_sessions = [ m(minute_after_session, direction="next", _parse=False), m(minute_after_session, direction="previous", _parse=False), m(minute_after_session, direction="next", _parse=False), ] self.assertEqual( minutes_that_resolve_to_different_sessions, [next_session_label, session_label, next_session_label], ) # make sure that exceptions are raised at the right time with self.assertRaises(ValueError): m(open_minute, "asdf", _parse=False) if self.GAPS_BETWEEN_SESSIONS: with self.assertRaises(ValueError): m(minute_before_session, direction="none", _parse=False) # minute is later than last session's close minute_after_last_close = self.answers.iloc[-1].market_close + self.one_minute session_label = self.answers.index[-1] minute_that_resolves_to_session_label = m( minute_after_last_close, direction="previous", _parse=False ) self.assertEqual(session_label, minute_that_resolves_to_session_label) with self.assertRaises(ValueError): m(minute_after_last_close, _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="next", _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="none", _parse=False) @parameterized.expand( [ (1, 0), (2, 0), (2, 1), ] ) def test_minute_index_to_session_labels(self, interval, offset): minutes = self.calendar.minutes_for_sessions_in_range( self.MINUTE_INDEX_TO_SESSION_LABELS_START, self.MINUTE_INDEX_TO_SESSION_LABELS_END, ) minutes = minutes[range(offset, len(minutes), interval)] np.testing.assert_array_equal( pd.DatetimeIndex(minutes.map(self.calendar.minute_to_session_label)), self.calendar.minute_index_to_session_labels(minutes), ) def test_next_prev_session(self): session_labels = self.answers.index[1:-2] max_idx = len(session_labels) - 1 # the very first session first_session_label = self.answers.index[0] with self.assertRaises(ValueError): self.calendar.previous_session_label(first_session_label, _parse=False) # all the sessions in the middle for idx, session_label in enumerate(session_labels): if idx < max_idx: self.assertEqual( self.calendar.next_session_label(session_label, _parse=False), session_labels[idx + 1], ) if idx > 0: self.assertEqual( self.calendar.previous_session_label(session_label, _parse=False), session_labels[idx - 1], ) # the very last session last_session_label = self.answers.index[-1] with self.assertRaises(ValueError): self.calendar.next_session_label(last_session_label, _parse=False) @staticmethod def _find_full_session(calendar): for session_label in calendar.schedule.index: if session_label not in calendar.early_closes: return session_label return None def test_minutes_for_period(self): # full session # find a session that isn't an early close. start from the first # session, should be quick. full_session_label = self._find_full_session(self.calendar) if full_session_label is None: raise ValueError("Cannot find a full session to test!") minutes = self.calendar.minutes_for_session(full_session_label) _open, _close = self.calendar.open_and_close_for_session(full_session_label) _break_start, _break_end = self.calendar.break_start_and_end_for_session( full_session_label ) if not pd.isnull(_break_start): constructed_minutes = np.concatenate( [ pd.date_range(start=_open, end=_break_start, freq="min"), pd.date_range(start=_break_end, end=_close, freq="min"), ] ) else: constructed_minutes = pd.date_range(start=_open, end=_close, freq="min") np.testing.assert_array_equal( minutes, constructed_minutes, ) # early close period if self.HAVE_EARLY_CLOSES: early_close_session_label = self.calendar.early_closes[0] minutes_for_early_close = self.calendar.minutes_for_session( early_close_session_label ) _open, _close = self.calendar.open_and_close_for_session( early_close_session_label ) np.testing.assert_array_equal( minutes_for_early_close, pd.date_range(start=_open, end=_close, freq="min"), ) # late open period if self.HAVE_LATE_OPENS: late_open_session_label = self.calendar.late_opens[0] minutes_for_late_open = self.calendar.minutes_for_session( late_open_session_label ) _open, _close = self.calendar.open_and_close_for_session( late_open_session_label ) np.testing.assert_array_equal( minutes_for_late_open, pd.date_range(start=_open, end=_close, freq="min"), ) def test_sessions_in_range(self): # pick two sessions session_count = len(self.calendar.schedule.index) first_idx = session_count // 3 second_idx = 2 * first_idx first_session_label = self.calendar.schedule.index[first_idx] second_session_label = self.calendar.schedule.index[second_idx] answer_key = self.calendar.schedule.index[first_idx : second_idx + 1] rtrn = self.calendar.sessions_in_range( first_session_label, second_session_label, _parse=False ) np.testing.assert_array_equal(answer_key, rtrn) def get_session_block(self): """ Get an "interesting" range of three sessions in a row. By default this tries to find and return a (full session, early close session, full session) block. """ if not self.HAVE_EARLY_CLOSES: # If we don't have any early closes, just return a "random" chunk # of three sessions. return self.calendar.all_sessions[10:13] shortened_session = self.calendar.early_closes[0] shortened_session_idx = self.calendar.schedule.index.get_loc(shortened_session) session_before = self.calendar.schedule.index[shortened_session_idx - 1] session_after = self.calendar.schedule.index[shortened_session_idx + 1] return [session_before, shortened_session, session_after] def test_minutes_in_range(self): sessions = self.get_session_block() first_open, first_close = self.calendar.open_and_close_for_session(sessions[0]) minute_before_first_open = first_open - self.one_minute middle_open, middle_close = self.calendar.open_and_close_for_session( sessions[1] ) last_open, last_close = self.calendar.open_and_close_for_session(sessions[-1]) minute_after_last_close = last_close + self.one_minute # get all the minutes between first_open and last_close minutes1 = self.calendar.minutes_in_range(first_open, last_close, _parse=False) minutes2 = self.calendar.minutes_in_range( minute_before_first_open, minute_after_last_close, _parse=False ) if self.GAPS_BETWEEN_SESSIONS: np.testing.assert_array_equal(minutes1, minutes2) else: # if no gaps, then minutes2 should have 2 extra minutes np.testing.assert_array_equal(minutes1, minutes2[1:-1]) # manually construct the minutes ( first_break_start, first_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[0]) ( middle_break_start, middle_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[1]) ( last_break_start, last_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[-1]) intervals = [ (first_open, first_break_start, first_break_end, first_close), (middle_open, middle_break_start, middle_break_end, middle_close), (last_open, last_break_start, last_break_end, last_close), ] all_minutes = [] for _open, _break_start, _break_end, _close in intervals: if pd.isnull(_break_start): all_minutes.append( pd.date_range(start=_open, end=_close, freq="min"), ) else: all_minutes.append( pd.date_range(start=_open, end=_break_start, freq="min"), ) all_minutes.append( pd.date_range(start=_break_end, end=_close, freq="min"), ) all_minutes = np.concatenate(all_minutes) np.testing.assert_array_equal(all_minutes, minutes1) def test_minutes_for_sessions_in_range(self): sessions = self.get_session_block() minutes = self.calendar.minutes_for_sessions_in_range(sessions[0], sessions[-1]) # do it manually session0_minutes = self.calendar.minutes_for_session(sessions[0]) session1_minutes = self.calendar.minutes_for_session(sessions[1]) session2_minutes = self.calendar.minutes_for_session(sessions[2]) concatenated_minutes = np.concatenate( [session0_minutes.values, session1_minutes.values, session2_minutes.values] ) np.testing.assert_array_equal(concatenated_minutes, minutes.values) def test_sessions_window(self): sessions = self.get_session_block() np.testing.assert_array_equal( self.calendar.sessions_window(sessions[0], len(sessions) - 1, _parse=False), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) np.testing.assert_array_equal( self.calendar.sessions_window( sessions[-1], -1 * (len(sessions) - 1), _parse=False ), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) def test_session_distance(self): sessions = self.get_session_block() forward_distance = self.calendar.session_distance( sessions[0], sessions[-1], _parse=False, ) self.assertEqual(forward_distance, len(sessions)) backward_distance = self.calendar.session_distance( sessions[-1], sessions[0], _parse=False, ) self.assertEqual(backward_distance, -len(sessions)) one_day_distance = self.calendar.session_distance( sessions[0], sessions[0], _parse=False, ) self.assertEqual(one_day_distance, 1) def test_open_and_close_for_session(self): for session_label, open_answer, close_answer, _, _ in self.answers.itertuples( name=None ): found_open, found_close = self.calendar.open_and_close_for_session( session_label, _parse=False ) # Test that the methods for just session open and close produce the # same values as the method for getting both. alt_open = self.calendar.session_open(session_label, _parse=False) self.assertEqual(alt_open, found_open) alt_close = self.calendar.session_close(session_label, _parse=False) self.assertEqual(alt_close, found_close) self.assertEqual(open_answer, found_open) self.assertEqual(close_answer, found_close) def test_session_opens_in_range(self): found_opens = self.calendar.session_opens_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_opens.index.freq = None tm.assert_series_equal(found_opens, self.answers["market_open"]) def test_session_closes_in_range(self): found_closes = self.calendar.session_closes_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_closes.index.freq = None tm.assert_series_equal(found_closes, self.answers["market_close"]) def test_daylight_savings(self): # 2004 daylight savings switches: # Sunday 2004-04-04 and Sunday 2004-10-31 # make sure there's no weirdness around calculating the next day's # session's open time. m = dict(self.calendar.open_times) m[pd.Timestamp.min] = m.pop(None) open_times = pd.Series(m) for date in self.DAYLIGHT_SAVINGS_DATES: next_day = pd.Timestamp(date, tz=UTC) open_date = next_day + Timedelta(days=self.calendar.open_offset) the_open = self.calendar.schedule.loc[next_day].market_open localized_open = the_open.tz_localize(UTC).tz_convert(self.calendar.tz) self.assertEqual( (open_date.year, open_date.month, open_date.day), (localized_open.year, localized_open.month, localized_open.day), ) open_ix = open_times.index.searchsorted(pd.Timestamp(date), side="right") if open_ix == len(open_times): open_ix -= 1 self.assertEqual(open_times.iloc[open_ix].hour, localized_open.hour) self.assertEqual(open_times.iloc[open_ix].minute, localized_open.minute) def test_start_end(self): """ Check ExchangeCalendar with defined start/end dates. """ calendar = self.calendar_class( start=self.TEST_START_END_FIRST, end=self.TEST_START_END_LAST, ) self.assertEqual( calendar.first_trading_session, self.TEST_START_END_EXPECTED_FIRST, ) self.assertEqual( calendar.last_trading_session, self.TEST_START_END_EXPECTED_LAST, ) def test_has_breaks(self): has_breaks = self.calendar.has_breaks() self.assertEqual(has_breaks, self.HAVE_BREAKS) def test_session_has_break(self): if self.SESSION_WITHOUT_BREAK is not None: self.assertFalse( self.calendar.session_has_break(self.SESSION_WITHOUT_BREAK) ) if self.SESSION_WITH_BREAK is not None: self.assertTrue(self.calendar.session_has_break(self.SESSION_WITH_BREAK)) # TODO remove this class when all calendars migrated. No longer requried as # `minute_index_to_session_labels` comprehensively tested under new suite. class OpenDetectionTestCase(TestCase): # This is an extra set of unit tests that were added during a rewrite of # `minute_index_to_session_labels` to ensure that the existing # calendar-generic test suite correctly covered edge cases around # non-market minutes. def test_detect_non_market_minutes(self): cal = get_calendar("NYSE") # NOTE: This test is here instead of being on the base class for all # calendars because some of our calendars are 24/7, which means there # aren't any non-market minutes to find. day0 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-03", tz=UTC), pd.Timestamp("2013-07-03", tz=UTC), ) for minute in day0: self.assertTrue(cal.is_open_on_minute(minute)) day1 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-05", tz=UTC), pd.Timestamp("2013-07-05", tz=UTC), ) for minute in day1: self.assertTrue(cal.is_open_on_minute(minute)) def NYSE_timestamp(s): return pd.Timestamp(s, tz="America/New_York").tz_convert(UTC) non_market = [ # After close. NYSE_timestamp("2013-07-03 16:01"), # Holiday. NYSE_timestamp("2013-07-04 10:00"), # Before open. NYSE_timestamp("2013-07-05 9:29"), ] for minute in non_market: self.assertFalse(cal.is_open_on_minute(minute), minute) input_ = pd.to_datetime( np.hstack([day0.values, minute.asm8, day1.values]), utc=True, ) with self.assertRaises(ValueError) as e: cal.minute_index_to_session_labels(input_) exc_str = str(e.exception) self.assertIn("First Bad Minute: {}".format(minute), exc_str) # TODO remove this class when all calendars migrated. No longer requried as # this case is handled by new test base internally. class NoDSTExchangeCalendarTestBase(ExchangeCalendarTestBase): def test_daylight_savings(self): """ Several countries in Africa / Asia do not observe DST so we need to skip over this test for those markets """ pass def get_csv(name: str) -> pd.DataFrame: """Get csv file as DataFrame for given calendar `name`.""" filename = name.replace("/", "-").lower() + ".csv" path = pathlib.Path(__file__).parent.joinpath("resources", filename) df = pd.read_csv( path, index_col=0, parse_dates=[0, 1, 2, 3, 4], infer_datetime_format=True, ) df.index = df.index.tz_localize("UTC") for col in df: df[col] = df[col].dt.tz_localize("UTC") return df class Answers: """Inputs and expected output for testing a given calendar and side. Inputs and expected outputs are provided by public instance methods and properties. These either read directly from the corresponding .csv file or are evaluated from the .csv file contents. NB Properites / methods MUST NOT make evaluations by way of repeating the code of the ExchangeCalendar method they are intended to test! Parameters ---------- calendar_name Canonical name of calendar for which require answer info. For example, 'XNYS'. side {'both', 'left', 'right', 'neither'} Side of sessions to treat as trading minutes. """ ONE_MIN = pd.Timedelta(1, "T") TWO_MIN = pd.Timedelta(2, "T") ONE_DAY = pd.Timedelta(1, "D") LEFT_SIDES = ["left", "both"] RIGHT_SIDES = ["right", "both"] def __init__( self, calendar_name: str, side: str, ): self._name = calendar_name.upper() self._side = side # --- Exposed constructor arguments --- @property def name(self) -> str: """Name of corresponding calendar.""" return self._name @property def side(self) -> str: """Side of calendar for which answers valid.""" return self._side # --- Properties read (indirectly) from csv file --- @functools.lru_cache(maxsize=4) def _answers(self) -> pd.DataFrame: return get_csv(self.name) @property def answers(self) -> pd.DataFrame: """Answers as correspoding csv.""" return self._answers() @property def sessions(self) -> pd.DatetimeIndex: """Session labels.""" return self.answers.index @property def opens(self) -> pd.Series: """Market open time for each session.""" return self.answers.market_open @property def closes(self) -> pd.Series: """Market close time for each session.""" return self.answers.market_close @property def break_starts(self) -> pd.Series: """Break start time for each session.""" return self.answers.break_start @property def break_ends(self) -> pd.Series: """Break end time for each session.""" return self.answers.break_end # --- get and helper methods --- def get_next_session(self, session: pd.Timestamp) -> pd.Timestamp: """Get session that immediately follows `session`.""" assert ( session != self.last_session ), "Cannot get session later than last answers' session." idx = self.sessions.get_loc(session) + 1 return self.sessions[idx] def session_has_break(self, session: pd.Timestamp) -> bool: """Query if `session` has a break.""" return session in self.sessions_with_break @staticmethod def get_sessions_sample(sessions: pd.DatetimeIndex): """Return sample of given `sessions`. Sample includes: All sessions within first two years of `sessions`. All sessions within last two years of `sessions`. All sessions falling: within first 3 days of any month. from 28th of any month. from 14th through 16th of any month. """ if sessions.empty: return sessions mask = ( (sessions < sessions[0] + pd.DateOffset(years=2)) | (sessions > sessions[-1] - pd.DateOffset(years=2)) | (sessions.day <= 3) | (sessions.day >= 28) | (14 <= sessions.day) & (sessions.day <= 16) ) return sessions[mask] def get_sessions_minutes( self, start: pd.Timestamp, end: pd.Timestamp | int = 1 ) -> pd.DatetimeIndex: """Get trading minutes for 1 or more consecutive sessions. Parameters ---------- start Session from which to get trading minutes. end Session through which to get trading mintues. Can be passed as: pd.Timestamp: return will include trading minutes for `end` session. int: where int represents number of consecutive sessions inclusive of `start`, for which require trading minutes. Default is 1, such that by default will return trading minutes for only `start` session. """ idx = self.sessions.get_loc(start) stop = idx + end if isinstance(end, int) else self.sessions.get_loc(end) + 1 indexer = slice(idx, stop) dtis = [] for first, last, last_am, first_pm in zip( self.first_minutes[indexer], self.last_minutes[indexer], self.last_am_minutes[indexer], self.first_pm_minutes[indexer], ): if pd.isna(last_am): dtis.append(pd.date_range(first, last, freq="T")) else: dtis.append(pd.date_range(first, last_am, freq="T")) dtis.append(pd.date_range(first_pm, last, freq="T")) return dtis[0].union_many(dtis[1:]) # --- Evaluated general calendar properties --- @functools.lru_cache(maxsize=4) def _has_a_session_with_break(self) -> pd.DatetimeIndex: return self.break_starts.notna().any() @property def has_a_session_with_break(self) -> bool: """Does any session of answers have a break.""" return self._has_a_session_with_break() @property def has_a_session_without_break(self) -> bool: """Does any session of answers not have a break.""" return self.break_starts.isna().any() # --- Evaluated properties for first and last sessions --- @property def first_session(self) -> pd.Timestamp: """First session covered by answers.""" return self.sessions[0] @property def last_session(self) -> pd.Timestamp: """Last session covered by answers.""" return self.sessions[-1] @property def sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last sessions covered by answers.""" return self.first_session, self.last_session @property def first_session_open(self) -> pd.Timestamp: """Open time of first session covered by answers.""" return self.opens[0] @property def last_session_close(self) -> pd.Timestamp: """Close time of last session covered by answers.""" return self.closes[-1] @property def first_trading_minute(self) -> pd.Timestamp: open_ = self.first_session_open return open_ if self.side in self.LEFT_SIDES else open_ + self.ONE_MIN @property def last_trading_minute(self) -> pd.Timestamp: close = self.last_session_close return close if self.side in self.RIGHT_SIDES else close - self.ONE_MIN @property def trading_minutes_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last trading minutes covered by answers.""" return self.first_trading_minute, self.last_trading_minute # --- out-of-bounds properties --- @property def minute_too_early(self) -> pd.Timestamp: """Minute earlier than first trading minute.""" return self.first_trading_minute - self.ONE_MIN @property def minute_too_late(self) -> pd.Timestamp: """Minute later than last trading minute.""" return self.last_trading_minute + self.ONE_MIN @property def session_too_early(self) -> pd.Timestamp: """Date earlier than first session.""" return self.first_session - self.ONE_DAY @property def session_too_late(self) -> pd.Timestamp: """Date later than last session.""" return self.last_session + self.ONE_DAY # --- Evaluated properties covering every session. --- @functools.lru_cache(maxsize=4) def _first_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.opens.copy() else: minutes = self.opens + self.ONE_MIN minutes.name = "first_minutes" return minutes @property def first_minutes(self) -> pd.Series: """First trading minute of each session (UTC).""" return self._first_minutes() @property def first_minutes_plus_one(self) -> pd.Series: """First trading minute of each session plus one minute.""" return self.first_minutes + self.ONE_MIN @property def first_minutes_less_one(self) -> pd.Series: """First trading minute of each session less one minute.""" return self.first_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.closes.copy() else: minutes = self.closes - self.ONE_MIN minutes.name = "last_minutes" return minutes @property def last_minutes(self) -> pd.Series: """Last trading minute of each session.""" return self._last_minutes() @property def last_minutes_plus_one(self) -> pd.Series: """Last trading minute of each session plus one minute.""" return self.last_minutes + self.ONE_MIN @property def last_minutes_less_one(self) -> pd.Series: """Last trading minute of each session less one minute.""" return self.last_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_am_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.break_starts.copy() else: minutes = self.break_starts - self.ONE_MIN minutes.name = "last_am_minutes" return minutes @property def last_am_minutes(self) -> pd.Series: """Last pre-break trading minute of each session. NaT if session does not have a break. """ return self._last_am_minutes() @property def last_am_minutes_plus_one(self) -> pd.Series: """Last pre-break trading minute of each session plus one minute.""" return self.last_am_minutes + self.ONE_MIN @property def last_am_minutes_less_one(self) -> pd.Series: """Last pre-break trading minute of each session less one minute.""" return self.last_am_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _first_pm_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.break_ends.copy() else: minutes = self.break_ends + self.ONE_MIN minutes.name = "first_pm_minutes" return minutes @property def first_pm_minutes(self) -> pd.Series: """First post-break trading minute of each session. NaT if session does not have a break. """ return self._first_pm_minutes() @property def first_pm_minutes_plus_one(self) -> pd.Series: """First post-break trading minute of each session plus one minute.""" return self.first_pm_minutes + self.ONE_MIN @property def first_pm_minutes_less_one(self) -> pd.Series: """First post-break trading minute of each session less one minute.""" return self.first_pm_minutes - self.ONE_MIN # --- Evaluated session sets and ranges that meet a specific condition --- @property def _mask_breaks(self) -> pd.Series: return self.break_starts.notna() @functools.lru_cache(maxsize=4) def _sessions_with_break(self) -> pd.DatetimeIndex: return self.sessions[self._mask_breaks] @property def sessions_with_break(self) -> pd.DatetimeIndex: return self._sessions_with_break() @functools.lru_cache(maxsize=4) def _sessions_without_break(self) -> pd.DatetimeIndex: return self.sessions[~self._mask_breaks] @property def sessions_without_break(self) -> pd.DatetimeIndex: return self._sessions_without_break() @property def sessions_without_break_run(self) -> pd.DatetimeIndex: """Longest run of consecutive sessions without a break.""" s = self.break_starts.isna() if s.empty: return pd.DatetimeIndex([], tz="UTC") trues_grouped = (~s).cumsum()[s] group_sizes = trues_grouped.value_counts() max_run_size = group_sizes.max() max_run_group_id = group_sizes[group_sizes == max_run_size].index[0] run_without_break = trues_grouped[trues_grouped == max_run_group_id].index return run_without_break @property def sessions_without_break_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest session range that does not include a session with a break. Returns None if all sessions have a break. """ sessions = self.sessions_without_break_run if sessions.empty: return None return sessions[0], sessions[-1] @property def _mask_sessions_without_gap_after(self) -> pd.Series: if self.side == "neither": # will always have gap after if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if next open is one minute after previous close closes_plus_min = self.closes + pd.Timedelta(1, "T") return self.opens.shift(-1) == closes_plus_min else: return self.opens.shift(-1) == self.closes @property def _mask_sessions_without_gap_before(self) -> pd.Series: if self.side == "neither": # will always have gap before if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if previous close is one minute before next open opens_minus_one = self.opens - pd.Timedelta(1, "T") return self.closes.shift(1) == opens_minus_one else: return self.closes.shift(1) == self.opens @functools.lru_cache(maxsize=4) def _sessions_without_gap_after(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_after return self.sessions[mask][:-1] @property def sessions_without_gap_after(self) -> pd.DatetimeIndex: """Sessions not followed by a non-trading minute. Rather, sessions immediately followed by first trading minute of next session. """ return self._sessions_without_gap_after() @functools.lru_cache(maxsize=4) def _sessions_with_gap_after(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_after return self.sessions[~mask][:-1] @property def sessions_with_gap_after(self) -> pd.DatetimeIndex: """Sessions followed by a non-trading minute.""" return self._sessions_with_gap_after() @functools.lru_cache(maxsize=4) def _sessions_without_gap_before(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_before return self.sessions[mask][1:] @property def sessions_without_gap_before(self) -> pd.DatetimeIndex: """Sessions not preceeded by a non-trading minute. Rather, sessions immediately preceeded by last trading minute of previous session. """ return self._sessions_without_gap_before() @functools.lru_cache(maxsize=4) def _sessions_with_gap_before(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_before return self.sessions[~mask][1:] @property def sessions_with_gap_before(self) -> pd.DatetimeIndex: """Sessions preceeded by a non-trading minute.""" return self._sessions_with_gap_before() # times are changing... @functools.lru_cache(maxsize=16) def _get_sessions_with_times_different_to_next_session( self, column: str, # typing.Literal["opens", "closes", "break_starts", "break_ends"] ) -> list[pd.DatetimeIndex]: """For a given answers column, get session labels where time differs from time of next session. Where `column` is a break time ("break_starts" or "break_ends"), return will not include sessions when next session has a different `has_break` status. For example, if session_0 has a break and session_1 does not have a break, or vice versa, then session_0 will not be included to return. For sessions followed by a session with a different `has_break` status, see `_get_sessions_with_has_break_different_to_next_session`. Returns ------- list of pd.Datetimeindex [0] sessions with earlier next session [1] sessions with later next session """ # column takes string to allow lru_cache (Series not hashable) is_break_col = column[0] == "b" column_ = getattr(self, column) if is_break_col: if column_.isna().all(): return [pd.DatetimeIndex([], tz="UTC")] * 4 column_ = column_.fillna(method="ffill").fillna(method="bfill") diff = (column_.shift(-1) - column_)[:-1] remainder = diff % pd.Timedelta(hours=24) mask = remainder != pd.Timedelta(0) sessions = self.sessions[:-1][mask] next_session_earlier_mask = remainder[mask] > pd.Timedelta(hours=12) next_session_earlier = sessions[next_session_earlier_mask] next_session_later = sessions[~next_session_earlier_mask] if is_break_col: mask = next_session_earlier.isin(self.sessions_without_break) next_session_earlier = next_session_earlier.drop(next_session_earlier[mask]) mask = next_session_later.isin(self.sessions_without_break) next_session_later = next_session_later.drop(next_session_later[mask]) return [next_session_earlier, next_session_later] @property def _sessions_with_opens_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("opens") @property def _sessions_with_closes_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("closes") @property def _sessions_with_break_start_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("break_starts") @property def _sessions_with_break_end_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("break_ends") @property def sessions_next_open_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_opens_different_to_next_session[0] @property def sessions_next_open_later(self) -> pd.DatetimeIndex: return self._sessions_with_opens_different_to_next_session[1] @property def sessions_next_open_different(self) -> pd.DatetimeIndex: return self.sessions_next_open_earlier.union(self.sessions_next_open_later) @property def sessions_next_close_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_closes_different_to_next_session[0] @property def sessions_next_close_later(self) -> pd.DatetimeIndex: return self._sessions_with_closes_different_to_next_session[1] @property def sessions_next_close_different(self) -> pd.DatetimeIndex: return self.sessions_next_close_earlier.union(self.sessions_next_close_later) @property def sessions_next_break_start_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_break_start_different_to_next_session[0] @property def sessions_next_break_start_later(self) -> pd.DatetimeIndex: return self._sessions_with_break_start_different_to_next_session[1] @property def sessions_next_break_start_different(self) -> pd.DatetimeIndex: earlier = self.sessions_next_break_start_earlier later = self.sessions_next_break_start_later return earlier.union(later) @property def sessions_next_break_end_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_break_end_different_to_next_session[0] @property def sessions_next_break_end_later(self) -> pd.DatetimeIndex: return self._sessions_with_break_end_different_to_next_session[1] @property def sessions_next_break_end_different(self) -> pd.DatetimeIndex: earlier = self.sessions_next_break_end_earlier later = self.sessions_next_break_end_later return earlier.union(later) @functools.lru_cache(maxsize=4) def _get_sessions_with_has_break_different_to_next_session( self, ) -> tuple[pd.DatetimeIndex, pd.DatetimeIndex]: """Get sessions with 'has_break' different to next session. Returns ------- tuple[pd.DatetimeIndex, pd.DatetimeIndex] [0] Sessions that have a break and are immediately followed by a session which does not have a break. [1] Sessions that do not have a break and are immediately followed by a session which does have a break. """ mask = (self.break_starts.notna() & self.break_starts.shift(-1).isna())[:-1] sessions_with_break_next_session_without_break = self.sessions[:-1][mask] mask = (self.break_starts.isna() & self.break_starts.shift(-1).notna())[:-1] sessions_without_break_next_session_with_break = self.sessions[:-1][mask] return ( sessions_with_break_next_session_without_break, sessions_without_break_next_session_with_break, ) @property def sessions_with_break_next_session_without_break(self) -> pd.DatetimeIndex: return self._get_sessions_with_has_break_different_to_next_session()[0] @property def sessions_without_break_next_session_with_break(self) -> pd.DatetimeIndex: return self._get_sessions_with_has_break_different_to_next_session()[1] @functools.lru_cache(maxsize=4) def _sessions_next_time_different(self) -> pd.DatetimeIndex: return self.sessions_next_open_different.union_many( [ self.sessions_next_close_different, self.sessions_next_break_start_different, self.sessions_next_break_end_different, self.sessions_with_break_next_session_without_break, self.sessions_without_break_next_session_with_break, ] ) @property def sessions_next_time_different(self) -> pd.DatetimeIndex: """Sessions where next session has a different time for any column. Includes sessions where next session has a different `has_break` status. """ return self._sessions_next_time_different() # session blocks... def _create_changing_times_session_block( self, session: pd.Timestamp ) -> pd.DatetimeIndex: """Create block of sessions with changing times. Given a `session` known to have at least one time (open, close, break_start or break_end) different from the next session, returns a block of consecutive sessions ending with the first session after `session` that has the same times as the session that immediately preceeds it (i.e. the last two sessions of the block will have the same times), or the last calendar session. """ start_idx = self.sessions.get_loc(session) end_idx = start_idx + 1 while self.sessions[end_idx] in self.sessions_next_time_different: end_idx += 1 end_idx += 2 # +1 to include session with same times, +1 to serve as end index return self.sessions[start_idx:end_idx] def _get_normal_session_block(self) -> pd.DatetimeIndex: """Block of 3 sessions with unchanged timings.""" start_idx = len(self.sessions) // 3 end_idx = start_idx + 21 for i in range(start_idx, end_idx): times_1 = self.answers.iloc[i].dt.time times_2 = self.answers.iloc[i + 1].dt.time times_3 = self.answers.iloc[i + 2].dt.time one_and_two_equal = (times_1 == times_2) | (times_1.isna() & times_2.isna()) one_and_three_equal = (times_1 == times_3) | ( times_1.isna() & times_3.isna() ) if (one_and_two_equal & one_and_three_equal).all(): break assert i < (end_idx - 1), "Unable to evaluate a normal session block!" return self.sessions[i : i + 3] def _get_session_block( self, from_session_of: pd.DatetimeIndex, to_session_of: pd.DatetimeIndex ) -> pd.DatetimeIndex: """Get session block with bounds defined by sessions of given indexes. Block will start with middle session of `from_session_of`. Block will run to the nearest subsequent session of `to_session_of` (or `self.final_session` if this comes first). Block will end with the session that immedidately follows this session. """ i = len(from_session_of) // 2 start_session = from_session_of[i] start_idx = self.sessions.get_loc(start_session) end_idx = start_idx + 1 end_session = self.sessions[end_idx] while end_session not in to_session_of and end_session != self.last_session: end_idx += 1 end_session = self.sessions[end_idx] return self.sessions[start_idx : end_idx + 2] @functools.lru_cache(maxsize=4) def _session_blocks(self) -> dict[str, pd.DatetimeIndex]: blocks = {} blocks["normal"] = self._get_normal_session_block() blocks["first_three"] = self.sessions[:3] blocks["last_three"] = self.sessions[-3:] # blocks here include where: # session 1 has at least one different time from session 0 # session 0 has a break and session 1 does not (and vice versa) sessions_indexes = ( ("next_open_earlier", self.sessions_next_open_earlier), ("next_open_later", self.sessions_next_open_later), ("next_close_earlier", self.sessions_next_close_earlier), ("next_close_later", self.sessions_next_close_later), ("next_break_start_earlier", self.sessions_next_break_start_earlier), ("next_break_start_later", self.sessions_next_break_start_later), ("next_break_end_earlier", self.sessions_next_break_end_earlier), ("next_break_end_later", self.sessions_next_break_end_later), ( "with_break_to_without_break", self.sessions_with_break_next_session_without_break, ), ( "without_break_to_with_break", self.sessions_without_break_next_session_with_break, ), ) for name, index in sessions_indexes: if index.empty: blocks[name] = pd.DatetimeIndex([], tz="UTC") else: session = index[0] blocks[name] = self._create_changing_times_session_block(session) # blocks here move from session with gap to session without gap and vice versa if (not self.sessions_with_gap_after.empty) and ( not self.sessions_without_gap_after.empty ): without_gap_to_with_gap = self._get_session_block( self.sessions_without_gap_after, self.sessions_with_gap_after ) with_gap_to_without_gap = self._get_session_block( self.sessions_with_gap_after, self.sessions_without_gap_after ) else: without_gap_to_with_gap = pd.DatetimeIndex([], tz="UTC") with_gap_to_without_gap = pd.DatetimeIndex([], tz="UTC") blocks["without_gap_to_with_gap"] = without_gap_to_with_gap blocks["with_gap_to_without_gap"] = with_gap_to_without_gap # blocks that adjoin or contain a non_session date follows_non_session = pd.DatetimeIndex([], tz="UTC") preceeds_non_session = pd.DatetimeIndex([], tz="UTC") contains_non_session = pd.DatetimeIndex([], tz="UTC") if len(self.non_sessions) > 1: diff = self.non_sessions[1:] - self.non_sessions[:-1] mask = diff != pd.Timedelta( 1, "D" ) # non_session dates followed by a session valid_non_sessions = self.non_sessions[:-1][mask] if len(valid_non_sessions) > 1: slce = self.sessions.slice_indexer( valid_non_sessions[0], valid_non_sessions[1] ) sessions_between_non_sessions = self.sessions[slce] block_length = min(2, len(sessions_between_non_sessions)) follows_non_session = sessions_between_non_sessions[:block_length] preceeds_non_session = sessions_between_non_sessions[-block_length:] # take session before and session after non-session contains_non_session = self.sessions[slce.stop - 1 : slce.stop + 1] blocks["follows_non_session"] = follows_non_session blocks["preceeds_non_session"] = preceeds_non_session blocks["contains_non_session"] = contains_non_session return blocks @property def session_blocks(self) -> dict[str, pd.DatetimeIndex]: """Dictionary of session blocks of a particular behaviour. A block comprises either a single session or multiple contiguous sessions. Keys: "normal" - three sessions with unchanging timings. "first_three" - answers' first three sessions. "last_three" - answers's last three sessions. "next_open_earlier" - session 1 open is earlier than session 0 open. "next_open_later" - session 1 open is later than session 0 open. "next_close_earlier" - session 1 close is earlier than session 0 close. "next_close_later" - session 1 close is later than session 0 close. "next_break_start_earlier" - session 1 break_start is earlier than session 0 break_start. "next_break_start_later" - session 1 break_start is later than session 0 break_start. "next_break_end_earlier" - session 1 break_end is earlier than session 0 break_end. "next_break_end_later" - session 1 break_end is later than session 0 break_end. "with_break_to_without_break" - session 0 has a break, session 1 does not have a break. "without_break_to_with_break" - session 0 does not have a break, session 1 does have a break. "without_gap_to_with_gap" - session 0 is not followed by a gap, session -2 is followed by a gap, session -1 is preceeded by a gap. "with_gap_to_without_gap" - session 0 is followed by a gap, session -2 is not followed by a gap, session -1 is not preceeded by a gap. "follows_non_session" - one or two sessions where session 0 is preceeded by a date that is a non-session. "follows_non_session" - one or two sessions where session -1 is followed by a date that is a non-session. "contains_non_session" = two sessions with at least one non-session date in between. If no such session block exists for any key then value will take an empty DatetimeIndex (UTC). """ return self._session_blocks() def session_block_generator(self) -> abc.Iterator[tuple[str, pd.DatetimeIndex]]: """Generator of session blocks of a particular behaviour.""" for name, block in self.session_blocks.items(): if not block.empty: yield (name, block) @functools.lru_cache(maxsize=4) def _session_block_minutes(self) -> dict[str, pd.DatetimeIndex]: d = {} for name, block in self.session_blocks.items(): if block.empty: d[name] = pd.DatetimeIndex([], tz="UTC") continue d[name] = self.get_sessions_minutes(block[0], len(block)) return d @property def session_block_minutes(self) -> dict[str, pd.DatetimeIndex]: """Trading minutes for each `session_block`. Key: Session block name as documented to `session_blocks`. Value: Trading minutes of corresponding session block. """ return self._session_block_minutes() @property def sessions_sample(self) -> pd.DatetimeIndex: """Sample of normal and unusual sessions. Sample comprises set of sessions of all `session_blocks` (see `session_blocks` doc). In this way sample includes at least one sample of every indentified unique circumstance. """ dtis = list(self.session_blocks.values()) return dtis[0].union_many(dtis[1:]) # non-sessions... @functools.lru_cache(maxsize=4) def _non_sessions(self) -> pd.DatetimeIndex: all_dates = pd.date_range( start=self.first_session, end=self.last_session, freq="D" ) return all_dates.difference(self.sessions) @property def non_sessions(self) -> pd.DatetimeIndex: """Dates (UTC midnight) within answers range that are not sessions.""" return self._non_sessions() @property def sessions_range_defined_by_non_sessions( self, ) -> tuple[tuple[pd.Timestamp, pd.Timestamp], pd.Datetimeindex] | None: """Range containing sessions although defined with non-sessions. Returns ------- tuple[tuple[pd.Timestamp, pd.Timestamp], pd.Datetimeindex]: [0] tuple[pd.Timestamp, pd.Timestamp]: [0] range start as non-session date. [1] range end as non-session date. [1] pd.DatetimeIndex: Sessions in range. """ non_sessions = self.non_sessions if len(non_sessions) <= 1: return None limit = len(self.non_sessions) - 2 i = 0 start, end = non_sessions[i], non_sessions[i + 1] while (end - start) < pd.Timedelta(4, "D"): i += 1 start, end = non_sessions[i], non_sessions[i + 1] if i == limit: # Unable to evaluate range from consecutive non-sessions # that covers >= 3 sessions. Just go with max range... start, end = non_sessions[0], non_sessions[-1] slice_start, slice_end = self.sessions.searchsorted((start, end)) return (start, end), self.sessions[slice_start:slice_end] @property def non_sessions_run(self) -> pd.DatetimeIndex: """Longest run of non_sessions.""" ser = self.sessions.to_series() diff = ser.shift(-1) - ser max_diff = diff.max() if max_diff == pd.Timedelta(1, "D"): return pd.DatetimeIndex([]) session_before_run = diff[diff == max_diff].index[-1] run = pd.date_range( start=session_before_run + pd.Timedelta(1, "D"), periods=(max_diff // pd.Timedelta(1, "D")) - 1, freq="D", ) assert run.isin(self.non_sessions).all() assert run[0] > self.first_session assert run[-1] < self.last_session return run @property def non_sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest range covering a period without a session.""" non_sessions_run = self.non_sessions_run if non_sessions_run.empty: return None else: return self.non_sessions_run[0], self.non_sessions_run[-1] # --- Evaluated sets of minutes --- @functools.lru_cache(maxsize=4) def _evaluate_trading_and_break_minutes(self) -> tuple[tuple, tuple]: sessions = self.sessions_sample first_mins = self.first_minutes[sessions] first_mins_plus_one = first_mins + self.ONE_MIN last_mins = self.last_minutes[sessions] last_mins_less_one = last_mins - self.ONE_MIN trading_mins = [] break_mins = [] for session, mins_ in zip( sessions, zip(first_mins, first_mins_plus_one, last_mins, last_mins_less_one), ): trading_mins.append((mins_, session)) if self.has_a_session_with_break: last_am_mins = self.last_am_minutes[sessions] last_am_mins = last_am_mins[last_am_mins.notna()] first_pm_mins = self.first_pm_minutes[last_am_mins.index] last_am_mins_less_one = last_am_mins - self.ONE_MIN last_am_mins_plus_one = last_am_mins + self.ONE_MIN last_am_mins_plus_two = last_am_mins + self.TWO_MIN first_pm_mins_plus_one = first_pm_mins + self.ONE_MIN first_pm_mins_less_one = first_pm_mins - self.ONE_MIN first_pm_mins_less_two = first_pm_mins - self.TWO_MIN for session, mins_ in zip( last_am_mins.index, zip( last_am_mins, last_am_mins_less_one, first_pm_mins, first_pm_mins_plus_one, ), ): trading_mins.append((mins_, session)) for session, mins_ in zip( last_am_mins.index, zip( last_am_mins_plus_one, last_am_mins_plus_two, first_pm_mins_less_one, first_pm_mins_less_two, ), ): break_mins.append((mins_, session)) return (tuple(trading_mins), tuple(break_mins)) @property def trading_minutes(self) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp]]: """Edge trading minutes of `sessions_sample`. Returns ------- tuple of tuple[tuple[trading_minutes], session] tuple[trading_minutes] includes: first two trading minutes of a session. last two trading minutes of a session. If breaks: last two trading minutes of session's am subsession. first two trading minutes of session's pm subsession. session Session of trading_minutes """ return self._evaluate_trading_and_break_minutes()[0] def trading_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of trading minutes of `self.trading_minutes`.""" for mins, _ in self.trading_minutes: for minute in mins: yield minute @property def trading_minute(self) -> pd.Timestamp: """A single trading minute.""" return self.trading_minutes[0][0][0] @property def break_minutes(self) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp]]: """Sample of break minutes of `sessions_sample`. Returns ------- tuple of tuple[tuple[break_minutes], session] tuple[break_minutes]: first two minutes of a break. last two minutes of a break. session Session of break_minutes """ return self._evaluate_trading_and_break_minutes()[1] def break_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of break minutes of `self.break_minutes`.""" for mins, _ in self.break_minutes: for minute in mins: yield minute @functools.lru_cache(maxsize=4) def _non_trading_minutes( self, ) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp, pd.Timestamp]]: non_trading_mins = [] sessions = self.sessions_sample sessions = prev_sessions = sessions[sessions.isin(self.sessions_with_gap_after)] next_sessions = self.sessions[self.sessions.get_indexer(sessions) + 1] last_mins_plus_one = self.last_minutes[sessions] + self.ONE_MIN first_mins_less_one = self.first_minutes[next_sessions] - self.ONE_MIN for prev_session, next_session, mins_ in zip( prev_sessions, next_sessions, zip(last_mins_plus_one, first_mins_less_one) ): non_trading_mins.append((mins_, prev_session, next_session)) return tuple(non_trading_mins) @property def non_trading_minutes( self, ) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp, pd.Timestamp]]: """non_trading_minutes that edge `sessions_sample`. NB. Does not include break minutes. Returns ------- tuple of tuple[tuple[non-trading minute], previous session, next session] tuple[non-trading minute] Two non-trading minutes. [0] first non-trading minute to follow a session. [1] last non-trading minute prior to the next session. previous session Session that preceeds non-trading minutes. next session Session that follows non-trading minutes. See Also -------- break_minutes """ return self._non_trading_minutes() def non_trading_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of non-trading minutes of `self.non_trading_minutes`.""" for mins, _, _ in self.non_trading_minutes: for minute in mins: yield minute # --- method-specific inputs/outputs --- def prev_next_open_close_minutes( self, ) -> abc.Iterator[ tuple[ pd.Timestamp, tuple[ pd.Timestamp | None, pd.Timestamp | None, pd.Timestamp | None, pd.Timestamp | None, ], ] ]: """Generator of test parameters for prev/next_open/close methods. Inputs include following minutes of each session: open one minute prior to open (not included for first session) one minute after open close one minute before close one minute after close (not included for last session) NB Assumed that minutes prior to first open and after last close will be handled via parse_timestamp. Yields ------ 2-tuple: [0] Input a minute sd pd.Timestamp [1] 4 tuple of expected output of corresponding method: [0] previous_open as pd.Timestamp | None [1] previous_close as pd.Timestamp | None [2] next_open as pd.Timestamp | None [3] next_close as pd.Timestamp | None NB None indicates that corresponding method is expected to raise a ValueError for this input. """ close_is_next_open_bv = self.closes == self.opens.shift(-1) open_was_prev_close_bv = self.opens == self.closes.shift(+1) close_is_next_open = close_is_next_open_bv[0] # minutes for session 0 minute = self.opens[0] yield (minute, (None, None, self.opens[1], self.closes[0])) minute = minute + self.ONE_MIN yield (minute, (self.opens[0], None, self.opens[1], self.closes[0])) minute = self.closes[0] next_open = self.opens[2] if close_is_next_open else self.opens[1] yield (minute, (self.opens[0], None, next_open, self.closes[1])) minute += self.ONE_MIN prev_open = self.opens[1] if close_is_next_open else self.opens[0] yield (minute, (prev_open, self.closes[0], next_open, self.closes[1])) minute = self.closes[0] - self.ONE_MIN yield (minute, (self.opens[0], None, self.opens[1], self.closes[0])) # minutes for sessions over [1:-1] except for -1 close and 'close + one_min' opens = self.opens[1:-1] closes = self.closes[1:-1] prev_opens = self.opens[:-2] prev_closes = self.closes[:-2] next_opens = self.opens[2:] next_closes = self.closes[2:] opens_after_next = self.opens[3:] # add dummy row to equal lengths (won't be used) _ = pd.Series(pd.Timestamp("2200-01-01", tz="UTC")) opens_after_next = opens_after_next.append(_) stop = closes[-1] for ( open_, close, prev_open, prev_close, next_open, next_close, open_after_next, close_is_next_open, open_was_prev_close, ) in zip( opens, closes, prev_opens, prev_closes, next_opens, next_closes, opens_after_next, close_is_next_open_bv[1:-2], open_was_prev_close_bv[1:-2], ): if not open_was_prev_close: # only include open minutes if not otherwise duplicating # evaluations already made for prior close. yield (open_, (prev_open, prev_close, next_open, close)) yield (open_ - self.ONE_MIN, (prev_open, prev_close, open_, close)) yield (open_ + self.ONE_MIN, (open_, prev_close, next_open, close)) yield (close - self.ONE_MIN, (open_, prev_close, next_open, close)) if close != stop: next_open_ = open_after_next if close_is_next_open else next_open yield (close, (open_, prev_close, next_open_, next_close)) open_ = next_open if close_is_next_open else open_ yield (close + self.ONE_MIN, (open_, close, next_open_, next_close)) # close and 'close + one_min' for session -2 minute = self.closes[-2] next_open = None if close_is_next_open_bv[-2] else self.opens[-1] yield (minute, (self.opens[-2], self.closes[-3], next_open, self.closes[-1])) minute += self.ONE_MIN prev_open = self.opens[-1] if close_is_next_open_bv[-2] else self.opens[-2] yield (minute, (prev_open, self.closes[-2], next_open, self.closes[-1])) # minutes for session -1 if not open_was_prev_close_bv[-1]: open_ = self.opens[-1] prev_open = self.opens[-2] prev_close = self.closes[-2] next_open = None close = self.closes[-1] yield (open_, (prev_open, prev_close, next_open, close)) yield (open_ - self.ONE_MIN, (prev_open, prev_close, open_, close)) yield (open_ + self.ONE_MIN, (open_, prev_close, next_open, close)) minute = self.closes[-1] next_open = self.opens[2] if close_is_next_open_bv[-1] else self.opens[1] yield (minute, (self.opens[-1], self.closes[-2], None, None)) minute -= self.ONE_MIN yield (minute, (self.opens[-1], self.closes[-2], None, self.closes[-1])) # dunder def __repr__(self) -> str: return f"<Answers: calendar {self.name}, side {self.side}>" def no_parsing(f: typing.Callable): """Wrap a method under test so that it skips input parsing.""" return lambda *args, **kwargs: f(*args, _parse=False, **kwargs) class ExchangeCalendarTestBaseNew: """Test base for an ExchangeCalendar. Notes ----- === Fixtures === In accordance with the pytest framework, whilst methods are requried to have `self` as their first argument, no method should use `self`. All required inputs should come by way of fixtures received to the test method's arguments. Methods that are directly or indirectly dependent on the evaluation of trading minutes should be tested against the parameterized `all_calendars_with_answers` fixture. This fixture will execute the test against multiple calendar instances, one for each viable `side`. The following methods directly evaluate trading minutes: all_minutes _last_minute_nanos() _last_am_minute_nanos() _first_minute_nanos() _first_pm_minute_nanos() NB this list does not include methods that indirectly evaluate methods by way of calling (directly or indirectly) one of the above methods. Methods that are not dependent on the evaluation of trading minutes should only be tested against only the `default_calendar_with_answers` or `default_calendar` fixture. Calendar instances provided by fixtures should be used exclusively to call the method being tested. NO TEST INPUT OR EXPECTED OUTPUT SHOULD BE EVALUATED BY WAY OF CALLING A CALENDAR METHOD. Rather, test inputs and expected output should be taken directly, or evaluated from, properties/methods of the corresponding Answers fixture. Subclasses are required to override a limited number of fixtures and may be required to override others. Refer to the block comments. """ # subclass must override the following fixtures @pytest.fixture(scope="class") def calendar_cls(self) -> abc.Iterator[typing.Type[ExchangeCalendar]]: """ExchangeCalendar class to be tested. Examples: XNYSExchangeCalendar AlwaysOpenCalendar """ raise NotImplementedError("fixture must be implemented on subclass") @pytest.fixture def max_session_hours(self) -> abc.Iterator[int | float]: """Largest number of hours that can comprise a single session. Examples: 8 6.5 """ raise NotImplementedError("fixture must be implemented on subclass") # if subclass has a 24h session then subclass must override this fixture. # Define on subclass as is here with only difference being passing # ["left", "right"] to decorator's 'params' arg (24h calendars cannot # have a side defined as 'both' or 'neither'.). @pytest.fixture(scope="class", params=["both", "left", "right", "neither"]) def all_calendars_with_answers( self, request, calendars, answers ) -> abc.Iterator[tuple[ExchangeCalendar, Answers]]: """Parameterized calendars and answers for each side.""" yield (calendars[request.param], answers[request.param]) # subclass should override the following fixtures in the event that the # default defined here does not apply. @pytest.fixture def start_bound(self) -> abc.Iterator[pd.Timestamp | None]: """Earliest date for which calendar can be instantiated, or None if there is no start bound.""" yield None @pytest.fixture def end_bound(self) -> abc.Iterator[pd.Timestamp | None]: """Latest date for which calendar can be instantiated, or None if there is no end bound.""" yield None # Subclass can optionally override the following fixtures. By overriding # a fixture the associated test will be executed with input as yielded # by the fixture. Where fixtures are not overriden the associated tests # will be skipped. @pytest.fixture def regular_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of known regular calendar holidays. Empty list if no holidays. `test_regular_holidays_sample` will check that each date does not represent a calendar session. Example return: ["2020-12-25", "2021-01-01", ...] """ yield [] @pytest.fixture def adhoc_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of adhoc calendar holidays. Empty list if no adhoc holidays. `test_adhoc_holidays_sample` will check that each date does not represent a calendar session. Example return: ["2015-04-17", "2021-09-12", ...] """ yield [] @pytest.fixture def non_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of known dates that are not holidays. `test_non_holidays_sample` will check that each date represents a calendar session. Subclass should use this fixture if wishes to test edge cases, for example where a session is an exception to a rule, or where session preceeds/follows a holiday that is an exception to a rule. Example return: ["2019-12-27", "2020-01-02", ...] """ yield [] @pytest.fixture def late_opens_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with late opens. `test_late_opens_sample` will check that each date represents a session with a late open. Example returns: ["2022-01-03", "2022-04-22", ...] """ yield [] @pytest.fixture def early_closes_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with early closes. `test_early_closes_sample` will check that each date represents a session with an early close. Example returns: ["2019-12-24", "2019-12-31", ...] """ yield [] @pytest.fixture def early_closes_sample_time(self) -> abc.Iterator[pd.Timedelta | None]: """Local close time of sessions of `early_closes_sample` fixture. `test_early_closes_sample_time` will check all sessions of `early_closes_sample` have this close time. Only override fixture if: - `early_closes_sample` is overriden by subclass - ALL sessions of `early_closes_sample` have the same local close time (if sessions of `early_closes_sample` have different local close times then the subclass should instead check close times with a test defined on the subclass). Example returns: pd.Timedelta(14, "H") # 14:00 local time pd.Timedelta(hours=13, minutes=15) # 13:15 local time """ yield None @pytest.fixture def non_early_closes_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with normal close times. `test_non_early_closes_sample` will check each date does not represent a calendar session with an early close. Subclass should use this fixture to test edge cases, for example where an otherwise early close is an exception to a rule. Example return: ["2022-12-23", "2022-12-30] """ yield [] @pytest.fixture def non_early_closes_sample_time(self) -> abc.Iterator[pd.Timedelta | None]: """Local close time of sessions of `non_early_closes_sample` fixture. `test_non_early_closes_sample_time` will check all sessions of `non_early_closes_sample` have this close time. Only override fixture if: - `non_early_closes_sample` is overriden by subclass. - ALL sessions of `non_early_closes_sample` have the same local close time (if sessions of `non_early_closes_sample` have different local close times then the subclass should instead check close times with a test defined on the subclass). Example returns: pd.Timedelta(17, "H") # 17:00 local time pd.Timedelta(hours=16, minutes=30) # 16:30 local time """ yield None # --- NO FIXTURE BELOW THIS LINE SHOULD BE OVERRIDEN ON A SUBCLASS --- def test_testbase_integrity(self): """Ensure integrity of TestBase. Raises error if a reserved fixture is overriden by the subclass. """ cls = self.__class__ for fixture in [ "test_testbase_integrity", "name", "has_24h_session", "default_side", "sides", "answers", "default_answers", "calendars", "default_calendar", "calendars_with_answers", "default_calendar_with_answers", "one_minute", "today", "all_directions", "valid_overrides", "non_valid_overrides", "daylight_savings_dates", "late_opens", "early_closes", ]: if getattr(cls, fixture) != getattr(ExchangeCalendarTestBaseNew, fixture): raise RuntimeError(f"fixture '{fixture}' should not be overriden!") # Base class fixtures @pytest.fixture(scope="class") def name(self, calendar_cls) -> abc.Iterator[str]: """Calendar name.""" yield calendar_cls.name @pytest.fixture(scope="class") def has_24h_session(self, name) -> abc.Iterator[bool]: df = get_csv(name) yield (df.market_close == df.market_open.shift(-1)).any() @pytest.fixture(scope="class") def default_side(self, has_24h_session) -> abc.Iterator[str]: """Default calendar side.""" if has_24h_session: yield "left" else: yield "both" @pytest.fixture(scope="class") def sides(self, has_24h_session) -> abc.Iterator[list[str]]: """All valid sides options for calendar.""" if has_24h_session: yield ["left", "right"] else: yield ["both", "left", "right", "neither"] # Calendars and answers @pytest.fixture(scope="class") def answers(self, name, sides) -> abc.Iterator[dict[str, Answers]]: """Dict of answers, key as side, value as corresoponding answers.""" yield {side: Answers(name, side) for side in sides} @pytest.fixture(scope="class") def default_answers(self, answers, default_side) -> abc.Iterator[Answers]: yield answers[default_side] @pytest.fixture(scope="class") def calendars( self, calendar_cls, default_answers, sides ) -> abc.Iterator[dict[str, ExchangeCalendar]]: """Dict of calendars, key as side, value as corresoponding calendar.""" start = default_answers.first_session end = default_answers.last_session yield {side: calendar_cls(start, end, side) for side in sides} @pytest.fixture(scope="class") def default_calendar( self, calendars, default_side ) -> abc.Iterator[ExchangeCalendar]: yield calendars[default_side] @pytest.fixture(scope="class") def calendars_with_answers( self, calendars, answers, sides ) -> abc.Iterator[dict[str, tuple[ExchangeCalendar, Answers]]]: """Dict of calendars and answers, key as side.""" yield {side: (calendars[side], answers[side]) for side in sides} @pytest.fixture(scope="class") def default_calendar_with_answers( self, calendars_with_answers, default_side ) -> abc.Iterator[tuple[ExchangeCalendar, Answers]]: yield calendars_with_answers[default_side] # General use fixtures. @pytest.fixture(scope="class") def one_minute(self) -> abc.Iterator[pd.Timedelta]: yield pd.Timedelta(1, "T") @pytest.fixture(scope="class") def today(self) -> abc.Iterator[pd.Timedelta]: yield pd.Timestamp.now(tz="UTC").floor("D") @pytest.fixture(scope="class", params=["next", "previous", "none"]) def all_directions(self, request) -> abc.Iterator[str]: """Parameterised fixture of direction to go if minute is not a trading minute""" yield request.param @pytest.fixture(scope="class") def valid_overrides(self) -> abc.Iterator[list[str]]: """Names of methods that can be overriden by a subclass.""" yield [ "name", "bound_start", "bound_end", "_bound_start_error_msg", "_bound_end_error_msg", "default_start", "default_end", "tz", "open_times", "break_start_times", "break_end_times", "close_times", "weekmask", "open_offset", "close_offset", "regular_holidays", "adhoc_holidays", "special_opens", "special_opens_adhoc", "special_closes", "special_closes_adhoc", "special_weekmasks", "special_offsets", "special_offsets_adhoc", ] @pytest.fixture(scope="class") def non_valid_overrides(self, valid_overrides) -> abc.Iterator[list[str]]: """Names of methods that cannot be overriden by a subclass.""" yield [ name for name in dir(ExchangeCalendar) if name not in valid_overrides and not name.startswith("__") and not name == "_abc_impl" ] @pytest.fixture(scope="class") def daylight_savings_dates( self, default_calendar ) -> abc.Iterator[list[pd.Timestamp]]: """All dates in a specific year that mark the first day of a new time regime. Yields empty list if timezone's UCT offset does not change. Notes ----- NB Any test that employs this fixture assumes the accuarcy of the default calendar's `tz` property. """ cal = default_calendar year = cal.last_session.year - 1 days = pd.date_range(str(year), str(year + 1), freq="D") tzinfo = pytz.timezone(cal.tz.zone) prev_offset = tzinfo.utcoffset(days[0]) dates = [] for day in days[1:]: try: offset = tzinfo.utcoffset(day) except pytz.NonExistentTimeError: offset = tzinfo.utcoffset(day + pd.Timedelta(1, "H")) if offset != prev_offset: dates.append(day) if len(dates) == 2: break prev_offset = offset yield dates @pytest.fixture(scope="class") def late_opens( self, default_calendar_with_answers ) -> abc.Iterator[pd.DatetimeIndex]: """Calendar sessions with a late open. Late opens evaluated as those that are later than the prevailing open time as defined by `default_calendar.open_times`. Notes ----- NB Any test that employs this fixture ASSUMES the accuarcy of the following calendar properties: `open_times` `tz` """ cal, ans = default_calendar_with_answers d = dict(cal.open_times) d[pd.Timestamp.min] = d.pop(None) s =
pd.Series(d)
pandas.Series
#Preliminaries import numpy as np import numpy import pandas as pd import random import statsmodels.api as sm import math from sklearn.utils import resample from scipy import percentile from scipy import stats from matplotlib import pyplot as plt import requests import io import seaborn as sns from matplotlib.patches import Rectangle import time sns.set() #------------------------------------------------------------------------------- # FUNCTIONS #------------------------------------------------------------------------------- def title_print(title,sep='-',*args,**kwargs): print(sep*len(title)) print(title,*args,**kwargs) print(sep*len(title)) # Create function to calculate the lag selection parameter for the standard HAC Newey-West # (1994) plug-in procedure def mLag(no_obs): '''Calculates the lag selection parameter for the standard HAC Newey-West (1994) plug-in procedure. INPUT ----- no_obs: int - number of observations in the endogenous variable for a regression OUTPUT ------ lag_select: int - max number of lags ''' return np.floor((4*no_obs/100)**(2/9)).astype(int) # Heteroskedasticity and Autocorrelation Newey-West standard errors def HAC_BSE(y,x,b,maxLag=mLag): '''Calculates Heteroskedasticity and Autocorrelation (HAC) Newey-West standard errors. Default lag procedure is below: maxLags = np.floor((4*no_obs/100)**(2/9)).astype(int) If you want a different lag procedure, pass in a new function under mLag=func, and make sure that the function only takes 'n_obs', an int for number of observations, as an input. INPUT ----- y: n x 1 ndarray - dependent variable array x: n x k ndarray - independent variables array (include constant in x) b: k x 1 ndarray - OLS regression coefficients OUTPUT ------ hac_bse: k x 1 ndarray - HAC coefficient standard errors For more info on HAC Newey-West check out this link: https://www.stata.com/manuals13/tsnewey.pdf ''' n,k = x.shape m = mLag(n) r = (y - x.dot(b)).reshape(n,) XXI = np.linalg.inv(x.T.dot(x)) w = np.diag(r**2) XWX = x.T.dot(w).dot(x) for l in range(1,m+1): w = np.diag(r[l:]*r[:-l]) XWX_l = np.zeros((k,k)) XWX_l += x[:-l,:].T.dot(w).dot(x[l:,:]) XWX_l += x[l:,:].T.dot(w).dot(x[:-l,:]) XWX_l *= (1-l/(m+1)) XWX += XWX_l XWX *= n/(n-k) var_B = XXI.dot(XWX).dot(XXI) return np.sqrt(abs(np.diag(var_B))) # Set up regression function with Newey-West Standard Errors (HAC) def OLS_HAC(Y, X, add_const=True,maxLag=mLag): '''Runs OLS regression with a the standard HAC Newey-West (1994) plug-in procedure. INPUT ----- y: ndarray, (n,) - dependent variable in regression x: ndarray, (no_obs,k) - k regressors (including constant) add_const: bool, Default = True - If True, this function adds constant to regressors. If False, this function doesn't add the constant. maxLag: func, Default = lambda x: numpy.floor((4*x/100)**(2/9)).astype(int) - Lag selection function for HAC-NW SE's NOTE: no NaN values in y or x will work. OUTPUT: (beta,hac_bse) ------ beta: ndarray, (k,1) - OLS coefficients hac_bse: ndarray, (k,1) - HAC-NW standard errors ''' # drop missing values exist = ~np.isnan(Y) y,x = Y[exist],X[exist,:] # add constant if necessary if add_const: x = sm.add_constant(x) # Get Results beta = np.linalg.inv(x.T.dot(x)).dot(x.T.dot(y)) # OLS coefficients hac_bse = HAC_BSE(y=y,x=x,b=beta,maxLag=maxLag) # HAC standard errors t_stats = beta/hac_bse return beta, hac_bse#, t_stats def ecdf(sample): sample = np.atleast_1d(sample) quantiles, counts = np.unique(sample, return_counts=True) cumprob = np.cumsum(counts).astype(np.double) / sample.size return quantiles, cumprob #------------------------------------------------------------------------------- # Useful Classes #------------------------------------------------------------------------------- class AlphaEvaluator: ''' A class used to evaluate the alpha of funds. Calculates alpha of funds from provided datasets, runs simulations of fund returns, and compares actual observations to simulated fund returns using a KAPM model. ''' # initialize object def __init__(self,fund_data=None,factor_data=None, parse_dates=[['Dates'],['Dates']],fund_names=None,factor_names=None): '''AlphaEvaluator is a class used to evaluate the alpha of funds. Calculates alpha of funds from provided datasets, runs simulations of fund returns, and compares actual observations to simulated fund returns using a KAPM model. INPUT ----- fund_data, factor_data: None, str, np.array, pd.DataFrame - must be same type. If None, load data later with fit() method or load_data() method. fund_names, factor_names: list, iterable - contains names of funds and factors as strings parse_dates: [fund_data.date,factor_data.date] - colname as string for each dataset that corresponds to datetime ''' self._is_fit = False self._has_sim = False self._has_percentiles = None self.parse_dates = parse_dates self.maxLag = mLag if (fund_data is None) and (factor_data is None): self.X_raw = None self.Y_raw = None else: self.load_data(fund_data=fund_data,factor_data=factor_data, fund_names=fund_names,factor_names=factor_names, parse_dates=parse_dates) # load dataframe into object def load_data(self,fund_data,factor_data,fund_names=None,factor_names=None, parse_dates=[['Dates'],['Dates']]): '''Function for loading observed fund and factor data into the AlphaEvaluator INPUT ----- fund_data: str, numpy.array, or pandas.DataFrame - str is a path to a csv file factor_data: str, numpy.array, or pandas.DataFrame - str is a path to a csv file fund_names, factor_names: None or list - only needed if np.array data is passed in One of the factor names must be 'RF' ''' # check for updates to parameters self.parse_dates = parse_dates self._is_fit = False self._has_sim = False self._has_percentiles = None # check for data if (fund_data is None) or (factor_data is None): raise ValueError("Funds data AND factor data must be submitted!") elif type(fund_data) is str: self.Y_raw = pd.read_csv(fund_data,parse_dates=parse_dates[0]) self.X_raw = pd.read_csv(factor_data,parse_dates=parse_dates[1]) elif type(fund_data) is pd.DataFrame: if fund_data.shape[0] != factor_data.shape[0]: raise ValueError("Both datasets should have same number of observations") self.Y_raw = fund_data self.X_raw = factor_data elif type(fund_data) is type(np.array([])): if (fund_names is None) or (factor_names is None): raise ValueError("Must input fund names and factor names") elif fund_data.shape[0] != factor_data.shape[0]: raise ValueError("Both datasets should have same number of observations") else: self.Y_raw = pd.DataFrame(data=fund_data,columns=fund_names) self.X_raw =
pd.DataFrame(data=factor_data,columns=factor_names)
pandas.DataFrame
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.Timestamp('2011-02-01')]) tm.assert_categorical_equal(res, exp) # all NaN res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical(['X'])]) exp = Categorical([np.nan, np.nan, 'X']) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical([np.nan, np.nan])]) exp = Categorical([np.nan, np.nan, np.nan, np.nan]) tm.assert_categorical_equal(res, exp) def test_union_categoricals_empty(self): # GH 13759 res = union_categoricals([pd.Categorical([]), pd.Categorical([])]) exp = Categorical([]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([]), pd.Categorical([1.0])]) exp = Categorical([1.0]) tm.assert_categorical_equal(res, exp) # to make dtype equal nanc = pd.Categorical(np.array([np.nan], dtype=np.float64)) res = union_categoricals([nanc, pd.Categorical([])]) tm.assert_categorical_equal(res, nanc) def test_union_categorical_same_category(self): # check fastpath c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4]) c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4]) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4]) tm.assert_categorical_equal(res, exp) c1 = Categorical(['z', 'z', 'z'], categories=['x', 'y', 'z']) c2 = Categorical(['x', 'x', 'x'], categories=['x', 'y', 'z']) res = union_categoricals([c1, c2]) exp = Categorical(['z', 'z', 'z', 'x', 'x', 'x'], categories=['x', 'y', 'z']) tm.assert_categorical_equal(res, exp) def test_union_categoricals_ordered(self): c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) res = union_categoricals([c1, c1]) exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_ignore_order(self): # GH 15219 c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) res = union_categoricals([c1, c1], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c1, c1], ignore_order=False) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, np.nan, 3, 2]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([4, 5, 6], ordered=True) result = union_categoricals([c1, c2], ignore_order=True) expected = Categorical([1, 2, 3, 4, 5, 6]) tm.assert_categorical_equal(result, expected) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_sort(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['a', 'b', 'c', 'x', 'y', 'z']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['a', 'b'], categories=['c', 'a', 'b']) c2 = Categorical(['b', 'c'], categories=['c', 'a', 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 = Categorical(['a', 'b'], categories=['a', 'b', 'c']) c2 = Categorical(['b', 'c'], categories=['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['x', np.nan]) c2 = Categorical([np.nan, 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', np.nan, np.nan, 'b'], categories=['b', 'x']) tm.assert_categorical_equal(result, expected) c1 = Categorical([np.nan]) c2 = Categorical([np.nan]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([np.nan, np.nan], categories=[]) tm.assert_categorical_equal(result, expected) c1 = Categorical([]) c2 = Categorical([]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([]) tm.assert_categorical_equal(result, expected) c1 = Categorical(['b', 'a'], categories=['b', 'a', 'c'], ordered=True) c2 = Categorical(['a', 'c'], categories=['b', 'a', 'c'], ordered=True) with pytest.raises(TypeError): union_categoricals([c1, c2], sort_categories=True) def test_union_categoricals_sort_false(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['a', 'b', 'b', 'c'], categories=['b', 'a', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 = Categorical(['a', 'b'], categories=['a', 'b', 'c']) c2 = Categorical(['b', 'c'], categories=['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['x', np.nan]) c2 = Categorical([np.nan, 'b']) result =
union_categoricals([c1, c2], sort_categories=False)
pandas.core.dtypes.concat.union_categoricals
import os import re import numpy as np import pandas as pd from pyd3d.utils import formatSci from pyd3d.mdf import read from IPython.display import Markdown as md # from https://github.com/Carlisle345748/Delft3D-Toolbox/blob/master/delft3d/TimeSeriesFile.py class TimeSeries(object): """Read, modify and export Delft3D time series.""" def __init__(self, time_series: list): self.time_series = None self.header = None self.load_header(time_series) self.load_time_series(time_series) def load_header(self, time_series: list): """Read and interpret the header of a time series.""" header_dict = {} parameter = {} records_in_table = None header_re = re.compile(r"^([^-][\w-]+)\s+('?[\w\d (),./:-]+'?)") unit_re = re.compile(r"([\s]+unit '\[[\w/]+\]')") for line in time_series: matches = header_re.search(line) # search for header if matches: if matches[1] == 'parameter': # parameters have the same header name. So store all parameters # in one dict unit_match = unit_re.search(line) # search for unit key_name = matches[2].strip('\'') # reformat unit key_name = key_name.strip(' ') parameter[key_name] = Parameter(matches[2], unit_match[1]) elif matches[1] == 'records-in-table': # records-in-table should be the last header. Store it hera and # then put it at the end of headers by the end. records_in_table = Parameter(matches[2]) else: # regular header header_dict[matches[1]] = Parameter(matches[2]) else: # end of the header header_dict['parameter'] = parameter header_dict['records-in-table'] = records_in_table break self.header = header_dict def load_time_series(self, time_series: list): """Read and interpret time series""" is_header = True # whether the pointer at the header reference_time = pd.to_datetime(self.header['reference-time'].value) # read the time series data time, relative_time, parm1, parm2 = [], [], [], [] for line in time_series: if not is_header: # prepossess data = [float(i) for i in line.split()] time.append(reference_time + pd.to_timedelta(data[0], unit="minutes")) # store the data relative_time.append(data[0]) parm1.append(data[1]) parm2.append(data[2]) if 'records-in-table' in line: is_header = False else: # converts lists to DataFrame colname = list(self.header['parameter'].keys()) time_series = pd.DataFrame( {colname[0]: relative_time, colname[1]: parm1, colname[2]: parm2}, index=time) self.time_series = time_series def set_header(self, data: dict, unit=False) -> None: """Set new content of header. Called by TimeSeriesFile.set_header()""" header = self.header.copy() for key, new_parm in data.items(): if key != 'parameter': # regular header header[key].value = str(new_parm) else: # parameter for key_, new_parm_ in new_parm.items(): if unit: header[key][key_].unit = str(new_parm_) else: header[key][key_].value = str(new_parm_) self.header = header def set_time_series(self, reference_time: str, data1: pd.core.frame.Series, data2: pd.core.frame.Series): """ Replace the old time series with the new one. Called by TimeSeriesFile.set_time_series() """ time_series = pd.concat([data1, data2], axis=1) # calculate the absolute time and relative time reference_time = pd.to_datetime(reference_time) relative_time = time_series.index - reference_time relative_time = [time.total_seconds() / 60 for time in relative_time] # 单位:minute relative_time = pd.Series(relative_time, index=time_series.index, name='time') # combine time absolute time, relative time and data time_series =
pd.concat([relative_time, time_series], axis=1)
pandas.concat
# Copyright 2016 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas import numpy.testing from pyfora.algorithms.logistic.TrustRegionConjugateGradientSolver \ import TrustRegionConjugateGradientSolver class TrustRegionTests(object): def trustRegionData(self): X = pandas.DataFrame({'A': [-1,0,1], 'B': [0,1,1]}) y = pandas.Series([1,-1,-1]) return X, y def solve(self, X, y, classZeroLabel, C=1): def f(X, y, C): return TrustRegionConjugateGradientSolver( X, y, classZeroLabel, C).solve() return self.evaluateWithExecutor(f, X, y, C) def test_trust_region_1(self): X, y = self.trustRegionData() res = self.solve(X, y, 1) # results checked against liblinear, scikit themselves. scikit_weights = [-0.59106183, -0.59106183] numpy.testing.assert_allclose(res.weights, scikit_weights, atol=1e-4, rtol=1e-4) self.assertEqual(res.iterations, 2) def test_trust_region_2(self): X, y = self.trustRegionData() C = 1.0 / len(y) res = self.solve(X, y, 1, C) numpy.testing.assert_allclose( res.weights, [-0.26760031, -0.26760031] ) self.assertEqual(res.iterations, 2) def test_trust_region_3(self): # corresponds to the fora test: logisticregressionTests.basic_2 X = pandas.DataFrame( [[-0.25091976, 0.90142861], [ 0.46398788, 0.19731697], [-0.68796272, -0.68801096], [-0.88383278, 0.73235229], [ 0.20223002, 0.41614516]] ) y = pandas.Series([1,-1,-1,-1,1]) C = 1.0 / len(X) / 0.01 res = self.solve(X, y, 1, C) numpy.testing.assert_allclose( res.weights, [1.55340616, 1.28486523] ) def test_trust_region_4(self): # corresponds to the fora test: logisticregressionTests.basic_3 X = pandas.DataFrame( {'A': [-0.25091976, 0.46398788, -0.68796272], 'B': [0.90142861, 0.19731697, -0.68801096]}) y = pandas.Series([1, -1, -1]) C = 1.0 / len(X) / 0.01 res = self.solve(X, y, 1, C) numpy.testing.assert_allclose( res.weights, [-1.78096818, 3.42088899] ) def test_trust_region_5(self): # corresponds to the fora test: logisticregressionTests.basic_4 X = pandas.DataFrame( [[-0.25091976, 0.90142861], [ 0.46398788, 0.19731697], [-0.68796272, -0.68801096], [-0.88383278, 0.73235229], [ 0.20223002, 0.41614516], [-0.95883101, 0.9398197 ], [ 0.66488528, -0.57532178], [-0.63635007, -0.63319098], [-0.39151551, 0.04951286], [-0.13610996, -0.41754172]] ) y =
pandas.Series([1, -1, -1, 1, 1, 1, -1, 1, 1, -1])
pandas.Series
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import rfft, irfft, rfftfreq # Fast Fourier Transform (FFT) def fast_fourier_transform(data_measured, data_desired, n, t): # Define function on which the FFT shall be executed dm_pos = data_measured["pos"] dm_vel = data_measured["vel"] dm_tau = data_measured["torque"] dml = [dm_pos, dm_vel, dm_tau] # dml is of type list and will later be reconverted to type dataframe dd_pos = data_desired["pos"] dd_vel = data_desired["vel"] dd_tau = data_desired["torque"] ddl = [dd_pos, dd_vel, dd_tau] # ddl is of type list and will later be reconverted to type dataframe # Compute the FFT dm_hat = np.fft.fft(dml, n) # Compute the power spectrum density for pos, vel, tau psd_measured = dm_hat * np.conj(dm_hat) / n # power spectrum density # Use the PSD to filter out noise bounds = [30, 100, 300] # frequencies with lower PSD than bounds get cut off indices = np.empty_like(psd_measured) for i in range(len(indices)): indices[i] = psd_measured[i] > bounds[i] # find all freqs with large power psd_filtered = psd_measured * indices # zero out all others dm_hat = indices * dm_hat # zero out small Fourier coeffs. in Y f = np.fft.ifft(dm_hat) # inverse FFT for filtered time signal # Convert lists back to dataframes dm_t = pd.DataFrame(dml) # convert lists dml, ddl and f back to type dataframe dd_t =
pd.DataFrame(ddl)
pandas.DataFrame
''' Urban-PLUMBER processing code Associated with the manuscript: Harmonized, gap-filled dataset from 20 urban flux tower sites Copyright (c) 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"). You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 ''' __title__ = "site-specific processing wrapper" __version__ = "2021-09-20" __author__ = "<NAME>" __email__ = "<EMAIL>" __description__ = 'Wrapper for processing individual sites. Includes setting site-specific information, importing raw site data, calling pipeline functions, creating site plots and webpages etc.' import numpy as np import xarray as xr import pandas as pd import matplotlib.pyplot as plt import os import sys import argparse import importlib import glob # paths oshome=os.getenv('HOME') projpath = f'{oshome}/git/urban-plumber_pipeline' # root of repository datapath = f'{oshome}/git/urban-plumber_pipeline/input_data' # raw data path (site data, global data) sys.path.append(projpath) import pipeline_functions importlib.reload(pipeline_functions) ########################################################################## # MANUAL USER INPUTS ########################################################################## # these are overridden with --existing flag (i.e. python create_dataset_XX.py --existing) create_raw_obs_nc = True # create obs nc from original format create_rain_file = True # find and load nearest GHCND qcplotdetail = True # plot quality control diurnal and timeseries forcingplots = True # plot forcing and analysis period obs and gap-filling create_outofsample_obs = True # for testing bias-correction on half of available obs fullpipeline = True # undertake full pipeline e.g. cleaning, bias correction, data creation ########################################################################## # COMMAND LINE ARGUMENT PARSING ########################################################################## # Initiate the parser parser = argparse.ArgumentParser() parser.add_argument('--log', help='log print statements to file', action='store_true') parser.add_argument('--projpath', help='replaces projpath with new path') parser.add_argument('--datapath', help='replaces datapath with new path') parser.add_argument('--existing', help='use existing outputs (processing already run)', action='store_true') parser.add_argument('--globaldata',help='output site characteristics from global dataset (if available)', action='store_true') args = parser.parse_args() log_stout = False if args.log: log_stout = True if args.projpath: print(f'updating projpath to {projpath}') projpath = args.projpath if args.datapath: print(f'updating datapath to {datapath}') datapath = args.datapath if args.existing: print('using existing files') create_raw_obs_nc = False create_rain_file = False qcplotdetail = False forcingplots = False create_outofsample_obs = False fullpipeline = False ########################################################################## # SITE SPECIFIC INFORMATION ########################################################################## sitename = 'JP-Yoyogi' out_suffix = 'v0.9' sitedata_suffix = 'v1' local_utc_offset_hours = 9.0 long_sitename = 'Yoyogi, Tokyo, Japan' obs_contact = '<NAME> (<EMAIL>)' obs_reference = 'Hirano, Sugawara, Murayama, Kondo (2015): https://doi.org/10.2151/sola.2015-024; Sugawara, Shimizu, Hirano, Murayama and Kondo (2014): https://doi.org/10.14887/kazekosymp.23.0_49; Ishidoya, Sugawara,Terao, Kaneyasu, Aoki, Tsuboi and Kondo. (2020): https://doi.org/10.5194/acp-20-5293-2020' obs_comment = 'Observations for turbulent fluxes removed from sectors 170°-260° because of land surface inhomogeneities. Gap-filling for the forcing data using data at nearby observatories (less than 8 km distance).' photo_source='<NAME>' history = 'v0.9 (2021-09-08): beta issue' ########################################################################## # MAIN ########################################################################## def main(): sitepath = f'{projpath}/sites/{sitename}' print('preparing site data and attributes') sitedata, siteattrs = pipeline_functions.prep_site( sitename, sitepath, out_suffix, sitedata_suffix, long_sitename, local_utc_offset_hours, obs_contact, obs_reference, obs_comment, history, photo_source, args.globaldata, datapath) print('getting observation netcdf\n') if create_raw_obs_nc: print(f'creating observational NetCDF in ALMA format\n') raw_ds = import_obs(sitedata,siteattrs) raw_ds = pipeline_functions.set_raw_attributes(raw_ds, siteattrs) else: fpath = f'{sitepath}/timeseries/{sitename}_raw_observations_{siteattrs["out_suffix"]}.nc' raw_ds = xr.open_dataset(fpath) if create_rain_file: syear, eyear = raw_ds.time.dt.year.values[0] - 10, raw_ds.time.dt.year.values[-1] nearest = pipeline_functions.find_ghcnd_closest_stations(syear,eyear,sitedata,datapath,nshow=3) print('nearest stations, see: https://www.ncdc.noaa.gov/cdo-web/search:\n',nearest) rain_sites = ['JA000047662', # TOKYO, JA 35.683 139.767 'Tokyo_monthly_fill'] # fill gaps with monthly totals difference from https://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3_en.php?block_no=47662&view=13 rain_obs = pipeline_functions.get_ghcnd_precip(sitepath,datapath,syear,eyear,rain_sites) pipeline_functions.write_ghcnd_precip(sitepath,sitename,rain_obs) ############################################ ############ pipeline MAIN call ############ raw_ds, clean_ds, watch_ds, era_ds, corr_ds, lin_ds, forcing_ds = pipeline_functions.main( datapath = datapath, sitedata = sitedata, siteattrs = siteattrs, raw_ds = raw_ds, fullpipeline = fullpipeline, qcplotdetail = qcplotdetail) ############################################ print('post processing, plotting and checking') pipeline_functions.post_process_site(sitedata,siteattrs,datapath, raw_ds,forcing_ds,clean_ds,era_ds,watch_ds,corr_ds,lin_ds, forcingplots,create_outofsample_obs) print(f'{sitename} done!') return raw_ds, clean_ds, watch_ds, era_ds, corr_ds, forcing_ds ########################################################################## # specific functinos ########################################################################## def import_obs(sitedata,siteattrs): # read data csv print('reading raw data file') raw1 = pd.read_csv(f'{datapath}/{sitename}/yoyogi_forcing_rev.dat', na_values=['NaN',-9999.], delim_whitespace=True) raw2 = pd.read_csv(f'{datapath}/{sitename}/yoyogi_evaluation.dat', na_values=['NaN',-9999.], delim_whitespace=True) # get times from data and reindex times = pd.date_range(start='2016-04-01 00:00', end='2020-03-31 23:00', freq='60Min') raw1.index = times raw2.index = times # create dataframe in ALMA format df =
pd.DataFrame(index=times)
pandas.DataFrame
''' Illustration of the uncertainty surrounding point estimations of the decay value (with and without stationarity breaks) in a Hawkes process. This code produces normalized decay distributions which deviate from the standard Gaussian, as exemplified in Fig. 1 in the paper. ''' import functools import os import sys import time import hyperopt import lmfit import numpy as np import pandas as pd from scipy import stats from tick.hawkes import HawkesExpKern, SimuHawkesExpKernels, SimuHawkesMulti import constants const = constants.Constants(n_dims=1) SAMPLE_SIZE = 100 BETA_INCREMENT = 1 SPLIT_INDEX = int(const.n_realizations / 2) # fct to optimize def __loglik_wrapper(params, event_times_dict_list): learner = HawkesExpKern(decays=[[params["beta"]] * const.n_dims] * const.n_dims) learner.fit(event_times_dict_list) return -learner.score() df = [] df_splitbeta = [] intensity_parameters = { "mu": [0.1], "alpha": [[0.5]], "beta": [[1.2]] } print('true beta is', intensity_parameters["beta"]) for i, initial_beta_i in enumerate(np.linspace(0.01, 10, num=SAMPLE_SIZE)): print('round', i) # simulation hawkes_exp_kernels = SimuHawkesExpKernels(adjacency=list(intensity_parameters["alpha"] / np.array(intensity_parameters["beta"])), decays=intensity_parameters["beta"], baseline=intensity_parameters["mu"], end_time=const.simulation_end, verbose=False) multi = SimuHawkesMulti(hawkes_exp_kernels, n_simulations=const.n_realizations, n_threads=8) multi.simulate() # LBFGSB parameters = lmfit.Parameters() parameters.add("beta", min=0, value=1.) minimizer = lmfit.Minimizer(__loglik_wrapper, parameters, fcn_args=(multi.timestamps, )) start_time = time.time() result = minimizer.minimize(method="lbfgsb") end_time = time.time() df.append(result.params["beta"].value) # simulation but with split beta hawkes_exp_simu = SimuHawkesExpKernels(adjacency=list(intensity_parameters['alpha'] / np.array(intensity_parameters['beta'])), decays=intensity_parameters['beta'], baseline=intensity_parameters['mu'], max_jumps=const.max_jumps, verbose=False) multi = SimuHawkesMulti(hawkes_exp_simu, n_simulations=const.n_realizations, n_threads=8) multi.simulate() hawkes_exp_simu = SimuHawkesExpKernels(adjacency=list(intensity_parameters['alpha'] / np.array(intensity_parameters['beta'])), decays=(np.array(intensity_parameters['beta']) + BETA_INCREMENT).tolist(), baseline=intensity_parameters['mu'], max_jumps=const.max_jumps, verbose=False) multi_other_beta = SimuHawkesMulti(hawkes_exp_simu, n_simulations=const.n_realizations, n_threads=8) multi_other_beta.simulate() combined_timestamps = multi.timestamps[SPLIT_INDEX:] + multi_other_beta.timestamps[SPLIT_INDEX:] # LBFGSB parameters = lmfit.Parameters() parameters.add("beta", min=0, value=1.) minimizer = lmfit.Minimizer(__loglik_wrapper, parameters, fcn_args=(combined_timestamps, )) start_time = time.time() result = minimizer.minimize(method="lbfgsb") end_time = time.time() df_splitbeta.append(result.params["beta"].value) rounded_beta = np.round(intensity_parameters["beta"][0][0], 4)
pd.DataFrame({"Beta": df, "SplitBeta": df_splitbeta})
pandas.DataFrame
import pandas as pd import inspect import functools # ============================================ DataFrame ============================================ # # Decorates a generator function that yields rows (v,...) def pd_dfrows(columns=None): def dec(fn): def wrapper(*args,**kwargs): return pd.DataFrame([*fn(*args,**kwargs)],columns=columns) return functools.update_wrapper(wrapper,fn) return dec # Decorates a generator function that yields k,(v,...) pairs def pd_dataframe(index=None,columns=None): def dec(fn): def wrapper(*args,**kwargs): i,d = (list(x) for x in zip(*fn(*args,**kwargs))) return pd.DataFrame(d,pd.Index(i,name=index),columns=columns) return functools.update_wrapper(wrapper,fn) return dec # Decorates a generator function that yields (k,...),(v,...) pairs def pd_multiframe(index=None,columns=None): def dec(fn): def wrapper(*args,**kwargs): i,d = (list(x) for x in zip(*fn(*args,**kwargs))) return pd.DataFrame(d,index=pd.MultiIndex.from_tuples(i,names=index),columns=columns) return functools.update_wrapper(wrapper,fn) return dec # ============================================ Series ============================================ # # Decorates a generator function that yields k,v pairs def pd_series(index=None,name=None): def dec(fn): def wrapper(*args,**kwargs): i,d = (list(x) for x in zip(*fn(*args,**kwargs))) return pd.Series(d,index=pd.Index(i,name=index),name=name) return functools.update_wrapper(wrapper,fn) return dec # Decorates a generator function that yields (k,...),v pairs def pd_multiseries(index=None,name=None): def dec(fn): def wrapper(*args,**kwargs): i,d = [[*x] for x in zip(*fn(*args,**kwargs))] return pd.Series(d,index=pd.MultiIndex.from_tuples(i,names=index),name=name) return functools.update_wrapper(wrapper,fn) return dec # ============================================ Index ============================================ # # Decorates a generator function that yields (k,...) def pd_multi_index(names=None): def dec(fn): def wrapper(*args,**kwargs): return pd.MultiIndex.from_tuples([*fn(*args,**kwargs)],names=names) return functools.update_wrapper(wrapper,fn) return dec # Decorates a generator function that yields k def pd_index(name=None): def dec(fn): def wrapper(*args,**kwargs): return pd.Index([*fn(*args,**kwargs)],name=name) return functools.update_wrapper(wrapper,fn) return dec # ============================================ Joins ============================================ # # decorates either a generator function that yields dataframes, or an iterable containing dataframes. def pd_concat(axis=0,**catargs): def dec(fn): def wrapper(*args,**kwargs): return pd.concat([*fn(*args,**kwargs)],axis=axis,**catargs) return functools.update_wrapper(wrapper,fn) return dec # ============================================ Transforms ============================================ # # decorates a function that reindexes dataframes def pd_reindex(name=None): def dec(fn): def wrapper(df): inx = pd.Index([*map(fn,df.index)],name=(name if name!=None else df.index.names if df.index.ndim>1 else df.index.name)) return pd.DataFrame(df.values,index=inx,columns=df.columns) return wrapper return dec # decorates a function that transforms both the index values and column values of an inputted dataframe def pd_transform(inx=None,col=None): def dec(fn): def wrapper(df,*args,**kwargs): i,d = [[*x] for x in zip(*fn(df,*args,**kwargs))] index = pd.Index(i,name=(inx if inx!=None else df.index.names if df.index.ndim>1 else df.index.name)) return pd.DataFrame(d,index,columns=(col if col!=None else df.columns)) return wrapper return dec # ============================================ GroupBy ============================================ # def pd_groupby_agg(by,columns=None): def dec(fn): if inspect.isgeneratorfunction(fn): def wrapper(df,*args,**kwargs): i,d = [[*x] for x in zip(*(a for b in (((g,r) for r in fn(data,*args,**kwargs)) for g,data in df.groupby(by)) for a in b))] inx = pd.Index(i,name=by) if type(by) == str else pd.MultiIndex.from_tuples(i,names=by) return pd.DataFrame(d,inx,columns=columns) return wrapper else: def wrapper(df,*args,**kwargs): i,d = [[*x] for x in zip(*((g,fn(data,*args,**kwargs)) for g,data in df.groupby(by)))] inx = pd.Index(i,name=by) if type(by) == str else pd.MultiIndex.from_tuples(i,names=by) return
pd.DataFrame(d,inx,columns=columns)
pandas.DataFrame
#!/usr/bin/env python3 import argparse from collections import Counter from itertools import combinations from math import lgamma, log, factorial import numpy as np import operator import os import pandas as pd from functools import reduce import sys import time import warnings ############################### ##### AUXILIARY FUNCTIONS ##### ############################### def nCr(n, r): """ Returns the number of combinations of r elements out a total of n. """ f = factorial return f(n) // f(r) // f(n-r) def lg(n,x): return lgamma(n+x) - lgamma(x) def onepositive(dist): """ True if there only one positive count in `dist`. """ npos = 0 for n in dist: if n > 0: npos += 1 if npos > 1: return False return True def ml(dist): """ Compute the maximum likelihood given full instantiation counts in dist. """ tot = sum(dist) res = 0.0 for n in dist: if n > 0: res += n*log(n/tot) return res def ml_sum(distss): """ Compute the total maximum likelihood of the full instantiation counts in distss. """ res = 0.0 for dists in distss: res += sum([ml(d) for d in dists]) return res ############################### ####### BOUND FUNCTIONS ####### ############################### def diffa(dist, alpha, r): """ Compute the derivative of local-local BDeu score. """ res = 0.0 for n in dist: for i in range(n): res += 1.0/(i*r+alpha) for i in range(sum(dist)): res -= 1.0/(i+alpha) return res def g(dist, aq): """ Compute function g (Lemma 5) for a given full parent isntantiation. Parameters ---------- dists: list ints Counts of the child variable for a given full parent instantiation. aq: float Equivalent sample size divided by the product of parents arities. """ res = log(2*min(dist)/aq + 1) for d in dist: res += - log(2*d/aq + 1) return res def h(dist, alpha, r): """ Computes function h (Lemma 8). """ res = -lg(sum(dist), alpha) alphar = alpha/r for n in dist: if n > 0: res += lg(n, alphar) return res def ubh_js(dists, alpha, r, counters=None): """ Compute bound h for each instantiation js of set of parents S. See Theorem 3 for the definition of the bound. Parameters ---------- dists: list of lists Counts of the child variable for each full parent instantiation j that is compatible with js. alpha: float The equivalent sample size (ESS). r: int Arity (number of possible values) of the child variable. counters: dict (optional) Dictionary used to store the number of times each function (ml, f + g, h) was the minimum in the last part of the equation in Theorem 3. Returns ------- Upper bound h for a given isntantiation of parent set S. """ is_g, is_h, is_ml = 0, 0, 1 mls = 0.0 best_diff = 0.0 for dist in dists: ml_j = ml(dist) mls += ml_j ubg_plus_f = -len(dist)*log(r) + g(dist, alpha) iffirst_ub = min(ubg_plus_f, ml_j) ubh = 0 if not onepositive(dist) and diffa(dist, alpha, r) >= 0 and alpha <= 1: ubh = h(dist, alpha/2, r) iffirst_ub = min(iffirst_ub, ubh) diff = iffirst_ub - ml_j if diff < best_diff: best_diff = diff is_g, is_h, is_ml = 0, 0, 0 if iffirst_ub == ubg_plus_f: is_g = 1 if iffirst_ub == ubh: is_h = 1 if counters is not None: counters['inner_ml'] += is_ml counters['inner_g'] += is_g counters['inner_h'] += is_h counters['inner_total'] += 1 return best_diff + mls ############################### ######### DATA CLASS ########## ### main code ### ############################### class Data: """ A dataset of complete discrete data. This class holds all the information used during the experiments. """ def __init__(self, data, name): """" Attributes ---------- data: pandas dataframe or path to csv file. The data to be used for the experiments. name: str Name used to save results (usually matching dataset name). It is assumed that: 1. All values are separated by whitespace 2. Comment lines start with a '#' 3. The first line is a header stating the names of the variables 4. The second line states the arities of the variables 5. All other lines contain the actual data """ if isinstance(data, pd.DataFrame) == False: data = pd.read_csv(data, delim_whitespace=True, comment='#') arities = [int(x) for x in data.iloc[0]] self._name = name self._data = data[1:] self._arities = dict(zip(list(self._data), arities)) self._variables = list(data.columns) self._varidx = {} # Initialize all the counters to zero self.counters = {} self.reset_counters() for i, v in enumerate(self._variables): self._varidx[v] = i self.get_atoms() def reset_counters(self): """ There are a number of counters to keep track of the number of scores and bounds computed. This function resets them to zero. """ # 'min' counters are used to keep track the number of times each of # bound g and h is the tightest. self.counters['min_ubg'] = 0 self.counters['min_ubh'] = 0 # 'inner' counters are used inside bound h. See ubh_js function in # utils.py or Theorem 3 in the paper. self.counters['inner_ml'] = 0 self.counters['inner_g'] = 0 self.counters['inner_h'] = 0 self.counters['inner_total'] = 0 def upper_bound_f(self, child, posfamilyinsts): """ Compute a weak upper bound on supersets of a given parent set. Parameters ---------- child: int Index of the child of the family. posfamilyinsts: int The number of instantiations of the family which occur at least once in the data Returns ------- Upper bound h (float). """ return -posfamilyinsts * log(self._arities[child]) def upper_bound_g(self, child, parents, aq, posfamilyinsts, atoms_for_parents): """ Compute an upper bound on supersets of parents Parameters ---------- child: int Index of the child of the family. parents: list The parents of the family (an iterable of indices) aq: float Equivalent sample size divided by the product of parents arities. posfamilyinsts: int The number of instantiations of the family which occur at least once in the data atoms_for_parents: dict For each instantiation of `parents` (keys in the dictionary), a list of list of counts the child variable. Each of the inner lists corresponds to a full instantion of all variables (but the child) that is compatible with the instantiation of the parents in the key. See atoms_for_parents function. Returns ------- Upper bound g (float). """ m_final = 0 for dists in atoms_for_parents: pens = [] # Compute g for each full instantiation. for dist in dists: pens.append(g(dist, aq)) m_min = min(pens) m_final += m_min if len(pens) > 1: pens[pens.index(m_min)] = float('inf') m_final += min(pens) return -posfamilyinsts*log(self._arities[child]) + m_final def upper_bound_h(self, child, parents, alpha, atoms_for_parents): """ Compute an upper bound on supersets of parents. Parameters ---------- child: int Index of the child of the family. parents: list The parents of the family (an iterable of indices) alpha: float Equivalent sample size. atoms_for_parents: dict For each instantiation of `parents` (keys in the dictionary), a list of list of counts the child variable. Each of the inner lists corresponds to a full instantion of all variables (but the child) that is compatible with the instantiation of the parents in the key. See atoms_for_parents function. Returns ------- Upper bound h (float). """ for pa in parents: alpha /= self._arities[pa] r = self._arities[child] this_ub = 0.0 # Compute ubh for each instantiation of parent set S for dists in atoms_for_parents: this_ub += ubh_js(dists, alpha, r, self.counters) return this_ub def upper_bound_min_min(self, child, parents, aq, counts, atoms_for_parents): """ Returns the best (min) of the two bounds (g and h). Parameters ---------- child: int Index of the child of the family. parents: list The parents of the family (an iterable of indices) aq: float Equivalent sample size divided by the product of parents arities. counts: pandas series The counts for each of the full instantiations. (Only the number of full instantations is actually needed). atoms_for_parents: dict For each instantiation of `parents` (keys in the dictionary), a list of list of counts the child variable. Each of the inner lists corresponds to a full instantion of all variables (but the child) that is compatible with the instantiation of the parents in the key. See atoms_for_parents function. Returns ------- Upper bound min(g, h) (float). """ r = self._arities[child] this_ub = 0.0 m_final = 0 for child_counts in atoms_for_parents: # Upper bound h this_ub += ubh_js(child_counts, aq, r) # Upper bound g pens = [] for cc in child_counts: pen = + log(2*min(cc)/aq + 1) for c in cc: pen += - log(2*c/aq + 1) pens.append(pen) m_min = min(pens) m_final += m_min if len(pens) > 1: pens[pens.index(m_min)] = float('inf') m_final += min(pens) ubg = -len(counts)*log(self._arities[child]) + m_final if this_ub < ubg: self.counters['min_ubh'] += 1 elif this_ub > ubg: self.counters['min_ubg'] += 1 else: self.counters['min_ubh'] += 1 self.counters['min_ubg'] += 1 return min(this_ub, -len(counts)*log(self._arities[child]) + m_final) def bdeu_score(self, child, parents, alpha=None, bound=None): """ Computes the (local) score of a given child and a parent set. Parameters ---------- child: int Index of the child of the family. parents: list The parents of the family (an iterable of indices) alpha: float Equivalent sample size. Returns ------- A tuple (score, ubs) where - score is the BDeu score of a particular child and parent set - ubs is a dictionary of mapping the names of upper bounds to upper bounds on the BDeu scores of supersets of the parent set. """ if alpha is None: alpha = 1.0 warnings.warn('ESS (alpha) not defined. Defaulting to alpha=1.0.') aq = alpha for parent in parents: aq /= self._arities[parent] aqr = aq / self._arities[child] counts = self._data.groupby(list(parents)+[child], sort=True).size() posfamilyinsts = len(counts) bdeu_score = 0.0 if len(parents) == 0: nij = 0 for nijk in counts: bdeu_score += lg(nijk,aqr) nij += nijk bdeu_score -= lg(nij,aq) else: cnt = Counter() for idx, nijk in counts.iteritems(): cnt[idx[:-1]] += nijk bdeu_score += lg(nijk,aqr) for nij in cnt.values(): bdeu_score -= lg(nij,aq) atoms_for_parents = self.atoms_for_parents(child, parents).values() if bound == 'f': bounds = {'f': self.upper_bound_f(child, posfamilyinsts)} elif bound == 'g': bounds = {'g': self.upper_bound_g(child, parents, aq, posfamilyinsts, atoms_for_parents)} elif bound == 'h': bounds = {'h': self.upper_bound_h(child, parents, alpha, atoms_for_parents)} elif bound == 'min': bounds = {'min': self.upper_bound_min_min(child, parents, aq, counts, atoms_for_parents)} elif bound == 'all': bounds = {'f': self.upper_bound_f(child, posfamilyinsts), 'g': self.upper_bound_g(child, parents, aq, posfamilyinsts, atoms_for_parents), 'h': self.upper_bound_h(child, parents, alpha, atoms_for_parents), 'min': self.upper_bound_min_min(child, parents, aq, counts, atoms_for_parents)} elif bound is None: return bdeu_score return bdeu_score, bounds def pen_ll_score(self, child, parents, pen_type): """ Returns a the AIC score of a particular child and parent set Parameters ---------- child: int Index of the child of the family. parents: list The parents of the family (an iterable of indices) pen_type: str or float Either a type of score ('BIC' or 'AIC') or a penalisation coefficient. """ counts = self._data.groupby(list(parents)+[child],sort=True).size() posfamilyinsts = len(counts) LL = 0 if len(parents) == 0: nij = counts.sum() for nijk in counts: LL += nijk*np.log(nijk/nij) pen = (self._arities[child] -1) else: cnt = Counter() # Compute nij for each parent configuration for idx, nijk in counts.iteritems(): cnt[idx[:-1]] += nijk # Compute the loglikelihood for idx, nijk in counts.iteritems(): LL += nijk*np.log(nijk/cnt[idx[:-1]]) # Compute the penalization for AIC pen = 1 for parent in parents: pen *= self._arities[parent] pen *= self._arities[child] -1 if pen_type == 'AIC': score = LL - pen elif pen_type == 'BIC': pen *= 0.5*np.log(counts.sum()) score = LL - pen elif isinstance(pen_type, (int, float)): score = LL - pen_type*pen else: Exception(pen_type + ' is not supported yet. Please use BIC or AIC.') return score def all_bdeu_scores(self, alpha=None, palim=None, bound=None, filepath=None): """ Exhaustively compute all BDeu scores and upper bounds for all families up to `palim` Parameters ---------- child: int Index of the child of the family. alpha: float Equivalent sample size. palim: int The maximum number of parents. bound: str The bound to compute. Either 'f', 'g', 'h', 'min'. If bound == 'all' computes all bounds. filepath: str Path to file where to save the scores. If left to None, the scores are not saved. Returns ------- score_dict: dict A dictionary dkt where dkt[child][parents] = bdeu_score """ if palim is None: palim = 3 warnings.warn('Maximum number of parents (palim) not defined. Defaulting to palim=3.') if alpha is None: alpha = 1.0 warnings.warn('ESS (alpha) not defined. Defaulting to alpha=1.0.') score_dict = {} for i, child in enumerate(self._variables): potential_parents = frozenset(self._variables[:i]+self._variables[i+1:]) child_dkt = {} for pasize in range(palim+1): for parents in combinations(potential_parents,pasize): child_dkt[frozenset(parents)] = self.bdeu_score(child,parents,alpha,bound=bound) score_dict[child] = child_dkt if filepath is not None: self.write_scores(filepath, score_dict) return score_dict def all_pen_ll_scores(self, score_type, filepath=None, palim=None): """ Exhaustively compute all BDeu scores and upper bounds for all families up to `palim` Parameters ---------- score_type: str or float Either a type of score ('BIC' or 'AIC') or a penalisation coefficient. filepath: str Path to file where to save the scores. If left to None, the scores are not saved. palim: int Maximum number of parents. Returns ------- score_dict: dict A dictionary dkt where dkt[child][parents] = bdeu_score """ if palim is None: palim = 3 warnings.warn('Maximum number of parents (palim) not defined. Defaulting to palim=3.') score_dict = {} for i, child in enumerate(self._variables): potential_parents = frozenset(self._variables[:i]+self._variables[i+1:]) child_dkt = {} for pasize in range(palim+1): for parents in combinations(potential_parents,pasize): child_dkt[frozenset(parents)] = self.pen_ll_score(child, parents, score_type) score_dict[child] = child_dkt if filepath is not None: self.write_scores(filepath, score_dict) return score_dict def write_scores(self, filepath, score_dict): """ Saves a dictionary of scores to filepath. See all_pen_ll_scores or all_bdeu_scores. """ score_info = '{}\n'.format(len(self._variables)) for child, parents in score_dict.items(): score_info += child + ' {}\n'.format(len(score_dict[child])) for parent, score in parents.items(): score_info += str(score) + ' ' + str(len(parent)) + ' ' + ' '.join(parent) + '\n' with open(filepath, 'w') as w: w.write(score_info) def atoms_for_parents(self, child, parents): """ Return a dictionary whose keys are instantiations of `parents` with positive counts in the data and whose values are lists of lists of child counts. Parameters ---------- child: int The (index of) child variable. parents: list of ints The list of indices of the parent variables. Returns ------- dkt: dict [parents instantiations] = [[child counts full intantiation 1], [child counts full intantiation 2], ... [child_counts full intantiation n]] Example ------- If dkt is the returned dictionary and dkt[0,1,0] = [[1,2], [0,4]], then there are 3 variables in `parents` and there are 2 full parent instantiations for the instantiation (0,1,0): one with child counts [1,2] and one with child counts [0,4]. A full instantiation means that all variables (but the child) have a value assigned to them. The full instantatiations in each key are the ones compatible with the corresponding instantiation of `parents` in that key. In the example, if we have 4 variables (plus the child) that means there are two possible instantiation of the 4th variable: one where the child is distributed as [1, 2], and other where it is distributed as [0, 4]. The 4th variable might have more than 2 states, but those are not observed (zero counts) in this example. """ # Get indices of parents in vector of all possible parents for child child_idx = self._varidx[child] parentset = frozenset(parents) pa_idxs = [] for i, parent in enumerate(self._variables[:child_idx]+self._variables[child_idx+1:]): if parent in parentset: pa_idxs.append(i) # As we open the tree of variables following the index order, we only # look at full instantations of parents and variables of higher index. upper_pa_idxs = list(range(max(pa_idxs + [-1]) + 1, len(self._variables)-1)) upper_dkt = {} for fullinst, childcounts in self._atoms[child].items(): inst = tuple([fullinst[i] for i in pa_idxs + upper_pa_idxs]) try: upper_dkt[inst] = list(np.array(upper_dkt[inst]) + np.array(childcounts)) except KeyError: upper_dkt[inst] = childcounts # The counts for instantations that differ only on variables of lower # index can be safely summed to improve the bounds. dkt = {} posfamilyinsts = 0 for fullinst, childcounts in upper_dkt.items(): inst = tuple([fullinst[i] for i in range(len(pa_idxs))]) # In this step, we have to remove the zero counts! non_zeros = [x for x in childcounts if x>0] posfamilyinsts += len(non_zeros) try: dkt[inst].append(non_zeros) except KeyError: dkt[inst] = [non_zeros] return dkt def get_atoms(self): """ Compute a dictionary whose keys are child variables and whose values are dictionaries mapping instantiations of all the other parents to a list of counts for the child variable for that instantiation. Only parent set instantations with a positive count in the data are included. The dictionary is stored as the value of self._atoms """ # Create the counts as a pandas DataFrame with a new column 'counts' counts = pd.DataFrame({'counts' : self._data.groupby(self._variables).size()}).reset_index() # Save the counts inside a list to facilitate concatenation listfy = lambda x : [x] counts['counts'] = counts['counts'].apply(listfy) dktall = {} for child in self._variables: all_but_child = [var for var in self._variables if var != child] # The sum operation concatenate the lists of counts # for rows that differ only on the child variable # The unstack operation fill in the full instantations # which do not have all possible values of child in the data # so that we can keep the zeros in place child_counts = counts.groupby(by=self._variables).agg({'counts': 'sum'}).unstack(child, fill_value=[0]).stack().reset_index() child_counts = child_counts.groupby(by=all_but_child).agg({'counts': 'sum'}).reset_index() dkt_child = child_counts.set_index(all_but_child).to_dict('index') for cc in dkt_child: dkt_child[cc] = dkt_child[cc]['counts'] dktall[child] = dkt_child self._atoms = dktall def pruned_bdeu_scores_per_child(self, child, bound, timeout, alpha=1.0, palim=None, verbose=False, save_step=False): """ Return a dictionary for the child variable mapping parent sets to BDeu scores. Not all parent sets are included. Only those parent set of cardinality at most `palim` can be included. Also, if it can be established that a parent set can not be a parent set for the child in an optimal Bayesian network, then it is not included. Also, outputs a pandas DataFrame with the number of scores computed. The DataFrame is saved to memory every iteration over palim so not to miss results if the process is terminated. Parameters ---------- child: int The (index of) child variable. bound: str The type of bound to use. timeout: int The maximum amount of time the function has to run (secs). alpha: float The effective sample size (prior parameter). palim: int The maximum number of parents. verbose: boolean Whether messages on progress should be printed. save_step: boolean Whether to save a csv per child """ if palim is None: palim = 3 warnings.warn('Maximum number of parents (palim) not defined. Defaulting to palim=3.') if bound == 'h': scores_per_palim = pd.DataFrame(columns=['child', 'palim', 'alpha', 'all_scores', 'n_scores_' + bound, 'time_' + bound, 'inf_n_scores', 'inner_ml', 'inner_g', 'inner_h', 'inner_total', 'best_pa']) elif bound == 'min': scores_per_palim = pd.DataFrame(columns=['child', 'palim', 'alpha', 'all_scores', 'n_scores_' + bound, 'time_' + bound, 'inf_n_scores', 'min_ubg', 'min_ubh', 'best_pa']) else: scores_per_palim =
pd.DataFrame(columns=['child', 'palim', 'alpha', 'all_scores', 'n_scores_' + bound, 'time_' + bound, 'inf_n_scores', 'best_pa'])
pandas.DataFrame
#! /usr/bin/env python3 import pandas as pd import os from steves_utils.summary_utils import ( get_experiments_from_path ) from steves_utils.utils_v2 import ( get_experiments_base_path ) class tuned_1v2_Helper: def __init__(self, series_path = os.path.join(get_experiments_base_path(), "tuned_1v2")): self.independent_vars = ["Dataset", "x_transform"] self.series_path = series_path self.series_name = "tuned_1v2" def get_all_trials(self): # raise Exception("Whatever") all_trials = [] trials = get_experiments_from_path( self.series_path ) for t in trials: t["series_name"] = self.series_name for key, value in t["parameters"].items(): t[key] = value del t["parameters"] for key, value in t["results"].items(): t[key] = value del t["results"] for key, value in t.items(): if type(value) == list: t[key] = tuple(value) all_trials.append(t) p =
pd.DataFrame(all_trials)
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]]
tm.assert_index_equal(dropped, expected)
pandas.util.testing.assert_index_equal
import pandas as pd import numpy as np from datetime import date """ dataset split: (date_received) dateset3: 20160701~20160731 (113640),features3 from 20160315~20160630 (off_test) dateset2: 20160515~20160615 (258446),features2 from 20160201~20160514 dateset1: 20160414~20160514 (138303),features1 from 20160101~20160413 1.merchant related: sales_use_coupon. total_coupon transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon total_sales. coupon_rate = sales_use_coupon/total_sales. 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) 3.user related: distance. user_avg_distance, user_min_distance,user_max_distance. buy_use_coupon. buy_total. coupon_received. buy_use_coupon/coupon_received. avg_diff_date_datereceived. min_diff_date_datereceived. max_diff_date_datereceived. count_merchant. 4.user_merchant: times_user_buy_merchant_before. 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #1754884 record,1053282 with coupon_id,9738 coupon. date_received:20160101~20160615,date:20160101~20160630, 539438 users, 8415 merchants off_train = pd.read_csv('data/ccf_offline_stage1_train.csv',header=None) off_train.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received','date'] #2050 coupon_id. date_received:20160701~20160731, 76309 users(76307 in trainset, 35965 in online_trainset), 1559 merchants(1558 in trainset) off_test = pd.read_csv('data/ccf_offline_stage1_test_revised.csv',header=None) off_test.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received'] #11429826 record(872357 with coupon_id),762858 user(267448 in off_train) on_train = pd.read_csv('data/ccf_online_stage1_train.csv',header=None) on_train.columns = ['user_id','merchant_id','action','coupon_id','discount_rate','date_received','date'] dataset3 = off_test feature3 = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset2 = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature2 = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset1 = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature1 = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))] ############# other feature ##################3 """ 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #for dataset3 t = dataset3[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset3[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset3[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset3[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset3[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset3[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset3[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset3[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature3 = pd.merge(t1,t,on='user_id') other_feature3 = pd.merge(other_feature3,t3,on=['user_id','coupon_id']) other_feature3 = pd.merge(other_feature3,t4,on=['user_id','date_received']) other_feature3 = pd.merge(other_feature3,t5,on=['user_id','coupon_id','date_received']) other_feature3 = pd.merge(other_feature3,t7,on=['user_id','coupon_id','date_received']) other_feature3.to_csv('data/other_feature3.csv',index=None) print(other_feature3.shape) #for dataset2 t = dataset2[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset2[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset2[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset2[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset2[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset2[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset2[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset2[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature2 = pd.merge(t1,t,on='user_id') other_feature2 = pd.merge(other_feature2,t3,on=['user_id','coupon_id']) other_feature2 = pd.merge(other_feature2,t4,on=['user_id','date_received']) other_feature2 = pd.merge(other_feature2,t5,on=['user_id','coupon_id','date_received']) other_feature2 = pd.merge(other_feature2,t7,on=['user_id','coupon_id','date_received']) other_feature2.to_csv('data/other_feature2.csv',index=None) print(other_feature2.shape) #for dataset1 t = dataset1[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset1[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset1[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset1[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset1[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset1[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset1[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset1[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature1 = pd.merge(t1,t,on='user_id') other_feature1 = pd.merge(other_feature1,t3,on=['user_id','coupon_id']) other_feature1 = pd.merge(other_feature1,t4,on=['user_id','date_received']) other_feature1 = pd.merge(other_feature1,t5,on=['user_id','coupon_id','date_received']) other_feature1 = pd.merge(other_feature1,t7,on=['user_id','coupon_id','date_received']) other_feature1.to_csv('data/other_feature1.csv',index=None) print(other_feature1.shape) ############# coupon related feature ############# """ 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) """ def calc_discount_rate(s): s =str(s) s = s.split(':') if len(s)==1: return float(s[0]) else: return 1.0-float(s[1])/float(s[0]) def get_discount_man(s): s =str(s) s = s.split(':') if len(s)==1: return 'null' else: return int(s[0]) def get_discount_jian(s): s =str(s) s = s.split(':') if len(s)==1: return 'null' else: return int(s[1]) def is_man_jian(s): s =str(s) s = s.split(':') if len(s)==1: return 0 else: return 1 #dataset3 dataset3['day_of_week'] = dataset3.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset3['day_of_month'] = dataset3.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset3['days_distance'] = dataset3.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,6,30)).days) dataset3['discount_man'] = dataset3.discount_rate.apply(get_discount_man) dataset3['discount_jian'] = dataset3.discount_rate.apply(get_discount_jian) dataset3['is_man_jian'] = dataset3.discount_rate.apply(is_man_jian) dataset3['discount_rate'] = dataset3.discount_rate.apply(calc_discount_rate) d = dataset3[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset3 = pd.merge(dataset3,d,on='coupon_id',how='left') dataset3.to_csv('data/coupon3_feature.csv',index=None) #dataset2 dataset2['day_of_week'] = dataset2.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset2['day_of_month'] = dataset2.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset2['days_distance'] = dataset2.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,5,14)).days) dataset2['discount_man'] = dataset2.discount_rate.apply(get_discount_man) dataset2['discount_jian'] = dataset2.discount_rate.apply(get_discount_jian) dataset2['is_man_jian'] = dataset2.discount_rate.apply(is_man_jian) dataset2['discount_rate'] = dataset2.discount_rate.apply(calc_discount_rate) d = dataset2[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset2 = pd.merge(dataset2,d,on='coupon_id',how='left') dataset2.to_csv('data/coupon2_feature.csv',index=None) #dataset1 dataset1['day_of_week'] = dataset1.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset1['day_of_month'] = dataset1.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset1['days_distance'] = dataset1.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,4,13)).days) dataset1['discount_man'] = dataset1.discount_rate.apply(get_discount_man) dataset1['discount_jian'] = dataset1.discount_rate.apply(get_discount_jian) dataset1['is_man_jian'] = dataset1.discount_rate.apply(is_man_jian) dataset1['discount_rate'] = dataset1.discount_rate.apply(calc_discount_rate) d = dataset1[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset1 = pd.merge(dataset1,d,on='coupon_id',how='left') dataset1.to_csv('data/coupon1_feature.csv',index=None) ############# merchant related feature ############# """ 1.merchant related: total_sales. sales_use_coupon. total_coupon coupon_rate = sales_use_coupon/total_sales. transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon """ #for dataset3 merchant3 = feature3[['merchant_id','coupon_id','distance','date_received','date']] t = merchant3[['merchant_id']] t.drop_duplicates(inplace=True) t1 = merchant3[merchant3.date!='null'][['merchant_id']] t1['total_sales'] = 1 t1 = t1.groupby('merchant_id').agg('sum').reset_index() t2 = merchant3[(merchant3.date!='null')&(merchant3.coupon_id!='null')][['merchant_id']] t2['sales_use_coupon'] = 1 t2 = t2.groupby('merchant_id').agg('sum').reset_index() t3 = merchant3[merchant3.coupon_id!='null'][['merchant_id']] t3['total_coupon'] = 1 t3 = t3.groupby('merchant_id').agg('sum').reset_index() t4 = merchant3[(merchant3.date!='null')&(merchant3.coupon_id!='null')][['merchant_id','distance']] t4.replace('null',-1,inplace=True) t4.distance = t4.distance.astype('int') t4.replace(-1,np.nan,inplace=True) t5 = t4.groupby('merchant_id').agg('min').reset_index() t5.rename(columns={'distance':'merchant_min_distance'},inplace=True) t6 = t4.groupby('merchant_id').agg('max').reset_index() t6.rename(columns={'distance':'merchant_max_distance'},inplace=True) t7 = t4.groupby('merchant_id').agg('mean').reset_index() t7.rename(columns={'distance':'merchant_mean_distance'},inplace=True) t8 = t4.groupby('merchant_id').agg('median').reset_index() t8.rename(columns={'distance':'merchant_median_distance'},inplace=True) merchant3_feature = pd.merge(t,t1,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t2,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t3,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t5,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t6,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t7,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t8,on='merchant_id',how='left') merchant3_feature.sales_use_coupon = merchant3_feature.sales_use_coupon.replace(np.nan,0) #fillna with 0 merchant3_feature['merchant_coupon_transfer_rate'] = merchant3_feature.sales_use_coupon.astype('float') / merchant3_feature.total_coupon merchant3_feature['coupon_rate'] = merchant3_feature.sales_use_coupon.astype('float') / merchant3_feature.total_sales merchant3_feature.total_coupon = merchant3_feature.total_coupon.replace(np.nan,0) #fillna with 0 merchant3_feature.to_csv('data/merchant3_feature.csv',index=None) #for dataset2 merchant2 = feature2[['merchant_id','coupon_id','distance','date_received','date']] t = merchant2[['merchant_id']] t.drop_duplicates(inplace=True) t1 = merchant2[merchant2.date!='null'][['merchant_id']] t1['total_sales'] = 1 t1 = t1.groupby('merchant_id').agg('sum').reset_index() t2 = merchant2[(merchant2.date!='null')&(merchant2.coupon_id!='null')][['merchant_id']] t2['sales_use_coupon'] = 1 t2 = t2.groupby('merchant_id').agg('sum').reset_index() t3 = merchant2[merchant2.coupon_id!='null'][['merchant_id']] t3['total_coupon'] = 1 t3 = t3.groupby('merchant_id').agg('sum').reset_index() t4 = merchant2[(merchant2.date!='null')&(merchant2.coupon_id!='null')][['merchant_id','distance']] t4.replace('null',-1,inplace=True) t4.distance = t4.distance.astype('int') t4.replace(-1,np.nan,inplace=True) t5 = t4.groupby('merchant_id').agg('min').reset_index() t5.rename(columns={'distance':'merchant_min_distance'},inplace=True) t6 = t4.groupby('merchant_id').agg('max').reset_index() t6.rename(columns={'distance':'merchant_max_distance'},inplace=True) t7 = t4.groupby('merchant_id').agg('mean').reset_index() t7.rename(columns={'distance':'merchant_mean_distance'},inplace=True) t8 = t4.groupby('merchant_id').agg('median').reset_index() t8.rename(columns={'distance':'merchant_median_distance'},inplace=True) merchant2_feature = pd.merge(t,t1,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t2,on='merchant_id',how='left') merchant2_feature =
pd.merge(merchant2_feature,t3,on='merchant_id',how='left')
pandas.merge
import logging as log import typing from takco.linkedstring import LinkedString try: import pandas as pd except: log.error(f"Cannot import pandas") @pd.api.extensions.register_dataframe_accessor("takco") class TakcoAccessor: def __init__(self, df): self._df = df self.provenance = {} @staticmethod def try_html(obj): return obj._repr_html_() if hasattr(obj, "_repr_html_") else obj @property def head(self): return tuple(zip(*list(self._df.columns))) @classmethod def from_header(cls, head): columns = pd.MultiIndex.from_frame(pd.DataFrame(head).T) return pd.DataFrame([], columns=columns) @property def style(self): head = self._df.columns.to_frame().applymap(self.try_html) head.insert(0, -1, range(len(self._df.columns))) return pd.DataFrame( self._df.applymap(self.try_html).values, columns=pd.MultiIndex.from_arrays(head.values.T), ).style.set_table_styles( [{"selector": f"thead tr:first-child", "props": [("display", "none")]}] ) def highlight_cells(self, body=(), head=(), color=None, props=()): props = props or [("background-color", color or "#ff0")] st = self.style for ci, ri in body: st.table_styles.append( {"selector": f".data.row{ri}.col{ci}", "props": props} ) for ci, li in head: st.table_styles.append( {"selector": f".col_heading.level{li+1}.col{ci}", "props": props} ) return st def highlight_pivot(self, level, colfrom, colto, color=None, props=(), **kwargs): head = [(c, level) for c in range(colfrom, colto + 1)] return self.highlight_cells(head=head, color=color, props=props) def to_html(self): return self.style.render() def _repr_html_(self): return self._df.head().takco.to_html() TABEL_PROBLEMS = [ "Error: This is not a valid number. Please refer to the documentation at for correct input.", "[[|]]", ] def get_tabel_rows(matrix, linked=True): urltemplate = "http://{lang}.wikipedia.org/wiki/{page}" newmatrix = [] for row in matrix: newrow = [] for cell in row: text = str(cell.get("text", "") or "") for p in TABEL_PROBLEMS: text = text.replace(p, "") if linked: links = [] for link in cell.get("surfaceLinks", []): target = link.get("target") if not target: continue start = link.get("offset", 0) end = link.get("endOffset", len(text)) if link.get("linkType") in ["INTERNAL", "INTERNAL_RED"]: try: lang = target.get("language", "en") page = target.setdefault("href", target.get("title", "")) page = page.replace(" ", "_") url = urltemplate.format(lang=lang, page=page) if target.get("id", 0) > 0: url += "?curid=" + str(target.get("id")) except: raise Exception(f"bad target {target}") if start == 0 and end == 1: end = len(text) # HACK links.append((start, end, url)) newrow.append(LinkedString(text, links)) else: newrow.append(text) newmatrix.append(newrow) return newmatrix def to_tabel_rows(matrix): return [ [ { "text": getattr(c, "text", str(c)), "surfaceLinks": [ { "offset": start, "endOffset": end, "linkType": "INTERNAL", "target": {"url": url, "title": url.split("/")[-1],}, } for start, end, url in getattr(c, "links", []) ], } for c in row ] for row in matrix ] def from_tabel(obj, linked=True): body = get_tabel_rows(obj.get("tableData", []), linked=linked) head = get_tabel_rows(obj.get("tableHeaders", []), linked=linked) try: df = pd.DataFrame(body, columns=head or None) except: df = pd.DataFrame(body) provenance = {} for key in ["tableCaption", "sectionTitle", "pgTitle", "tableId", "pgId"]: provenance[key] = obj.get(key) df.attrs["provenance"] = provenance return df class Table(dict): """ A takco table object >>> Table(head=[['foo','bar']], body=[['1','2']]).head (('foo', 'bar'),) """ _id: str head: typing.Tuple[typing.Tuple[str, ...], ...] body: typing.Tuple[typing.Tuple[str, ...], ...] provenance: typing.Dict[str, typing.Any] annotations: typing.Dict[str, typing.Any] headerId: int _old_keys = { "_id": lambda self: self._id, "tableData": lambda self: to_tabel_rows(self.body), "tableHeaders": lambda self: to_tabel_rows(self.head), "headerId": lambda self: self.headerId, "numCols": lambda self: len(next(iter(self.body), ())), "numDataRows": lambda self: len(self.body), "numHeaderRows": lambda self: len(self.head), "numericColumns": lambda self: [], } _default_annotations = ["entities", "properties", "classes"] def __init__( self, obj=None, _id=None, head=(), body=(), provenance=(), annotations=(), linked=True ): if isinstance(obj, Table): _id = obj._id head, body = obj.head, obj.body provenance = dict(obj.provenance) annotations = dict(obj.annotations) for key in self._default_annotations: if key in obj: annotations[key] = obj.get(key) for key in list(obj.keys()): if (key not in self._old_keys) and ( key not in self._default_annotations ): provenance[key] = obj.get(key) elif obj is not None: _id = obj.get("_id") body = get_tabel_rows(obj.get("tableData", []), linked=linked) head = get_tabel_rows(obj.get("tableHeaders", []), linked=linked) annotations = {} for key in self._default_annotations: if key in obj: annotations[key] = obj.get(key) provenance = {} for key in list(obj.keys()): if (key not in self._old_keys) and ( key not in self._default_annotations ): provenance[key] = obj.get(key) self.head, self.body = tuple(map(tuple, head)), tuple(map(tuple, body)) self._id = _id or str(hash(self.head + self.body)) self.provenance = dict(provenance) self.annotations = dict(annotations) self.headerId = self.get_headerId(self.head) @staticmethod def get_headerId(header): import hashlib # header is a tuple of tuples. header = tuple(map(tuple, header)) h = hashlib.sha224(str(header).encode()).hexdigest() return int(h[:16], 16) // 2 # integer between 0 and SQLite MAX_VAL def to_dict(self): return { **{k: self[k] for k in self._old_keys}, **self.provenance, **self.annotations, } def __repr__(self): return self.df.head(1).__repr__() def _repr_html_(self): return self.df.takco._repr_html_() def __bool__(self): return bool(self.body) def __len__(self): return len(self.body) @property def df(self): columns =
pd.MultiIndex.from_arrays(self.head)
pandas.MultiIndex.from_arrays
#some of these imports are extraneous and left over from the flask megatutorial from flask import render_template, flash, redirect, url_for, request, Flask, jsonify, send_from_directory from app import app, db, DataWizardTools, HousingToolBox from app.models import User, Post from app.forms import PostForm from werkzeug.urls import url_parse from datetime import datetime from datetime import date import pandas as pd import os @app.route("/WaiverMaker", methods=['GET', 'POST']) def WaiverMaker(): #upload file from computer if request.method == 'POST': print(request.files['file']) f = request.files['file'] #turn the excel file into a dataframe, but skip the top 2 rows if they are blank test = pd.read_excel(f) test.fillna('',inplace=True) if test.iloc[0][0] == '': df = pd.read_excel(f,skiprows=2) print("Skipped top two rows") else: df =
pd.read_excel(f)
pandas.read_excel
"""figures of merit is a collection of financial calculations for energy. This module contains financial calculations based on solar power and batteries in a given network. The networks used are defined as network objects (see evolve parsers). TODO: Add inverters: Inverters are not considered at the moment and Improve Nan Handeling """ import numpy import pandas as pd from c3x.data_cleaning import unit_conversion #Todo: #Add inverters: Inverters are not considered at the moment #Improve Nan Handeling def meter_power(meas_dict: dict, meter: int, axis: int = 0, column: int = 0) -> pd.Series: """ calculates the power for a meter of individual measurement points by summing load, solar and battery power Args: meas_dict (dict): dict with measurement for one or multiple nodes. meter(int): Id for a meter axis (int): how data is concatenated for results column (int): column index to be used return: meter_p (pd.Series): combined power (solar, battery, load) """ meter_p = pd.DataFrame() if meas_dict[meter]: meter_p = pd.DataFrame() for meas in meas_dict[meter]: if 'load' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) elif 'solar' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) elif 'batteries' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) meter_p = meter_p.sum(axis=1) return meter_p def financial(meter_p: pd.Series, import_tariff: pd.Series, export_tariff: pd.Series) -> pd.Series: """ Evaluate the financial outcome for a customer. A conversion from kW to kWh is handled internally Note: assumes constant step size in timestamps (use forth index beforehand) Args: meter_p (pd.Series ): Power of a node import_tariff (pd.Series): Expects this to be in $/kWh. export_tariff (pd.Series): Expects this to be in $/kWh. Returns: cost (pd.Series): cost per measurement point, using import and export tariffs """ # Note: need to ensure meter data is converted to kWh timestep = numpy.timedelta64(meter_p.index[1] - meter_p.index[0]) meter = unit_conversion.convert_watt_to_watt_hour(meter_p, timedelta=timestep) import_power_cost = meter.where(meter >= 0).fillna(value=0.0) export_power_revenue = meter.where(meter < 0).fillna(value=0.0) cost = import_power_cost * import_tariff + export_power_revenue*export_tariff return cost def customer_financial(meas_dict: dict, node_keys: list = None, tariff: dict = None) -> dict: """ Evaluate the financial outcome for a selected customer or for all customers. Note: not currently setup to handle missing data (eg NANs) #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list nodes for which financials are calculated. tariff (dict): nodes tariff data. Expects this to be in $/kWh. Returns: results_dict: cost per node and the average cost over all nodes """ results_dict = {} average = [] nodes = node_keys if node_keys else meas_dict.keys() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: if key in tariff: meter_p = meter_power(meas_dict, key, axis=1) meter_p_cost = financial(meter_p, tariff[key]['import_tariff'], tariff[key]['export_tariff']) results_dict[key] = meter_p_cost initiate = 0 for node in results_dict.values(): average = node if initiate == 0 else average.append(node) initiate = 1 average = numpy.nanmean(average) results_dict["average"] = average return results_dict def customer_cost_financial(tariff: dict, energy_grid_load: pd.Series, energy_solar_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series, energy_solar_load: pd.Series) -> pd.Series: """ evaluates the customers cost Args: tariff: specifies tariffs to be applied to aggregation of customers. energy_grid_load: specifies the energy flow between grid and load energy_solar_grid: specifies the energy flow between solar and gird energy_battery_load: specifies the energy flow between battery and load energy_solar_battery: specifies the energy flow between solar and battery energy_solar_load: specifies the energy flow between solar and load Returns: customer_cost (pd.Series): """ customer_cost = financial(energy_grid_load, tariff['re_import_tariff'], 0) customer_cost += financial(energy_grid_load, tariff['rt_import_tariff'], 0) customer_cost += financial(energy_battery_load, tariff['le_import_tariff'], 0) customer_cost += financial(energy_battery_load, tariff['lt_import_tariff'], 0) customer_cost -= financial(energy_solar_grid, tariff['re_export_tariff'], 0) customer_cost += financial(energy_solar_grid, tariff['rt_export_tariff'], 0) customer_cost -= financial(energy_solar_battery, tariff['le_export_tariff'], 0) customer_cost += financial(energy_solar_battery, tariff['lt_export_tariff'], 0) customer_cost -= financial(energy_solar_battery, tariff['le_export_tariff'], 0) customer_cost += financial(energy_solar_load, tariff['lt_import_tariff'], 0) customer_cost += financial(energy_solar_load, tariff['lt_export_tariff'], 0) return customer_cost def battery_cost_financial(tariff: dict, energy_grid_battery: pd.Series, energy_battery_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series) -> pd.Series: """ evaluates the battery cost Args: tariff (dict): specifies tariffs to be applied to aggregation of customers. energy_grid_battery (pd.Series): specifies the energy flow between grid and battery energy_battery_grid (pd.Series): specifies the energy flow between battery and gird energy_battery_load (pd.Series): specifies the energy flow between battery and load energy_solar_battery (pd.Series): specifies the energy flow between solar and battery Returns: battery_cost (pd.Series): """ battery_cost = financial(energy_solar_battery, tariff['le_import_tariff'], 0) battery_cost += financial(energy_solar_battery, tariff['lt_import_tariff'], 0) battery_cost -= financial(energy_battery_load, tariff['le_export_tariff'], 0) battery_cost += financial(energy_battery_load, tariff['lt_export_tariff'], 0) battery_cost += financial(energy_grid_battery, tariff['re_import_tariff'], 0) battery_cost += financial(energy_grid_battery, tariff['rt_import_tariff'], 0) battery_cost -= financial(energy_battery_grid, tariff['re_export_tariff'], 0) battery_cost += financial(energy_battery_grid, tariff['rt_export_tariff'], 0) return battery_cost def network_cost_financial(tariff: dict, energy_grid_load: pd.Series, energy_grid_battery: pd.Series, energy_battery_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series, energy_solar_load: pd.Series) -> pd.Series: """ evaluates the network cost Args: tariff (dict): specifies tariffs to be applied to aggregation of customers. energy_grid_load (pd.Series): specifies the energy flow between grid and load energy_grid_battery (pd.Series): specifies the energy flow between grid and battery energy_battery_grid (pd.Series): specifies the energy flow between battery and grid energy_battery_load (pd.Series): specifies the energy flow between battery and solar energy_solar_battery (pd.Series) : specifies the energy flow between solar and battery energy_solar_load (pd.Series): specifies the energy flow between solar and load Returns: network_cost(pd.Series) """ network_cost = -financial(energy_grid_load, tariff['rt_import_tariff'], 0) network_cost -= financial(energy_battery_load, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_battery_load, tariff['lt_export_tariff'], 0) network_cost -= financial(energy_solar_battery, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_solar_battery, tariff['lt_export_tariff'], 0) network_cost -= financial(energy_grid_battery, tariff['rt_import_tariff'], 0) network_cost -= financial(energy_battery_grid, tariff['rt_export_tariff'], 0) network_cost -= financial(energy_solar_load, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_solar_load, tariff['lt_export_tariff'], 0) return network_cost def lem_financial(customer_tariffs, energy_grid_load, energy_grid_battery, energy_solar_grid, energy_battery_grid, energy_battery_load, energy_solar_battery, energy_solar_load, battery_tariffs=None): """ evaluate the cost for the local energy model Args: customer_tariffs: specifies tariffs to be applied to aggregation of customers. energy_grid_load (pd.series): specifies the energy flow between grid and load energy_grid_battery: specifies the energy flow between grid and battery energy_solar_grid: specifies the energy flow between solar and grid energy_battery_grid: specifies the energy flow between battery and grid energy_battery_load: specifies the energy flow between battery and solar energy_solar_battery: specifies the energy flow between solar and battery energy_solar_load: specifies the energy flow between solar and load battery_tariffs: specifies tariffs to be applied to aggregation of battery. (if none given customer_tariffs ware used) Returns: customer_cost, battery_cost, network_cost """ customer_cost = customer_cost_financial(customer_tariffs, energy_grid_load, energy_solar_grid, energy_battery_load, energy_solar_battery, energy_solar_load) bt_choice = battery_tariffs if battery_tariffs else customer_tariffs battery_cost = battery_cost_financial(bt_choice, energy_grid_battery, energy_battery_grid, energy_battery_load, energy_solar_battery) network_cost = network_cost_financial(customer_tariffs, energy_grid_load, energy_grid_battery, energy_battery_grid, energy_battery_load, energy_solar_battery, energy_solar_load) return customer_cost, battery_cost, network_cost def peak_powers(meas_dict: dict, node_keys: list = None) -> dict: """ Calculate the peak power flows into and out of the network. #TODO: consider selecting peak powers per phase #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. Returns: results_dict (dict): dictionary of peak power into and out of network in kW, and in kW/connection point. """ nodes = node_keys if node_keys else meas_dict.keys() sum_meter_power = pd.DataFrame([]) for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: meter_p = meter_power(meas_dict, key, axis=1) if sum_meter_power.empty: sum_meter_power = meter_p.copy() else: sum_meter_power = pd.concat([sum_meter_power, meter_p], axis=1, sort=True) sum_power = sum_meter_power.sum(axis=1) aver_power = numpy.nanmean(sum_meter_power, axis=1) return {"peak_power_import": numpy.max(sum_power), "peak_power_export": numpy.min(sum_power), "peak_power_import_av": numpy.max(aver_power), "peak_power_export_av": numpy.min(aver_power), "peak_power_import_index": sum_power.idxmax(), "peak_power_export_index": sum_power.idxmax()} def self_sufficiency(load_p: pd.DataFrame, solar_p: pd.DataFrame, battery_p: pd.DataFrame): """ Self-sufficiency = 1 - imports / consumption Note: the function expects a full index #TODO: consider inverters and how to avoid double counting with solar, batteries Args: load_p (pd.dataframe): measurement data for load of a s single node. solar_p (pd.dataframe): measurement data for solar of a s single node. battery_p(pd.dataframe): measurement data for battery of a s single node. Returns: results_dict: self_consumption_solar, self_consumption_batteries """ self_sufficiency_solar = numpy.nan self_sufficiency_battery = numpy.nan if not load_p.empty: net_load_solar = pd.concat((load_p, solar_p), axis=1).sum(axis=1) net_load_solar_battery = pd.concat((load_p, solar_p, battery_p), axis=1).sum(axis=1) #create an array that contains which entries are import and which are export mask_import_solar = (net_load_solar >= 0) mask_import_solar_battery = (net_load_solar_battery >= 0) net_import_solar = net_load_solar * mask_import_solar net_import_solar_battery = net_load_solar_battery * mask_import_solar_battery sum_load = numpy.nansum(load_p) sum_solar = numpy.nansum(solar_p) # it doesn't make sense to calculate this if there is no solar or the load date is missing (0.0) if sum_solar < 0 and sum_load != 0: self_sufficiency_solar = 1 - (numpy.nansum(net_import_solar) / sum_load) self_sufficiency_battery = 1 - (numpy.nansum(net_import_solar_battery) / sum_load) else: print("Warning: not enough data to calculate") return {"self_sufficiency_solar": self_sufficiency_solar, "self_sufficiency_batteries": self_sufficiency_battery} def self_consumption(load_p: pd.DataFrame, solar_p: pd.DataFrame, battery_p: pd.DataFrame) -> dict: """ Self-consumption = 1 - exports / generation Note: the function expects a full index #TODO: consider inverters and how to avoid double counting with solar, batteries Args: load_p (pd.dataframe): measurement data for load of a s single node. solar_p (pd.dataframe): measurement data for solar of a s single node. battery_p(pd.dataframe): measurement data for battery of a s single node. Retruns: results_dict: self_consumption_solar, self_consumption_batteries """ net_load_solar = pd.concat((load_p, solar_p), axis=1).sum(axis=1) net_load_solar_battery = pd.concat((load_p, solar_p, battery_p), axis=1).sum(axis=1) # create an array that contains which entries are import and which are export mask_export_solar = (net_load_solar < 0) mask_export_solar_battery = (net_load_solar_battery < 0) net_export_solar = net_load_solar * mask_export_solar net_import_solar_battery = net_load_solar_battery * mask_export_solar_battery sum_solar = numpy.nansum(solar_p) self_consumption_solar = numpy.nan self_consumption_battery = numpy.nan if sum_solar < 0: self_consumption_solar = 1 - (numpy.nansum(net_export_solar) / sum_solar) self_consumption_battery = 1 - (numpy.nansum(net_import_solar_battery) / sum_solar) return {"self_consumption_solar": self_consumption_solar, "self_consumption_batteries": self_consumption_battery} def self_sufficiency_self_consumption_average(self_consumption_self_sufficiency_dict: dict) -> dict: """ calculates the average for self sufficiency and consumption over a given measurement. #TODO: consider inverters and how to avoid double counting with solar, batteries Args: self_consumption_self_sufficiency_dict: The dictionary has a node Id as Key and 4 values per node Returns: results_dict: dictionary with averages for the given network """ self_sufficiency_solar = [] self_sufficiency_batteries = [] self_consumption_solar = [] self_consumption_batteries = [] for node in self_consumption_self_sufficiency_dict.values(): self_sufficiency_solar.append(node["self_sufficiency_solar"]) self_sufficiency_batteries.append(node["self_sufficiency_batteries"]) self_consumption_solar.append(node["self_consumption_solar"]) self_consumption_batteries.append(node["self_consumption_batteries"]) av_self_sufficiency_solar = numpy.nanmean(self_sufficiency_solar) av_self_sufficiency_batteries = numpy.nanmean(self_sufficiency_batteries) av_self_consumption_solar = numpy.nanmean(self_consumption_solar) av_self_consumption_batteries = numpy.nanmean(self_consumption_batteries) return {"av_self_sufficiency_solar": av_self_sufficiency_solar, "av_self_sufficiency_batteries": av_self_sufficiency_batteries, "av_self_consumption_solar": av_self_consumption_solar, "av_self_consumption_batteries": av_self_consumption_batteries} def self_sufficiency_self_consumption(meas_dict: dict, node_keys: list = None, column: int = 0) -> dict: """ Self-sufficiency = 1 - imports / consumption Self-consumption = 1 - exports / generation And average over those #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. column (int): Column index used for calculation Returns: results_dict: self_sufficiency_solar, self_sufficiency_batteries, self_consumption_solar, self_consumption_batteries """ results_dict = {} nodes = node_keys if node_keys else meas_dict.keys() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: load_p = pd.DataFrame() solar_p = pd.DataFrame() battery_p = pd.DataFrame() for meas in meas_dict[key]: data_df = meas_dict[key][meas] if not data_df.empty: if 'loads' in meas: load_p = pd.concat([load_p, meas_dict[key][meas].iloc[:,column]]) elif 'solar' in meas: solar_p = pd.concat([solar_p, meas_dict[key][meas].iloc[:,column]]) elif 'batteries' in meas: battery_p = pd.concat([battery_p, meas_dict[key][meas].iloc[:,column]]) self_sufficiency_dict = self_sufficiency(load_p, solar_p, battery_p) self_consumption_dict = self_consumption(load_p, solar_p, battery_p) results_dict[key] = self_sufficiency_dict.copy() results_dict[key].update(self_consumption_dict) averages_dict = self_sufficiency_self_consumption_average(results_dict) results_dict.update(averages_dict) return results_dict def network_net_power(meas_dict: dict, node_keys: list = None, column: int = 0) -> dict: """ Calculate the net power (kW) of the network on the point of common coupling (ignoring network structure and losses etc). Import and Export are the net_load with all values set to zero, which are not matching. Note: net_load is calculated by using load, solar and battery values for each node at each time. If your load already has solar factored into it, then you should not pass the solar data on as a separate column in your measurement dict #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. column (int): Column index used for calculation Returns: dictionary of net_load, net_import, net_export """ nodes = node_keys if node_keys else meas_dict.keys() load_p = pd.DataFrame() solar_p =
pd.DataFrame()
pandas.DataFrame
# coding: utf-8 """Extract AA mutations from NT mutations Author: <NAME> - Vector Engineering Team (<EMAIL>) """ import pandas as pd from scripts.fasta import read_fasta_file from scripts.util import translate def extract_aa_mutations( dna_mutation_file, gene_or_protein_file, reference_file, mode="gene" ): # Load the reference sequence with open(reference_file, "r") as fp: lines = fp.readlines() ref = read_fasta_file(lines) ref_seq = list(ref.values())[0] # JSON to dataframe gene_or_protein_df = pd.read_json(gene_or_protein_file) if mode == "gene": # Only take protein-coding genes gene_or_protein_df = ( gene_or_protein_df.loc[gene_or_protein_df["protein_coding"] == 1, :] # set the gene as the index .set_index("name") ) else: gene_or_protein_df = gene_or_protein_df.set_index("name") dna_mutation_df =
pd.read_csv(dna_mutation_file)
pandas.read_csv
import os import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import pickle import tensorflow from tensorflow.keras import metrics from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import Adam import models print('GPU', tensorflow.config.experimental.list_physical_devices('GPU')) physical_devices = tensorflow.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tensorflow.config.experimental.set_memory_growth(physical_devices[0], True) epochs = 500 batch_size = 50 shape = (224, 224) def pickel_logs(log_entry): log_file = 'logs.pickle' try: with open(log_file, 'rb') as f: logs = pickle.load(f) except: logs = [] logs.append(log_entry) with open(log_file, 'wb') as f: pickle.dump(logs, f, pickle.HIGHEST_PROTOCOL) def image_generator(preprocessing_function): train_datagen = ImageDataGenerator( preprocessing_function=preprocessing_function, rotation_range=40, width_shift_range=0.3, height_shift_range=0.4, shear_range=0.2, zoom_range=0.4, horizontal_flip=True ) test_datagen = ImageDataGenerator( preprocessing_function=preprocessing_function) return train_datagen, test_datagen def prepate_dataset(train_size=100, val_size=250, test_size=600): data = [] directory = '/tf/work/data/chest-xray-pneumonia/' for folder in sorted(os.listdir(directory)): for file in sorted(os.listdir(directory+folder)): data.append((folder, file, directory+folder+'/'+file)) dataframe =
pd.DataFrame(data, columns=['label', 'file', 'path'])
pandas.DataFrame
""" This module includes two types of discrete state-space formulations for biogas plants. The anaerobic digestion model in FlexibleBiogasPlantModel is based on the work in https://doi.org/10.1016/j.energy.2017.12.073 and ISBN: 978-3-319-16192-1 The module is designed to work with fledge: https://doi.org/10.5281/zenodo.3715873 The code is organized and implemented based on the flexible building model cobmo: https://zenodo.org/record/3523539 """ import numpy as np import pandas as pd import scipy.linalg import os import inspect import sys import datetime as dt import pyomo.environ as pyo import bipmo.utils class BiogasPlantModel(object): """ BiogasPlantModel represents all attributes and functions that all biogas plants have in common. It is the basis for every model that inherits from it. Caution: It does not work as a standalone model! """ model_type: str = None der_name: str = 'Biogas Plant' plant_scenarios: pd.DataFrame states: pd.Index controls: pd.Index outputs: pd.Index switches: pd.Index chp_schedule: pd.DataFrame disturbances: pd.Index state_vector_initial: pd.Series state_matrix: pd.DataFrame control_matrix: pd.DataFrame disturbance_matrix: pd.DataFrame state_output_matrix: pd.DataFrame control_output_matrix: pd.DataFrame disturbance_output_matrix: pd.DataFrame timestep_start: pd.Timestamp timestep_end: pd.Timestamp timestep_interval: pd.Timedelta timesteps: pd.Index disturbance_timeseries: pd.DataFrame output_maximum_timeseries: pd.DataFrame output_minimum_timeseries: pd.DataFrame marginal_cost: float lhv_table: pd.DataFrame temp_in: float cp_water: float feedstock_limit_type: str available_feedstock: float def __init__( self, scenario_name: str, timestep_start=None, timestep_end=None, timestep_interval=None, connect_electric_grid=True, ): # Scenario name. self.scenario_name = scenario_name # Define the biogas plant model (change paths accordingly). base_path = os.path.dirname(os.path.dirname(os.path.normpath(__file__))) # Load the scenario. self.plant_scenarios = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_scenario.csv') ) self.plant_scenarios = self.plant_scenarios[ self.plant_scenarios['scenario_name'] == self.scenario_name] self.plant_scenarios.index = pd.Index([self.scenario_name]) # Load marginal cost self.marginal_cost = self.plant_scenarios.loc[ self.scenario_name, 'marginal_cost_EUR_Wh-1'] # Load feedstock data used in the scenario. self.plant_feedstock = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_feedstock.csv') ) self.plant_feedstock = self.plant_feedstock[ self.plant_feedstock['feedstock_type'] == self.plant_scenarios.loc[self.scenario_name, 'feedstock_type'] ] self.plant_feedstock.index = pd.Index([self.scenario_name]) self.feedstock_limit_type = self.plant_scenarios.loc[ self.scenario_name, 'availability_limit_type'] self.available_feedstock = self.plant_scenarios.loc[ self.scenario_name, 'availability_substrate_ton_per_year'] # Load CHP data used in the scenario. self.CHP_list = self.plant_scenarios.CHP_name[self.scenario_name].split() self.number_CHP = len(self.CHP_list) self.plant_CHP_source = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_CHP.csv') ) self.plant_CHP = pd.DataFrame(columns=self.plant_CHP_source.columns) for i in self.CHP_list: self.plant_CHP = pd.concat([ self.plant_CHP, self.plant_CHP_source[self.plant_CHP_source['CHP_name'] == i] ]) self.plant_CHP.index = self.plant_CHP['CHP_name'] self.elec_cap_list = pd.DataFrame([cap for cap in self.plant_CHP.elec_cap_Wel], index=self.CHP_list, columns=['elec_cap_Wel']) self.ramp_rate_list = pd.DataFrame([rate for rate in self.plant_CHP.ramp_capacity_W_min], index=self.CHP_list, columns=['ramp_rate_W_min']) # Load storage data used in the scenario. self.plant_storage = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_storage.csv') ) self.plant_storage = self.plant_storage[ self.plant_storage['storage_name'] == self.plant_scenarios.loc[self.scenario_name, 'storage_name'] ] self.plant_storage.index = pd.Index([self.scenario_name]) # Define useful values. self.lhv_table = pd.DataFrame( # Lower heating value of methane in J/m3. [35.8e6], pd.Index(['LHV_methane']), pd.Index(['LHV value (in J/m^3)']) ) self.temp_in = self.plant_scenarios.loc[ # Temperature of the digestion process in °C. self.scenario_name, 'digester_temp'] self.cp_water = 4182 # Specific heat of water in J/(K*kg) at 20°C. # Define CHP coefficients self.set_gains =
pd.Index([])
pandas.Index
# This script analyzes the csv files output by PixDistStats2.py # Updated Feb 2021. # PixDistStats2 separates the data into biological replicates instead of aggregating all data for each sample group. # This script takes those data and does stats and makes plots. # pixel_distance.py actually performs the measurement of minimum distance # between tumor and lyve-1 pixels, and outputs the results for each image. # PixDistStats.py performs stats and makes plots on ALL the data separated by sample group. However, # this is insufficient because it isn't split up into biological replicates, or normalized. # PixDistStats2.py separates the data into biological replicates instead of aggregating # all data for each sample group, and experiments with plots. # PixDistStats3.py takes data from PixDistStats2, normalizes it to total pixels for each animal, # does statistical comparisons and makes plots. import numpy as np import seaborn as sns import matplotlib.pyplot as plt import os import pixel_distance as pxd import pandas as pd from scipy.stats import stats from statsmodels.stats.multicomp import pairwise_tukeyhsd, MultiComparison import joypy as jpy def load_datas(dir): distbypercentiles = pd.read_csv(dir + 'dist_by_percentiles.csv', index_col='percentiles') numpixbydistbins =
pd.read_csv(dir + 'numpix_by_dist_bins.csv', index_col='distance bins')
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- #----------------------------------------------------------------------------- # Copyright (c) 2015, IBM Corp. # All rights reserved. # # Distributed under the terms of the BSD Simplified License. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- # Python 2 Compatibility from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from builtins import dict from builtins import zip from builtins import str from builtins import int from future import standard_library standard_library.install_aliases() from collections import OrderedDict import itertools import math import warnings from numbers import Number import pandas as pd import numpy as np import six import ibmdbpy from ibmdbpy.utils import chunklist """ Statistics module for IdaDataFrames """ def _numeric_stats(idadf, stat, columns): """ Compute various stats from one or several numerical columns of an IdaDataFrame. Parameters ---------- idadf : IdaDataFrame Data source. stat : str Name of the statistic to be computed. columns : str or list of str Name of the columns that belong to the IdaDataFrame. Returns ------- Tuple or float64 One value for each column. For a one column input a float64 value is returned except for median Notes ----- Currently, the following functions are supported: count, mean, median, std, var, min, max, sum. Should return a tuple. Only available for numerical columns. """ # Calculate count, mean, median, std, var, min, max if isinstance(columns, six.string_types): columns = [columns] if isinstance(stat, six.string_types): if stat == "count": select_string = 'COUNT(\"' + '\"), COUNT(\"'.join(columns) + '\")' elif stat == "mean": select_string = ('AVG(CAST(\"' + '\" AS FLOAT)), AVG(CAST(\"'.join(columns) + '\" AS FLOAT))') elif stat == "median": return _get_percentiles(idadf, 0.5, columns).values[0] elif stat == "std": tuple_count = _numeric_stats(idadf, 'count', columns) # in case of only one column, ensure tuple_count is iterable if len(columns) == 1: tuple_count = [tuple_count] count_dict = dict((x, y) for x, y in zip(columns, tuple_count)) agg_list = [] for column in columns: agg_list.append("STDDEV(\"%s\")*(SQRT(%s)/SQRT(%s))" %(column, count_dict[column], count_dict[column]-1)) select_string = ', '.join(agg_list) elif stat == "var": tuple_count = _numeric_stats(idadf, 'count', columns) if len(columns) == 1: tuple_count = [tuple_count] count_dict = dict((x, int(y)) for x, y in zip(columns, tuple_count)) agg_list = [] for column in columns: agg_list.append("VAR(\"%s\")*(%s.0/%s.0)" %(column, count_dict[column], count_dict[column]-1)) select_string = ', '.join(agg_list) elif stat == "min": select_string = 'MIN(\"' + '\"), MIN(\"'.join(columns) + '\")' elif stat == "max": select_string = 'MAX(\"' + '\"), MAX(\"'.join(columns) + '\")' elif stat == "sum": select_string = 'SUM(\"' + '\"), SUM(\"'.join(columns) + '\")' name = idadf.internal_state.current_state return idadf.ida_query("SELECT %s FROM %s" %(select_string, name)).values[0] def _get_percentiles(idadf, percentiles, columns): """ Return percentiles over all entries of a column or list of columns in the IdaDataFrame. Parameters ---------- idadf : IdaDataFrame percentiles: Float or list of floats. All values in percentiles must be > 0 and < 1 columns: String or list of string Name of columns belonging to the IdaDataFrame. Returns ------- DataFrame """ if isinstance(columns, six.string_types): columns = [columns] if isinstance(percentiles, Number): percentiles = [percentiles] name = idadf.internal_state.current_state # Get na values for each columns tuple_na = _get_number_of_nas(idadf, columns) nrow = idadf.shape[0] data = pd.DataFrame() for index_col, column in enumerate(columns): nb_not_missing = nrow - tuple_na[index_col] indexes = [float(x)*float(nb_not_missing-1) + 1 for x in percentiles] low = [math.floor(x) for x in indexes] high = [math.ceil(x) for x in indexes] tuplelist = [] i = 0 for flag in [((x+1) == y) for x, y in zip(low, high)]: if flag: tuplelist.append((i, i+1)) i += 2 else: tuplelist.append((i, i)) i += 1 unique = low + high unique = set(unique) unique = sorted(unique) unique = [str(x) for x in unique] indexes_string = ",".join(unique) df = idadf.ida_query("(SELECT \""+column+"\" AS \""+column+"\" FROM (SELECT "+ "ROW_NUMBER() OVER(ORDER BY \""+column+"\") as rn, \""+ column + "\" FROM (SELECT * FROM " + name + ")) WHERE rn in("+ indexes_string +"))") #indexvalues = list(df[df.columns[0]]) indexvalues = list(df) #import pdb ; pdb.set_trace() #print(tuplelist) #print(indexvalues) indexfinal = [(float(str(indexvalues[x[0]]))+float(str(indexvalues[x[1]])))/2 for x in tuplelist] new_data = pd.DataFrame(indexfinal) data[column] = (new_data.T).values[0] percentile_names = [x for x in percentiles] data.index = percentile_names return data def _categorical_stats(idadf, stat, columns): # TODO: """ Computes various stats from one or several categorical columns of the IdaDataFrame. This is not implemented. Parameters ---------- idadf : IdaDataFrame stat : str Name of the statistic function to be computed. columns : str or list of str Name of columns belonging to the IdaDataFrame. Returns ------- Tuple. """ # Calculates count, unique, top, freq raise NotImplementedError("TODO") def _get_number_of_nas(idadf, columns): """ Return the count of missing values for a list of columns in the IdaDataFrame. Parameters ---------- idadf : IdaDataFrame columns : str or list One column as a string or a list of columns in the idaDataFrame. Returns ------- Tuple """ if isinstance(columns, six.string_types): columns = [columns] name = idadf.internal_state.current_state query_list = list() for column in columns: string = ("(SELECT COUNT(*) AS \"" + column + "\" FROM " + name + " WHERE \"" + column + "\" IS NULL)") query_list.append(string) query_string = ', '.join(query_list) # TODO: Improvement idea : Get nrow (shape) and substract by count("COLUMN") return idadf.ida_query("SELECT * FROM " + query_string, first_row_only = True) def _count_level(idadf, columnlist=None): """ Count distinct levels across a list of columns of an IdaDataFrame grouped by themselves. Parameters ---------- columnlist : list List of column names that exist in the IdaDataFrame. By default, these are all columns in IdaDataFrame. Returns ------- Tuple Notes ----- The function assumes the follwing: * The columns given as parameter exists in the IdaDataframe. * The parameter columnlist is an optional list. * Columns are referenced by their own name (character string). """ if columnlist is None: columnlist = idadf.columns name = idadf.internal_state.current_state query_list = [] for column in columnlist: # Here cast ? query_list.append("(SELECT COUNT(*) AS \"" + column +"\" FROM (" + "SELECT \"" + column + "\" FROM " + name + " GROUP BY \"" + column + "\" ))") #query_list.append("(SELECT CAST(COUNT(*) AS BIGINT) AS \"" + column +"\" FROM (" + # "SELECT \"" + column + "\" FROM " + name + " ))") query_string = ', '.join(query_list) column_string = '\"' + '\", \"'.join(columnlist) + '\"' return idadf.ida_query("SELECT " + column_string + " FROM " + query_string, first_row_only = True) def _count_level_groupby(idadf, columnlist=None): """ Count distinct levels across a list of columns in the IdaDataFrame grouped by themselves. This is used to get the dimension of the resulting cross table. Parameters ---------- columnlist : list List of column names existing in the IdaDataFrame. By default, these are columns of self Returns ------- Tuple Notes ----- The function assumes the follwing: * The columns given as parameter exists in the IdaDataframe. * The parameter columnlist is a optional and is a list. * Columns are referenced by their own name (character string). """ if columnlist is None: columnlist = idadf.columns name = idadf.internal_state.current_state column_string = '\"' + '\", \"'.join(columnlist) + '\"' query = (("SELECT COUNT(*) FROM (SELECT %s, COUNT(*) as COUNT "+ "FROM %s GROUP BY %s ORDER BY %s, COUNT ASC)") %(column_string, name, column_string, column_string)) return idadf.ida_query(query, first_row_only = True) # TODO: REFACTORING: factors function should maybe return a tuple ? def _factors_count(idadf, columnlist, valuelist=None): """ Count non-missing values for all columns in a list (valuelist) over the IdaDataFrame grouped by a list of columns(columnlist). Parameters ---------- columnlist : list List of column names that exist in self. valuelist : list List of column names that exist in self. Assumptions ----------- * The columns given as parameter exists in the IdaDataframe * The parameter columnlist is a optional and is a list * Columns are referenced by their own name (character string) Returns ------- DataFrame """ column_string = '\"' + '\", \"'.join(columnlist) + '\"' name = idadf.internal_state.current_state if valuelist is None: query = (("SELECT %s, COUNT(*) as COUNT FROM %s GROUP BY %s ORDER BY %s, COUNT ASC") %(column_string, name, column_string, column_string)) else: agg_list = [] for value in valuelist: query = "COUNT(\"%s\") as \"%s\""%(value,value) agg_list.append(query) agg_string = ', '.join(agg_list) value_string = '\"' + '", "'.join(valuelist) + '\"' query = (("SELECT %s,%s FROM %s GROUP BY %s ORDER BY %s,%s ASC") %(column_string, agg_string, name, column_string, column_string, value_string)) return idadf.ida_query(query) def _factors_sum(idadf, columnlist, valuelist): """ Compute the arithmetic sum over for all columns in a list (valuelist) over the IdaDataFrame grouped by a list of columns (columnlist). Parameters ---------- columnlist : list List of column names that exist in self. valuelist : list List of column names that exist in self. Assumptions ----------- * The columns given as parameter exists in the IdaDataframe * The parameter columnlist is a optional and is a list * Columns are referenced by their own name (character string) Returns ------- DataFrame """ column_string = '\"' + '\", \"'.join(columnlist) + '\"' name = idadf.internal_state.current_state agg_list = [] for value in valuelist: query = "SUM(\"%s\") as \"%s\""%(value, value) agg_list.append(query) agg_string = ', '.join(agg_list) value_string = '\"' + '", "'.join(valuelist) + '\"' query = (("SELECT %s,%s FROM %s GROUP BY %s ORDER BY %s,%s ASC") %(column_string, agg_string, name, column_string, column_string, value_string)) return idadf.ida_query(query) def _factors_avg(idadf, columnlist, valuelist): """ Compute the arithmetic average for all columns in a list (valuelist) over the IdaDataFrame grouped by a list of columns (columnlist). Parameters ---------- columnlist : list List of column names that exist in self. valuelist : list List of column names that exist in self. Assumptions ----------- * The columns given as parameter exists in the IdaDataframe * The parameter columnlist and valuelist are array-like * Columns are referenced by their own name (character string) Returns ------- DataFrame """ column_string = '\"' + '\", \"'.join(columnlist) + '\"' name = idadf.internal_state.current_state agg_list = [] for value in valuelist: agg = (("CAST(AVG(CAST(\"%s\" AS DECIMAL(10,6))) AS DECIMAL(10,6)) \"%s\"") %(value, value)) agg_list.append(agg) agg_string = ', '.join(agg_list) value_string = '\"' + '", "'.join(valuelist) + '\"' query = (("SELECT %s,%s FROM %s GROUP BY %s ORDER BY %s,%s ASC") %(column_string, agg_string, name, column_string, column_string, value_string)) return idadf.ida_query(query) ############################################################################### ### Pivot Table ############################################################################### def pivot_table(idadf, values=None, columns=None, max_entries=1000, sort=None, factor_threshold=None, interactive=False, aggfunc='count'): """ See IdaDataFrame.pivot_table """ # TODO : Support index if aggfunc.lower() not in ['count', 'sum', 'avg', 'average', 'mean']: print("For now only 'count' and 'sum' and 'mean' as aggregation function is supported") return if (columns is None) & (factor_threshold is None): print("Please provide parameter factor_threshold for automatic selection of columns") return if isinstance(columns, six.string_types): columns = [columns] if isinstance(values, six.string_types): values = [values] if (values is None) and (aggfunc.lower() != "count"): raise ValueError("Cannot aggregate using another function than count if" + "no value(s) was/were given") ####### Identify automatically categorical fields ######### # Load distinct count for each and evaluate categorical or not data = idadf._table_def(factor_threshold) # if columns is None: factors = data.loc[data['VALTYPE'] == "CATEGORICAL", ['TYPENAME', 'FACTORS']] if len(factors) == 0: print("No categorical columns to tabulate") return else: factors = data.loc[columns, ['TYPENAME', 'FACTORS']] if sort == "alpha": factors.sort_index(inplace=True, ascending=1) elif sort == "factor": factors.sort(['FACTORS'], inplace=True, ascending=1) if columns is None: print("Automatic selection of columns :", factors.index.values) columns = factors.index.values nb_row = _count_level_groupby(idadf, factors.index.values)[0] * len(columns) nb_col = len(factors.index.values) nb_entries = nb_row * nb_col if nb_entries > max_entries: # Overflow risk print("Number of entries :", nb_entries) print("Value counts for factors:") factor_values = factors[['FACTORS']] factor_values.columns = [''] print(factor_values.T) print("WARNING :Attempt to make a table with more than " + str(max_entries)+ " elements. Either increase max_entries " + "parameter or remove columns with too many levels.") return print("Output dataframe has dimensions", nb_row, "x", (nb_col+1)) if interactive is True: display_yes = ibmdbpy.utils.query_yes_no("Do you want to download it in memory ?") if not display_yes: return categorical_columns = list(factors.index) if aggfunc.lower() == 'count': dataframe = _factors_count(idadf, categorical_columns, values) # Download dataframe if aggfunc.lower() == 'sum': dataframe = _factors_sum(idadf, categorical_columns, values) # Download dataframe if aggfunc.lower() in ['avg', 'average', 'mean']: dataframe = _factors_avg(idadf, categorical_columns, values) # Download dataframe if values is not None: agg_values = values else: agg_values = aggfunc.upper() if isinstance(agg_values, six.string_types): agg_values = [agg_values] dataframe.columns = categorical_columns + agg_values # Name the aggregate column # Formatting result if len(agg_values) == 1: dataframe[None] = agg_values[0] else: catdataframe = dataframe[categorical_columns] dataframe = catdataframe.join(dataframe[agg_values].stack().reset_index(1)) dataframe['level_1'] = pd.Categorical(dataframe['level_1'], agg_values) dataframe = dataframe.rename(columns={'level_1':None}) dataframe = dataframe.sort([None] + categorical_columns) dataframe.set_index([None] + categorical_columns, inplace=True) dataframe = dataframe.astype(float) result = pd.Series(dataframe[dataframe.columns[0]]) result.name = None return result ############################################################################### ### Descriptive statistics ############################################################################### def describe(idadf, percentiles=[0.25, 0.50, 0.75]): """ See IdaDataFrame.describe """ if percentiles is not None: if isinstance(percentiles, Number): percentiles = [percentiles] if True in [(not isinstance(x, Number)) for x in percentiles]: raise TypeError("Argument 'percentiles' should be either a number or " + "a list of numbers between 0 and 1") elif True in [((x >= 1) | (x <= 0)) for x in percentiles]: raise ValueError("Numbers in argument 'percentiles' should be between 0 and 1") # Improvement idea : We could use dtypes instead of calculating this everytime columns = idadf._get_numerical_columns() data = [] if not columns: columns = idadf._get_categorical_columns() if not columns: raise NotImplementedError("No numerical and no categorical columns") else: raise NotImplementedError("Categorical only idaDataFrame are not handled currently") # TODO : Handle categorical columns data.append(_categorical_stats(idadf, "count", columns)) data.append(_categorical_stats(idadf, "unique", columns)) data.append(_categorical_stats(idadf, "top", columns)) data.append(_categorical_stats(idadf, "freq", columns)) else: data.append(_numeric_stats(idadf, "count", columns)) data.append(_numeric_stats(idadf, "mean", columns)) data.append(_numeric_stats(idadf, "std", columns)) data.append(_numeric_stats(idadf, "min", columns)) if percentiles is not None: perc = (_get_percentiles(idadf, percentiles, columns)) for tup in perc.itertuples(index=False): data.append(tup) data.append(_numeric_stats(idadf, "max", columns)) data = pd.DataFrame(data) data.columns = columns if percentiles is not None: percentile_names = [(str(int(x * 100)) + "%") for x in percentiles] else: percentile_names = [] data.index = ['count', 'mean', 'std', 'min'] + percentile_names + ['max'] # quick fix -> JDBC problems #for column in data.columns: # data[[column]] = data[[column]].astype(float) if isinstance(idadf, ibmdbpy.IdaSeries): data = pd.Series(data[data.columns[0]]) return data def quantile(idadf, q=0.5): """ See IdaDataFrame.quantile """ if isinstance(q, Number): q = [q] # Sanity check if True in [(not isinstance(x, Number)) for x in q]: raise TypeError("Argument 'q' should be either a number or " + "a list of numbers between 0 and 1") elif True in [((x >= 1) | (x <= 0)) for x in q]: raise ValueError("Numbers in argument 'percentiles' should be between 0 and 1") columns = idadf._get_numerical_columns() if not columns: print(idadf.name + " has no numeric columns") return result = _get_percentiles(idadf, q, columns) if isinstance(q, list): if len(q) > 1: return result result = result.T result = result[result.columns[0]] result.name = q[0] result = result.astype('float') if len(result) == 1: result = result[0] return result # Note : Not casting to double can lead to SQL overflow # TODO: Has to be modified in ibmdbR def cov(idadf, other = None): """ See IdaDataFrame.cov """ if isinstance(idadf, ibmdbpy.IdaSeries): raise TypeError("cov() missing 1 required positional argument: 'other'") columns = idadf._get_numerical_columns() if not columns: print(idadf.name + " has no numeric columns") return tuple_count = _numeric_stats(idadf, 'count', columns) count_dict = dict((x, int(y)) for x, y in zip(columns, tuple_count)) agg_list = [] combinations = [x for x in itertools.combinations_with_replacement(columns, 2)] columns_set = [{x[0], x[1]} for x in combinations] for column_pair in combinations: agg_list.append("COVARIANCE(\"" + column_pair[0] + "\",\"" + column_pair[1] + "\")*(" + str(min([count_dict[column_pair[0]], count_dict[column_pair[1]]])) + ".0/" + str(min([count_dict[column_pair[0]], count_dict[column_pair[1]]])-1) + ".0)") agg_string = ', '.join(agg_list) name = idadf.internal_state.current_state data = idadf.ida_query("SELECT %s FROM %s"%(agg_string, name), first_row_only = True) tuple_list = [] for column1 in columns: list_value = [] for column2 in columns: for index, column_set in enumerate(columns_set): if {column1, column2} == column_set: list_value.append(data[index]) break tuple_list.append(tuple(list_value)) result = pd.DataFrame(tuple_list) result.index = columns result.columns = columns if len(result) == 1: result = result[0] return result def corr(idadf, features=None,ignore_indexer=True): """ See IdaDataFrame.corr """ if isinstance(idadf, ibmdbpy.IdaSeries): raise TypeError("corr() missing 1 required positional argument: 'other'") # TODO: catch case n <= 1 numerical_columns = idadf._get_numerical_columns() if not numerical_columns: print(idadf.name + " has no numeric columns") return if ignore_indexer is True: if idadf.indexer: if idadf.indexer in numerical_columns: numerical_columns.remove(idadf.indexer) #print(features) #target, features = ibmdbpy.utils._check_input(target, features) if features is not None: for feature in features: if feature not in numerical_columns: raise TypeError("Correlation-based measure not available for non-numerical columns %s"%feature) else: features = numerical_columns #if target not in columns: # raise ValueError("%s is not a column of numerical type in %s"%(target, idadf.name)) values = OrderedDict() combinations = [x for x in itertools.combinations(features, 2)] #columns_set = [{x[0], x[1]} for x in combinations] if len(features) < 64: # the limit of variables for an SQL statement is 4096, i.e 64^2 agg_list = [] for column_pair in combinations: agg = "CORRELATION(\"%s\",\"%s\")"%(column_pair[0], column_pair[1]) agg_list.append(agg) agg_string = ', '.join(agg_list) name = idadf.internal_state.current_state data = idadf.ida_query("SELECT %s FROM %s"%(agg_string, name), first_row_only = True) for i, element in enumerate(combinations): if element[0] not in values: values[element[0]] = {} if element[1] not in values: values[element[1]] = {} values[element[0]][element[1]] = data[i] values[element[1]][element[0]] = data[i] result = pd.DataFrame(values).fillna(1) else: chunkgen = chunklist(combinations, 100) for chunk in chunkgen: agg_list = [] for column_pair in chunk: agg = "CORRELATION(\"%s\",\"%s\")"%(column_pair[0], column_pair[1]) agg_list.append(agg) agg_string = ', '.join(agg_list) name = idadf.internal_state.current_state data = idadf.ida_query("SELECT %s FROM %s"%(agg_string, name), first_row_only = True) for i, element in enumerate(chunk): if element[0] not in values: values[element[0]] = OrderedDict() if element[1] not in values: values[element[1]] = OrderedDict() values[element[0]][element[1]] = data[i] values[element[1]][element[0]] = data[i] result = pd.DataFrame(values).fillna(1) result = result.reindex(result.columns) if len(result) == 1: result = result[0] return result ### corrwith def mad(idadf): """ See IdaDataFrame.mad """ columns = idadf._get_numerical_columns() if not columns: print(idadf.name + " has no numeric columns") return mean_tuple = _numeric_stats(idadf, "mean", columns) absmean_dict = dict((x, abs(y)) for x, y in zip(columns, mean_tuple)) tuple_na = _get_number_of_nas(idadf, columns) agg_list = [] for index_col, column in enumerate(columns): agg_list.append("SUM(ABS(\"" + column + "\" -" + str(absmean_dict[column]) + "))/" + str(idadf.shape[0] - tuple_na[index_col])) agg_string = ', '.join(agg_list) name = idadf.internal_state.current_state mad_tuple = idadf.ida_query("SELECT %s FROM %s"%(agg_string, name)) result = pd.Series(mad_tuple.values[0]) result.index = columns result = result.astype('float') if isinstance(idadf, ibmdbpy.IdaSeries): result = result[0] return result def ida_min(idadf): """ See idadataFrame.min """ na_tuple = _get_number_of_nas(idadf, idadf.columns) min_tuple = _numeric_stats(idadf, "min", idadf.columns) if not hasattr(min_tuple,"__iter__") : min_tuple = (min_tuple,) # dirty fix min_list = [np.nan if ((y > 0) and not isinstance(x, Number)) else x for x, y in zip(min_tuple, na_tuple)] min_tuple = tuple(min_list) result = pd.Series(min_tuple) result.index = idadf.columns #if isinstance(idadf, ibmdbpy.IdaSeries): # result = result[0] return result def ida_max(idadf): """ See idadataFrame.max """ na_tuple = _get_number_of_nas(idadf, idadf.columns) max_tuple = _numeric_stats(idadf, "max", idadf.columns) if not hasattr(max_tuple,"__iter__") : max_tuple = (max_tuple,) # dirty fix max_list = [np.nan if ((y > 0) and not isinstance(x, Number)) else x for x, y in zip(max_tuple, na_tuple)] max_tuple = tuple(max_list) result = pd.Series(max_tuple) result.index = idadf.columns #if isinstance(idadf, ibmdbpy.IdaSeries): # result = result[0] return result def count(idadf): """ See IdaDataFrame.count """ count_tuple = _numeric_stats(idadf, "count", idadf.columns) result = pd.Series(count_tuple) result.index = idadf.columns result = result.astype(int) if isinstance(idadf, ibmdbpy.IdaSeries): result = result[0] return result def count_distinct(idadf): """ See IdaDataFrame.count_distinct """ result = pd.Series(_count_level(idadf)) result.index = idadf.columns result = result.astype(int) if isinstance(idadf, ibmdbpy.IdaSeries): result = result[0] return result def std(idadf): """ See IdaDataFrame.std """ columns = idadf._get_numerical_columns() if not columns: warnings.warn("%s has no numeric columns"%idadf.name) return pd.Series() std_tuple = _numeric_stats(idadf, "std", columns) result = pd.Series(std_tuple) result.index = columns if isinstance(idadf, ibmdbpy.IdaSeries): result = result[0] return result def var(idadf): """ See IdaDataFrame.var """ columns = idadf._get_numerical_columns() if not columns: warnings.warn("%s has no numeric columns"%idadf.name) return pd.Series() var_tuple = _numeric_stats(idadf, "var", columns) result = pd.Series(var_tuple) result.index = columns if isinstance(idadf, ibmdbpy.IdaSeries): result = result[0] return result def mean(idadf): """ See IdaDataFrame.mean """ columns = idadf._get_numerical_columns() if not columns: warnings.warn("%s has no numeric columns"%idadf.name) return pd.Series() mean_tuple = _numeric_stats(idadf, "mean", columns) result = pd.Series(mean_tuple) result.index = columns if isinstance(idadf, ibmdbpy.IdaSeries): result = result[0] return result def ida_sum(idadf): """ See IdaDataFrame.sum """ #Behave like having the option "numeric only" to true columns = idadf._get_numerical_columns() if not columns: warnings.warn("%s has no numeric columns"%idadf.name) return
pd.Series()
pandas.Series
import pandas as pd import numpy as np from pandas.api.types import is_numeric_dtype import re from nltk.tokenize import word_tokenize import joblib import pickle def func(ser): nans = np.count_nonzero(
pd.isnull(ser)
pandas.isnull
"""Class for intent operations - training, predict""" import os import re import json import datetime import joblib import numpy as np import pandas as pd from typing import List, Union from sklearn.model_selection import GridSearchCV from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler, MultiLabelBinarizer from sklearn.ensemble import RandomForestClassifier from .base import DatasetBunch, RuleBunch, Classifier from .utils import get_intent_labels, make_dir from .transformer import PercentSVD DEFAULT_FOLDER = os.path.join(os.getcwd(), "models") class OneClassClassifier(Classifier): """Classifier used for dataset which has only one class.""" def __init__(self, intent: str): self._intent = intent def predict(self, words: str="", context: Union[str, dict]=None) -> List[str]: return [self._intent] class RuleClassifier(Classifier): """Rule-based classifier""" def __init__(self, rule_bunch: RuleBunch): self._patterns = [re.compile(r) if r else None for r in rule_bunch.words_rules] try: self._context_rules = \ [json.loads(r) if r else {} for r in rule_bunch.context_rules] \ if rule_bunch.context_rules else [] except AttributeError: self._context_rules = [] self._intent_labels = rule_bunch.intent_labels def predict(self, words: str="", context: Union[str, dict]=None) -> List[str]: """ Predict intent labels according to words patterns and comparision between context and context_rule. Parameters ---------- words: user input context: context information Returns ------- List of predicted labels or empty list if failed to the matches. """ def context_match(context: dict, rule_context: dict) -> bool: if not rule_context: return True else: return False if not context else \ all(rule_context.get(k) == v for k, v in context.items()) # make sure the context to be a dict if not context: context = {} else: if isinstance(context, str): context = json.loads(context) if not words and not context: return [] intent_labels = [] for i, pattern in enumerate(self._patterns): if not self._context_rules: if pattern.match(words): for label in self._intent_labels[i]: intent_labels.append(label) else: if pattern.match(words) and \ context_match(context, self._context_rules[i]): for label in self._intent_labels[i]: intent_labels.append(label) return intent_labels class ModelClassifier(Classifier): def __init__(self, folder: str=DEFAULT_FOLDER, customer: str="common", lang="en", n_jobs=None): """ Parameters ---------- folder: The folder to save the final models. customer: Name used to distinguish different customers. lang: Language, "en" for English or "cn" for Chinese. n_jobs : n_jobs in GridSearchCV, int or None, optional (default=None) Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. """ self._folder = folder self._customer = customer self._lang = lang self._n_jobs = n_jobs self._classifiers = {} self._mlbs = {} self._reports = {} def fit(self, data_bunch: DatasetBunch): """ Fit with GridSearchCV method to find the optimal parameters. Disassemble the intents in form of multi-levels to get sub-datasets and train models using these sub-datasets. Parameters ---------- data_bunch: Data bunch instance with texts, extended_features, intents. """ def make_choice(labels: str, prefixs: set) -> bool: for label in labels.replace(" ", "").split(","): for prefix in prefixs: if label.startswith(prefix): return True else: return False def make_labels(labels_data: np.array, label_set: set) -> List[List[str]]: labels = [] for labels_str in labels_data: lbls = [] for label in labels_str.replace(" ", "").split(","): lbls += [lbl for lbl in label_set if label.startswith(lbl)] labels.append(lbls) return labels make_choice_vect = np.vectorize(make_choice) for clf_name, label_set in get_intent_labels(data_bunch.intents).items(): if len(label_set) == 1: self._classifiers[clf_name] = \ OneClassClassifier(list(label_set)[0]) self._reports[clf_name] = {"clf_type": "OneClassClassifier"} else: choices = make_choice_vect(data_bunch.intents, label_set) mlb = MultiLabelBinarizer(classes=list(label_set)) search = self._fit( X=pd.DataFrame({ "words": data_bunch.words[choices], "contexts": [json.loads(c) if c else {} for c in data_bunch.contexts[choices]]}), y=mlb.fit_transform( make_labels(data_bunch.intents[choices], label_set)) ) self._classifiers[clf_name] = search.best_estimator_ self._mlbs[clf_name] = mlb self._reports[clf_name] = { "clf_type": "sklearn-classifier", "scoring": search.scoring, "cv": search.cv, "best_params": search.best_params_, "best_score": search.best_score_, } def _fit(self, X: pd.DataFrame, y: np.array): """Fit classifier Parameters ---------- # X: pd.DataFrame with columns "words" and "contexts". X: tuple of "words" and "contexts". y: intent labels Returns ------- Instance of sklearn classifier or OneClassClassifier. """ def has_context(contexts): if contexts.empty: return False for context in contexts: if not context: continue if json.loads(context): return True else: return False if has_context(X["contexts"]): vectorizer = ColumnTransformer([ # words to vectors ("words2vect", TfidfVectorizer(token_pattern=r"(?u)(\{\w+\}|\w+)"), "words"), # contexts to vectors ("contexts2vect", DictVectorizer(), "contexts") ]) else: vectorizer = ColumnTransformer([ # words to vectors ("words2vect", TfidfVectorizer(token_pattern=r"(?u)(\{\w+\}|\w+)"), "words") ]) pipeline = Pipeline([ # transform words and contexts to vectors ("vectorizer", vectorizer), # feature values standardization ("scaler", StandardScaler(with_mean=False)), # dimensionality reduction # ("svd", PercentSVD()), # classifier ("clf", RandomForestClassifier()) # ("clf", MLPClassifier(max_iter=1000, hidden_layer_sizes=(50, 50))) ]) params = { # "svd__percent": np.linspace(0.1, 1, 10), # todo "clf__n_estimators": range(5, 100, 5), "clf__max_features": [None, "sqrt", "log2"], "clf__class_weight": ["balanced", "balanced_subsample", None], # "clf__hidden_layer_sizes": [(n,) for n in range(10, 110, 10)], # "clf__activation": ["identity", "logistic", "tanh", "relu"], # "clf__solver": ["lbfgs", "sgd", "adam"], # "clf__learning_rate": ["constant", "invscaling", "adaptive"] } search = GridSearchCV(estimator=pipeline, param_grid=params, cv=5, n_jobs=self._n_jobs) search.fit(X, y) return search def predict(self, words: str="", context: Union[str, dict]=None) -> List[str]: """ Parameters ---------- words: user input context: context information Returns ------- List of predicted labels. """ if not context: X =
pd.DataFrame({"words": [words], "contexts": ["{}"]})
pandas.DataFrame
# Copyright 2017-2020 Lawrence Livermore National Security, LLC and other # Hatchet Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: MIT import glob import struct import re import os import traceback import numpy as np import pandas as pd import multiprocessing as mp import multiprocessing.sharedctypes try: import xml.etree.cElementTree as ET except ImportError: import xml.etree.ElementTree as ET # cython imports try: import hatchet.cython_modules.libs.subtract_metrics as smc except ImportError: print("-" * 80) print( """Error: Shared object (.so) not found for cython module.\n\tPlease run install.sh from the hatchet root directory to build modules.""" ) print("-" * 80) traceback.print_exc() raise import hatchet.graphframe from hatchet.node import Node from hatchet.graph import Graph from hatchet.util.profiler import Timer from hatchet.frame import Frame src_file = 0 def init_shared_array(buf_): """Initialize shared array.""" global shared_metrics shared_metrics = buf_ def read_metricdb_file(args): """Read a single metricdb file into a 1D array.""" filename, num_nodes, num_threads_per_rank, num_metrics, shape = args rank = int( re.search(r"\-(\d+)\-(\d+)\-([\w\d]+)\-(\d+)\-\d.metric-db$", filename).group(1) ) thread = int( re.search(r"\-(\d+)\-(\d+)\-([\w\d]+)\-(\d+)\-\d.metric-db$", filename).group(2) ) with open(filename, "rb") as metricdb: metricdb.seek(32) arr1d = np.fromfile( metricdb, dtype=np.dtype(">f8"), count=num_nodes * num_metrics ) arr = np.frombuffer(shared_metrics).reshape(shape) # copy the data in the right place in the larger 2D array of metrics rank_offset = (rank * num_threads_per_rank + thread) * num_nodes arr[rank_offset : rank_offset + num_nodes, :2].flat = arr1d.flat arr[rank_offset : rank_offset + num_nodes, 2] = range(1, num_nodes + 1) arr[rank_offset : rank_offset + num_nodes, 3] = rank arr[rank_offset : rank_offset + num_nodes, 4] = thread class HPCToolkitReader: """Read in the various sections of an HPCToolkit experiment.xml file and metric-db files. """ def __init__(self, dir_name): # this is the name of the HPCToolkit database directory. The directory # contains an experiment.xml and some metric-db files self.dir_name = dir_name root = ET.parse(self.dir_name + "/experiment.xml").getroot() self.loadmodule_table = next(root.iter("LoadModuleTable")) self.file_table = next(root.iter("FileTable")) self.procedure_table = next(root.iter("ProcedureTable")) self.metricdb_table = next(root.iter("MetricDBTable")) self.callpath_profile = next(root.iter("SecCallPathProfileData")) # For a parallel run, there should be one metric-db file per MPI # process metricdb_files = glob.glob(self.dir_name + "/*.metric-db") self.num_metricdb_files = len(metricdb_files) # We need to know how many threads per rank there are. This counts the # number of thread 0 metric-db files (i.e., number of ranks), then # uses this as the divisor to the total number of metric-db files. metricdb_numranks_files = glob.glob(self.dir_name + "/*-000-*.metric-db") self.num_ranks = len(metricdb_numranks_files) self.num_threads_per_rank = int( self.num_metricdb_files / len(metricdb_numranks_files) ) # Read one metric-db file to extract the number of nodes in the CCT # and the number of metrics with open(metricdb_files[0], "rb") as metricdb: metricdb.read(18) # skip tag metricdb.read(5) # skip version TODO: should we? endian = metricdb.read(1) if endian == b"b": self.num_nodes = struct.unpack(">i", metricdb.read(4))[0] self.num_metrics = struct.unpack(">i", metricdb.read(4))[0] else: raise ValueError( "HPCToolkitReader doesn't support endian '%s'" % endian ) self.load_modules = {} self.src_files = {} self.procedure_names = {} self.metric_names = {} # this list of dicts will hold all the node information such as # procedure name, load module, filename, etc. for all the nodes self.node_dicts = [] self.timer = Timer() def fill_tables(self): """Read certain sections of the experiment.xml file to create dicts of load modules, src_files, procedure_names, and metric_names. """ for loadm in (self.loadmodule_table).iter("LoadModule"): self.load_modules[loadm.get("i")] = loadm.get("n") for filename in (self.file_table).iter("File"): self.src_files[filename.get("i")] = filename.get("n") for procedure in (self.procedure_table).iter("Procedure"): self.procedure_names[procedure.get("i")] = procedure.get("n") for metric in (self.metricdb_table).iter("MetricDB"): self.metric_names[metric.get("i")] = metric.get("n") return ( self.load_modules, self.src_files, self.procedure_names, self.metric_names, ) def read_all_metricdb_files(self): """Read all the metric-db files and create a dataframe with num_nodes X num_metricdb_files rows and num_metrics columns. Three additional columns store the node id, MPI process rank, and thread id (if applicable). """ metricdb_files = glob.glob(self.dir_name + "/*.metric-db") metricdb_files.sort() # All the metric data per node and per process is read into the metrics # array below. The three additional columns are for storing the implicit # node id (nid), MPI process rank, and thread id (if applicable). shape = [self.num_nodes * self.num_metricdb_files, self.num_metrics + 3] size = int(np.prod(shape)) # shared memory buffer for multiprocessing shared_buffer = mp.sharedctypes.RawArray("d", size) pool = mp.Pool(initializer=init_shared_array, initargs=(shared_buffer,)) self.metrics = np.frombuffer(shared_buffer).reshape(shape) args = [ ( filename, self.num_nodes, self.num_threads_per_rank, self.num_metrics, shape, ) for filename in metricdb_files ] try: pool.map(read_metricdb_file, args) finally: pool.close() # once all files have been read, create a dataframe of metrics metric_names = [ self.metric_names[key] for key in sorted(self.metric_names.keys()) ] for idx, name in enumerate(metric_names): if name == "CPUTIME (usec) (E)" or name == "CPUTIME (sec) (E)": metric_names[idx] = "time" if name == "CPUTIME (usec) (I)" or name == "CPUTIME (sec) (I)": metric_names[idx] = "time (inc)" self.metric_columns = metric_names df_columns = self.metric_columns + ["nid", "rank", "thread"] self.df_metrics = pd.DataFrame(self.metrics, columns=df_columns) self.df_metrics["nid"] = self.df_metrics["nid"].astype(int, copy=False) self.df_metrics["rank"] = self.df_metrics["rank"].astype(int, copy=False) self.df_metrics["thread"] = self.df_metrics["thread"].astype(int, copy=False) # if number of threads per rank is 1, we do not need to keep the thread ID column if self.num_threads_per_rank == 1: del self.df_metrics["thread"] # used to speedup parse_xml_node self.np_metrics = self.df_metrics[self.metric_columns].values # getting the number of execution threads for our stride in # subtract_exclusive_metric_vals/ num nodes is already calculated self.total_execution_threads = self.num_threads_per_rank * self.num_ranks def read(self): """Read the experiment.xml file to extract the calling context tree and create a dataframe out of it. Then merge the two dataframes to create the final dataframe. Return: (GraphFrame): new GraphFrame with HPCToolkit data. """ with self.timer.phase("fill tables"): self.fill_tables() with self.timer.phase("read metric db"): self.read_all_metricdb_files() list_roots = [] # parse the ElementTree to generate a calling context tree for root in self.callpath_profile.findall("PF"): global src_file nid = int(root.get("i")) src_file = root.get("f") # start with the root and create the callpath and node for the root # also a corresponding node_dict to be inserted into the dataframe graph_root = Node( Frame( {"type": "function", "name": self.procedure_names[root.get("n")]} ), None, ) node_dict = self.create_node_dict( nid, graph_root, self.procedure_names[root.get("n")], "PF", self.src_files[src_file], int(root.get("l")), self.load_modules[root.get("lm")], ) self.node_dicts.append(node_dict) list_roots.append(graph_root) # start graph construction at the root with self.timer.phase("graph construction"): self.parse_xml_children(root, graph_root) # put updated metrics back in dataframe for i, column in enumerate(self.metric_columns): if "(inc)" not in column: self.df_metrics[column] = self.np_metrics.T[i] with self.timer.phase("graph construction"): graph = Graph(list_roots) graph.enumerate_traverse() # create a dataframe for all the nodes in the graph self.df_nodes =
pd.DataFrame.from_dict(data=self.node_dicts)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd from numba import njit import pytest from vectorbt import defaults from vectorbt.utils import checks, config, decorators, math, array from tests.utils import hash # ############# config.py ############# # class TestConfig: def test_config(self): conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=False) conf['b']['d'] = 2 conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=True) conf['a'] = 2 with pytest.raises(Exception) as e_info: conf['d'] = 2 # go deeper conf['b']['c'] = 2 with pytest.raises(Exception) as e_info: conf['b']['d'] = 2 def test_merge_kwargs(self): assert config.merge_kwargs({'a': 1}, {'b': 2}) == {'a': 1, 'b': 2} assert config.merge_kwargs({'a': 1}, {'a': 2}) == {'a': 2} assert config.merge_kwargs({'a': {'b': 2}}, {'a': {'c': 3}}) == {'a': {'b': 2, 'c': 3}} assert config.merge_kwargs({'a': {'b': 2}}, {'a': {'b': 3}}) == {'a': {'b': 3}} # ############# decorators.py ############# # class TestDecorators: def test_class_or_instancemethod(self): class G: @decorators.class_or_instancemethod def g(self_or_cls): if isinstance(self_or_cls, type): return True # class return False # instance assert G.g() assert not G().g() def test_custom_property(self): class G: @decorators.custom_property(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_custom_method(self): class G: @decorators.custom_method(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_cached_property(self): class G: @decorators.cached_property(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' class G: @decorators.cached_property def cache_me(self): return np.random.uniform() g = G() # general caching cached_number = g.cache_me assert g.cache_me == cached_number # clear_cache method G.cache_me.clear_cache(g) cached_number2 = g.cache_me assert cached_number2 != cached_number assert g.cache_me == cached_number2 # disabled locally G.cache_me.disabled = True cached_number3 = g.cache_me assert cached_number3 != cached_number2 assert g.cache_me != cached_number3 G.cache_me.disabled = False # disabled globally defaults.caching = False cached_number4 = g.cache_me assert cached_number4 != cached_number3 assert g.cache_me != cached_number4 defaults.caching = True def test_cached_method(self): class G: @decorators.cached_method(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' class G: @decorators.cached_method def cache_me(self, b=10): return np.random.uniform() * 10 g = G() # general caching cached_number = g.cache_me() assert g.cache_me() == cached_number # clear_cache method G.cache_me.clear_cache(g) cached_number2 = g.cache_me() assert cached_number2 != cached_number assert g.cache_me() == cached_number2 # disabled locally G.cache_me.disabled = True cached_number3 = g.cache_me() assert cached_number3 != cached_number2 assert g.cache_me() != cached_number3 G.cache_me.disabled = False # disabled globally defaults.caching = False cached_number4 = g.cache_me() assert cached_number4 != cached_number3 assert g.cache_me() != cached_number4 defaults.caching = True # disabled by non-hashable args cached_number5 = g.cache_me(b=np.zeros(1)) assert cached_number5 != cached_number4 assert g.cache_me(b=np.zeros(1)) != cached_number5 def test_traverse_attr_kwargs(self): class A: @decorators.custom_property(some_key=0) def a(self): pass class B: @decorators.cached_property(some_key=0, child_cls=A) def a(self): pass @decorators.custom_method(some_key=1) def b(self): pass class C: @decorators.cached_method(some_key=0, child_cls=B) def b(self): pass @decorators.custom_property(some_key=1) def c(self): pass assert hash(str(decorators.traverse_attr_kwargs(C))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key'))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=1))) == 703070484833749378 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=(0, 1)))) == 16728515581653529580 # ############# checks.py ############# # class TestChecks: def test_is_pandas(self): assert not checks.is_pandas(0) assert not checks.is_pandas(np.array([0])) assert checks.is_pandas(pd.Series([1, 2, 3])) assert checks.is_pandas(pd.DataFrame([1, 2, 3])) def test_is_series(self): assert not checks.is_series(0) assert not checks.is_series(np.array([0])) assert checks.is_series(pd.Series([1, 2, 3])) assert not checks.is_series(pd.DataFrame([1, 2, 3])) def test_is_frame(self): assert not checks.is_frame(0) assert not checks.is_frame(np.array([0])) assert not checks.is_frame(pd.Series([1, 2, 3])) assert checks.is_frame(pd.DataFrame([1, 2, 3])) def test_is_array(self): assert not checks.is_array(0) assert checks.is_array(np.array([0])) assert checks.is_array(pd.Series([1, 2, 3])) assert checks.is_array(pd.DataFrame([1, 2, 3])) def test_is_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x assert not checks.is_numba_func(test_func) assert checks.is_numba_func(test_func_nb) def test_is_hashable(self): assert checks.is_hashable(2) assert not checks.is_hashable(np.asarray(2)) def test_is_index_equal(self): assert checks.is_index_equal( pd.Index([0]), pd.Index([0]) ) assert not checks.is_index_equal( pd.Index([0]), pd.Index([1]) ) assert not checks.is_index_equal( pd.Index([0], name='name'), pd.Index([0]) ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.Index([0]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.MultiIndex.from_arrays([[0], [1]]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']) ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name3', 'name4']) ) def test_is_default_index(self): assert checks.is_default_index(pd.DataFrame([[1, 2, 3]]).columns) assert checks.is_default_index(pd.Series([1, 2, 3]).to_frame().columns) assert checks.is_default_index(pd.Index([0, 1, 2])) assert not checks.is_default_index(pd.Index([0, 1, 2], name='name')) def test_is_equal(self): assert checks.is_equal(np.arange(3), np.arange(3), np.array_equal) assert not checks.is_equal(np.arange(3), None, np.array_equal) assert not checks.is_equal(None, np.arange(3), np.array_equal) assert checks.is_equal(None, None, np.array_equal) def test_assert_value_in(self): checks.assert_value_in(0, (0, 1)) with pytest.raises(Exception) as e_info: checks.assert_value_in(2, (0, 1)) def test_assert_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x checks.assert_numba_func(test_func_nb) with pytest.raises(Exception) as e_info: checks.assert_numba_func(test_func) def test_assert_not_none(self): checks.assert_not_none(0) with pytest.raises(Exception) as e_info: checks.assert_not_none(None) def test_assert_type(self): checks.assert_type(0, int) checks.assert_type(np.zeros(1), (np.ndarray, pd.Series)) checks.assert_type(
pd.Series([1, 2, 3])
pandas.Series
''' Python reducer function Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 ''' ''' Modified by <EMAIL> for AWS lambda map-reduce test. This reducer function takes in multiple files which are mapper phase outputs , writes back to one parquet file in s3 ''' import boto3 import json import random import resource from io import StringIO import time import awswrangler as wr import pandas as pd # create an S3 & Dynamo session s3 = boto3.resource('s3') s3_client = boto3.client('s3') # constants TASK_MAPPER_PREFIX = "task/mapper/"; TASK_REDUCER_PREFIX = "task/reducer/"; def write_to_s3(bucket, key, data, metadata): # Write to S3 Bucket s3.Bucket(bucket).put_object(Key=key, Body=data, Metadata=metadata) def write_pandas_parquet_to_s3(df, bucketName,fname, keyName): path = "s3://" + str(bucketName) + "/parquet/" + str(keyName) # dummy dataframe wr.s3.to_parquet( df=df, path=path, compression='gzip' ) def lambda_handler(event, context): start_time = time.time() job_bucket = event['jobBucket'] bucket = event['bucket'] reducer_keys = event['keys'] job_id = event['jobId'] r_id = event['reducerId'] step_id = event['stepId'] n_reducers = event['nReducers'] # aggr results = {} line_count = 0 final_df = pd.DataFrame() # INPUT CSV => OUTPUT PARQUET # Download and process all keys for key in reducer_keys: response = s3_client.get_object(Bucket=job_bucket, Key=key) contents = response['Body'].read().decode('utf-8') data = contents.split('\n')[1:-1] df = pd.DataFrame(data,columns=['row']) #print(df.shape) df[['row_number','VendorID','tpep_pickup_datetime','tpep_dropoff_datetime','passenger_count','trip_distance','pickup_longitude','pickup_latitude','RatecodeID','store_and_fwd_flag','dropoff_longitude','dropoff_latitude','payment_type','fare_amount','extra','mta_tax','tip_amount','tolls_amount','improvement_surcharge','total_amount','LocationID']] = df.row.str.split(",",expand=True) df.drop(['row','row_number'],axis=1,inplace=True) #type convert df['VendorID'] = pd.to_numeric(df['VendorID']) df['passenger_count'] = pd.to_numeric(df['passenger_count']) df['trip_distance'] = pd.to_numeric(df['trip_distance']) df['pickup_latitude'] = pd.to_numeric(df['pickup_latitude']) df['pickup_longitude'] = pd.to_numeric(df['pickup_longitude']) df['RatecodeID'] = pd.to_numeric(df['RatecodeID']) df['dropoff_longitude'] = pd.to_numeric(df['dropoff_longitude']) df['dropoff_latitude'] = pd.to_numeric(df['dropoff_latitude']) df['fare_amount'] = pd.to_numeric(df['fare_amount']) df['extra'] = pd.to_numeric(df['extra']) df['mta_tax'] = pd.to_numeric(df['mta_tax']) df['tip_amount'] = pd.to_numeric(df['tip_amount']) df['tolls_amount'] =
pd.to_numeric(df['tolls_amount'])
pandas.to_numeric
# Copyright (C) 2014-2017 <NAME>, <NAME>, <NAME>, <NAME> (in alphabetic order) # # This file is part of OpenModal. # # OpenModal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # OpenModal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with OpenModal. If not, see <http://www.gnu.org/licenses/>. ''' Created on 20. maj 2014 TODO: That mnums in the beginning of every function, thats bad! TODO: Alot of refactoring. TODO: Put tables in a dictionary, that way you have a nice overview of what is inside and also is much better :) @author: Matjaz ''' import time import os import itertools from datetime import datetime import pandas as pd from pandas import ExcelWriter from OpenModal.anim_tools import zyx_euler_to_rotation_matrix import numpy as np import pyuff import OpenModal.utils as ut # import _transformations as tr # Uff fields definitions (human-readable). types = dict() types[15] = 'Geometry' types[82] = 'Lines' types[151] = 'Header' types[2411] = 'Geometry' types[164] = 'Units' types[58] = 'Measurement' types[55] = 'Analysis' types[2420] = 'Coor. sys.' types[18] = 'Coor. sys.' # Function type definition. FUNCTION_TYPE = dict() FUNCTION_TYPE['General'] = 0 # also: unknown FUNCTION_TYPE['Time Response'] = 1 FUNCTION_TYPE['Auto Spectrum'] = 2 FUNCTION_TYPE['Cross Spectrum'] = 3 FUNCTION_TYPE['Frequency Response Function'] = 4 FUNCTION_TYPE['Transmissibility'] = 5 FUNCTION_TYPE['Coherence'] = 6 FUNCTION_TYPE['Auto Correlation'] = 7 FUNCTION_TYPE['Cross Correlation'] = 8 FUNCTION_TYPE['Power Spectral Density (PSD)'] = 9 FUNCTION_TYPE['Energy Spectral Density (ESD)'] = 10 FUNCTION_TYPE['Probability Density Function'] = 11 FUNCTION_TYPE['Spectrum'] = 12 FUNCTION_TYPE['Cumulative Frequency Distribution'] = 13 FUNCTION_TYPE['Peaks Valley'] = 14 FUNCTION_TYPE['Stress/Cycles'] = 15 FUNCTION_TYPE['Strain/Cycles'] = 16 FUNCTION_TYPE['Orbit'] = 17 FUNCTION_TYPE['Mode Indicator Function'] = 18 FUNCTION_TYPE['Force Pattern'] = 19 FUNCTION_TYPE['Partial Power'] = 20 FUNCTION_TYPE['Partial Coherence'] = 21 FUNCTION_TYPE['Eigenvalue'] = 22 FUNCTION_TYPE['Eigenvector'] = 23 FUNCTION_TYPE['Shock Response Spectrum'] = 24 FUNCTION_TYPE['Finite Impulse Response Filter'] = 25 FUNCTION_TYPE['Multiple Coherence'] = 26 FUNCTION_TYPE['Order Function'] = 27 FUNCTION_TYPE['Phase Compensation'] = 28 # Specific data type for abscisa/ordinate SPECIFIC_DATA_TYPE = dict() SPECIFIC_DATA_TYPE['unknown'] = 0 SPECIFIC_DATA_TYPE['general'] = 1 SPECIFIC_DATA_TYPE['stress'] = 2 SPECIFIC_DATA_TYPE['strain'] = 3 SPECIFIC_DATA_TYPE['temperature'] = 5 SPECIFIC_DATA_TYPE['heat flux'] = 6 SPECIFIC_DATA_TYPE['displacement'] = 8 SPECIFIC_DATA_TYPE['reaction force'] = 9 SPECIFIC_DATA_TYPE['velocity'] = 11 SPECIFIC_DATA_TYPE['acceleration'] = 12 SPECIFIC_DATA_TYPE['excitation force'] = 13 SPECIFIC_DATA_TYPE['pressure'] = 15 SPECIFIC_DATA_TYPE['mass'] = 16 SPECIFIC_DATA_TYPE['time'] = 17 SPECIFIC_DATA_TYPE['frequency'] = 18 SPECIFIC_DATA_TYPE['rpm'] = 19 SPECIFIC_DATA_TYPE['order'] = 20 SPECIFIC_DATA_TYPE['sound pressure'] = 21 SPECIFIC_DATA_TYPE['sound intensity'] = 22 SPECIFIC_DATA_TYPE['sound power'] = 23 # TODO: Fast get and set. Check setting with enlargement. class ModalData(object): """The data object holds all measurement, results and geometry data """ def __init__(self): """ Constructor """ self.create_empty() def create_empty(self): """Create an empty data container.""" # Tables self.tables = dict() # Holds the tables, populated by importing a uff file. # TODO: This is temporary? Maybe, maybe not, might be # a good idea to have some reference of imported data! self.uff_import_tables = dict() self.create_info_table() self.create_geometry_table() self.create_measurement_table() self.create_analysis_table() self.create_lines_table() self.create_elements_table() # Set model id self.model_id = 0 def create_info_table(self): """Creates an empty info table.""" self.tables['info'] = pd.DataFrame(columns=['model_id', 'model_name', 'description', 'units_code', 'length', 'force', 'temp', 'temp_offset']) # self.tables['info'] = pd.DataFrame(columns=['model_id', 'uffid', 'value']) def create_geometry_table(self): """Creates an empty geometry table.""" self.tables['geometry'] = pd.DataFrame(columns=['model_id', 'uffid', 'node_nums', 'x', 'y', 'z', 'thx', 'thy', 'thz', 'disp_cs', 'def_cs', 'color','clr_r','clr_g','clr_b','clr_a', 'r','phi','cyl_thz']) def create_measurement_table(self): """Creates an empty measurement table.""" self.tables['measurement_index'] = pd.DataFrame(columns=['model_id', 'measurement_id', 'uffid', 'field_type', 'excitation_type', 'func_type', 'rsp_node', 'rsp_dir', 'ref_node', 'ref_dir', 'abscissa_spec_data_type', 'ordinate_spec_data_type', 'orddenom_spec_data_type', 'zero_padding'], dtype=int) self.tables['measurement_values'] = pd.DataFrame(columns=['model_id', 'measurement_id', 'frq', 'amp']) self.tables['measurement_values'].amp = self.tables['measurement_values'].amp.astype('complex') self.tables['measurement_values_td'] = pd.DataFrame(columns=['model_id', 'measurement_id', 'n_avg', 'x_axis', 'excitation', 'response']) def create_analysis_table(self): """Creates an empty analysis table.""" self.tables['analysis_index'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'uffid', 'field_type', 'analysis_type', 'data_ch', 'spec_data_type', 'load_case', 'mode_n', 'eig', 'freq', 'freq_step_n', 'node_nums', 'rsp_node', 'rsp_dir', 'ref_node', 'ref_dir', 'data_type', 'ref_node', 'ref_dir', 'data_type', 'eig_real','eig_xi', 'spots']) self.tables['analysis_values'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'mode_n', 'node_nums', 'r1', 'r2', 'r3', 'r4', 'r5', 'r6']) self.tables['analysis_settings'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'f_min','f_max', 'nmax', 'err_fn', 'err_xi', ]) self.tables['analysis_stabilisation'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'pos', 'size', 'pen_color', 'pen_width', 'symbol', 'brush', 'damp']) self.tables['analysis_index'].eig = self.tables['analysis_index'].eig.astype('complex') self.tables['analysis_values'].r1 = self.tables['analysis_values'].r1.astype('complex') self.tables['analysis_values'].r2 = self.tables['analysis_values'].r2.astype('complex') self.tables['analysis_values'].r3 = self.tables['analysis_values'].r3.astype('complex') self.tables['analysis_values'].r4 = self.tables['analysis_values'].r4.astype('complex') self.tables['analysis_values'].r5 = self.tables['analysis_values'].r5.astype('complex') self.tables['analysis_values'].r6 = self.tables['analysis_values'].r6.astype('complex') def create_lines_table(self): """Creates an empty lines table.""" self.tables['lines'] = pd.DataFrame(['model_id', 'uffid', 'id', 'field_type', 'trace_num', 'color', 'n_nodes', 'trace_id', 'pos', 'node']) def create_elements_table(self): """Creates an empty elements table.""" # TODO: Missing 'physical property table number' and 'material property ...' # TODO: Missing 'fe descriptor id', chosen from a list of 232(!) types!!? # TODO: Missing beam support. self.tables['elements_index'] = pd.DataFrame(columns=['model_id', 'element_id', 'element_descriptor', 'color', 'nr_of_nodes','clr_r','clr_g','clr_b','clr_a']) self.tables['elements_values'] = pd.DataFrame(columns=['model_id', 'element_id', 'node_id', 'node_pos']) def new_model(self, model_id=-1, entries=dict()): """Set new model id. Values can be set through entries dictionary, for each value left unset, default will be used.""" if model_id == -1: # Create a new model_id. First check if table is empty. current_models = self.tables['info'].model_id if current_models.size == 0: model_id = 0 else: model_id = current_models.max() + 1 fields = {'db_app': 'ModalData', 'time_db_created': time.strftime("%d-%b-%y %H:%M:%S"), 'time_db_saved': time.strftime("%d-%b-%y %H:%M:%S"), 'program': 'OpenModal', 'model_name': 'DefaultName', 'description': 'DefaultDecription', 'units_code': 9, 'temp': 1, 'temp_mode': 1, 'temp_offset': 1, 'length': 1, 'force': 1, 'units_description': 'User unit system'} for key in entries: fields[key] = entries[key] # TODO: Check if model_id already exists. input = [model_id, fields['model_name'], fields['description'], fields['units_code'], fields['length'], fields['force'], fields['temp'], fields['temp_offset']] new_model = pd.DataFrame([input], columns=['model_id', 'model_name', 'description', 'units_code', 'length', 'force', 'temp', 'temp_offset']) self.tables['info'] = pd.concat([self.tables['info'], new_model], ignore_index=True) return model_id def new_measurement(self, model_id, excitation_type, frequency, h, reference=[0, 0], response=[0, 0], function_type='Frequency Response Function', abscissa='frequency', ordinate='acceleration', denominator='excitation force', zero_padding=0, td_x_axis=np.array([]), td_excitation=None, td_response=None): """Add a new measurement.""" # Check if model id exists. if self.tables['info'].model_id.size == 0: raise ValueError elif not any(self.tables['info'].model_id == model_id): raise ValueError # Prepare a new measurement_id. if self.tables['measurement_index'].measurement_id.size == 0: measurement_id = 0 else: measurement_id = self.tables['measurement_index'].measurement_id.max() + 1 newentry_idx = pd.DataFrame([[model_id, measurement_id, excitation_type, FUNCTION_TYPE[function_type], response[0], response[1], reference[0], reference[1], SPECIFIC_DATA_TYPE[abscissa], SPECIFIC_DATA_TYPE[ordinate], SPECIFIC_DATA_TYPE[denominator], zero_padding]], columns=['model_id', 'measurement_id', 'excitation_type', 'func_type', 'rsp_node', 'rsp_dir', 'ref_node', 'ref_dir', 'abscissa_spec_data_type', 'ordinate_spec_data_type', 'orddenom_spec_data_type', 'zero_padding']) self.tables['measurement_index'] = pd.concat([ self.tables['measurement_index'], newentry_idx], ignore_index=True) # Add entry with measured frf. newentry_val = pd.DataFrame(columns=['model_id', 'measurement_id', 'frq', 'amp']) newentry_val['frq'] = frequency newentry_val['amp'] = h newentry_val['model_id'] = model_id newentry_val['measurement_id'] = measurement_id self.tables['measurement_values'] = pd.concat([self.tables['measurement_values'], newentry_val], ignore_index=True) # if td_x_axis.size > 0: # # TODO: Create it with size you already know. Should be faster? # newentry_val_td = pd.DataFrame(columns=['model_id', 'measurement_id', 'x_axis', 'excitation', 'response']) # newentry_val_td['x_axis'] = td_x_axis # newentry_val_td['excitation'] = td_excitation # newentry_val_td['response'] = td_response # newentry_val_td['model_id'] = model_id # newentry_val_td['measurement_id'] = measurement_id # # self.tables['measurement_values_td'] = pd.concat([self.tables['measurement_values_td'], newentry_val_td], # ignore_index=True) if td_x_axis.size > 0: n_averages = len(td_response) i = 0 # TODO: Optimize here. for td_excitation_i, td_response_i in zip(td_excitation, td_response): # TODO: Create it with size you already know. Should be faster? newentry_val_td = pd.DataFrame(columns=['model_id', 'measurement_id', 'n_avg', 'x_axis', 'excitation', 'response']) newentry_val_td['x_axis'] = td_x_axis newentry_val_td['excitation'] = td_excitation_i newentry_val_td['response'] = td_response_i newentry_val_td['model_id'] = model_id newentry_val_td['measurement_id'] = measurement_id newentry_val_td['n_avg'] = i i += 1 self.tables['measurement_values_td'] = pd.concat([self.tables['measurement_values_td'], newentry_val_td], ignore_index=True) def remove_model(self, model_id): """Remove all data connected to the supplied model id.""" try: el_idx = self.tables['elements_index'] el_vals = self.tables['elements_values'] elements_id = el_idx[el_idx.model_id == model_id].element_id self.tables['elements_values'] = self.tables['elements_values'][~el_vals.element_id.isin(elements_id)] self.tables['elements_index'] = self.tables['elements_index'][el_idx.model_id != model_id] except AttributeError: print('There is no element data to delete.') try: lines = self.tables['lines'] self.tables['lines'] = self.tables['lines'][lines.model_id != model_id] except AttributeError: print('There is no line data to delete.') try: an_idx = self.tables['analysis_index'] an_vals = self.tables['analysis_values'] analysis_id = an_idx[an_idx.model_id == model_id].analysis_id self.tables['analysis_values'] = self.tables['analysis_values'][~an_vals.element_id.isin(analysis_id)] self.tables['analysis_index'] = self.tables['analysis_index'][an_idx.model_id != model_id] except AttributeError: print('There is no analysis data to delete.') try: me_idx = self.tables['measurement_index'] me_vals = self.tables['measurement_values'] me_vals_td = self.tables['measurement_values_td'] measurement_id = me_idx[me_idx.model_id == model_id].measurement_id self.tables['measurement_values_td'] = self.tables['measurement_values_td'][~me_vals_td.measurement_id.isin(measurement_id)] self.tables['measurement_values'] = self.tables['measurement_values'][~me_vals.measurement_id.isin(measurement_id)] self.tables['measurement_index'] = self.tables['measurement_index'][me_idx.model_id != model_id] except AttributeError: print('There is no measurement data to delete.') try: geometry = self.tables['geometry'] self.tables['geometry'] = self.tables['geometry'][geometry.model_id != model_id] except AttributeError: print('There is no geometry data to delete.') try: info = self.tables['info'] self.tables['info'] = self.tables['info'][info.model_id != model_id] except AttributeError: print('There is no info data to delete.') def import_uff(self, fname): """Pull data from uff.""" # Make sure you start with new model ids at the appropriate index. if self.tables['info'].model_id.size > 0: base_key = self.tables['info'].model_id.max() + 1 else: base_key=0 uffdata = ModalDataUff(fname, base_key=base_key) for key in self.tables.keys(): if key in uffdata.tables: # uffdata.tables[key].model_id += 100 self.tables[key] = pd.concat([self.tables[key], uffdata.tables[key]], ignore_index=True) self.uff_import_tables[key] = '' self.file_structure = uffdata.file_structure def export_to_uff(self, fname, model_ids=[], data_types=[], separate_files_flag=False): """Export data to uff.""" model_ids = self.tables['info'].model_id.unique() if len(model_ids) == 0: model_ids = self.tables['info'].model_id.unique() if len(data_types) == 0: data_types = ['nodes', 'lines', 'elements', 'measurements', 'analyses'] if len(model_ids) == 0: print('Warning: Empty tables. (No model_ids found).') return False t = datetime.now() folder_timestamp = 'OpenModal Export UFF -- {:%Y %d-%m %H-%M-%S}'.format(t) export_folder = os.path.join(fname, folder_timestamp) try: os.mkdir(export_folder) except: print('Warning: File exists. Try again later ...') return False for model_id in model_ids: # -- Write info. dfi = self.tables['info'] dfi = dfi[dfi.model_id == model_id] # TODO: Do not overwrite this dfi model_name = dfi.model_name.values[0] if not separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}.uff'.format(model_name, model_id))) if len(dfi) != 0: dset_info = {'db_app': 'modaldata v1', 'model_name': dfi.model_name.values[0], 'description': dfi.description.values[0], 'program': 'Open Modal'} dset_units = {'units_code': dfi.units_code.values[0], # TODO: Maybe implement other data. # 'units_description': dfi.units_description, # 'temp_mode': dfi.temp_mode, 'length': dfi.length.values[0], 'force': dfi.force.values[0], 'temp': dfi.temp.values[0], 'temp_offset': dfi.temp_offset.values[0]} # for key in dset_info.keys(): # dset_info[key] = dset_info[key].value.values[0] dset_info['type'] = 151 # for key in dset_units.keys(): # dset_units[key] = dset_units[key].value.values[0] dset_units['type'] = 164 if separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}_info.uff'.format(model_name, model_id))) uffwrite._write_set(dset_info, mode='add') uffwrite._write_set(dset_units, mode='add') # -- Write Geometry. if 'nodes' in data_types: dfg = self.tables['geometry'] #dfg = dfg[dfg.model_id==model_id] #drop nan lines defined in geometry model_id_mask=dfg.model_id==model_id nan_mask = dfg[['node_nums','x', 'y', 'z','thz', 'thy', 'thx' , 'model_id']].notnull().all(axis=1) comb_mask = model_id_mask & nan_mask dfg = dfg[comb_mask] if len(dfg) != 0: # .. First the coordinate systems. Mind the order of angles (ZYX) size = len(dfg) local_cs = np.zeros((size * 4, 3), dtype=float) th_angles = dfg[['thz', 'thy', 'thx']].values for i in range(size): #local_cs[i*4:i*4+3, :] = ut.zyx_euler_to_rotation_matrix(th_angles[i, :]) local_cs[i*4:i*4+3, :] = zyx_euler_to_rotation_matrix(th_angles[i, :]*np.pi/180.) local_cs[i*4+3, :] = 0.0 dset_cs = {'local_cs': local_cs, 'nodes': dfg[['node_nums']].values, 'type': 2420} uffwrite._write_set(dset_cs, mode='add') # .. Then points. dset_geometry = {'grid_global': dfg[['node_nums', 'x', 'y', 'z']].values, 'export_cs_number': 0, 'cs_color': 8, 'type': 2411} if separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}_nodes.uff'.format(model_name, model_id))) uffwrite._write_set(dset_geometry, mode='add') # -- Write Measurements. if 'measurements' in data_types: dfi = self.tables['measurement_index'] dfi = dfi[dfi.model_id == model_id] dfi.field_type = 58 if len(dfi) != 0: dfv = self.tables['measurement_values'] dfv = dfv[dfv.model_id == model_id] for id, measurement in dfi.iterrows(): data = dfv[dfv.measurement_id == measurement.measurement_id] dsets={'type': measurement['field_type'], 'func_type': measurement['func_type'], 'data': data['amp'].values.astype('complex'), 'x': data['frq'].values, 'rsp_node': measurement['rsp_node'], 'rsp_dir': measurement['rsp_dir'], 'ref_node': measurement['ref_node'], 'ref_dir': measurement['ref_dir'], 'rsp_ent_name':model_name, 'ref_ent_name':model_name} # TODO: Make rsp_ent_name and ref_ent_name fields in measurement_index table. if pd.isnull(measurement['abscissa_spec_data_type']): dsets['abscissa_spec_data_type'] = 0 else: dsets['abscissa_spec_data_type'] = measurement['abscissa_spec_data_type'] if pd.isnull(measurement['ordinate_spec_data_type']): dsets['ordinate_spec_data_type'] = 0 else: dsets['ordinate_spec_data_type'] = measurement['ordinate_spec_data_type'] if pd.isnull(measurement['orddenom_spec_data_type']): dsets['orddenom_spec_data_type'] = 0 else: dsets['orddenom_spec_data_type'] = measurement['orddenom_spec_data_type'] if separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}_measurements.uff'.format(model_name, model_id))) uffwrite._write_set(dsets, mode='add') def export_to_csv(self, fname, model_ids=[], data_types=[]): """Export data to uff.""" if len(model_ids) == 0: model_ids = self.tables['info'].model_id.unique() if len(data_types) == 0: data_types = ['nodes', 'lines', 'elements', 'measurements', 'analyses'] if len(model_ids) == 0: print('Warning: Empty tables. (No model_ids found).') return False t = datetime.now() folder_timestamp = 'OpenModal Export CSV -- {:%Y %d-%m %H-%M-%S}'.format(t) export_folder = os.path.join(fname, folder_timestamp) try: os.mkdir(export_folder) except: print('Warning: File exists. Try again later ...') return False for model_id in model_ids: # -- Write info. dfi = self.tables['info'] dfi = dfi[dfi.model_id == model_id] model_name = '{0}_{1:.0f}'.format(dfi.model_name.values[0], model_id) model_dir = os.path.join(export_folder, model_name) os.mkdir(model_dir) df_ = self.tables['info'] df_[df_.model_id == model_id].to_csv(os.path.join(model_dir, 'info.csv')) if 'nodes' in data_types: df_ = self.tables['geometry'] df_[df_.model_id == model_id].to_csv(os.path.join(model_dir, 'geometry.csv')) # -- Special treatment for measurements if 'measurements' in data_types: measurements_dir = os.path.join(model_dir, 'measurements') os.mkdir(measurements_dir) df_ = self.tables['measurement_index'] df_[df_.model_id == model_id].to_csv(os.path.join(measurements_dir, 'measurements_index.csv')) df_ = self.tables['measurement_values'] grouped_measurements = df_[df_.model_id == model_id].groupby('measurement_id') for id, measurement in grouped_measurements: measurement['amp_real'] = measurement.amp.real measurement['amp_imag'] = measurement.amp.imag measurement[['frq', 'amp_real', 'amp_imag']].to_csv(os.path.join(measurements_dir, 'measurement_{0:.0f}.csv'.format(id)), index=False) class ModalDataUff(object): ''' Reads the uff file and populates the following pandas tables: -- ModalData.measurement_index : index of all measurements from field 58 -- ModalData.geometry : index of all points with CS from fields 2411 and 15 -- ModalData.info : info about measurements Based on the position of field in the uff file, uffid is assigned to each field in the following maner: first field, uffid = 0, second field, uffid = 1 and so on. Columns are named based on keys from the UFF class if possible. Fields uffid and field_type (type of field, eg. 58) are added. Geometry table combines nodes and their respective CSs, column names are altered. ''' def __init__(self, fname='../../unvread/data/shield.uff', base_key=0): ''' Constructor ''' self.uff_object = pyuff.UFF(fname) # Start above base_key. self.base_key = base_key self.uff_types = self.uff_object.get_set_types() # print(self.uff_types) # Models self.models = dict() # Tables self.tables = dict() # Coordinate-system tables self.localcs = pd.DataFrame(columns=['model_id', 'uffidcs', 'node_nums', 'x1', 'x2', 'x3', 'y1', 'y2', 'y3', 'z1', 'z2', 'z3']) self.localeul = pd.DataFrame(columns=['model_id', 'uffidcs', 'node_nums', 'thx', 'thy', 'thz']) # File structure. self.file_structure = ['%5d %-10s' % (field, types[field]) for field in self.uff_types] self.create_model() def create_model(self): """Scans the uff file and creates a model from geometries and data, which is then populated. The models are grouped based on the field 151!""" # -- Scan geometries, each geometry is one model. mnums = list(np.nonzero(self.uff_types==151)[0]) if len(mnums) == 0: mnums = list(np.nonzero(self.uff_types==164)[0]) # -- What if there is no geometry? Only one model then I guess ... if len(mnums) == 0: print('Warning: There is no INFO or UNITS field!') self.models[0] = range(len(self.uff_types)) # .. TODO: You have to pass this warning on. else: # .. Define intervals, by sequential order, for each model. for model_id, num in enumerate(mnums): if model_id == (len(mnums)-1): self.models[model_id] = range(num, len(self.uff_types)) else: # .. Last model has special treatment ([x:] instead of [x:y]) self.models[model_id] = range(num, mnums[model_id+1]) for model_id, model in self.models.items(): self.populate_model(model_id+self.base_key, model) # print(self.models) # print(self.uff_types) def populate_model(self, model_id, model): """Read all data for each model.""" model = list(model) self.gen_measurement_table(model_id, model) self.gen_geometry_table(model_id, model) self.gen_analysis_table(model_id, model) self.gen_lines_table(model_id, model) self.gen_info_table(model_id, model) # .. TODO: Here is the place to check for connections between # fields, other than by sequential order. Check if LMS # writes anything. (It does not!) def gen_measurement_table(self, model_id, model): """Read measurements.""" mnums = np.nonzero(self.uff_types[model] == 58)[0] mnums += model[0] if len(mnums) == 0: return False mlist = [] #dlist = pd.DataFrame() # .. Create field list. sdata = self.uff_object.read_sets(mnums[0]) fields = ['model_id', 'measurement_id', 'uffid', 'field_type'] fields.extend([key for key in sdata.keys() if not ('x' in key or 'data' in key)]) concat_list = [] for mnum in list(mnums): dlist_ = pd.DataFrame() sdata = self.uff_object.read_sets(mnum) # .. Setup a new line in measurement index table. line = [model_id, mnum, mnum, 58] line.extend([sdata[key] for key in fields if not ('uffid' in key or 'field_type' in key or 'model_id' in key or 'measurement_id' in key)]) mlist.append(line) # TODO: Uredi podporo za kompleksne vrednosti tukaj. NE štima še čist! dlist_['frq'] = sdata['x'] dlist_['amp'] = sdata['data'] dlist_['amp'] = dlist_['amp'].astype('complex') dlist_['amp'] = sdata['data'] dlist_['uffid'] = mnum dlist_['measurement_id'] = mnum dlist_['model_id'] = model_id concat_list.append(dlist_) dlist = pd.concat(concat_list, ignore_index=True) concat_list = [] if 'measurement_index' in self.tables: self.tables['measurement_index'] = pd.concat([self.tables['measurement_index'], pd.DataFrame(mlist, columns=fields)], ignore_index=True) self.tables['measurement_values'] =
pd.concat([self.tables['measurement_values'], dlist], ignore_index=True)
pandas.concat
import pandas as pd import re from bs4 import BeautifulSoup import os.path def main(): BASE_DIR = os.path.dirname(os.path.abspath(__file__)) #filepath = input('txt file: ') filepath = 'goodreads.txt' html_path = os.path.join(BASE_DIR, filepath) with open(html_path, encoding='utf-8') as namafile: soup = BeautifulSoup(namafile.read(), features="html.parser") judul = soup.findAll('td',{'class':'field title'}) penulis = soup.findAll('td',{'class':'field author'}) tanggal = soup.findAll('td',{'class':'field date_read'}) title = [] author = [] date = [] for baris in judul: title.append(baris.find('a').get_text().strip()) for baris in penulis: full = re.split(',',baris.find('a').get_text().strip()) try: fullname = full[1].strip()+' '+full[0] except: fullname = baris.find('a').get_text().strip() author.append(fullname) for baris in tanggal: date.append(baris.find('span').get_text()) tabel = {'Title':title, 'Author':author, 'Status':'Finished', 'Progress':'', 'Book type':'', 'Highlight':'','Year':date} df =
pd.DataFrame(tabel)
pandas.DataFrame
# -*- coding: utf-8 -*- """Copy of Lab4Rn.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Okb2MBZEdgXtPXNqA-zqZkXR5dfNqz28 """ # !pip install wikipedia import wikipedia wikipedia.set_lang("en") corpus = [] def search(topic): summaries = [] pages = wikipedia.search(topic) for page in pages: content = wikipedia.summary(page) summaries.append(content) return summaries topics = ["travel", "music", "food", "technology", "finance", "law", "politics", "car"] corpus = {} for t in topics: try: summaries = search(t) if t in corpus: corpus[t].extend(summaries) else: corpus[t] = summaries except: pass corpus finalCorpus = [] topics = [] for a, b in corpus.items(): print(a) print(b) topics.append(a) finalCorpus.extend(b) data = finalCorpus finalCorpus #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- from sklearn.decomposition import NMF, LatentDirichletAllocation, TruncatedSVD from sklearn.feature_extraction.text import CountVectorizer NUM_TOPICS = 3 vectorizer = CountVectorizer(min_df=5, max_df=0.9, stop_words='english', lowercase=True, token_pattern='[a-zA-Z\-][a-zA-Z\-]{2,}') data_vectorized = vectorizer.fit_transform(data) # Build a Latent Dirichlet Allocation Model lda_model = LatentDirichletAllocation(n_components=NUM_TOPICS, max_iter=10, learning_method='online') lda_Z = lda_model.fit_transform(data_vectorized) print(lda_Z.shape) # (NO_DOCUMENTS, NO_TOPICS) # Build a Non-Negative Matrix Factorization Model nmf_model = NMF(n_components=NUM_TOPICS) nmf_Z = nmf_model.fit_transform(data_vectorized) print(nmf_Z.shape) # (NO_DOCUMENTS, NO_TOPICS) # Build a Latent Semantic Indexing Model lsi_model = TruncatedSVD(n_components=NUM_TOPICS) lsi_Z = lsi_model.fit_transform(data_vectorized) print(lsi_Z.shape) # (NO_DOCUMENTS, NO_TOPICS) # Let's see how the first document in the corpus looks like in different topic spaces print(lda_Z[0]) print(nmf_Z[0]) print(lsi_Z[0]) def print_topics(model, vectorizer, top_n=10): for idx, topic in enumerate(model.components_): print("Topic %d:" % (idx)) print([(vectorizer.get_feature_names()[i], topic[i]) for i in topic.argsort()[:-top_n - 1:-1]]) print("LDA Model:") print_topics(lda_model, vectorizer) print("=" * 50) print("NMF Model:") print_topics(nmf_model, vectorizer) print("=" * 50) print("LSI Model:") print_topics(lsi_model, vectorizer) print("=" * 50) print(topics) import pandas as pd from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure from bokeh.models import ColumnDataSource, LabelSet output_notebook() svd = TruncatedSVD(n_components=2) documents_2d = svd.fit_transform(data_vectorized) df =
pd.DataFrame(columns=['x', 'y', 'document'])
pandas.DataFrame
"""Main module.""" import csv, json, pandas as pd import os, sys, requests, datetime, time import zipfile, io import lxml.html as lhtml import lxml.html.clean as lhtmlclean import warnings from pandas.core.common import SettingWithCopyWarning warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) class QualClient: """ QualClient is a python wrapper the provides convenient access to data exports directly from Qualtrics into Pandas for further manipulation. The client in intiated with an API Token, and API URL It provides 3 Primary functions- QualClient.pull_survey_meta(): Pulls down a complete list of your surveys and addtional parameters such as isActive, Creation Date, Mod Date, Name, and IDs QualClient.pull_definition(survey_id): survey_id : str Takes the supplied survey_id and returns a df with the survey's defintion info, which identifies things like the questions asked, question text, question order, and IDs QualClient.pull_results(survey_id): survey_id : str Take the supplied survey_id and returns a df of all of the responses to the survey, with both the raw text and encoding of the response. This functionalty actually downloads and unzips files from Qualtrics, so be aware that it might take a moment to return the finalized data. DF takes the shape of a long table with one response per row. Example Usage: client = QualClient(API_Token, API_url) definitions = client.survey(survey_id) print(definitions.head()) """ def __init__(self, api_token, api_url): self.api_token = api_token self.headers = { 'x-api-token': self.api_token, 'content-type': "application/json", 'cache-control': "no-cache" } self.api_url = api_url self.survey_url = self.api_url + 'surveys/' self.definition_url = self.api_url + 'survey-definitions/' self.response_url = self.api_url + 'responseexports/' self.failed_responses = ["cancelled", "failed"] def pull_survey_meta(self): arrQualtricsSurveys = [] arrSurveyName = [] arrSurveyActive = [] arrCreation = [] arrMod = [] def GetQualtricsSurveys(qualtricsSurveysURL): response = requests.get(url=qualtricsSurveysURL, headers=self.headers) jsonResponse = response.json() nextPage = jsonResponse['result']['nextPage'] arrQualtricsSurveys.extend( [srv['id'] for srv in jsonResponse['result']['elements']]) arrSurveyName.extend( [srv['name'] for srv in jsonResponse['result']['elements']]) arrSurveyActive.extend([ srv['isActive'] for srv in jsonResponse['result']['elements'] ]) arrCreation.extend([ srv['creationDate'] for srv in jsonResponse['result']['elements'] ]) arrMod.extend([ srv['lastModified'] for srv in jsonResponse['result']['elements'] ]) #Contains nextPage if (nextPage is not None): GetQualtricsSurveys(nextPage) GetQualtricsSurveys(self.survey_url) df = pd.DataFrame({ 'SurveyID': arrQualtricsSurveys, 'Survey_Name': arrSurveyName, 'IsActive': arrSurveyActive, 'Created': arrCreation, 'LastModified': arrMod }) return df def pull_definition(self, survey_id): response = json.loads( requests.get( url=self.definition_url + survey_id, headers=self.headers).content.decode("utf-8"))['result'] question = pd.json_normalize(response['Questions']).melt() flow = pd.json_normalize(response['SurveyFlow']['Flow']) if ("EmbeddedData" in flow.columns or "Flow" in flow.columns): flow.rename(columns={ 'ID': 'BlockID', 'Type': 'FlowType' }, inplace=True) if not 'BlockID' in flow.columns: flow['BlockID'] = "" flow = flow[[ 'EmbeddedData', 'FlowID', 'BlockID', 'Flow', 'FlowType' ]].reset_index() flow.rename(columns={'index': 'FlowSort'}, inplace=True) flow_block = flow[( flow.EmbeddedData.isnull() == True)].EmbeddedData.apply( pd.Series).merge( flow, right_index=True, left_index=True).drop(["EmbeddedData"], axis=1).melt( id_vars=[ 'FlowSort', 'FlowID', 'BlockID', 'FlowType' ], value_name="EmbeddedData") embed = flow[( flow.EmbeddedData.isnull() == False)].EmbeddedData.apply( pd.Series).merge( flow, right_index=True, left_index=True).drop(["EmbeddedData"], axis=1).melt( id_vars=[ 'FlowSort', 'FlowID', 'BlockID', 'FlowType' ], value_name="EmbeddedData") embed = embed.EmbeddedData.apply(pd.Series).merge( embed, right_index=True, left_index=True).drop(["EmbeddedData"], axis=1).dropna(subset=['Field', 'Type']) embed = embed[[ 'FlowSort', 'FlowID', 'BlockID', 'FlowType', 'Field', 'Type', 'Value' ]] embed = embed.sort_values(by=['FlowSort']) combined = flow_block.merge( embed, how='outer', on=['FlowSort', 'FlowID', 'BlockID', 'FlowType']).sort_values(by=['FlowSort']) combined.drop(["variable", "EmbeddedData"], axis=1, inplace=True) combined.drop_duplicates(inplace=True) else: flow = flow[['FlowID', 'Type']].reset_index() flow.columns = ['FlowSort', 'FlowID', 'BlockID', 'FlowType'] flow['Field'] = '' flow['Type'] = '' flow['Value'] = '' combined = flow blocks = pd.json_normalize(response['Blocks']).melt() blocks[["BlockID", "BlockSettings"]] = blocks.variable.str.split('.', 1, expand=True) blocks = blocks[~blocks['BlockSettings'].str.contains('Options') & ~blocks['BlockSettings'].str.contains('SubType')] blocks = blocks.pivot(index='BlockID', columns='BlockSettings', values='value') blocks = blocks['BlockElements'].apply(pd.Series).merge( blocks, right_index=True, left_index=True).drop(['BlockElements'], axis=1).melt( id_vars=['ID', 'Type', 'Description'], value_name="BlockElement").dropna() blocks.rename(columns={'ID': 'BlockID'}, inplace=True) blocks['ElementType'] = blocks['BlockElement'] blocks['ElementType'] = blocks['ElementType'].apply( lambda x: x['Type']) blocks['QID'] = blocks['BlockElement'].apply( lambda x: x['QuestionID'] if 'QuestionID' in x else "") blocks = blocks.drop(['BlockElement'], axis=1) blocks.rename( columns=(lambda x: 'BlockElementSort' if x == 'variable' else ('Block' + x if (('Block' in x) == False and x != 'QID') else x)), inplace=True) blocks = combined.merge(blocks, on='BlockID', how='right') extract = question[( question.variable.str.contains('.Language.') == False)] extract[["QID", "QPath"]] = extract.variable.str.split('.', 1, expand=True) extract[["QPath", "ChoiceSetting"]] = extract.QPath.str.rsplit('.', 1, expand=True) extract['value'] = extract.apply( lambda x: response['Questions'][x.QID]['Labels'] if (x.QPath.startswith("Labels.") == True) else x['value'], axis=1) extract['ChoiceSetting'] = extract.apply( lambda x: None if (x.QPath.startswith("Labels.") == True) else x.ChoiceSetting, axis=1) extract['QPath'] = extract.apply( lambda x: "Labels" if (x.QPath.startswith("Labels.") == True) else x.QPath, axis=1) question_pvt = extract[(extract.ChoiceSetting.isnull() == True)] question_pvt = question_pvt.pivot_table(index=['QID'], columns=['QPath'], values='value', aggfunc='first').reset_index() question_settings = extract[ (extract.QPath.str.contains("Choices.") == False) & (extract.QPath.str.contains("Answers.") == False)] choice_settings = question_settings[( question_settings.ChoiceSetting.str.replace( '-', '').str.isnumeric() == True)] question_settings = question_settings[( question_settings.ChoiceSetting.str.replace( '-', '').str.isnumeric() == False)] question_settings['QPath'] = question_settings.apply( lambda x: x['QPath'] + "." + x['ChoiceSetting'], axis=1) question_settings['QPath'] = question_settings.apply( lambda x: x['QPath'].split('.', 2)[0] + "." + x['QPath'].split( '.', 2)[2] if "AdditionalQuestions" in x['QPath'] else x['QPath'], axis=1) question_settings = question_settings.drop( columns=['variable', 'ChoiceSetting']) question_settings = question_settings.pivot_table( index=['QID'], columns=['QPath'], values='value', aggfunc='first').reset_index() question_pvt = question_pvt.merge(question_settings, how='left', on='QID') if (choice_settings.empty == False): choice_settings['CQID'] = choice_settings.apply( lambda x: x['QID'] + '-' + x['ChoiceSetting'] if ((x['ChoiceSetting'] is not None) & ( (x['ChoiceSetting']).isnumeric())) else x['QID'], axis=1) choice_settings.drop(columns=['variable', 'QID']) choice_settings = choice_settings.pivot_table( index=['CQID'], columns=['QPath'], values='value', aggfunc='first').reset_index() answers = extract[(extract.QPath.str.contains("Answers.") == True)] if (answers.empty == False): answers[["QPath", "CRecode"]] = answers.QPath.str.split('.', 1, expand=True) answers['CRecode'] = answers['CRecode'].apply( lambda x: '#' + x.split('.')[0] + '-' + x.split('.')[2] if "Answers" in x else x) answers['AnswerSort'] = 1 answers['AnswerSort'] = answers.groupby( 'QID')['AnswerSort'].cumsum() answers = answers.drop(columns=['variable', 'ChoiceSetting']) choices_pvt = extract[(extract.QPath.str.contains("Choices.") == True)] choices_pvt[["QPath", "CRecode"]] = choices_pvt.QPath.str.split('.', 1, expand=True) choices_pvt["IChoiceSetting"] = choices_pvt["CRecode"].apply( lambda x: None if x is None else (x.split('.', 1)[1] if x.count('.') > 0 else "")) choices_pvt["ChoiceSetting"] = choices_pvt.apply( lambda x: x['IChoiceSetting'] + "." + x['ChoiceSetting'] if "Image" in str(x['IChoiceSetting']) else x['ChoiceSetting'], axis=1) choices_pvt["PGRGrpIdx"] = choices_pvt["CRecode"].apply( lambda x: None if x is None else x.split('.', 1)[0] if 'Choices' in x else None) choices_pvt["PGRChoiceIdx"] = choices_pvt["CRecode"].apply( lambda x: None if x is None else x.rsplit('.', 1)[1] if "Choices" in x else None) choices_pvt["CRecode"] = choices_pvt["CRecode"].apply( lambda x: None if x is None else (x.split('.', 1)[0] if x.count('.') > 0 else x)) choices_pvt["CRecode"] = choices_pvt.apply( lambda x: x["CRecode"] if x["PGRChoiceIdx"] is None else "#" + x[ "CRecode"] + "-" + x["PGRChoiceIdx"], axis=1) choices_pvt["CQID"] = choices_pvt.apply( lambda x: x["QID"] if x["CRecode"] is None else x["QID"] + x["CRecode"] if "#" in x["CRecode"] else x["QID"] + "-" + x["CRecode"], axis=1) choices_pvt = choices_pvt.pivot_table(index=['CQID', 'QID'], columns=['ChoiceSetting'], values='value', aggfunc='first').reset_index() if (choice_settings.empty == False): choices_pvt = choices_pvt.merge(choice_settings, on='CQID', how='left') choices_order = extract[(extract.QPath == "ChoiceOrder")] choices_order = choices_order.value.apply(pd.Series).merge( choices_order, right_index=True, left_index=True).drop( ["value", "QPath", "variable", "ChoiceSetting"], axis=1).melt(id_vars=['QID'], value_name="CRecode").dropna() choices_order.columns = ['QID', 'ChoiceOrder', 'CRecode'] choices_order['CQID'] = choices_order['QID'] + "-" + choices_order[ 'CRecode'].astype(str) ### Combine SVF - Blocks - Questions - Choices - ChoiceOrder svFlattened = choices_pvt.merge(choices_order, how='left', on='CQID') svFlattened = svFlattened.drop(columns="QID_y") svFlattened = svFlattened.rename(columns={'QID_x': 'QID'}) svFlattened = question_pvt.merge(svFlattened, how='outer', on='QID') svFlattened = blocks.merge(svFlattened, how='left', on='QID') svFlattened['QuestionText'] = svFlattened['QuestionText_Unsafe'].apply( lambda x: "" if x == "" else lhtmlclean.Cleaner( style=True).clean_html(lhtml.fromstring(str(x))).text_content( ).replace("nan", "").strip()) svFlattened['Display'] = svFlattened['Display'].apply( lambda x: "" if x == "" else lhtmlclean.Cleaner( style=True).clean_html(lhtml.fromstring(str(x))).text_content( ).replace("nan", "").strip()) svFlattened['CQID'] = svFlattened.apply( lambda x: x.CQID if "QID" in str(x.CQID) else x.Field if pd.isnull(x.Field) == False else x.QID if pd.isnull(x.QID) == False else "", axis=1) svFlattened = svFlattened.drop( columns=['AnswerOrder', 'ChoiceOrder_x'], errors='ignore') csvfilteredColumns = [ 'FlowSort', 'FlowID', 'BlockElementSort', 'BlockDescription', 'QID', 'CQID', 'QuestionText', 'QuestionType', 'Selector', 'SubSelector', 'DataExportTag', 'ChoiceDataExportTags_y', 'Display', 'Image.Display', 'Image.ImageLocation', 'VariableNaming', 'ChoiceOrder_y', 'CRecode' ] for x in csvfilteredColumns: if (x not in svFlattened.columns): svFlattened[x] = '' svFlattenedFiltered = svFlattened[csvfilteredColumns].drop_duplicates( subset='CQID', ignore_index=True) # only return filtered, do we need to return the result unfiltered? return svFlattenedFiltered def pull_results(self, survey_id): def pull_file(label, survey_id): file_type = lambda x: "With Labels" if label == True else "Without Labels" parameters = "{\"format\": \"csv\", \"useLabels\": "\ + (str(label)).lower() + ", \"surveyId\": \""\ + survey_id + "\"" + ", \"endDate\":\"" \ + str(datetime.datetime.utcnow().isoformat()[0:19]) + "Z\"}" response = requests.post(url=self.response_url, headers=self.headers, data=parameters) responseFileID = response.json()["result"]["id"] if (responseFileID is not None): response = requests.get(url=self.response_url + responseFileID, headers=self.headers) responseFileStatus = response.json()["result"]["status"] while (responseFileStatus == "in progress"): time.sleep(5) response = requests.get(url=self.response_url + responseFileID, headers=self.headers) responseFileStatus = response.json()["result"]["status"] completion_rate = response.json( )['result']['percentComplete'] print( f"File Request ({file_type(label)}) - {completion_rate}%" ) if (responseFileStatus in self.failed_responses): print("Error Network Issue / Failed Request : " + survey_id) responseFileDownload = response.json()["result"]["file"] response = requests.get(url=responseFileDownload, headers=self.headers) else: print('No Response file ID, please check the survey ID') with zipfile.ZipFile(io.BytesIO(response.content), mode='r') as file: download = file.read(list(file.NameToInfo.keys())[0]).decode() df = pd.read_csv(io.StringIO(download), low_memory=False) return df wlExport = pull_file(True, survey_id) nlExport = pull_file(False, survey_id) mdQID = pd.melt(wlExport.iloc[[1]]) mdQID.columns = ["QRecode", "QID"] mdQID["QID"] = mdQID["QID"].apply( lambda x: json.loads(x.replace("'", "\""))["ImportId"]) wlExport = wlExport.iloc[2:] nlExport = nlExport.iloc[2:] print("Exports are finished - Working on combining them...") wlExport = wlExport.rename( columns=lambda x: "ResponseID" if x == "ResponseId" else x) mdTxtResp = pd.melt(wlExport, id_vars=["ResponseID"]) mdTxtResp.columns = ["ResponseID", "QRecode", "TxtRespAnswer"] #Join Back ResponseID Values mdRespIDs =
pd.melt(wlExport, value_vars=["ResponseID"])
pandas.melt
import pandas as pd import numpy as np from torch.utils.data import Dataset, DataLoader import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel from transformers import AdamW, get_cosine_with_hard_restarts_schedule_with_warmup import gc from tqdm import tqdm class MyDataset(Dataset): def __init__(self, df): super().__init__() self.data_list = [] self.end_of_text_token = " <|endoftext|> " for index, row in df.iterrows(): data_str = f"{row[0]}{self.end_of_text_token}" self.data_list.append(data_str) def __len__(self): return len(self.data_list) def __getitem__(self, item): return self.data_list[item] def train(epochs, data_loader, batch_size, tokenizer, model, device): batch_counter = 0 sum_loss = 0.0 for epoch in range(epochs): print (f'Running {epoch+1} epoch') for idx, txt in enumerate(data_loader): txt = torch.tensor(tokenizer.encode(txt[0])) txt = txt.unsqueeze(0).to(device) outputs = model(txt, labels=txt) loss, _ = outputs[:2] loss.backward() sum_loss += loss.data if idx%batch_size==0: batch_counter += 1 optimizer.step() scheduler.step() optimizer.zero_grad() model.zero_grad() if batch_counter == 10: print(f"Total Loss is {sum_loss}") batch_counter = 0 sum_loss = 0.0 return model def save_model(model, name): torch.save(model.state_dict(), f"{name}.pt") def choose_from_top_k_top_n(probs, k=50, p=0.8): ind = np.argpartition(probs, -k)[-k:] top_prob = probs[ind] top_prob = {i: top_prob[idx] for idx,i in enumerate(ind)} sorted_top_prob = {k: v for k, v in sorted(top_prob.items(), key=lambda item: item[1], reverse=True)} t=0 f=[] pr = [] for k,v in sorted_top_prob.items(): t+=v f.append(k) pr.append(v) if t>=p: break top_prob = pr / np.sum(pr) token_id = np.random.choice(f, 1, p = top_prob) return int(token_id) def generate(tokenizer, model, sentences, label): result = [] with torch.no_grad(): for idx in tqdm(range(sentences)): finished = False cur_ids = torch.tensor(tokenizer.encode(label)).unsqueeze(0).to(device) for i in range(100): outputs = model(cur_ids, labels=cur_ids) loss, logits = outputs[:2] softmax_logits = torch.softmax(logits[0,-1], dim=0) if i < 5: n = 10 else: n = 5 next_token_id = choose_from_top_k_top_n(softmax_logits.to(device).cpu().numpy()) cur_ids = torch.cat([cur_ids, torch.ones((1,1)).long().to(device) * next_token_id], dim = 1) if next_token_id in tokenizer.encode('<|endoftext|>'): finished = True break if finished: output_list = list(cur_ids.squeeze().to(device).cpu().numpy()) output_text = tokenizer.decode(output_list) result.append(output_text) else: output_list = list(cur_ids.squeeze().to(device).cpu().numpy()) output_text = tokenizer.decode(output_list) result.append(output_text) return result if __name__ == '__main__': #dataset address dataset_path = '../Data/Train_Dataset.csv' df =
pd.read_csv(dataset_path)
pandas.read_csv
import xgboost as xgb import graphviz import numpy as np import pandas as pd import random import matplotlib import textwrap import scipy.spatial.distance as ssd from scipy.stats import ks_2samp from scipy.stats import entropy import warnings from sklearn import tree from sklearn.manifold import TSNE from sklearn.ensemble import RandomForestClassifier from sklearn.tree import export_graphviz from sklearn.cluster import KMeans from scipy.cluster.hierarchy import dendrogram, linkage from sklearn.preprocessing import LabelEncoder, OneHotEncoder, label_binarize from sklearn.tree import export_graphviz from sklearn.metrics import precision_score, precision_recall_curve, average_precision_score from matplotlib import pyplot as plt import re import math from os import listdir from bokeh.layouts import gridplot from bokeh.models import LinearAxis,FactorRange,Range1d,LabelSet,Label,ColumnDataSource,HoverTool,WheelZoomTool,PanTool,BoxZoomTool,ResetTool,SaveTool,BasicTicker,ColorBar,LinearColorMapper,PrintfTickFormatter,DataSource from bokeh.palettes import brewer,inferno,magma,viridis,grey,Category10 from bokeh.plotting import figure, show, output_file from bokeh.transform import transform,factor_cmap from bokeh.io import export_png from graphviz import Source from itertools import cycle from sklearn.decomposition import PCA import rpy2.robjects.packages as rpackages import rpy2.robjects as robjects import statsmodels.api as sm import re from PIL import Image Image.warnings.simplefilter('ignore', Image.DecompressionBombWarning) warnings.filterwarnings('ignore', category=PendingDeprecationWarning) warnings.filterwarnings('ignore', category=ResourceWarning) warnings.filterwarnings('ignore', category=FutureWarning) rstats = rpackages.importr('stats') warnings.simplefilter("error") #####print table##### def ppt(table,lines=30,maxWidth = 18,minWidth=10,keepDecimal=2,lineWidth=170): if table.shape[0]<1000: lines=table.shape[0] if(minWidth<5): minWidth=5 if(maxWidth<minWidth): print("minWidth cannot large than maxWidth") if(lines == -1): lines = table.shape[0] dicType = generateTypeDic(table) dictWidth = generateWidthDic(table,lines,maxWidth,keepDecimal,minWidth) strTemp='|' for col in table: if(dictWidth[col]<minWidth): strTemp = strTemp + truncateString(str(col).upper(),minWidth) else: strTemp = strTemp + truncateString(str(col).upper(),dictWidth[col]) string = textwrap.fill(text=strTemp,width=lineWidth) print(string) count = 0 for index in range(0,table.shape[0]): if(count<lines): strTemp='|' for col in table: if(dicType[col] is 'str'): strTemp = strTemp + truncateString(str(table[col].iloc[index]),dictWidth[col]) else: strTemp = strTemp + truncateNumber(decimalIdentical(table[col].iloc[index],keepDecimal),dictWidth[col]) string = textwrap.fill(text=strTemp,width=lineWidth) print(string) else: break count +=1 def generateTypeDic(table): dicType={} for col in table: if(type(table[col].iloc[0]) is np.float64):#if type is np.float64 and the element is NaN, the type is defined as np.float64 dicType[col]='float' elif(type(table[col].iloc[0]) is np.int32): dicType[col]='int' else: dicType[col]='str' #if type is str and the element is NaN, the type is defined as float, so that it will be asigned value as str. return dicType def generateWidthDic(table,lines,maxWidth,keepDecimal=2,minWidth=5): dicWidth={} for col in table: width = minWidth colType = generateTypeDic(table)[col] if(colType is 'str'): for index in range(0,lines): lenth = len(str(table[col].iloc[index])) if(lenth > width): width = lenth if(width > maxWidth): width = maxWidth elif(colType is 'float' or colType is 'int'): for index in range(0,lines): lenth = len(decimalIdentical(table[col].iloc[index],keepDecimal)) if(lenth > width): width = lenth if(width > max(9,minWidth)): width = max(9,minWidth) dicWidth[col] = width return dicWidth def decimalIdentical(flt,kd): if(np.isnan(flt)): return str(flt) flStr = str(round(flt,kd)) try: dotIndex = len(flStr)-flStr.index('.')-1 except ValueError as ve: flStr = flStr+'.' dotIndex = 0 for i in range(dotIndex,kd): flStr = flStr + '0' return flStr def truncateNumber(string, length): strTemp='' if(len(string)<9): strTemp=string for _ in range(len(string),length+2): strTemp=" "+strTemp strTemp=strTemp else: scientificNotation='%.2E' % Decimal(string) strTemp=str(scientificNotation) for _ in range(len(strTemp),length+2): strTemp=" "+strTemp if(len(strTemp)!=length+2): print('truncateNumber is wrong!'+str(strTemp)+' '+str(length)) else: return strTemp+'| ' def truncateString(string, length): strTemp='' if(len(string)<=length): strTemp=string for _ in range(len(string),length+2): strTemp=" "+strTemp strTemp=strTemp else: strTemp=string[0:length] strTemp=strTemp+".." if(len(strTemp)!=length+2): print('truncateString is wrong!'+str(strTemp)) else: return strTemp+'| ' def generate_reordered_features(megadata_validation,numeric_features_validation,basic_info_features,simple_scale): clustering_data_validation = megadata_validation.copy() clustering_data_validation = scale_matrix(clustering_data_validation[numeric_features_validation],isrow=False,simple_scale=simple_scale) corr_validation_DF = pd.DataFrame(clustering_data_validation,columns=numeric_features_validation).corr('spearman') distance_validation_Matrix = corr_validation_DF.values for i in range(0,len(distance_validation_Matrix)): distance_validation_Matrix[i]=1-distance_validation_Matrix[i] distance_validation_Matrix = ssd.squareform(distance_validation_Matrix) linked = linkage(distance_validation_Matrix,'ward','euclidean',True) labelList = corr_validation_DF.index featureDict= {i:[corr_validation_DF.index[i]] for i in range(0,len(corr_validation_DF.index))} for i in range(0,len(linked)): index = i+linked.shape[0]+1 firstList = featureDict[linked[i][0]] for j in featureDict[linked[i][1]]: firstList.append(j) if(len(firstList)!=linked[i][3]): print("the length is not equal") featureDict[index]=firstList featureList=featureDict[linked.shape[0]*2] for i in range(len(basic_info_features)): featureList.append(basic_info_features[i]) return featureList def prepare_scaled_data(layer1_df,layer2_df,layer3_df,reordered_feature_list,simple_scale=False): layer1_mx = layer1_df.copy() layer1_mx = layer1_mx.replace(0,1E-7) layer1_mx = layer1_mx.fillna(1E-8)[reordered_feature_list] layer2_mx = layer2_df.copy() layer2_mx = layer2_mx.replace(0,1E-7) layer2_mx = layer2_mx.fillna(1E-8)[reordered_feature_list] layer3_mx = layer3_df.copy() layer3_mx = layer3_mx.replace(0,1E-7) layer3_mx = layer3_mx.fillna(1E-8)[reordered_feature_list] layer3_mx = layer3_mx.to_numpy() layer2_mx = layer2_mx.to_numpy() layer1_mx = layer1_mx.to_numpy() layer1_mx = scale_matrix(layer1_mx,isrow=False,simple_scale=simple_scale) layer2_mx = scale_matrix(layer2_mx,isrow=False,simple_scale=simple_scale) layer3_mx = scale_matrix(layer3_mx,isrow=False,simple_scale=simple_scale) return layer1_mx,layer2_mx,layer3_mx def insert_values_between_original_data(for_image_data_matrix): new_matrix = [] new_matrix.append(for_image_data_matrix[0]) for i in range(1,len(for_image_data_matrix)): new_matrix.append((for_image_data_matrix[i-1]+for_image_data_matrix[i])/2) new_matrix.append(for_image_data_matrix[i]) return np.array(new_matrix) def plot_colorful_CNN_images(layer1_mx,layer2_mx,layer3_mx,cate,path,interpolation_row=0,interpolation_col=0): for i in list(set(cate)): ll=[j for j in range(len(cate)) if cate[j] == i] for_image_data_matrix1 = layer1_mx[ll] for_image_data_matrix2 = layer2_mx[ll] for_image_data_matrix3 = layer3_mx[ll] category = i for i in range(interpolation_row): for_image_data_matrix1 = insert_values_between_original_data(for_image_data_matrix1) for_image_data_matrix2 = insert_values_between_original_data(for_image_data_matrix2) for_image_data_matrix3 = insert_values_between_original_data(for_image_data_matrix3) for i in range(interpolation_col): for_image_data_matrix1 = insert_values_between_original_data(for_image_data_matrix1.T).T for_image_data_matrix2 = insert_values_between_original_data(for_image_data_matrix2.T).T for_image_data_matrix3 = insert_values_between_original_data(for_image_data_matrix3.T).T colorful = [[[for_image_data_matrix1[j][l],for_image_data_matrix2[j][l],for_image_data_matrix3[j][l]] for l in range(0,len(for_image_data_matrix1[j]))] for j in range(0,len(for_image_data_matrix1))] matplotlib.image.imsave(path+'/combined_'+category+'.png',colorful) matplotlib.image.imsave(path+'/layer3_'+category+'.png',for_image_data_matrix3) matplotlib.image.imsave(path+'/layer2_'+category+'.png',for_image_data_matrix2) matplotlib.image.imsave(path+'/layer1_'+category+'.png',for_image_data_matrix1) def plot_colorful_images_wrapper(megadata_temp1,megadata_temp2,megadata_temp3,numeric_cols,image_col,interpolation_row,interpolation_col,path,generate_reordered_indices,simple_scale=True): reordered_features = generate_reordered_features(megadata_temp1,numeric_cols,[],simple_scale) reordered_indices = generate_reordered_indices(megadata_temp1,reordered_features) reordered_df1 = pd.DataFrame(megadata_temp1, index=reordered_indices)[reordered_features+[image_col]] reordered_df2 = pd.DataFrame(megadata_temp2, index=reordered_indices)[reordered_features+[image_col]] reordered_df3 = pd.DataFrame(megadata_temp3, index=reordered_indices)[reordered_features+[image_col]] mx1,mx2,mx3 = prepare_scaled_data(reordered_df1,reordered_df2,reordered_df3,reordered_features,simple_scale) plot_colorful_CNN_images(mx1,mx2,mx3,reordered_df1[image_col].values.tolist(),path,interpolation_row,interpolation_col) #####Select certain rows from dataFrame based on the combined conditions related to index1 and index2##### def combined_conditions_filter(condition_map,data_frame,index1,index2): dataFrame=data_frame.copy() dataFrame[index1] = dataFrame[index1].astype(str) dataFrame[index2] = dataFrame[index2].astype(str) dataFrame['filter'] = dataFrame[index1] + '***' + dataFrame[index2] lst = list(str(key)+'***'+str(value) for key,value in condition_map.items()) subComLevData = dataFrame[dataFrame['filter'].isin(lst)] del subComLevData['filter'] return subComLevData #Unit vectors transformation of a Matrix. def generate_unit_modules(mx, isrow=True, is_scale=True, simple_scale=True): test = mx.copy() if(mx.min()<0): is_scale=True print('there is a negative value, the matrix is auto scaled') if(is_scale): test=scale_matrix(test,isrow=isrow,simple_scale=simple_scale) if(isrow): for i in range(0,len(test)): if(test[i].sum()!=0): test[i] = test[i]/test[i].sum() else: test_t = np.transpose(test) for i in range(0,len(test_t)): if(test_t[i].sum()!=0): test_t[i] = test_t[i]/test_t[i].sum() test = np.transpose(test_t) return test #return the top or bottom n indices of a list def topOrBottomN(lst,n,isabs=False,isbottom=False): if (isabs): sortList = [] for i in range(0,len(lst)): sortList.append(abs(lst[i])) else: sortList = lst sortDF = pd.DataFrame({'sort':sortList}) sortDF['index'] = sortDF.index sortDF = sortDF.sort_values(by='sort', ascending=isbottom) indexList = sortDF['index'].tolist() return indexList[0:n] #scale matrix based on row or col by simple method or median_transform def scale_matrix(tst,isrow=True,simple_scale=True): test=np.copy(tst) if(simple_scale): if(isrow): for i in range(0,len(test)): if(test[i].max()==test[i].min()): if(test[i].max()==0): test[i]=np.zeros(len(test[i])) else: test[i]=np.ones(len(test[i])) else: test[i] = (test[i]-test[i].min())/(test[i].max() - test[i].min()) else: test_t = np.transpose(test) for i in range(0,len(test_t)): if(test[i].max()==test[i].min()): if(test[i].max()==0): test[i]=np.zeros(len(test[i])) else: test[i]=np.ones(len(test[i])) else: test_t[i] = (test_t[i]-test_t[i].min())/(test_t[i].max() - test_t[i].min()) test = np.transpose(test_t) else: if(isrow): for i in range(0,len(test)): test[i] = median_transform(test[i],1,0) else: test_t = np.transpose(test) for i in range(0,len(test_t)): test_t[i] = median_transform(test[:,i],1,0) test = np.transpose(test_t) return test #sort data frame def rrd(DF,sort_column='ID',asc=True,reidx=True): new_DF=DF.copy() new_DF=DF.sort_values(by=sort_column, ascending=True) if(reidx): new_DF=new_DF.reset_index(drop=True) return new_DF # dataframe to matrix def dtm(data_frame,matrix_features,sort_column='ID',asc=True): data_frame_copy = data_frame.copy() data_frame_copy = data_frame_copy.sort_values(by=sort_column, ascending=asc) mtx = data_frame_copy[matrix_features].values return mtx # matrix to dataframe def mtd(mtx,numeric_features, data_frame=pd.DataFrame(),basic_info_feautes=[], sort_column='ID',asc=True): DF = pd.DataFrame(mtx,columns=numeric_features) if((data_frame.size>0)&(len(basic_info_feautes)>0)): DF[basic_info_feautes] = rrd(data_frame,sort_column,asc).reset_index(drop=True)[basic_info_feautes] return rrd(DF,sort_column) def scale_transform1(lst1,lst2,scale,lowerbound): if(len(lst1)!=len(lst2)): print('lst1 and lst2 are not in the same size') return None if(lst2.min()==lst2.max()): if(lst2.min()==0): return [0 for _ in range(len(lst))] else: return [1 for _ in range(len(lst))] return ((lst1-lst2.min())/(lst2.max()-lst2.min()))*scale+lowerbound def scale_transform2(lst1,lst2,scale,lowerbound): if(len(lst1)!=len(lst2)): print('lst1 and lst2 are not in the same size') return None if(min(lst1.min(),lst2.min())<0): print('warning: there is a negative value') return None if(lst2.max()==0): print('error: the max value is equal to zero') return None return (lst1/lst2.max())*scale+lowerbound #scale list def median_transform(lst,scale,lowerbound): if(len(set(lst))<2): return np.full(len(lst), (scale+lowerbound)/2) if(lst.min()==lst.max()): if(lst.min()==0): return [0 for _ in range(len(lst))] else: return [1 for _ in range(len(lst))] else: scaled_list=scale_transform1(lst,lst,scale,lowerbound) scaled_list = scaled_list/np.median(scaled_list) lower_list=np.array([i for i in scaled_list if i<=1]).copy() upper_list=np.array([i for i in scaled_list if i>1]).copy() for i in range(len(scaled_list)): if(scaled_list[i]<=1): if(np.ptp(lower_list)==0): scaled_list[i]=0 else: scaled_list[i]=scale_transform1(scaled_list[i],lower_list,0.5*(scale+lowerbound),lowerbound) else: scaled_list[i]=scale_transform2(scaled_list[i],upper_list,0.5*(scale+lowerbound),0.5*(scale+lowerbound)) return scaled_list def unify_df(rna_df,numeric_features,id_col,other_categorical_features): rna_scaled_df=rna_df.copy() rna_scaled_df['temp_indices_within_this_function']=rna_scaled_df[id_col] temp_mx = dtm(rna_scaled_df,numeric_features,sort_column='temp_indices_within_this_function') temp_mx = generate_unit_modules(temp_mx, isrow=True, is_scale=True, simple_scale=True) rna_scaled_df = mtd(temp_mx,numeric_features,rna_scaled_df,other_categorical_features+['temp_indices_within_this_function'], sort_column='temp_indices_within_this_function',asc=True) rna_scaled_df.index=rna_scaled_df['temp_indices_within_this_function'] rna_scaled_df[id_col]=rna_scaled_df['temp_indices_within_this_function'] del rna_scaled_df['temp_indices_within_this_function'] temp_df=rna_df.copy() temp_df.index=temp_df[id_col] #control the scale of the mean by dividing by len(numeric_features) temp_df = pd.DataFrame(scale_transform1(temp_df[numeric_features].T.describe().T['mean'],temp_df[numeric_features].T.describe().T['mean'],1,0)/len(numeric_features)) temp_df.columns=['mean_from_unify_df'] rna_scaled_df=pd.merge(rna_scaled_df,temp_df,left_index=True,right_index=True) rna_scaled_df=rna_scaled_df.reset_index(drop=True) new_numeric_features=numeric_features+['mean_from_unify_df'] return rna_scaled_df,new_numeric_features #####find distict items in two lists##### def findDistinct(ind1,ind2): return (list(np.setdiff1d(ind1, ind2)),list(np.setdiff1d(ind2, ind1))) def handle_unbalanced_dataset(df,numeric_features,label,id_column): max_count = df.groupby([label], as_index=False).count()[[label,id_column]].sort_values(by=id_column, ascending=False).iloc(0)[0][1] iter_list = df.groupby([label], as_index=False).count()[[label,id_column]].sort_values(by=id_column, ascending=False).values add_sample_size_dict={i[0]:max_count-i[1] for i in iter_list} new_DF=df.copy() num=0 for k,v in add_sample_size_dict.items(): sample_size = df[df[label]==k].shape[0] sample_matrix = df[df[label]==k][numeric_features].values new_matrix=[] for i in range(v): two_samples_list = random.sample(range(sample_size),2) new_sample=(sample_matrix[two_samples_list[0]]+sample_matrix[two_samples_list[1]])/2 new_matrix.append(new_sample) new_matrix = np.array(new_matrix) if(len(new_matrix)==0): continue temp_DF=pd.DataFrame(new_matrix,columns=numeric_features) temp_DF[id_column]=np.array(['fakeid'+str(j) for j in range(num,num+temp_DF.shape[0])]) temp_DF[label]=k num=num+temp_DF.shape[0] new_DF = new_DF.append(temp_DF, sort=False) new_DF.index = new_DF[id_column] return new_DF def cross_validation_split_with_unbalance_data(df,numeric_features,label='Category',id_column='PlateID',test_size=0.2,handle_unbalance=True): iter_list = df.groupby([label], as_index=False).count()[[label,id_column]].sort_values(by=id_column, ascending=False).values select_size_dict={i[0]:int(test_size*i[1]) for i in iter_list} sample_size_dict={i[0]:i[1] for i in iter_list} columns_list=df.columns train_matrix=[] test_matrix=[] train_index=[] test_index=[] for k,v in select_size_dict.items(): sample_matrix = df[df[label]==k].values selected_list = random.sample(range(sample_size_dict[k]),v) unselected_list = findDistinct(selected_list,list(range(sample_size_dict[k])))[1] for idx in selected_list: test_matrix.append(sample_matrix[idx]) test_index.append(df[df[label]==k].iloc[idx][id_column]) for idx in unselected_list: train_matrix.append(sample_matrix[idx]) train_index.append(df[df[label]==k].iloc[idx][id_column]) train_DF=pd.DataFrame(train_matrix,columns=columns_list) test_DF=pd.DataFrame(test_matrix,columns=columns_list) train_DF.index=np.array(train_index) test_DF.index=np.array(test_index) if(handle_unbalance): train_DF=handle_unbalanced_dataset(train_DF,numeric_features,label,id_column) return train_DF[numeric_features],test_DF[numeric_features],train_DF[label],test_DF[label] def DT_RF_models(dataSet,numeric_features,path,isDT = True,iteration=10,testSize =0.2,readList = ['Compound Name'], label = 'Category',DTdenotion='test',DT_maxdepth=2,numberOfTrees = 50,RF_maxdepth=6,isplot=False,id_column='id',handle_unbalance=True): if(isDT): model=tree.DecisionTreeClassifier(max_depth=DT_maxdepth) else: model=RandomForestClassifier(n_estimators=numberOfTrees,max_depth=RF_maxdepth) readableDF = dataSet.copy() X = readableDF[numeric_features] Y = readableDF[label] readableDF[id_column]=readableDF[id_column].astype(str) accuracy = [] fullWrongList=[] fullTest=np.array([]) fullPredict=[] for j in range(0,iteration): X_train, X_test, Y_train, Y_test = cross_validation_split_with_unbalance_data(readableDF,numeric_features,label=label,id_column=id_column,test_size=testSize,handle_unbalance=handle_unbalance) model = model.fit(X_train,Y_train) pre_Y = model.predict(X_test) pre_Y_pro= model.predict_proba(X_test) Y_test = pd.DataFrame(Y_test) Y_test[id_column]=X_test.index # Y_test['index']=np.array([i for i in range(0,Y_test.shape[0])]) # Only for RF if(not isDT): for i in range(0,numberOfTrees): single_tree = model.estimators_[i] export_graphviz(single_tree,out_file=path+str(j)+'---tree---'+str(i)+'.dot', feature_names = X.columns,rounded = True, precision = 1) if(isplot): (graph, ) = pydot.graph_from_dot_file(path+str(j)+'---tree---'+str(i)+'.dot') graph.write_png(path+str(j)+'---tree---'+str(i)+'.png') count=0 for i in range(0,len(pre_Y)): fullTest=np.append(fullTest,Y_test.iloc[i][label]) fullPredict.append(pre_Y_pro[i]) if(pre_Y[i] != Y_test.iloc[i][label]): count = count+1 string='' for l in range(0,len(readList)): string = string + str(readableDF[readableDF[id_column]==Y_test.iloc[i][id_column]][readList[l]].values[0])+'---' best_preds = np.argmax(pre_Y_pro[i]) singleWrongList = [pre_Y[i],string+Y_test.iloc[i][label],best_preds,pre_Y_pro[i],str(j)] fullWrongList.append(singleWrongList) print('------------------accuracy = '+str(1-count/len(pre_Y))+'------------------') accuracy.append(1-count/len(pre_Y)) #Only for DT, plot DT if(isDT & isplot): newData=handle_unbalanced_dataset(dataSet,numeric_features,label=label,id_column=id_column) model = model.fit(newData[numeric_features],newData[label]) dot_data = tree.export_graphviz(model,out_file=None,feature_names=X.columns,class_names=dataSet.groupby([label],as_index=False).count()[label].tolist(),filled=True,rounded=True,special_characters=True) graph = graphviz.Source(dot_data) graph.render(DTdenotion,view=True) print(np.array(accuracy).mean(),np.array(accuracy).std()) labelList = list(set(fullTest)) labelList.sort() labelMap= {labelList[i]:i for i in range(len(labelList))} newfullTest=[labelMap[fullTest[i]] for i in range(len(fullTest))] return accuracy,fullWrongList,newfullTest,np.array(fullPredict),labelList def print_full_wrong_list(full_wrong_list): s = set() for i in full_wrong_list: strings = 'Pre-Label: '+i[0]+' Details: '+i[1]+' Probabilities: '+str(i[3]) s.add(strings) for i in s: print(i) def generate_features_values_dict(file): f=open(file) text = f.readline() edges_dict={} values_dict={} features_dict={} while(text): regex = re.match(r"(\d+)\ ->\ (\d+)", text) if regex: if regex.groups()[0] in edges_dict: edges_dict[regex.groups()[0]].append(regex.groups()[1]) else: edges_dict[regex.groups()[0]] = [regex.groups()[1]] regex2 = re.match(r"(\d+)\ \[label=\".+\[(.+)\]\"\]", text) if regex2: values_dict[regex2.groups()[0]] = regex2.groups()[1].split(', ') regex3 = re.match(r"(\d+)\ \[label=\"(?!gini)(.+)\ <=*", text) if regex3: features_dict[regex3.groups()[1]]=regex3.groups()[0] # print(text) text = f.readline() features_values_dict={key:[ values_dict[edges_dict[value][0]],values_dict[edges_dict[value][1]] ] for (key,value) in features_dict.items() } f.close() return features_values_dict def generate_RF_feature_importance(path,df,numeric_features,label): dfc=df.copy() categories=len(dfc[label].unique()) regex = re.compile(r"\ +", re.IGNORECASE) files = [path+f for f in listdir(path) if f.endswith('.dot') if not f.startswith('.')] all_features_dict = {feature:list(np.zeros(categories+1)) for feature in numeric_features} for file in files: features_values_dict = generate_features_values_dict(file) for (key,value) in features_values_dict.items(): key = regex.sub(' ',key.strip(" ")) tempList=[] count=0 for i in range(0,len(all_features_dict[key])-1): tempList.append(all_features_dict[key][i]+int(value[1][i])-int(value[0][i])) count=count+int(value[1][i])+int(value[0][i]) tempList.append(count+all_features_dict[key][len(all_features_dict[key])-1]) all_features_dict[key]=tempList matrix = [] for (key,value) in all_features_dict.items(): abscount=0 list_temp=[key] for i in range(0,len(value)-1): abscount=abscount+abs(value[i]) for i in range(0,len(value)-1): if(abscount>0): list_temp.append(value[i]/abscount) else: list_temp.append(0) list_temp.append(abscount) matrix.append(list_temp) DF = pd.DataFrame(matrix) DF.columns = ['Features']+dfc.groupby([label],as_index=False).count()[label].tolist()+['Sample Size'] DF.fillna(0) return DF def transform_feature_importance(fullFeatureImportanceDF,label_list): feature_importance_DF = fullFeatureImportanceDF.copy() for i in label_list: feature_importance_DF[i] = round(feature_importance_DF[i],3) feature_importance_DF['abs_'+i] = abs(feature_importance_DF[i]) feature_importance_DF['max_value'] = feature_importance_DF[['abs_'+i for i in label_list]].T.max() feature_importance_DF['median_value'] = feature_importance_DF[['abs_'+i for i in label_list]].T.median() feature_importance_DF['sampleSize_value']=pow(feature_importance_DF['Sample Size'],0.25) feature_importance_DF['Ability']=feature_importance_DF['max_value']*feature_importance_DF['median_value']*feature_importance_DF['sampleSize_value']*10+5 feature_importance_DF = feature_importance_DF.sort_values(by='Ability', ascending=False) return feature_importance_DF[['Features']+label_list+['Sample Size','Ability']] #####plot histogram based on a list of values##### def plot_histogram(title, measured,outputFilePath, bins_number = 1000): output_file(outputFilePath) hist, edges = np.histogram(measured, density=True, bins=bins_number) p = figure(title=title, plot_width = 750, plot_height = 750,tools='', background_fill_color="#fafafa") p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], fill_color="navy", line_color="white", alpha=0.5) p.y_range.start = 0 p.legend.location = "center_right" p.legend.background_fill_color = "#fefefe" p.xaxis.axis_label = 'x' p.yaxis.axis_label = 'Pr(x)' p.grid.grid_line_color="white" p.x_range = Range1d(0,1.01) show(p) return p def plotBWScatter(DataFrame ,xvalue,yvalue, sizevalue, outputFilePath, readList,plotWidth = 1200, plotHeight = 900, titleName='features importance'): hover = HoverTool() tooltipString = "" for ele in readList: readTuple = (ele.lower(),ele) tooltipString = tooltipString + """<br><font face="Arial" size="4">%s: @%s<font>""" % readTuple hover.tooltips = tooltipString tools= [hover,WheelZoomTool(),PanTool(),BoxZoomTool(),ResetTool(),SaveTool()] source= ColumnDataSource(DataFrame) p = figure(plot_width = plotWidth, plot_height = plotHeight, tools=tools,title=titleName,toolbar_location='right',x_axis_label=xvalue.lower(),y_axis_label=yvalue.lower(),background_fill_color='white',title_location = 'above') p.title.text_font_size='15pt' p.title.align = 'center' p.xaxis.axis_label_text_font_size='12pt' p.yaxis.axis_label_text_font_size='12pt' p.x_range = Range1d(DataFrame[xvalue].min()*1.1,DataFrame[xvalue].max()*1.1) p.y_range = Range1d(DataFrame[yvalue].min()*1.1,DataFrame[yvalue].max()*1.1) p.circle(x = xvalue,y = yvalue,size=sizevalue,source=source,color='grey') p.toolbar.active_scroll=p.select_one(WheelZoomTool)#set default active to scroll tool if outputFilePath.endswith('png'): export_png(p, filename=outputFilePath) else: output_file(outputFilePath) show(p) #k-means clustering method def k_means_DF(data_frame,numeric_features,clusters=8,is_row=True): clustering_data_validation = data_frame[numeric_features].copy() if(is_row): corr_validation_DF = clustering_data_validation.T.corr() else: corr_validation_DF = clustering_data_validation.corr() kmeans = KMeans(n_clusters=clusters,random_state=100).fit(corr_validation_DF) clusterDic = {corr_validation_DF.columns[i]:kmeans.labels_[i] for i in range(0,len(kmeans.labels_))} npArray = np.array([[key,value] for (key,value) in clusterDic.items() ]) DF = pd.DataFrame(npArray) DF.columns = ['element','group'] return DF def plotHeatMap(corrDF , featureList,path_file): output_file(path_file) corrDF.columns.name = 'Features' df = pd.DataFrame(corrDF[featureList].stack(), columns=['Distance']).reset_index() df.columns=['level_0','Features','Distance'] source = ColumnDataSource(df) colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.Distance.min(), high=df.Distance.max()) p = figure(plot_width=3500, plot_height=3500, title="HeatMap", x_range=featureList, y_range=featureList, toolbar_location=None, tools="", x_axis_location="above") p.rect(x="Features", y="level_0", width=1, height=1, source=source,line_color=None, fill_color=transform('Distance', mapper)) color_bar = ColorBar(color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%d%%")) p.add_layout(color_bar, 'right') p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "30pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = 1.0 show(p) def heatMap(DF , path_file, x_size=3500, y_size=3500,font_size="15pt"): featureList=DF.columns.tolist() indexList=DF.index.tolist() DF.columns.name = 'Features' df = pd.DataFrame(DF[featureList].stack(), columns=['Distance']).reset_index() df.columns=['level_0','Features','Distance'] source = ColumnDataSource(df) colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.Distance.min(), high=df.Distance.max()) p = figure(plot_width=x_size, plot_height=y_size, title="HeatMap", x_range=featureList, y_range=indexList, toolbar_location=None, tools="", x_axis_location="above") p.rect(x="Features", y="level_0", width=1, height=1, source=source,line_color=None, fill_color=transform('Distance', mapper)) color_bar = ColorBar(color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%.2f")) p.add_layout(color_bar, 'right') p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = 1.0 p.axis.major_label_text_font_size = font_size if path_file.endswith('png'): export_png(p, filename=path_file) else: output_file(path_file) show(p) def plot_heatmap_for_kmeans_groups(data_frame,numeric_features,path,clusters=8,is_row=True): result_DF = k_means_DF(data_frame,numeric_features,clusters,is_row) for k in range(0,clusters): group_filter = result_DF['group'].astype(str)==str(k) subFeatureList = result_DF[group_filter]['element'].values if(is_row): subNormalData = data_frame[numeric_features].T[subFeatureList].copy() else: subNormalData = data_frame[subFeatureList].copy() if(subNormalData.shape[1]<2): continue subcorrDF = subNormalData.corr() subcorrDF.columns=[str(i) for i in subcorrDF.columns.tolist()] assert len(subFeatureList) == subcorrDF.shape[0] subDistMatrix = subcorrDF.values for i in range(0,len(subDistMatrix)): subDistMatrix[i]=1-subDistMatrix[i] subDistMatrix = ssd.squareform(subDistMatrix) sublinked = linkage(subDistMatrix,'ward','euclidean',True) subFeatureDict= {i:[subcorrDF.columns[i]] for i in range(0,len(subcorrDF.columns))} for i in range(0,len(sublinked)): index = i+sublinked.shape[0]+1 firstList = subFeatureDict[sublinked[i][0]] for j in subFeatureDict[sublinked[i][1]]: firstList.append(j) if(len(firstList)!=sublinked[i][3]): print("the length is not equal") subFeatureDict[index]=firstList subFeatureList=subFeatureDict[sublinked.shape[0]*2] strFeatureList = [str(i) for i in subFeatureList] subcorrDF.index=subcorrDF.columns subcorrDF=subcorrDF.T[subFeatureList].T plotHeatMap(subcorrDF[subFeatureList].reset_index(drop=True),strFeatureList,path+'/heatmap-'+str(k)+'.html') if clusters==1: return strFeatureList def plot_precision_recall_curve(full_test,full_predict,label_list,class_num=4,title='ROC curve'): if(class_num==2): full_test=label_binarize(full_test,classes=list(range(0,3))) full_test=np.array([np.array([i[0],i[1]]) for i in full_test]) else: full_test=label_binarize(full_test,classes=list(range(0,class_num))) precision = dict() recall = dict() average_precision=dict() for i in range(0,class_num): precision[i],recall[i],_ = precision_recall_curve(full_test[:,i],full_predict[:,i]) average_precision[i] = average_precision_score(full_test[:,i],full_predict[:,i]) precision['micro'],recall['micro'],_=precision_recall_curve(full_test.ravel(),full_predict.ravel()) colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(7, 8)) labels = [] lines = [] for i, color in zip(range(class_num), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (AUC = {1:0.2f})' ''.format(label_list[i], average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title(title) plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14)) plt.show() def print_precision_recall_accuracy(full_test,full_predict,label_list,class_num=4): right=0 wrong=0 for i in range(len(full_test)): if(np.argmax(full_predict[i]) == int(full_test[i])): right =right+1 else: wrong=wrong+1 print("Overall Accuray: ",right/(right+wrong)) for n in range(class_num): tp=0 fp=0 fn=0 for i in range(len(full_test)): if(np.argmax(full_predict[i])==n): if(np.argmax(full_predict[i]) == int(full_test[i])): tp=tp+1 else: fp=fp+1 elif(int(full_test[i])==n): fn=fn+1 print(label_list[n],"label size:",tp+fn) print(label_list[n],"Recall: ",tp/(tp+fn)) if((tp+fp)==0): print(label_list[n],"Precision: ",0) else: print(label_list[n],"Precision: ",tp/(tp+fp)) ##########Venn-Abers Predictor########## ### This part of codes is taken from https://github.com/ptocca/VennABERS, All credit of this part goes to the author of this repository.### # Some elementary functions to speak the same language as the paper # (at some point we'll just replace the occurrence of the calls with the function body itself) def push(x,stack): stack.append(x) def pop(stack): return stack.pop() def top(stack): return stack[-1] def nextToTop(stack): return stack[-2] # perhaps inefficient but clear implementation def nonleftTurn(a,b,c): d1 = b-a d2 = c-b return np.cross(d1,d2)<=0 def nonrightTurn(a,b,c): d1 = b-a d2 = c-b return np.cross(d1,d2)>=0 def slope(a,b): ax,ay = a bx,by = b return (by-ay)/(bx-ax) def notBelow(t,p1,p2): p1x,p1y = p1 p2x,p2y = p2 tx,ty = t m = (p2y-p1y)/(p2x-p1x) b = (p2x*p1y - p1x*p2y)/(p2x-p1x) return (ty >= tx*m+b) kPrime = None # Because we cannot have negative indices in Python (they have another meaning), I use a dictionary def algorithm1(P): global kPrime S = [] P[-1] = np.array((-1,-1)) push(P[-1],S) push(P[0],S) #put P[0] at the end of S for i in range(1,kPrime+1): #nextToTop(S):S[len(S)-2] top(S):S[len(S)-1] pop(S):drop the last element #cross product for 2 dimension vector return the value of axis z #cross product vector of vec1 and vec2 is the perpendicular vector with the plane consist by vec1 and vec2 while len(S)>1 and nonleftTurn(nextToTop(S),top(S),P[i]): pop(S) push(P[i],S) return S def algorithm2(P,S): global kPrime Sprime = S[::-1] # reverse the stack F1 = np.zeros((kPrime+1,)) for i in range(1,kPrime+1): F1[i] = slope(top(Sprime),nextToTop(Sprime)) P[i-1] = P[i-2]+P[i]-P[i-1] if notBelow(P[i-1],top(Sprime),nextToTop(Sprime)): continue pop(Sprime) while len(Sprime)>1 and nonleftTurn(P[i-1],top(Sprime),nextToTop(Sprime)): pop(Sprime) push(P[i-1],Sprime) return F1 def algorithm3(P): global kPrime P[kPrime+1] = P[kPrime]+np.array((1.0,0.0)) S = [] push(P[kPrime+1],S) push(P[kPrime],S) for i in range(kPrime-1,0-1,-1): # k'-1,k'-2,...,0 while len(S)>1 and nonrightTurn(nextToTop(S),top(S),P[i]): pop(S) push(P[i],S) return S def algorithm4(P,S): global kPrime Sprime = S[::-1] # reverse the stack F0 = np.zeros((kPrime+1,)) for i in range(kPrime,1-1,-1): # k',k'-1,...,1 F0[i] = slope(top(Sprime),nextToTop(Sprime)) P[i] = P[i-1]+P[i+1]-P[i] if notBelow(P[i],top(Sprime),nextToTop(Sprime)): continue pop(Sprime) while len(Sprime)>1 and nonrightTurn(P[i],top(Sprime),nextToTop(Sprime)): pop(Sprime) push(P[i],Sprime) return F0[1:] def prepareData(calibrPoints): global kPrime #sort score_label_list based on ascending score ptsSorted = sorted(calibrPoints) #xs score np.array, ys, label np.array, both sorted xs = np.fromiter((p[0] for p in ptsSorted),float) ys = np.fromiter((p[1] for p in ptsSorted),float) ptsUnique,ptsIndex,ptsInverse,ptsCounts = np.unique(xs, return_index=True, return_counts=True, return_inverse=True) a = np.zeros(ptsUnique.shape) #a: for a unique score, how many items labeled 1. np.add.at(a,ptsInverse,ys) # now a contains the sums of ys for each unique value of the objects w = ptsCounts yPrime = a/w #yPrime: the purity of label for each unique score yCsd = np.cumsum(w*yPrime) # Might as well do just np.cumsum(a) #yCsd accumulation of label1 through unique score list xPrime = np.cumsum(w) #xPrime: accumulation of observations through unique score list kPrime = len(xPrime) #kPrime: the number of unique scores return yPrime,yCsd,xPrime,ptsUnique def computeF(xPrime,yCsd): P = {0:np.array((0,0))} P.update({i+1:np.array((k,v)) for i,(k,v) in enumerate(zip(xPrime,yCsd))}) #P is (i->(xPrime[i],yCsd[i])) S = algorithm1(P) F1 = algorithm2(P,S) # P = {} # P.update({i+1:np.array((k,v)) for i,(k,v) in enumerate(zip(xPrime,yCsd))}) S = algorithm3(P) F0 = algorithm4(P,S) return F0,F1 def getFVal(F0,F1,ptsUnique,testObjects): pos0 = np.searchsorted(ptsUnique[1:],testObjects,side='right') pos1 = np.searchsorted(ptsUnique[:-1],testObjects,side='left')+1 return F0[pos0],F1[pos1] def ScoresToMultiProbs(calibrPoints,testObjects): # sort the points, transform into unique objects, with weights and updated values yPrime,yCsd,xPrime,ptsUnique = prepareData(calibrPoints) # compute the F0 and F1 functions from the CSD F0,F1 = computeF(xPrime,yCsd) # compute the values for the given test objects p0,p1 = getFVal(F0,F1,ptsUnique,testObjects) return p0,p1 def computeF1(yCsd,xPrime): global kPrime P = {0:np.array((0,0))} P.update({i+1:np.array((k,v)) for i,(k,v) in enumerate(zip(xPrime,yCsd))}) S = algorithm1(P) F1 = algorithm2(P,S) return F1 def ScoresToMultiProbsV2(calibrPoints,testObjects): # sort the points, transform into unique objects, with weights and updated values yPrime,yCsd,xPrime,ptsUnique = prepareData(calibrPoints) # compute the F0 and F1 functions from the CSD F1 = computeF1(yCsd,xPrime) pos1 = np.searchsorted(ptsUnique[:-1],testObjects,side='left')+1 p1 = F1[pos1] yPrime,yCsd,xPrime,ptsUnique = prepareData((-x,1-y) for x,y in calibrPoints) F0 = 1 - computeF1(yCsd,xPrime) pos0 = np.searchsorted(ptsUnique[:-1],testObjects,side='left')+1 p0 = F0[pos0] return p0,p1 def generate_label_from_probability(p0,p1,testScores,isprint=True): p = p1/(1-p0+p1) full_test=np.array([np.array([1-i,i]) for i in p]) t_p=[(int(round(testScores[i])),int(round(p[i])),testScores[i],p[i]) for i in range(0,len(p))] #label from score, label from probability, score, probability count=0 for i in range(0,len(t_p)): if (t_p[i][0]!=t_p[i][1]): count = count+1 if(isprint): print("differ",count,t_p[i]) return t_p,full_test ##########End of Venn-Abers Predictor########## def xgboostModel_for_venn(train,test,selectedData_Indices,n_vap=10,label = 'Control',category = 'Category',num_round = 100): train_temp=train.copy() test_temp=test.copy() train_temp['cv_id']=train_temp.index labelList = [label,'ZZZZZZZ'] train_temp.loc[train_temp[category]!=label,category]='ZZZZZZZ' test_temp.loc[test_temp[category]!=label,category]='ZZZZZZZ' score_and_label_list=[] test_score=[] regex = re.compile(r"\[|\]|<|\ ", re.IGNORECASE) param = {'max_depth':2,'eta':0.3,'silent':1,'objective':'binary:logistic','learningrate':0.1} #'binary:logistic' 'multi:softprob' 'num_class':2, train_temp.columns = [regex.sub('_',col) for col in train_temp.columns.values] test_temp.columns = [regex.sub('_',col) for col in test_temp.columns.values] selectedData_Indices = [regex.sub('_',col) for col in selectedData_Indices] labelEncoder = LabelEncoder() for _ in range(n_vap): X_train,X_test,Y_train,Y_test = cross_validation_split_with_unbalance_data(train_temp.reset_index(drop=True).copy(),selectedData_Indices,label=category,id_column='cv_id',test_size=0.2,handle_unbalance=False) Y_train = labelEncoder.fit_transform(Y_train.values) Y_test = labelEncoder.fit_transform(Y_test.values) dtrain = xgb.DMatrix(X_train,label=Y_train) dtest = xgb.DMatrix(X_test,label=Y_test) bst = xgb.train(param,dtrain,num_round,feval='map5eval',maximize=True) preds = bst.predict(dtest) best_preds = np.asarray([round(value) for value in preds]) Y_test = pd.DataFrame(Y_test).reset_index() for i in range(0,len(best_preds)): score_and_label_list.append((preds[i],Y_test.iloc[i][0])) count=0 X_train=train_temp[selectedData_Indices] X_test=test_temp[selectedData_Indices] Y_train=train_temp[category] Y_test=test_temp[category] Y_train = labelEncoder.fit_transform(Y_train.values) Y_test = labelEncoder.fit_transform(Y_test.values) dtrain = xgb.DMatrix(X_train,label=Y_train) dtest = xgb.DMatrix(X_test,label=Y_test) bst = xgb.train(param,dtrain,num_round,feval='map5eval',maximize=True) preds = bst.predict(dtest) best_preds = np.asarray([round(value) for value in preds]) Y_test = pd.DataFrame(Y_test).reset_index() for i in range(0,len(best_preds)): test_score.append(preds[i]) if(best_preds[i] != Y_test.iloc[i][0]): count=count+1 fullPredict=[np.array([1-i,i]) for i in list(preds)] p0,p1 = ScoresToMultiProbs(score_and_label_list,test_score) label_from_probability,full_predic_venn = generate_label_from_probability(p0,p1,test_score,False) readable_pre=[i[0] for i in full_predic_venn] test[label]=readable_pre return test,Y_test[0].to_numpy(),np.array(fullPredict),labelList def tSNEPlot(oriData,data_Indices,read_list,color_col,storing_loc,size_col = 5, iters=1000, perp=2, title='tSNE',num_components=2): tsne = TSNE(n_components=num_components,random_state=0,n_iter=iters,perplexity=perp) tSNE_DF = oriData.copy() tSNE_DF=tSNE_DF.reset_index(drop=True) tSNE_DF_2d = (tSNE_DF[data_Indices] - tSNE_DF[data_Indices].mean()) / (tSNE_DF[data_Indices].max() - tSNE_DF[data_Indices].min()).fillna(0) tSNE_DF_2d = tsne.fit_transform(tSNE_DF_2d.to_numpy()) tSNE_DF_2d = pd.DataFrame(tSNE_DF_2d).reset_index(drop=True) tSNE_DF_2d.columns=[str(i) for i in range(1,1+num_components)] for i in read_list+[color_col]: tSNE_DF_2d[i] = tSNE_DF[i] tSNE_DF_2d[color_col]=tSNE_DF_2d[color_col].astype(str) plotColorScatter(tSNE_DF_2d ,xvalue = '1',yvalue = '2', sizevalue = size_col, outputFilePath=storing_loc,plotWidth = 750, plotHeight = 750, readList = read_list,titleName=title,colorColumn=color_col,colorPattern=viridis) return tSNE_DF_2d def plotColorScatter(DataFrame ,xvalue = '0',yvalue = '1', sizevalue = 'size', outputFilePath='/abc/test.html',plotWidth = 750, plotHeight = 750, readList = ['1','2'],titleName='tSNE', colorColumn="Category", colorPattern=viridis): factors = DataFrame[colorColumn].unique() if len(factors)<8: color_map = factor_cmap(colorColumn,factors=factors,palette=['#f03b20','#feb24c','#ffeda0','#636363','#a1d99b','#31a354','#3182bd']) else: color_map = factor_cmap(colorColumn,factors=factors,palette=colorPattern(len(factors))) hover = HoverTool() tooltipString = "" for ele in readList: ele=str(ele) readTuple = (ele.lower(),ele) tooltipString = tooltipString + """<br><font face="Arial" size="4">%s: @%s<font>""" % readTuple hover.tooltips = tooltipString tools= [hover,WheelZoomTool(),PanTool(),BoxZoomTool(),ResetTool(),SaveTool()] source= ColumnDataSource(DataFrame) output_file(outputFilePath) p = figure(plot_width = plotWidth, plot_height = plotHeight, tools=tools,title=titleName,toolbar_location='right',x_axis_label=xvalue.lower(),y_axis_label=yvalue.lower(),background_fill_color='white',title_location = 'above') p.title.text_font_size='15pt' p.title.align = 'center' p.xaxis.axis_label_text_font_size='12pt' p.yaxis.axis_label_text_font_size='12pt' p.x_range = Range1d(DataFrame[xvalue].min()*1.1,DataFrame[xvalue].max()*1.1) p.y_range = Range1d(DataFrame[yvalue].min()*1.1,DataFrame[yvalue].max()*1.1) p.circle(x = xvalue,y = yvalue,size=sizevalue,source=source,color=color_map,legend=colorColumn) p.legend.location = "top_left" p.toolbar.active_scroll=p.select_one(WheelZoomTool) if outputFilePath.endswith('png'): export_png(p, filename=outputFilePath) else: output_file(outputFilePath) show(p) def print_full_wrong_list(full_wrong_list): s = set() for i in full_wrong_list: strings = 'Pre-Label: '+i[0]+' Original_data: '+i[1]+' Probability: '+str(i[3]) s.add(strings) for i in s: print(i) def xgboost_multi_classification(input_df,numeric_features_validation,iteration=10,test_size=0.2,max_depth=2,num_trees=50,label_column='Category',id_column='PlateID',handle_unbalance=True,readList=['PlateID','Compound Name']): XGBData = input_df.copy() selectedData_Indices = numeric_features_validation.copy() # data_Indices num_class=len(XGBData[label_column].unique().tolist()) regex = re.compile(r"\[|\]|<|\ ", re.IGNORECASE) param = {'max_depth':max_depth,'eta':0.3,'silent':1,'objective':'multi:softprob','num_class':num_class,'learningrate':0.1} num_round = num_trees labelList = XGBData.groupby([label_column],as_index=False).mean()[label_column].tolist() label = 0 accuracy = [] X = XGBData.reset_index()[selectedData_Indices] Y = XGBData.reset_index()[label_column] X.columns = [regex.sub('_',col) for col in X.columns.values] XGBData.columns = [regex.sub('_',col) for col in XGBData.columns.values] selectedData_Indices = [regex.sub('_',col) for col in selectedData_Indices] labelEncoder = LabelEncoder() labelEncoded = labelEncoder.fit_transform(XGBData.reset_index()[label_column].values) fullWrongList=[] fullTest=np.array([]) fullPredict=[] for j in range(0,iteration): X_train, X_test, Y_train, Y_test = cross_validation_split_with_unbalance_data(XGBData,selectedData_Indices,label=label_column,id_column=id_column,test_size=test_size,handle_unbalance=handle_unbalance) Y_train = labelEncoder.fit_transform(Y_train.values) Y_test = labelEncoder.fit_transform(Y_test.values) fullTest=np.concatenate((fullTest,Y_test),axis=0) dtrain = xgb.DMatrix(X_train,label=Y_train) dtest = xgb.DMatrix(X_test,label=Y_test) bst = xgb.train(param,dtrain,num_round,feval='map5eval',maximize=True) preds = bst.predict(dtest) fullPredict=fullPredict+list(preds) best_preds = np.asarray([np.argmax(line) for line in preds]) precision = precision_score(Y_test,best_preds,average='macro') Y_test = pd.DataFrame(Y_test).reset_index() count=0 for i in range(0,len(best_preds)): if(best_preds[i] != Y_test.iloc[i][label]): count=count+1 string='' for l in range(0,len(readList)): string = string + str(XGBData.reset_index().iloc[X_test.reset_index(drop=True).index[i]][readList[l]])+'---' singleWrongList = [labelList[best_preds[i]],string+labelList[Y_test.iloc[i][label]],str(j),preds[i]] fullWrongList.append(singleWrongList) print('------------------accuracy = '+str(1-count/len(best_preds))+'------------------') accuracy.append(1-count/len(best_preds)) #bst.dump_model(storePath) pArray = np.array(accuracy) print(pArray.mean(),pArray.std()) return pArray,fullWrongList,fullTest,np.array(fullPredict),labelList def combined_eXGBT_classifier(training_set,numeric_features_validation,testing_set,n_vap=10,label_column = 'Category',max_depth=2,num_trees=50): num_class=len(training_set[label_column].unique().tolist()) df_te = testing_set.copy() for i in training_set[label_column].unique().tolist(): df_te,full_test,full_predict,label_list =xgboostModel_for_venn(training_set,df_te,numeric_features_validation,n_vap,label =i,category = label_column,num_round = num_trees) XGBData = training_set.copy() selectedData_Indices = numeric_features_validation # data_Indices regex = re.compile(r"\[|\]|<|\ ", re.IGNORECASE) param = {'max_depth':max_depth,'eta':0.3,'silent':1,'objective':'multi:softprob','num_class':num_class,'learningrate':0.1} labelList = XGBData.groupby([label_column],as_index=False).mean()[label_column].tolist() X = XGBData.reset_index()[selectedData_Indices] Y = XGBData.reset_index()[label_column] Z = df_te[selectedData_Indices] X.columns = [regex.sub('_',col) for col in X.columns.values] Z.columns = [regex.sub('_',col) for col in Z.columns.values] labelEncoder = LabelEncoder() labelEncoded = labelEncoder.fit_transform(Y.values) dtrain = xgb.DMatrix(X,label=labelEncoded) bst = xgb.train(param,dtrain,num_trees,feval='map5eval',maximize=True) dtest = xgb.DMatrix(Z) preds = bst.predict(dtest) best_preds = np.asarray([np.argmax(line) for line in preds]) readable_pre=[labelList[i] for i in best_preds] df_te['multi_eXGBT_pre_label']=readable_pre return df_te def transform_predict_result_DF(predict_result_DF,label_col,threshold=0.1): id_col='predict_result_DF_indices' predict_result_DF[id_col]=predict_result_DF.index #This is for specific purposes. try: label_list = predict_result_DF[label_col].unique().tolist() predict_result_DF['max']=predict_result_DF[label_list].T.max() except KeyError as keyE: label_list = predict_result_DF['multi_eXGBT_pre_label'].unique().tolist() predict_result_DF['max']=predict_result_DF[label_list].T.max() print('Notice: The predicted labels were used instead of full labels') min_Filter = predict_result_DF['max']<threshold predict_result_DF.loc[min_Filter,'F_label']=predict_result_DF.loc[min_Filter,'multi_eXGBT_pre_label'] max_Filter = predict_result_DF['max']>=threshold for i in label_list: analogue_filter = predict_result_DF['max']==predict_result_DF[i] predict_result_DF.loc[analogue_filter&max_Filter,'F_label']=i predict_result_DF = predict_result_DF.rename({'max': 'probability'}, axis='columns') temp1= predict_result_DF.groupby([id_col,'F_label'], as_index=False).mean()[[id_col,'F_label','probability']] temp1['ID']=temp1[id_col].astype(str)+temp1['probability'].astype(str) temp2= temp1.groupby([id_col], as_index=False).max()[[id_col,'probability']] temp2['ID']=temp2[id_col].astype(str)+temp2['probability'].astype(str) temp3=temp2.merge(temp1, on='ID', how='left')[[id_col+'_x','probability_x','F_label']] temp3.columns=[id_col,'confidence','predicted_label'] temp3.groupby(['predicted_label'], as_index=False).count()[['predicted_label','confidence']] temp3=temp3.merge(predict_result_DF, on=id_col, how='left')[[id_col,'confidence','predicted_label',label_col]] fake_filter = temp3[id_col].astype(str).str.startswith('fake') return predict_result_DF,temp3[~fake_filter] def generate_expressed_matrix(gene_dfc,select_gene ,group_col = 'group',id_col='cell'): np_temp = gene_dfc[select_gene].to_numpy() lst=[] for i in np_temp: lst_t=[] for j in i: if j==0: lst_t.append(0) else: lst_t.append(1) lst.append(lst_t) lst=np.array(lst) zero_test_df = pd.DataFrame(lst,columns=select_gene) zero_test_df[[id_col,group_col]]=gene_dfc[[id_col,group_col]] return zero_test_df def Drode_DE_gene_detection(gene_dfc,select_gene,feature='gene',id_col='cell',group_col='group',is_unify=True): if(is_unify): gene_dfc_unify,_ = unify_df(gene_dfc,select_gene,id_col,[group_col]) else: gene_dfc_unify=gene_dfc.copy() gene_dfc_unify= gene_dfc_unify.reset_index(drop=True) zero_test_df = generate_expressed_matrix(gene_dfc = gene_dfc_unify,select_gene = select_gene,group_col = group_col,id_col=id_col) differentiated_df = pd.DataFrame() for gene in select_gene: print(gene) temp = zero_test_df.groupby(by=[group_col,gene],as_index=False)[[id_col]].count().copy() temp = pd.pivot_table(temp, index=group_col, columns=gene, values=id_col) if zero_test_df[zero_test_df[gene]==0].shape[0]==0: temp[0]=np.zeros(temp.shape[0]) temp['non_0_rate']=np.ones(temp.shape[0]) elif zero_test_df[zero_test_df[gene]==1].shape[0]==0: temp[1]=np.zeros(temp.shape[0]) temp['non_0_rate']=np.zeros(temp.shape[0]) else: temp=temp.fillna(0) temp['non_0_rate']=temp[1]/(temp[0]+temp[1]) temp['size']=temp[0]+temp[1] temp[group_col]=temp.index temp_np = temp.to_numpy() lst=[] for i in range(len(temp_np)): for j in range(i+1,len(temp_np)): x = gene_dfc_unify[(gene_dfc_unify[group_col]==str(temp_np[i][4])) & (gene_dfc_unify[gene]!=0)][gene].to_numpy() y = gene_dfc_unify[(gene_dfc_unify[group_col]==str(temp_np[j][4])) & (gene_dfc_unify[gene]!=0)][gene].to_numpy() true_mean_x = gene_dfc[(gene_dfc[group_col]==str(temp_np[i][4])) & (gene_dfc[gene]!=0)][gene].to_numpy() true_mean_y = gene_dfc[(gene_dfc[group_col]==str(temp_np[j][4])) & (gene_dfc[gene]!=0)][gene].to_numpy() if((len(x)<3) & (len(y)<3)): continue elif len(x)<3: mean_x=0 mean_y=y.mean() same_distribution_pval = 1 elif len(y)<3: mean_x=x.mean() mean_y=0 same_distribution_pval = 1 else: mean_x=x.mean() mean_y=y.mean() same_distribution_pval = (ks_2samp(x, y)[1]) if(len(true_mean_x)>0): true_mean_x=true_mean_x.mean() else: true_mean_x=0 if(len(true_mean_y)>0): true_mean_y=true_mean_y.mean() else: true_mean_y=0 if temp_np[i][0]+temp_np[j][0]==0: #all zeros same_0rate_pval=1 elif temp_np[i][0]+temp_np[j][0]==temp_np[i][3]+temp_np[j][3]: #all ones same_0rate_pval=1 else: zscore, same_0rate_pval = sm.stats.proportions_ztest([temp_np[i][0], temp_np[j][0]], [temp_np[i][3], temp_np[j][3]], alternative='two-sided') if same_0rate_pval<=0.05: differentiated_pval=1-same_0rate_pval elif same_distribution_pval<=0.05: differentiated_pval=0.95-same_distribution_pval else: differentiated_pval=0.9-same_0rate_pval*same_distribution_pval lst.append([gene,temp_np[i][4],temp_np[j][4],differentiated_pval,1-same_0rate_pval,1-same_distribution_pval,temp_np[i][2],temp_np[j][2],temp_np[i][1],temp_np[j][1],true_mean_x,true_mean_y]) temp_df = pd.DataFrame(lst,columns=[feature,'group_1','group_2','deprob','d0prob','d1prob','posrate_1','posrate_2','pos_1','pos_2','posmean_1','posmean_2']) differentiated_df=differentiated_df.append(temp_df) return differentiated_df def select_de_gene(drode_de_gene_df,score_col='deprob',feature='gene',num=20): drode_de_gene_df = drode_de_gene_df[drode_de_gene_df[score_col]>0.9].copy() drode_de_gene_df['group']=drode_de_gene_df['group_1']+'***'+drode_de_gene_df['group_2'] groups=drode_de_gene_df['group'].unique().tolist() group_df=pd.DataFrame() for group in groups: temp_df = drode_de_gene_df[drode_de_gene_df['group']==group][['gene',score_col,'group']].copy() temp_df = temp_df.sort_values(by=score_col,ascending=False).reset_index(drop=True) group_df = group_df.append(temp_df.iloc[0:num]) de_gene_dWT4 = group_df[feature].unique().tolist() return de_gene_dWT4 def cluster_cells(gene_dfc,select_gene,group='CD4SP',group_col='group',id_col='cell',path='/home/ivan/Desktop/Project2/MyData/pipeline'): cluster_df = gene_dfc[gene_dfc[group_col]==group][select_gene+[id_col,group_col]] cluster_df = cluster_df.reset_index(drop=True) cluster_df = rrd(cluster_df,id_col,True,False) cluster_df = cluster_df.replace(0,1e-7) mx=cluster_df[select_gene].to_numpy() scaled_matrix = generate_unit_modules(mx, isrow=True, is_scale=False, simple_scale=True) dis_mx=[] for i in range(len(scaled_matrix)): lst=[] for j in range(len(scaled_matrix)): lst.append(entropy(scaled_matrix[i], scaled_matrix[j], base=None)) dis_mx.append(lst) dis_mx = np.array(dis_mx) dis_df = pd.DataFrame(dis_mx,columns=cluster_df[id_col].tolist()) dis_df.index = cluster_df[id_col].tolist() lst = plot_heatmap_for_kmeans_groups(data_frame=dis_df,numeric_features=cluster_df[id_col].tolist(),path=path, clusters=1, is_row=True) return lst def de_gene_description(drode_de_gene_df): drode_de_gene_df_2=drode_de_gene_df.copy() drode_de_gene_df_2['group_1']=drode_de_gene_df['group_2'] drode_de_gene_df_2['group_2']=drode_de_gene_df['group_1'] drode_de_gene_df_2['posmean_1']=drode_de_gene_df['posmean_2'] drode_de_gene_df_2['posmean_2']=drode_de_gene_df['posmean_1'] drode_de_gene_df_2['posrate_1']=drode_de_gene_df['posrate_2'] drode_de_gene_df_2['posrate_2']=drode_de_gene_df['posrate_1'] drode_de_gene_df_2=drode_de_gene_df_2.append(drode_de_gene_df) cate_lst = drode_de_gene_df_2['group_1'].unique().tolist() temp_mean_df =
pd.pivot_table(drode_de_gene_df_2, index='gene', columns='group_2', values='posmean_2')
pandas.pivot_table
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import pandas.util.testing as pdt import pytest from recordlinkage.preprocessing import clean from recordlinkage.preprocessing import phonenumbers from recordlinkage.preprocessing import phonetic from recordlinkage.preprocessing import phonetic_algorithms from recordlinkage.preprocessing import value_occurence class TestCleaningStandardise(object): def test_clean(self): values = pd.Series([ 'Mary-ann', 'Bob :)', 'Angel', 'Bob (alias Billy)', 'Mary ann', 'John', np.nan ]) expected = pd.Series( ['mary ann', 'bob', 'angel', 'bob', 'mary ann', 'john', np.nan]) clean_series = clean(values) # Check if series are identical.
pdt.assert_series_equal(clean_series, expected)
pandas.util.testing.assert_series_equal
import json import logging import socketio from .constants import * _LOGGER = logging.getLogger(__name__) ringalarm_devices_list = [] required_columns = [DEVICE_ZID, DEVICE_NAME, DEVICE_BATTERY_STATUS, DEVICE_BATTERY_LEVEL, DEVICE_TYPE, \ DEVICE_ROOM_ID, DEVICE_TAMPER_STATUS, \ DEVICE_ON, DEVICE_MOTION_STATUS, DEVICE_FAULTED, \ DEVICE_CONTROLLER, DEVICE_MAPPED_TYPE, DEVICE_SOURCE, DEVICE_LOCKED, DEVICE_CALLBACK] custom_columns = [DEVICE_CONTROLLER, DEVICE_MAPPED_TYPE, DEVICE_SOURCE, DEVICE_CALLBACK] def get_oauth_token(username, password): import requests import socketio data = {'username': username, 'grant_type': 'password', 'scope': 'client', 'client_id': 'ring_official_android', 'password': password} response = requests.post(OATH_ENDPOINT, data=data) statusCode = response.status_code oauth_token = None responseJSON = response.json() if statusCode == 200: oauth_token = responseJSON.get('access_token', None) _LOGGER.info("Oauth Token obtained") return oauth_token def get_locations(oauth_token): import requests data = {} headers = {'content-type': 'application/x-www-form-urlencoded', 'authorization': 'Bearer ' + oauth_token} response = requests.get(LOCATIONS_ENDPOINT, data=data, headers=headers).json() user_locations = response.get('user_locations', None) _LOGGER.info("User locations are " + str(user_locations)) return user_locations class RingLocation(object): def __init__(self, oauth_token): self.is_connected = False self.token = None self.params = None self.asset_devices_present = None self.total_hubs = 0 self.hubs_devices_obtained = 0 self.locations = [] self.location_id = None self.token = oauth_token #self.token = self.get_oauth_token() self.sio=None if (self.token): self.is_connected = True def set_callbacks(self, **kwargs): self.async_add_device_callback = kwargs.get('async_add_device') self.async_update_device_callback = kwargs.get('async_update_device') def send_command_ring(self, zid, dst, cmd, data={}): _payload = { "body": [ { "zid": zid, "command": { "v1": [ { "commandType": cmd, "data": data } ] } } ], "datatype": "DeviceInfoSetType", "dst": dst, "msg": "DeviceInfoSet", "seq": 3 } self.sio.emit("message", _payload) def get_devices(self, location_id): #import socketio hubs = RingHubs(location_id, self.token) self.sio = socketio.Client() self.sio.connect(hubs.wss_url, transports='websocket') for hub in hubs.assets: asset = hub.get('uuid', None) self.total_hubs = self.total_hubs + 1 initial_request_get_device_list = {"msg": "DeviceInfoDocGetList", "dst": asset, "seq": 2} self.sio.emit("message", initial_request_get_device_list) _LOGGER.info("Total hubs " + str(self.total_hubs)) @self.sio.event def SessionInfo(data): # print(json.dumps(data, indent=4)) pass @self.sio.event def DeviceInfoSet(data): pass @self.sio.event def DataUpdate(data): if data["datatype"] == 'HubDisconnectionEventType': print ("Hub is is disconnected") try: if data["datatype"] == "DeviceInfoDocType": entity_dict = {} if self.async_update_device_callback: updated_entities = _build_update_entity_list(data) self.async_update_device_callback(updated_entities) except KeyError: pass @self.sio.event def message(data): import pandas as pd if data['msg'] == 'DeviceInfoSet': pass else: try: if data["datatype"] == "DeviceInfoDocType": global ringalarm_devices_list _build_initial_entity_list(data) self.hubs_devices_obtained = self.hubs_devices_obtained + 1 if self.hubs_devices_obtained == self.total_hubs: r = pd.DataFrame() for i in ringalarm_devices_list: r =
pd.concat([r, i], ignore_index=True, sort=False)
pandas.concat
import os import plotly.express as px import plotly.graph_objects as go import pandas as pd import numpy as np import json from sklearn.metrics import accuracy_score from src.data.strava_data_load_preprocess import ( load_week_start_times_data, load_lgbm_model_results, load_logreg_model_results, load_lgbm_heatmap, load_logreg_heatmap, load_lgbm_model, load_logreg_model, ) ACTIVITY_COLOR_MAP = { "AlpineSki": "#636EFA", "Ride": "#00CC96", "NordicSki": "#EF553B", "Run": "#AB63FA", "Swim": "#FFA15A", "Ski": "#19D3F3", "Workout": "#FF6692", "WeightTraining": "#B6E880", } def activity_pie_plot(df, val, label, title): """Builds a plotly pie plot broken by activity. Args: df (DataFrame): raw data to include in the pie plot val (string): which column to plot. label (string): what the lables should display in the legend, title (string): Title to be displayed on the plot Returns: [Plotly Express Figure]: The complete pie plot of activity types """ fig = px.pie( df, values=val, names=label, # color_discrete_sequence= kaha_color_list, title=title, labels={"type": "Activity Type"}, ) fig.update_traces(textposition="inside", textinfo="label+percent", sort=False) fig.update_layout( showlegend=True, title_x=0.5, title_font_size=25, font_size=15, legend={"traceorder": "normal"}, ) return fig def plot_lgbm_model_predictions( train_data, plot_data, labels, data_set, lgbm_model=None ): """Generates the LGBM results plot using plotly express and prediction region mask. Returns: Plotly Express Figure: the LGBM model results plot including prediction region mask. """ try: lgbm_results = load_lgbm_model_results(data_set) except FileNotFoundError: print("No LGBM " + data_set + " Results Found, generating") lgbm_model = load_lgbm_model() prediction = lgbm_model.predict( train_data, num_iteration=lgbm_model.best_iteration ) lgbm_results = pd.DataFrame({"label": labels, "prediction": prediction}) acc = accuracy_score(lgbm_results.label, lgbm_results.prediction.round()) # results = pd.DataFrame({'label': labels, 'prediction': prediction}, columns = ['label','prediction']).to_csv(os.path.join('data', 'lgbm_model_' + f'{acc*100:.1f}_acc')) print(f"Accuracy: {acc:.3f}") x_min, x_max = plot_data["morn"].min() - 0.02, plot_data["morn"].max() + 0.02 y_min, y_max = plot_data["aft"].min() - 0.02, plot_data["aft"].max() + 0.02 data_plot = px.scatter( x=plot_data["morn"], y=plot_data["aft"], color=np.where(lgbm_results.prediction.round() == 1, "unemployed", "employed"), color_discrete_map={ "unemployed": "#009FFD", "employed": "#FFA400", }, symbol=np.where( lgbm_results.prediction.round() == np.array(lgbm_results.label), "Correct", "Incorrect", ), symbol_map={"Correct": "circle", "Incorrect": "x"}, labels={"color": "Label", "symbol": "Model Prediction"}, ).update_traces(marker=dict(size=10, line_width=2, line_color="black")) data_plot.update_layout( # title=f'Employment Predictions from Weekday Activities Started During Work Hours<br>Model Accuracy: {acc*100:.0f}%', title=f"LightGBM Model Accuracy: {acc*100:.0f}%", xaxis=dict( title="Activities During Morning Work Hours", tickformat=",.0%", range=[x_min, x_max], ), yaxis=dict( title="Activities During Afternoon Work Hours", tickformat=",.0%", range=[y_min, y_max], ), title_x=0.5, title_font_size=15, font_size=10, margin=dict(l=20, r=20, t=50, b=20), legend=dict( # orientation="h", yanchor="top", y=1.0, xanchor="right", x=1, ), ) # ensure both train and plot data are matched to prevent breaking of the plotly figure. if len(train_data.iloc[0]) == len(plot_data.iloc[0]): try: lgbm_heatmap = load_lgbm_heatmap(data_set) except IndexError: # no exisiting heatmap, create classification confidence heat map print("No Heatmap values for " + data_set + " found, generating...") h = 0.005 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) y_ = np.arange(y_min, y_max, h) Z = lgbm_model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # save off heatmap values heat_values = [] for x in range(0, len(xx[0])): for y in range(0, len(y_)): heat_values.append([xx[0][x], y_[y], Z[y][x]]) lgbm_heatmap = pd.DataFrame(heat_values, columns=["X", "Y", "Z"]) lgbm_heatmap.to_csv( os.path.join("data", "processed", data_set + "_lgbm_model_heatmap.csv") ) data_plot.add_trace( go.Heatmap( x=lgbm_heatmap.X, y=lgbm_heatmap.Y, z=lgbm_heatmap.Z, colorscale=[ [0, "#FFA400"], [0.4, "#FFA400"], [0.6, "#009FFD"], [1, "#009FFD"], ], # [[0,'#FFA400'], [1,'#009FFD']], #[0.45, '#009FFD'], [0.55,'#FFA400'], opacity=0.3, showscale=False, ) ) return data_plot def plot_logreg_model_predictions(data, labels, data_set): """Generate the plotly express plot of the logisitc regression model results including prediction confidence mask values. Args: data (DataFrame): dataset including months and working/not working info labels (list): classification labels to be displayed in the plots legend data_set (string): which dataset to pull for display. Returns: Plotly Express Figure: The final formatted plot ready for display. """ # first try to load already processed data, if not use the models to generate try: logreg_results = load_logreg_model_results(data_set) except FileNotFoundError: print("No logreg " + data_set + " Results Found, generating") logreg_model = load_logreg_model() prediction = logreg_model.predict(data) logreg_results = pd.DataFrame({"label": labels, "prediction": prediction}) acc = accuracy_score(logreg_results.label, logreg_results.prediction) x_min, x_max = data["morn"].min() - 0.02, data["morn"].max() + 0.02 y_min, y_max = data["aft"].min() - 0.02, data["aft"].max() + 0.02 print(f"Accuracy: {acc:.3f}") # results = pd.DataFrame({'label': labels, 'prediction': prediction}, columns = ['label','prediction']).to_csv(os.path.join('data', 'logreg_model_' + f'{acc*100:.1f}_acc')) data_plot = px.scatter( x=data["morn"], y=data["aft"], color=np.where(logreg_results.label == 1, "unemployed", "employed"), color_discrete_map={ "unemployed": "#009FFD", "employed": "#FFA400", }, symbol=np.where( logreg_results.prediction == np.array(logreg_results.label), "Correct", "Incorrect", ), symbol_map={"Correct": "circle", "Incorrect": "x"}, labels={"color": "Label", "symbol": "Model Prediction"}, ).update_traces(marker=dict(size=10, line_width=2, line_color="black")) data_plot.update_layout( # title=f'Logistic Regression Model<br>Model Accuracy: {acc*100:.0f}%', title=f"Logistic Regression Model Accuracy: {acc*100:.0f}%", xaxis=dict( title="Activities During Morning Work Hours", tickformat=",.0%", range=[x_min, x_max], ), yaxis=dict( title="Activities During Afternoon Work Hours", tickformat=",.0%", range=[y_min, y_max], ), title_x=0.5, title_font_size=15, font_size=10, margin=dict(l=20, r=20, t=50, b=20), legend=dict( # orientation="h", yanchor="top", y=1.0, xanchor="right", x=1, ), ) # first try to load already processed data, if not use the models to generate try: logreg_heatmap = load_logreg_heatmap(data_set) except IndexError: # no exisiting heatmap Create classification confidence heat map logreg_model = load_logreg_model() print("No Heatmap values for " + data_set + " found, generating...") h = 0.005 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) y_ = np.arange(y_min, y_max, h) Z = logreg_model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 0] Z = Z.reshape(xx.shape) # save off heatmap values heat_values = [] for x in range(0, len(xx[0])): for y in range(0, len(y_)): heat_values.append([xx[0][x], y_[y], Z[y][x]]) logreg_heatmap = pd.DataFrame(heat_values, columns=["X", "Y", "Z"]) logreg_heatmap.to_csv( os.path.join("data", "processed", data_set + "_logreg_model_heatmap.csv") ) data_plot.add_trace( go.Heatmap( x=logreg_heatmap.X, y=logreg_heatmap.Y, z=logreg_heatmap.Z, colorscale=[ [0, "#009FFD"], [0.45, "#009FFD"], [0.55, "#FFA400"], [1, "#FFA400"], ], # [[0,'#FFA400'], [1,'#009FFD']], #[0.45, '#009FFD'], [0.55,'#FFA400'], opacity=0.3, showscale=False, ) ) return data_plot def plot_training_data(train_data, train_labels, test_data, test_labels): combined_data = pd.concat([train_data, test_data]) combined_labels = pd.concat([train_labels, test_labels]) x_min, x_max = ( combined_data["morn"].min() - 0.02, combined_data["morn"].max() + 0.02, ) y_min, y_max = combined_data["aft"].min() - 0.02, combined_data["aft"].max() + 0.02 data_plot = px.scatter( x=combined_data["morn"], y=combined_data["aft"], color=combined_labels, color_discrete_map={"unemployed": "#009FFD", "employed": "#FFA400"}, labels={ "color": "Label", }, ).update_traces(marker=dict(size=10, line_width=2, line_color="black")) data_plot.update_layout( title=f"Data Set of Employed & Unemployed Months", xaxis=dict( title="Activities During Morning Work Hours", tickformat=",.0%", range=[x_min, x_max], ), yaxis=dict( title="Activities During Afternoon Work Hours", tickformat=",.0%", range=[y_min, y_max], ), title_x=0.5, title_font_size=17, font_size=12, margin=dict(l=20, r=20, t=50, b=20), legend=dict( # orientation="h", yanchor="top", y=1.0, xanchor="right", x=1, ), ) return data_plot def plot_weekly_start_times(activity_df, start_year, end_year, work_hours, title_descr): start_time_fig = go.Figure() work_perc = 0 # Load or generate the data for activity start times across an entire year try: summary_week_start_times = load_week_start_times_data() except FileNotFoundError: print("No Yearly Week Summary Data Found, generating it now...") summary_week_start_times = {} for year in range(
pd.DatetimeIndex(activity_df.start_date_local)
pandas.DatetimeIndex
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # You can run this test by first running `nPython.exe` (with mono or otherwise): # $ ./nPython.exe ReportChartTests.py import numpy as np import pandas as pd from datetime import datetime from ReportCharts import ReportCharts charts = ReportCharts() ## Test GetReturnsPerTrade backtest = list(np.random.normal(0, 1, 1000)) live = list(np.random.normal(0.5, 1, 400)) result = charts.GetReturnsPerTrade([], []) result = charts.GetReturnsPerTrade(backtest, []) result = charts.GetReturnsPerTrade(backtest, live) ## Test GetCumulativeReturnsPlot time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2012-10-01T00:00:00', periods=365)] strategy = np.linspace(1, 25, 365) benchmark = np.linspace(2, 26, 365) backtest = [time, strategy, time, benchmark] time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2013-10-01T00:00:00', periods=50)] strategy = np.linspace(25, 29, 50) benchmark = np.linspace(26, 30, 50) live = [time, strategy, time, benchmark] result = charts.GetCumulativeReturns() result = charts.GetCumulativeReturns(backtest) result = charts.GetCumulativeReturns(backtest, live) ## Test GetDailyReturnsPlot time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2012-10-01T00:00:00', periods=365)] data = list(np.random.normal(0, 1, 365)) backtest = [time, data] time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2013-10-01T00:00:00', periods=120)] data = list(np.random.normal(0.5, 1.5, 120)) live = [time, data] empty = [[], []] result = charts.GetDailyReturns(empty, empty) result = charts.GetDailyReturns(backtest, empty) result = charts.GetDailyReturns(backtest, live) ## Test GetMonthlyReturnsPlot backtest = {'2016': [0.5, 0.7, 0.2, 0.23, 1.3, 1.45, 1.67, -2.3, -0.5, 1.23, 1.23, -3.5], '2017': [0.5, 0.7, 0.2, 0.23, 1.3, 1.45, 1.67, -2.3, -0.5, 1.23, 1.23, -3.5][::-1]} live = {'2018': [0.5, 0.7, 0.2, 0.23, 1.3, 1.45, 1.67, -2.3, -0.5, 1.23, 1.23, -3.5], '2019': [1.5, 2.7, -3.2, -0.23, 4.3, -2.45, -1.67, 2.3, np.nan, np.nan, np.nan, np.nan]} result = charts.GetMonthlyReturns({}, {}) result = charts.GetMonthlyReturns(backtest, pd.DataFrame()) result = charts.GetMonthlyReturns(backtest, live) ## Test GetAnnualReturnsPlot time = ['2012', '2013', '2014', '2015', '2016'] strategy = list(np.random.normal(0, 1, 5)) backtest = [time, strategy] time = ['2017', '2018'] strategy = list(np.random.normal(0.5, 1.5, 2)) live = [time, strategy] empty = [[], []] result = charts.GetAnnualReturns() result = charts.GetAnnualReturns(backtest) result = charts.GetAnnualReturns(backtest, live) ## Test GetDrawdownPlot time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2012-10-01', periods=365)] data = list(np.random.uniform(-5, 0, 365)) backtest = [time, data] time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2013-10-01', periods=100)] data = list(np.random.uniform(-5, 0, 100)) live = [time, data] worst = [{'Begin': datetime(2012, 10, 1), 'End': datetime(2012, 10, 11)}, {'Begin': datetime(2012, 12, 1), 'End': datetime(2012, 12, 11)}, {'Begin': datetime(2013, 3, 1), 'End': datetime(2013, 3, 11)}, {'Begin': datetime(2013, 4, 1), 'End': datetime(2013, 4, 1)}, {'Begin': datetime(2013, 6, 1), 'End': datetime(2013, 6, 11)}] empty = [[], []] result = charts.GetDrawdown(empty, empty, {}) result = charts.GetDrawdown(backtest, empty, worst) result = charts.GetDrawdown(backtest, live, worst) ## Test GetCrisisPlots (backtest only) equity = list(np.linspace(1, 25, 365)) benchmark = list(np.linspace(2, 26, 365)) time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2012-10-01 00:00:00', periods=365)] backtest = [time, equity, benchmark] empty = [[], [], []] result = charts.GetCrisisEventsPlots(empty, 'empty_crisis') result = charts.GetCrisisEventsPlots(backtest, 'dummy_crisis') ## Test GetRollingBetaPlot empty = [[], [], [], []] twelve = [np.nan for x in range(180)] + list(np.random.uniform(-1, 1, 185)) six = list(np.random.uniform(-1, 1, 365)) time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2012-10-01 00:00:00', periods=365)] backtest = [time, six, twelve] result = charts.GetRollingBeta([time, six, time, twelve], empty) result = charts.GetRollingBeta([time, six, [], []], empty) result = charts.GetRollingBeta(empty, empty) twelve = [np.nan for x in range(180)] + list(np.random.uniform(-1, 1, 185)) six = list(np.random.uniform(-1, 1, 365)) time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2013-10-01 00:00:00', periods=365)] live = [time, six, time, twelve] result = charts.GetRollingBeta(live) ## Test GetRollingSharpeRatioPlot data = list(np.random.uniform(1, 3, 365 * 2)) time = [
pd.Timestamp(x)
pandas.Timestamp
from flask import request, url_for from flask_api import FlaskAPI, status, exceptions import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import NMF from surprise import KNNWithMeans from surprise import accuracy from surprise.model_selection import KFold from surprise import SVD, SVDpp from surprise import Dataset from surprise.model_selection import cross_validate, train_test_split from surprise import Reader # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from surprise import KNNBasic import matplotlib.pyplot as plt from sklearn.neighbors import NearestNeighbors import os import json from flask import Flask from flask_cors import CORS app = FlaskAPI(__name__) CORS(app) notes = { 0: 'do the shopping', 1: 'build the codez', 2: 'paint the door', } algo = SVD() def note_repr(key): return { 'url': request.host_url.rstrip('/') + url_for('notes_detail', key=key), 'text': notes[key] } @app.route("/", methods=['GET', 'POST']) def notes_list(): """ List or create notes. """ if request.method == 'POST': note = str(request.data.get('text', '')) idx = max(notes.keys()) + 1 notes[idx] = note return note_repr(idx), status.HTTP_201_CREATED # request.method == 'GET' return [note_repr(idx) for idx in sorted(notes.keys())] @app.route("/<int:key>/", methods=['GET', 'PUT', 'DELETE']) def notes_detail(key): """ Retrieve, update or delete note instances. """ if request.method == 'PUT': note = str(request.data.get('text', '')) notes[key] = note return note_repr(key) elif request.method == 'DELETE': notes.pop(key, None) return '', status.HTTP_204_NO_CONTENT # request.method == 'GET' if key not in notes: raise exceptions.NotFound() return note_repr(key) @app.route("/getFutureSubjects/", methods=['GET', 'POST']) def getFutureSubjects(): data = pd.read_csv('hack.csv') l_data = request.json for l in l_data: learner_id = l['learnerID'] learner_data = data[data["LearnerID"] == learner_id].head(1) learner_schoolid = learner_data['Schoolid'].values[0] learner_curr_year = learner_data['CurretYearName'].values[0] data['year'] = data['MasterYearName'].str.slice(5) data['year'] = pd.to_numeric(data['year'], errors='coerce').fillna(0).astype(np.int64) data['current_year'] = data['CurretYearName'].str.slice(5) data['current_year'] = pd.to_numeric(data['current_year'], errors='coerce').fillna(0).astype(np.int64) current_yr = data[data["LearnerID"] == learner_id].sort_values(['year'], ascending=[0]).iloc[[0],:]["year"].values[0] + 1 past_data = data[(data['year'] <= current_yr) & (data['year'] != 0) & (data['current_year'] > current_yr) & (data['LearnerID'] != learner_id)] df = past_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() learner_data = data[data["LearnerID"] == learner_id] learner_pivot = learner_data.pivot_table(index = ['LearnerID'], values = 'Points.1', columns = 'MasterSubjectName').fillna(0).reset_index() for l in l_data: print('asdasdasdasd') print(l['subject']) print(l['marks']) learner_pivot[l['subject']] = l['marks'] final_pivot = pd.concat([learner_pivot, df], ignore_index=False, sort=True).fillna(0) final_pivot[final_pivot["LearnerID"] == learner_id] model_knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=5, n_jobs=-1).fit(df) values, indexes = model_knn.kneighbors(final_pivot[final_pivot["LearnerID"] == learner_id].values.reshape(1,-1)) similar_leaners = dict(zip(indexes[0], values[0])) final_learner_pivot = final_pivot[final_pivot["LearnerID"] == learner_id] sorted_leaners = [(k, similar_leaners[k]) for k in sorted(similar_leaners, key=similar_leaners.get, reverse=True)] index_arr = [] values_arr = [] for l in sorted_leaners: index_arr.append(l[0]) values_arr.append(l[1]) similar_learners_df = df.loc[index_arr, :] similar_learners_df['similarity'] = values_arr final_learner_pivot['similarity'] = 1 similar_learners_without_self = similar_learners_df similar_learners_df = pd.concat([similar_learners_df,final_learner_pivot], ignore_index=False, sort=False).fillna(0) learners = data[(data['year'] == (current_yr + 2)) & (data['LearnerID'].isin(similar_learners_without_self['LearnerID'].values))] #similar_learners_df subjects = learners.MasterSubjectName.unique() learners = learners[['LearnerID', 'Points.1', 'SchoolSubjectName']].rename(columns={"Points.1": "Marks"}) arr = [] # arr.append(learners.to_json(orient='records')) # grid_obj = { # "grid":str(learners.to_json(orient='records')) # } # arr.append(grid_obj) #return similar_learners_df.to_json(orient='records') for s in subjects: id = str(learner_id) + '-' + str(learner_schoolid) subject = learner_curr_year + '-' + s obj = { "learnerID": learner_id, "subject": subject, "marks": (algo.predict(id, subject)[3] * 10) } arr.append(obj) return json.dumps(arr) @app.route("/getSubjects/<int:learner_id>/", methods=['GET', 'PUT', 'DELETE']) def getSubjects(learner_id): data = pd.read_csv('hack.csv') learner_data = data[data["LearnerID"] == learner_id].head(1) learner_schoolid = learner_data['Schoolid'].values[0] learner_curr_year = learner_data['CurretYearName'].values[0] data['year'] = data['MasterYearName'].str.slice(5) data['year'] = pd.to_numeric(data['year'], errors='coerce').fillna(0).astype(np.int64) data['current_year'] = data['CurretYearName'].str.slice(5) data['current_year'] =
pd.to_numeric(data['current_year'], errors='coerce')
pandas.to_numeric
""" This script reads all the bootstrap performance result files, plots histograms, and calculates averages. t-tests are done to compute p-values and confidence intervals are computed """ import pandas as pd import os import matplotlib.pyplot as plt import matplotlib from scipy import stats matplotlib.rcParams.update({'font.size': 8}) # specify folder locations rnn_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps043_results_storm_bootstrap_rnn/" lstm_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps043_results_storm_bootstrap_lstm/" # extract forecast data for RNN rnn_rmse_t1_list, rnn_rmse_t9_list, rnn_rmse_t18_list = [], [], [] rnn_nse_t1_list, rnn_nse_t9_list, rnn_nse_t18_list = [], [], [] rnn_mae_t1_list, rnn_mae_t9_list, rnn_mae_t18_list = [], [], [] for file in os.listdir(rnn_results_folder): data = rnn_results_folder + file if file.endswith("_RMSE.csv"): # print(file) rmse_df = pd.read_csv(data) rmse_t1, rmse_t9, rmse_t18 = rmse_df[["0"]].iloc[0], rmse_df[["0"]].iloc[8], rmse_df[["0"]].iloc[17] rnn_rmse_t1_list.append(rmse_t1[0]) rnn_rmse_t9_list.append(rmse_t9[0]) rnn_rmse_t18_list.append(rmse_t18[0]) if file.endswith("_NSE.csv"): nse_df = pd.read_csv(data) nse_t1, nse_t9, nse_t18 = nse_df[["0"]].iloc[0], nse_df[["0"]].iloc[8], nse_df[["0"]].iloc[17] rnn_nse_t1_list.append(nse_t1[0]) rnn_nse_t9_list.append(nse_t9[0]) rnn_nse_t18_list.append(nse_t18[0]) if file.endswith("_MAE.csv"): mae_df = pd.read_csv(data) mae_t1, mae_t9, mae_t18 = mae_df[["0"]].iloc[0], mae_df[["0"]].iloc[8], mae_df[["0"]].iloc[17] rnn_mae_t1_list.append(mae_t1[0]) rnn_mae_t9_list.append(mae_t9[0]) rnn_mae_t18_list.append(mae_t18[0]) # write extracted data to data frames rnn_RMSE_df =
pd.DataFrame([rnn_rmse_t1_list, rnn_rmse_t9_list, rnn_rmse_t18_list])
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt NbrOfNodes = 3 key200 = ' TIME: GANDRA STEP: 200.000 FRAME: 1.000' #-------------------------------------------------------------------------- # File for gain parameter 0.05 #-------------------------------------------------------------------------- file_g01 = open('axisymm_k005.rsn', 'r') gain01 = file_g01.readlines() g01 = pd.Series(gain01) g01 = g01.replace(r'\n','', regex=True) g01 = g01.replace(r'\r\n','', regex=True) g01 = g01.replace(r'\r','', regex=True) index_Time_g01 = g01[g01.str.contains('TIME', case=False, regex=False)] index_TimeValues_g01 = index_Time_g01.index.values #-------------------------------------------------------------------------- G01 = {} for idx in index_Time_g01.index.values: index_start = idx + 1 index_end = index_start + NbrOfNodes tmp_df = g01[index_start:index_end].str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) G01[g01[idx]]=np.array(tmp_df.values, dtype=float) Data_g01 = np.array([], dtype=np.int64) Data_g01.shape = (-1, 7) for key in sorted(G01.keys()): Data_g01 = np.append(Data_g01,[G01[key][0,:]], axis=0) Data_g01.sort(axis=0) #-------------------------------------------------------------------------- # File for gain parameter 0.07 #-------------------------------------------------------------------------- file_g02 = open('axisymm_k007.rsn', 'r') gain02 = file_g02.readlines() g02 = pd.Series(gain02) g02 = g02.replace(r'\n','', regex=True) g02 = g02.replace(r'\r\n','', regex=True) g02 = g02.replace(r'\r','', regex=True) index_Time_g02 = g02[g02.str.contains('TIME', case=False, regex=False)] index_TimeValues_g02 = index_Time_g02.index.values #-------------------------------------------------------------------------- G02 = {} for idx in index_Time_g02.index.values: index_start = idx + 1 index_end = index_start + NbrOfNodes tmp_df = g02[index_start:index_end].str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) G02[g02[idx]]=np.array(tmp_df.values, dtype=float) Data_g02 = np.array([], dtype=np.int64) Data_g02.shape = (-1, 7) for key in sorted(G02.keys()): Data_g02 = np.append(Data_g02,[G02[key][0,:]], axis=0) Data_g02.sort(axis=0) #-------------------------------------------------------------------------- # File for gain parameter 0.09 #-------------------------------------------------------------------------- file_g03 = open('axisymm_k009.rsn', 'r') gain03 = file_g03.readlines() g03 = pd.Series(gain03) g03 = g03.replace(r'\n','', regex=True) g03 = g03.replace(r'\r\n','', regex=True) g03 = g03.replace(r'\r','', regex=True) index_Time_g03 = g03[g03.str.contains('TIME', case=False, regex=False)] index_TimeValues_g03 = index_Time_g03.index.values #-------------------------------------------------------------------------- G03 = {} for idx in index_Time_g03.index.values: index_start = idx + 1 index_end = index_start + NbrOfNodes tmp_df = g03[index_start:index_end].str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) G03[g03[idx]]=np.array(tmp_df.values, dtype=float) Data_g03 = np.array([], dtype=np.int64) Data_g03.shape = (-1, 7) for key in sorted(G03.keys()): Data_g03 = np.append(Data_g03,[G03[key][0,:]], axis=0) Data_g03.sort(axis=0) #-------------------------------------------------------------------------- # File for gain parameter 0.11 #-------------------------------------------------------------------------- file_g04 = open('axisymm_k011.rsn', 'r') gain04 = file_g04.readlines() g04 = pd.Series(gain04) g04 = g04.replace(r'\n','', regex=True) g04 = g04.replace(r'\r\n','', regex=True) g04 = g04.replace(r'\r','', regex=True) index_Time_g04 = g04[g04.str.contains('TIME', case=False, regex=False)] index_TimeValues_g04 = index_Time_g04.index.values #-------------------------------------------------------------------------- G04 = {} for idx in index_Time_g04.index.values: index_start = idx + 1 index_end = index_start + NbrOfNodes tmp_df = g04[index_start:index_end].str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) G04[g04[idx]]=np.array(tmp_df.values, dtype=float) Data_g04 = np.array([], dtype=np.int64) Data_g04.shape = (-1, 7) for key in sorted(G04.keys()): Data_g04 = np.append(Data_g04,[G04[key][0,:]], axis=0) Data_g04.sort(axis=0) #-------------------------------------------------------------------------- # File for gain parameter 0.13 #-------------------------------------------------------------------------- file_g05 = open('axisymm_k013.rsn', 'r') gain05 = file_g05.readlines() g05 = pd.Series(gain05) g05 = g05.replace(r'\n','', regex=True) g05 = g05.replace(r'\r\n','', regex=True) g05 = g05.replace(r'\r','', regex=True) index_Time_g05 = g05[g05.str.contains('TIME', case=False, regex=False)] index_TimeValues_g05 = index_Time_g05.index.values #-------------------------------------------------------------------------- G05 = {} for idx in index_Time_g05.index.values: index_start = idx + 1 index_end = index_start + NbrOfNodes tmp_df = g05[index_start:index_end].str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) G05[g05[idx]]=np.array(tmp_df.values, dtype=float) Data_g05 = np.array([], dtype=np.int64) Data_g05.shape = (-1, 7) for key in sorted(G05.keys()): Data_g05 = np.append(Data_g05,[G05[key][0,:]], axis=0) Data_g05.sort(axis=0) #-------------------------------------------------------------------------- # File for gain parameter 0.15 #-------------------------------------------------------------------------- file_g06 = open('axisymm_k015.rsn', 'r') gain06 = file_g06.readlines() g06 = pd.Series(gain06) g06 = g06.replace(r'\n','', regex=True) g06 = g06.replace(r'\r\n','', regex=True) g06 = g06.replace(r'\r','', regex=True) index_Time_g06 = g06[g06.str.contains('TIME', case=False, regex=False)] index_TimeValues_g06 = index_Time_g06.index.values #-------------------------------------------------------------------------- G06 = {} for idx in index_Time_g06.index.values: index_start = idx + 1 index_end = index_start + NbrOfNodes tmp_df = g06[index_start:index_end].str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) G06[g06[idx]]=np.array(tmp_df.values, dtype=float) Data_g06 = np.array([], dtype=np.int64) Data_g06.shape = (-1, 7) for key in sorted(G06.keys()): Data_g06 = np.append(Data_g06,[G06[key][0,:]], axis=0) Data_g06.sort(axis=0) #-------------------------------------------------------------------------- # File for gain parameter 0.05 #-------------------------------------------------------------------------- file_g07 = open('Braeu2017_005.png.dat', 'r') gain07 = file_g07.readlines() g07 = pd.Series(gain07) g07 = g07.replace(r'\n','', regex=True) g07 = g07.replace(r'\r\n','', regex=True) g07 = g07.replace(r'\r','', regex=True) #-------------------------------------------------------------------------- for line in g07: tmp_df = g07.str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) Data_g07 = np.array(tmp_df.values, dtype=float) #-------------------------------------------------------------------------- # File for gain parameter 0.07 #-------------------------------------------------------------------------- file_g08 = open('Braeu2017_007.png.dat', 'r') gain08 = file_g08.readlines() g08 = pd.Series(gain08) g08 = g08.replace(r'\n','', regex=True) g08 = g08.replace(r'\r\n','', regex=True) g08 = g08.replace(r'\r','', regex=True) #-------------------------------------------------------------------------- for line in g08: tmp_df = g08.str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) Data_g08 = np.array(tmp_df.values, dtype=float) #-------------------------------------------------------------------------- # File for gain parameter 0.09 #-------------------------------------------------------------------------- file_g09 = open('Braeu2017_009.png.dat', 'r') gain09 = file_g09.readlines() g09 = pd.Series(gain09) g09 = g09.replace(r'\n','', regex=True) g09 = g09.replace(r'\r\n','', regex=True) g09 = g09.replace(r'\r','', regex=True) #-------------------------------------------------------------------------- for line in g09: tmp_df = g09.str.strip() tmp_df = tmp_df.str.split(' ',expand=True) np.array(tmp_df.values, dtype=float) Data_g09 = np.array(tmp_df.values, dtype=float) #-------------------------------------------------------------------------- # File for gain parameter 0.11 #-------------------------------------------------------------------------- file_g10 = open('Braeu2017_011.png.dat', 'r') gain10 = file_g10.readlines() g10 =
pd.Series(gain10)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # ## Analyze A/B Test Results # # # ## Table of Contents # - [Introduction](#intro) # - [Part I - Probability](#probability) # - [Part II - A/B Test](#ab_test) # - [Part III - Regression](#regression) # # # <a id='intro'></a> # ### Introduction # # A/B tests are very commonly performed by data analysts and data scientists. It is important that you get some practice working with the difficulties of these. # # For this project, I will be working to understand the results of an A/B test run by an e-commerce website. My goal is to work through this notebook to help the company understand if they should implement the new page, keep the old page, or perhaps run the experiment longer to make their decision. # # ### *Step-by-step solution* # # <a id='probability'></a> # #### Part I - Probability # # To get started, let's import our libraries. # In[1]: import pandas as pd import numpy as np import random import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') random.seed(42) # `1.` Now, read in the `ab_data.csv` data. Store it in `df`. # # a. Read in the dataset and take a look at the top few rows here: # In[2]: #read csv file and show firsts rows df=pd.read_csv('ab_data.csv') df.head() # b. Use the cell below to find the number of rows in the dataset. # In[3]: df.shape[0] # c. The number of unique users in the dataset. # In[4]: df.user_id.nunique() # d. The proportion of users converted. # In[5]: df.converted.value_counts() #checking total number of converted users # In[6]: # proportion of users converted df.converted.sum()/df.shape[0] # e. The number of times the `new_page` and `treatment` don't match. # In[7]: len(df[(df['group']=="treatment")!=(df['landing_page']=="new_page")]) # f. Do any of the rows have missing values? # In[8]: df.info() # **None of the rows have missing values** # `2.` For the rows where **treatment** does not match with **new_page** or **control** does not match with **old_page**, we cannot be sure if this row truly received the new or old page. # # a. Now use the answer to the quiz to create a new dataset that meets the specifications from the quiz. Store your new dataframe in **df2**. # In[9]: # Create a new dataframe without the rows in witch treatment does not match with new_page # or control does not match with old_page df2 = df[(df['group']=="treatment")==(df['landing_page']=="new_page")] df2.head() # In[10]: # Double Check all of the correct rows were removed - this should be 0 df2[((df2['group'] == 'treatment') == (df2['landing_page'] == 'new_page')) == False].shape[0] # In[11]: #Get information about the new dataframe df2.info() # `3.` Use **df2** to answer questions: # a. How many unique **user_id**s are in **df2**? # In[12]: df2.user_id.nunique() # b. There is one **user_id** repeated in **df2**. What is it? # In[13]: # Print the duplicated user_id duplicated_id=df2.loc[df2.user_id.duplicated(), 'user_id'] duplicated_id # The user_id repeated is: 773192 # c. What is the row information for the repeat **user_id**? # In[14]: # Show the duplicated user_id information df2[df2.duplicated(['user_id'], keep=False)] # d. Remove **one** of the rows with a duplicate **user_id**, but keep your dataframe as **df2**. # In[15]: # Delete duplicated id_user df2 = df2.drop_duplicates(['user_id'], keep='first') # In[16]: df2.user_id.nunique() # In[17]: df2.info() # `4.` Use **df2** to answer the questions: # # a. What is the probability of an individual converting regardless of the page they receive? # In[18]: df2.converted.mean() # b. Given that an individual was in the `control` group, what is the probability they converted? # In[19]: df2[df2['group']=='control']['converted'].mean() # c. Given that an individual was in the `treatment` group, what is the probability they converted? # In[20]: df2[df2['group']=='treatment']['converted'].mean() # d. What is the probability that an individual received the new page? # In[21]: len(df2[df2['landing_page']=='new_page']) / df2.shape[0] # e. Consider the results from a. through d. above, and explain below whether you think there is sufficient evidence to say that the new treatment page leads to more conversions. # By simple observations of our data and using probabilities, we came to obtain these results: # # 1. The **conversion probability** for a user who sees the old page (**control group**) is **12.04%** # 2. The **conversion probability** for a user who sees the new page (**treatment group**) is **11.88%** # 3. 50% of total users see the new page and 50% the old page, so **the sample is not unbalanced**. # # ### Therefore, based solely on the observed data, we conclude that the conversion rate is slightly higher with the old page. # <a id='ab_test'></a> # ### Part II - A/B Test # # Because of the time stamp associated with each event, I could technically run a hypothesis test continuously as each observation was observed. # # However, then the hard question is do you stop as soon as one page is considered significantly better than another or does it need to happen consistently for a certain amount of time? How long do you run to render a decision that neither page is better than another? # # # `1.` For now, I will consider I need to make the decision just based on all the data provided. If I assume that the old page is better unless the new page proves to be definitely better at a Type I error rate of 5%, what should the null and alternative hypotheses be? # $$H_0: p_{old} - p_{new} \geq 0$$ # $$H_1: p_{old} - p_{new} < 0$$ # `2.` I will now assume under the null hypothesis, $p_{new}$ and $p_{old}$ both have "true" success rates equal to the **converted** success rate regardless of page - that is $p_{new}$ and $p_{old}$ are equal. Furthermore, I also assume they are equal to the **converted** rate in **ab_data.csv** regardless of the page. <br><br> # # By using a sample size for each page equal to the ones in **ab_data.csv**. <br><br> # # I perform the sampling distribution for the difference in **converted** between the two pages over 10,000 iterations of calculating an estimate from the null. <br><br> # a. What is the **conversion rate** for $p_{new}$ under the null? # In[22]: p_new=df2.converted.mean() p_new # b. What is the **conversion rate** for $p_{old}$ under the null? <br><br> # In[23]: p_old=df2.converted.mean() p_old # In[24]: p_new-p_old # c. What is $n_{new}$, the number of individuals in the treatment group? # In[25]: n_new=len(df2.query("group == 'treatment'")) n_new # d. What is $n_{old}$, the number of individuals in the control group? # In[26]: n_old=len(df2.query("group == 'control'")) n_old # e. Simulate $n_{new}$ transactions with a conversion rate of $p_{new}$ under the null. Store these $n_{new}$ 1's and 0's in **new_page_converted**. # In[27]: # simulation of n_new transactions with a conversion rate of p_new under the null. new_page_converted = np.random.choice([0, 1], size = n_new, p = [p_new, 1-p_new]) # f. Simulate $n_{old}$ transactions with a conversion rate of $p_{old}$ under the null. Store these $n_{old}$ 1's and 0's in **old_page_converted**. # In[28]: # simulation of n_old transactions with a conversion rate of p_old under the null. old_page_converted = np.random.choice([0, 1], size = n_old, p = [p_old, 1-p_old]) # g. Find $p_{new}$ - $p_{old}$ for your simulated values from part (e) and (f). # In[29]: # Compute the difference observed between the simulation of conversion for both new and old pages obs_diff= new_page_converted.mean() - old_page_converted.mean() obs_diff # h. Create 10,000 $p_{new}$ - $p_{old}$ values using the same simulation process you used in parts (a) through (g) above. Store all 10,000 values in a NumPy array called **p_diffs**. # In[30]: # Create a sampling distribution of the difference in proportions with bootstrapping p_diffs = [] for _ in range(10000): new_page_converted = np.random.choice([1, 0],n_new,replace = True,p = [p_new, 1-p_new]) old_page_converted = np.random.choice([1, 0],n_old,replace = True,p = [p_old, 1-p_old]) p_new2 = new_page_converted.mean() p_old2 = old_page_converted.mean() p_diffs.append(p_new2-p_old2) # i. Plot a histogram of the **p_diffs**. Does this plot look like what you expected? Use the matching problem in the classroom to assure you fully understand what was computed here. # In[31]: plt.hist(p_diffs); plt.ylabel('Number of Simulations') plt.xlabel('Difference in Probability (p_new - p_old)') plt.title('10,000 simulations Plot'); # In[32]: plt.hist(p_diffs); plt.ylabel('Number of Simulations') plt.xlabel('Difference in Probability (p_new - p_old)') plt.title('10,000 simulations Plot'); plt.axvline(x=obs_diff.mean(), color = 'red'); # where our obs_diff mean falls on null dist # j. What proportion of the **p_diffs** are greater than the actual difference observed in **ab_data.csv**? # In[33]: act_obs_diffs = df2[df2['group']=='treatment']['converted'].mean() - df2[df2['group']=='control']['converted'].mean() print(act_obs_diffs) (p_diffs > act_obs_diffs).mean() # k. Explanation of what I just computed in part **j.** answering the questions: What is this value called in scientific studies? What does this value mean in terms of whether or not there is a difference between the new and old pages? # the value calculated as the proportion of the p_diffs that are greater than the actual difference observed in our data, is the one known as **p-value**. # # The formal definition of a p-value is the **probability of observing your statistic (or one more extreme in favor of the alternative) if the null hypothesis is true.** # # When the **p-value is large, we have evidence that our statistic was likely to come from the null hypothesis**, but how do we know if our p-value is large enough? By comparing our p-value to our type I error threshold (α), we can make our decision about which hypothesis we will choose as follows: # # $$pval \leq \alpha \rightarrow Reject H_0$$ # $$pval \geq \alpha \rightarrow Fail.To.Reject H_0$$ # #  - As we can see our p-value is 0.9072. #  - The alpha data (Type I error rate), has been given in the problem statement: 5% (0.05) # # $$ pval = 0.904 > 0.05 = \alpha$$ # # Therefore, we fail to reject the null hypothesis. We do not have sufficient evidence to suggest the new page converted rate is better than the old page converted rate. # l. We could also use a built-in to achieve similar results. Though using the built-in might be easier to code, the above portions are a walkthrough of the ideas that are critical to correctly thinking about statistical significance. Below, I calculate the number of conversions for each page, as well as the number of individuals who received each page. Let `n_old` and `n_new` refer the the number of rows associated with the old page and new pages, respectively. # In[34]: import statsmodels.api as sm convert_old = len(df2.query('landing_page=="old_page" and converted==1')) convert_new = len(df2.query('landing_page=="new_page" and converted==1')) n_old = len(df2.query('landing_page=="old_page"')) n_new = len(df2.query('landing_page=="new_page"')) # m. Use `stats.proportions_ztest` to compute your test statistic and p-value. [Here](https://docs.w3cub.com/statsmodels/generated/statsmodels.stats.proportion.proportions_ztest/) is a helpful link on using the built in. # In[35]: # description: sm.stats.proportions_ztest(count, nobs, value=None, alternative='two-sided', prop_var=False) where: # - count = the number of successes for each independent sample --> convert_old, convert_new # - nobs = the number of trials or observations, with the same length as count --> n_old, n_new # - alternative = smaller, means that the alternative hypothesis is prop < value # Returns: A. zstat(z-score): test statistic for the z-test; B. p-value: p-value for the z-test # Compute zstat and p_value zstat, p_value = sm.stats.proportions_ztest([convert_old, convert_new], [n_old, n_new], alternative='smaller') # Display zstat and p_value print(zstat, p_value) # n. What do the z-score and p-value computed in the previous question mean for the conversion rates of the old and new pages? Do they agree with the findings in parts **j.** and **k.**? # In[36]: from scipy.stats import norm #significance our z_score is norm.cdf(zstat) # In[37]: #critical value of 95% confidence norm.ppf(1-(0.05)) # From our results we obtain: # # $$ z_-score = 1.310 > 1.645 = Critical_-value$$ # # **We fail to reject the null hypothesis**, therefore, as we concluded in the questions j. and k., we do not have sufficient evidence to suggest the new page converted rate is better than the old page converted rate. --> **Same conclusion as in j. and k.** # <a id='regression'></a> # ### Part III - A regression approach # # `1.` In this final part, you will see that the result you achieved in the A/B test in Part II above can also be achieved by performing regression.<br><br> # # a. Since each row is either a conversion or no conversion, what type of regression should you be performing in this case? # **Logistic Regression, because it predicts a probability between 0 and 1.** # b. The goal is to use **statsmodels** to fit the regression model you specified in part **a.** to see if there is a significant difference in conversion based on which page a customer receives. However, you first need to create in df2 a column for the intercept, and create a dummy variable column for which page each user received. Add an **intercept** column, as well as an **ab_page** column, which is 1 when an individual receives the **treatment** and 0 if **control**. # In[38]: # Add an intercept column df2['intercept'] = 1 # Create a dummy variable column df2['ab_page'] =
pd.get_dummies(df2['group'])
pandas.get_dummies
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import dash_table import pandas as pd import numpy as np import plotly.express as px from viz.app import app # Data Management Section: import and massage econ_data =
pd.read_csv('./viz/data/economic/results_summary_bycrop.csv')
pandas.read_csv
#!/usr/bin/env python __author__ = "<NAME>" __copyright__ = "Copyright 2020, ECG Sex Classification" __credits__ = ["<NAME>"] __license__ = "GPL" __version__ = "1.0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.impute import SimpleImputer from src import train as trainer, feature_extraction as fe def train_features(feature_path): """"" Preprocess and train features Parameters: ---------- feature_path: String path to .csv Feature file Returns: --------- None """"" print('Start Training...') features =
pd.read_csv(feature_path, index_col=0)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals # Command line : # python -m benchmark.S3D2.CALIB-R import os import logging from config import SEED from config import _ERROR from config import _TRUTH import pandas as pd from utils.log import set_logger from utils.log import flush from utils.log import print_line from utils.evaluation import evaluate_neural_net from utils.evaluation import evaluate_config from utils.evaluation import evaluate_regressor from utils.model import get_model from utils.model import get_optimizer from utils.model import train_or_load_neural_net from visual.misc import plot_params from problem.synthetic3D import S3D2 as Generator from problem.synthetic3D import S3D2Config as Config from problem.synthetic3D import param_generator from model.regressor import Regressor # from archi.reducer import A3ML3 as ARCHI from archi.reducer import A1AR8MR8L1 as ARCHI # from archi.net import AR9R9 as ARCHI from ..my_argparser import REG_parse_args DATA_NAME = 'S3D2' BENCHMARK_NAME = DATA_NAME+'-calib' CALIB = "Calib_r" CALIB_PARAM_NAME = "r" class TrainGenerator: def __init__(self, param_generator, data_generator): self.param_generator = param_generator self.data_generator = data_generator def generate(self, n_samples): n_samples = Config().N_TRAINING_SAMPLES if n_samples is None else n_samples r, lam, mu = self.param_generator() X, y, w = self.data_generator.generate(r, lam, mu, n_samples) return X, r, w, None def build_model(args, i_cv): args.net = ARCHI(n_in=3, n_out=2, n_unit=args.n_unit) args.optimizer = get_optimizer(args) model = get_model(args, Regressor) model.base_name = CALIB model.set_info(DATA_NAME, BENCHMARK_NAME, 0) return model def main(): # BASIC SETUP logger = set_logger() args = REG_parse_args(main_description="Training launcher for Regressor on S3D2 benchmark") logger.info(args) flush(logger) # Setup model logger.info("Setup model") model = build_model(args, 0) os.makedirs(model.results_directory, exist_ok=True) # Setup data logger.info("Setup data") config = Config() config_table = evaluate_config(config) config_table.to_csv(os.path.join(model.results_directory, 'config_table.csv')) seed = SEED + 99999 train_generator = TrainGenerator(param_generator, Generator(seed)) valid_generator = Generator(seed+1) test_generator = Generator(seed+2) i_cv = 0 result_row = {'i_cv': i_cv} # TRAINING / LOADING train_or_load_neural_net(model, train_generator, retrain=args.retrain) # CHECK TRAINING result_row.update(evaluate_neural_net(model, prefix='valid')) evaluate_regressor(model, prefix='valid') print_line() result_table = [run_iter(model, result_row, i, test_config, valid_generator, test_generator) for i, test_config in enumerate(config.iter_test_config())] result_table =
pd.DataFrame(result_table)
pandas.DataFrame
from time import sleep from old.src.core import Generator_Shui5 from old.src.Model import DataModel import multiprocessing import pandas as pd url_que = multiprocessing.Queue() res_list = [] def url_put(): for i in range(1, 602): url_que.put('https://www.shui5.cn/article/NianDuCaiShuiFaGui/108_' + str(i)) for i in range(1, 962): url_que.put('https://www.shui5.cn/article/DiFangCaiShuiFaGui/145_' + str(i)) def multi_pages(url_one): Page_ = Generator_Shui5.PageReaderForCent(url_one) res_list.extend(Page_.getTopic()) def multi_creeper(): TP = multiprocessing.Pool(8) while not url_que.empty(): TP.apply_async(multi_pages(url_que.get())) TP.close() TP.join() DataModel.IntoSqlite(
pd.DataFrame(res_list)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_core.ipynb (unless otherwise specified). __all__ = ['makeMixedDataFrame', 'getCrashes', 'is_numeric', 'drop_singletons', 'discretize'] # Cell import pandas as pd from pandas.api.types import is_numeric_dtype as isnum #from matplotlib.pyplot import rcParams # Cell def makeMixedDataFrame(): '''Return a constant mixed-type dataframe [float, float, str, datetime]''' return pd.DataFrame( {'A': {0: 0.0, 1: 1.0, 2: 2.0, 3: 3.0, 4: 4.0}, 'B': {0: 0.0, 1: 1.0, 2: 0.0, 3: 1.0, 4: 0.0}, 'C': {0: 'foo1', 1: 'foo2', 2: 'foo3', 3: 'foo4', 4: 'foo5'}, 'D': {0: pd.Timestamp('2009-01-01 00:00:00'), 1: pd.Timestamp('2009-01-02 00:00:00'), 2: pd.Timestamp('2009-01-05 00:00:00'), 3: pd.Timestamp('2009-01-06 00:00:00'), 4: pd.Timestamp('2009-01-07 00:00:00')}} ) def getCrashes(dataset='car_crashes'): try: import seaborn as sns return sns.load_dataset(dataset) except ModuleNotFoundError: return pd.read_csv(f'https://raw.githubusercontent.com/mwaskom/seaborn-data/master/{dataset}.csv') # Cell def is_numeric(col:str): """Returns True iff already numeric, or can be coerced. Usage: df.apply(is_numeric) Usage: is_numeric(df['colname']) Returns Boolean series. From: https://stackoverflow.com/questions/54426845/how-to-check-if-a-pandas-dataframe-contains-only-numeric-column-wise """ return isnum(col) or
pd.to_numeric(col, errors='coerce')
pandas.to_numeric
import pytz import pytest import dateutil import warnings import numpy as np from datetime import timedelta from itertools import product import pandas as pd import pandas._libs.tslib as tslib import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas.core.indexes.datetimes import cdate_range from pandas import (DatetimeIndex, PeriodIndex, Series, Timestamp, Timedelta, date_range, TimedeltaIndex, _np_version_under1p10, Index, datetime, Float64Index, offsets, bdate_range) from pandas.tseries.offsets import BMonthEnd, CDay, BDay from pandas.tests.test_base import Ops START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setup_method(self, method): super(TestDatetimeIndexOps, self).setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: pytest.raises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 pytest.raises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timestamp('2011-01-01', tz=tz) assert idx.max() == Timestamp('2011-01-03', tz=tz) assert idx.argmin() == 0 assert idx.argmax() == 2 for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) assert pd.isna(getattr(obj, op)()) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') assert np.min(dr) == Timestamp('2016-01-15 00:00:00', freq='D') assert np.max(dr) == Timestamp('2016-01-20 00:00:00', freq='D') errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, errmsg, np.min, dr, out=0) tm.assert_raises_regex(ValueError, errmsg, np.max, dr, out=0) assert np.argmin(dr) == 0 assert np.argmax(dr) == 5 if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex( ValueError, errmsg, np.argmin, dr, out=0) tm.assert_raises_regex( ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) assert elt.round(freq='H') == expected_elt msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assert_raises_regex(ValueError, msg): rng.round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assert_raises_regex(ValueError, msg, rng.round, freq='M') tm.assert_raises_regex(ValueError, msg, elt.round, freq='M') # GH 14440 & 15578 index = pd.DatetimeIndex(['2016-10-17 12:00:00.0015'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.002000'], tz=tz) tm.assert_index_equal(result, expected) for freq in ['us', 'ns']: tm.assert_index_equal(index, index.round(freq)) index = pd.DatetimeIndex(['2016-10-17 12:00:00.00149'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001000'], tz=tz) tm.assert_index_equal(result, expected) index = pd.DatetimeIndex(['2016-10-17 12:00:00.001501031']) result = index.round('10ns') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001501030']) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(): ts = '2016-10-17 12:00:00.001501031' pd.DatetimeIndex([ts]).round('1010ns') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assert_raises_regex(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() assert result == expected def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) assert result == expected def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() assert result == expected def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with pytest.raises(TypeError): dti + dti with pytest.raises(TypeError): dti_tz + dti_tz with pytest.raises(TypeError): dti_tz + dti with pytest.raises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): assert idx[0] in idx def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = idx.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): assert pd.DatetimeIndex._na_value is pd.NaT assert pd.DatetimeIndex([])._na_value is pd.NaT for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert not idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.asobject) assert idx.asobject.equals(idx) assert idx.asobject.equals(idx.asobject) assert not idx.equals(list(idx)) assert not idx.equals(pd.Series(idx)) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') assert not idx.equals(idx2) assert not idx.equals(idx2.copy()) assert not idx.equals(idx2.asobject) assert not idx.asobject.equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(pd.Series(idx2)) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.copy()) assert not idx.equals(idx3.asobject) assert not idx.asobject.equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(pd.Series(idx3)) class TestDateTimeIndexToJulianDate(object): def test_1700(self): r1 = Float64Index([2345897.5, 2345898.5, 2345899.5, 2345900.5, 2345901.5]) r2 = date_range(start=Timestamp('1710-10-01'), periods=5, freq='D').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_2000(self): r1 = Float64Index([2451601.5, 2451602.5, 2451603.5, 2451604.5, 2451605.5]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='D').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_hour(self): r1 = Float64Index( [2451601.5, 2451601.5416666666666666, 2451601.5833333333333333, 2451601.625, 2451601.6666666666666666]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='H').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_minute(self): r1 = Float64Index( [2451601.5, 2451601.5006944444444444, 2451601.5013888888888888, 2451601.5020833333333333, 2451601.5027777777777777]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='T').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_second(self): r1 = Float64Index( [2451601.5, 2451601.500011574074074, 2451601.5000231481481481, 2451601.5000347222222222, 2451601.5000462962962962]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='S').to_julian_date() assert isinstance(r2, Float64Index) tm.assert_index_equal(r1, r2) # GH 10699 @pytest.mark.parametrize('klass,assert_func', zip([Series, DatetimeIndex], [tm.assert_series_equal, tm.assert_index_equal])) def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + pd.DateOffset(years=1) result2 = pd.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - pd.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = klass([Timestamp('2000-01-16 00:15:00', tz='US/Central'), Timestamp('2000-02-16', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) # array of offsets - valid for Series only if klass is Series: with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29') ]) assert_func(result, exp) # same offset result = s + Series([pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp) s = klass([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-03-31'), Timestamp('2000-02-29'), Timestamp('2000-12-31'), Timestamp('2000-05-15'), Timestamp('2001-06-15')]) # DateOffset relativedelta fastpath relative_kwargs = [('years', 2), ('months', 5), ('days', 3), ('hours', 5), ('minutes', 10), ('seconds', 2), ('microseconds', 5)] for i, kwd in enumerate(relative_kwargs): op = pd.DateOffset(**dict([kwd])) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) op = pd.DateOffset(**dict(relative_kwargs[:i + 1])) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) # assert these are equal on a piecewise basis offsets = ['YearBegin', ('YearBegin', {'month': 5}), 'YearEnd', ('YearEnd', {'month': 5}), 'MonthBegin', 'MonthEnd', 'SemiMonthEnd', 'SemiMonthBegin', 'Week', ('Week', {'weekday': 3}), 'BusinessDay', 'BDay', 'QuarterEnd', 'QuarterBegin', 'CustomBusinessDay', 'CDay', 'CBMonthEnd', 'CBMonthBegin', 'BMonthBegin', 'BMonthEnd', 'BusinessHour', 'BYearBegin', 'BYearEnd', 'BQuarterBegin', ('LastWeekOfMonth', {'weekday': 2}), ('FY5253Quarter', {'qtr_with_extra_week': 1, 'startingMonth': 1, 'weekday': 2, 'variation': 'nearest'}), ('FY5253', {'weekday': 0, 'startingMonth': 2, 'variation': 'nearest'}), ('WeekOfMonth', {'weekday': 2, 'week': 2}), 'Easter', ('DateOffset', {'day': 4}), ('DateOffset', {'month': 5})] with warnings.catch_warnings(record=True): for normalize in (True, False): for do in offsets: if isinstance(do, tuple): do, kwargs = do else: do = do kwargs = {} for n in [0, 5]: if (do in ['WeekOfMonth', 'LastWeekOfMonth', 'FY5253Quarter', 'FY5253'] and n == 0): continue op = getattr(pd.offsets, do)(n, normalize=normalize, **kwargs) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) assert_func(klass([op + x for x in s]), op + s) @pytest.mark.parametrize('years,months', product([-1, 0, 1], [-2, 0, 2])) def test_shift_months(years, months): s = DatetimeIndex([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-02-29'), Timestamp('2000-12-31')]) actual = DatetimeIndex(tslib.shift_months(s.asi8, years * 12 + months)) expected = DatetimeIndex([x + offsets.DateOffset( years=years, months=months) for x in s]) tm.assert_index_equal(actual, expected) class TestBusinessDatetimeIndex(object): def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_pickle_unpickle(self): unpickled = tm.round_trip_pickle(self.rng) assert unpickled.offset is not None def test_copy(self): cp = self.rng.copy() repr(cp) tm.assert_index_equal(cp, self.rng) def test_repr(self): # only really care that it works repr(self.rng) def test_getitem(self): smaller = self.rng[:5] exp = DatetimeIndex(self.rng.view(np.ndarray)[:5]) tm.assert_index_equal(smaller, exp) assert smaller.offset == self.rng.offset sliced = self.rng[::5] assert sliced.offset == BDay() * 5 fancy_indexed = self.rng[[4, 3, 2, 1, 0]] assert len(fancy_indexed) == 5 assert isinstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert self.rng[4] == self.rng[np.int_(4)] def test_getitem_matplotlib_hackaround(self): values = self.rng[:, None] expected = self.rng.values[:, None] tm.assert_numpy_array_equal(values, expected) def test_shift(self): shifted = self.rng.shift(5) assert shifted[0] == self.rng[5] assert shifted.offset == self.rng.offset shifted = self.rng.shift(-5) assert shifted[5] == self.rng[0] assert shifted.offset == self.rng.offset shifted = self.rng.shift(0) assert shifted[0] == self.rng[0] assert shifted.offset == self.rng.offset rng = date_range(START, END, freq=BMonthEnd()) shifted = rng.shift(1, freq=BDay()) assert shifted[0] == rng[0] + BDay() def test_summary(self): self.rng.summary() self.rng[2:2].summary() def test_summary_pytz(self): bdate_range('1/1/2005', '1/1/2009', tz=pytz.utc).summary() def test_summary_dateutil(self): bdate_range('1/1/2005', '1/1/2009', tz=dateutil.tz.tzutc()).summary() def test_equals(self): assert not self.rng.equals(list(self.rng)) def test_identical(self): t1 = self.rng.copy() t2 = self.rng.copy() assert t1.identical(t2) # name t1 = t1.rename('foo') assert t1.equals(t2) assert not t1.identical(t2) t2 = t2.rename('foo') assert t1.identical(t2) # freq t2v = Index(t2.values) assert t1.equals(t2v) assert not t1.identical(t2v) class TestCustomDatetimeIndex(object): def setup_method(self, method): self.rng =
cdate_range(START, END)
pandas.core.indexes.datetimes.cdate_range
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 3 09:49:54 2020 @author: enzo """ from sklearn.preprocessing import StandardScaler, MinMaxScaler import pandas as pd import numpy as np from sklearn.base import ClassifierMixin class CombClass(ClassifierMixin): def __init__(self): return def _buildmodels(self): from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(hidden_layer_sizes=(256,128,64,32),activation="relu",random_state=1) from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=50,max_features='log2') import xgboost as XGB xgb = XGB.XGBClassifier() self.mlp = mlp self.rf = rf self.xgb = xgb def fit(self, X, y): self._buildmodels() self.mlp = self.mlp.fit(X,y) self.rf = self.rf.fit(X,y) self.xgb = self.xgb.fit(X,y) self.classes_ = self.xgb.classes_ return self def predict(self, X): y_xgb_prob=self.xgb.predict_proba(X) y_rf_prob = self.rf.predict_proba(X) y_mlp_prob= self.mlp.predict_proba(X) # self.proba = pd.DataFrame((y_xgb_prob+y_rf_prob+y_mlp_prob)/3, index = X.index, columns=self.xgb.classes_) self.proba = (y_xgb_prob+y_rf_prob+y_mlp_prob)/3 self.prediction = self.classes_[self.proba.argmax(axis=1)] return self.prediction def predict_proba(self, X): y_xgb_prob=self.xgb.predict_proba(X) y_rf_prob = self.rf.predict_proba(X) y_mlp_prob= self.mlp.predict_proba(X) # self.proba = pd.DataFrame((y_xgb_prob+y_rf_prob+y_mlp_prob)/3, index = X.index, columns=self.xgb.classes_) self.proba = (y_xgb_prob+y_rf_prob+y_mlp_prob)/3 return self.proba def train_model_reg(ml_df, non_feature_vect, target_class='class_target', target_reg = 'value_target', verbose = 3, save_model = True): #%% #non_features=['well_plate_name', 'well_name', 'class_target', 'value_target', 'wp_image_prop','wp_image_version', 'dict_values'] features = list(ml_df.columns.difference(non_feature_vect)) # Separating out the features X = ml_df[features].copy() # Separating out the target y_class= ml_df[target_class] y_reg = ml_df[target_reg] # Standardizing the features # X = pd.DataFrame(MinMaxScaler().fit_transform(X.values), index=X.index, columns=X.columns) X.loc[:,X.dtypes ==np.float] = MinMaxScaler().fit_transform(X.loc[:,X.dtypes ==np.float].values) X = pd.get_dummies(X) targets = ml_df[target_class].unique() # labels = np.sort(targets) # split from sklearn.model_selection import train_test_split X_train, X_test, y_train_class, y_test_class = train_test_split(X, y_class, test_size=0.20) combined_model = CombClass().fit(X_train, y_train_class) # Concateno le probabilità X_train_prob = pd.DataFrame(combined_model.predict_proba(X_train),index=X_train.index, columns=combined_model.classes_) X_train = pd.concat([X_train,X_train_prob], axis=1) X_test_prob = pd.DataFrame(combined_model.predict_proba(X_test),index=X_test.index, columns=combined_model.classes_) X_test = pd.concat([X_test,X_test_prob], axis=1) #Concateno le classi predette # X_train = pd.concat([X_train,pd.Series(combined_model.predict(X_train), # index = X_train.index, name='class_target')], axis=1) # X_test = pd.concat([X_test,pd.Series(combined_model.predict(X_test), # index = X_test.index, name='class_target')], axis=1) #Concateno le classi vere # X_train = pd.concat([X_train,pd.Series(y_class[X_train.index], # index = X_train.index, name='class_target')], axis=1) # X_test = pd.concat([X_test,pd.Series(y_class[X_test.index], # index = X_test.index, name='class_target')], axis=1) X_train = pd.get_dummies(X_train); X_test = pd.get_dummies(X_test) y_train_reg = y_reg[y_train_class.index]; y_test_reg = y_reg[y_test_class.index] scaler_y = MinMaxScaler() y_train_reg = pd.Series(scaler_y.fit_transform(y_train_reg.values.reshape(-1, 1)).ravel(), index=y_train_reg.index, name=target_reg) #Predict Random Forest from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=50,max_features='log2', criterion='mae') rf.fit(X_train, y_train_reg) y_rf_pred = scaler_y.inverse_transform(rf.predict(X_test).reshape(-1, 1)).ravel() y_rf_pred = pd.Series(y_rf_pred, index=X_test.index, name='rf_pred') # Predict XGB import xgboost as XGB xgb = XGB.XGBRegressor() xgb.fit(X_train, y_train_reg) y_xgb_pred = scaler_y.inverse_transform(xgb.predict(X_test).reshape(-1, 1)).ravel().astype('float64') y_xgb_pred = pd.Series(y_xgb_pred, index=X_test.index, name='xgb_pred') # Predict MLP from sklearn.neural_network import MLPRegressor mlp = MLPRegressor(hidden_layer_sizes=(256,128,64,32), max_iter=1000, activation="relu").fit(X_train, y_train_reg) y_mlp_pred = scaler_y.inverse_transform(mlp.predict(X_test).reshape(-1, 1)).ravel() y_mlp_pred =
pd.Series(y_mlp_pred, index=X_test.index, name='mlp_pred')
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sun Oct 29 19:25:05 2017 @author: <NAME> Data preprocessing steps """ import pandas as pd import numpy as np #Data processing from sklearn.preprocessing import Imputer from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler, RobustScaler, StandardScaler from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import TransformerMixin, BaseEstimator from itertools import chain from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer # Returns the data as is - used when we don't want some other type class IdentityTransformer(BaseEstimator, TransformerMixin): def fit(self, X, y=None, *args, **kwargs): return self def transform(self, X, y=None, *args, **kwargs): return X #Selects columns of the data class ItemSelector(BaseEstimator, TransformerMixin): def __init__(self, key): self.key = key def fit(self, X, y=None): return self def transform(self, X, y=None): return X[self.key] #Returns None - used for training dummy estimators class DummyTransformer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X, y=None): #Return a single column of zeros as the dummy needs no X return np.zeros(shape=(X.shape[0], 1)) # Scale numeric values and impute missing values class NumericTransformer(BaseEstimator, TransformerMixin): def __init__(self, numeric_columns, scaler=None, imputer='mean'): self.numeric_columns=numeric_columns self.scaler=scaler self.imputer=imputer # Scale then impute data def fit(self, X, y=None, *args, **kwargs): steps = [('imputer', Imputer(strategy=self.imputer))] if self.scaler == 'MinMax': scl = MinMaxScaler() elif self.scaler == 'MaxAbs': scl = MaxAbsScaler() elif self.scaler == 'Standard': scl = StandardScaler() elif self.scaler == 'Robust': scl = RobustScaler() if self.scaler is not None: steps += [('scaler', scl)] self.pipe = Pipeline(steps) self.pipe.fit(X.reindex(columns=self.numeric_columns)) return self def transform(self, X, y=None, *args, **kwargs): return self.pipe.transform(X.reindex(columns=self.numeric_columns)) # One hot encode categorical data class CategoricTransformer(BaseEstimator, TransformerMixin): #Set up the categorical columns def __init__(self, cat_columns): self.cat_columns=cat_columns # Get the column names of the dummy data # More efficient than just making dummies and reading cols def fit(self, X, y=None, *args, **kwargs): X2 = X.reindex(columns=self.cat_columns, copy=True) #Make the cat columns have the cat datatype; for col in self.cat_columns: X2[col] = X2[col].apply(str).astype('category') self.cat_map_ = {col: X2[col].cat.categories for col in self.cat_columns} self.dummy_columns_ = {col: ["_".join([str(col), v]) for v in self.cat_map_[col]] for col in self.cat_columns} self.transformed_columns_ = pd.Index( list(chain.from_iterable(self.dummy_columns_[k] for k in self.cat_columns))) return self #Only previously seen values will be encoded def transform(self, X, y=None, *args, **kwargs): X2 = X.reindex(columns=self.cat_columns, copy=True) # Include all categories that may be missing for col in self.cat_columns: X2[col] = X2[col].apply(str).astype('category', categories=self.cat_map_[col]) return
pd.get_dummies(X2, sparse=True)
pandas.get_dummies
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique, UniqueCombinations) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``UniqueCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because UniqueCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): UniqueCombinations(columns=columns) def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, scalar='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, scalar='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. - ``_low`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [0, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 0, 0], 'b': [0, -1, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. - ``_high`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/+4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [6, 6, 4], 'b': [7, 7, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_low`` = ['a', 'c']. - ``_high`` = ['b']. Input: - Table with a diff column that contains the constant np.log(4)/np.log(-2). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'c'], high=['b'], strict=True) dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'c#'] instance._columns_to_reconstruct = ['a', 'c'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(1)] * 3, 'c#': [np.log(1)] * 3, }) out = instance.reverse_transform(transformed) print(out) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_positive(self): """Test the ``GreaterThan.reverse_transform`` method for positive constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(4)], 'b#': [np.log(5), np.log(6), np.log(0)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 0], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_negative(self): """Test the ``GreaterThan.reverse_transform`` method for negative constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [-1, -2, 1], 'b': [-4, -5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(0)], 'b#': [np.log(5), np.log(6), np.log(2)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [-1, -2, 0], 'b': [-4, -5, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) class TestPositive(): def test__init__(self): """ Test the ``Positive.__init__`` method. The method is expected to set the ``_low`` instance variable to 0, the ``_scalar`` variable to ``'low'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = None """ # Run instance = Positive(columns='a', strict=True, drop=False) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Positive.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'high' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = 'high' """ # Run instance = Positive(columns='a', strict=True, drop=True) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' class TestNegative(): def test__init__(self): """ Test the ``Negative.__init__`` method. The method is expected to set the ``_high`` instance variable to 0, the ``_scalar`` variable to ``'high'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = None """ # Run instance = Negative(columns='a', strict=True, drop=False) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Negative.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'low' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = 'low' """ # Run instance = Negative(columns='a', strict=True, drop=True) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" if data['a'] is None or data['b'] is None: return None return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance, import the formula to use for the computation, and set the specified constraint column. Input: - column = 'col' - formula = new_column """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column assert instance.constraint_columns == ('col', ) def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_with_nans(self): """Test the ``ColumnFormula.is_valid`` method for with a formula that produces nans. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, None], 'c': [5, 7, None] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test__transform(self): """Test the ``ColumnFormula._transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_without_dropping_column(self): """Test the ``ColumnFormula._transform`` method without dropping the column. If `drop_column` is false, expect to not drop the constraint column. Input: - Table data (pandas.DataFrame) Output: - Table data with the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column, drop_column=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_missing_column(self): """Test the ``ColumnFormula._transform`` method when the constraint column is missing. When ``_transform`` is called with data that does not contain the constraint column, expect to return the data as-is. Input: - Table data (pandas.DataFrame) Output: - Table data, unchanged (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform(self): """Test the ``ColumnFormula.reverse_transform`` method. It is expected to compute the indicated column by applying the given formula. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 1, 1] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) class TestRounding(): def test___init__(self): """Test the ``Rounding.__init__`` method. It is expected to create a new Constraint instance and set the rounding args. Input: - columns = ['b', 'c'] - digits = 2 """ # Setup columns = ['b', 'c'] digits = 2 # Run instance = Rounding(columns=columns, digits=digits) # Assert assert instance._columns == columns assert instance._digits == digits def test___init__invalid_digits(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``digits`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 20 """ # Setup columns = ['b', 'c'] digits = 20 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits) def test___init__invalid_tolerance(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``tolerance`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 2 - tolerance = 0.1 """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 0.1 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits, tolerance=tolerance) def test_is_valid_positive_digits(self): """Test the ``Rounding.is_valid`` method for a positive digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 1e-3 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12, 5.51, None, 6.941, 1.129], 'c': [5.315, 7.12, 1.12, 9.131, 12.329], 'd': ['a', 'b', 'd', 'e', None], 'e': [123.31598, -1.12001, 1.12453, 8.12129, 1.32923] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, True, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_negative_digits(self): """Test the ``Rounding.is_valid`` method for a negative digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b'] digits = -2 tolerance = 1 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [401, 500, 6921, 799, None], 'c': [5.3134, 7.1212, 9.1209, 101.1234, None], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_zero_digits(self): """Test the ``Rounding.is_valid`` method for a zero digits argument. Input: - Table data not with the desired decimal places (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 0 tolerance = 1e-4 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, None, 3, 4], 'b': [4, 5.5, 1.2, 6.0001, 5.99999], 'c': [5, 7.12, 1.31, 9.00001, 4.9999], 'd': ['a', 'b', None, 'd', 'e'], 'e': [2.1254, 17.12123, 124.12, 123.0112, -9.129434] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_reverse_transform_positive_digits(self): """Test the ``Rounding.reverse_transform`` method with positive digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.12345, None, 5.100, 6.0001, 1.7999], 'c': [1.1, 1.234, 9.13459, 4.3248, 6.1312], 'd': ['a', 'b', 'd', 'e', None] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.123, None, 5.100, 6.000, 1.800], 'c': [1.100, 1.234, 9.135, 4.325, 6.131], 'd': ['a', 'b', 'd', 'e', None] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_negative_digits(self): """Test the ``Rounding.reverse_transform`` method with negative digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b'] digits = -3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41234.5, None, 5000, 6001, 5928], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41000.0, None, 5000.0, 6000.0, 6000.0], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_zero_digits(self): """Test the ``Rounding.reverse_transform`` method with zero digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 0 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12345, None, 5.0, 6.01, 7.9], 'c': [1.1, 1.0, 9.13459, None, 8.89], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.0, None, 5.0, 6.0, 8.0], 'c': [1.0, 1.0, 9.0, None, 9.0], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def transform(data, low, high): """Transform to be used for the TestBetween class.""" data = (data - low) / (high - low) * 0.95 + 0.025 return np.log(data / (1.0 - data)) class TestBetween(): def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_fit_only_one_datetime_arg(self): """Test the ``Between.fit`` method by passing in only one arg as datetime. If only one of the bound parameters is a datetime type, expect a ValueError. Input: - low is an int scalar - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup column = 'a' low = 0.0 high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high) # Run and assert table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) with pytest.raises(ValueError): instance.fit(table_data) def test_transform_scalar_scalar(self): """Test the ``Between.transform`` method by passing ``low`` and ``high`` as scalars. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_scalar_column(self): """Test the ``Between._transform`` method with ``low`` as scalar and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_scalar(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as scalar. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], 'c': [0.5, 1, 6] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_datetime(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as datetimes. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) - High and Low as datetimes Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_column(self): """Test the ``Between._transform`` method with ``low`` as datetime and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_datetime(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as datetime. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a#b#2021-01-01T00:00:00.000000000': transform( table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column_datetime(self): """Test the ``Between._transform`` method with ``low`` and ``high`` as datetime columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_scalar(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as scalars. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_column(self): """Test ``Between.reverse_transform`` with ``low`` as scalar and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_scalar(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as scalar. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_column(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_datetime_datetime(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) - High and low as datetimes Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [
pd.to_datetime('2020-09-03')
pandas.to_datetime
# Copyright (c) ZenML GmbH 2021. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split from whylogs import DatasetProfile # type: ignore from zenml.integrations.constants import SKLEARN, WHYLOGS from zenml.integrations.whylogs.steps import whylogs_profiler_step from zenml.integrations.whylogs.visualizers import WhylogsVisualizer from zenml.integrations.whylogs.whylogs_step_decorator import enable_whylogs from zenml.logger import get_logger from zenml.pipelines import pipeline from zenml.repository import Repository from zenml.steps import Output, step from zenml.steps.step_context import StepContext logger = get_logger(__name__) # Simply set these environment variables to point to a Whylabs account and all # whylogs DatasetProfile artifacts that are produced by a pipeline run will # also be uploaded to Whylabs: # # import os # os.environ["WHYLABS_API_KEY"] = "YOUR-API-KEY" # os.environ["WHYLABS_DEFAULT_ORG_ID"] = "YOUR-ORG-ID" # An existing zenml step can be easily extended to include whylogs profiling # features by adding the @enable_whylogs decorator. The only prerequisite is # that the step already include a step context parameter. # # Applying the @enable_whylogs decorator gives the user access to a `whylogs` # step sub-context field which intermediates and facilitates the creation of # whylogs DatasetProfile artifacts. # # The whylogs sub-context transparently incorporates ZenML specific # information, such as project, pipeline name and specialized tags, into all # dataset profiles that are generated with it. It also simplifies the whylogs # profile generation process by abstracting away some of the whylogs specific # details, such as whylogs session and logger initialization and management. # # NOTE: remember that cache needs to be explicitly enabled for steps that take # in step contexts @enable_whylogs @step(enable_cache=True) def data_loader( context: StepContext, ) -> Output(data=pd.DataFrame, profile=DatasetProfile,): """Load the diabetes dataset.""" X, y = datasets.load_diabetes(return_X_y=True, as_frame=True) # merge X and y together df =
pd.merge(X, y, left_index=True, right_index=True)
pandas.merge
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):
pd.Timestamp('2015-01-09')
pandas.Timestamp
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- __author__ = ["<NAME>"] __all__ = [ "TEST_YS", "TEST_SPS", "TEST_ALPHAS", "TEST_FHS", "TEST_STEP_LENGTHS_INT", "TEST_STEP_LENGTHS", "TEST_INS_FHS", "TEST_OOS_FHS", "TEST_WINDOW_LENGTHS_INT", "TEST_WINDOW_LENGTHS", "TEST_INITIAL_WINDOW_INT", "TEST_INITIAL_WINDOW", "VALID_INDEX_FH_COMBINATIONS", "INDEX_TYPE_LOOKUP", "TEST_RANDOM_SEEDS", "TEST_N_ITERS", ] import numpy as np import pandas as pd from sktime.utils._testing.series import _make_series # We here define the parameter values for unit testing. TEST_CUTOFFS_INT = [np.array([21, 22]), np.array([3, 7, 10])] # The following timestamps correspond # to the above integers for `_make_series(all_positive=True)` TEST_CUTOFFS_TIMESTAMP = [ pd.to_datetime(["2000-01-22", "2000-01-23"]), pd.to_datetime(["2000-01-04", "2000-01-08", "2000-01-11"]), ] TEST_CUTOFFS = [*TEST_CUTOFFS_INT, *TEST_CUTOFFS_TIMESTAMP] TEST_WINDOW_LENGTHS_INT = [1, 5] TEST_WINDOW_LENGTHS_TIMEDELTA = [pd.Timedelta(1, unit="D"), pd.Timedelta(5, unit="D")] TEST_WINDOW_LENGTHS_DATEOFFSET = [
pd.offsets.Day(1)
pandas.offsets.Day
from BoostInference_no_parallelization import Booster import sys, pandas as pd, numpy as np import glob, pickle from sklearn.metrics import roc_auc_score, precision_recall_curve, auc if len(sys.argv)<5: print('python file.py df-val-PhyloPGM-input df-test-PhyloPGM-output info_tree fname_df_pgm_output') exit(0) fname_dtrain = sys.argv[1] fname_dtest = sys.argv[2] info_tree = sys.argv[3] fname_df_pgm_output = sys.argv[4] # given_pseudo_count = float(sys.argv[3]) print('fname_dtrain:', fname_dtrain, 'fname_dtest:', fname_dtest, # 'given_pseudo_count:', given_pseudo_count ) dtrain = pd.read_csv(fname_dtrain, index_col=0) list_species = list(dtrain.columns[:-1]) print('list_species:', len(list_species)) dtrain.columns = list_species + ['label'] # print(dtrain.head()); exit(0) dtest = pd.read_csv(fname_dtest, index_col=0) dtest.columns = list_species + ['label'] print('dtrain:', dtrain.shape) print('dtest:', dtest.shape) dtest = dtest[dtest.hg38.notna()] print('dtest not hg38:', dtest.shape) # exit(0) given_tree = pickle.load(open(info_tree, 'rb')) tree = {} # for k, v in given_tree['tree'].items(): for k, v in given_tree.items(): # tree[k] = v[0] tree[k] = v print('tree:', len(tree)) # exit(0) alpha = 0.1 num_pos_train = dtrain[dtrain.label==1].shape[0] num_neg_train = dtrain[dtrain.label==0].shape[0] num_pos_test = dtest[dtest.label==1].shape[0] num_neg_test = dtest[dtest.label==0].shape[0] print('num_pos_train:', num_pos_train, 'num_neg_train:', num_neg_train, 'num_pos_test:', num_pos_test, 'num_neg_test:', num_neg_test ) base_auc = roc_auc_score(dtest.label, dtest.hg38) def scikitlearn_calc_auPRC(y_true, y_score): precision, recall, _ = precision_recall_curve(y_true, y_score) return auc(recall, precision) base_aupr = scikitlearn_calc_auPRC(dtest.label, dtest.hg38) print('base_auc:', base_auc, 'base_aupr:', base_aupr ) # exit(0) def get_batch(iterable, n=1): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] BATCH_SIZE = 100000 tmp_mod_df_test_final =
pd.DataFrame()
pandas.DataFrame
import pytest import pandas as pd from pandas import Timestamp from datetime import date from pyramm.ops.top_surface import build_top_surface, append_surface_details_to_segments @pytest.fixture def original(): return pd.DataFrame.from_records( [ { "road_id": 100, "start_m": 20, "end_m": 200, "surface_date": date(2020, 1, 1), "name": "A", }, { "road_id": 100, "start_m": 20, "end_m": 60, "surface_date": date(2020, 1, 1), "name": "A", }, { "road_id": 101, "start_m": 230, "end_m": 500, "surface_date": date(2021, 1, 1), "name": "B", }, { "road_id": 101, "start_m": 230, "end_m": 260, "surface_date": date(2021, 1, 1), "name": "C", }, { "road_id": 102, "start_m": 0, "end_m": 9999, "surface_date": date(2018, 6, 6), "name": "D", }, ] ).set_index(["road_id", "start_m", "end_m"]) class TestTopSurface: class TestBuildTopSurface: def test_build_top_surface(self, original): index_names = ["road_id", "start_m", "end_m"] custom = pd.DataFrame.from_records( [ { "road_id": 100, "start_m": 0, "end_m": 30, "surface_date": date(2020, 1, 2), "name": "1", }, { "road_id": 100, "start_m": 20, "end_m": 30, "surface_date": date(2019, 12, 1), "name": "2", }, { "road_id": 100, "start_m": 60, "end_m": 100, "surface_date": date(2020, 1, 5), "name": "3", }, { "road_id": 100, "start_m": 190, "end_m": 220, "surface_date": date(2020, 1, 10), "name": "4", }, { "road_id": 100, "start_m": 70, "end_m": 90, "surface_date": date(2020, 1, 5), "name": "5", }, ] ) new = build_top_surface([original, custom]) expected = ( pd.DataFrame.from_records( [ { "road_id": 100, "start_m": 0, "end_m": 30, "surface_date": Timestamp(2020, 1, 2), "name": "1", }, { "road_id": 100, "start_m": 30, "end_m": 60, "surface_date": Timestamp(2020, 1, 1), "name": "A", }, { "road_id": 100, "start_m": 60, "end_m": 70, "surface_date": Timestamp(2020, 1, 5), "name": "3", }, { "road_id": 100, "start_m": 70, "end_m": 90, "surface_date": Timestamp(2020, 1, 5), "name": "5", }, { "road_id": 100, "start_m": 90, "end_m": 100, "surface_date": Timestamp(2020, 1, 5), "name": "3", }, { "road_id": 100, "start_m": 100, "end_m": 190, "surface_date":
Timestamp(2020, 1, 1)
pandas.Timestamp
# coding: utf-8 # In[213]: import numpy as np import pandas as pd import random import csv from sklearn.utils import shuffle # In[214]: same = pd.read_csv(r'C:\Users\<NAME>\Desktop\ASSIGNMENTS\ML\HumanObserved-Dataset\HumanObserved-Dataset\HumanObserved-Features-Data\same_pairs.csv',usecols=['img_id_A','img_id_B','target']) # In[215]: #same.head() # In[216]: diff =
pd.read_csv(r'C:\Users\<NAME>\Desktop\ASSIGNMENTS\ML\HumanObserved-Dataset\HumanObserved-Dataset\HumanObserved-Features-Data\diffn_pairs.csv')
pandas.read_csv
import pandas as pd def merge_cellphone_genes(cluster_counts: pd.DataFrame, genes_expanded: pd.DataFrame) -> pd.DataFrame: """ Merges cluster genes with CellPhoneDB values """ multidata_counts = pd.merge(cluster_counts, genes_expanded, left_index=True, right_on='ensembl') return multidata_counts def get_counts_proteins_of_complexes(cluster_counts: pd.DataFrame, multidatas: pd.DataFrame, complex_composition): cluster_clean = cluster_counts.drop(complex_composition.columns.values, errors='ignore', axis=1) complex_components_data = pd.merge(multidatas, complex_composition, left_on='id_multidata', right_on='complex_multidata_id') complex_components_data = pd.merge(complex_components_data, cluster_clean, left_on='protein_multidata_id', right_on='id_multidata', suffixes=['_complex', '']) complex_components_data.rename(columns={'name_complex': 'complex_name'}, index=str, inplace=True) if complex_components_data.empty: return
pd.DataFrame()
pandas.DataFrame
import logging import re import pandas as pd from unidecode import unidecode from comvest.utilities.io import files, read_from_db, write_result, read_result from comvest.utilities.logging import progresslog, resultlog pd.options.mode.chained_assignment = None # default='warn' def validacao_curso(df, col, date): cursos = df_cursos.loc[df_cursos['ano_vest'] == date]['cod_curso'].tolist() # Codigos que nao constam na lista de cursos serao remapeados para missing df[col].fillna(-1, inplace=True) df[col] = df[col].map(lambda cod: int(cod) if int(cod) in cursos else '') df[col] = pd.to_numeric(df[col], errors='coerce').astype('Int64') return df # Função para concatenar dia, mês e ano def data_nasc(row, df): if ('DATA_NASC' in df.columns) or ('DAT_NASC' in df.columns) or ('DTNASC' in df.columns): if 'DATA_NASC' in df.columns: data = row['DATA_NASC'] elif 'DAT_NASC' in df.columns: data = row['DAT_NASC'] else: data = row['DTNASC'] data = str(data).split('.')[0] if data == 'nan': return ('') if len(data) <= 6: data = data[:-2] + '19' + data[-2:] ano = data[-4:] mes = data[-6:-4] dia = data.replace(data[-6:], '') if len(data) < 8: dia = '0' + dia res = dia + mes + ano elif all(x in df.columns for x in ('DIA','MES','ANO')): dia = str(row['DIA']).zfill(2) mes = str(row['MES']).zfill(2) ano = str(row['ANO']) if len(ano) < 4: ano = '19' + ano res = "{0}{1}{2}".format(dia, mes, ano) else: # Documento sem coluna(s) com data de nascimento res = '' return res def tratar_inscricao(df): # Checa Número de Inscrição de acordo com as diferentes variações no nome da coluna e retira o '\.0' da string if 'INSC' in df.columns: df['INSC'] = df['INSC'].astype("string").replace('\.0', '', regex=True) elif 'INSC_CAND' in df.columns: df['INSC'] = df['INSC_CAND'].astype("string").replace('\.0', '', regex=True) elif 'INSC_cand' in df.columns: df['INSC'] = df['INSC_cand'].astype("string").replace('\.0', '', regex=True) elif 'INSCRICAO' in df.columns: df['INSC'] = df['INSCRICAO'].astype("string").replace('\.0', '', regex=True) df['INSC'] = pd.to_numeric(df['INSC'], errors='coerce', downcast='integer').astype('Int64') return df def tratar_CPF(df): # Checa se existe a coluna de CPF if 'CPF' in df.columns: df['CPF'] = df['CPF'].map(lambda cpf: str(cpf).zfill(11)) else: df.insert(loc=1, column='CPF', value='-') return df def tratar_doc(df): if any(col in df.columns for col in {'RG','DOC3'}): df.rename({'RG':'DOC','DOC3':'DOC'}, axis=1, inplace=True) df['DOC'] = df['DOC'].str.replace(' ','') return df def tratar_nome(df): # Se o nome é dado por NOME_CAND ou NOMEOFIC, entao renomeia a coluna para NOME if 'NOME_CAND' in df.columns: df.rename({'NOME_CAND': 'NOME'}, axis=1, inplace=True) elif 'NOMEOFIC' in df.columns: df.rename({'NOMEOFIC': 'NOME'}, axis=1, inplace=True) elif 'NOME_cand' in df.columns: df.rename({'NOME_cand': 'NOME'}, axis=1, inplace=True) return df def tratar_nome_pai(df): if 'PAI' in df.columns: df.rename({'PAI': 'NOME_PAI'}, axis=1, inplace=True) return df def tratar_nome_mae(df): if 'MAE' in df.columns: df.rename({'MAE': 'NOME_MAE'}, axis=1, inplace=True) return df def tratar_nacionalidade(df): for col in df.columns: if col in {'NACIO','NACION','NACIONALID','NACIONALIDADE'}: df.rename({col: 'NACIONALIDADE'}, axis=1, inplace=True) df['NACIONALIDADE'] = pd.to_numeric(df['NACIONALIDADE'], errors='coerce', downcast='integer').astype('Int64') df['NACIONALIDADE'].replace(0, pd.NA, inplace=True) return df return df def tratar_mun_nasc(df): for col in df.columns: if col in {'MUNICIPIO_NASC','MU_NASC','MUNIC_NASC','CIDNASC','CIDNAS'}: df.rename({col: 'MUN_NASC'}, axis=1, inplace=True) df['MUN_NASC'] = df['MUN_NASC'].map(lambda mun: unidecode(str(mun)).upper() if str(mun) != '-' else '') return df return df def tratar_uf_nasc(df): for col in df.columns: if col in {'UFNASC','EST_NASC','UFNAS'}: df.rename({col: 'UF_NASC'}, axis=1, inplace=True) df['UF_NASC'] = df['UF_NASC'].map(lambda uf: unidecode(str(uf)).upper() if str(uf) != '-' else '') return df return df def tratar_cep(df): for col in df.columns: if col in {'CEP','CEPEND','CEP_END','CEP3'}: df.rename({col: 'CEP_RESID'}, axis=1, inplace=True) fill = df['CEP_RESID'].map(lambda cep: len(re.sub('\D','',str(cep)))).max() fill = 8 if fill > 8 else fill df['CEP_RESID'] = df['CEP_RESID'].map(lambda cep: re.sub('\D','',str(cep)).zfill(fill)) return df if 'CEP_RESID' not in df.columns: df['CEP_RESID'] = '' return df def tratar_mun_resid(df): for col in df.columns: if col in {'MUEND','MUNIC_END','MUNICIPIO','CID','CIDEND'}: df.rename({col: 'MUN_RESID'}, axis=1, inplace=True) df['MUN_RESID'] = df['MUN_RESID'].map(lambda mun: unidecode(str(mun)).upper()) return df return df def tratar_uf_resid(df): # Se a UF de Residência é dado por UFEND, UF_END ou ESTADO, entao renomeia a coluna para UF_RESID if 'UFEND' in df.columns: df.rename({'UFEND': 'UF_RESID'}, axis=1, inplace=True) elif 'UF_END' in df.columns: df.rename({'UF_END': 'UF_RESID'}, axis=1, inplace=True) elif 'ESTADO' in df.columns: df.rename({'ESTADO': 'UF_RESID'}, axis=1, inplace=True) elif 'EST' in df.columns: df.rename({'EST': 'UF_RESID'}, axis=1, inplace=True) return df def tratar_opvest(df,date,path): # Checa colunas de opção de curso no vestibular for col in df.columns: if any(opc in col for opc in {'OPCAO1','OP1','OPCAO1OR'}): df.rename({col: 'OPCAO1'}, axis=1, inplace=True) df = validacao_curso(df, 'OPCAO1', date) if any(opc in col for opc in {'OPCAO2','OP2','OPCAO2OR'}): df.rename({col: 'OPCAO2'}, axis=1, inplace=True) df = validacao_curso(df, 'OPCAO2', date) if any(opc in col for opc in {'OPCAO3','OP3'}): df.rename({col: 'OPCAO3'}, axis=1, inplace=True) df = validacao_curso(df, 'OPCAO3', date) # Opcao 1 = 22 (Musica) - deve-se remapear para o codigo referente a enfase, obtida no perfil if (date == 2001) or (date == 2002) or (date == 2003): emphasis = pd.read_excel(path, sheet_name='perfil', usecols=['insc_cand','opcao1'], dtype=str) emphasis['insc_cand'] =
pd.to_numeric(emphasis['insc_cand'], errors='coerce', downcast='integer')
pandas.to_numeric
# --- # jupyter: # jupytext: # cell_metadata_filter: all,-execution,-papermill,-trusted # formats: ipynb,py//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] tags=[] # # Description # %% [markdown] tags=[] # See description in notebook `10_00-spectral_clustering...`. # %% [markdown] tags=[] # # Environment variables # %% tags=[] from IPython.display import display import conf N_JOBS = conf.GENERAL["N_JOBS"] display(N_JOBS) # %% tags=[] # %env MKL_NUM_THREADS=$N_JOBS # %env OPEN_BLAS_NUM_THREADS=$N_JOBS # %env NUMEXPR_NUM_THREADS=$N_JOBS # %env OMP_NUM_THREADS=$N_JOBS # %% [markdown] tags=[] # # Modules loading # %% tags=[] # %load_ext autoreload # %autoreload 2 # %% tags=[] from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from utils import generate_result_set_name # %% [markdown] tags=[] # # Settings # %% tags=[] INITIAL_RANDOM_STATE = 100000 # %% tags=[] CLUSTERING_METHOD_NAME = "DeltaSpectralClustering" # %% tags=[] # output dir for this notebook CONSENSUS_CLUSTERING_DIR = Path( conf.RESULTS["CLUSTERING_DIR"], "consensus_clustering" ).resolve() display(CONSENSUS_CLUSTERING_DIR) # %% [markdown] tags=[] # # Load data # %% tags=[] INPUT_SUBSET = "pca" # %% tags=[] INPUT_STEM = "z_score_std-projection-smultixcan-efo_partial-mashr-zscores" # %% tags=[] DR_OPTIONS = { "n_components": 50, "svd_solver": "full", "random_state": 0, } # %% tags=[] input_filepath = Path( conf.RESULTS["DATA_TRANSFORMATIONS_DIR"], INPUT_SUBSET, generate_result_set_name( DR_OPTIONS, prefix=f"{INPUT_SUBSET}-{INPUT_STEM}-", suffix=".pkl" ), ).resolve() display(input_filepath) assert input_filepath.exists(), "Input file does not exist" input_filepath_stem = input_filepath.stem display(input_filepath_stem) # %% tags=[] data = pd.read_pickle(input_filepath) # %% tags=[] data.shape # %% tags=[] data.head() # %% tags=[] traits = data.index.tolist() # %% tags=[] len(traits) # %% [markdown] tags=[] # # Load coassociation matrix (ensemble) # %% tags=[] input_file = Path(CONSENSUS_CLUSTERING_DIR, "ensemble_coassoc_matrix.npy").resolve() display(input_file) # %% tags=[] coassoc_matrix = np.load(input_file) # %% tags=[] coassoc_matrix = pd.DataFrame( data=coassoc_matrix, index=traits, columns=traits, ) # %% tags=[] coassoc_matrix.shape # %% tags=[] coassoc_matrix.head() # %% tags=[] dist_matrix = coassoc_matrix # %% [markdown] tags=[] # # Clustering # %% tags=[] from sklearn.metrics import ( calinski_harabasz_score, davies_bouldin_score, ) # %% [markdown] tags=[] # ## More exhaustive test # %% [markdown] tags=[] # Here I run some test across several `k` and `delta` values; then I check how results perform with different clustering quality measures. # %% tags=[] CLUSTERING_OPTIONS = {} CLUSTERING_OPTIONS["K_RANGE"] = [ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, ] CLUSTERING_OPTIONS["N_REPS_PER_K"] = 5 CLUSTERING_OPTIONS["KMEANS_N_INIT"] = 10 CLUSTERING_OPTIONS["DELTAS"] = [ 5.00, 2.00, 1.00, 0.90, 0.75, 0.50, 0.30, 0.25, 0.20, ] display(CLUSTERING_OPTIONS) # %% [markdown] tags=[] # ### Generate ensemble # %% tags=[] import tempfile # %% tags=[] ensemble_folder = Path( tempfile.gettempdir(), "pre_cluster_analysis", CLUSTERING_METHOD_NAME, ).resolve() ensemble_folder.mkdir(parents=True, exist_ok=True) # %% tags=[] ensemble_file = Path( ensemble_folder, generate_result_set_name(CLUSTERING_OPTIONS, prefix="ensemble-", suffix=".pkl"), ) display(ensemble_file) # %% tags=[] assert ensemble_file.exists(), "Ensemble file does not exists" # %% tags=[] ensemble = pd.read_pickle(ensemble_file) # %% tags=[] ensemble.shape # %% tags=[] ensemble.head() # %% [markdown] tags=[] # ### Add clustering quality measures # %% tags=[] ensemble = ensemble.assign( # si_score=ensemble["partition"].apply(lambda x: silhouette_score(dist_matrix, x, metric="precomputed")), ch_score=ensemble["partition"].apply(lambda x: calinski_harabasz_score(data, x)), db_score=ensemble["partition"].apply(lambda x: davies_bouldin_score(data, x)), ) # %% tags=[] ensemble.shape # %% tags=[] ensemble.head() # %% [markdown] tags=[] # # Cluster quality # %% tags=[] with
pd.option_context("display.max_rows", None, "display.max_columns", None)
pandas.option_context
import argparse import textwrap import os import pandas as pd from glob import glob from reframed import Environment, ModelCache from .designmc import design def main(): parser = argparse.ArgumentParser(description="Design microbial communities.") parser.add_argument('models', metavar='MODELS', nargs='+', help=textwrap.dedent( """ Multiple single-species models (one or more files). You can use wild-cards, for example: models/*.xml, and optionally protect with quotes to avoid automatic bash expansion (this will be faster for long lists): "models/*.xml". """ )) parser.add_argument('-t', '--target', dest="target",required=True, help="Target compound to maximize (example: etoh, succ, trp__L).") parser.add_argument('-s', '--species', dest="species", type=int, default=1, help="Maximum number of species (default: 1).") parser.add_argument('-n', '--iters', dest="iters", type=int, default=100, help="Maximum number of iterations (default: 100).") parser.add_argument('-g', '--growth', dest="growth", type=float, default=0.1, help="Target community growth rate (default: 0.1 h-1).") parser.add_argument('-m', '--media', dest="media", required=True, help="Run for given media (comma-separated).") parser.add_argument('-d', '--mediadb', dest="mediadb", required=True, help="Media database file") parser.add_argument('-o', '--output', dest="output", default='out.tsv', help="Output filename.") args = parser.parse_args() ## load models models = args.models if len(models) == 1 and '*' in models[0]: models = glob(models[0]) if len(models) == 0: raise IOError(f"No files found: {models}.") species = [extract_id_from_filepath(model) for model in models] cache = ModelCache(species, models) ## load media try: mediadb = load_media_db(args.mediadb) except: raise IOError(f"Unable to load media db file: {args.mediadb}.") media = args.media.split(",") dfs = [] target = f"R_EX_M_{args.target}_e" for medium in media: if medium not in mediadb: raise RuntimeError(f"Medium {medium} not in database.") print(f"Optimizing {args.target} production in medium {medium}.") env = Environment.from_compounds(mediadb[medium], fmt_func=lambda x: f"R_EX_M_{x}_e") df = design(species, target, env, size=args.species, iters=args.iters, growth=args.growth, modelcache=cache) df["medium"] = medium df["target"] = args.target dfs.append(df) dfs =
pd.concat(dfs)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy import stats from scipy.special import boxcox1p from scipy.stats import norm, skew from sklearn.preprocessing import LabelEncoder from sklearn.metrics import r2_score, mean_squared_error from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import mean_squared_error # import xgboost as xgb # import lightgbm as lgb def get_score(prediction, lables): """ Prints R2 and RMSE scores """ print('R2: {}'.format(r2_score(prediction, lables))) print('RMSE: {}'.format(np.sqrt(mean_squared_error(prediction, lables)))) def train_test(estimator, x_trn, x_tst, y_trn, y_tst): """ Shows scores for train and validation sets """ prediction_train = estimator.predict(x_trn) print(estimator) get_score(prediction_train, y_trn) prediction_test = estimator.predict(x_tst) print("Test") get_score(prediction_test, y_tst) def setting(): color = sns.color_palette() sns.set_style('darkgrid') pd.set_option('display.float_format', lambda x: '{:.2f}'.format(x)) def null_percentage(all_data): all_data_na = (all_data.isnull().sum() / len(all_data)) * 100 all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_values(ascending=False)[:30] missing_data =
pd.DataFrame({'Missing Ratio': all_data_na})
pandas.DataFrame
import __main__ as main import sys import geopandas as gpd import pandas as pd import numpy as np if not hasattr(main, '__file__'): argv = ['code', 'data/processed/geo/tiles.shp', 'data/processed/census/oa_tile_reference.csv', 'data/raw/census_lookups/engwal_OA_lsoa.csv', 'data/raw/census_lookups/OA_to_DZ.csv', 'data/raw/census/NI_SA_Centroids.shp', 'data/raw/ethnicity_data/bulk.csv', 'data/raw/ethnicity_data/KS201SC.csv', 'data/raw/ethnicity_data/DT201NI (s).csv', 'data/raw/census/Eng_Wal_OA_Mid_Pop.csv', 'data/raw/census/simd2020_withinds.csv', 'data/raw/census/NI_Mid_Pop.csv', 'data/processed/census/quadkey_mean_perc_white.csv'] else: argv = sys.argv #%% tiles = gpd.read_file(argv[1]) tiles.crs = 4326 #%% oa_tile_lookup = pd.read_csv(argv[2]) #%% oa_lus = {'england': pd.read_csv(argv[3]), 'scotland': pd.read_csv(argv[4]), 'ni': gpd.read_file(argv[5])} #%% oa_lus['ni'] = oa_lus['ni'].loc[:, ['SA2011', 'SOA2011']] #%% eth_data = {'england': pd.read_csv(argv[6]), 'scotland': pd.read_csv(argv[7]), 'ni': pd.read_csv(argv[8])} #%% scotland_imd = pd.read_csv(argv[10]) #%% #check that the admin code is in the lookups ''' england: lsoa level Scotland: data zone level NI: SOA level ''' pop_data = {'england': pd.read_csv(argv[9]), 'scotland': pd.read_csv(argv[10]), 'ni': pd.read_csv(argv[11])} # Handle scotland population peculiarities scotland_n_oas = oa_lus['scotland'].groupby('DataZone2011Code').count().reset_index()[['DataZone2011Code', 'OutputArea2011Code']].rename(columns = {'DataZone2011Code':'DZ', 'OutputArea2011Code':'n_oas'}) scotland_pop = pd.merge(scotland_imd, scotland_n_oas)[['DZ', 'Total_population', 'n_oas']] scotland_pop = pd.merge(oa_lus['scotland'][['OutputArea2011Code', 'DataZone2011Code']].rename(columns={'OutputArea2011Code':'OA', 'DataZone2011Code':'DZ'}), scotland_pop) scotland_pop['Total_population'] = scotland_pop['Total_population'] / scotland_pop['n_oas'] scotland_pop = scotland_pop.drop(columns = ['n_oas', 'DZ']).rename(columns = {'Total_population':'pop'}) ''' England ''' eth_data['england'] = pd.melt(eth_data['england'], id_vars = ['geography code'], value_vars = eth_data['england'].columns[3:]) eth_data['england']['variable'] = [x.split('.')[0] for x in eth_data['england']['variable']] eth_data['england']['white'] = [x == 'White' for x in eth_data['england']['variable']] eth_data['england']['value'] = [str(x).replace(',', '') for x in eth_data['england']['value']] eth_data['england']['value'] = pd.to_numeric(eth_data['england']['value'], errors = 'coerce') eth_data['england'] = eth_data['england'][['geography code', 'white', 'value']].groupby(['geography code', 'white']).sum().reset_index() eth_data['england'] = eth_data['england'].pivot(index = 'geography code', columns = 'white').reset_index() eth_data['england'].columns = eth_data['england'].columns.droplevel() eth_data['england']['perc_white'] = eth_data['england'][True] / (eth_data['england'][True] + eth_data['england'][False]) '''Scotland''' eth_data['scotland'] = pd.melt(eth_data['scotland'], id_vars = ['Area'], value_vars = eth_data['scotland'].columns[2:]) eth_data['scotland']['variable'] = [x.split('.')[0] for x in eth_data['scotland']['variable']] eth_data['scotland']['white'] = [x == 'White' for x in eth_data['scotland']['variable']] eth_data['scotland']['value'] = [str(x).replace('-', '0') for x in eth_data['scotland']['value']] eth_data['scotland']['value'] = pd.to_numeric(eth_data['scotland']['value'], errors = 'coerce') eth_data['scotland'] = eth_data['scotland'][['Area', 'white', 'value']].groupby(['Area', 'white']).sum().reset_index() eth_data['scotland'] = eth_data['scotland'].pivot(index = 'Area', columns = 'white').reset_index() eth_data['scotland'].columns = eth_data['scotland'].columns.droplevel() eth_data['scotland']['perc_white'] = eth_data['scotland'][True] / (eth_data['scotland'][True] + eth_data['scotland'][False]) '''NI''' eth_data['ni'] = pd.melt(eth_data['ni'], id_vars = ['Code'], value_vars = eth_data['ni'].columns[3:]) eth_data['ni']['variable'] = [x.split('.')[0] for x in eth_data['ni']['variable']] eth_data['ni']['white'] = [x == 'Ethnic group: White' for x in eth_data['ni']['variable']] eth_data['ni']['value'] = [str(x).replace(',', '') for x in eth_data['ni']['value']] eth_data['ni']['value'] = pd.to_numeric(eth_data['ni']['value'], errors = 'coerce') eth_data['ni'] = eth_data['ni'][['Code', 'white', 'value']].groupby(['Code', 'white']).sum().reset_index() eth_data['ni'] = eth_data['ni'].pivot(index = 'Code', columns = 'white').reset_index() eth_data['ni'].columns = eth_data['ni'].columns.droplevel() eth_data['ni']['perc_white'] = eth_data['ni'][True] / (eth_data['ni'][True] + eth_data['ni'][False]) eth_data['england'].columns = ['Code', False, True, 'perc_white'] eth_data['scotland'].columns = ['Area', False, True, 'perc_white'] eth_data['ni'].columns = ['Code', False, True, 'perc_white'] ew_eth = pd.merge(oa_lus['england'], eth_data['england'], left_on='LSOA11CD', right_on='Code', how = 'left') scotand_eth = pd.merge(oa_lus['scotland'], eth_data['scotland'], left_on='DataZone2011Code', right_on='Area', how = 'left') ni_eth =
pd.merge(oa_lus['ni'], eth_data['ni'], left_on='SA2011', right_on='Code', how = 'left')
pandas.merge
import random import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, NaT, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameSortValues: def test_sort_values(self): frame = DataFrame( [[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list("ABC") ) # by column (axis=0) sorted_df = frame.sort_values(by="A") indexer = frame["A"].argsort().values expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=["A"], ascending=[False]) tm.assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=["B", "C"]) expected = frame.loc[[2, 1, 3]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=["B", "C"], ascending=False) tm.assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=["B", "A"], ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=2, inplace=True) # by row (axis=1): GH#10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis="columns") expected = frame.reindex(columns=["B", "A", "C"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) msg = r"Length of ascending \(5\) != length of by \(2\)" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=0, ascending=[True] * 5) def test_sort_values_by_empty_list(self): # https://github.com/pandas-dev/pandas/issues/40258 expected = DataFrame({"a": [1, 4, 2, 5, 3, 6]}) result = expected.sort_values(by=[]) tm.assert_frame_equal(result, expected) assert result is not expected def test_sort_values_inplace(self): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True) assert return_value is None expected = frame.sort_values(by="A") tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by=1, axis=1, inplace=True) assert return_value is None expected = frame.sort_values(by=1, axis=1) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", ascending=False, inplace=True) assert return_value is None expected = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True ) assert return_value is None expected = frame.sort_values(by=["A", "B"], ascending=False) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({"A": A, "B": B, "C": np.random.randn(100)}) result = frame.sort_values(by=["A", "B"]) indexer = np.lexsort((frame["B"], frame["A"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["A", "B"], ascending=False) indexer = np.lexsort( (frame["B"].rank(ascending=False), frame["A"].rank(ascending=False)) ) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["B", "A"]) indexer = np.lexsort((frame["A"], frame["B"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) def test_sort_values_multicolumn_uint64(self): # GH#9918 # uint64 multicolumn sort df = DataFrame( { "a": pd.Series([18446637057563306014, 1162265347240853609]), "b": pd.Series([1, 2]), } ) df["a"] = df["a"].astype(np.uint64) result = df.sort_values(["a", "b"]) expected = DataFrame( { "a": pd.Series([18446637057563306014, 1162265347240853609]), "b": pd.Series([1, 2]), }, index=pd.Index([1, 0]), ) tm.assert_frame_equal(result, expected) def test_sort_values_nan(self): # GH#3917 df = DataFrame( {"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]} ) # sort one column only expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A"], na_position="first") tm.assert_frame_equal(sorted_df, expected) expected = DataFrame( {"A": [np.nan, 8, 6, 4, 2, 1, 1], "B": [5, 4, 5, 5, np.nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3], ) sorted_df = df.sort_values(["A"], na_position="first", ascending=False) tm.assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=["B", "A"]) sorted_df = df.sort_values(by=1, axis=1, na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {"A": [1, 1, 2, 4, 6, 8, np.nan], "B": [2, 9, np.nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2], ) sorted_df = df.sort_values(["A", "B"]) tm.assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 2, 9, np.nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A", "B"], na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A", "B"], ascending=[1, 0], na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {"A": [8, 6, 4, 2, 1, 1, np.nan], "B": [4, 5, 5, np.nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2], ) sorted_df = df.sort_values(["A", "B"], ascending=[0, 1], na_position="last") tm.assert_frame_equal(sorted_df, expected) def test_sort_values_stable_descending_sort(self): # GH#6399 df = DataFrame( [[2, "first"], [2, "second"], [1, "a"], [1, "b"]], columns=["sort_col", "order"], ) sorted_df = df.sort_values(by="sort_col", kind="mergesort", ascending=False) tm.assert_frame_equal(df, sorted_df) @pytest.mark.parametrize( "expected_idx_non_na, ascending", [ [ [3, 4, 5, 0, 1, 8, 6, 9, 7, 10, 13, 14], [True, True], ], [ [0, 3, 4, 5, 1, 8, 6, 7, 10, 13, 14, 9], [True, False], ], [ [9, 7, 10, 13, 14, 6, 8, 1, 3, 4, 5, 0], [False, True], ], [ [7, 10, 13, 14, 9, 6, 8, 1, 0, 3, 4, 5], [False, False], ], ], ) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_sort_values_stable_multicolumn_sort( self, expected_idx_non_na, ascending, na_position ): # GH#38426 Clarify sort_values with mult. columns / labels is stable df = DataFrame( { "A": [1, 2, np.nan, 1, 1, 1, 6, 8, 4, 8, 8, np.nan, np.nan, 8, 8], "B": [9, np.nan, 5, 2, 2, 2, 5, 4, 5, 3, 4, np.nan, np.nan, 4, 4], } ) # All rows with NaN in col "B" only have unique values in "A", therefore, # only the rows with NaNs in "A" have to be treated individually: expected_idx = ( [11, 12, 2] + expected_idx_non_na if na_position == "first" else expected_idx_non_na + [2, 11, 12] ) expected = df.take(expected_idx) sorted_df = df.sort_values( ["A", "B"], ascending=ascending, na_position=na_position ) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_stable_categorial(self): # GH#16793 df = DataFrame({"x": Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True)}) expected = df.copy() sorted_df = df.sort_values("x", kind="mergesort") tm.assert_frame_equal(sorted_df, expected) def test_sort_values_datetimes(self): # GH#3461, argsort / lexsort differences for a datetime column df = DataFrame( ["a", "a", "a", "b", "c", "d", "e", "f", "g"], columns=["A"], index=date_range("20130101", periods=9), ) dts = [ Timestamp(x) for x in [ "2004-02-11", "2004-01-21", "2004-01-26", "2005-09-20", "2010-10-04", "2009-05-12", "2008-11-12", "2010-09-28", "2010-09-28", ] ] df["B"] = dts[::2] + dts[1::2] df["C"] = 2.0 df["A1"] = 3.0 df1 = df.sort_values(by="A") df2 = df.sort_values(by=["A"]) tm.assert_frame_equal(df1, df2) df1 = df.sort_values(by="B") df2 = df.sort_values(by=["B"]) tm.assert_frame_equal(df1, df2) df1 = df.sort_values(by="B") df2 = df.sort_values(by=["C", "B"]) tm.assert_frame_equal(df1, df2) def test_sort_values_frame_column_inplace_sort_exception(self, float_frame): s = float_frame["A"] with pytest.raises(ValueError, match="This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works! def test_sort_values_nat_values_in_int_column(self): # GH#14922: "sorting with large float and multiple columns incorrect" # cause was that the int64 value NaT was considered as "na". Which is # only correct for datetime64 columns. int_values = (2, int(NaT.value)) float_values = (2.0, -1.797693e308) df = DataFrame( {"int": int_values, "float": float_values}, columns=["int", "float"] ) df_reversed = DataFrame( {"int": int_values[::-1], "float": float_values[::-1]}, columns=["int", "float"], index=[1, 0], ) # NaT is not a "na" for int64 columns, so na_position must not # influence the result: df_sorted = df.sort_values(["int", "float"], na_position="last") tm.assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["int", "float"], na_position="first") tm.assert_frame_equal(df_sorted, df_reversed) # reverse sorting order df_sorted = df.sort_values(["int", "float"], ascending=False) tm.assert_frame_equal(df_sorted, df) # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame( {"datetime": [Timestamp("2016-01-01"), NaT], "float": float_values}, columns=["datetime", "float"], ) df_reversed = DataFrame( {"datetime": [NaT, Timestamp("2016-01-01")], "float": float_values[::-1]}, columns=["datetime", "float"], index=[1, 0], ) df_sorted = df.sort_values(["datetime", "float"], na_position="first") tm.assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["datetime", "float"], na_position="last") tm.assert_frame_equal(df_sorted, df) # Ascending should not affect the results. df_sorted = df.sort_values(["datetime", "float"], ascending=False) tm.assert_frame_equal(df_sorted, df) def test_sort_nat(self): # GH 16836 d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]] d2 = [ Timestamp(x) for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"] ] df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]] d4 = [ Timestamp(x) for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"] ] expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_na_position_with_categories(self): # GH#22556 # Positioning missing value properly when column is Categorical. categories = ["A", "B", "C"] category_indices = [0, 2, 4] list_of_nans = [np.nan, np.nan] na_indices = [1, 3] na_position_first = "first" na_position_last = "last" column_name = "c" reversed_categories = sorted(categories, reverse=True) reversed_category_indices = sorted(category_indices, reverse=True) reversed_na_indices = sorted(na_indices) df = DataFrame( { column_name: Categorical( ["A", np.nan, "B", np.nan, "C"], categories=categories, ordered=True ) } ) # sort ascending with na first result = df.sort_values( by=column_name, ascending=True, na_position=na_position_first ) expected = DataFrame( { column_name: Categorical( list_of_nans + categories, categories=categories, ordered=True ) }, index=na_indices + category_indices, ) tm.assert_frame_equal(result, expected) # sort ascending with na last result = df.sort_values( by=column_name, ascending=True, na_position=na_position_last ) expected = DataFrame( { column_name: Categorical( categories + list_of_nans, categories=categories, ordered=True ) }, index=category_indices + na_indices, ) tm.assert_frame_equal(result, expected) # sort descending with na first result = df.sort_values( by=column_name, ascending=False, na_position=na_position_first ) expected = DataFrame( { column_name: Categorical( list_of_nans + reversed_categories, categories=categories, ordered=True, ) }, index=reversed_na_indices + reversed_category_indices, ) tm.assert_frame_equal(result, expected) # sort descending with na last result = df.sort_values( by=column_name, ascending=False, na_position=na_position_last ) expected = DataFrame( { column_name: Categorical( reversed_categories + list_of_nans, categories=categories, ordered=True, ) }, index=reversed_category_indices + reversed_na_indices, ) tm.assert_frame_equal(result, expected) def test_sort_values_nat(self): # GH#16836 d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]] d2 = [ Timestamp(x) for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"] ] df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]] d4 = [ Timestamp(x) for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"] ] expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_na_position_with_categories_raises(self): df = DataFrame( { "c": Categorical( ["A", np.nan, "B", np.nan, "C"], categories=["A", "B", "C"], ordered=True, ) } ) with pytest.raises(ValueError, match="invalid na_position: bad_position"): df.sort_values(by="c", ascending=False, na_position="bad_position") @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize( "original_dict, sorted_dict, ignore_index, output_index", [ ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, True, [0, 1, 2]), ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, False, [2, 1, 0]), ( {"A": [1, 2, 3], "B": [2, 3, 4]}, {"A": [3, 2, 1], "B": [4, 3, 2]}, True, [0, 1, 2], ), ( {"A": [1, 2, 3], "B": [2, 3, 4]}, {"A": [3, 2, 1], "B": [4, 3, 2]}, False, [2, 1, 0], ), ], ) def test_sort_values_ignore_index( self, inplace, original_dict, sorted_dict, ignore_index, output_index ): # GH 30114 df = DataFrame(original_dict) expected = DataFrame(sorted_dict, index=output_index) kwargs = {"ignore_index": ignore_index, "inplace": inplace} if inplace: result_df = df.copy() result_df.sort_values("A", ascending=False, **kwargs) else: result_df = df.sort_values("A", ascending=False, **kwargs) tm.assert_frame_equal(result_df, expected) tm.assert_frame_equal(df, DataFrame(original_dict)) def test_sort_values_nat_na_position_default(self): # GH 13230 expected = DataFrame( { "A": [1, 2, 3, 4, 4], "date": pd.DatetimeIndex( [ "2010-01-01 09:00:00", "2010-01-01 09:00:01", "2010-01-01 09:00:02", "2010-01-01 09:00:03", "NaT", ] ), } ) result = expected.sort_values(["A", "date"]) tm.assert_frame_equal(result, expected) def test_sort_values_item_cache(self, using_array_manager): # previous behavior incorrect retained an invalid _item_cache entry df = DataFrame(np.random.randn(4, 3), columns=["A", "B", "C"]) df["D"] = df["A"] * 2 ser = df["A"] if not using_array_manager: assert len(df._mgr.blocks) == 2 df.sort_values(by="A") ser.values[0] = 99 assert df.iloc[0, 0] == df["A"][0] def test_sort_values_reshaping(self): # GH 39426 values = list(range(21)) expected = DataFrame([values], columns=values) df = expected.sort_values(expected.index[0], axis=1, ignore_index=True) tm.assert_frame_equal(df, expected) class TestDataFrameSortKey: # test key sorting (issue 27237) def test_sort_values_inplace_key(self, sort_by_key): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True, key=sort_by_key) assert return_value is None expected = frame.sort_values(by="A", key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=1, axis=1, inplace=True, key=sort_by_key ) assert return_value is None expected = frame.sort_values(by=1, axis=1, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by="A", ascending=False, inplace=True, key=sort_by_key ) assert return_value is None expected = frame.sort_values(by="A", ascending=False, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True, key=sort_by_key ) expected = frame.sort_values(by=["A", "B"], ascending=False, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_key(self): df = DataFrame(np.array([0, 5, np.nan, 3, 2, np.nan])) result = df.sort_values(0) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(0, key=lambda x: x + 5) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(0, key=lambda x: -x, ascending=False) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_by_key(self): df = DataFrame( { "a": np.array([0, 3, np.nan, 3, 2, np.nan]), "b": np.array([0, 2, np.nan, 5, 2, np.nan]), } ) result = df.sort_values("a", key=lambda x: -x) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=lambda x: -x) expected = df.iloc[[3, 1, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=lambda x: -x, ascending=False) expected = df.iloc[[0, 4, 1, 3, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_by_key_by_name(self): df = DataFrame( { "a": np.array([0, 3, np.nan, 3, 2, np.nan]), "b": np.array([0, 2, np.nan, 5, 2, np.nan]), } ) def key(col): if col.name == "a": return -col else: return col result = df.sort_values(by="a", key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a"], key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by="b", key=key) expected = df.iloc[[0, 1, 4, 3, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_key_string(self): df = DataFrame(np.array([["hello", "goodbye"], ["hello", "Hello"]])) result = df.sort_values(1) expected = df[::-1] tm.assert_frame_equal(result, expected) result = df.sort_values([0, 1], key=lambda col: col.str.lower()) tm.assert_frame_equal(result, df) result = df.sort_values( [0, 1], key=lambda col: col.str.lower(), ascending=False ) expected = df.sort_values(1, key=lambda col: col.str.lower(), ascending=False) tm.assert_frame_equal(result, expected) def test_sort_values_key_empty(self, sort_by_key): df = DataFrame(np.array([])) df.sort_values(0, key=sort_by_key) df.sort_index(key=sort_by_key) def test_changes_length_raises(self): df = DataFrame({"A": [1, 2, 3]}) with pytest.raises(ValueError, match="change the shape"): df.sort_values("A", key=lambda x: x[:1]) def test_sort_values_key_axes(self): df = DataFrame({0: ["Hello", "goodbye"], 1: [0, 1]}) result = df.sort_values(0, key=lambda col: col.str.lower()) expected = df[::-1] tm.assert_frame_equal(result, expected) result = df.sort_values(1, key=lambda col: -col) expected = df[::-1] tm.assert_frame_equal(result, expected) def test_sort_values_key_dict_axis(self): df = DataFrame({0: ["Hello", 0], 1: ["goodbye", 1]}) result = df.sort_values(0, key=lambda col: col.str.lower(), axis=1) expected = df.loc[:, ::-1] tm.assert_frame_equal(result, expected) result = df.sort_values(1, key=lambda col: -col, axis=1) expected = df.loc[:, ::-1] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_sort_values_key_casts_to_categorical(self, ordered): # https://github.com/pandas-dev/pandas/issues/36383 categories = ["c", "b", "a"] df = DataFrame({"x": [1, 1, 1], "y": ["a", "b", "c"]}) def sorter(key): if key.name == "y": return pd.Series( Categorical(key, categories=categories, ordered=ordered) ) return key result = df.sort_values(by=["x", "y"], key=sorter) expected = DataFrame( {"x": [1, 1, 1], "y": ["c", "b", "a"]}, index=pd.Index([2, 1, 0]) ) tm.assert_frame_equal(result, expected) @pytest.fixture def df_none(): return DataFrame( { "outer": ["a", "a", "a", "b", "b", "b"], "inner": [1, 2, 2, 2, 1, 1], "A": np.arange(6, 0, -1), ("B", 5): ["one", "one", "two", "two", "one", "one"], } ) @pytest.fixture(params=[["outer"], ["outer", "inner"]]) def df_idx(request, df_none): levels = request.param return df_none.set_index(levels) @pytest.fixture( params=[ "inner", # index level ["outer"], # list of index level "A", # column [("B", 5)], # list of column ["inner", "outer"], # two index levels [("B", 5), "outer"], # index level and column ["A", ("B", 5)], # Two columns ["inner", "outer"], # two index levels and column ] ) def sort_names(request): return request.param @pytest.fixture(params=[True, False]) def ascending(request): return request.param class TestSortValuesLevelAsStr: def test_sort_index_level_and_column_label( self, df_none, df_idx, sort_names, ascending ): # GH#14353 # Get index levels from df_idx levels = df_idx.index.names # Compute expected by sorting on columns and the setting index expected = df_none.sort_values( by=sort_names, ascending=ascending, axis=0 ).set_index(levels) # Compute result sorting on mix on columns and index levels result = df_idx.sort_values(by=sort_names, ascending=ascending, axis=0) tm.assert_frame_equal(result, expected) def test_sort_column_level_and_index_label( self, df_none, df_idx, sort_names, ascending ): # GH#14353 # Get levels from df_idx levels = df_idx.index.names # Compute expected by sorting on axis=0, setting index levels, and then # transposing. For some cases this will result in a frame with # multiple column levels expected = ( df_none.sort_values(by=sort_names, ascending=ascending, axis=0) .set_index(levels) .T ) # Compute result by transposing and sorting on axis=1. result = df_idx.T.sort_values(by=sort_names, ascending=ascending, axis=1)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import pandas as pd from dsbox.ml.feature_engineering import TagEncoder from dsbox.ml.feature_engineering.timeseries import RollingWindower, Shifter from dsbox.utils import pandas_downcast_numeric def concat_train_test(dataframe_list): shop_data = dataframe_list[0] shop_data_to_predict = dataframe_list[1] shop_data['to_predict'] = False shop_data_to_predict['to_predict'] = True shop_data = pd.concat([shop_data, shop_data_to_predict], sort=False) shop_data = shop_data.reset_index(drop=True) return shop_data def resample_fillna(dataframe): shop_data = dataframe shop_data['Datetime'] =
pd.to_datetime(shop_data['Date'], format='%Y-%m-%d')
pandas.to_datetime
import numpy as np import pandas as pd from typing import List from sklearn.preprocessing import StandardScaler from cytominer_eval.transform import metric_melt from cytominer_eval.transform.util import set_pair_ids def assign_replicates( similarity_melted_df: pd.DataFrame, replicate_groups: List[str], ) -> pd.DataFrame: """ Arguments: similarity_melted_df - a long pandas dataframe output from transform.metric_melt replicate_groups - a list of metadata column names in the original profile dataframe to use as replicate columns Output: Adds columns to the similarity metric dataframe to indicate whether or not the pairwise similarity metric is comparing replicates or not """ pair_ids = set_pair_ids() replicate_col_names = {x: "{x}_replicate".format(x=x) for x in replicate_groups} compare_dfs = [] for replicate_col in replicate_groups: replicate_cols_with_suffix = [ "{col}{suf}".format(col=replicate_col, suf=pair_ids[x]["suffix"]) for x in pair_ids ] assert all( [x in similarity_melted_df.columns for x in replicate_cols_with_suffix] ), "replicate_group not found in melted dataframe columns" replicate_col_name = replicate_col_names[replicate_col] compare_df = similarity_melted_df.loc[:, replicate_cols_with_suffix] compare_df.loc[:, replicate_col_name] = False compare_df.loc[ np.where(compare_df.iloc[:, 0] == compare_df.iloc[:, 1])[0], replicate_col_name, ] = True compare_dfs.append(compare_df) compare_df = pd.concat(compare_dfs, axis="columns").reset_index(drop=True) compare_df = compare_df.assign( group_replicate=compare_df.loc[:, replicate_col_names.values()].min( axis="columns" ) ).loc[:, list(replicate_col_names.values()) + ["group_replicate"]] similarity_melted_df = similarity_melted_df.merge( compare_df, left_index=True, right_index=True ) return similarity_melted_df def calculate_precision_recall(replicate_group_df: pd.DataFrame, k: int) -> pd.Series: """ Usage: Designed to be called within a pandas.DataFrame().groupby().apply() """ assert ( "group_replicate" in replicate_group_df.columns ), "'group_replicate' not found in dataframe; remember to call assign_replicates()." recall_denom__total_relevant_items = sum(replicate_group_df.group_replicate) precision_denom__num_recommended_items = k num_recommended_items_at_k = sum(replicate_group_df.iloc[:k,].group_replicate) precision_at_k = num_recommended_items_at_k / precision_denom__num_recommended_items recall_at_k = num_recommended_items_at_k / recall_denom__total_relevant_items return_bundle = {"k": k, "precision": precision_at_k, "recall": recall_at_k} return
pd.Series(return_bundle)
pandas.Series
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index =
IntervalIndex(data, closed=closed)
pandas.IntervalIndex
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < 8 days 01:00:00 < 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_index_repr(self): idx = pd.CategoricalIndex(pd.Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" self.assertEqual(repr(idx), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_ordered(self): i = pd.CategoricalIndex(pd.Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period(self): # test all length idx = pd.period_range('2011-01-01 09:00', freq='H', periods=1) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=2) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=3) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_frame(self): # normal DataFrame dt = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') p = pd.period_range('2011-01', freq='M', periods=5) df = pd.DataFrame({'dt': dt, 'p': p}) exp = """ dt p 0 2011-01-01 09:00:00-05:00 2011-01 1 2011-01-01 10:00:00-05:00 2011-02 2 2011-01-01 11:00:00-05:00 2011-03 3 2011-01-01 12:00:00-05:00 2011-04 4 2011-01-01 13:00:00-05:00 2011-05""" df = pd.DataFrame({'dt': pd.Categorical(dt), 'p': pd.Categorical(p)}) self.assertEqual(repr(df), exp) def test_info(self): # make sure it works n = 2500 df = DataFrame({'int64': np.random.randint(100, size=n)}) df['category'] = Series(np.array(list('abcdefghij')).take( np.random.randint(0, 10, size=n))).astype('category') df.isnull() df.info() df2 = df[df['category'] == 'd'] df2.info() def test_groupby_sort(self): # http://stackoverflow.com/questions/23814368/sorting-pandas-categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') res = self.cat.groupby(['value_group'])['value_group'].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = pd.CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_min_max(self): # unordered cats have no min/max cat = Series(Categorical(["a", "b", "c", "d"], ordered=False)) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Series(Categorical(["a", "b", "c", "d"], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Series(Categorical(["a", "b", "c", "d"], categories=[ 'd', 'c', 'b', 'a'], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Series(Categorical( [np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a' ], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") cat = Series(Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) def test_mode(self): s = Series(Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5, 1], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([], categories=[5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) def test_value_counts(self): s = pd.Series(pd.Categorical( ["a", "b", "c", "c", "c", "b"], categories=["c", "a", "b", "d"])) res = s.value_counts(sort=False) exp = Series([3, 1, 2, 0], index=pd.CategoricalIndex(["c", "a", "b", "d"])) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp = Series([3, 2, 1, 0], index=pd.CategoricalIndex(["c", "b", "a", "d"])) tm.assert_series_equal(res, exp) def test_value_counts_with_nan(self): # https://github.com/pydata/pandas/issues/9443 s = pd.Series(["a", "b", "a"], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) s = pd.Series(["a", "b", None, "a", None, None], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) # When we aren't sorting by counts, and np.nan isn't a # category, it should be last. tm.assert_series_equal( s.value_counts(dropna=False, sort=False), pd.Series([2, 1, 3], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", "a"], categories=["a", "b", np.nan])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1, 0], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", None, "a", None, None], categories=["a", "b", np.nan ])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) def test_groupby(self): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c" ], categories=["a", "b", "c", "d"], ordered=True) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) expected = DataFrame({'a': Series( [1, 2, 4, np.nan], index=pd.CategoricalIndex( ['a', 'b', 'c', 'd'], name='b'))}) result = data.groupby("b").mean() tm.assert_frame_equal(result, expected) raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A") exp_idx = pd.CategoricalIndex(['a', 'b', 'z'], name='A') expected = DataFrame({'values': Series([3, 7, np.nan], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers gb = df.groupby(['A', 'B']) expected = DataFrame({'values': Series( [1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan ], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']))}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers with a non-cat df = df.copy() df['C'] = ['foo', 'bar'] * 2 gb = df.groupby(['A', 'B', 'C']) expected = DataFrame({'values': Series( np.nan, index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y'], ['foo', 'bar'] ], names=['A', 'B', 'C']))}).sortlevel() expected.iloc[[1, 2, 7, 8], 0] = [1, 2, 3, 4] result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name) g = x.groupby(['person_id']) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[['person_name']]) result = x.drop_duplicates('person_name') expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates('person_name').iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name='person_id') expected['person_name'] = expected['person_name'].astype('object') tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.max(xs)), df[['a']]) # Filter tm.assert_series_equal(df.a.groupby(c).filter(np.all), df['a']) tm.assert_frame_equal(df.groupby(c).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.sum(xs)), df[['a']]) # GH 9603 df = pd.DataFrame({'a': [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4]) result = df.groupby(c).apply(len) expected = pd.Series([1, 0, 0, 0], index=pd.CategoricalIndex(c.values.categories)) expected.index.name = 'a' tm.assert_series_equal(result, expected) def test_pivot_table(self): raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B']) expected = Series([1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']), name='values') tm.assert_series_equal(result, expected) def test_count(self): s = Series(Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) result = s.count() self.assertEqual(result, 2) def test_sort(self): c = Categorical(["a", "b", "b", "a"], ordered=False) cat = Series(c) # 9816 deprecated with tm.assert_produces_warning(FutureWarning): c.order() # sort in the categories order expected = Series( Categorical(["a", "a", "b", "b"], ordered=False), index=[0, 3, 1, 2]) result = cat.sort_values() tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "c", "b", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) cat = Series(Categorical(["a", "c", "b", "d"], categories=[ "a", "b", "c", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res.__array__(), exp) raw_cat1 = Categorical(["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False) raw_cat2 = Categorical(["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True) s = ["a", "b", "c", "d"] df = DataFrame({"unsort": raw_cat1, "sort": raw_cat2, "string": s, "values": [1, 2, 3, 4]}) # Cats must be sorted in a dataframe res = df.sort_values(by=["string"], ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res["sort"].values.__array__(), exp) self.assertEqual(res["sort"].dtype, "category") res = df.sort_values(by=["sort"], ascending=False) exp = df.sort_values(by=["string"], ascending=True) self.assert_numpy_array_equal(res["values"], exp["values"]) self.assertEqual(res["sort"].dtype, "category") self.assertEqual(res["unsort"].dtype, "category") # unordered cat, but we allow this df.sort_values(by=["unsort"], ascending=False) # multi-columns sort # GH 7848 df = DataFrame({"id": [6, 5, 4, 3, 2, 1], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"], ordered=True) df['grade'] = df['grade'].cat.set_categories(['b', 'e', 'a']) # sorts 'grade' according to the order of the categories result = df.sort_values(by=['grade']) expected = df.iloc[[1, 2, 5, 0, 3, 4]] tm.assert_frame_equal(result, expected) # multi result = df.sort_values(by=['grade', 'id']) expected = df.iloc[[2, 1, 5, 4, 3, 0]] tm.assert_frame_equal(result, expected) # reverse cat = Categorical(["a", "c", "c", "b", "d"], ordered=True) res = cat.sort_values(ascending=False) exp_val = np.array(["d", "c", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) # some NaN positions cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) def test_slicing(self): cat = Series(Categorical([1, 2, 3, 4])) reversed = cat[::-1] exp = np.array([4, 3, 2, 1]) self.assert_numpy_array_equal(reversed.__array__(), exp) df = DataFrame({'value': (np.arange(100) + 1).astype('int64')}) df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100]) expected = Series([11, '(0, 25]'], index=['value', 'D'], name=10) result = df.iloc[10] tm.assert_series_equal(result, expected) expected = DataFrame({'value': np.arange(11, 21).astype('int64')}, index=np.arange(10, 20).astype('int64')) expected['D'] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100]) result = df.iloc[10:20] tm.assert_frame_equal(result, expected) expected = Series([9, '(0, 25]'], index=['value', 'D'], name=8) result = df.loc[8] tm.assert_series_equal(result, expected) def test_slicing_and_getting_ops(self): # systematically test the slicing operations: # for all slicing ops: # - returning a dataframe # - returning a column # - returning a row # - returning a single value cats = pd.Categorical( ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 2, 3, 4, 5, 6, 7] df = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values cats2 = pd.Categorical(["b", "c"], categories=["a", "b", "c"]) idx2 = pd.Index(["j", "k"]) values2 = [3, 4] # 2:4,: | "j":"k",: exp_df = pd.DataFrame({"cats": cats2, "values": values2}, index=idx2) # :,"cats" | :,0 exp_col = pd.Series(cats, index=idx, name='cats') # "j",: | 2,: exp_row = pd.Series(["b", 3], index=["cats", "values"], dtype="object", name="j") # "j","cats | 2,0 exp_val = "b" # iloc # frame res_df = df.iloc[2:4, :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.iloc[2, :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.iloc[2, 0] self.assertEqual(res_val, exp_val) # loc # frame res_df = df.loc["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.loc["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.loc[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.loc["j", "cats"] self.assertEqual(res_val, exp_val) # ix # frame # res_df = df.ix["j":"k",[0,1]] # doesn't work? res_df = df.ix["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.ix["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.ix[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.ix["j", 0] self.assertEqual(res_val, exp_val) # iat res_val = df.iat[2, 0] self.assertEqual(res_val, exp_val) # at res_val = df.at["j", "cats"] self.assertEqual(res_val, exp_val) # fancy indexing exp_fancy = df.iloc[[2]] res_fancy = df[df["cats"] == "b"] tm.assert_frame_equal(res_fancy, exp_fancy) res_fancy = df[df["values"] == 3] tm.assert_frame_equal(res_fancy, exp_fancy) # get_value res_val = df.get_value("j", "cats") self.assertEqual(res_val, exp_val) # i : int, slice, or sequence of integers res_row = df.iloc[2] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) res_df = df.iloc[slice(2, 4)] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[[2, 3]] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) res_df = df.iloc[:, slice(0, 2)] tm.assert_frame_equal(res_df, df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[:, [0, 1]] tm.assert_frame_equal(res_df, df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) def test_slicing_doc_examples(self): # GH 7918 cats = Categorical( ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c"]) idx = Index(["h", "i", "j", "k", "l", "m", "n", ]) values = [1, 2, 2, 2, 3, 4, 5] df = DataFrame({"cats": cats, "values": values}, index=idx) result = df.iloc[2:4, :] expected = DataFrame( {"cats": Categorical( ['b', 'b'], categories=['a', 'b', 'c']), "values": [2, 2]}, index=['j', 'k']) tm.assert_frame_equal(result, expected) result = df.iloc[2:4, :].dtypes expected = Series(['category', 'int64'], ['cats', 'values']) tm.assert_series_equal(result, expected) result = df.loc["h":"j", "cats"] expected = Series(Categorical(['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'], name='cats') tm.assert_series_equal(result, expected) result = df.ix["h":"j", 0:1] expected = DataFrame({'cats': Series( Categorical( ['a', 'b', 'b'], categories=['a', 'b', 'c']), index=['h', 'i', 'j'])}) tm.assert_frame_equal(result, expected) def test_assigning_ops(self): # systematically test the assigning operations: # for all slicing ops: # for value in categories and value not in categories: # - assign a single value -> exp_single_cats_value # - assign a complete row (mixed values) -> exp_single_row # assign multiple rows (mixed values) (-> array) -> exp_multi_row # assign a part of a column with dtype == categorical -> # exp_parts_cats_col # assign a part of a column with dtype != categorical -> # exp_parts_cats_col cats = pd.Categorical( ["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values # changed single row cats1 = pd.Categorical( ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx1 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values1 = [1, 1, 2, 1, 1, 1, 1] exp_single_row = pd.DataFrame( {"cats": cats1, "values": values1}, index=idx1) # changed multiple rows cats2 = pd.Categorical( ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = pd.DataFrame( {"cats": cats2, "values": values2}, index=idx2) # changed part of the cats column cats3 = pd.Categorical( ["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx3 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values3 = [1, 1, 1, 1, 1, 1, 1] exp_parts_cats_col = pd.DataFrame( {"cats": cats3, "values": values3}, index=idx3) # changed single value in cats col cats4 = pd.Categorical( ["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx4 = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values4 = [1, 1, 1, 1, 1, 1, 1] exp_single_cats_value = pd.DataFrame( {"cats": cats4, "values": values4}, index=idx4) # iloc # ############### # - assign a single value -> exp_single_cats_value df = orig.copy() df.iloc[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.iloc[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.iloc[2, 0] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.iloc[2, :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.iloc[2, :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.iloc[2:4, :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.iloc[2:4, :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.iloc[2:4, 0] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.iloc[2:4, 0] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.iloc[2:4, 0] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.loc["j", "cats"] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.loc["j", :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.loc["j":"k", "cats"] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.loc["j":"k", "cats"] = ["c", "c"] # ix # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.ix["j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.ix[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.ix["j", 0] = "c" self.assertRaises(ValueError, f) # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.ix["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set def f(): df = orig.copy() df.ix["j", :] = ["c", 2] self.assertRaises(ValueError, f) # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.ix["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) def f(): df = orig.copy() df.ix["j":"k", :] = [["c", 2], ["c", 2]] self.assertRaises(ValueError, f) # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.ix["j":"k", 0] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): # different categories -> not sure if this should fail or pass df = orig.copy() df.ix["j":"k", 0] = pd.Categorical( ["b", "b"], categories=["a", "b", "c"]) with tm.assertRaises(ValueError): # different values df = orig.copy() df.ix["j":"k", 0] = pd.Categorical( ["c", "c"], categories=["a", "b", "c"]) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.ix["j":"k", 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with tm.assertRaises(ValueError): df.ix["j":"k", 0] = ["c", "c"] # iat df = orig.copy() df.iat[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.iat[2, 0] = "c" self.assertRaises(ValueError, f) # at # - assign a single value -> exp_single_cats_value df = orig.copy() df.at["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set def f(): df = orig.copy() df.at["j", "cats"] = "c" self.assertRaises(ValueError, f) # fancy indexing catsf = pd.Categorical( ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"]) idxf = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) valuesf = [1, 1, 3, 3, 1, 1, 1] df = pd.DataFrame({"cats": catsf, "values": valuesf}, index=idxf) exp_fancy = exp_multi_row.copy() exp_fancy["cats"].cat.set_categories(["a", "b", "c"], inplace=True) df[df["cats"] == "c"] = ["b", 2] tm.assert_frame_equal(df, exp_multi_row) # set_value df = orig.copy() df.set_value("j", "cats", "b") tm.assert_frame_equal(df, exp_single_cats_value) def f(): df = orig.copy() df.set_value("j", "cats", "c") self.assertRaises(ValueError, f) # Assigning a Category to parts of a int/... column uses the values of # the Catgorical df = pd.DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]}) exp = pd.DataFrame({"a": [1, "b", "b", 1, 1], "b": ["a", "a", "b", "b", "a"]}) df.loc[1:2, "a"] = pd.Categorical(["b", "b"], categories=["a", "b"]) df.loc[2:3, "b"] = pd.Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp) # Series orig = Series(pd.Categorical(["b", "b"], categories=["a", "b"])) s = orig.copy() s[:] = "a" exp = Series(pd.Categorical(["a", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[1] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[s.index > 0] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[[False, True]] = "a" exp = Series(pd.Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s.index = ["x", "y"] s["y"] = "a" exp = Series( pd.Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) tm.assert_series_equal(s, exp) # ensure that one can set something to np.nan s = Series(Categorical([1, 2, 3])) exp = Series(Categorical([1, np.nan, 3])) s[1] = np.nan tm.assert_series_equal(s, exp) def test_comparisons(self): tests_data = [(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])] for data, reverse, base in tests_data: cat_rev = pd.Series(pd.Categorical(data, categories=reverse, ordered=True)) cat_rev_base = pd.Series(pd.Categorical(base, categories=reverse, ordered=True)) cat = pd.Series(pd.Categorical(data, ordered=True)) cat_base = pd.Series(pd.Categorical( base, categories=cat.cat.categories, ordered=True)) s = Series(base) a = np.array(base) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = Series([True, False, False]) tm.assert_series_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = Series([False, False, True]) tm.assert_series_equal(res_rev, exp_rev) res = cat > cat_base exp = Series([False, False, True]) tm.assert_series_equal(res, exp) scalar = base[1] res = cat > scalar exp = Series([False, False, True]) exp2 = cat.values > scalar tm.assert_series_equal(res, exp) tm.assert_numpy_array_equal(res.values, exp2) res_rev = cat_rev > scalar exp_rev = Series([True, False, False]) exp_rev2 = cat_rev.values > scalar tm.assert_series_equal(res_rev, exp_rev) tm.assert_numpy_array_equal(res_rev.values, exp_rev2) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) # categorical cannot be compared to Series or numpy array, and also # not the other way around self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) def f(): cat > "b" self.assertRaises(TypeError, f) cat = Series(Categorical(list("abc"), ordered=False)) def f(): cat > "b" self.assertRaises(TypeError, f) # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) self.assertRaises(TypeError, lambda: cat < "d") self.assertRaises(TypeError, lambda: cat > "d") self.assertRaises(TypeError, lambda: "d" < cat) self.assertRaises(TypeError, lambda: "d" > cat) self.assert_series_equal(cat == "d", Series([False, False, False])) self.assert_series_equal(cat != "d", Series([True, True, True])) # And test NaN handling... cat = Series(Categorical(["a", "b", "c", np.nan])) exp = Series([True, True, True, False]) res = (cat == cat) tm.assert_series_equal(res, exp) def test_cat_equality(self): # GH 8938 # allow equality comparisons a = Series(list('abc'), dtype="category") b = Series(list('abc'), dtype="object") c = Series(['a', 'b', 'cc'], dtype="object") d = Series(list('acb'), dtype="object") e = Categorical(list('abc')) f = Categorical(list('acb')) # vs scalar self.assertFalse((a == 'a').all()) self.assertTrue(((a != 'a') == ~(a == 'a')).all()) self.assertFalse(('a' == a).all()) self.assertTrue((a == 'a')[0]) self.assertTrue(('a' == a)[0]) self.assertFalse(('a' != a)[0]) # vs list-like self.assertTrue((a == a).all()) self.assertFalse((a != a).all()) self.assertTrue((a == list(a)).all()) self.assertTrue((a == b).all()) self.assertTrue((b == a).all()) self.assertTrue(((~(a == b)) == (a != b)).all()) self.assertTrue(((~(b == a)) == (b != a)).all()) self.assertFalse((a == c).all()) self.assertFalse((c == a).all()) self.assertFalse((a == d).all()) self.assertFalse((d == a).all()) # vs a cat-like self.assertTrue((a == e).all()) self.assertTrue((e == a).all()) self.assertFalse((a == f).all()) self.assertFalse((f == a).all()) self.assertTrue(((~(a == e) == (a != e)).all())) self.assertTrue(((~(e == a) == (e != a)).all())) self.assertTrue(((~(a == f) == (a != f)).all())) self.assertTrue(((~(f == a) == (f != a)).all())) # non-equality is not comparable self.assertRaises(TypeError, lambda: a < b) self.assertRaises(TypeError, lambda: b < a) self.assertRaises(TypeError, lambda: a > b) self.assertRaises(TypeError, lambda: b > a) def test_concat(self): cat = pd.Categorical(["a", "b"], categories=["a", "b"]) vals = [1, 2] df = pd.DataFrame({"cats": cat, "vals": vals}) cat2 = pd.Categorical(["a", "b", "a", "b"], categories=["a", "b"]) vals2 = [1, 2, 1, 2] exp = pd.DataFrame({"cats": cat2, "vals": vals2}, index=pd.Index([0, 1, 0, 1])) res = pd.concat([df, df]) tm.assert_frame_equal(exp, res) # Concat should raise if the two categoricals do not have the same # categories cat3 = pd.Categorical(["a", "b"], categories=["a", "b", "c"]) vals3 = [1, 2] df_wrong_categories = pd.DataFrame({"cats": cat3, "vals": vals3}) def f(): pd.concat([df, df_wrong_categories]) self.assertRaises(ValueError, f) # GH 7864 # make sure ordering is preserverd df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"]) df['grade'].cat.set_categories(['e', 'a', 'b']) df1 = df[0:3] df2 = df[3:] self.assert_numpy_array_equal(df['grade'].cat.categories, df1['grade'].cat.categories) self.assert_numpy_array_equal(df['grade'].cat.categories, df2['grade'].cat.categories) dfx = pd.concat([df1, df2]) dfx['grade'].cat.categories self.assert_numpy_array_equal(df['grade'].cat.categories, dfx['grade'].cat.categories) def test_concat_preserve(self): # GH 8641 # series concat not preserving category dtype s = Series(list('abc'), dtype='category') s2 = Series(list('abd'), dtype='category') def f(): pd.concat([s, s2]) self.assertRaises(ValueError, f) result = pd.concat([s, s], ignore_index=True) expected = Series(list('abcabc')).astype('category') tm.assert_series_equal(result, expected) result = pd.concat([s, s]) expected = Series( list('abcabc'), index=[0, 1, 2, 0, 1, 2]).astype('category') tm.assert_series_equal(result, expected) a = Series(np.arange(6, dtype='int64')) b = Series(list('aabbca')) df2 = DataFrame({'A': a, 'B': b.astype('category', categories=list('cab'))}) result =
pd.concat([df2, df2])
pandas.concat
# -*- coding: utf-8 -*- """ Part of slugdetection package @author: <NAME> github: dapolak """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.model_selection import StratifiedShuffleSplit from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from slugdetection import Data_Engineering class Slug_Detection(Data_Engineering): """ Classifies intervals of pressure and temperature data as interval leading to a slug flow or intervals leading to a normal flow. Parameters ---------- well : Spark Data Frame well data frame, includes continuous pressure and temperature data """ def __init__(self, well): super().__init__(well) def jump(self): """ Locates gap in the continuous data in the attribute pd_df, and groups and labels the continuous sets. """ assert hasattr(self, "pd_df"), "Pandas data frame pd_df attribute must exist" assert not self.pd_df.empty, "Pandas data frame cannot be empty" self.pd_df["time_diff"] = self.pd_df["ts"].diff() # Create time difference column # Create 'jump' column, where the value is True if the time difference between the current and previous # row is larger than one minute self.pd_df["jump"] = np.where(self.pd_df["time_diff"] > pd.Timedelta('1 min'), True, False) self.pd_df['count_id'] = self.pd_df["jump"].cumsum() # Group continuous data together by giving it a count id def clean_short_sub(self, min_df_size=300): """ Deletes entries in pandas data frame attribute pd_df that are continuous in time for less than min_df_size Parameters ---------- min_df_size : int (optional) Minimum size of sub data frame that will be considered forward in the analysis (default is 300) """ assert hasattr(self, "pd_df"), "Pandas data frame pd_df attribute must exist" assert not self.pd_df.empty, "Pandas data frame cannot be empty" # Get count of individual count ids. This gives information about how many continuous sets of data exist # within the pd_df attribute counter = self.pd_df.groupby('count_id')['count_id'].count() for i in range(0, len(counter)): if counter.iloc[i] < min_df_size: # Drop sets of continuous data that last for less than min_df_size minutes (default 300) self.pd_df = self.pd_df[self.pd_df.count_id != i] def sub_data(self, **kwargs): """ Creates a dictionary of sub data frame that are continuous on time for over the min_df_size variable Parameters ---------- kwargs min_df_size : int For clean_short_sub method. Minimum size of sub data frame that will be considered forward in the analysis """ assert hasattr(self, "pd_df"), "Pandas data frame pd_df attribute must exist" assert not self.pd_df.empty, "Pandas data frame cannot be empty" self.sub_df_dict = {} # Create sub_df_dict attribute which will store sub data frames of continuous data self.jump() # Group continuous data together self.clean_short_sub() # Drop sets of continuous data that are too short (min_df_size) if "min_df_size" in kwargs.keys(): self.clean_short_sub(min_df_size=kwargs["min_df_size"]) self.jump() # Get new, ordered count ids # Fill sub_df_dict attribute with appropriate size continuous data sets for i in range(self.pd_df["count_id"].max() + 1): temp = pd.DataFrame() mask = self.pd_df["count_id"] == i # Mask values that equate the current count id temp = self.pd_df[mask].reset_index() # Reset indices self.sub_df_dict[i] = temp # Save data frame to to dictionary return def slug_check(self, slug_idx, key, dict_slug_def={"time" :[60, 240], "interval" :[25, 25], "value_diff" :[2.0, 2.0]}): """ From a list of indices of peaks in the data, return a list of of indices of first slug, based on the time since the last slug peak, the time between slug peaks and the value difference between slug peaks Parameters ---------- slug_idx : list of int List of indices of all the peaks thought to be slugs occurring in the current data frame in the sub_df_dict attribute key : int Index of current database in sub_df_dict dict_slug_def : dict (optional Dictionary of values to define slugs, such a minimum time sine last first slug, minimum interval between two slug peaks, maximum WHP difference between peaks Returns ------- first_slug_idx : list of int List of indices of first slug peaks for current data frame in the dictionary attribute sub_df_dict """ curr_df = self.sub_df_dict[key] # Get current data frame from sub_df_dict dictionary first_slug_idx = [-300] # Create first_slug index list. Set first value to -300 # Variables to check if slugging period has been continuous first = False # First slug has not occurred yet last_slug = 0 # Index of last occurring slug # From slug indices lis, create small lists of 3 consecutive slugs indices slug_check = [slug_idx[i:i + 3] for i in range(0, len(slug_idx) - 2, 1)] # loop through list of list of three indices for idx in slug_check: # if gap of 240 minutes since last first slug AND slugs haven't been continuous, move to next condition if (abs(first_slug_idx[-1] - idx[0]) < dict_slug_def['time'][1]) | ( (abs(last_slug - idx[0]) < dict_slug_def['time'][0]) & first): last_slug = idx[0] continue # continue to next index list # if less than 20 minutes between two slug, move to next condition elif (abs(idx[0] - idx[1]) > dict_slug_def['interval'][0]) | ( abs(idx[1] - idx[0]) > dict_slug_def['interval'][1]): continue # continue to next index list # if less than 2 bar difference between slugs (we want similar flow pattern), move to next condition elif (abs(curr_df["WH_P"].iloc[idx[0]] - curr_df["WH_P"].iloc[idx[1]]) > dict_slug_def['value_diff'][0]) | ( abs(curr_df["WH_P"].iloc[idx[1]] - curr_df["WH_P"].iloc[idx[2]]) > dict_slug_def['value_diff'][1]): continue # continue to next index list else: if len(first_slug_idx) == 1: first = True # Set first to True, when the first slug of the sub data frame occurs first_slug_idx.append(idx[0]) # Store first_slug index value first_slug_idx.pop(0) # Drop dummy value set in the first slug index list return first_slug_idx def label_slugs(self, slug_diff=3, **kwargs): """ Finds slug peaks in each data frame in the sub_df_dict attribute and creates the list of indices of slugs. Uses the slug_check method to then compute the list of indices of first slugs occurences, per data frame in the sub_df_dict attribute. Parameters ---------- slug_diff : float (optional) Minimum differential value above which an increase in WHP is assumed to be a slug peak (default is 3.0). kwargs dict_slug_def : dict For slug_check method Returns ------- first_slug : list of list of int or list of list of datetime List containing the sub list of first slug indices as computed by the method slug_check per sub data frames in the dictionary attribute slugs : list of list of int or list of list of datetime List containing the sub list of slug peaks indices per sub data frames in the dictionary attribute """ assert hasattr(self, "sub_df_dict"), "Sub_df_dict attribute must have been created" first_slug = [] # Create list to store first slug indices slugs = [] # Create list to store slug peaks indices for key in self.sub_df_dict: curr_df = self.sub_df_dict[key].copy() # Get copy of current df out of # Compute WHP gradient in new column curr_df["WH_P_diff"] = curr_df["WH_P"].diff() # Label increasing trends as True and decreasing trends as False curr_df["trend"] = np.where(curr_df["WH_P_diff"] > 0, True, False) # Give the consecutive sets of WHP trend an id curr_df["categories"] = (curr_df["trend"] != curr_df["trend"].shift()).cumsum() # Calculate the cumulative sum of the WHP trend at each id curr_df["WH_P_diff_total"] = curr_df.groupby("categories")["WH_P_diff"].cumsum() # Label slug peaks as large increases (> slug_diff) immediately followed by a decrease curr_df["point_label"] = np.where((curr_df["WH_P_diff_total"] > slug_diff) & (curr_df["WH_P_diff_total"].shift(periods=-1) < 0), True, False) # Store indices of slug peaks to list slug_index = curr_df.index[curr_df["point_label"] == True].tolist() # From slug_check method, compute first slug indices first = self.slug_check(slug_index, key) if 'dict_slug_def' in kwargs.keys(): first = self.slug_check(slug_index, key, dict_slug_def=kwargs['dict_slug_def']) first_slug.append(first) # Store first slug indices for current df to list slugs.append(slug_index) # Store slug peaks indices for current df to list return first_slug, slugs def format_data(self, first_slug, size_list=240, max_clean_count=10000): """ Formats data for classification algorithms. Splits down the sub_df_dict attribute's data frames into size_list sized data frame. Data frames containing first slugs, as labelled in the method label_slugs, are split right before the occurrence of a first slug. Parameters ---------- first_slug : list of list of int List containing the sub list of first slug indices as computed by the method slug_check per sub data frames in the dictionary attribute size_list : int (optional) Size of data frame to use for classification (default is 240) max_clean_count : int (optional) Maximum number of data frames to create that lead to a normal, clean, flow. This is known by whether the first slug list is empty (default is 10000) """ self.label = np.array([]) # Create label array to store labels of data frames self.df_list = [] # Create data frame list to store size_list sized data frames cnt = 0 # Counter, for max_clean_count for df, f in zip(self.sub_df_dict.values(), first_slug): if not f: # If first slug list is empty (no slugs occurring in current data frame) if len(df) >= size_list: # Check that data frame has enough data points if cnt < max_clean_count: # Drop last hour of data. It is not known if it would have led to a slug or normal flow df = df[:-60] # Compute number of splits that can be performed on the sub data frame n_splits = int(np.ceil(len(df) / size_list)) if n_splits > 1: # Compute the overlap value if any overlap = int(np.ceil(((size_list * (n_splits - 1)) - (len(df) - size_list)) / ( n_splits - 1))) else: overlap = 0 # Add data frames of size size_list to df_list self.df_list.extend([df[i: i + size_list] for i in range(0, (len(df) - (size_list - overlap)), ( size_list - overlap))]) # Append corresponding labels to label array for i in range(0, (len(df) - (size_list - overlap)), (size_list - overlap)): self.label = np.append(self.label, [0]) cnt += 1 # Count number of clean/normal intervals added else: # If first slugs are present in current data frame for first in f: if first - size_list >= 0: # Check there's sufficient number of points before first slug self.df_list.append(df[first - size_list: first]) # Add data frames to df_list self.label = np.append(self.label, [1]) # Append corresponding labels to label array return def feature_vector(self, split_num=5, time_predict=60, percentage_significance=0.1, standardise=True): """ Transform classification data into feature vectors. Parameters ---------- split_num : int (optional) Number of time to split the data frame (default is 5) time_predict : int (optional) Number of minutes to ignore at the end of the interval. This number will also be the number of minutes the classifier is trained to recognize a slug before it occurs (default is 60) percentage_significance : float (optional) For the significant feature, percentage value for which to state an increase/decrease in the data was significant compare to the original value. Must be below 1 (default is 0.10) standardise : bool (optional) Whether to standardise the data or not (default is True) """ assert percentage_significance <= 1, "percentage_significance must be a decimal/percentage" assert time_predict < len(self.df_list[0]), "Time to prediction before must be less than data frame size" for k in range(len(self.df_list)): clean_df = self.df_list[k].copy() # Get copy of current current data frame if standardise: # standardise the data clean_df = self.standardise(clean_df) clean_df = clean_df[:-time_predict] # Ignore data within prediction time, default 1 hour clean_df = clean_df.drop("WH_choke", axis=1) # Drop choke data (always opened) self.features = ["WH_P", "DH_P", "WH_T", "DH_T"] # Update features list attribute interval = int(len(clean_df) / split_num) # Get window size clean = [] # Create empty list to store current data frames feature if k == 0: header = [] # Create empty list to store features' names for i in range(split_num): low = i * interval # Lower bound of interval high = (i + 1) * interval # Upper bound of interval for f in self.features: if k == 0: header.append(("mean_" + f + "_" + str(i))) # Store mean feature header name header.append(("std_" + f + "_" + str(i))) # Sotre std feature header name clean.append(clean_df[f][low:high].mean()) # Append interval's mean feature value clean.append(clean_df[f][low:high].std()) # Append interval's std feature value if k == 0: self.X = pd.DataFrame([clean], columns=[*header]) # Create new data frame X to store feature vectors else: dic = dict(zip(header, clean)) self.X = self.X.append(dic, ignore_index=True) # Append data from current data frame to X attribute for i in range(split_num - 1): for f in self.features: # Get delta mean feature self.X["diff_mean_" + f + "_" + str(i) + "_" + str(i + 1)] = self.X["mean_" + f + "_" + str(i + 1)] - \ self.X["mean_" + f + "_" + str(i)] # Get delta std feature self.X["diff_std_" + f + "_" + str(i) + "_" + str(i + 1)] = self.X["std_" + f + "_" + str(i + 1)] - \ self.X["std_" + f + "_" + str(i)] # Get mean trend feature (1 increase, 0 decrease) self.X["diff_mean_trend_" + f + "_" + str(i) + "_" + str(i + 1)] = np.where( self.X["diff_mean_" + f + "_" + str(i) + "_" + str(i + 1)] > 0, 1, 0) # Get std trend feature self.X["diff_std_trend_" + f + "_" + str(i) + "_" + str(i + 1)] = np.where( self.X["diff_std_" + f + "_" + str(i) + "_" + str(i + 1)] > 0, 1, 0) # Get significance delta feature # Significant delat is a difference of more than percentage_significance, default 10% self.X["diff_mean_signif_" + f + "_" + str(i) + "_" + str(i + 1)] = np.where( self.X["diff_mean_" + f + "_" + str(i) + "_" + str(i + 1)] > self.X[ ("mean_" + f + "_" + str(i))] * percentage_significance, 1, 0) self.X["diff_std_signif_" + f + "_" + str(i) + "_" + str(i + 1)] = np.where( self.X["diff_std_" + f + "_" + str(i) + "_" + str(i + 1)] > self.X[ ("std_" + f + "_" + str(i))] * percentage_significance, 1, 0) # Get count of significant of increases and count of significant decreases features for f in self.features: binary_mean_diff_col_names = [] binary_mean_trend_col_names = [] binary_std_diff_col_names = [] binary_std_trend_col_names = [] for i in range(split_num - 1): binary_mean_trend_col_names.append("diff_mean_trend_" + f + "_" + str(i) + "_" + str(i + 1)) binary_mean_diff_col_names.append("diff_mean_signif_" + f + "_" + str(i) + "_" + str(i + 1)) binary_std_trend_col_names.append("diff_std_trend_" + f + "_" + str(i) + "_" + str(i + 1)) binary_std_diff_col_names.append("diff_std_signif_" + f + "_" + str(i) + "_" + str(i + 1)) # Count of significant increases self.X["num_mean_" + f + "_sign_incr"] = self.X[binary_mean_diff_col_names].sum(axis=1).where( self.X[binary_mean_trend_col_names] == 1, 0) self.X["num_std_" + f + "_sign_incr"] = self.X[binary_std_diff_col_names].sum(axis=1).where( self.X[binary_std_trend_col_names] == 1, 0) # Count of significant decreases self.X["num_mean_" + f + "_sign_decr"] = self.X[binary_mean_diff_col_names].sum(axis=1).where( self.X[binary_mean_trend_col_names] == 0, 0) self.X["num_std_" + f + "_sign_decr"] = self.X[binary_std_diff_col_names].sum(axis=1).where( self.X[binary_std_trend_col_names] == 0, 0) return def split_data(self, test_size=0.3): """ Split the data into a training and testing set Parameters ---------- test_size : float (optional) Percentage of the data to include in the training set (default is 0.3) """ assert (test_size <= 1), "Test size must be a percentage, less than 1" sss = StratifiedShuffleSplit(n_splits=2, test_size=test_size, random_state=0) # Instantiate Shuffle Split sss.get_n_splits(self.X, self.label) train_index, test_index = sss.split(self.X, self.label) # Split data # Store train and test data into respective X and y attributes self.X_train, self.X_test = self.X.iloc[train_index[0]], self.X.iloc[test_index[1]] self.y_train, self.y_test = self.label[train_index[0]], self.label[test_index[1]] return def RF_train(self, n_estimators=15, max_depth=None, bootstrap=True, **kwargs): """ Train the Random Forest model Parameters ---------- n_estimators : int Number of Decision Trees in Random Forest model (optional, default is 15) max_depth : int Maximum depth of the Decisions Trees in Random Forest model (optional, default is None bootstrap : bool Whether bootstrap samples are used when building decision trees. If False, the whole datset is used to build each tree in the Random Forest (optional, default is True) kwargs test_size : float For split_data method, percentage repartition of testing data """ test_size = 0.3 if "test_size" in kwargs.keys(): test_size = kwargs["test_size"] self.split_data(test_size=test_size) # Instantiate RF model self.rf = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, bootstrap=bootstrap) self.rf.fit(self.X_train, self.y_train) # Fit model to RF model pred_features = self.rf.feature_importances_ # Get features scores return pred_features def feature_selection(self, feature_score, top_n=15): """ Selects the top_n most important features from the feature_score list Parameters ---------- feature_score : list of floats List of feature scores, in order. As produced by the RF_train method top_n : int Number of features to return Returns ------- top_feature : list of str List containing the names of the top_n features """ assert (len(feature_score) == len(self.X.columns)), "Feature numbers must be the same in both lists" from collections import namedtuple feature_s = [] # Empty list to store feature score and feature name Feature = namedtuple('Feature', 'name score') # New empty tuple format for f, s in zip(self.X.columns, feature_score): feature_s.append(Feature(f, s)) # Store feature score with feature names feature_ranked = sorted(feature_s, key=lambda x: getattr(x, 'score'), reverse=True) # Sort features by score top_feature = [] for i in range(top_n): top_feature.append(feature_ranked[i][0]) # Get list of names of top top_n features return top_feature def RF_predict(self, true_label=True, **kwargs): """ Predict data labels from trained Random Forest model Parameters ---------- true_label : bool (optional) Whether the data used has true labels (default is True) kwargs X_test : Pandas DataFrame For user, if additional data needs to be predicted. Data frame needs to be feature vector format y-test : Pandas Series or Numpy array For user, labels of inputted X_test data Returns ------- pred : array prediction labels for the test data score : float Accuracy score of the predictions, if true_label = True cf : array Confusion matrix, as created by Scikit Learn's Confusion matrix on the accuracy of the results, if true_label = True """ # If new data is passed to be classified if "X_test" in kwargs.keys(): self.X_test = kwargs["X_test"] pred = self.rf.predict(self.X_test) # Predict labels of data if true_label: # If the true labels are known if "y_test" in kwargs.keys(): self.y_test = kwargs["y_test"] # if new true labels are passed assert (len(self.y_test) == len(self.X_test)), "X and y must be the same length" # Compute prediction score and confusion matrix score = self.rf.score(self.X_test, self.y_test) cf = confusion_matrix(self.y_test, pred) return pred, score, cf else: return pred def LogReg_train(self, top_features=[], C=0.01, max_iter=50, split=True, **kwargs): """ Train Logistics Regression model Parameters ---------- top_features : list of str (optional) List of the top features names. If list not empty, the Logistics Regression model will only be trained using the listed features. (default is [] meaning all features) C : float (optional) Regularization parameter for Logitics Regression (default is 0.01) max_iter : int (optional) Maximum iteration parameter for Logistics Regression (default is 50) split : bool True for new split, False to use same split as RF model was trained on kwargs test_size : float For split_data method, percentage repartition of testing data """ # Split data into a training and testing set if new split is required if split: test_size = 0.3 if "test_size" in kwargs.keys(): test_size = kwargs["test_size"] self.split_data(test_size=test_size) if len(top_features) != 0: # If top features selection are passed self.logreg_features = top_features # Store top features as an attribute self.X_train = self.X_train[[*self.logreg_features]] # Update feature vector selection # Instantiate and fit Logistics Regression model to training data self.log = LogisticRegression(C=C, max_iter=max_iter) self.log.fit(self.X_train, self.y_train) return def LogReg_pred(self, true_label=True, **kwargs): """ Predict data labels from trained Logistics Regression model Parameters ---------- true_label : bool (optional) Whether the data used has true labels (default is True) kwargs X_test : Pandas DataFrame For user, if additional data needs to be predicted. Data frame needs to be feature vector format y-test : Pandas Series or Numpy array For user, labels of inputted X_test data Returns ------- pred : array prediction labels for the test data proba : array prediction probababilities for the test data score : float Accuracy score of the predictions, if true_label = True cf : array Confusion matrix, as created by Scikit Learn's Confusion matrix on the accuracy of the results, if true_label = True """ # If new data is passed to be classified if "X_test" in kwargs.keys(): self.X_test = kwargs["X_test"] # If only top features are used if hasattr(self, "logreg_features"): self.X_test = self.X_test[[*self.logreg_features]] # Predict labels and probabilities of data log_pred = self.log.predict(self.X_test) proba = self.log.predict_proba(self.X_test) if true_label: # If the true labels are known if "y_test" in kwargs.keys(): self.y_test = kwargs["y_test"] # if new true labels are passed # Compute prediction score and confusion matrix score = self.log.score(self.X_test, self.y_test) cf = confusion_matrix(self.y_test, log_pred) return log_pred, proba, score, cf else: return log_pred, proba def data_prep(self, **kwargs): """ Quick data preparation from raw pandas data frame to feature vectors Parameters ---------- kwargs slug_diff : float Argument of label_slugs method. Minimum WHP differential value to be assumed a slug peak size_list : int Argument of format_data method. Size of data frame to use for classification max_clean_count : int Argument of format_data method. Maximum number of data frames to create that lead to a normal flow. split_num : int Argument of feature_vector method. Number of splits the data frame time_predict : int Argument of feature_vector method. Number of minutes before slug flow. percentage_significance : float Argument of feature_vector method. For the significant feature, percentage value for which to state an increase/decrease in the data was significant compare to the original value. standardise : bool Argument of feature_vector method. Whether to standardise the data or not. """ assert hasattr(self, "pd_df"), "Pandas data frame pd_df attribute must exist" assert not self.pd_df.empty, "Pandas data frame cannot be empty" self.sub_data(**kwargs) # Split original data frame into smaller continuous data frames slug_diff = 3 if "slug_diff" in kwargs.keys(): slug_diff = kwargs["slug_diff"] first_idx, slug_idx = self.label_slugs(slug_diff=slug_diff) # Get first slug indices list size_list = 300 if "size_list" in kwargs.keys(): size_list = kwargs["size_list"] max_clean_count = 10000 if "max_clean_count" in kwargs.keys(): max_clean_count = kwargs["max_clean_count"] # Format data into size_list (default 300) long data frames, with label list self.format_data(first_idx, size_list=size_list, max_clean_count=max_clean_count) # check for kwargs split_num = 5 if "split_num" in kwargs.keys(): split_num = kwargs["window_size"] time_predict = 60 if "time_predict" in kwargs.keys(): time_predict = kwargs["time_predict"] percentage_significance = 0.1 if "percentage_significance" in kwargs.keys(): percentage_significance = kwargs["percentage_significance"] standardise = True if "standardise" in kwargs.keys(): standardise = kwargs["standardise"] # Create data feature vectors self.feature_vector(split_num=split_num, time_predict=time_predict, percentage_significance=percentage_significance, standardise=standardise) return def plot_raw_slugs(self, variables=["WH_P", "DH_P"], scaled=True, n_examples=10, first_sample=10, **kwargs): """ Plotting functions to plot a set of n_examples raw sub_df_dict data frame, showing the slugs peaks and first slugs value. Parameters ---------- variables : list of str (optional) Names of variables to be plotted (default is ["WH_P", "DH_P"]) scaled : bool (optional) Whether to scale variables to WH_P (default is True) n_examples : int (optional) Number of examples to plot (default is 10) first_sample : int (optional) Index of the sub_df_dict to start plotting from (default is 10) kwargs slug_diff : float Argument of label_slugs method. Minimum WHP differential value to be assumed a slug peak Returns ------- : Figure raw slugs figure """ assert hasattr(self, "pd_df"), "Pandas data frame pd_df attribute must exist" assert not self.pd_df.empty, "Pandas data frame cannot be empty" for v in variables: assert (v in self.pd_df.columns) # Assert variables name exist x_list = [x for x in range(first_sample, first_sample + n_examples)] # Create list of data frames to plot self.sub_data(**kwargs) # Split data frame into smaller continuous data frames # check for kwargs slug_diff = 3 if "slug_diff" in kwargs.keys(): slug_diff = kwargs["slug_diff"] f, s = self.label_slugs(slug_diff=slug_diff) # Get first slug indexes fig, ax = plt.subplots(n_examples, 1, figsize=(20, 20)) # Create plot with the n_examples plt.tight_layout() for i, x in enumerate(x_list): for v in variables: if (v != "WH_P") & scaled: # If variables are to be scaled to WHP ax[i].plot(self.sub_df_dict[x]["ts"], self.sub_df_dict[x][v] - self.sub_df_dict[x][v][0] + 20, "-", label=str(v)) else: ax[i].plot(self.sub_df_dict[x]["ts"], self.sub_df_dict[x][v], "-", label=str(v)) # Plot slug peaks in red ax[i].plot(self.sub_df_dict[x]["ts"][s[x]], self.sub_df_dict[x]["WH_P"][s[x]], "ro", label="Slug peaks") # Plot first slug in magenta ax[i].plot(self.sub_df_dict[x]["ts"][f[x]], self.sub_df_dict[x]["WH_P"][f[x]], "m*", markersize=20, label="First slug") # Plot start of interval in cyan ax[i].plot(self.sub_df_dict[x]["ts"][f[x]] -
pd.Timedelta('5 h')
pandas.Timedelta
import numpy as np from numpy import where from flask import Flask, request, jsonify, render_template import pandas as pd from sklearn.ensemble import IsolationForest from pyod.models.knn import KNN import json from flask import send_from_directory from flask import current_app app = Flask(__name__) class Detect: def __init__(self, file, non_num): self.file = file self.non_num = non_num def IQR(self): # anomaly=pd.DataFrame() data = pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data.dropna(axis=0,inplace=True) # data=data.select_dtypes(include=['float64','int64']) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 IQR_Out = data[((data < (Q1 - 1.5 * IQR)) |(data > (Q3 + 1.5 * IQR))).any(axis=1)] IQR_Out = non_num.join(IQR_Out, how='inner') IQR_Out.to_csv(r'IQR_Outlier.csv') # IQR Method def isolation(self): anomaly=pd.DataFrame() data_n=pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data_n.dropna(axis=0,inplace=True) # data_n=data_n.select_dtypes(include=['float64','int64']) model = IsolationForest(n_estimators=50, max_samples=500, contamination=.01, bootstrap=False, n_jobs=1, random_state=1, verbose=0, warm_start=False).fit(data_n) data_n['anomaly_score'] = model.predict(data_n) anomaly=data_n[data_n['anomaly_score']==-1] anomaly = non_num.join(anomaly, how='inner') anomaly.to_csv("outlierss_isolation.csv") # Isolation forest Method def mcd(self): anomaly=pd.DataFrame() data=
pd.DataFrame(self.file)
pandas.DataFrame
import pandas as pd import tasks from . import base from models import TimeModel from datetime import datetime, timedelta from azrael import SnapchatReporter from typing import Optional class SnapchatReportFetcher(base.ReportFetcher[tasks.FetchSnapchatReportTask]): api_start_date: Optional[datetime] api_end_date: Optional[datetime] def fetch(self): self.task.api.ad_account_id = self.task.ad_account_id self.task.campaigns = self.task.api.get_campaigns() self.task.ad_squads = self.task.api.get_ad_squads() reporter = SnapchatReporter(api=self.task.api) self.api_start_date = reporter.clamped_date_in_account_timezone( date=self.task.report_start_date, now=TimeModel.shared.utc_now ) self.api_end_date = reporter.clamped_date_in_account_timezone( date=self.task.report_end_date + timedelta(days=1), now=TimeModel.shared.utc_now ) print(f'Actual start: {self.api_start_date}') print(f'Actual end: {self.api_end_date}') start_day_offest = (self.api_start_date - self.task.report_start_date).days self.task.report_start_date = self.api_start_date - timedelta(days=start_day_offest, hours=self.api_start_date.hour) self.task.report_end_date = self.api_end_date - timedelta(days=start_day_offest + 1, hours=self.api_end_date.hour) class SnapchatCampaignsReportFetcher(SnapchatReportFetcher): def fetch(self): super().fetch() if self.task.report_start_date > self.task.report_end_date: return reporter = SnapchatReporter(api=self.task.api) df = pd.DataFrame() for c in self.task.campaigns: report = reporter.get_campaign_stats( campaign_id=c['id'], start_date=self.api_start_date, end_date=self.api_end_date, columns=self.task.fetch_columns, swipe_up_attribution_window=self.task.swipe_up_attribution_window, view_attribution_window=self.task.view_attribution_window ) df = df.append(report, sort=False) df[self.task.fetched_currency_column] = self.task.api.ad_account['currency'] self.task.report = df class SnapchatAdSquadsReportFetcher(SnapchatReportFetcher): def fetch(self): super().fetch() if self.task.report_start_date > self.task.report_end_date: return reporter = SnapchatReporter(api=self.task.api) df = pd.DataFrame() for c in self.task.campaigns: report = reporter.get_adsquad_stats( campaign_id=c['id'], start_date=self.api_start_date, end_date=self.api_end_date, columns=self.task.fetch_columns, swipe_up_attribution_window=self.task.swipe_up_attribution_window, view_attribution_window=self.task.view_attribution_window ) df = df.append(report, sort=False) df[self.task.fetched_currency_column] = self.task.api.ad_account['currency'] self.task.report = df class SnapchatAdsReportFetcher(SnapchatReportFetcher): def fetch(self): super().fetch() if self.task.report_start_date > self.task.report_end_date: return self.task.ads = self.task.api.get_ads() reporter = SnapchatReporter(api=self.task.api) df =
pd.DataFrame()
pandas.DataFrame
import datetime import os import numpy as np import pandas as pd import us_state_abbrev def LoadAllJhuData(path=None): if not path: path = os.path.join(os.path.dirname(__file__), 'COVID-19/csse_covid_19_data/csse_covid_19_daily_reports') all_dfs = {} for f in sorted(os.listdir(path)): full_path = os.path.join(path, f) if not os.path.isfile(full_path): continue if not f.endswith('.csv'): continue df =
pd.read_csv(full_path)
pandas.read_csv
#encoding=utf-8 import numpy as np import pandas as pd from activation_functions import one_hot from build_nn import BasePath, L_layer_model,predict import pickle def get_data_from_kaggle(filePath): """ :param filePath: :return: X -- input data, shape of (number of features, number of examples) Y -- the true label of X, shape of (number of class, number of examples) """ my_frame =
pd.read_csv(filePath)
pandas.read_csv
# -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd import platform import unittest from itertools import combinations, combinations_with_replacement, product from numba.core.config import IS_32BITS from numba.core.errors import TypingError from sdc.tests.test_base import TestCase from sdc.tests.test_utils import (skip_numba_jit, _make_func_from_text, gen_frand_array) def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) class TestSeries_ops(TestCase): def test_series_operators_int(self): """Verifies using all various Series arithmetic binary operators on two integer Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): # integers to negative powers are not allowed if (operator == '**' and np.any(data_right < 0)): data_right = np.abs(data_right) with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_int_scalar(self): """Verifies using all various Series arithmetic binary operators on an integer Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] scalar_values = [1, -1, 0, 3, 7, -5] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) # integers to negative powers are not allowed if (operator == '**' and np.any(right < 0)): right = abs(right) with self.subTest(left=left, right=right, operator=operator): # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(left, right), test_impl(left, right), check_dtype=False) def test_series_operators_float(self): """Verifies using all various Series arithmetic binary operators on two float Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_float_scalar(self): """Verifies using all various Series arithmetic binary operators on a float Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] scalar_values = [1., -1., 0., -0., 7., -5.] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) with self.subTest(left=left, right=right, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar), check_dtype=False) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 A1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') A2 = A1.copy(deep=True) B = pd.Series(np.ones(n - 1), name='B') hpat_func(A1, B) test_impl(A2, B) pd.testing.assert_series_equal(A1, A2) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace_scalar(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 S1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') S2 = S1.copy(deep=True) hpat_func(S1, 1) test_impl(S2, 1) pd.testing.assert_series_equal(S1, S2) @skip_numba_jit('operator.neg for SeriesType is not implemented in yet') def test_series_operator_neg(self): def test_impl(A): return -A hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_operators_comp_numeric(self): """Verifies using all various Series comparison binary operators on two integer Series with various indexes""" n = 11 data_left = [1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0] data_right = [3, 2, -2, 1, 4, 1, -5, 6, 6, 3, -1] dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]} comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for dtype, index_data in dtype_to_index.items(): with self.subTest(operator=operator, index_dtype=dtype, index=index_data): A = pd.Series(data_left, index=index_data) B = pd.Series(data_right, index=index_data) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operators_comp_numeric_scalar(self): """Verifies using all various Series comparison binary operators on an integer Series and scalar values""" S = pd.Series([1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0]) scalar_values = [2, 2.0, -3, np.inf, -np.inf, np.PZERO, np.NZERO] comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for scalar in scalar_values: with self.subTest(left=S, right=scalar, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar)) def test_series_operators_comp_str_scalar(self): """Verifies using all various Series comparison binary operators on an string Series and scalar values""" S = pd.Series(['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]) scalar_values = ['a', 'aa', 'ab', 'ba', ''] comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for scalar in scalar_values: with self.subTest(left=S, right=scalar, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar)) @skip_numba_jit def test_series_operators_inplace_array(self): def test_impl(A, B): A += B return A hpat_func = self.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) @skip_numba_jit('Functionally test passes, but in old-style it checked fusion of parfors.\n' 'TODO: implement the same checks in new-pipeline') def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) # self.assertEqual(count_parfor_REPs(), 1) @skip_numba_jit('Functionally test passes, but in old-style it checked fusion of parfors.\n' 'TODO: implement the same checks in new-pipeline') def test_series_fusion2(self): def test_impl(A, B): S = B + 2 if A.iat[0] == 0: S = A + 1 return S + B hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) # self.assertEqual(count_parfor_REPs(), 3) def test_series_operator_add_numeric_scalar(self): """Verifies Series.operator.add implementation for numeric series and scalar second operand""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', 'b', 'b', 'cccc', 'dd', 'ddd']} int_scalar = 24 for dtype, index_data in dtype_to_index.items(): with self.subTest(index_dtype=dtype, index=index_data): if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n, dtype=np.int64), index=index_data) else: A = pd.Series(np.arange(n), index=index_data) result = hpat_func(A, int_scalar) result_ref = test_impl(A, int_scalar) pd.testing.assert_series_equal(result, result_ref, check_dtype=False, check_names=False) float_scalar = 24.0 for dtype, index_data in dtype_to_index.items(): with self.subTest(index_dtype=dtype, index=index_data): if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n, dtype=np.int64), index=index_data) else: A = pd.Series(np.arange(n), index=index_data) ref_result = test_impl(A, float_scalar) result = hpat_func(A, float_scalar) pd.testing.assert_series_equal(result, ref_result, check_dtype=False, check_names=False) def test_series_operator_add_numeric_same_index_default(self): """Verifies implementation of Series.operator.add between two numeric Series with default indexes and same size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), dtype=dtype_left) B = pd.Series(np.arange(n)**2, dtype=dtype_right) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) @skip_numba_jit def test_series_operator_add_numeric_same_index_numeric(self): """Verifies implementation of Series.operator.add between two numeric Series with the same numeric indexes of different dtypes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), index=np.arange(n, dtype=dtype_left)) B = pd.Series(np.arange(n)**2, index=np.arange(n, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) def test_series_operator_add_numeric_same_index_numeric_fixme(self): """ Same as test_series_operator_add_same_index_numeric but with w/a for the problem. Can be deleted when the latter is fixed """ def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 index_dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(index_dtypes_to_test, 2): # FIXME: skip the sub-test if one of the dtypes is float and the other is integer if not (np.issubdtype(dtype_left, np.integer) and np.issubdtype(dtype_right, np.integer) or np.issubdtype(dtype_left, np.float) and np.issubdtype(dtype_right, np.float)): continue with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), index=np.arange(n, dtype=dtype_left)) B = pd.Series(np.arange(n)**2, index=np.arange(n, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) def test_series_operator_add_numeric_same_index_str(self): """Verifies implementation of Series.operator.add between two numeric Series with the same string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 A = pd.Series(np.arange(n), index=['a', 'c', 'e', 'c', 'b', 'a', 'o']) B = pd.Series(np.arange(n)**2, index=['a', 'c', 'e', 'c', 'b', 'a', 'o']) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_int(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal integer indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_str(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = ['', '', 'aa', 'aa', 'ae', 'ae', 'b', 'ccc', 'cccc', 'oo', 's'] index_B = ['', '', 'aa', 'aa', 'cc', 'cccc', 'e', 'f', 'h', 'oo', 's'] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) @skip_numba_jit('TODO: fix Series.sort_values to handle both None and '' in string series') def test_series_operator_add_numeric_align_index_str_fixme(self): """Same as test_series_operator_add_align_index_str but with None values in string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = ['', '', 'aa', 'aa', 'ae', 'b', 'ccc', 'cccc', 'oo', None, None] index_B = ['', '', 'aa', 'aa', 'cccc', 'f', 'h', 'oo', 's', None, None] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_other_dtype(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal integer indexes of different dtypes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 A = pd.Series(np.arange(3*n), index=np.arange(-n, 2*n, 1, dtype=np.int64)) B = pd.Series(np.arange(3*n)**2, index=np.arange(0, 3*n, 1, dtype=np.float64)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_diff_series_sizes(self): """Verifies implementation of Series.operator.add between two numeric Series with different sizes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) size_A, size_B = 7, 25 A = pd.Series(np.arange(size_A)) B = pd.Series(np.arange(size_B)**2) result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref, check_dtype=False, check_names=False) def test_series_operator_add_align_index_int_capacity(self): """Verifies implementation of Series.operator.add and alignment of numeric indexes of large size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 20000 np.random.seed(0) index1 = np.random.randint(-30, 30, n) index2 = np.random.randint(-30, 30, n) A = pd.Series(np.random.ranf(n), index=index1) B = pd.Series(np.random.ranf(n), index=index2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_align_index_str_capacity(self): """Verifies implementation of Series.operator.add and alignment of string indexes of large size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 2000 np.random.seed(0) valid_ids = ['', 'aaa', 'a', 'b', 'ccc', 'ef', 'ff', 'fff', 'fa', 'dddd'] index1 = [valid_ids[i] for i in np.random.randint(0, len(valid_ids), n)] index2 = [valid_ids[i] for i in np.random.randint(0, len(valid_ids), n)] A = pd.Series(np.random.ranf(n), index=index1) B = pd.Series(np.random.ranf(n), index=index2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_str_same_index_default(self): """Verifies implementation of Series.operator.add between two string Series with default indexes and same size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) A = pd.Series(['a', '', 'ae', 'b', 'cccc', 'oo', None]) B =
pd.Series(['b', 'aa', '', 'b', 'o', None, 'oo'])
pandas.Series
import pandas as pd # Library to read and write the data in structure format import numpy as np # Library to deal with vector, array and matrices import requests # Library to read APIs import re # Library for regular expression import json # Library to read and write JSON file from bs4 import BeautifulSoup # Library for web scraping ####################################### APIs to be scrapped to getting real time Corna data ############################ moh_link = "https://www.mohfw.gov.in/" url_state = "https://api.covid19india.org/state_district_wise.json" data_data = "https://api.covid19india.org/data.json" travel_history="https://api.covid19india.org/travel_history.json" raw_data="https://api.covid19india.org/raw_data.json" class COVID19India(object): def __init__(self): self.moh_url = moh_link # Ministry of Health and Family welfare website self.url_state = url_state # districtwise data self.data_url = data_data # All India data ==> Statewise data, test data, timeseries data etc self.travel_history_url=travel_history # Travel history of Patient self.raw_data_url=raw_data def __request(self, url): content=requests.get(url).json() return content def moh_data(self): url = self.moh_url df = pd.read_html(url)[-1].iloc[:-1] del df['S. No.'] cols = df.columns.values.tolist() return df def statewise(self): data=self.__request(self.data_url) # delta=pd.DataFrame(data.get('key_values')) statewise=pd.DataFrame(data.get('statewise')) # statewise=pd.concat([pd.DataFrame(data.get('statewise')),pd.DataFrame([i.get('delta') for i in data.get('statewise')])],axis=1) # del statewise["delta"] cases_time_series=pd.DataFrame(data.get('cases_time_series')) tested=pd.DataFrame(data.get('tested')) return(statewise,cases_time_series,tested) def state_district_data(self): state_data = self.__request(self.url_state) key1 = state_data.keys() Values = [] for k in key1: key2 = state_data[k]['districtData'].keys() for k2 in key2: c = list(state_data[k]['districtData'][k2].values()) v = [k, k2, c[0]] Values.append(v) state_data =
pd.DataFrame(Values,columns=['State_UT', 'District', 'Confirmed'])
pandas.DataFrame
import os from math import ceil from concurrent.futures import ProcessPoolExecutor import pandas as pd class FileUtils: ALLOWED_EXTENSIONS = ['csv', 'xls', 'xlsx', 'zip'] @staticmethod def read_parallel(paths, workers=4, concat=True, **read_options): """ Concat the dataframes using multiple proccess """ dim = ceil(len(paths) / workers) chunks = (paths[k: k + dim] for k in range(0, len(paths), dim)) temp = [] with ProcessPoolExecutor(max_workers=workers) as executor: futures = [ executor.submit( FileUtils.read_chunk, chunk, **read_options) for chunk in chunks ] for future in futures: temp.append(future.result()) if concat: temp =
pd.concat(temp)
pandas.concat
# -*- coding: utf-8 -*- import sys import os from pandas.io import pickle # import pandas as pd PROJECT_ID = "dots-stock" # @param {type:"string"} REGION = "us-central1" # @param {type:"string"} USER = "shkim01" # <---CHANGE THIS BUCKET_NAME = "gs://pipeline-dots-stock" # @param {type:"string"} PIPELINE_ROOT = f"{BUCKET_NAME}/pipeline_root/{USER}" from typing import NamedTuple from kfp import dsl from kfp.v2 import compiler from kfp.v2.dsl import (Artifact, Dataset, Input, Model, Output, Metrics, ClassificationMetrics, component) from kfp.v2.google.client import AIPlatformClient @component( # base_image='gcr.io/dots-stock/py38-pandas-cal', base_image="gcr.io/dots-stock/python-img-v5.2" ) def set_defaults()-> NamedTuple( 'Outputs', [ ('date_ref',str), ('n_days', int), ('period_extra', int) ]): import pandas as pd from trading_calendars import get_calendar today =
pd.Timestamp.now('Asia/Seoul')
pandas.Timestamp.now
import pandas as pd import pyodbc def query_to_df(sql_file, driver='upiqm110'): # Read SQL sql_path = 'sql/{}.sql'.format(sql_file) sql_query = open(sql_path).read() # Connection print('Connecting to database ... ') con = pyodbc.connect('DSN={driver}'.format(driver=driver)) return
pd.read_sql_query(sql_query, con)
pandas.read_sql_query
#!/usr/bin/env python # coding: utf-8 # # Feature_Selection # - **Having irrelevant features in your data can decrease the accuracy of the models and makes your models learn based on irrelevant** # ## Defination # **Feature Selection** : # # - Process of selecting the best features which contribute maximum for the model in order to get best result in term of accuracy or it should take less time for traning . # # - Feature selection methods are intended to reduce the number of input variables to those that are believed to be most useful to a model in order to predict the target variable. # # # **Benefits of Performing Feature-Selection :** # # 1. Reduce Overfitting # 2. Improve Accuracy # 3. Reduce Traning Time # # In[3]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") # In[4]: pwd # In[5]: path='E:\\DataScience\\MachineLearning\\Breast-cancer-detection-using-ML' # In[6]: import os os.listdir(path) # In[7]: #reading data df =
pd.read_csv(path+"\\data.csv")
pandas.read_csv
''' Name:HenonMapDataGen Desriptption: It is used to generate the data of modified Henon Map Email: <EMAIL> OpenSource: https://github.com/yesunhuang Msg: For quantum recurrrent neural networks Author: YesunHuang Date: 2022-03-26 20:45:29 ''' #import everything import pandas as pd import numpy as np import torch import os try: from DataGenerator.SequenceDataLoader import SeqDataLoader except: from SequenceDataLoader import SeqDataLoader class HenonMapDataGen: '''Generate data of modified Henon Map''' def __init__(self, seed:list=[],\ n:int=1,a:float=1.4,b:float=0.3,\ heavyMem:bool=True,bound:bool=-1.2,\ savepath:str=os.getcwd()): ''' name: __init__ fuction: initialize the Henon map param {seed}: seed for generation param {n}: interval param {a}: Henon value a param {b}: Henon value b param {HeavyMem}: if using a heavy memory param {bound}: bound of the data param {savepath}: path to save the data ''' self.heavyMem=heavyMem self.interval=n if len(seed)==0: self.random_seed() else: self.__seed=seed if self.heavyMem: assert len(self.__seed)==n+1,'invalid seed!' else: assert len(self.__seed)==2*n,'invalid seed!' self.paramA=a self.paramB=b self.HenonFunc=lambda X1,X0:1-self.paramA*X1*X1+self.paramB*X0 self.savepath=savepath self.bound=bound self.__X=[] self.__Y=[] def __call__(self, size:int): ''' name:__call__ fuction: generate the Henon data param {size}: size of the data return {X,Y}: tuple of list in the form (X,Y) ''' self.clear_data() self.__X=self.__X+self.__seed self.__Y=self.__Y+[0.0]*self.interval if self.heavyMem: assert size>len(self.__seed), 'size not enough!' for i in range(self.interval,size): Y_next=self.HenonFunc(self.__X[i],self.__X[i-self.interval]) if self.interval>1: self.__Y.append(max(Y_next,self.bound)) else: self.__Y.append(Y_next) self.__X.append(self.__Y[i]) self.__X.pop() else: assert size>len(self.__seed)+self.interval, 'size not enough' for i in range(self.interval,size): Y_next=self.HenonFunc(self.__X[i],self.__X[i-self.interval]) self.__Y.append(max(Y_next,self.bound)) if i+self.interval<size: self.__X.append(self.__Y[i]) return np.array(self.__X),np.array(self.__Y) def random_seed(self): ''' name: random_seed function: random the seed return {seed} ''' if self.heavyMem: self.__seed=[np.random.rand()*0.1 for i in range(self.interval+1)] else: self.__seed=[np.random.rand()*0.1 for i in range(2*self.interval)] return self.__seed @property def seed(self): ''' name: seed function: get the seed return {seed} ''' return self.__seed def save_to_CSV(self,fileName:str): ''' name: save_to_CSV function: save the data to csv file param {fileName}: name of the file ''' path=os.path.join(self.savepath,fileName) data=pd.DataFrame({'X':self.__X,'Y':self.__Y,\ 'interval':self.interval,\ 'paramA':self.paramA,'paramB':self.paramB,\ 'bound':self.bound,'heavyMem':self.heavyMem}) data.to_csv(path,index=False) def read_from_CSV(self,fileName:str): ''' name: read_from_CSV function: read the data from csv file param {fileName}: name of the file ''' path=os.path.join(self.savepath,fileName) data=
pd.read_csv(path)
pandas.read_csv
from collections import namedtuple from jug import TaskGenerator, bvalue import ena from cleanup import cleanup_metadata from jug.hooks import exit_checks exit_checks.exit_if_file_exists('jug.exit') cleanup_metadata = TaskGenerator(cleanup_metadata) get_sample_xml = TaskGenerator(ena.get_sample_xml) get_data_xml = TaskGenerator(ena.get_data_xml) parse_experiment_meta = TaskGenerator(ena.parse_experiment_meta) Project = namedtuple('Project', ['accession', 'samples']) PROJECT_DATA_URL = 'http://www.ebi.ac.uk/ena/data/warehouse/search?' + \ 'query="library_source="METAGENOMIC""&result=read_study&download=xml&display=xml' PROJECTS_DATA_FILE = 'data/project-list.xml' SAMPLE_BY_TAXID_FILE = 'data/sample-408169-table.tsv' @TaskGenerator def download_project_data(): '''Download reads with library_source = METAGENOMIC''' import requests from contextlib import closing from os import makedirs makedirs('data', exist_ok=True) with closing(requests.get(PROJECT_DATA_URL, stream=True)) as ifile, \ open(PROJECTS_DATA_FILE, 'wb') as ofile: for chunk in ifile.iter_content(): ofile.write(chunk) return PROJECTS_DATA_FILE @TaskGenerator def download_sample_408169_table(): '''Download samples by TaxID below 408169 (which is "metagenome")''' import requests from contextlib import closing from os import makedirs from ena import ENA_BASE_URL makedirs('data', exist_ok=True) url = ENA_BASE_URL + 'data/warehouse/search?query=%22tax_tree(408169)%22&limit=522911&length=522911&offset=1&display=report&result=sample&fields=accession,secondary_sample_accession,first_public,tax_id,scientific_name,sample_alias&download=txt' with closing(requests.get(url, stream=True)) as ifile, \ open(SAMPLE_BY_TAXID_FILE, 'wb') as ofile: for chunk in ifile.iter_content(): ofile.write(chunk) return SAMPLE_BY_TAXID_FILE @TaskGenerator def getprojects(datafile): import xml.etree.ElementTree as ET tree = ET.parse(datafile) root = tree.getroot() projects = [] for it in root.iter('PROJECT'): accession = it.get('accession') for lk in it.findall('PROJECT_LINKS/PROJECT_LINK/XREF_LINK'): d = lk.find('DB') if d.text == 'ENA-SAMPLE': projects.append(Project(accession, lk.find('ID').text)) return projects @TaskGenerator def projectreads(pr): return ena.get_project_reads_table(pr.accession) @TaskGenerator def astable(data): import numpy as np import pandas as pd from six import StringIO from collections import Counter from pdutils import pdselect table = pd.concat([pd.read_table(StringIO(d)) for d in data]) repeats = [k for k,v in Counter(table['run_accession']).items() if v > 1] for r in repeats: r = pdselect(table, run_accession=r) if not np.all( (r == r.iloc[0]) | r.isnull() ): raise ValueError("Runs with same ID have different data") table.drop_duplicates(subset='run_accession', inplace=True) table.index = table.run_accession table.drop('run_accession', inplace=True, axis=1) return table @TaskGenerator def experiment_table(metamerged_ex): import pandas as pd from collections import Counter hasdata = Counter() for k,vs in metamerged_ex.items(): hasdata.update(vs.keys()) used = set(k for k,v in hasdata.items() if v >=100) for k,vs in metamerged_ex.items(): for k in list(vs.keys()): if k not in used: del vs[k] m = pd.DataFrame.from_dict(metamerged_ex, orient='index') hasdata = m.shape[0] - m.isnull().sum() hasdata.sort_values(inplace=True) m = m[hasdata.index[::-1]] return m @TaskGenerator def samples_with_wgs(table_ex): library = table_ex[['sample_accession', 'LIBRARY_STRATEGY', 'LIBRARY_SOURCE', 'LIBRARY_SELECTION']] library = library.query('LIBRARY_STRATEGY == "WGS"').query('LIBRARY_SOURCE != "GENOMIC"') return set(library.sample_accession) @TaskGenerator def parsei(ptable): import pandas as pd from six import StringIO return pd.read_table(StringIO(ptable)).groupby('instrument_model').count() @TaskGenerator def parse_sample_meta(data): from six import StringIO return ena.parse_sample_meta(StringIO(data)) @TaskGenerator def mergedicts(ds): merged = {} for d in ds: merged.update(d) return merged @TaskGenerator def merge_metadatable(metamerged, selected_samples): import pandas as pd print("MISSING: ", sum(1 for k in selected_samples if k not in metamerged)) metasample =
pd.DataFrame({k:metamerged[k] for k in selected_samples if k in metamerged})
pandas.DataFrame
import json from os import path import time import typing import random import sys import itertools import warnings import numpy as np import tqdm from lazy import lazy import pandas as pd from docopt import docopt import multiprocessing as mp from multiprocessing import Pool from rdkit import RDLogger RDLogger.DisableLog('rdApp.info') from utils import rd_filters THIS_FILE_DIR = path.dirname(__file__) class QualityFiltersCheck: """ These are the Quality Filters proposed in the GuacaMol paper, which try to rule out " compounds which are potentially unstable, reactive, laborious to synthesize, or simply unpleasant to the eye of medicinal chemists." The filter rules are from the GuacaMol supplementary material: https://pubs.acs.org/doi/10.1021/acs.jcim.8b00839 The filter code is from: https://github.com/PatWalters/rd_filters Parts of the code below have been taken from the script in this module. This code put in this class came with this MIT Licence: MIT License Copyright (c) 2018 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ def __init__(self, training_data_smi: typing.List[str]): alert_file_name = path.join(THIS_FILE_DIR, 'rd_filters_data/alert_collection.csv') self.rf = rd_filters.RDFilters(alert_file_name) rules_file_path = path.join(THIS_FILE_DIR, 'rd_filters_data/rules.json') rule_dict = rd_filters.read_rules(rules_file_path) rule_list = [x.replace("Rule_", "") for x in rule_dict.keys() if x.startswith("Rule") and rule_dict[x]] rule_str = " and ".join(rule_list) print(f"Using alerts from {rule_str}", file=sys.stderr) self.rf.build_rule_list(rule_list) self.rule_dict = rule_dict self.training_data_smi = training_data_smi @lazy def _training_data_prop(self): training_data_quality_filters = self.call_on_smiles_no_normalization(self.training_data_smi) print(f"Training data filters returned {training_data_quality_filters}. Rest normalized on this.") return training_data_quality_filters def call_on_smiles_no_normalization(self, smiles: typing.List[str]): num_cores = 10 print(f"using {num_cores} cores", file=sys.stderr) start_time = time.time() p = Pool(mp.cpu_count()) num_smiles_in = len(smiles) input_data = [(smi, f"MOL_{i}") for i, smi in enumerate(smiles)] res = list(p.map(self.rf.evaluate, input_data)) df = pd.DataFrame(res, columns=["SMILES", "NAME", "FILTER", "MW", "LogP", "HBD", "HBA", "TPSA", "Rot"]) df_ok = df[ (df.FILTER == "OK") & df.MW.between(*self.rule_dict["MW"]) & df.LogP.between(*self.rule_dict["LogP"]) & df.HBD.between(*self.rule_dict["HBD"]) & df.HBA.between(*self.rule_dict["HBA"]) & df.TPSA.between(*self.rule_dict["TPSA"]) & df.TPSA.between(*self.rule_dict["Rot"]) ] num_input_rows = df.shape[0] num_output_rows = df_ok.shape[0] fraction_passed = "{:.1f}".format(num_output_rows / num_input_rows * 100.0) print(f"{num_output_rows} of {num_input_rows} passed filters {fraction_passed}%", file=sys.stderr) elapsed_time = "{:.2f}".format(time.time() - start_time) print(f"Elapsed time {elapsed_time} seconds", file=sys.stderr) p.close() return (num_output_rows / num_smiles_in) def check_smiles_pass_quality_filters_flag(self, smiles: typing.List[str]): num_cores = 10 print(f"using {num_cores} cores", file=sys.stderr) start_time = time.time() p = Pool(mp.cpu_count()) num_smiles_in = len(smiles) input_data = [(smi, f"MOL_{i}") for i, smi in enumerate(smiles)] res = list(p.map(self.rf.evaluate, input_data)) df =
pd.DataFrame(res, columns=["SMILES", "NAME", "FILTER", "MW", "LogP", "HBD", "HBA", "TPSA", "Rot"])
pandas.DataFrame
# coding: utf-8 # In[1]: import pandas as pd import numpy as np import sys, os import pandas.io.sql as psql import psycopg2 as pg from datetime import datetime import matplotlib.pyplot as plt import numpy as np from pandas.core.frame import DataFrame import json import math # Connect to database conn = pg.connect(host='192.168.61.4', database='summer', user='postgres') #Load the relationship between problem_id(id) and chanllenge_id(challenge_id) df_problems = pd.read_sql_query('select * from problems_multiple_choice_problem', con=conn) #Load the relationship between challenge_id(id) and quest_id(quest_id) df_challenges = pd.read_sql_query('select * from content_challenge', con=conn) #Load the relationship between quest_id(id) and order(order) df_quests = pd.read_sql_query('select * from content_quest', con=conn) quad_list = [] for row_index, row in df_problems.iterrows(): quad = {} if not math.isnan(row['challenge_id']): quad['problem_id'] = row['id'] quad['challenge_id'] = int(row['challenge_id']) quad_list.append(quad) for item in quad_list: for row_index, row in df_challenges.iterrows(): if (item['challenge_id'] == row['id']) & (not math.isnan(row['quest_id'])): item['quest_id'] = int(row['quest_id']) # In[2]: # print(quad_list) quad_list1 = [] for item in quad_list: if len(item) == 3: quad_list1.append(item) for item in quad_list1: for row_index, row in df_quests.iterrows(): if item['quest_id'] == row['id']: item['order'] = int(row['order']) # In[3]: df_quad =
pd.DataFrame(quad_list1)
pandas.DataFrame
import os import numpy as np import pandas as pd import deflex as dflx from holoviews_sankey import create_and_save_sankey path = "/home/uwe/deflex/quarree100/results_cbc/" dump = "2018-DE02-Agora.dflx" deflx = os.path.join(path, dump) all_results = dflx.fetch_deflex_result_tables(deflx) # From Commodities to ... comm = all_results["commodity"] FC = np.sum(comm.xs("fuel converter", level=4, axis=1)) # All fuel converters ComoilMob = FC[0] # From Electricity bus elect = all_results["electricity"] EbusMob = np.sum(np.sum(elect.xs("fuel converter", level=4, axis=1))) # Create df (From, To, value) d = ( ["From El Bus", "Mobility Demand", EbusMob], ["Oil", "Mobility Demand", ComoilMob], ) df =
pd.DataFrame(data=d, columns=["From", "To", "Value"])
pandas.DataFrame
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql =
sql.get_schema(self.test_frame1, "test")
pandas.io.sql.get_schema
# -*- coding: utf-8 -*- """ Created on Wed Jan 15 21:56:08 2020 @author: <NAME> """ # STEP1----------------- # Importing the libraries------------ #------------------------------------------------------------- import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.impute import SimpleImputer from sklearn import metrics from scipy import interp from itertools import cycle from sklearn.preprocessing import StandardScaler # for preprocessing the data from sklearn.ensemble import RandomForestClassifier # Random forest classifier from sklearn.tree import DecisionTreeClassifier # for Decision Tree classifier from sklearn.svm import SVC # for SVM classification from sklearn.decomposition import PCA from sklearn.preprocessing import OneHotEncoder, LabelEncoder # # Encoding categorical variables from sklearn.compose import ColumnTransformer, make_column_transformer #labelencoder class takes cat. var. and assign value to them from sklearn.pipeline import Pipeline from sklearn.utils import resample from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split # to split the data from sklearn.model_selection import KFold # For cross vbalidation from sklearn.model_selection import GridSearchCV # for tunnig hyper parameter it will use all combination of given parameters from sklearn.model_selection import RandomizedSearchCV # same for tunning hyper parameter but will use random combinations of parameters from sklearn.metrics import confusion_matrix,recall_score,precision_recall_curve,auc,roc_curve,roc_auc_score,classification_report from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.ensemble import AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.metrics import f1_score from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.utils.validation import check_random_state from sklearn.model_selection import StratifiedKFold from sklearn.ensemble import GradientBoostingClassifier #from rgf.sklearn import RGFClassifier from sklearn.metrics import accuracy_score# same for tunning hyper parameter but will use random combinations of parameters ###=========================== Importing the DATASET ====================================== ###========================================================================================= # Loading data from the iMotions the path to csv file directory os.chdir("\\ML4TakeOver\\Data\\RawData") directory = os.getcwd() #dataFrame_takeover_feature = pd.read_csv('takeover_cleaned_feature4ML.csv', index_col=[0]) dataFrame_takeover_feature = pd.read_csv('takeover4ML.csv', index_col=[0]) dataset = dataFrame_takeover_feature chunk_users = ['015_M3', '015_m2', '015_M1', '014_M3', #Select a handful of ppl for saving resource '014_M2', '014_m1'] chunk_dataset = dataset[dataset['Name'].isin(chunk_users)] dataset = chunk_dataset dataset.shape ###### ======================================Encoding notes======================================= # Alarm Type: TA =2, NoA =1, FA = 0 , Z = 3 # TakeOver : TK =1 , NTK= 0 # Alarm : 339.0 =339.0, 103.0= 4, 332.0=14, 259.0=11, 16.0=2, 178.0=6, 284.0=12, # 213.0=9, 323.0=13, 185.0=7, 84.0=3, 137.0=5, 5.0=1, 191.0=8, 254.0=10 # Mode : +1 (Auto)= +1, -1(Manual)= 0 ## ========================= Eploring the data, mainly the Label (ReactionTime) ==================== ## =================================================================================================== # let's check the "Takeover" distributions #sns.countplot("TOT_Class",data=dataset) # Let's check the Percentage for "ReactionTime" Count_FastRT = len(dataset[dataset["TOT_Class"]== 0 ]) # Faster: <4000 Count_LowRT = len(dataset[dataset["TOT_Class"]== 1 ]) # Slower: >4000 Percentage_of_FastRT = Count_FastRT/(Count_FastRT+Count_LowRT) print("Percentage_of_FastRT, 0 = ",Percentage_of_FastRT*100) Percentage_of_SlowRT= Count_LowRT/(Count_FastRT+Count_LowRT) print("Percentage_of_SlowRT, 1 = ",Percentage_of_SlowRT*100) # Pandas offers us out-of-the-box three various correlation coefficients 1) Pearson's 2) Spearman rank 3) Kendall Tau pearson = dataset.corr(method='pearson') # assume target attr is the "Takeover or -3", then remove corr with itself corr_with_target = pearson.iloc[-1][:] # attributes sorted from the most predictive predictivity = corr_with_target.sort_values(ascending=False) ## =========================-# Prepration for Machine Learning algorithms========================= ## ==================================================================================================== # Drop useless features for ML dataset = dataset.drop(['Timestamp','index','ID', 'Name', 'EventSource', 'ManualGear','EventW','EventN','GazeDirectionLeftY','Alarm', 'GazeDirectionLeftX', 'GazeDirectionRightX', 'GazeDirectionRightY','CurrentBrake', 'PassBy','RangeN'], axis=1) #ManualGear has only "one" value #EventW is pretty similar to EventN dataset.shape #--------------------------------------------------------- # convert categorical value to the number # convert datatype of object to int and strings dataset['LeftLaneType'] = dataset.LeftLaneType.astype(object) dataset['RightLaneType'] = dataset.RightLaneType.astype(object) dataset['TOT_Class'] = dataset.TOT_Class.astype(object) dataset['Coming_Alarm'] = dataset.Coming_Alarm.astype(object) dataset['Takeover'] = dataset.Takeover.astype(object) dataset['Coming_AlarmType'] = dataset.Coming_AlarmType.astype(object) dataset['NDTask'] = dataset.NDTask.astype(object) dataset['TOT_Three_Class'] = dataset.TOT_Three_Class.astype(object) #****** Drop features that happing after Alarm (anything after alarm interupt takeover prediction)**************** dataset = dataset.drop(['Mode','AlarmDuration','Coming_Alarm'], axis=1) # Coming Alarm maybe helpful for ReactionTime # Check the reaction time values in each category of Alarm print('FalseAlarm ReactionTime:', dataset[dataset['Coming_AlarmType']== 'FA'].ReactionTime.mean()) # 2007.2 print('TrueAlarm ReactionTime:', dataset[dataset['Coming_AlarmType']== 'TA'].ReactionTime.mean()) # 4712.5 print('NoAlarm ReactionTime:', dataset[dataset['Coming_AlarmType']== 'NoA'].ReactionTime.mean()) # 5003.5 # How many times they takeover in each alarm len(dataset[dataset['Coming_AlarmType']== 'FA'][dataset['Takeover']=='TK'].ReactionTime.unique()) #92 len(dataset[dataset['Coming_AlarmType']== 'FA'][dataset['Takeover']=='NTK'].ReactionTime.unique()) len(dataset[dataset['Coming_AlarmType']== 'TA'][dataset['Takeover']=='TK'].ReactionTime.unique()) #355 len(dataset[dataset['Coming_AlarmType']== 'TA'][dataset['Takeover']=='NTK'].ReactionTime.unique()) len(dataset[dataset['Coming_AlarmType']== 'NoA'][dataset['Takeover']=='TK'].ReactionTime.unique()) #81 len(dataset[dataset['Coming_AlarmType']== 'NoA'][dataset['Takeover']=='NTK'].ReactionTime.unique()) dataFrame_takeover_feature[dataFrame_takeover_feature['Coming_AlarmType']== 'NoA'][ dataFrame_takeover_feature['Takeover']=='NTK'].Name.value_counts() # Drop Reaction Time features which happen after Alarm dataset = dataset.drop(['ReactionTime','Takeover','Coming_AlarmType','TOT_Class'], axis=1) # ======================================= Count the number of Needed columns ========================= # List of all Categorical features Cat_Features= ['LeftLaneType','RightLaneType','NDTask'] # Get the column index of the categorical features categorical_features = [] for i in Cat_Features: position = dataset.columns.get_loc(i) categorical_features.append(position) print(categorical_features) # Get the column index of the Contin. features conti_features = [] Cont_Filter = dataset.dtypes!=object Cont_Filter = dataset.columns.where(Cont_Filter).tolist() Cont_Filter_Cleaned = [name for name in Cont_Filter if str(name) !='nan'] for i in Cont_Filter_Cleaned: position = dataset.columns.get_loc(i) conti_features.append(position) print(conti_features) # How many columns will be needed for each categorical feature print(dataset[Cat_Features].nunique(), 'There are',"--",sum(dataset[Cat_Features].nunique().loc[:]),"--",'groups in the whole dataset') # # ============================== Creating a Neural Network =============================================== from pandas import read_csv import tensorflow as tf import GPUtil from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from keras.models import Sequential from keras.layers import Dense from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.models import load_model import h5py import pytest # Check the GPU availability with various approaches from tensorflow.python.client import device_lib tf.test.gpu_device_name() # if GPU is working print(device_lib.list_local_devices()) # Which GPUs are connected print("Number GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) print(tf.test.is_built_with_cuda()) #to make sure that your version of tensorflow includes GPU support. GPUtil.showUtilization() with tf.compat.v1.Session() as sess: devices = sess.list_devices() print(tf.config.list_physical_devices('GPU')) # Assigning values to X, Y y = dataset.TOT_Three_Class X = dataset.drop('TOT_Three_Class', axis=1) # setting up testing and training sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=27) # concatenate our training data back together X = pd.concat([X_train, y_train], axis=1) # separate minority and majority classes FastRT = X[X.TOT_Three_Class==0] MidRT = X[X.TOT_Three_Class==1] SlowRT = X[X.TOT_Three_Class==2] # upsample minorityF FastRT_upsampled = resample(FastRT, replace=True, # sample with replacement n_samples=len(MidRT), # match number in majority class random_state=27) # reproducible results SlowRT_upsampled = resample(SlowRT, replace=True, # sample with replacement n_samples=len(MidRT), # match number in majority class random_state=27) # reproducible results # combine majority and upsampled minority upsampled =
pd.concat([MidRT, SlowRT_upsampled, FastRT_upsampled])
pandas.concat
import torch from torch.utils.data import Dataset import os import pandas as pd import numpy as np from sklearn.model_selection import StratifiedShuffleSplit __author__ = "<NAME>" __copyright__ = "Copyright 2018 The Aramis Lab Team" __credits__ = ["<NAME>"] __license__ = "See LICENSE.txt file" __version__ = "0.1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" ################################# # CNN train / test ################################# def train(model, data_loader, use_cuda, loss_func, optimizer, writer, epoch, model_mode="train", selection_threshold=None): """ This is the function to train, validate or test the model, depending on the model_mode parameter. :param model: :param data_loader: :param use_cuda: :param loss_func: :param optimizer: :param writer: :param epoch: :return: """ global_step = None softmax = torch.nn.Softmax(dim=1) if model_mode == "train": columns = ['participant_id', 'session_id', 'slice_id', 'true_label', 'predicted_label', 'proba0', 'proba1'] results_df = pd.DataFrame(columns=columns) total_loss = 0.0 model.train() # set the model to training mode print('The number of batches in this sampler based on the batch size: %s' % str(len(data_loader))) for i, data in enumerate(data_loader): # update the global step global_step = i + epoch * len(data_loader) if use_cuda: imgs, labels = data['image'].cuda(), data['label'].cuda() else: imgs, labels = data['image'], data['label'] gound_truth_list = labels.data.cpu().numpy().tolist() output = model(imgs) normalized_output = softmax(output) _, predicted = torch.max(output.data, 1) predict_list = predicted.data.cpu().numpy().tolist() batch_loss = loss_func(output, labels) total_loss += batch_loss.item() # calculate the batch balanced accuracy and loss batch_metrics = evaluate_prediction(gound_truth_list, predict_list) batch_accuracy = batch_metrics['balanced_accuracy'] writer.add_scalar('classification accuracy', batch_accuracy, global_step) writer.add_scalar('loss', batch_loss.item(), global_step) optimizer.zero_grad() batch_loss.backward() optimizer.step() # Generate detailed DataFrame for idx, sub in enumerate(data['participant_id']): row = [sub, data['session_id'][idx], data['slice_id'][idx], labels[idx].item(), predicted[idx].item(), normalized_output[idx, 0].item(), normalized_output[idx, 1]] row_df = pd.DataFrame(np.array(row).reshape(1, -1), columns=columns) results_df = pd.concat([results_df, row_df]) # delete the temporary variables taking the GPU memory del imgs, labels, output, predicted, batch_loss, batch_accuracy torch.cuda.empty_cache() epoch_metrics = evaluate_prediction(results_df.true_label.values.astype(int), results_df.predicted_label.values.astype(int)) accuracy_batch_mean = epoch_metrics['balanced_accuracy'] loss_batch_mean = total_loss / len(data_loader) torch.cuda.empty_cache() elif model_mode == "valid": results_df, metrics_batch = test(model, data_loader, use_cuda, loss_func) # calculate the balanced accuracy _, metrics_subject = soft_voting(results_df, results_df, selection_threshold=selection_threshold) accuracy_batch_mean = metrics_subject['balanced_accuracy'] total_loss = metrics_batch['total_loss'] loss_batch_mean = total_loss / len(data_loader) writer.add_scalar('classification accuracy', accuracy_batch_mean, epoch) writer.add_scalar('loss', loss_batch_mean, epoch) torch.cuda.empty_cache() else: raise ValueError('This mode %s was not implemented. Please choose between train and valid' % model_mode) return results_df, accuracy_batch_mean, loss_batch_mean, global_step def test(model, data_loader, use_cuda, loss_func): """ The function to evaluate the testing data for the trained classifiers :param model: :param data_loader: :param use_cuda: :return: """ softmax = torch.nn.Softmax(dim=1) columns = ['participant_id', 'session_id', 'slice_id', 'true_label', 'predicted_label', 'proba0', 'proba1'] results_df = pd.DataFrame(columns=columns) total_loss = 0 if use_cuda: model.cuda() model.eval() # set the model to evaluation mode torch.cuda.empty_cache() with torch.no_grad(): for i, data in enumerate(data_loader): if use_cuda: imgs, labels = data['image'].cuda(), data['label'].cuda() else: imgs, labels = data['image'], data['label'] output = model(imgs) normalized_output = softmax(output) loss = loss_func(output, labels) total_loss += loss.item() _, predicted = torch.max(output.data, 1) # Generate detailed DataFrame for idx, sub in enumerate(data['participant_id']): row = [sub, data['session_id'][idx], data['slice_id'][idx].item(), labels[idx].item(), predicted[idx].item(), normalized_output[idx, 0].item(), normalized_output[idx, 1].item()] row_df = pd.DataFrame(np.array(row).reshape(1, -1), columns=columns) results_df = pd.concat([results_df, row_df]) del imgs, labels, output torch.cuda.empty_cache() # calculate the balanced accuracy results = evaluate_prediction(results_df.true_label.values.astype(int), results_df.predicted_label.values.astype(int)) results_df.reset_index(inplace=True, drop=True) results['total_loss'] = total_loss torch.cuda.empty_cache() return results_df, results def evaluate_prediction(y, y_hat): """ This is a function to calculate the different metrics based on the list of true label and predicted label :param y: list :param y_hat: list :return: """ true_positive = 0.0 true_negative = 0.0 false_positive = 0.0 false_negative = 0.0 tp = [] tn = [] fp = [] fn = [] for i in range(len(y)): if y[i] == 1: if y_hat[i] == 1: true_positive += 1 tp.append(i) else: false_negative += 1 fn.append(i) else: # -1 if y_hat[i] == 0: true_negative += 1 tn.append(i) else: false_positive += 1 fp.append(i) accuracy = (true_positive + true_negative) / (true_positive + true_negative + false_positive + false_negative) if (true_positive + false_negative) != 0: sensitivity = true_positive / (true_positive + false_negative) else: sensitivity = 0.0 if (false_positive + true_negative) != 0: specificity = true_negative / (false_positive + true_negative) else: specificity = 0.0 if (true_positive + false_positive) != 0: ppv = true_positive / (true_positive + false_positive) else: ppv = 0.0 if (true_negative + false_negative) != 0: npv = true_negative / (true_negative + false_negative) else: npv = 0.0 balanced_accuracy = (sensitivity + specificity) / 2 results = {'accuracy': accuracy, 'balanced_accuracy': balanced_accuracy, 'sensitivity': sensitivity, 'specificity': specificity, 'ppv': ppv, 'npv': npv, 'confusion_matrix': {'tp': len(tp), 'tn': len(tn), 'fp': len(fp), 'fn': len(fn)} } return results ################################# # Datasets ################################# def mix_slices(df_training, df_validation, mri_plane=0, val_size=0.15): """ This is a function to gather the training and validation tsv together, then do the bad data split by slice. :param training_tsv: :param validation_tsv: :return: """ df_all = pd.concat([df_training, df_validation]) df_all = df_all.reset_index(drop=True) if mri_plane == 0: slices_per_patient = 169 - 40 slice_index = list(np.arange(20, 169 - 20)) elif mri_plane == 1: slices_per_patient = 208 - 40 slice_index = list(np.arange(20, 208 - 20)) else: slices_per_patient = 179 - 40 slice_index = list(np.arange(20, 179 - 20)) participant_list = list(df_all['participant_id']) session_list = list(df_all['session_id']) label_list = list(df_all['diagnosis']) slice_participant_list = [ele for ele in participant_list for _ in range(slices_per_patient)] slice_session_list = [ele for ele in session_list for _ in range(slices_per_patient)] slice_label_list = [ele for ele in label_list for _ in range(slices_per_patient)] slice_index_list = slice_index * len(label_list) df_final = pd.DataFrame(columns=['participant_id', 'session_id', 'slice_id', 'diagnosis']) df_final['participant_id'] = np.array(slice_participant_list) df_final['session_id'] = np.array(slice_session_list) df_final['slice_id'] = np.array(slice_index_list) df_final['diagnosis'] = np.array(slice_label_list) y = np.array(slice_label_list) # split the train data into training and validation set skf_2 = StratifiedShuffleSplit(n_splits=1, test_size=val_size, random_state=10000) indices = next(skf_2.split(np.zeros(len(y)), y)) train_ind, valid_ind = indices df_sub_train = df_final.iloc[train_ind] df_sub_valid = df_final.iloc[valid_ind] df_sub_train.reset_index(inplace=True, drop=True) df_sub_valid.reset_index(inplace=True, drop=True) return df_sub_train, df_sub_valid class MRIDataset_slice(Dataset): """ This class reads the CAPS of image processing pipeline of DL To note, this class processes the MRI to be RGB for transfer learning. Return: a Pytorch Dataset objective """ def __init__(self, caps_directory, data_file, transformations=None, mri_plane=0, prepare_dl=False): """ Args: caps_directory (string): the output folder of image processing pipeline. transformations (callable, optional): if the data sample should be done some transformations or not, such as resize the image. To note, for each view: Axial_view = "[:, :, slice_i]" Coronal_veiw = "[:, slice_i, :]" Saggital_view= "[slice_i, :, :]" """ self.caps_directory = caps_directory self.transformations = transformations self.diagnosis_code = {'CN': 0, 'AD': 1, 'sMCI': 0, 'pMCI': 1, 'MCI': 1} self.mri_plane = mri_plane self.prepare_dl = prepare_dl # Check the format of the tsv file here if isinstance(data_file, str): self.df = pd.read_csv(data_file, sep='\t') elif isinstance(data_file, pd.DataFrame): self.df = data_file else: raise Exception('The argument datafile is not of correct type.') # This dimension is for the output of image processing pipeline of Raw: 169 * 208 * 179 if mri_plane == 0: self.slices_per_patient = 169 - 40 self.slice_direction = 'sag' elif mri_plane == 1: self.slices_per_patient = 208 - 40 self.slice_direction = 'cor' elif mri_plane == 2: self.slices_per_patient = 179 - 40 self.slice_direction = 'axi' def __len__(self): return len(self.df) * self.slices_per_patient def __getitem__(self, idx): sub_idx = idx // self.slices_per_patient img_name = self.df.loc[sub_idx, 'participant_id'] sess_name = self.df.loc[sub_idx, 'session_id'] img_label = self.df.loc[sub_idx, 'diagnosis'] label = self.diagnosis_code[img_label] slice_idx = idx % self.slices_per_patient if self.prepare_dl: # read the slices directly slice_path = os.path.join(self.caps_directory, 'subjects', img_name, sess_name, 't1', 'preprocessing_dl', img_name + '_' + sess_name + '_space-MNI_res-1x1x1_axis-' + self.slice_direction + '_rgbslice-' + str(slice_idx + 20) + '.pt') extracted_slice = torch.load(slice_path) else: image_path = os.path.join(self.caps_directory, 'subjects', img_name, sess_name, 't1', 'preprocessing_dl', img_name + '_' + sess_name + '_space-MNI_res-1x1x1.pt') image = torch.load(image_path) extracted_slice = extract_slice_from_mri(image, slice_idx + 20, self.mri_plane) # check if the slice has NaN value if torch.isnan(extracted_slice).any(): print("Slice %s has NaN values." % str(img_name + '_' + sess_name + '_' + str(slice_idx + 20))) extracted_slice[torch.isnan(extracted_slice)] = 0 if self.transformations: extracted_slice = self.transformations(extracted_slice) sample = {'image_id': img_name + '_' + sess_name + '_slice' + str(slice_idx + 20), 'image': extracted_slice, 'label': label, 'participant_id': img_name, 'session_id': sess_name, 'slice_id': slice_idx + 20} return sample class MRIDataset_slice_mixed(Dataset): """ This class reads the CAPS of image processing pipeline of DL. However, this is used for the bad data split strategy To note, this class processes the MRI to be RGB for transfer learning. Return: a Pytorch Dataset objective """ def __init__(self, caps_directory, data_file, transformations=None, mri_plane=0, prepare_dl=False): """ Args: caps_directory (string): the output folder of image processing pipeline. transformations (callable, optional): if the data sample should be done some transformations or not, such as resize the image. To note, for each view: Axial_view = "[:, :, slice_i]" Coronal_veiw = "[:, slice_i, :]" Saggital_view= "[slice_i, :, :]" """ self.caps_directory = caps_directory self.transformations = transformations self.diagnosis_code = {'CN': 0, 'AD': 1, 'sMCI': 0, 'pMCI': 1, 'MCI': 1} self.mri_plane = mri_plane self.prepare_dl = prepare_dl # Check the format of the tsv file here if isinstance(data_file, str): self.df =
pd.read_csv(data_file, sep='\t')
pandas.read_csv
# required libraries import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from processing import train_lemma, test_lemma # datasets train = pd.read_csv('dataset/train.csv') test = pd.read_csv('dataset/test.csv') # preprocessed and final dataset dataset train_df = pd.concat([train,
pd.DataFrame(train_lemma, columns=['resumes'])
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, date_range, offsets import pandas._testing as tm class TestDataFrameShift: def test_shift(self, datetime_frame, int_frame): # naive shift shiftedFrame = datetime_frame.shift(5) tm.assert_index_equal(shiftedFrame.index, datetime_frame.index) shiftedSeries = datetime_frame["A"].shift(5) tm.assert_series_equal(shiftedFrame["A"], shiftedSeries) shiftedFrame = datetime_frame.shift(-5) tm.assert_index_equal(shiftedFrame.index, datetime_frame.index) shiftedSeries = datetime_frame["A"].shift(-5) tm.assert_series_equal(shiftedFrame["A"], shiftedSeries) # shift by 0 unshifted = datetime_frame.shift(0) tm.assert_frame_equal(unshifted, datetime_frame) # shift by DateOffset shiftedFrame = datetime_frame.shift(5, freq=offsets.BDay()) assert len(shiftedFrame) == len(datetime_frame) shiftedFrame2 = datetime_frame.shift(5, freq="B") tm.assert_frame_equal(shiftedFrame, shiftedFrame2) d = datetime_frame.index[0] shifted_d = d + offsets.BDay(5) tm.assert_series_equal( datetime_frame.xs(d), shiftedFrame.xs(shifted_d), check_names=False ) # shift int frame int_shifted = int_frame.shift(1) # noqa # Shifting with PeriodIndex ps = tm.makePeriodFrame() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal( unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values ) shifted2 = ps.shift(1, "B") shifted3 = ps.shift(1, offsets.BDay()) tm.assert_frame_equal(shifted2, shifted3) tm.assert_frame_equal(ps, shifted2.shift(-1, "B")) msg = "does not match PeriodIndex freq" with pytest.raises(ValueError, match=msg): ps.shift(freq="D") # shift other axis # GH#6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis=1) tm.assert_frame_equal(result, expected) # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis="columns") tm.assert_frame_equal(result, expected) def test_shift_bool(self): df = DataFrame({"high": [True, False], "low": [False, False]}) rs = df.shift(1) xp = DataFrame( np.array([[np.nan, np.nan], [True, False]], dtype=object), columns=["high", "low"], ) tm.assert_frame_equal(rs, xp) def test_shift_categorical(self): # GH#9416 s1 = Series(["a", "b", "c"], dtype="category") s2 = Series(["A", "B", "C"], dtype="category") df = DataFrame({"one": s1, "two": s2}) rs = df.shift(1) xp = DataFrame({"one": s1.shift(1), "two": s2.shift(1)}) tm.assert_frame_equal(rs, xp) def test_shift_fill_value(self): # GH#24128 df = DataFrame( [1, 2, 3, 4, 5], index=date_range("1/1/2000", periods=5, freq="H") ) exp = DataFrame( [0, 1, 2, 3, 4], index=date_range("1/1/2000", periods=5, freq="H") ) result = df.shift(1, fill_value=0) tm.assert_frame_equal(result, exp) exp = DataFrame( [0, 0, 1, 2, 3], index=date_range("1/1/2000", periods=5, freq="H") ) result = df.shift(2, fill_value=0) tm.assert_frame_equal(result, exp) def test_shift_empty(self): # Regression test for GH#8019 df = DataFrame({"foo": []}) rs = df.shift(-1) tm.assert_frame_equal(df, rs) def test_shift_duplicate_columns(self): # GH#9092; verify that position-based shifting works # in the presence of duplicate columns column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]] data = np.random.randn(20, 5) shifted = [] for columns in column_lists: df = pd.DataFrame(data.copy(), columns=columns) for s in range(5): df.iloc[:, s] = df.iloc[:, s].shift(s + 1) df.columns = range(5) shifted.append(df) # sanity check the base case nulls = shifted[0].isna().sum() tm.assert_series_equal(nulls, Series(range(1, 6), dtype="int64")) # check all answers are the same tm.assert_frame_equal(shifted[0], shifted[1]) tm.assert_frame_equal(shifted[0], shifted[2]) def test_shift_axis1_multiple_blocks(self): # GH#35488 df1 = pd.DataFrame(np.random.randint(1000, size=(5, 3))) df2 = pd.DataFrame(np.random.randint(1000, size=(5, 2))) df3 = pd.concat([df1, df2], axis=1) assert len(df3._mgr.blocks) == 2 result = df3.shift(2, axis=1) expected = df3.take([-1, -1, 0, 1, 2], axis=1) expected.iloc[:, :2] = np.nan expected.columns = df3.columns tm.assert_frame_equal(result, expected) # Case with periods < 0 # rebuild df3 because `take` call above consolidated df3 = pd.concat([df1, df2], axis=1) assert len(df3._mgr.blocks) == 2 result = df3.shift(-2, axis=1) expected = df3.take([2, 3, 4, -1, -1], axis=1) expected.iloc[:, -2:] = np.nan expected.columns = df3.columns tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning") def test_tshift(self, datetime_frame): # TODO: remove this test when tshift deprecation is enforced # PeriodIndex ps = tm.makePeriodFrame() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) tm.assert_frame_equal(unshifted, ps) shifted2 = ps.tshift(freq="B") tm.assert_frame_equal(shifted, shifted2) shifted3 = ps.tshift(freq=offsets.BDay()) tm.assert_frame_equal(shifted, shifted3) msg = "Given freq M does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.tshift(freq="M") # DatetimeIndex shifted = datetime_frame.tshift(1) unshifted = shifted.tshift(-1) tm.assert_frame_equal(datetime_frame, unshifted) shifted2 = datetime_frame.tshift(freq=datetime_frame.index.freq) tm.assert_frame_equal(shifted, shifted2) inferred_ts = DataFrame( datetime_frame.values, Index(np.asarray(datetime_frame.index)), columns=datetime_frame.columns, ) shifted = inferred_ts.tshift(1) expected = datetime_frame.tshift(1) expected.index = expected.index._with_freq(None) tm.assert_frame_equal(shifted, expected) unshifted = shifted.tshift(-1) tm.assert_frame_equal(unshifted, inferred_ts) no_freq = datetime_frame.iloc[[0, 5, 7], :] msg = "Freq was not set in the index hence cannot be inferred" with pytest.raises(ValueError, match=msg): no_freq.tshift() def test_tshift_deprecated(self, datetime_frame): # GH#11631 with tm.assert_produces_warning(FutureWarning): datetime_frame.tshift() def test_period_index_frame_shift_with_freq(self): ps = tm.makePeriodFrame() shifted = ps.shift(1, freq="infer") unshifted = shifted.shift(-1, freq="infer")
tm.assert_frame_equal(unshifted, ps)
pandas._testing.assert_frame_equal
from nltk.sentiment.vader import SentimentIntensityAnalyzer import matplotlib.pyplot as plt import pandas as pd def get_analysis(news_list): vader = SentimentIntensityAnalyzer() columns = ['ticker','date', 'time', 'headline'] news_df = pd.DataFrame(news_list, columns=columns) ##pd.set_option('display.max_colwidth', 1000) scores = news_df['headline'].apply(vader.polarity_scores).tolist() scores_df = pd.DataFrame(scores) news_df = news_df.join(scores_df, rsuffix='_right') news_df['date'] =
pd.to_datetime(news_df.date)
pandas.to_datetime
import pandas as pd import numpy as np from copy import deepcopy import json from pathlib import Path from kipoi.data import Dataset # try: # import torch # from bpnet.data import Dataset # torch.multiprocessing.set_sharing_strategy('file_system') # except: # print("PyTorch not installed. Using Dataset from kipoi.data") # from kipoi.data import Dataset from kipoi.metadata import GenomicRanges from bpnet.utils import to_list from bpnet.dataspecs import DataSpec from bpnet.preproc import bin_counts, keep_interval, moving_average, IntervalAugmentor from bpnet.extractors import _chrom_sizes, _chrom_names from concise.utils.helper import get_from_module from tqdm import tqdm from concise.preprocessing import encodeDNA from random import Random import joblib from bpnet.preproc import resize_interval from genomelake.extractors import FastaExtractor, BigwigExtractor, ArrayExtractor from kipoi_utils.data_utils import get_dataset_item from kipoiseq.dataloaders.sequence import BedDataset import gin import logging logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) class TsvReader: def __init__(self, tsv_file, num_chr=False, label_dtype=None, mask_ambigous=None, # task_prefix='task/', incl_chromosomes=None, excl_chromosomes=None, chromosome_lens=None, resize_width=None ): """Reads a tsv/BED file in the following format: chr start stop [task1 task2 ... ] Args: tsv_file: a tsv file with or without the header (i.e. BED file) num_chr: if True, remove the 'chr' prefix if existing in the chromosome names label_dtype: data type of the labels mask_ambigous: if specified, rows where `<task>==mask_ambigous` will be omitted incl_chromosomes (list of str): list of chromosomes to keep. Intervals from other chromosomes are dropped. excl_chromosomes (list of str): list of chromosomes to exclude. Intervals from other chromosomes are dropped. chromosome_lens (dict of int): dictionary with chromosome lengths resize_width (int): desired interval width. The resize fixes the center of the interval. """ self.tsv_file = tsv_file self.num_chr = num_chr self.label_dtype = label_dtype self.incl_chromosomes = incl_chromosomes self.excl_chromosomes = excl_chromosomes self.chromosome_lens = chromosome_lens self.resize_width = resize_width columns = list(
pd.read_csv(self.tsv_file, nrows=0, sep='\t')
pandas.read_csv
#%% import numpy as np import pandas as pd import altair as alt import anthro.io # Generate a plot for phosphate rock production data = pd.read_csv('../processed/IFA_phosphate_rock_public_2008_2019_processed.csv') data['year'] = pd.to_datetime(data['Year'].astype(str), format='%Y', errors='coerce') agg_data =
pd.DataFrame()
pandas.DataFrame
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2019 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. try: import talib except: print('PLEASE install TALIB to call these methods') import pandas as pd def CMO(Series, timeperiod=14): res = talib.CMO(Series.values, timeperiod) return pd.Series(res, index=Series.index) def BBANDS(Series, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0): up, middle, low = talib.BBANDS( Series.values, timeperiod, nbdevup, nbdevdn, matype) return pd.Series(up, index=Series.index), pd.Series(middle, index=Series.index), pd.Series(low, index=Series.index) def BETA(SeriesA, SeriesB, timeperiod=5): res = talib.BETA(SeriesA.values, SeriesB.values, timeperiod) return pd.Series(res, index=SeriesA.index) def CORREL(SeriesA, SeriesB, timeperiod=5): res = talib.BETA(SeriesA.values, SeriesB.values, timeperiod) return pd.Series(res, index=SeriesA.index) def DEMA(Series, timeperiod=30): res = talib.DEMA(Series.values, timeperiod) return pd.Series(res, index=Series.index) def EMA(Series, timeperiod=30): res = talib.EMA(Series.values, timeperiod) return pd.Series(res, index=Series.index) def HT_DCPERIOD(Series): res = talib.HT_DCPERIOD(Series.values) return pd.Series(res, index=Series.index) def HT_DCPHASE(Series): res = talib.HT_DCPHASE(Series.values) return pd.Series(res, index=Series.index) def HT_PHASOR(Series): res = talib.HT_PHASOR(Series.values) return pd.Series(res, index=Series.index) def HT_SINE(Series): res = talib.HT_SINE(Series.values) return pd.Series(res, index=Series.index) def HT_TRENDLINE(Series): res = talib.HT_TRENDLINE(Series.values) return pd.Series(res, index=Series.index) def HT_TRENDMODE(Series): res = talib.HT_TRENDMODE(Series.values) return pd.Series(res, index=Series.index) def KAMA(Series, timeperiod=30): res = talib.KAMA(Series.values, timeperiod) return pd.Series(res, index=Series.index) def LINEARREG(Series, timeperiod=14): res = talib.LINEARREG(Series.values, timeperiod) return pd.Series(res, index=Series.index) def LINEARREG_ANGLE(Series, timeperiod=14): res = talib.LINEARREG_ANGLE(Series.values, timeperiod) return pd.Series(res, index=Series.index) def LINEARREG_INTERCEPT(Series, timeperiod=14): res = talib.LINEARREG_INTERCEPT(Series.values, timeperiod) return pd.Series(res, index=Series.index) def LINEARREG_SLOPE(Series, timeperiod=14): res = talib.LINEARREG_SLOPE(Series.values, timeperiod) return pd.Series(res, index=Series.index) # def MA(Series,): # 废弃* 因为和QA的MA函数冲突 # def MACD(Series): # 废弃* 因为和QA的MACD函数冲突 def MACDEXT(Series, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0): macd, macdsignal, macdhist = talib.MACDEXT( Series.values, fastperiod, fastmatype, slowperiod, slowmatype, signalperiod, signalmatype) return pd.Series(macd, index=Series.index), pd.Series(macdsignal, index=Series.index), pd.Series(macdhist, index=Series.index) def MACDFIX(Series, timeperiod=9): macd, macdsignal, macdhist = talib.MACDFIX(Series.values, timeperiod) return
pd.Series(macd, index=Series.index)
pandas.Series
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import datetime as dt import re import cupy as cp import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.util.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) import cudf from cudf.core import DataFrame, Series from cudf.core.index import DatetimeIndex from cudf.tests.utils import NUMERIC_TYPES, assert_eq def data1(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def data2(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def timeseries_us_data(): return pd.date_range( "2019-07-16 00:00:00", "2019-07-16 00:00:01", freq="5555us", name="times", ) def timestamp_ms_data(): return pd.Series( [ "2019-07-16 00:00:00.333", "2019-07-16 00:00:00.666", "2019-07-16 00:00:00.888", ] ) def timestamp_us_data(): return pd.Series( [ "2019-07-16 00:00:00.333333", "2019-07-16 00:00:00.666666", "2019-07-16 00:00:00.888888", ] ) def timestamp_ns_data(): return pd.Series( [ "2019-07-16 00:00:00.333333333", "2019-07-16 00:00:00.666666666", "2019-07-16 00:00:00.888888888", ] ) def numerical_data(): return np.arange(1, 10) fields = ["year", "month", "day", "hour", "minute", "second", "weekday"] @pytest.mark.parametrize("data", [data1(), data2()]) def test_series(data): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) assert_eq(pd_data, gdf_data) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_pandas(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) assert_eq(pd_data_1, gdf_data_1.astype("datetime64[ns]")) assert_eq(pd_data_2, gdf_data_2.astype("datetime64[ns]")) assert_eq(pd_data_1 < pd_data_2, gdf_data_1 < gdf_data_2) assert_eq(pd_data_1 > pd_data_2, gdf_data_1 > gdf_data_2) assert_eq(pd_data_1 == pd_data_2, gdf_data_1 == gdf_data_2) assert_eq(pd_data_1 <= pd_data_2, gdf_data_1 <= gdf_data_2) assert_eq(pd_data_1 >= pd_data_2, gdf_data_1 >= gdf_data_2) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_numpy(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) np_data_1 = np.array(pd_data_1).astype(lhs_dtype) np_data_2 = np.array(pd_data_2).astype(rhs_dtype) np.testing.assert_equal(np_data_1, gdf_data_1.to_array()) np.testing.assert_equal(np_data_2, gdf_data_2.to_array()) np.testing.assert_equal( np.less(np_data_1, np_data_2), (gdf_data_1 < gdf_data_2).to_array() ) np.testing.assert_equal( np.greater(np_data_1, np_data_2), (gdf_data_1 > gdf_data_2).to_array() ) np.testing.assert_equal( np.equal(np_data_1, np_data_2), (gdf_data_1 == gdf_data_2).to_array() ) np.testing.assert_equal( np.less_equal(np_data_1, np_data_2), (gdf_data_1 <= gdf_data_2).to_array(), ) np.testing.assert_equal( np.greater_equal(np_data_1, np_data_2), (gdf_data_1 >= gdf_data_2).to_array(), ) @pytest.mark.parametrize("data", [data1(), data2()]) def test_dt_ops(data): pd_data = pd.Series(data.copy()) gdf_data = Series(data.copy()) assert_eq(pd_data == pd_data, gdf_data == gdf_data) assert_eq(pd_data < pd_data, gdf_data < gdf_data) assert_eq(pd_data > pd_data, gdf_data > gdf_data) # libgdf doesn't respect timezones @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_series(data, field): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) base = getattr(pd_data.dt, field) test = getattr(gdf_data.dt, field).to_pandas().astype("int64") assert_series_equal(base, test) @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_index(data, field): pd_data = data.copy() gdf_data = DatetimeIndex(pd_data) assert_index_equal( getattr(gdf_data, field).to_pandas(), getattr(pd_data, field) ) def test_setitem_datetime(): df = DataFrame() df["date"] = pd.date_range("20010101", "20010105").values assert np.issubdtype(df.date.dtype, np.datetime64) def test_sort_datetime(): df = pd.DataFrame() df["date"] = np.array( [ np.datetime64("2016-11-20"), np.datetime64("2020-11-20"), np.datetime64("2019-11-20"), np.datetime64("1918-11-20"), np.datetime64("2118-11-20"), ] ) df["vals"] = np.random.sample(len(df["date"])) gdf = cudf.from_pandas(df) s_df = df.sort_values(by="date") s_gdf = gdf.sort_values(by="date") assert_eq(s_df, s_gdf) def test_issue_165(): df_pandas = pd.DataFrame() start_date = dt.datetime.strptime("2000-10-21", "%Y-%m-%d") data = [(start_date + dt.timedelta(days=x)) for x in range(6)] df_pandas["dates"] = data df_pandas["num"] = [1, 2, 3, 4, 5, 6] df_cudf = DataFrame.from_pandas(df_pandas) base = df_pandas.query("dates==@start_date") test = df_cudf.query("dates==@start_date") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date base_mask = df_pandas.dates == start_date assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_ts = pd.Timestamp(start_date) test = df_cudf.query("dates==@start_date_ts") base = df_pandas.query("dates==@start_date_ts") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_ts base_mask = df_pandas.dates == start_date_ts assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_np = np.datetime64(start_date_ts, "ns") test = df_cudf.query("dates==@start_date_np") base = df_pandas.query("dates==@start_date_np") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_np base_mask = df_pandas.dates == start_date_np assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) def test_typecast_from_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(dtype) gdf_casted = gdf_data.astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_int64_to_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(np.int64).astype(dtype) gdf_casted = gdf_data.astype(np.int64).astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [timeseries_us_data()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_different_datetime_resolutions(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data).astype(dtype) gdf_series = Series(pd_data).astype(dtype) np.testing.assert_equal(np_data, gdf_series.to_array()) @pytest.mark.parametrize( "data", [timestamp_ms_data(), timestamp_us_data(), timestamp_ns_data()] ) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_string_timstamp_typecast_to_different_datetime_resolutions( data, dtype ): pd_sr = data gdf_sr = cudf.Series.from_pandas(pd_sr) expect = pd_sr.values.astype(dtype) got = gdf_sr.astype(dtype).values_host np.testing.assert_equal(expect, got) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype) gdf_casted = gdf_data.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_from_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype).astype(from_dtype) gdf_casted = gdf_data.astype(to_dtype).astype(from_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize( "from_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_col = Series(np_data)._column np_casted = np_data.astype(to_dtype) gdf_casted = gdf_col.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("nulls", ["some", "all"]) def test_to_from_pandas_nulls(data, nulls): pd_data = pd.Series(data.copy().astype("datetime64[ns]")) if nulls == "some": # Fill half the values with NaT pd_data[list(range(0, len(pd_data), 2))] = np.datetime64("nat", "ns") elif nulls == "all": # Fill all the values with NaT pd_data[:] = np.datetime64("nat", "ns") gdf_data = Series.from_pandas(pd_data) expect = pd_data got = gdf_data.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_to_arrow(dtype): timestamp = ( cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={} ) .reset_index()["timestamp"] .reset_index(drop=True) ) gdf = DataFrame({"timestamp": timestamp.astype(dtype)}) assert_eq(gdf, DataFrame.from_arrow(gdf.to_arrow(preserve_index=False))) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize( "nulls", ["none", pytest.param("some", marks=pytest.mark.xfail)] ) def test_datetime_unique(data, nulls): psr = pd.Series(data) print(data) print(nulls) if len(data) > 0: if nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = cudf.from_pandas(psr) expected = psr.unique() got = gsr.unique() assert_eq(pd.Series(expected), got.to_pandas()) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("nulls", ["none", "some"]) def test_datetime_nunique(data, nulls): psr = pd.Series(data) if len(data) > 0: if nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = cudf.from_pandas(psr) expected = psr.nunique() got = gsr.nunique() assert_eq(got, expected) testdata = [ ( Series( ["2018-01-01", None, "2019-01-31", None, "2018-01-01"], dtype="datetime64[ms]", ), True, ), ( Series( [ "2018-01-01", "2018-01-02", "2019-01-31", "2018-03-01", "2018-01-01", ], dtype="datetime64[ms]", ), False, ), ( Series( np.array( ["2018-01-01", None, "2019-12-30"], dtype="datetime64[ms]" ) ), True, ), ] @pytest.mark.parametrize("data, expected", testdata) def test_datetime_has_null_test(data, expected): pd_data = data.to_pandas() count = pd_data.notna().value_counts() expected_count = 0 if False in count.keys(): expected_count = count[False] assert_eq(expected, data.has_nulls) assert_eq(expected_count, data.null_count) def test_datetime_has_null_test_pyarrow(): data = Series( pa.array( [0, np.iinfo("int64").min, np.iinfo("int64").max, None], type=pa.timestamp("ns"), ) ) expected = True expected_count = 1 assert_eq(expected, data.has_nulls) assert_eq(expected_count, data.null_count) def test_datetime_dataframe(): data = { "timearray": np.array( [0, 1, None, 2, 20, None, 897], dtype="datetime64[ms]" ) } gdf = cudf.DataFrame(data) pdf = pd.DataFrame(data) assert_eq(pdf, gdf) assert_eq(pdf.dropna(), gdf.dropna()) assert_eq(pdf.isnull(), gdf.isnull()) data = np.array([0, 1, None, 2, 20, None, 897], dtype="datetime64[ms]") gs = cudf.Series(data) ps = pd.Series(data) assert_eq(ps, gs) assert_eq(ps.dropna(), gs.dropna()) assert_eq(ps.isnull(), gs.isnull()) @pytest.mark.parametrize( "data", [ None, [], pd.Series([]), pd.Index([]), pd.Series([1, 2, 3]), pd.Series([0, 1, -1]), pd.Series([0, 1, -1, 100.3, 200, 47637289]), pd.Series(["2012-10-11", "2010-01-01", "2016-07-07", "2014-02-02"]), [1, 2, 3, 100, -123, -1, 0, 1000000000000679367], pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}), pd.DataFrame( {"year": ["2015", "2016"], "month": ["2", "3"], "day": [4, 5]} ), pd.DataFrame( { "year": [2015, 2016], "month": [2, 3], "day": [4, 5], "minute": [1, 100], "second": [90, 10], "hour": [1, 0.5], }, index=["a", "b"], ), pd.DataFrame( { "year": [], "month": [], "day": [], "minute": [], "second": [], "hour": [], }, ), ["2012-10-11", "2010-01-01", "2016-07-07", "2014-02-02"], pd.Index([1, 2, 3, 4]), pd.DatetimeIndex( ["1970-01-01 00:00:00.000000001", "1970-01-01 00:00:00.000000002"], dtype="datetime64[ns]", freq=None, ), pd.DatetimeIndex([], dtype="datetime64[ns]", freq=None,), pd.Series([1, 2, 3]).astype("datetime64[ns]"), pd.Series([1, 2, 3]).astype("datetime64[us]"), pd.Series([1, 2, 3]).astype("datetime64[ms]"), pd.Series([1, 2, 3]).astype("datetime64[s]"), pd.Series([1, 2, 3]).astype("datetime64[D]"), 1, 100, 17, 53.638435454, np.array([1, 10, 15, 478925, 2327623467]), np.array([0.3474673, -10, 15, 478925.34345, 2327623467]), ], ) @pytest.mark.parametrize("dayfirst", [True, False]) @pytest.mark.parametrize("infer_datetime_format", [True, False]) def test_cudf_to_datetime(data, dayfirst, infer_datetime_format): pd_data = data if isinstance(pd_data, (pd.Series, pd.DataFrame, pd.Index)): gd_data = cudf.from_pandas(pd_data) else: if type(pd_data).__module__ == np.__name__: gd_data = cp.array(pd_data) else: gd_data = pd_data expected = pd.to_datetime( pd_data, dayfirst=dayfirst, infer_datetime_format=infer_datetime_format ) actual = cudf.to_datetime( gd_data, dayfirst=dayfirst, infer_datetime_format=infer_datetime_format ) assert_eq(actual, expected) @pytest.mark.parametrize( "data", [ "2", ["1", "2", "3"], ["1/1/1", "2/2/2", "1"], pd.DataFrame( { "year": [2015, 2016], "month": [2, 3], "day": [4, 5], "minute": [1, 100], "second": [90, 10], "hour": [1, 0], "blablacol": [1, 1], } ), pd.DataFrame( { "month": [2, 3], "day": [4, 5], "minute": [1, 100], "second": [90, 10], "hour": [1, 0], } ), ], ) def test_to_datetime_errors(data): pd_data = data if isinstance(pd_data, (pd.Series, pd.DataFrame, pd.Index)): gd_data = cudf.from_pandas(pd_data) else: gd_data = pd_data try: pd.to_datetime(pd_data) except Exception as e: with pytest.raises(type(e), match=re.escape(str(e))): cudf.to_datetime(gd_data) else: raise AssertionError("Was expecting `pd.to_datetime` to fail") def test_to_datetime_not_implemented(): with pytest.raises(NotImplementedError): cudf.to_datetime([], exact=False) with pytest.raises(NotImplementedError): cudf.to_datetime([], origin="julian") with pytest.raises(NotImplementedError): cudf.to_datetime([], yearfirst=True) @pytest.mark.parametrize( "data", [ 1, [], pd.Series([]), pd.Index([]), pd.Series([1, 2, 3]), pd.Series([1, 2.4, 3]), pd.Series([0, 1, -1]),
pd.Series([0, 1, -1, 100, 200, 47637])
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2019, <NAME> <<EMAIL>> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, _distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import division from deap import algorithms from deap import tools from deap.tools import emo from deap.tools.emo import sortNondominated from sklearn.cluster import KMeans from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.neighbors.nearest_centroid import NearestCentroid from sklearn.model_selection import train_test_split from mpl_toolkits import mplot3d from matplotlib.pyplot import figure from matplotlib.ticker import PercentFormatter import matplotlib.ticker as mtick import matplotlib.pyplot as plt import numpy as np import pandas as pd import time import sys import os import random import random import pdb def _emo_sortNondominated_idx(pop, first_front_only=False): fronts = emo.sortNondominated( pop, len(pop), first_front_only=first_front_only) return [[pop.index(i) for i in f] for f in fronts] def random_pop(model, N): pop = list() for _ in range(N): pop.append( model.Individual([random.random() for _ in range(model.decsNum)])) return pop def action_expr(model): startat = time.time() samples = random_pop(model, 100) for p in samples: model.eval(p, normalized=False) print("100 init pop evaluated.") for round_ in range(10): samples.extend(random_pop(model, 20)) for p in samples[-20:]: model.eval(p, normalized=False) D = pd.DataFrame(data=samples, columns=model.decs) O = pd.DataFrame(data=list(map(lambda i: i.fitness.values, samples))) front_idx = _emo_sortNondominated_idx( samples, first_front_only=True)[0] next_pop = list() for fi in front_idx: dist_order = (D - D.loc[fi]).abs().pow(2).sum( axis=1).sort_values().index[1:int(len(samples) * 0.1) + 1] # fetch the top 10% of samples dD, dO = list(), list() for i in dist_order: for j in dist_order: if i == j: continue dD.append(D.iloc[i] - D.iloc[j]) dO.append(O.iloc[i] - O.iloc[j]) dD = pd.DataFrame(dD, index=range(len(dD))) dO = pd.DataFrame(dO, index=range(len(dO))) assert not (dO.std() < 0).any() regr = list() for oi, obj in enumerate(dO.columns): regr_tmp = KNeighborsRegressor(n_neighbors=4).fit(dD, dO[obj]) regr.append(regr_tmp) mut_dD = list() for _ in range(D.shape[1] * 2): mut_dD.append(D.loc[fi] * np.random.normal(0, 0.5, D.shape[1])) mut_dD = pd.DataFrame(mut_dD, index=range(len(mut_dD))) mut_dO = pd.DataFrame(columns=dO.columns) for oi, obj in enumerate(mut_dO.columns): mut_dO[obj] = regr[oi].predict(mut_dD) filtered = (mut_dO < -1 * mut_dO.std()).any(axis=1) new_decs = D.loc[fi] + mut_dD[filtered] print('new eval = ', str(new_decs.shape[0])) for nd in new_decs.index: candidate = model.Individual(new_decs.loc[nd]) model.eval(candidate, normalized=False) next_pop.append(candidate) samples.extend(emo.sortNondominated(next_pop, len(next_pop), True)[0]) print(f'Round {round_} done. Sample size = {len(samples)}') return emo.sortNondominated( samples, len(samples), first_front_only=True)[0] def action_expr2(model): startat = time.time() samples = random_pop(model, 100) for p in samples: model.eval(p, normalized=False) print("100 init pop evaluated.") for round_ in range(10): samples.extend(random_pop(model, 20)) for p in samples[-20:]: model.eval(p, normalized=False) D =
pd.DataFrame(data=samples, columns=model.decs)
pandas.DataFrame
# coding: UTF-8 import numpy as np from numpy import nan as npNaN import pandas as pd from pandas import Series import talib from src import verify_series def first(l=[]): return l[0] def last(l=[]): return l[-1] def highest(source, period): return pd.Series(source).rolling(period).max().values def lowest(source, period): return pd.Series(source).rolling(period).min().values def med_price(high, low): """ also found in tradingview as hl2 source """ return talib.MEDPRICE(high, low) def avg_price(open, high, low, close): """ also found in tradingview as ohlc4 source """ return talib.AVGPRICE(open, high, low, close) def typ_price(high,low,close): """ typical price, also found in tradingview as hlc3 source """ return talib.TYPPRICE(high, low, close) def MAX(close, period): return talib.MAX(close, period) def highestbars(source, length): """ Highest value offset for a given number of bars back. Returns offset to the highest bar. """ source = source[-length:] offset = abs(length - 1 - np.argmax(source)) return offset def lowestbars(source, length): """ Lowest value offset for a given number of bars back. Returns offset to the lowest bar. """ source = source[-length:] offset = abs(length - 1 - np.argmin(source)) return offset def tr(high, low, close): """ true range """ return talib.TRANGE(high, low, close) def atr(high, low, close, period): """ average true range """ return talib.ATR(high, low, close, period) def stdev(source, period): return pd.Series(source).rolling(period).std().values def stddev(source, period, nbdev=1): """ talib stdev """ return talib.STDDEV(source, timeperiod=period, nbdev=nbdev) def sma(source, period): return pd.Series(source).rolling(period).mean().values def ema(source, period): return talib.EMA(np.array(source), period) def double_ema(src, length): ema_val = ema(src, length) return 2 * ema_val - ema(ema_val, length) def triple_ema(src, length): ema_val = ema(src, length) return 3 * (ema_val - ema(ema_val, length)) + ema(ema(ema_val, length), length) def wma(src, length): return talib.WMA(src, length) def ssma(src, length): return pd.Series(src).ewm(alpha=1.0 / length).mean().values.flatten() def hull(src, length): return wma(2 * wma(src, length / 2) - wma(src, length), round(np.sqrt(length))) def bbands(source, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0): return talib.BBANDS(source, timeperiod, nbdevup, nbdevdn, matype) def macd(close, fastperiod=12, slowperiod=26, signalperiod=9): return talib.MACD(close, fastperiod, slowperiod, signalperiod) def adx(high, low, close, period=14): return talib.ADX(high, low, close, period) def di_plus(high, low, close, period=14): return talib.PLUS_DI(high, low, close, period) def di_minus(high, low, close, period=14): return talib.MINUS_DI(high, low, close, period) def rsi(close, period=14): return talib.RSI(close, period) def rsx(source, length=None, drift=None, offset=None): """ Indicator: Relative Strength Xtra (inspired by <NAME>) """ # Validate arguments length = int(length) if length and length > 0 else 14 source = pd.Series(source) source = verify_series(source, length) #drift = get_drift(drift) #offset = get_offset(offset) if source is None: return # variables vC, v1C = 0, 0 v4, v8, v10, v14, v18, v20 = 0, 0, 0, 0, 0, 0 f0, f8, f10, f18, f20, f28, f30, f38 = 0, 0, 0, 0, 0, 0, 0, 0 f40, f48, f50, f58, f60, f68, f70, f78 = 0, 0, 0, 0, 0, 0, 0, 0 f80, f88, f90 = 0, 0, 0 # Calculate Result m = source.size result = [npNaN for _ in range(0, length - 1)] + [0] for i in range(length, m): if f90 == 0: f90 = 1.0 f0 = 0.0 if length - 1.0 >= 5: f88 = length - 1.0 else: f88 = 5.0 f8 = 100.0 * source.iloc[i] f18 = 3.0 / (length + 2.0) f20 = 1.0 - f18 else: if f88 <= f90: f90 = f88 + 1 else: f90 = f90 + 1 f10 = f8 f8 = 100 * source.iloc[i] v8 = f8 - f10 f28 = f20 * f28 + f18 * v8 f30 = f18 * f28 + f20 * f30 vC = 1.5 * f28 - 0.5 * f30 f38 = f20 * f38 + f18 * vC f40 = f18 * f38 + f20 * f40 v10 = 1.5 * f38 - 0.5 * f40 f48 = f20 * f48 + f18 * v10 f50 = f18 * f48 + f20 * f50 v14 = 1.5 * f48 - 0.5 * f50 f58 = f20 * f58 + f18 * abs(v8) f60 = f18 * f58 + f20 * f60 v18 = 1.5 * f58 - 0.5 * f60 f68 = f20 * f68 + f18 * v18 f70 = f18 * f68 + f20 * f70 v1C = 1.5 * f68 - 0.5 * f70 f78 = f20 * f78 + f18 * v1C f80 = f18 * f78 + f20 * f80 v20 = 1.5 * f78 - 0.5 * f80 if f88 >= f90 and f8 != f10: f0 = 1.0 if f88 == f90 and f0 == 0.0: f90 = 0.0 if f88 < f90 and v20 > 0.0000000001: v4 = (v14 / v20 + 1.0) * 50.0 if v4 > 100.0: v4 = 100.0 if v4 < 0.0: v4 = 0.0 else: v4 = 50.0 result.append(v4) rsx = Series(result, index=source.index) # Offset if offset != 0 and offset != None: rsx = rsx.shift(offset) return rsx def cci(high, low, close, period): return talib.CCI(high,low, close, period) def sar(high, low, acceleration=0, maximum=0): return talib.SAR(high, low, acceleration, maximum) def crossover(a, b): return a[-2] < b[-2] and a[-1] > b[-1] def crossunder(a, b): return a[-2] > b[-2] and a[-1] < b[-1] def ord(seq, sort_seq, idx, itv): p = seq[idx] for i in range(0, itv): if p >= sort_seq[i]: return i + 1 def d(src, itv): sort_src = np.sort(src)[::-1] sum = 0.0 for i in range(0, itv): sum += pow((i + 1) - ord(src, sort_src, i, itv), 2) return sum def rci(src, itv): reversed_src = src[::-1] ret = [(1.0 - 6.0 * d(reversed_src[i:i + itv], itv) / (itv * (itv * itv - 1.0))) * 100.0 for i in range(2)] return ret[::-1] def vix(close, low, pd=23, bbl=23, mult=1.9, lb=88, ph=0.85, pl=1.01): hst = highest(close, pd) wvf = (hst - low) / hst * 100 s_dev = mult * stdev(wvf, bbl) mid_line = sma(wvf, bbl) lower_band = mid_line - s_dev upper_band = mid_line + s_dev range_high = (highest(wvf, lb)) * ph range_low = (lowest(wvf, lb)) * pl green_hist = [wvf[-i] >= upper_band[-i] or wvf[-i] >= range_high[-i] for i in range(8)][::-1] red_hist = [wvf[-i] <= lower_band[-i] or wvf[-i] <= range_low[-i] for i in range(8)][::-1] return green_hist, red_hist def supertrend(high, low, close, length=None, multiplier=None, offset=None): """ Indicator: Supertrend """ # Validate Arguments length = int(length) if length and length > 0 else 7 multiplier = float(multiplier) if multiplier and multiplier > 0 else 3.0 high = pd.Series(high) low = pd.Series(low) close = pd.Series(close) high = verify_series(high, length) low = verify_series(low, length) close = verify_series(close, length) #offset = get_offset(offset) if high is None or low is None or close is None: return # Calculate Results m = close.size dir_, trend = [1] * m, [0] * m long, short = [npNaN] * m, [npNaN] * m hl2_ = med_price(high, low) matr = multiplier * atr(high, low, close, length) upperband = hl2_ + matr lowerband = hl2_ - matr for i in range(1, m): if close.iloc[i] > upperband.iloc[i - 1]: dir_[i] = 1 elif close.iloc[i] < lowerband.iloc[i - 1]: dir_[i] = -1 else: dir_[i] = dir_[i - 1] if dir_[i] > 0 and lowerband.iloc[i] < lowerband.iloc[i - 1]: lowerband.iloc[i] = lowerband.iloc[i - 1] if dir_[i] < 0 and upperband.iloc[i] > upperband.iloc[i - 1]: upperband.iloc[i] = upperband.iloc[i - 1] if dir_[i] > 0: trend[i] = long[i] = lowerband.iloc[i] else: trend[i] = short[i] = upperband.iloc[i] # Prepare DataFrame to return _props = f"_{length}_{multiplier}" df = pd.DataFrame({ f"SUPERT": trend, f"SUPERTd": dir_, f"SUPERTl": long, f"SUPERTs": short, }, index=close.index) df.name = f"SUPERT{_props}" df.category = "overlap" # Apply offset if needed if offset != 0 and offset != None: df = df.shift(offset) return df def tv_supertrend(high, low, close, length=14, multiplier=3): high = pd.Series(high) low = pd.Series(low) close = pd.Series(close) # calculate ATR price_diffs = [high - low, high - close.shift(), low - close.shift()] true_range = pd.concat(price_diffs, axis=1) true_range = true_range.abs().max(axis=1) true_range[0] = (high[0] + low[0])/2 # default ATR calculation in supertrend indicator atr = true_range.ewm(alpha=1/length,min_periods=length,ignore_na=True,adjust=False).mean() # atr = sma(true_range, length) atr.fillna(0, inplace=True) # HL2 is simply the average of high and low prices hl2 = (high + low) / 2 # upperband and lowerband calculation # notice that final bands are set to be equal to the respective bands upperband = hl2 + (multiplier * atr) lowerband = hl2 - (multiplier * atr) # initialize Supertrend column to 1 dir = [np.NaN] * close.size trend = [np.NaN] * close.size for i in range(1, len(close)): curr, prev = i, i-1 #lowerBand := lowerBand > prevLowerBand or close[1] < prevLowerBand ? lowerBand : prevLowerBand lowerband[curr] = lowerband[curr] if \ lowerband[curr] > lowerband[prev] or close[prev] < lowerband[prev] \ else lowerband[prev] #upperBand := upperBand < prevUpperBand or close[1] > prevUpperBand ? upperBand : prevUpperBand upperband[curr] = upperband[curr] if \ upperband[curr] < upperband[prev] or close[prev] > upperband[prev] \ else upperband[prev] if np.isnan(atr[prev]): dir[curr] = -1 elif trend[prev] == upperband[prev]: dir[curr] = 1 if close[curr] > upperband[curr] else -1 else: dir[curr] = -1 if close[curr] < lowerband[curr] else 1 trend[curr] = lowerband[curr] if dir[curr] == 1 else upperband[curr] return pd.DataFrame({ f"SUPERT": trend, f"SUPERTd": dir, f"SUPERTl": lowerband, f"SUPERTs": upperband, }, index=close.index) def donchian(high, low, lower_length=None, upper_length=None, offset=None, **kwargs): """ Indicator: Donchian Channels (DC) """ # Validate arguments high =
pd.Series(high)
pandas.Series
import json from itertools import product from unittest.mock import ANY, MagicMock, patch import numpy as np import pandas as pd import pytest import woodwork as ww from evalml.exceptions import PipelineScoreError from evalml.model_understanding.prediction_explanations.explainers import ( ExplainPredictionsStage, abs_error, cross_entropy, explain_predictions, explain_predictions_best_worst, ) from evalml.pipelines import ( BinaryClassificationPipeline, MulticlassClassificationPipeline, RegressionPipeline, TimeSeriesBinaryClassificationPipeline, TimeSeriesRegressionPipeline, ) from evalml.pipelines.components.utils import _all_estimators from evalml.problem_types import ProblemTypes, is_binary, is_multiclass def compare_two_tables(table_1, table_2): assert len(table_1) == len(table_2) for row, row_answer in zip(table_1, table_2): assert row.strip().split() == row_answer.strip().split() def test_error_metrics(): np.testing.assert_array_equal( abs_error(pd.Series([1, 2, 3]), pd.Series([4, 1, 0])), np.array([3, 1, 3]) ) np.testing.assert_allclose( cross_entropy( pd.Series([1, 0]), pd.DataFrame({"a": [0.1, 0.2], "b": [0.9, 0.8]}) ), np.array([-np.log(0.9), -np.log(0.2)]), ) input_features_and_y_true = [ ( [[1]], pd.Series([1]), "^Input features must be a dataframe with more than 10 rows!", ), ( pd.DataFrame({"a": [1]}), pd.Series([1]), "^Input features must be a dataframe with more than 10 rows!", ), ( pd.DataFrame({"a": range(15)}), pd.Series(range(12)), "^Parameters y_true and input_features must have the same number of data points.", ), ] @pytest.mark.parametrize( "input_features,y_true,error_message", input_features_and_y_true ) def test_explain_predictions_best_worst_value_errors( input_features, y_true, error_message ): with pytest.raises(ValueError, match=error_message): explain_predictions_best_worst(None, input_features, y_true) def test_explain_predictions_raises_pipeline_score_error(): with pytest.raises(PipelineScoreError, match="Division by zero!"): def raise_zero_division(input_features): raise ZeroDivisionError("Division by zero!") pipeline = MagicMock() pipeline.problem_type = ProblemTypes.BINARY pipeline.predict_proba.side_effect = raise_zero_division explain_predictions_best_worst( pipeline, pd.DataFrame({"a": range(15)}), pd.Series(range(15)) ) def test_explain_predictions_value_errors(): with pytest.raises( ValueError, match="Parameter input_features must be a non-empty dataframe." ): explain_predictions(MagicMock(), pd.DataFrame(), y=None, indices_to_explain=[0]) with pytest.raises(ValueError, match="Explained indices should be between"): explain_predictions( MagicMock(), pd.DataFrame({"a": [0, 1, 2, 3, 4]}), y=None, indices_to_explain=[5], ) with pytest.raises(ValueError, match="Explained indices should be between"): explain_predictions( MagicMock(), pd.DataFrame({"a": [0, 1, 2, 3, 4]}), y=None, indices_to_explain=[1, 5], ) with pytest.raises(ValueError, match="Explained indices should be between"): explain_predictions( MagicMock(), pd.DataFrame({"a": [0, 1, 2, 3, 4]}), y=None, indices_to_explain=[-1], ) @pytest.mark.parametrize("training_target", [None, pd.Series([1, 2, 3])]) @pytest.mark.parametrize("training_data", [None, pd.DataFrame({"a": [1, 2, 3]})]) @pytest.mark.parametrize( "problem_type", [ ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_MULTICLASS, ], ) def test_time_series_training_target_and_training_data_are_not_None( training_target, training_data, problem_type ): mock_ts_pipeline = MagicMock(problem_type=problem_type) if training_data is not None and training_target is not None: pytest.xfail("No exception raised in this case") with pytest.raises( ValueError, match="training_target and training_data are not None" ): explain_predictions( mock_ts_pipeline, pd.DataFrame({"a": [0, 1, 2, 3, 4]}), y=pd.Series([1, 2, 3, 4, 5]), indices_to_explain=[2], training_data=training_data, training_target=training_target, ) with pytest.raises( ValueError, match="training_target and training_data are not None" ): explain_predictions_best_worst( mock_ts_pipeline, pd.DataFrame({"a": [0, 1, 2, 3, 4]}), y_true=pd.Series([1, 2, 3, 4, 5]), num_to_explain=1, training_data=training_data, training_target=training_target, ) def test_output_format_checked(): input_features, y_true = pd.DataFrame(data=[range(15)]), pd.Series(range(15)) with pytest.raises( ValueError, match="Parameter output_format must be either text, dict, or dataframe. Received bar", ): explain_predictions( pipeline=MagicMock(), input_features=input_features, y=None, indices_to_explain=0, output_format="bar", ) input_features, y_true = pd.DataFrame(data=range(15)), pd.Series(range(15)) with pytest.raises( ValueError, match="Parameter output_format must be either text, dict, or dataframe. Received foo", ): explain_predictions_best_worst( pipeline=MagicMock(), input_features=input_features, y_true=y_true, output_format="foo", ) regression_best_worst_answer = """Test Pipeline Name Parameters go here Best 1 of 1 Predicted Value: 1 Target Value: 2 Absolute Difference: 1.0 Index ID: {index_0} table goes here Worst 1 of 1 Predicted Value: 2 Target Value: 3 Absolute Difference: 4.0 Index ID: {index_1} table goes here """ regression_best_worst_answer_dict = { "explanations": [ { "rank": {"prefix": "best", "index": 1}, "predicted_values": { "probabilities": None, "predicted_value": 1, "target_value": 2, "error_name": "Absolute Difference", "error_value": 1.0, }, "explanations": ["explanation_dictionary_goes_here"], }, { "rank": {"prefix": "worst", "index": 1}, "predicted_values": { "probabilities": None, "predicted_value": 2, "target_value": 3, "error_name": "Absolute Difference", "error_value": 4.0, }, "explanations": ["explanation_dictionary_goes_here"], }, ] } regression_best_worst_answer_df = pd.DataFrame( { "feature_names": [0, 0], "feature_values": [0, 0], "qualitative_explanation": [0, 0], "quantitative_explanation": [0, 0], "rank": [1, 1], "predicted_value": [1, 2], "target_value": [2, 3], "error_name": ["Absolute Difference"] * 2, "error_value": [1.0, 4.0], "prefix": ["best", "worst"], } ) no_best_worst_answer = """Test Pipeline Name Parameters go here 1 of 2 table goes here 2 of 2 table goes here """ no_best_worst_answer_dict = { "explanations": [ {"explanations": ["explanation_dictionary_goes_here"]}, {"explanations": ["explanation_dictionary_goes_here"]}, ] } no_best_worst_answer_df = pd.DataFrame( { "feature_names": [0, 0], "feature_values": [0, 0], "qualitative_explanation": [0, 0], "quantitative_explanation": [0, 0], "prediction_number": [0, 1], } ) binary_best_worst_answer = """Test Pipeline Name Parameters go here Best 1 of 1 Predicted Probabilities: [benign: 0.05, malignant: 0.95] Predicted Value: malignant Target Value: malignant Cross Entropy: 0.2 Index ID: {index_0} table goes here Worst 1 of 1 Predicted Probabilities: [benign: 0.1, malignant: 0.9] Predicted Value: malignant Target Value: benign Cross Entropy: 0.78 Index ID: {index_1} table goes here """ binary_best_worst_answer_dict = { "explanations": [ { "rank": {"prefix": "best", "index": 1}, "predicted_values": { "probabilities": {"benign": 0.05, "malignant": 0.95}, "predicted_value": "malignant", "target_value": "malignant", "error_name": "Cross Entropy", "error_value": 0.2, }, "explanations": ["explanation_dictionary_goes_here"], }, { "rank": {"prefix": "worst", "index": 1}, "predicted_values": { "probabilities": {"benign": 0.1, "malignant": 0.9}, "predicted_value": "malignant", "target_value": "benign", "error_name": "Cross Entropy", "error_value": 0.78, }, "explanations": ["explanation_dictionary_goes_here"], }, ] } binary_best_worst_answer_df = pd.DataFrame( { "feature_names": [0, 0], "feature_values": [0, 0], "qualitative_explanation": [0, 0], "quantitative_explanation": [0, 0], "rank": [1, 1], "prefix": ["best", "worst"], "label_benign_probability": [0.05, 0.1], "label_malignant_probability": [0.95, 0.9], "predicted_value": ["malignant", "malignant"], "target_value": ["malignant", "benign"], "error_name": ["Cross Entropy"] * 2, "error_value": [0.2, 0.78], } ) multiclass_table = """Class: setosa table goes here Class: versicolor table goes here Class: virginica table goes here""" multiclass_best_worst_answer = """Test Pipeline Name Parameters go here Best 1 of 1 Predicted Probabilities: [setosa: 0.8, versicolor: 0.1, virginica: 0.1] Predicted Value: setosa Target Value: setosa Cross Entropy: 0.15 Index ID: {{index_0}} {multiclass_table} Worst 1 of 1 Predicted Probabilities: [setosa: 0.2, versicolor: 0.75, virginica: 0.05] Predicted Value: versicolor Target Value: versicolor Cross Entropy: 0.34 Index ID: {{index_1}} {multiclass_table} """.format( multiclass_table=multiclass_table ) multiclass_best_worst_answer_dict = { "explanations": [ { "rank": {"prefix": "best", "index": 1}, "predicted_values": { "probabilities": {"setosa": 0.8, "versicolor": 0.1, "virginica": 0.1}, "predicted_value": "setosa", "target_value": "setosa", "error_name": "Cross Entropy", "error_value": 0.15, }, "explanations": ["explanation_dictionary_goes_here"], }, { "rank": {"prefix": "worst", "index": 1}, "predicted_values": { "probabilities": {"setosa": 0.2, "versicolor": 0.75, "virginica": 0.05}, "predicted_value": "versicolor", "target_value": "versicolor", "error_name": "Cross Entropy", "error_value": 0.34, }, "explanations": ["explanation_dictionary_goes_here"], }, ] } multiclass_best_worst_answer_df = pd.DataFrame( { "feature_names": [0, 0], "feature_values": [0, 0], "qualitative_explanation": [0, 0], "quantitative_explanation": [0, 0], "rank": [1, 1], "prefix": ["best", "worst"], "label_setosa_probability": [0.8, 0.2], "label_versicolor_probability": [0.1, 0.75], "label_virginica_probability": [0.1, 0.05], "predicted_value": ["setosa", "versicolor"], "target_value": ["setosa", "versicolor"], "error_name": ["Cross Entropy"] * 2, "error_value": [0.15, 0.34], } ) multiclass_no_best_worst_answer = """Test Pipeline Name Parameters go here 1 of 2 {multiclass_table} 2 of 2 {multiclass_table} """.format( multiclass_table=multiclass_table ) def _add_custom_index(answer, index_best, index_worst, output_format): if output_format == "text": answer = answer.format(index_0=index_best, index_1=index_worst) elif output_format == "dataframe": col_name = "prefix" if "prefix" in answer.columns else "rank" n_repeats = answer[col_name].value_counts().tolist()[0] answer["index_id"] = [index_best] * n_repeats + [index_worst] * n_repeats else: answer["explanations"][0]["predicted_values"]["index_id"] = index_best answer["explanations"][1]["predicted_values"]["index_id"] = index_worst return answer def _prep_pipeline_mock(problem_type, input_features): pipeline = MagicMock() pipeline.parameters = "Parameters go here" pipeline.problem_type = problem_type pipeline.name = "Test Pipeline Name" pipeline.compute_estimator_features.return_value = input_features return pipeline def _compare_reports(report, predicted_report, output_format): if output_format == "text": compare_two_tables(report.splitlines(), predicted_report.splitlines()) elif output_format == "dataframe": assert sorted(report.columns.tolist()) == sorted( predicted_report.columns.tolist() ) pd.testing.assert_frame_equal(report, predicted_report[report.columns]) else: assert report == predicted_report output_formats = ["text", "dict", "dataframe"] algorithms = ["shap", "lime"] regression_problem_types = [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ] regression_custom_indices = [[0, 1], [4, 10], ["foo", "bar"]] @pytest.mark.parametrize( "problem_type,output_format,custom_index,algorithm", product( regression_problem_types, output_formats, regression_custom_indices, algorithms ), ) @patch("evalml.model_understanding.prediction_explanations.explainers.DEFAULT_METRICS") @patch( "evalml.model_understanding.prediction_explanations._user_interface._make_single_prediction_explanation_table" ) def test_explain_predictions_best_worst_and_explain_predictions_regression( mock_make_table, mock_default_metrics, problem_type, output_format, custom_index, algorithm, ): if output_format == "text": mock_make_table.return_value = "table goes here" answer = regression_best_worst_answer explain_predictions_answer = no_best_worst_answer elif output_format == "dataframe": explanation_table = pd.DataFrame( { "feature_names": [0], "feature_values": [0], "qualitative_explanation": [0], "quantitative_explanation": [0], } ) # Use side effect so that we always get a new copy of the dataframe mock_make_table.side_effect = lambda *args, **kwargs: explanation_table.copy() answer = regression_best_worst_answer_df explain_predictions_answer = no_best_worst_answer_df else: mock_make_table.return_value = { "explanations": ["explanation_dictionary_goes_here"] } answer = regression_best_worst_answer_dict explain_predictions_answer = no_best_worst_answer_dict input_features = pd.DataFrame({"a": [3, 4]}, index=custom_index) input_features.ww.init() pipeline = _prep_pipeline_mock(problem_type, input_features) pipeline.predict.return_value = ww.init_series(pd.Series([2, 1])) pipeline.predict_in_sample.return_value = ww.init_series(pd.Series([2, 1])) pipeline.transform_all_but_final.return_value = input_features abs_error_mock = MagicMock(__name__="abs_error") abs_error_mock.return_value = pd.Series([4.0, 1.0], dtype="float64") mock_default_metrics.__getitem__.return_value = abs_error_mock y_true = pd.Series([3, 2], index=custom_index) answer = _add_custom_index( answer, index_best=custom_index[1], index_worst=custom_index[0], output_format=output_format, ) report = explain_predictions( pipeline, input_features, y=y_true, indices_to_explain=[0, 1], output_format=output_format, training_data=input_features, training_target=y_true, algorithm=algorithm, ) _compare_reports(report, explain_predictions_answer, output_format) mock_make_table.assert_called_with( ANY, ANY, ANY, index_to_explain=ANY, top_k=ANY, include_explainer_values=ANY, output_format=output_format, algorithm=algorithm, ) best_worst_report = explain_predictions_best_worst( pipeline, input_features, y_true=y_true, num_to_explain=1, output_format=output_format, training_data=input_features, training_target=y_true, algorithm=algorithm, ) _compare_reports(best_worst_report, answer, output_format) mock_make_table.assert_called_with( ANY, ANY, ANY, index_to_explain=ANY, top_k=ANY, include_explainer_values=ANY, output_format=output_format, algorithm=algorithm, ) binary_problem_types = [ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY] binary_custom_indices = [[0, 1], [7, 11], ["first", "second"]] @pytest.mark.parametrize( "problem_type,output_format,custom_index,algorithm", product(binary_problem_types, output_formats, binary_custom_indices, algorithms), ) @patch("evalml.model_understanding.prediction_explanations.explainers.DEFAULT_METRICS") @patch( "evalml.model_understanding.prediction_explanations._user_interface._make_single_prediction_explanation_table" ) def test_explain_predictions_best_worst_and_explain_predictions_binary( mock_make_table, mock_default_metrics, problem_type, output_format, custom_index, algorithm, ): if output_format == "text": mock_make_table.return_value = "table goes here" answer = binary_best_worst_answer explain_predictions_answer = no_best_worst_answer elif output_format == "dataframe": explanation_table = pd.DataFrame( { "feature_names": [0], "feature_values": [0], "qualitative_explanation": [0], "quantitative_explanation": [0], } ) # Use side effect so that we always get a new copy of the dataframe mock_make_table.side_effect = lambda *args, **kwargs: explanation_table.copy() answer = binary_best_worst_answer_df explain_predictions_answer = no_best_worst_answer_df else: mock_make_table.return_value = { "explanations": ["explanation_dictionary_goes_here"] } answer = binary_best_worst_answer_dict explain_predictions_answer = no_best_worst_answer_dict input_features = pd.DataFrame({"a": [3, 4]}, index=custom_index) input_features.ww.init() pipeline = _prep_pipeline_mock(problem_type, input_features) pipeline.classes_.return_value = ["benign", "malignant"] cross_entropy_mock = MagicMock(__name__="cross_entropy") mock_default_metrics.__getitem__.return_value = cross_entropy_mock cross_entropy_mock.return_value = pd.Series([0.2, 0.78]) proba = pd.DataFrame({"benign": [0.05, 0.1], "malignant": [0.95, 0.9]}) proba.ww.init() pipeline.predict_proba.return_value = proba pipeline.predict_proba_in_sample.return_value = proba pipeline.predict.return_value = ww.init_series(pd.Series(["malignant"] * 2)) pipeline.predict_in_sample.return_value = ww.init_series( pd.Series(["malignant"] * 2) ) pipeline.transform_all_but_final.return_value = input_features y_true = pd.Series(["malignant", "benign"], index=custom_index) answer = _add_custom_index( answer, index_best=custom_index[0], index_worst=custom_index[1], output_format=output_format, ) report = explain_predictions( pipeline, input_features, y=y_true, indices_to_explain=[0, 1], output_format=output_format, training_data=input_features, training_target=y_true, algorithm=algorithm, ) _compare_reports(report, explain_predictions_answer, output_format) mock_make_table.assert_called_with( ANY, ANY, ANY, index_to_explain=ANY, top_k=ANY, include_explainer_values=ANY, output_format=output_format, algorithm=algorithm, ) best_worst_report = explain_predictions_best_worst( pipeline, input_features, y_true=y_true, num_to_explain=1, output_format=output_format, training_data=input_features, training_target=y_true, algorithm=algorithm, ) _compare_reports(best_worst_report, answer, output_format) mock_make_table.assert_called_with( ANY, ANY, ANY, index_to_explain=ANY, top_k=ANY, include_explainer_values=ANY, output_format=output_format, algorithm=algorithm, ) multiclass_problem_types = [ ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS, ] multiclass_custom_indices = [[0, 1], [17, 235], ["2020-15", "2020-15"]] @pytest.mark.parametrize( "problem_type,output_format,custom_index,algorithm", product( multiclass_problem_types, output_formats, multiclass_custom_indices, algorithms ), ) @patch("evalml.model_understanding.prediction_explanations.explainers.DEFAULT_METRICS") @patch( "evalml.model_understanding.prediction_explanations._user_interface._make_single_prediction_explanation_table" ) def test_explain_predictions_best_worst_and_explain_predictions_multiclass( mock_make_table, mock_default_metrics, problem_type, output_format, custom_index, algorithm, ): if output_format == "text": mock_make_table.return_value = "table goes here" answer = multiclass_best_worst_answer explain_predictions_answer = multiclass_no_best_worst_answer elif output_format == "dataframe": explanation_table = pd.DataFrame( { "feature_names": [0], "feature_values": [0], "qualitative_explanation": [0], "quantitative_explanation": [0], } ) # Use side effect so that we always get a new copy of the dataframe mock_make_table.side_effect = lambda *args, **kwargs: explanation_table.copy() answer = multiclass_best_worst_answer_df explain_predictions_answer = no_best_worst_answer_df else: mock_make_table.return_value = { "explanations": ["explanation_dictionary_goes_here"] } answer = multiclass_best_worst_answer_dict explain_predictions_answer = no_best_worst_answer_dict input_features = pd.DataFrame({"a": [3, 4]}, index=custom_index) input_features.ww.init() pipeline = _prep_pipeline_mock(problem_type, input_features) # Multiclass text output is formatted slightly different so need to account for that if output_format == "text": mock_make_table.return_value = multiclass_table pipeline.classes_.return_value = ["setosa", "versicolor", "virginica"] cross_entropy_mock = MagicMock(__name__="cross_entropy") mock_default_metrics.__getitem__.return_value = cross_entropy_mock cross_entropy_mock.return_value = pd.Series([0.15, 0.34]) proba = pd.DataFrame( {"setosa": [0.8, 0.2], "versicolor": [0.1, 0.75], "virginica": [0.1, 0.05]} ) proba.ww.init() pipeline.predict_proba.return_value = proba pipeline.predict_proba_in_sample.return_value = proba pipeline.predict.return_value = ww.init_series(pd.Series(["setosa", "versicolor"])) pipeline.predict_in_sample.return_value = ww.init_series( pd.Series(["setosa", "versicolor"]) ) pipeline.transform_all_but_final.return_value = input_features y_true = pd.Series(["setosa", "versicolor"], index=custom_index) answer = _add_custom_index( answer, index_best=custom_index[0], index_worst=custom_index[1], output_format=output_format, ) report = explain_predictions( pipeline, input_features, y=y_true, indices_to_explain=[0, 1], output_format=output_format, training_data=input_features, training_target=y_true, algorithm=algorithm, ) _compare_reports(report, explain_predictions_answer, output_format) mock_make_table.assert_called_with( ANY, ANY, ANY, index_to_explain=ANY, top_k=ANY, include_explainer_values=ANY, output_format=output_format, algorithm=algorithm, ) best_worst_report = explain_predictions_best_worst( pipeline, input_features, y_true=y_true, num_to_explain=1, output_format=output_format, training_data=input_features, training_target=y_true, algorithm=algorithm, ) _compare_reports(best_worst_report, answer, output_format) mock_make_table.assert_called_with( ANY, ANY, ANY, index_to_explain=ANY, top_k=ANY, include_explainer_values=ANY, output_format=output_format, algorithm=algorithm, ) regression_custom_metric_answer = """Test Pipeline Name Parameters go here Best 1 of 1 Predicted Value: 1 Target Value: 2 sum: 3 Index ID: 1 table goes here Worst 1 of 1 Predicted Value: 2 Target Value: 3 sum: 5 Index ID: 0 table goes here """ regression_custom_metric_answer_dict = { "explanations": [ { "rank": {"prefix": "best", "index": 1}, "predicted_values": { "probabilities": None, "predicted_value": 1, "target_value": 2, "error_name": "sum", "error_value": 3, "index_id": 1, }, "explanations": ["explanation_dictionary_goes_here"], }, { "rank": {"prefix": "worst", "index": 1}, "predicted_values": { "probabilities": None, "predicted_value": 2, "target_value": 3, "error_name": "sum", "error_value": 5, "index_id": 0, }, "explanations": ["explanation_dictionary_goes_here"], }, ] } @pytest.mark.parametrize( "output_format,answer", [ ("text", regression_custom_metric_answer), ("dict", regression_custom_metric_answer_dict), ], ) @patch( "evalml.model_understanding.prediction_explanations._user_interface._make_single_prediction_explanation_table" ) def test_explain_predictions_best_worst_custom_metric( mock_make_table, output_format, answer ): mock_make_table.return_value = ( "table goes here" if output_format == "text" else {"explanations": ["explanation_dictionary_goes_here"]} ) pipeline = MagicMock() pipeline.parameters = "Parameters go here" input_features = pd.DataFrame({"a": [5, 6]}) pipeline.problem_type = ProblemTypes.REGRESSION pipeline.name = "Test Pipeline Name" input_features.ww.init() pipeline.transform_all_but_final.return_value = input_features pipeline.predict.return_value = ww.init_series(pd.Series([2, 1])) y_true = pd.Series([3, 2]) def sum(y_true, y_pred): return y_pred + y_true best_worst_report = explain_predictions_best_worst( pipeline, input_features, y_true=y_true, num_to_explain=1, metric=sum, output_format=output_format, ) if output_format == "text": compare_two_tables( best_worst_report.splitlines(), regression_custom_metric_answer.splitlines() ) else: assert best_worst_report == answer def test_explain_predictions_time_series(ts_data): X, y = ts_data ts_pipeline = TimeSeriesRegressionPipeline( component_graph=[ "Time Series Featurizer", "DateTime Featurization Component", "Random Forest Regressor", ], parameters={ "pipeline": { "date_index": "date", "gap": 0, "max_delay": 2, "forecast_horizon": 1, }, "Time Series Featurizer": { "date_index": "date", "gap": 0, "max_delay": 2, "forecast_horizon": 1, }, "Random Forest Regressor": {"n_jobs": 1}, }, ) X_train, y_train = X[:15], y[:15] X_validation, y_validation = X[15:], y[15:] ts_pipeline.fit(X_train, y_train) exp = explain_predictions( pipeline=ts_pipeline, input_features=X_validation, y=y_validation, indices_to_explain=[5, 11], output_format="dict", training_data=X_train, training_target=y_train, ) # Check that the computed features to be explained aren't NaN. for exp_idx in range(len(exp["explanations"])): assert not np.isnan( np.array(exp["explanations"][exp_idx]["explanations"][0]["feature_values"]) ).any() @pytest.mark.parametrize("output_format", ["text", "dict", "dataframe"]) @pytest.mark.parametrize( "pipeline_class, estimator", [ (TimeSeriesRegressionPipeline, "Random Forest Regressor"), (TimeSeriesBinaryClassificationPipeline, "Logistic Regression Classifier"), ], ) def test_explain_predictions_best_worst_time_series( output_format, pipeline_class, estimator, ts_data, ts_data_binary ): X, y = ts_data if is_binary(pipeline_class.problem_type): X, y = ts_data_binary ts_pipeline = pipeline_class( component_graph=[ "Time Series Featurizer", "DateTime Featurization Component", estimator, ], parameters={ "pipeline": { "date_index": "date", "gap": 0, "max_delay": 2, "forecast_horizon": 1, }, "Time Series Featurizer": { "gap": 0, "max_delay": 2, "forecast_horizon": 1, "date_index": "date", }, }, ) X_train, y_train = X[:15], y[:15] X_validation, y_validation = X[15:], y[15:] ts_pipeline.fit(X_train, y_train) exp = explain_predictions_best_worst( pipeline=ts_pipeline, input_features=X_validation, y_true=y_validation, output_format=output_format, training_data=X_train, training_target=y_train, ) if output_format == "dict": # Check that the computed features to be explained aren't NaN. for exp_idx in range(len(exp["explanations"])): assert not np.isnan( np.array( exp["explanations"][exp_idx]["explanations"][0]["feature_values"] ) ).any() @pytest.mark.parametrize( "problem_type", [ProblemTypes.REGRESSION, ProblemTypes.BINARY, ProblemTypes.MULTICLASS], ) def test_json_serialization( problem_type, X_y_regression, linear_regression_pipeline_class, X_y_binary, logistic_regression_binary_pipeline_class, X_y_multi, logistic_regression_multiclass_pipeline_class, ): if problem_type == problem_type.REGRESSION: X, y = X_y_regression y = pd.Series(y) pipeline = linear_regression_pipeline_class( parameters={"Linear Regressor": {"n_jobs": 1}} ) elif problem_type == problem_type.BINARY: X, y = X_y_binary y = pd.Series(y).astype("str") pipeline = logistic_regression_binary_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) else: X, y = X_y_multi y = pd.Series(y).astype("str") pipeline = logistic_regression_multiclass_pipeline_class( parameters={"Logistic Regression Classifier": {"n_jobs": 1}} ) pipeline.fit(X, y) best_worst = explain_predictions_best_worst( pipeline, pd.DataFrame(X), y, num_to_explain=1, output_format="dict" ) assert json.loads(json.dumps(best_worst)) == best_worst report = explain_predictions( pipeline, pd.DataFrame(X), y=y, output_format="dict", indices_to_explain=[0] ) assert json.loads(json.dumps(report)) == report def transform_y_for_problem_type(problem_type, y): if problem_type == ProblemTypes.REGRESSION: y = y.astype("int") elif problem_type == ProblemTypes.MULTICLASS: y = pd.Series(y).astype("str") y[:20] = "2" return y EXPECTED_DATETIME_FEATURES = { "datetime_hour", "datetime_year", "datetime_month", "datetime_day_of_week", } EXPECTED_DATETIME_FEATURES_OHE = { "datetime_hour", "datetime_year", "datetime_month_3", "datetime_day_of_week_0", "datetime_day_of_week_1", "datetime_day_of_week_2", "datetime_day_of_week_3", "datetime_day_of_week_4", "datetime_day_of_week_5", "datetime_day_of_week_6", "datetime_month_0", "datetime_month_1", "datetime_month_2", "datetime_month_4", "datetime_month_5", "datetime_month_6", "datetime_month_7", } EXPECTED_CURRENCY_FEATURES = { "currency_XDR", "currency_HTG", "currency_PAB", "currency_CNY", "currency_TZS", "currency_LAK", "currency_NAD", "currency_IMP", "currency_QAR", "currency_EGP", } EXPECTED_PROVIDER_FEATURES_OHE = { "provider_JCB 16 digit", "provider_Discover", "provider_American Express", "provider_JCB 15 digit", "provider_Maestro", "provider_VISA 19 digit", "provider_VISA 13 digit", "provider_Mastercard", "provider_VISA 16 digit", "provider_Diners Club / Carte Blanche", } EXPECTED_PROVIDER_FEATURES_TEXT = { "DIVERSITY_SCORE(provider)", "LSA(provider)[0]", "LSA(provider)[1]", "MEAN_CHARACTERS_PER_WORD(provider)", "NUM_CHARACTERS(provider)", "NUM_WORDS(provider)", "POLARITY_SCORE(provider)", } pipeline_test_cases = [ (BinaryClassificationPipeline, "Random Forest Classifier"), (RegressionPipeline, "Random Forest Regressor"), (MulticlassClassificationPipeline, "Random Forest Classifier"), ] @pytest.mark.parametrize( "pipeline_class_and_estimator,algorithm", product(pipeline_test_cases, algorithms), ) def test_categories_aggregated_linear_pipeline( pipeline_class_and_estimator, algorithm, fraud_100 ): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline_class, estimator = pipeline_class_and_estimator pipeline = pipeline_class( component_graph=[ "Select Columns Transformer", "One Hot Encoder", "DateTime Featurization Component", estimator, ], parameters={ "Select Columns Transformer": { "columns": ["amount", "provider", "currency"] }, estimator: {"n_jobs": 1}, }, ) y = transform_y_for_problem_type(pipeline.problem_type, y) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dict", algorithm=algorithm, ) for explanation in report["explanations"][0]["explanations"]: assert set(explanation["feature_names"]) == {"amount", "provider", "currency"} assert set(explanation["feature_values"]) == {"CUC", "Mastercard", 24900} assert explanation["drill_down"].keys() == {"currency", "provider"} assert ( set(explanation["drill_down"]["currency"]["feature_names"]) == EXPECTED_CURRENCY_FEATURES ) assert ( set(explanation["drill_down"]["provider"]["feature_names"]) == EXPECTED_PROVIDER_FEATURES_OHE ) @pytest.mark.parametrize( "pipeline_class_and_estimator,algorithm", product(pipeline_test_cases, algorithms), ) def test_categories_aggregated_text(pipeline_class_and_estimator, algorithm, fraud_100): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline_class, estimator = pipeline_class_and_estimator X.ww.set_types( logical_types={ "provider": "NaturalLanguage", } ) component_graph = [ "Select Columns Transformer", "One Hot Encoder", "Natural Language Featurization Component", "DateTime Featurization Component", estimator, ] pipeline = pipeline_class( component_graph, parameters={ "Select Columns Transformer": { "columns": ["amount", "provider", "currency", "datetime"] }, estimator: {"n_jobs": 1}, }, ) y = transform_y_for_problem_type(pipeline.problem_type, y) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], top_k_features=4, output_format="dict", algorithm=algorithm, ) for explanation in report["explanations"][0]["explanations"]: assert set(explanation["feature_names"]) == { "amount", "provider", "currency", "datetime", } assert set(explanation["feature_values"]) == { "CUC", "Mastercard", 24900, pd.Timestamp("2019-01-01 00:12:26"), } assert explanation["drill_down"].keys() == {"currency", "provider", "datetime"} assert ( set(explanation["drill_down"]["currency"]["feature_names"]) == EXPECTED_CURRENCY_FEATURES ) assert ( set(explanation["drill_down"]["provider"]["feature_names"]) == EXPECTED_PROVIDER_FEATURES_TEXT ) assert ( set(explanation["drill_down"]["datetime"]["feature_names"]) == EXPECTED_DATETIME_FEATURES ) @pytest.mark.parametrize( "pipeline_class_and_estimator,algorithm", product(pipeline_test_cases, algorithms), ) def test_categories_aggregated_date_ohe( pipeline_class_and_estimator, algorithm, fraud_100 ): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline_class, estimator = pipeline_class_and_estimator pipeline = pipeline_class( component_graph=[ "Select Columns Transformer", "DateTime Featurization Component", "One Hot Encoder", estimator, ], parameters={ "Select Columns Transformer": { "columns": ["datetime", "amount", "provider", "currency"] }, "DateTime Featurization Component": {"encode_as_categories": True}, estimator: {"n_jobs": 1}, }, ) y = transform_y_for_problem_type(pipeline.problem_type, y) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dict", top_k_features=7, algorithm=algorithm, ) for explanation in report["explanations"][0]["explanations"]: assert set(explanation["feature_names"]) == { "amount", "provider", "currency", "datetime", } assert set(explanation["feature_values"]) == { pd.Timestamp("2019-01-01 00:12:26"), "Mastercard", "CUC", 24900, } assert explanation["drill_down"].keys() == {"currency", "provider", "datetime"} assert ( set(explanation["drill_down"]["datetime"]["feature_names"]) == EXPECTED_DATETIME_FEATURES_OHE ) assert ( set(explanation["drill_down"]["currency"]["feature_names"]) == EXPECTED_CURRENCY_FEATURES ) assert ( set(explanation["drill_down"]["provider"]["feature_names"]) == EXPECTED_PROVIDER_FEATURES_OHE ) @pytest.mark.parametrize( "pipeline_class_and_estimator,algorithm", product(pipeline_test_cases, algorithms), ) def test_categories_aggregated_pca_dag( pipeline_class_and_estimator, algorithm, fraud_100 ): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline_class, estimator = pipeline_class_and_estimator component_graph = { "SelectNumeric": ["Select Columns Transformer", "X", "y"], "SelectCategorical": ["Select Columns Transformer", "X", "y"], "SelectDate": ["Select Columns Transformer", "X", "y"], "OHE": ["One Hot Encoder", "SelectCategorical.x", "y"], "DT": ["DateTime Featurization Component", "SelectDate.x", "y"], "PCA": ["PCA Transformer", "SelectNumeric.x", "y"], "Estimator": [estimator, "PCA.x", "DT.x", "OHE.x", "y"], } parameters = { "SelectNumeric": {"columns": ["card_id", "store_id", "amount", "lat", "lng"]}, "SelectCategorical": {"columns": ["currency", "provider"]}, "SelectDate": {"columns": ["datetime"]}, "PCA": {"n_components": 2}, "Estimator": {"n_jobs": 1}, } pipeline = pipeline_class(component_graph=component_graph, parameters=parameters) y = transform_y_for_problem_type(pipeline.problem_type, y) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dict", top_k_features=7, algorithm=algorithm, ) for explanation in report["explanations"][0]["explanations"]: assert set(explanation["feature_names"]) == { "component_0", "component_1", "provider", "currency", "datetime", } assert all( [ f in explanation["feature_values"] for f in [pd.Timestamp("2019-01-01 00:12:26"), "Mastercard", "CUC"] ] ) assert explanation["drill_down"].keys() == {"currency", "provider", "datetime"} assert ( set(explanation["drill_down"]["currency"]["feature_names"]) == EXPECTED_CURRENCY_FEATURES ) assert ( set(explanation["drill_down"]["provider"]["feature_names"]) == EXPECTED_PROVIDER_FEATURES_OHE ) assert ( set(explanation["drill_down"]["datetime"]["feature_names"]) == EXPECTED_DATETIME_FEATURES ) @pytest.mark.parametrize( "pipeline_class_and_estimator,algorithm", product(pipeline_test_cases, algorithms), ) def test_categories_aggregated_but_not_those_that_are_dropped( pipeline_class_and_estimator, algorithm, fraud_100 ): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline_class, estimator = pipeline_class_and_estimator component_graph = [ "Select Columns Transformer", "One Hot Encoder", "DateTime Featurization Component", "Drop Columns Transformer", estimator, ] parameters = { "Select Columns Transformer": { "columns": ["amount", "provider", "currency", "datetime"] }, "Drop Columns Transformer": {"columns": list(EXPECTED_DATETIME_FEATURES)}, estimator: {"n_jobs": 1}, } pipeline = pipeline_class(component_graph=component_graph, parameters=parameters) y = transform_y_for_problem_type(pipeline.problem_type, y) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dict", algorithm=algorithm, ) for explanation in report["explanations"][0]["explanations"]: assert set(explanation["feature_names"]) == {"amount", "provider", "currency"} assert set(explanation["feature_values"]) == {"CUC", "Mastercard", 24900} assert explanation["drill_down"].keys() == {"currency", "provider"} assert ( set(explanation["drill_down"]["currency"]["feature_names"]) == EXPECTED_CURRENCY_FEATURES ) assert ( set(explanation["drill_down"]["provider"]["feature_names"]) == EXPECTED_PROVIDER_FEATURES_OHE ) @pytest.mark.parametrize( "pipeline_class_and_estimator,algorithm", product(pipeline_test_cases, algorithms), ) def test_categories_aggregated_when_some_are_dropped( pipeline_class_and_estimator, algorithm, fraud_100 ): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline_class, estimator = pipeline_class_and_estimator component_graph = [ "Select Columns Transformer", "One Hot Encoder", "DateTime Featurization Component", "Drop Columns Transformer", estimator, ] parameters = { "Select Columns Transformer": { "columns": ["amount", "provider", "currency", "datetime"] }, "Drop Columns Transformer": {"columns": ["datetime_month", "datetime_hour"]}, estimator: {"n_jobs": 1}, } pipeline = pipeline_class(component_graph=component_graph, parameters=parameters) y = transform_y_for_problem_type(pipeline.problem_type, y) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dict", top_k_features=4, algorithm=algorithm, ) for explanation in report["explanations"][0]["explanations"]: assert set(explanation["feature_names"]) == { "amount", "provider", "currency", "datetime", } assert set(explanation["feature_values"]) == { "CUC", "Mastercard", 24900, pd.Timestamp("2019-01-01 00:12:26"), } assert explanation["drill_down"].keys() == {"currency", "provider", "datetime"} assert ( set(explanation["drill_down"]["currency"]["feature_names"]) == EXPECTED_CURRENCY_FEATURES ) assert ( set(explanation["drill_down"]["provider"]["feature_names"]) == EXPECTED_PROVIDER_FEATURES_OHE ) assert set(explanation["drill_down"]["datetime"]["feature_names"]) == { "datetime_year", "datetime_day_of_week", } @pytest.mark.parametrize( "algorithm", ["shap", "lime"], ) @pytest.mark.parametrize( "problem_type", [ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.REGRESSION], ) def test_explain_predictions_stacked_ensemble( algorithm, problem_type, fraud_100, X_y_multi, X_y_regression, ): if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) if is_binary(problem_type): X, y = fraud_100 pipeline = BinaryClassificationPipeline( { "DT": ["DateTime Featurization Component", "X", "y"], "Imputer": ["Imputer", "DT.x", "y"], "One Hot Encoder": ["One Hot Encoder", "Imputer.x", "y"], "Drop Columns Transformer": [ "Drop Columns Transformer", "One Hot Encoder.x", "y", ], "Regression": [ "Logistic Regression Classifier", "Drop Columns Transformer.x", "y", ], "RF": ["Random Forest Classifier", "One Hot Encoder.x", "y"], "Stacked Ensembler": [ "Stacked Ensemble Classifier", "Regression.x", "RF.x", "y", ], } ) exp_feature_names = {"Col 1 RF.x", "Col 1 Regression.x"} elif is_multiclass(problem_type): X, y = X_y_multi pipeline = MulticlassClassificationPipeline( { "Imputer": ["Imputer", "X", "y"], "Regression": ["Logistic Regression Classifier", "Imputer.x", "y"], "RF": ["Random Forest Classifier", "X", "y"], "Stacked Ensembler": [ "Stacked Ensemble Classifier", "Regression.x", "RF.x", "y", ], } ) exp_feature_names = { "Col 0 RF.x", "Col 1 RF.x", "Col 2 RF.x", "Col 0 Regression.x", "Col 1 Regression.x", "Col 2 Regression.x", } else: X, y = X_y_regression pipeline = RegressionPipeline( { "Imputer": ["Imputer", "X", "y"], "Regression": [ "Linear Regressor", "Imputer.x", "y", ], "RF": ["Random Forest Regressor", "X", "y"], "Stacked Ensembler": [ "Stacked Ensemble Regressor", "Regression.x", "RF.x", "y", ], } ) exp_feature_names = {"RF.x", "Regression.x"} pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dict", top_k_features=10, algorithm=algorithm, ) explanations_data = report["explanations"][0]["explanations"][0] assert set(explanations_data["feature_names"]) == exp_feature_names assert ( explanations_data["quantitative_explanation"] == [None, None, None, None, None, None] if problem_type == ProblemTypes.MULTICLASS else [None, None] ) report = explain_predictions_best_worst( pipeline, X, y, top_k_features=10, output_format="dict", algorithm=algorithm ) explanations_data = report["explanations"] for entry in explanations_data: assert set(entry["explanations"][0]["feature_names"]) == exp_feature_names @pytest.mark.parametrize( "estimator,algorithm", product( [ e for e in _all_estimators() if ( "Classifier" in e.name and not any( s in e.name for s in ["Baseline", "Cat", "Elastic", "KN", "Ensemble", "Vowpal"] ) ) ], algorithms, ), ) def test_explain_predictions_oversampler(estimator, algorithm, fraud_100): pytest.importorskip( "imblearn.over_sampling", reason="Skipping test because imbalanced-learn not installed", ) if algorithm == "lime": pytest.importorskip( "lime.lime_tabular", reason="Skipping lime value errors test because lime not installed", ) X, y = fraud_100 pipeline = BinaryClassificationPipeline( component_graph={ "Imputer": ["Imputer", "X", "y"], "One Hot Encoder": ["One Hot Encoder", "Imputer.x", "y"], "DateTime Featurization Component": [ "DateTime Featurization Component", "One Hot Encoder.x", "y", ], "Oversampler": [ "Oversampler", "DateTime Featurization Component.x", "y", ], estimator: [estimator, "Oversampler.x", "Oversampler.y"], } ) pipeline.fit(X, y) report = explain_predictions( pipeline, X, y, indices_to_explain=[0], output_format="dataframe", top_k_features=4, algorithm=algorithm, ) assert report["feature_names"].isnull().sum() == 0 assert report["feature_values"].isnull().sum() == 0 @patch( "evalml.model_understanding.prediction_explanations._user_interface._make_single_prediction_explanation_table" ) def test_explain_predictions_best_worst_callback(mock_make_table): pipeline = MagicMock() pipeline.parameters = "Mock parameters" input_features = pd.DataFrame({"a": [5, 6]}) pipeline.problem_type = ProblemTypes.REGRESSION pipeline.name = "Test Pipeline Name" input_features.ww.init() pipeline.transform_all_but_final.return_value = input_features pipeline.predict.return_value = ww.init_series(pd.Series([2, 1])) y_true = pd.Series([3, 2]) class MockCallback: def __init__(self): self.progress_stages = [] self.total_elapsed_time = 0 def __call__(self, progress_stage, time_elapsed): self.progress_stages.append(progress_stage) self.total_elapsed_time = time_elapsed mock_callback = MockCallback() explain_predictions_best_worst( pipeline, input_features, y_true, num_to_explain=1, callback=mock_callback ) assert mock_callback.progress_stages == [e for e in ExplainPredictionsStage] assert mock_callback.total_elapsed_time > 0 @pytest.mark.parametrize("indices", [0, 1]) def test_explain_predictions_unknown(indices, X_y_binary): X, y = X_y_binary X =
pd.DataFrame(X)
pandas.DataFrame
import pandas as pd import requests import numpy as np import json import csv import time import datetime import urllib3 import sys import os import warnings import pandas as pd import os import numpy as np from sqlalchemy import create_engine import psycopg2 import warnings from datetime import datetime from pandas.core.common import SettingWithCopyWarning warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) engine = create_engine('postgres://gajpivqijkldsv:e71d7868249438e0b78e6cc37825dad10f322ef598118335a624165f9311720f@ec2-54-211-210-149.compute-1.amazonaws.com:5432/dc5355dnsr456p') conn = psycopg2.connect(dbname='dc5355dnsr456p', user='gajpivqijkldsv', password='<PASSWORD>', host='ec2-54-211-210-149.compute-1.amazonaws.com', port='5432', sslmode='require') cursor = conn.cursor() most_recent = pd.read_csv("most_recent_tweets.csv") ## need to get all twitter handles ## might be easier to look for the twitter handles based on import tweepy import csv import pandas as pd import numpy as np import time import datetime ACCESS_TOKEN = "<KEY>" ACCESS_TOKEN_SECRET = "<KEY>" CONSUMER_KEY = "<KEY>" CONSUMER_SECRET = "<KEY>" # OAuth process, using the keys and tokens auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) # Creation of the actual interface, using authentication api = tweepy.API(auth, wait_on_rate_limit=True) handle = most_recent['handle'].to_list() since_id = most_recent['status_id'].to_list() user_name_list = [] fulltest_list = [] status_id_list = [] created_list = [] source_list = [] favorite_count = [] retweet_count = [] coordinates_list = [] geo_list = [] handle_list = [] follower_count_list = [] city_list = [] city_abr_list = [] league_list = [] division_list = [] for i in range(0,len(handle)): followercount = api.get_user('{}'.format(handle[i])).followers_count for status in tweepy.Cursor(api.user_timeline, screen_name= handle[i], tweet_mode="extended",since_id=since_id[i]).items(): # for status in tweepy.Cursor(api.user_timeline, screen_name= mlbHandles[i], tweet_mode="extended").items(): user_name_list.append(status.user.name) fulltest_list.append(status.full_text) status_id_list.append(np.array(status.id)) created_list.append(status.created_at) source_list.append(status.source) favorite_count.append(status.favorite_count) retweet_count.append(status.retweet_count) coordinates_list.append(status.coordinates) geo_list.append(status.geo) handle_list.append(handle[i]) # city_list.append(city_mlb[i]) # city_abr_list.append(city_abr_mlb[i]) # league_list.append(league_mlb[i]) # division_list.append(division_mlb[i]) follower_count_list.append(followercount) time.sleep(5) newest_tweets = pd.DataFrame({ 'username': user_name_list, 'full_text': fulltest_list, 'status_id': status_id_list, 'create_at': created_list, 'source': source_list, 'favorite_count': favorite_count, 'retweet_count': retweet_count, 'coordinates': coordinates_list, 'geo': geo_list, 'handle': handle_list, 'followercount': follower_count_list, # 'city': city_list, # 'city_abr':city_abr_list, # 'league':league_list, # 'disivion':division_list }) print('finished pulling new tweets') # save off latest tweet id most_recent = newest_tweets[['handle', 'create_at', 'status_id']] most_recent = most_recent[most_recent['create_at'] == most_recent.groupby('handle')['create_at'].transform('max')] most_recent = most_recent.reset_index(drop=True) most_recent.to_csv("most_recent_tweets.csv") # code to create top ten tweets now = pd.to_datetime('now') from datetime import datetime, timedelta d = now - timedelta(days=1) #get ratio and volume top_5_volume = newest_tweets[newest_tweets['create_at'] > d] top_5_volume = top_5_volume.sort_values(by=['favorite_count'], ascending=False) top_5_volume['favorite_ratio'] = top_5_volume['favorite_count']/top_5_volume['followercount'] top_5_ratio = top_5_volume.sort_values(by=['favorite_ratio'], ascending=False) top_5_ratio = top_5_ratio.drop_duplicates(subset=['username']) top_5_volume = top_5_volume.drop_duplicates(subset=['username']) top_5_volume = top_5_volume.head(5) top_5_list = top_5_volume['status_id'].to_list() # make sure ratio tweets don't have tweets from top 5 top_5_ratio = top_5_ratio[~top_5_ratio['status_id'].isin(top_5_list)] top_5_ratio = top_5_ratio.drop_duplicates(subset = ['username']) top_5_ratio = top_5_ratio.head(5) # create one dataframe tweets_top_ten =
pd.concat([top_5_volume, top_5_ratio])
pandas.concat
import pandas as pd from sklearn.base import TransformerMixin, BaseEstimator from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer class OutlierRemover(TransformerMixin, BaseEstimator): def __init__(self, dependent_col=None, estimator= None, regression=False ): self.estimator = estimator self.dependent = dependent_col self.reg = regression if estimator is None: raise ValueError( """ Input an estimator """ """ The estimator can be KNeigbourRegressor or RandomForestRegressor""" ) def fit(self, X, Y): if self.reg is False: chk_fea = [ feature for feature in X.columns if X[feature].dtype != object and X[feature].nunique() > 7 ] for feature in X[chk_fea].columns: Q1 = X[feature].quantile(0.25) ###Lowe quantile Q3 = X[feature].quantile(0.75) ###Upper quantile IQR = Q3 - Q1 ###Interquantile range lower_boundary = Q1 - (1.5 * IQR) upper_boundary = Q3 + (1.5 * IQR) ###Replacing the outlier with a nan value X.loc[X[feature] > upper_boundary, feature] = np.nan X.loc[X[feature] < lower_boundary, feature] = np.nan return self if self.reg is True: new_data =
pd.concat([X,Y],axis="columns")
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # Extract Covid-19 data from website grainmart.in using BeautifulSoup # In[1]: # importing the libraries from bs4 import BeautifulSoup import requests import csv import pandas as pd # In[2]: covid_source_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/covid_data_unformatted.csv" covid_target_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/covid_data.csv" gsdp_source_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/gsdp_state_wise_unformatted.csv" gsdp_target_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/gsdp_state_wise.csv" unemployment_source_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/unemployment_unformatted.csv" unemployment_target_filename = '/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/unemployment.csv' population_source_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/population_unformatted.csv" population_target_filename = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/population.csv" covid_pop_uemp_gsdp_output_file_name = "/home/sanjay/campaign/dev_codes/jupyter_lab/covid_19_hackathon/dataset/final_data_test_1.csv" # In[3]: url="https://www.grainmart.in/news/covid-19-coronavirus-india-state-and-district-wise-tally" # Make a GET request to fetch the raw HTML content html_content = requests.get(url).text # Parse the html content #soup = BeautifulSoup(html_content, "lxml") soup = BeautifulSoup(html_content,"html.parser") # print(soup.prettify()) # print the parsed data of html # In[4]: section_data = soup.find("section", {"id": "covid-19-table"}) main_list = [] # In[5]: states_rows = section_data.find_all("div", {"class": "skgm-states"}) # In[6]: def clean_up_soup(pre_content): pre_content.select("div.td-ddd.td-ddr.td-ddc") for tags in pre_content.findAll(True): tags.attrs = {} return pre_content # In[7]: final_state_list = [] fianle_district_list = [] headers_list = [ 'state_name', 'cases', 'cured', 'active', 'deaths', 'district_name', 'district_cases', 'district_cured', 'district_active', 'district_deaths' ] for dat in states_rows: state_list = [] state_name = dat.find_all("span", {"class": "show-district"})[0].contents[-1] cases = int(dat.find_all("div", {"class": "td-sc"})[0].contents[0]) cured = int(dat.find_all("div", {"class": "td-sr"})[0].contents[0]) active = int(dat.find_all("div", {"class": "td-sa"})[0].contents[0]) deaths = int(dat.find_all("div", {"class": "td-sd"})[0].contents[0]) state_list.append(state_name) state_list.append(cases) state_list.append(cured) state_list.append(active) state_list.append(deaths) final_state_list.append(state_list) inner_main = dat.find_all("div", {"class": "skgm-tr"}) index = 0 for inner_list in inner_main: if index == 0: index = index + 1 continue inner_list = clean_up_soup(inner_list) childs = list(inner_list.children) district_names = childs[0].contents[0] district_cases = childs[1].contents[0].contents[0] district_cured = childs[2].contents[0].contents[0] district_active = childs[3].contents[0].contents[0] district_deaths = childs[4].contents[0].contents[0] each_district_list = [ state_name, cases, cured, active, deaths, district_names, district_cases, district_cured, district_active, district_deaths ] fianle_district_list.append(each_district_list) # In[8]: # writing to csv file with open(covid_source_filename, 'w') as csvfile: # creating a csv writer object csvwriter = csv.writer(csvfile) # writing the fields csvwriter.writerow(headers_list) # writing the data rows csvwriter.writerows(fianle_district_list) # # Transform GSDP dataset as per requirements using Pandas # In[33]: # reading csv file gsdp_df = pd.read_csv(gsdp_source_filename) gsdp_df.rename( columns={ 'year':'gsdp_year' }, inplace=True ) # In[34]: gsdp_dataset = gsdp_df.melt(id_vars=["gsdp_year"], var_name="gsdp_region", value_name="gsdp_in_crores") gsdp_dataset['gsdp_year'] = pd.to_datetime(gsdp_dataset['gsdp_year'].astype(str), format='%Y') gsdp_dataset['gsdp_year'] = pd.to_datetime(gsdp_dataset['gsdp_year']).dt.to_period('Y') # In[35]: gsdp_dataset= gsdp_dataset.applymap(lambda s:s.lower() if type(s) == str else s) # In[36]: gsdp_dataset.to_csv(gsdp_target_filename, sep=',', encoding='utf-8', index = False) # # Unemployment dataset # ### source - unemploymentinindia.cmie.com # In[37]: # reading csv file unemployment_df = pd.read_csv(unemployment_source_filename) unemployment_df= unemployment_df.applymap(lambda s:s.lower() if type(s) == str else s) # In[38]: unemployment_df.rename( columns={ 'Estimated Unemployment Rate (%)':'unemployment_rate', 'Region':'unemployment_region', 'Date': 'date', 'Estimated Employed': 'employed', 'Estimated Labour Participation Rate (%)': 'lbour_participation_rate' }, inplace=True ) # In[39]: unemployment_df['unemployment_year'] = pd.to_datetime(unemployment_df['date']).dt.to_period('Y') unemployment_grouped_df = unemployment_df.groupby(['unemployment_region', 'unemployment_year']).agg( {'unemployment_rate': ['mean', 'min', 'max'], 'employed': ['mean', 'min', 'max'], 'lbour_participation_rate': ['mean', 'min', 'max']}) # In[40]: unemployment_grouped_df.columns = ["_".join(x) for x in unemployment_grouped_df.columns.ravel()] # In[41]: unemployment_grouped_df['unemployment_rate_mean'] = unemployment_grouped_df['unemployment_rate_mean'].round(2) unemployment_grouped_df['employed_mean'] = unemployment_grouped_df['employed_mean'].astype(int) unemployment_grouped_df['lbour_participation_rate_mean'] = unemployment_grouped_df['lbour_participation_rate_mean'].round(2) # In[42]: unemployment_grouped_df.reset_index(inplace=True) unemployment_grouped_df.to_csv(unemployment_target_filename, sep=',', encoding='utf-8', index = False) # # Population Dataset # ### Source - PDF - https://nhm.gov.in/New_Updates_2018/Report_Population_Projection_2019.pdf # In[85]: # reading csv file population_df = pd.read_csv(population_source_filename) population_df.rename( columns={ 'Year':'population_year' }, inplace=True ) # In[86]: population_dataset = population_df.melt( id_vars=["population_year"], var_name="population_region", value_name="population" ) population_dataset['population_year'] = pd.to_datetime(population_dataset['population_year'].astype(str), format='%Y') population_dataset['population_year'] = pd.to_datetime(population_dataset['population_year']).dt.to_period('Y') population_dataset= population_dataset.applymap(lambda s:s.lower() if type(s) == str else s) # In[87]: def modify_data(row, return_type='state_province_country'): if return_type == 'population_type': value = row['population_region'] if '.1' in value: return 'male' elif '.2' in value: return 'female' else: return 'total' if return_type == 'state_province_country': value = row['population_region'] if '.1' in value: return value.replace('.1', '') elif '.2' in value: return value.replace('.2', '') else: return value # In[88]: population_dataset['population_type'] = population_dataset.apply( lambda row: modify_data(row, return_type="population_type"), axis=1 ) # In[89]: population_dataset['population_region'] = population_dataset.apply( lambda row: modify_data(row, return_type="state_province_country"), axis=1 ) # In[90]: population_dataset.to_csv(population_target_filename, sep=',', encoding='utf-8', index = False) # # Covid data # In[25]: covid_df = pd.read_csv(covid_source_filename) covid_df= covid_df.applymap(lambda s:s.lower() if type(s) == str else s) # In[26]: def calculate_new_rows(row, _type="IFR", region='state'): if _type == "IFR": if region == 'state': try: return round(row['deaths']/row['active'] * 100, 2) except ZeroDivisionError: return 0 else: try: return round(row['district_deaths']/row['district_active'] * 100, 2) except ZeroDivisionError: return 0 elif _type == "CFR": if region == 'state': try: return round(row['deaths']/row['cases'] * 100, 2) except ZeroDivisionError: return 0 else: try: return round(row['district_deaths']/row['district_cases'] * 100, 2) except ZeroDivisionError: return 0 elif _type == "CFR_CURRENT": if region == 'state': try: return round(row['deaths']/(row['deaths'] + row['cured']) * 100, 2) except ZeroDivisionError: return 0 else: try: return round(row['district_deaths']/(row['district_deaths'] + row['district_cured']) * 100, 2) except ZeroDivisionError: return 0 # # IFR per state and district # ### Infection fatality ratio (IFR, in %) = Number of deaths from disease/Number of infected individuals x 100 # # In[27]: covid_df['state_IFR'] = covid_df.apply( lambda row: calculate_new_rows(row, _type="IFR"), axis=1 ) covid_df['district_IFR'] = covid_df.apply( lambda row: calculate_new_rows(row, _type="IFR", region='district'), axis=1 ) # # CFR per state and district # ## Case fatality ratio (IFR, in %) = Number of deaths from disease/Number of confirmed cases x 100 # In[28]: covid_df['state_CFR'] = covid_df.apply( lambda row: calculate_new_rows(row, _type="CFR"), axis=1 ) covid_df['district_CFR'] = covid_df.apply( lambda row: calculate_new_rows(row, _type="CFR", region='district'), axis=1 ) # ## CFR per state and district during an ongoing epidemic # ## Infection fatality ratio (IFR, in %) = Number of deaths from disease/(Number of deaths from disease + Number of recovered cases) x 100 # In[29]: covid_df['state_CFR_CURRENT'] = covid_df.apply( lambda row: calculate_new_rows(row, _type="CFR_CURRENT"), axis=1 ) covid_df['district_CFR_CURRENT'] = covid_df.apply( lambda row: calculate_new_rows(row, _type="CFR_CURRENT", region='district'), axis=1 ) # In[30]: covid_df.to_csv(covid_target_filename, sep=',', encoding='utf-8', index = False) # # Transformation based on all source Dataset # In[124]: covid_df =
pd.read_csv(covid_target_filename)
pandas.read_csv