prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python [conda env:holoview] # language: python # name: conda-env-holoview-py # --- # %% language="javascript" # IPython.notebook.kernel.restart() # %% from dask.distributed import Client # import geopandas import numpy as np import pandas as pd # import os import xarray as xr from collections import Counter # %% # client = Client(n_workers=2, threads_per_worker=2, memory_limit='1GB') # client = Client(processes=False) client = Client() client # %% client.close() # %% work_dir = '/Volumes/USGS_NHM2/datasets/wrf-conus404/originals' # Variables that are integrated over 60 minutes per hourly timestep vars_60min_accum = ['ACDEWC', 'ACDRIPR', 'ACDRIPS', 'ACECAN', 'ACEDIR', 'ACETLSM', 'ACETRAN', 'ACEVAC', 'ACEVB', 'ACEVC', 'ACEVG', 'ACFROC', 'ACFRZC', 'ACGHB', 'ACGHFLSM', 'ACGHV', 'ACINTR', 'ACINTS', 'ACIRB', 'ACIRC', 'ACIRG', 'ACLHFLSM', 'ACLWDNLSM', 'ACLWUPLSM', 'ACMELTC', 'ACPAHB', 'ACPAHG', 'ACPAHLSM', 'ACPAHV', 'ACPONDING', 'ACQLAT', 'ACQRF', 'ACRAINLSM', 'ACRAINSNOW', 'ACRUNSB', 'ACRUNSF', 'ACSAGB', 'ACSAGV', 'ACSAV', 'ACSHB', 'ACSHC', 'ACSHFLSM', 'ACSHG', 'ACSNBOT', 'ACSNFRO', 'ACSNOWLSM', 'ACSNSUB', 'ACSUBC', 'ACSWDNLSM', 'ACSWUPLSM', 'ACTHROR', 'ACTHROS', 'ACTR', 'GRAUPEL_ACC_NC', 'PREC_ACC_NC', 'SNOW_ACC_NC'] # Variables that are accumulated from model start vars_model_accum = ['ACLWDNB', 'ACLWDNBC', 'ACLWDNT', 'ACLWDNTC', 'ACLWUPB', 'ACLWUPBC', 'ACLWUPT', 'ACLWUPTC', 'ACSNOM', 'ACSWDNB', 'ACSWDNBC', 'ACSWDNT', 'ACSWDNTC', 'ACSWUPB', 'ACSWUPBC', 'ACSWUPT', 'ACSWUPTC'] # %% # Read word map file for processing the description strings fhdl = open('wrfout_words.txt', 'r', encoding='ascii') rawdata = fhdl.read().splitlines() fhdl.close() it = iter(rawdata) next(it) # Skip header word_map = {} for row in it: flds = row.split('\t') if len(flds[2]) != 0: word_map[flds[0].replace('"', '')] = flds[2].replace('"', '') print(flds) # %% # %% # %% # %% df = xr.open_dataset(f'{work_dir}/wrfout_d01_2020-09-30_00:00:00', decode_coords=False, chunks={}) # %% df # %% # dim_names = [dd for dd in df.dims.keys()] # dim_names # dim_cnt = Counter(dim_names) # dim_cnt = Counter() attr_cnt = Counter() word_cnt = Counter() # dim_cnt['Time'] += 1 wrfout_vars = {} for vv in list(df.keys()): cvar = df[vv] wrfout_vars[vv] = {} for cattr, val in cvar.attrs.items(): if cattr in ['description', 'units', 'coordinates']: attr_cnt[cattr] += 1 wrfout_vars[vv][cattr] = val if cattr == 'description': new_val = [] for ww in val.split(' '): if ww in word_map: new_val.append(word_map[ww]) else: new_val.append(ww) word_cnt[ww] += 1 # result = string[0].upper() + string[1:] outstr = ' '.join(new_val) if len(outstr) > 0: outstr = outstr[0].upper() + outstr[1:] wrfout_vars[vv]['description_new'] = outstr wrfout_vars[vv]['datatype'] = cvar.encoding['dtype'].name wrfout_vars[vv]['dimensions'] = ' '.join(cvar.dims) if vv in vars_60min_accum: # Add a cell_methods field wrfout_vars[vv]['cell_methods'] = 'XTIME: sum (interval: 1 minute)' # for kk in list(const_df.keys()): # src_cvar = const_df[kk] # # Create list of dimensions, modify dim names as needed # cvar_dims = [] # cvar_cnk = [] # for xx in src_cvar.dims: # %% wrfout_vars # %% attr_cnt # %% out_df =
pd.DataFrame(wrfout_vars)
pandas.DataFrame
import requests from pandas import DataFrame, Series import pandas as pd from utilities import (LICENSE_KEY, generate_token, master_player_lookup) import numpy as np pd.options.mode.chained_assignment = None ###################### # top level functions: ###################### def get_league_rosters(lookup, league_id, week=None): teams = get_teams_in_league(league_id) league_rosters = pd.concat( [_get_team_roster(x, league_id, lookup) for x in teams['team_id']], ignore_index=True) return league_rosters def get_teams_in_league(league_id): teams_url = ('https://www.fleaflicker.com/api/FetchLeagueStandings?' + f'leagueId={league_id}') teams_json = requests.get(teams_url).json() teams_df = _divs_from_league(teams_json['divisions']) teams_df['league_id'] = league_id return teams_df def get_league_schedule(league_id): return pd.concat([_get_schedule_by_week(league_id, week) for week in range(1, 15)], ignore_index=True) ################## # helper functions ################## # roster helper functions def _process_player(slot): dict_to_return = {} if 'leaguePlayer' in slot.keys(): fleaflicker_player_dict = slot['leaguePlayer']['proPlayer'] dict_to_return['name'] = fleaflicker_player_dict['nameFull'] dict_to_return['player_position'] = fleaflicker_player_dict['position'] dict_to_return['fleaflicker_id'] = fleaflicker_player_dict['id'] if 'requestedGames' in slot['leaguePlayer']: game = slot['leaguePlayer']['requestedGames'][0] if 'pointsActual' in game: if 'value' in game['pointsActual']: dict_to_return['actual'] = game['pointsActual']['value'] if 'position' in slot.keys(): fleaflicker_position_dict = slot['position'] dict_to_return['team_position'] = fleaflicker_position_dict['label'] return dict_to_return # list of dicts: put in DataFrame def _add_pos_suffix(df_subset): if len(df_subset) > 1: suffix = Series(range(1, len(df_subset) + 1), index=df_subset.index) df_subset['team_position'] = df_subset['team_position'] + suffix.astype(str) return df_subset def _get_team_roster(team_id, league_id, lookup): roster_url = ('https://www.fleaflicker.com/api/FetchRoster?' + f'leagueId={league_id}&teamId={team_id}') roster_json = requests.get(roster_url).json() starter_slots = roster_json['groups'][0]['slots'] bench_slots = roster_json['groups'][1]['slots'] starter_df = DataFrame([_process_player(x) for x in starter_slots]) bench_df = DataFrame([_process_player(x) for x in bench_slots]) starter_df2 = pd.concat([ _add_pos_suffix(starter_df.query(f"team_position == '{x}'")) for x in starter_df['team_position'].unique()]) starter_df2['start'] = True bench_df['start'] = False team_df =
pd.concat([starter_df2, bench_df], ignore_index=True)
pandas.concat
import pandas as pd import numpy as np import random # report confusion matrix with labels def confusion_matrix(predicted, true): if len(predicted) != len(true): print("Error: lengths of labels do not match") else: d = {'predicted': predicted, 'true': true} df = pd.DataFrame(data=d) tp = 0 tn = 0 fp = 0 fn = 0 for row in range(len(df)): if df['predicted'].iloc[row] == df['true'].iloc[row]: if df['predicted'].iloc[row] == 1: tp += 1 else: tn += 1 else: if df['predicted'].iloc[row] == 1: fp += 1 else: fn += 1 d = {' ': ['Predicted Positive (1)', 'Predicted Negetive (0)'], 'Actually Positive (1)': [tp, fn], 'Acyually Negative (0)': [fp, tn]} df =
pd.DataFrame(data=d)
pandas.DataFrame
#!/usr/bin/env python import sys, time import numpy as np from io import StringIO import pickle as pickle from pandas import DataFrame from pandas import concat from pandas import read_pickle from pandas import cut from pandas import concat from sklearn.externals import joblib from sklearn.cross_validation import cross_val_score from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from djeval import * CROSS_VALIDATION_N = 150000 MIN_SAMPLES_LEAF = 300 MIN_SAMPLES_SPLIT = 1000 FITTING_N = 50000 n_estimators = 200 cv_groups = 3 n_jobs = -1 # For when we were messing around with blundergroups: # # so that we can test the idea that dataset size being equal, # we make better predictions with data specifically in that blundergroup # # CROSS_VALIDATION_N = 7500 # debugging 'Cannot allocate memory' n_jobs = 1 if False: inflation = 4 CROSS_VALIDATION_N = inflation * CROSS_VALIDATION_N MIN_SAMPLES_LEAF = inflation * MIN_SAMPLES_LEAF MIN_SAMPLES_SPLIT = inflation * MIN_SAMPLES_SPLIT FITTING_N = inflation * FITTING_N just_testing = False if just_testing: CROSS_VALIDATION_N = 1500 n_estimators = 2 n_jobs = -1 blunder_cv_results = [] def sample_df(df, n_to_sample): if n_to_sample >= len(df.index.values): return df row_indexes = np.random.choice(df.index.values, n_to_sample, replace=False) return df.ix[row_indexes] def group_scorer(estimator, X, y): pred_y = estimator.predict(X) msg("GROUPED SCORES FOR a CV GROUP:") dfx = DataFrame(X, columns=features_to_use) dfx['pred_abserror'] = abs(pred_y - y) blunder_cvgroups, blunder_cvbins = cut(dfx['movergain'], blunder_cats, retbins=True) blunder_cvgrouped = dfx.groupby(blunder_cvgroups)['pred_abserror'].agg({'lad': np.mean}) blunder_cv_results.append(blunder_cvgrouped) msg("scores: %s" % str(blunder_cvgrouped)) return mean_absolute_error(y, pred_y) def crossval_rfr(df): sampled_df = sample_df(df, CROSS_VALIDATION_N) sample_size = len(sampled_df) mss = max([sample_size / 150, 100]) msl = max([sample_size / 450, 30]) # rfr_here = RandomForestRegressor(n_estimators=n_estimators, n_jobs=n_jobs, min_samples_leaf=msl, min_samples_split=mss, verbose=1) rfr_here = RandomForestRegressor(n_estimators=n_estimators, n_jobs=n_jobs, min_samples_leaf=MIN_SAMPLES_LEAF, min_samples_split=MIN_SAMPLES_SPLIT, verbose=1) crossval_X = sampled_df[features_to_use] crossval_y = sampled_df['elo'] crossval_weights = sampled_df['weight'] msg("Starting cross validation. %i records" % sample_size) begin_time = time.time() cvs = cross_val_score(rfr_here, crossval_X, crossval_y, cv=cv_groups, n_jobs=n_jobs, scoring='mean_absolute_error', fit_params={'sample_weight': crossval_weights}) msg("Cross validation took %f seconds with %i threads, %i records, %i estimators and %i CV groups" % ((time.time() - begin_time), n_jobs, len(crossval_X), n_estimators, cv_groups)) msg("Results: %f, %s" % (np.mean(cvs), str(cvs))) return np.mean(cvs) msg("Hi, reading moves.") moves_df = read_pickle(sys.argv[1]) moves_file = open(sys.argv[1] + '.info', 'rb') moves_info = pickle.load(moves_file) categorical_features = moves_info['categorical_features'] msg("Computing weights") game_weights = (1. / (moves_df.groupby('gamenum')['halfply'].agg({'max':np.max}).clip(1,1000)))['max'] moves_df['weight'] = moves_df['gamenum'].map(game_weights) msg("Done") #moves_df['abs_moverscore'] = moves_df['moverscore'].abs() features_to_exclude = [ 'elo', 'weight', 'clippedgain', 'gamenum', ] features_to_use = [col for col in moves_df.columns if (col not in features_to_exclude and col not in categorical_features)] #features_to_use = ['moverscore', 'halfply', 'movergain', 'side'] insample_df = moves_df[moves_df['elo'].notnull()] do_blunder_groups = False if do_blunder_groups: blunder_cats = [-1e9,-1024,-512,-256,-128,-64,-32, -16, -8, -1, 0] blunder_groups, blunder_bins = cut(insample_df['movergain'], blunder_cats, retbins=True) msg("Doing RFR CV per blunder group") blunder_grouped = insample_df.groupby(blunder_groups) cv_scores = blunder_grouped.apply(lambda x: crossval_rfr(x)) msg("SCORES:") msg(cv_scores) msg("blunder group errors vs mean-value") lads = blunder_grouped.apply(lambda x: np.mean(abs(x['elo'] - np.mean(x['elo'])))) msg(lads) rfr = RandomForestRegressor(n_estimators=n_estimators, n_jobs=n_jobs, min_samples_leaf=MIN_SAMPLES_LEAF, min_samples_split=MIN_SAMPLES_SPLIT, verbose=1) # Results: -221.781702, [-221.24820221 -222.91541283 -221.18149079] do_crossval = True if do_crossval: crossval_df = sample_df(insample_df, CROSS_VALIDATION_N) crossval_X = crossval_df[features_to_use] crossval_y = crossval_df['elo'] crossval_weights = crossval_df['weight'] movergain_index = features_to_use.index('movergain') msg("Starting full DF cross validation") begin_time = time.time() # using n_jobs=1 here because the parallelization of cross_val_score interferes with # our gross hack of stashing info about blundergroups into a global variable as a side effect if do_blunder_groups: cvs = cross_val_score(rfr, crossval_X, crossval_y, cv=cv_groups, n_jobs=1, scoring=group_scorer, fit_params={'sample_weight': crossval_weights}) else: cvs = cross_val_score(rfr, crossval_X, crossval_y, cv=cv_groups, n_jobs=n_jobs, scoring='mean_absolute_error') msg("Cross validation took %f seconds with %i threads, %i records, %i estimators and %i CV groups" % ((time.time() - begin_time), n_jobs, len(crossval_X), n_estimators, cv_groups)) msg("Results: %f, %s" % (np.mean(cvs), str(cvs))) if do_blunder_groups: msg("per-blundergroup results:") #for bcv in blunder_cv_results: # msg("here: %s" % bcv) concat_df =
concat(blunder_cv_results, axis=1)
pandas.concat
"""Tools for creating and manipulating neighborhood datasets.""" import os import pathlib from warnings import warn import geopandas as gpd import pandas as pd from appdirs import user_data_dir appname = "geosnap" appauthor = "geosnap" data_dir = user_data_dir(appname, appauthor) def _fetcher(local_path, remote_path, warning_msg): try: t = gpd.read_parquet(local_path) except FileNotFoundError: warn(warning_msg) t = gpd.read_parquet(remote_path, storage_options={"anon": True}) return t class _Map(dict): """tabbable dict.""" def __init__(self, *args, **kwargs): super(_Map, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for k, v in arg.iteritems(): self[k] = v if kwargs: for k, v in kwargs.iteritems(): self[k] = v def __getattr__(self, attr): return self.get(attr) def __setattr__(self, key, value): self.__setitem__(key, value) def __setitem__(self, key, value): super(_Map, self).__setitem__(key, value) self.__dict__.update({key: value}) def __delattr__(self, item): self.__delitem__(item) def __delitem__(self, key): super(_Map, self).__delitem__(key) del self.__dict__[key] class DataStore: """Storage for geosnap data. Currently supports US Census data. Unless otherwise noted, data are collected from the U.S. Census Bureau's TIGER/LINE Files https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2018 and converted to parquet files. """ def __init__(self): self def __dir__(self): atts = [ "acs", "blocks_2000", "blocks_2010", "codebook", "counties", "ltdb", "msa_definitions", "msas", "ncdb", "states", "show_data_dir", "tracts_1990", "tracts_2000", "tracts_2010", ] return atts def show_data_dir(self): """Print the location of the local geosnap data storage directory. Returns ------- string location of local storage directory. """ print(data_dir) return data_dir def acs(self, year=2018, level="tract", states=None): """American Community Survey Data. Parameters ---------- year : str vingage of ACS release. level : str geographic level states : list, optional subset of states (as 2-digit fips) to return Returns ------- geopandas.GeoDataFrame geodataframe of ACS data indexed by FIPS code """ local_path = pathlib.Path(data_dir, "acs", f"acs_{year}_{level}.parquet") remote_path = f"s3://spatial-ucr/census/acs/acs_{year}_{level}.parquet" msg = "Streaming data from S3. Use `geosnap.io.store_acs()` to store the data locally for better performance" t = _fetcher(local_path, remote_path, msg) t = t.reset_index().rename(columns={"GEOID": "geoid"}) if states: t = t[t.geoid.str[:2].isin(states)] t["year"] = year return t def blocks_2000(self, states=None, fips=None): """Census blocks for 2000. Parameters ---------- states : list-like list of state fips codes to return as a datafrrame. Returns ------- type pandas.DataFrame or geopandas.GeoDataFrame 2000 blocks as a geodataframe or as a dataframe with geometry stored as well-known binary on the 'wkb' column. """ msg = ( "Unable to locate local census 2010 block data. Streaming instead.\n" "If you plan to use census data repeatedly you can store it locally " "with the io.store_blocks_2010 function for better performance" ) if isinstance(states, (str, int)): states = [states] blks = {} for state in states: local = pathlib.Path(data_dir, "blocks_2000", f"{state}.parquet") remote = f"s3://spatial-ucr/census/blocks_2000/{state}.parquet" blks[state] = _fetcher(local, remote, msg) if fips: blks[state] = blks[state][blks[state]["geoid"].str.startswith(fips)] blks[state]["year"] = 2000 blocks = list(blks.values()) blocks = gpd.GeoDataFrame(pd.concat(blocks, sort=True)) return blocks def blocks_2010(self, states=None, fips=None): """Census blocks for 2010. Parameters ---------- states : list-like list of state fips codes to return as a datafrrame. Returns ------- type pandas.DataFrame or geopandas.GeoDataFrame 2010 blocks as a geodataframe or as a dataframe with geometry stored as well-known binary on the 'wkb' column. """ msg = ( "Unable to locate local census 2010 block data. Streaming instead.\n" "If you plan to use census data repeatedly you can store it locally " "with the io.store_blocks_2010 function for better performance" ) if isinstance(states, (str, int)): states = [states] blks = {} for state in states: local = pathlib.Path(data_dir, "blocks_2010", f"{state}.parquet") remote = f"s3://spatial-ucr/census/blocks_2010/{state}.parquet" blks[state] = _fetcher(local, remote, msg) if fips: blks[state] = blks[state][blks[state]["geoid"].str.startswith(fips)] blks[state]["year"] = 2010 blocks = list(blks.values()) blocks = gpd.GeoDataFrame(
pd.concat(blocks, sort=True)
pandas.concat
import matplotlib.pyplot as plt import cantools import pandas as pd import cv2 import numpy as np import os import glob import re import subprocess import json LOG_FOLDER = "/media/andrei/Samsung_T51/nemodrive/25_nov/session_2/1543155398_log" CAN_FILE_PATH = os.path.join(LOG_FOLDER, "can_raw.log") DBC_FILE = "logan.dbc" SPEED_CAN_ID = "354" OBD_SPEED_FILE = LOG_FOLDER + "obd_SPEED.log" CAMERA_FILE_PREFIX = os.path.join(LOG_FOLDER, "camera_*") camera_vids_path = glob.glob(CAMERA_FILE_PREFIX + ".mkv") camera_vids_path.sort() vid_names = [os.path.splitext(os.path.basename(vid_path))[0] for vid_path in camera_vids_path] vid_dirs = [os.path.dirname(vid_path) for vid_path in camera_vids_path] cameras = [os.path.join(x, y) for x, y in zip(vid_dirs, vid_names)] camera_logs_path = [camera_name + ".log" for camera_name in cameras] cameras_tp_path = [camera_name + "_timestamp" for camera_name in cameras] phone_log_path = os.path.join(LOG_FOLDER, "phone.log") def read_can_file(can_file_path): df_can = pd.read_csv(can_file_path, header=None, delimiter=" ") df_can["tp"] = df_can[0].apply(lambda x: float(x[1:-1])) df_can["can_id"] = df_can[2].apply(lambda x: x[:x.find("#")]) df_can["data_str"] = df_can[2].apply(lambda x: x[x.find("#") + 1:]) return df_can def get_can_data(db, cmd, data, msg): decoded_info = db.decode_message(cmd, bytearray.fromhex(msg)) return decoded_info[data] # ======================================================================= # extract pts data PTS_CMD = "ffprobe -v error -show_entries frame=pkt_pts_" \ "time -of default=noprint_wrappers=1:nokey=1 {} > {}_pts.log" for vid_path, vid_name in zip(camera_vids_path, cameras): cmd = PTS_CMD.format(vid_path, vid_name) process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) process.wait() print(process.returncode) # ======================================================================= # -- Load DBC file stuff db = cantools.database.load_file(DBC_FILE, strict=False) cmd_names = [ ("SPEED_SENSOR", "SPEED_KPS"), ("STEERING_SENSORS", "STEER_ANGLE"), ("BRAKE_SENSOR", "PRESIUNE_C_P") ] cmd_idx = 0 cmd_name = cmd_names[cmd_idx][0] data_name = cmd_names[cmd_idx][1] """ Decode values using: Define: cmd_name, data_name, raw_can_msg decoded_info = db.decode_message(cmd_name, bytearray.fromhex(raw_can_msg)) print(decoded_info[data_name]) ffmpeg -f v4l2 -video_size {}x{} -i /dev/video{} -c copy {}.mkv """ # ======================================================================= # -- Load Raw can df_can = read_can_file(CAN_FILE_PATH) # ======================================================================= # -- Load speed command df_can_speed = df_can[df_can["can_id"] == SPEED_CAN_ID] df_can_speed["speed"] = df_can_speed["data_str"].apply(lambda x: get_can_data(db, cmd_name, data_name, x)) # df_can_speed[df_can_speed.speed > 0] # df_can_speed["pts"] = df_can_speed["tp"] - 1539434950.220346 plt.plot(df_can_speed["tp"].values, df_can_speed["speed"]) plt.show() # Write to csv speed_file = os.path.join(LOG_FOLDER, "speed.csv") df_can_speed.to_csv(speed_file) # ======================================================================= # -- Load steer command STEER_CMD_NAME = "STEERING_SENSORS" STEER_CMD_DATA_NAME = "STEER_ANGLE" STEERING_CAN_ID = "0C6" df_can_steer = df_can[df_can["can_id"] == STEERING_CAN_ID] df_can_steer["steering"] = df_can_steer["data_str"].apply(lambda x: get_can_data(db, STEER_CMD_NAME, STEER_CMD_DATA_NAME, x)) # Write to csv steer_file = os.path.join(LOG_FOLDER, "steer.csv") df_can_steer.to_csv(steer_file) # --Plot can data plt.plot(df_can_steer["tp"].values, df_can_steer["steering"]) plt.show() # steering_values = [] # rng = 100 # for index in range(rng, len(df_can_steer)): # x = df_can_steer.iloc[index-rng: index+1]["steering"].values # steering_values.append(np.abs(x[1:] - x[:-1]).sum()) # # steering_values_df = pd.Series(steering_values[:36494], name="Steering angle per second") # steering_values_df.describe() # # steering_values_df.plot() # steering_values_df.plot(kind="box") # plt.show() # ======================================================================= # -- OBD speed file df_speed =
pd.read_csv(OBD_SPEED_FILE, header=None)
pandas.read_csv
from collections import OrderedDict import timeit import numpy as np import pandas as pd from randomstate.prng import (mt19937, sfmt, dsfmt, xoroshiro128plus, xorshift1024, pcg64) REPS = 3 SIZE = 100000 SETUP = """ import numpy from numpy import array, random from randomstate.prng import (mt19937, sfmt, dsfmt, xoroshiro128plus, xorshift1024, pcg64) import randomstate import randomstate.prng rs = {prng}.RandomState(123456) f = rs.__getattribute__('{fn}') args = {args} """ prngs = (np.random, mt19937, sfmt, dsfmt, xoroshiro128plus, xorshift1024, pcg64) functions = {'randint': {'low': 2 ** 31, 'dtype': 'uint32'}, 'random_sample': {}, 'random_raw': {'output': False}, 'standard_exponential': {'method': 'zig'}, 'standard_gamma': {'shape': 2.4, 'method': 'zig'}, 'standard_normal': {'method': 'zig'}, 'multinomial': {'n': 20, 'pvals': [1.0 / 6.0] * np.ones(6)}, 'negative_binomial': {'n': 5, 'p': 0.16}, 'poisson': {'lam': 3.0}, 'complex_normal': {'gamma': 2 + 0j, 'relation': 1 + 0.5j, 'method': 'zig'}, 'laplace': {'loc': 1, 'scale': 3}, 'binomial': {'n': 35, 'p': 0.25}} def timer(prng: str, fn: str, args: dict): if prng == 'random': # Differences with NumPy if fn in ('random_raw', 'complex_normal'): return np.nan if fn in ('standard_normal','standard_exponential', 'standard_gamma'): args = {k: v for k, v in args.items() if k != 'method'} elif prng == 'mt19937' and fn == 'random_raw': # To make comparable args['size'] = 2 * args['size'] setup = SETUP.format(prng=prng, fn=fn, args=args) return min(timeit.Timer('f(**args)', setup=setup).repeat(10, REPS)) / SIZE / REPS results = OrderedDict() for prng in prngs: name = prng.__name__.split('.')[-1] speeds = OrderedDict() for fn, args in functions.items(): args['size'] = SIZE speeds[fn] = np.round(timer(name, fn, args) * 10 ** 9, 2) results[name] = pd.Series(speeds) print(name) print(results[name]) results =
pd.DataFrame(results)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Mar 19 23:34:57 2019 @author: reynaldo.espana.rey Web scrapping algorithm to build data set for text generator source: https://towardsdatascience.com/how-to-web-scrape-with-python-in-4-minutes-bc49186a8460 """ # ============================================================================= # Libraries # ============================================================================= import numpy as np import pandas as pd import requests import re import time import os from bs4 import BeautifulSoup import string # ============================================================================= # Functions # ============================================================================= # request page and make it BeautifulSoup def get_page(url, verbose=0): # get page response = requests.get(url) if verbose: print('Successful:', str(response) =='<Response [200]>') if str(response) =='<Response [200]>': # BeautifulSoup data structure soup = BeautifulSoup(response.text, 'html.parser') return soup return str(response) # function to retrieve links from inspector gadget pluggin def get_href(url, attr): # get page soup = get_page(url) # get data links data = soup.select(attr) links = np.unique([x['href'] for x in data]) return links def get_text(url, attr): # get page soup = get_page(url) # get data links data = soup.select(attr) return data # valid file name def valid_name(value): value = re.sub('[^\w\s-]', '', value).strip().lower() value = re.sub('[-\s]+', '-', value) return value # funtion to remove chars def remove_chars(doc, chars_2remove=None): if chars_2remove is None: # list of character not UTF-8 to be remove from doc chars_2remove = ['\x85', '\x91', '\x92', '\x93', '\x94', '\x96', '\x97', '\xa0'] # as reggex expression chars_2remove = '[' + ''.join(chars_2remove) + ']' # erase doc = re.sub(chars_2remove, ' ', doc) doc = re.sub(' +', ' ', doc).strip() return doc # ============================================================================= # Spanish poems # ============================================================================= #### Spanish poems web page source # root source url_root = 'https://www.poemas-del-alma.com/' ## Path to use ## Retrieve poems and save it in .txt path_poems = '../data/DB/spanish poems/' # save list of poems links path_poems_links = '../data/DB/poems_list.csv' # ============================================================================= # Poems # ============================================================================= ##### POETS ##### # poems by author in alphabetial order alphabet = [x for x in string.ascii_uppercase] # get list of poets poets = pd.DataFrame() for letter in alphabet: print(letter) links = get_href(url_root + letter + '.html', attr='#content li a') authors = pd.DataFrame({'author': [x.split('/')[-1].split('.')[0] for x in links], 'link': links}) poets = poets.append(authors) time.sleep(.5) poets = poets.reset_index(drop=True) print('Poests found:', len(poets)) ##### POEMS ##### # go throgh all the poems in poets # run only for poems not already in folder poems = pd.read_csv(path_poems_links) # filter poets to scrap poets['in_disk'] = poets['author'].isin(poems['author']) # filter songs df print ('Files in disk already:', poets.groupby(['in_disk']).size()) # loop to remaining poets poets_2scrap = poets[poets['in_disk']==False] # shuffle, else all errors will be first poets_2scrap = poets_2scrap.sample(frac=1).reset_index(drop=True) # loop for each poet link for index, row in poets_2scrap.iterrows(): if (index % 25 == 0): print('\n\n- Progress %:', index/len(poets_2scrap), '- Total poems:', len(poems)) time.sleep(5) try: # get page with poems links links = get_href(row['link'], attr='#block-poems a') time.sleep(.5) links = pd.DataFrame({'poem': links}) # save and append links['author'] = row['author'] links['author_link'] = row['link'] poems = poems.append(links, sort=False) except: print("An exception occurred:", row['link']) time.sleep(30) print('Poems found:', len(poems)) poems.to_csv(path_poems_links, index=False) # ============================================================================= # COURPUS # ============================================================================= ### Create poem corpus and save it as .txt # list of poems to search poems = pd.read_csv(path_poems_links) print('Poems found:', len(poems)) # run only for poems not already in folder # get file names poems_files = os.listdir(path_poems) # get ids of song in disk poems_files_ids = [x.split('.')[0] for x in poems_files] # filter poems df poems['id'] = [x.split('.')[0] for x in poems['poem']] poems['in_disk'] = poems['id'].isin(poems_files_ids) print ('Files in disk already:', poems.groupby(['in_disk']).size()) # filter files to run webscrappin poems_2scrap = poems[poems['in_disk']==False] # shuffle, else all errors will be first poems_2scrap = poems_2scrap.sample(frac=1).reset_index(drop=True) # keep count of errors errors = 0 # loop for each poet link for index, row in poems_2scrap.iterrows(): if (index % 20 == 0): counter = len(poems[poems['in_disk']==True])+index print('\n\n- Progress %: {0:.4f}'.format(index/len(poems_2scrap)), '- Poems in disk: {}'.format(counter), '- Total %: {0:.4f}'.format(counter/len(poems))) try: # get page link = row['poem'] soup = get_page(url_root + link) # wait 1 second to not overheat the webscraping time.sleep(.5) # get poem page = soup.select('#contentfont p') if len(page): doc = str() for x in page: doc = doc + x.getText() # encoding doc = remove_chars(doc) # TODO: remove chars # save file filename = link.split('.')[0] with open(path_poems + filename + '.txt', "w") as text_file: text_file.write(doc) else: print(link, '- poem is a set of poems') # get links links = get_href(url_root + link, attr='.list-poems a') #time.sleep(.5) links =
pd.DataFrame({'poem': links})
pandas.DataFrame
import copy import itertools import os import numpy as np import pandas as pd from pathlib import Path from sklearn.preprocessing import PowerTransformer from scipy.stats import yeojohnson from tqdm import tqdm import tensorflow as tf import warnings warnings.simplefilter("ignore") n_wavelengths = 55 n_timesteps = 300 class read_Ariel_dataset(): def __init__(self, noisy_path_train, noisy_path_test, params_path, start_read): """ For reading Ariel Dataset. :param noisy_path_train: (str) The *relative path's parent directory* from the current working directory to all noisy training files. For local files start with "./", for colab files alternatively start with "/content/" (and "./" works fine). :param noisy_path_train: (str) The *relative path's parent directory* from the current working directory to all noisy test files. For local files start with "./", for colab files alternatively start with "/content/" (and "./" works fine). :param params_path: (str) The *relative path's parent directory* from the current working directory to all params files. For local files start with "./", for colab files alternatively start with "/content/" (and "./" works fine). :param start_read: (int) How many data points to replace at the beginning of the file. Used for preprocessing of files by replacing values before start_read with 1.0 to minimize impact of the drop valley. """ super().__init__() self.noisy_path = noisy_path_train self.noisy_path_test = noisy_path_test self.params_path = params_path self.start_read = start_read # list all files in path(s). self.noisy_list= os.listdir(self.noisy_path) self.noisy_list_test = os.listdir(self.noisy_path_test) self.params_list = os.listdir(self.params_path) # Grouped by AAAA: self.group_noisy_list = self._group_list(self.noisy_list) self.group_noisy_list_test = self._group_list(self.noisy_list_test) self.group_params_list = self._group_list(self.params_list) def _group_list_return(self): """ Only used for unit test purposes. Return self.group_noisy_list and assert it is true. """ return self.group_noisy_list def _choose_train_or_test(self, folder="noisy_train", batch_size=1): """Private function to choose train or test. :param batch_size (int): The batch size to take. NotImplemented yet. """ if folder == "noisy_train": path = self.noisy_path files = self.noisy_list elif folder == "noisy_test": path = self.noisy_path_test files = self.noisy_list_test else: raise FileNotFoundError("Not in the list (noisy_train, noisy_test). " "Please input the choices in the list stated and try again.") return path, files def _len_noisy_list(self): return len(self.noisy_list) def unoptimized_read_noisy(self, folder="noisy_train", **kwargs): """ Read noisy files greedily, stacking them on the first axis. First axis is the time series axis. So a file with 300x55, read 3 files would be 900x55. :param folder (str): Which folder to do baseline transition. Choices: "noisy_train" (default), "noisy_test". """ path, files = self._choose_train_or_test(folder=folder, **kwargs) predefined = pd.DataFrame() for item in files: # Concatenate filename and their parent folder. relative_file_path = path + "/" + item # Renaming the columns names = [item[-14:-4] + f"_{i}" for i in range(n_timesteps)] curr = pd.read_csv(relative_file_path, delimiter="\t", skiprows=6, header=None) curr.rename(columns={x: y for x, y in zip(curr.columns, names)}, inplace=True) # Concatenating the pandas. predefined = pd.concat([predefined, curr], axis=1) return predefined def unoptimized_read_params(self): """ Read params files greedily, stacking them on the first axis. """ predefined = pd.DataFrame() for item in self.params_list: # Relative file path: relative_file_path = self.params_path + "/" + item names = [item[-14:-4]] # Have to be a list to take effect curr = pd.read_csv(relative_file_path, delimiter="\t", skiprows=2, header=None).T curr.rename(columns = {x: y for x, y in zip(curr.columns, names)}, inplace=True) predefined = pd.concat([predefined, curr], axis=1) return predefined def _group_list(self, mylist): """ Group list together. Here the function is specific to group AAAA together into a sublist to not cramp the memory and dataframe I/O. """ return [list(v) for i, v in itertools.groupby(mylist, lambda x: x[:4])] def read_noisy_extra_param(self, folder="train", saveto="./feature_store/noisy_train"): """ Read the extra 6 stellar and planet parameters in noisy files. :param folder (str): "train" or "test" choice. Default "train" for noisy train set. :param saveto (str): The directory to save to. Will make the directory if not already exists. """ header = ["star_temp", "star_logg", "star_rad", "star_mass", "star_k_mag", "period"] predefined = pd.DataFrame() if saveto[-1] != "/": saveto += "/" try: os.makedirs(saveto) except OSError as e: pass if folder == "train": path = self.noisy_path mylist = self.group_noisy_list elif folder == "test": path = self.noisy_path_test mylist = self.group_noisy_list_test else: raise ValueError("Invalid 'folder' entry. Please choose between 'train' or 'test'.") # To ensure small enough, read them into groups of csv first. for grouped_item in tqdm(mylist): for item in grouped_item: temp_storage_float = [] relative_file_path = path + "/" + item with open(relative_file_path, "r") as f: temp_storage_str = list(itertools.islice(f, 6)) # Preprocess for numbers only for string in temp_storage_str: # Separate the digits and the non-digits. new_str = ["".join(x) for _, x in itertools.groupby(string, key=str.isdigit)] # Only new_str[0] is the one we want to omit. # We want to join back into a single string because "." previously is classifed # as non-digit. new_str = "".join(new_str[1:]) # Convert to float. temp_storage_float.append(float(new_str)) # Convert to pandas DataFrame. temp_storage_float = pd.DataFrame(temp_storage_float) # Define file name names = [item[-14:-4]] # Change the column name temp_storage_float.rename(columns = {x: y for x, y in zip(temp_storage_float.columns, names)}, inplace=True ) # Change the row names for predefined (optional for readability) temp_storage_float.rename(index = {x: y for x, y in zip(range(6), header)}, inplace=True) predefined = pd.concat([predefined, temp_storage_float], axis=1) predefined.to_csv(saveto + item[:4] + ".csv") # Reset predefined predefined = pd.DataFrame() # Then concatenate the csv files. saved_list = os.listdir(saveto) predefined = pd.DataFrame() for item in saved_list: relative_file_path = saveto + item name = [item[:-4]] # ignore the .csv at the end. temp_df = pd.read_csv(relative_file_path, index_col=0) predefined = pd.concat([predefined, temp_df], axis=1) return predefined def read_params_extra_param(self, saveto="./feature_store/params_train"): """ Read the extra 2 intermediate target params in the params files. """ header = ["sma", "incl"] predefined = pd.DataFrame() if saveto[-1] != "/": saveto += "/" try: os.makedirs(saveto) except OSError as e: pass mylist = self.group_params_list # Since we only have one folder, so hardcoded here. for grouped_item in tqdm(mylist): for item in grouped_item: temp_storage_float = [] relative_file_path = self.params_path + "/" + item with open(relative_file_path, "r") as f: temp_storage_str = list(itertools.islice(f, 2)) # Preprocess for numbers only for string in temp_storage_str: # Separate the digits and the non-digits. new_str = ["".join(x) for _, x in itertools.groupby(string, key=str.isdigit)] # Only new_str[0] is the one we want to omit. # We want to join back into a single string because "." previously is classifed # as non-digit. new_str = "".join(new_str[1:]) # Convert to float. temp_storage_float.append(float(new_str)) # Convert to pandas DataFrame. temp_storage_float =
pd.DataFrame(temp_storage_float)
pandas.DataFrame
import random import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Explanation "Where": Plot for explanation in fundamentals chapter # 1. Generate data with gaussian, uniform and mixed distribution n = 3000 var = 0.12 # Dimension 1 dim1_sequence_100percent_gaussian = np.random.normal(0.5, var, n) dim1_sequence_100percent_uniform = np.random.uniform(-0.5, 1.5, n) dim1_sequence_mixed = np.append(np.random.normal(0.5, var, int(n/2)), np.random.uniform(-0.5, 1.5, n)) # Dimension 2 dim2_sequence_100percent_gaussian = np.random.normal(0.5, var, n) dim2_sequence_100percent_uniform = np.random.uniform(-0.5, 1.5, n) dim2_sequence_mixed = np.append(np.random.normal(0.5, var, int(n/2)), np.random.uniform(-0.5, 1.5, n)) # Shuffle data random.shuffle(dim1_sequence_100percent_gaussian) random.shuffle(dim1_sequence_100percent_uniform) random.shuffle(dim1_sequence_mixed) random.shuffle(dim2_sequence_100percent_gaussian) random.shuffle(dim2_sequence_100percent_uniform) random.shuffle(dim2_sequence_mixed) # 2. Generate 2-dimensional dataset # Gaussian-uniform df_gaussian_uniform = pd.DataFrame() df_gaussian_uniform['Dim 1']=pd.Series(dim1_sequence_100percent_gaussian) df_gaussian_uniform['Dim 2']=pd.Series(dim2_sequence_100percent_uniform) # Gaussian-mixed df_gaussian_mixed = pd.DataFrame() df_gaussian_mixed['Dim 1']=
pd.Series(dim1_sequence_100percent_gaussian)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 调用wset函数的部分 下载数据的方法 1.在时间上使用折半可以最少的下载数据,但已经下了一部分,要补下时如果挪了一位,又得全重下 2.在文件上,三个文件一组,三组一样,删中间一个,直到不能删了,退出 """ import os import pandas as pd from .utils import asDateTime def download_sectorconstituent(w, date, sector, windcode, field='wind_code'): """ 板块成份 中信证券一级行业指数:时间好像没有必要,因为日历日也会查询出来 风险警示股票:日期就是查询的日期,股票也是最新名,没有啥用 w.wset("sectorconstituent","date=2017-03-03;sectorid=a001010100000000;field=wind_code") w.wset("sectorconstituent","date=2017-03-03;sectorid=a001010100000000") w.wset("sectorconstituent","date=2017-03-03;windcode=000300.SH") :param w: :param sector: :param date: :return: """ param = 'date=%s' % date if sector: param += ';sector=%s' % sector if windcode: param += ';windcode=%s' % windcode if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("sectorconstituent", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields try: df['date'] = pd.to_datetime(df['date']) except KeyError: pass return df def download_indexconstituent(w, date, windcode, field='wind_code,i_weight'): """ 指数权重 如果指定日期不是交易日,会返回时前一个交易日的信息 :param w: :param windcode: :param date: :return: """ param = 'date=%s' % date if windcode: param += ';windcode=%s' % windcode if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("indexconstituent", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields return df def download_optioncontractbasicinfo(w, exchange='sse', windcode='510050.SH', status='trading', field='wind_code,trade_code,sec_name,contract_unit,listed_date,expire_date,reference_price'): """ 指数权重 如果指定日期不是交易日,会返回时前一个交易日的信息 :param w: :param windcode: :param date: :return: """ param = 'exchange=%s' % exchange param += ';windcode=%s' % windcode param += ';status=%s' % status if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("optioncontractbasicinfo", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields return df def download_optionchain(w, date='2017-11-28', us_code='510050.SH', field='option_code,option_name,strike_price,multiplier'): """ 下载指定日期期权数据 w_wset_data = vba_wset("optionchain","date=2017-11-28;us_code=510050.SH;option_var=全部;call_put=全部;field=option_code,option_name,strike_price,multiplier",) :param w: :param windcode: :param date: :return: """ param = 'date=%s' % date param += ';us_code=%s' % us_code if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("optionchain", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields return df def read_constituent(path): """ 读取板块文件 :param path: :return: """ try: df = pd.read_csv(path, encoding='utf-8-sig', parse_dates=True) except Exception as e: return None try: df['date'] = pd.to_datetime(df['date']) except KeyError: pass return df def read_sectorconstituent_from_dir(path, key_field='wind_code'): """ 从目录中读取整个文件 :param path: :param key_field: :return: """ last_set = None df = None for parent, dirnames, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(parent, filename) curr_df = read_constituent(filepath) # 由于两头数据可能一样,这样处理,只留第一个,可以加快处理速度 curr_set = set(curr_df[key_field]) if last_set == curr_set: last_set = curr_set continue last_set = curr_set data_date_str = filename[:-4] curr_df['_datetime_'] = pd.to_datetime(data_date_str) if df is None: df = curr_df else: df = pd.concat([df, curr_df]) return df def write_constituent(path, df): df.to_csv(path, encoding='utf-8-sig', date_format='%Y-%m-%d', index=False) def read_indexconstituent_from_dir(path): """ 由于权重每天都不一样,只能根据用户指定的日期下载才行 :param path: :return: """ last_set = None df = None for parent, dirnames, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(parent, filename) curr_df = read_constituent(filepath) # 2016-12-12,有成份新加入,但权重为nan curr_df.fillna(0, inplace=True) data_date_str = filename[:-4] curr_df['_datetime_'] = pd.to_datetime(data_date_str) if df is None: df = curr_df else: df =
pd.concat([df, curr_df])
pandas.concat
def report_classification(df_features,df_target,algorithms='default',test_size=0.3,scaling=None, large_data=False,encode='dummy',average='binary',change_data_type = False, threshold=8,random_state=None): ''' df_features : Pandas DataFrame df_target : Pandas Series algorithms : List ,'default'= [LogisticRegression(), GaussianNB(), DecisionTreeClassifier(), RandomForestClassifier(), GradientBoostingClassifier(), AdaBoostClassifier(), XGBClassifier()] The above are the default algorithms, if one needs any specific algorithms, they have to import libraries then pass the instances of alogorith as list For example, if one needs random forest and adaboost only, then pass algorithms=[RandomForestClassifier(max_depth=8),AdaBoostClassifier()] But, these libraries must be imported before passing into above list like test_size: If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. scaling : {'standard-scalar', 'min-max'} or None , default=None encode : {'dummy','onehot','label'} ,default='dummy' change_data_type : bool, default=False Some columns will be of numerical datatype though there are only 2-3 unique values in that column, so these columns must be converted to object as it is more relevant. By setting change_data_type= True , these columns will be converted into object datatype threshold : int ,default=8 Maximum unique value a column can have large_data : bool, default=False If the dataset is large then the parameter large_data should be set to True, make sure if your system has enough memory before setting Large_data=True average : {'micro', 'macro', 'samples','weighted', 'binary'} or None, default='binary' This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). random_state : int, RandomState instance or None, default=None ''' import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder,StandardScaler,MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,confusion_matrix,roc_auc_score,roc_curve,accuracy_score,recall_score,precision_score from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier,AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from warnings import filterwarnings filterwarnings('ignore') print("Shape of the data :",df_features.shape) print("---------------------------------------") #Check if there is any missing values if df_features.isna().sum().sum()==0: df_num=df_features.select_dtypes(exclude="object") #Some columns will be of numerical datatype though there are only 2-3 unique values in that column #Here the if-condition will check if the unique values are less than the specified threshold in each column if change_data_type == True: for i in df_num.columns: if len(df_num[i].value_counts())<threshold: #The datatype will be changed to object if the condition is not satisfied df_features[i] = df_features[i].astype('object') print("Datatype of {} changed to 'object as there were less than {} unique values".format(i,threshold)) print("-----------------------------------------------------------------------------------------") else: pass #In some features like movie-tiltle,id,etc where there will be many unique values must be must be dropped #These features can also be label encoded and then can be passed df_cat=df_features.select_dtypes(include="object") for i in df_cat: if df_features[i].nunique()>threshold: raise Exception("Recheck the datatype of {}, as there are more than {} unique values or change the datatype of {}".format(i,threshold)) df_num=df_features.select_dtypes(exclude="object") #Encoding of categorical features if df_cat.shape[1]!=0: #Dummy-encoding if encode == 'dummy': print("Encoding : Dummy Encoding" ) print("---------------------------------------") encoding=pd.get_dummies(df_cat,drop_first=True) X=pd.concat([encoding,df_num],axis=1) #Onehot encoding elif encode == 'onehot': print("Encoding : One-hot Encoding" ) print("---------------------------------------") encoding=pd.get_dummies(df_cat) X=pd.concat([encoding,df_num],axis=1) #Label encoding elif encode == 'label': print("Encoding : Label Encoding" ) print("---------------------------------------") encoding=df_cat.apply(LabelEncoder().fit_transform) X=pd.concat([encoding,df_num],axis=1) #If there are no categorical features else: X=df_features #Encoding of target column labelencoder = LabelEncoder() y = labelencoder.fit_transform(df_target) #Value count of target column count=pd.Series(y).value_counts() print("Value count of target variable :") for i in range(len(count)): print("Count of {}s is {} ".format(count.index[i],count.values[i])) print("---------------------------------------") #Scaling #Standard scaling if scaling=='standard-scalar': print("Scaling : StandardScalar") print("---------------------------------------") ss=StandardScaler() X=ss.fit_transform(X) #MinmaxScalar elif scaling=='min-max': print("Scaling : MinmaxScalar") print("---------------------------------------") mm=MinMaxScaler() X=mm.fit_transform(X) else: print("Scaling : None") print("---------------------------------------") #Condition to check how large the data after encoding if (X.shape[0]*X.shape[1] < 1000000) | large_data==True: print("Number of Datapoints :",X.shape[0]*X.shape[1]) print("---------------------------------------") else: raise Exception("Data too large to process, if you want to still execute, set parameter large_data=False") #Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) print("Test size for train test split :",test_size) print("---------------------------------------") #Algorithms if algorithms == 'default': algorithms=[LogisticRegression(), GaussianNB(), DecisionTreeClassifier(random_state=random_state), RandomForestClassifier(random_state=random_state), GradientBoostingClassifier(random_state=random_state), AdaBoostClassifier(random_state=random_state), XGBClassifier(random_state=random_state,verbosity=0)] else: algorithms=algorithms #Binary Classification if df_target.nunique()<3: results=pd.DataFrame(columns=["Algorithm_name",'Train_accuracy','Test_accuracy', "Test_Roc_Auc_score",'Test_recall','Test_precision']) for i in algorithms: print("Executing :",i) i.fit(X_train, y_train) train_pred_i=i.predict(X_train) train_acc=accuracy_score(y_train,train_pred_i) test_pred_i=i.predict(X_test) test_acc=accuracy_score(y_test,test_pred_i) recall=recall_score(y_test,test_pred_i,average=average) precision=precision_score(y_test,test_pred_i,average=average) roc_auc=roc_auc_score(y_test,test_pred_i) row={"Algorithm_name":str(i)[:-2],'Train_accuracy':train_acc,"Test_accuracy":test_acc, "Test_Roc_Auc_score":roc_auc,'Test_recall':recall,"Test_precision":precision} results=results.append(row,ignore_index=True) return results #Multiclass Classification else: results=pd.DataFrame(columns=["Algorithm_name",'Train_accuracy','Test_accuracy',"f1_score"]) for i in algorithms: print("Executing :",i) i.fit(X_train, y_train) train_pred_i=i.predict(X_train) train_acc=accuracy_score(y_train,train_pred_i) test_pred_i=i.predict(X_test) test_acc=accuracy_score(y_test,test_pred_i) f1=recall_score(y_test,test_pred_i,average=average) row={"Algorithm_name":str(i)[:-2],'Train_accuracy':train_acc,"Test_accuracy":test_acc,"f1_score":f1} results=results.append(row,ignore_index=True) return results else: raise Exception("The data contains missing values, first handle missing values and then pass the data") def report_regression(df_features,df_target,algorithms='default',test_size=0.3, scaling=None,large_data=False,change_data_type=True,encode='dummy', threshold=8,random_state=None): ''' df_features : Pandas DataFrame df_target : Pandas Series algorithms : List ,'default'= [LinearRegression(), Lasso(), Ridge(), RandomForestRegressor(), GradientBoostingRegressor(), AdaBoostRegressor(), XGBRegressor] The above are the default algorithms, if one needs any specific algorithms, they have to import libraries then pass the instances of alogorith as list For example, if one needs random forest and adaboost only, then pass algorithms=[RandomForestRegressor(max_depth=8),AdaBoostRegressor()] But, these libraries must be imported before passing into above list like test_size: If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. scaling : {'standard-scalar', 'min-max'} or None , default=None encode : {'dummy','onehot','label'} ,default='dummy' change_data_type : bool, default=False Some columns will be of numerical datatype though there are only 2-3 unique values in that column, so these columns must be converted to object as it is more relevant. By setting change_data_type= True , these columns will be converted into object datatype threshold : int ,default=8 Maximum unique value a column can have large_data : bool, default=False If the dataset is large then the parameter large_data should be set to True, make sure if your system has enough memory before setting Large_data=True random_state : int, RandomState instance or None, default=None ''' import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder,StandardScaler,MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor,AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression,Lasso,Ridge from xgboost import XGBRegressor from warnings import filterwarnings filterwarnings('ignore') print("Shape of data :",df_features.shape) print("---------------------------------------") #Check if there is any missing values if df_features.isna().sum().sum()==0: df_num=df_features.select_dtypes(exclude="object") #Some columns will be of numerical datatype though there are only 2-3 unique values in that column #Here the if-condition will check if the unique values are less than the specified threshold in each column if change_data_type == True: for i in df_num.columns: #The datatype will be changed to object if the condition is not satisfied if len(df_num[i].value_counts())<threshold: df_features[i] = df_features[i].astype('object') print("Datatype of {} changed to 'object as there were less than {} unique values".format(i,threshold)) print("-----------------------------------------------------------------------------------------") else: pass #In some features like movie-tiltle,id,etc where there will be many unique values must be must be dropped #These features can also be label encoded and then can be passed df_cat=df_features.select_dtypes(include="object") for i in df_cat: if df_features[i].nunique()>threshold: raise Exception("Recheck the datatype of {}, as there are more than {} unique values or change the datatype of {}".format(i,threshold)) df_num=df_features.select_dtypes(exclude="object") #Encoding of categorical features if df_cat.shape[1]!=0: #Dummy Encoding if encode == 'dummy': print("Encoding : Dummy Encoding" ) print("---------------------------------------") encoding=pd.get_dummies(df_cat,drop_first=True) X=pd.concat([encoding,df_num],axis=1) #Onehot encoding elif encode == 'onehot': print("Encoding : One-hot Encoding" ) print("---------------------------------------") encoding=pd.get_dummies(df_cat) X=pd.concat([encoding,df_num],axis=1) #Label encoding elif encode == 'label': print("Encoding : Label Encoding" ) print("---------------------------------------") encoding=df_cat.apply(LabelEncoder().fit_transform) X=pd.concat([encoding,df_num],axis=1) else: X=df_features #Encoding of target column labelencoder = LabelEncoder() y = labelencoder.fit_transform(df_target) #Scaling #Scaling of features by StandardScalar if scaling=='standard-scalar': print("Scaling : standardScalar") print("---------------------------------------") ss=StandardScaler() X=ss.fit_transform(X) #Scaling of features by MinmaxScalar elif scaling=='min-max': print("Scaling : inmaxScalar") print("---------------------------------------") mm=MinMaxScaler() X=mm.fit_transform(X) else: print("Scaling : None") print("---------------------------------------") #Condition to check how large the data after encoding if (X.shape[0]*X.shape[1] < 1000000) | large_data==True: print("Number of Datapoints :",X.shape[0]*X.shape[1]) print("---------------------------------------") else: raise Exception("Data too large to process, if you want to still execute, set parameter large_data=False") #Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size,random_state=random_state) print("Test size for train test split :",test_size) print("---------------------------------------") if algorithms == 'default': algorithms=[LinearRegression(), Lasso(random_state=random_state), Ridge(random_state=random_state), DecisionTreeRegressor(random_state=random_state), RandomForestRegressor(random_state=random_state), GradientBoostingRegressor(random_state=random_state), AdaBoostRegressor(random_state=random_state), XGBRegressor(random_state=random_state)] else: algorithms=algorithms results=
pd.DataFrame(columns=["Algorithm_name",'R-Squared','Adj. R-Squared','Train-RMSE','Test-RMSE'])
pandas.DataFrame
# -*- coding: utf-8 -*- import os import pandas as pd from pandas.testing import assert_frame_equal import camelot from camelot.core import Table, TableList from camelot.__version__ import generate_version from .data import * testdir = os.path.dirname(os.path.abspath(__file__)) testdir = os.path.join(testdir, "files") def test_stream(): df = pd.DataFrame(data_stream) filename = os.path.join(testdir, "health.pdf") tables = camelot.read_pdf(filename, flavor="stream") assert_frame_equal(df, tables[0].df) def test_stream_table_rotated(): df = pd.DataFrame(data_stream_table_rotated) filename = os.path.join(testdir, "clockwise_table_2.pdf") tables = camelot.read_pdf(filename, flavor="stream") assert_frame_equal(df, tables[0].df) filename = os.path.join(testdir, "anticlockwise_table_2.pdf") tables = camelot.read_pdf(filename, flavor="stream") assert_frame_equal(df, tables[0].df) def test_stream_two_tables(): df1 = pd.DataFrame(data_stream_two_tables_1) df2 = pd.DataFrame(data_stream_two_tables_2) filename = os.path.join(testdir, "tabula/12s0324.pdf") tables = camelot.read_pdf(filename, flavor="stream") assert len(tables) == 2 assert df1.equals(tables[0].df) assert df2.equals(tables[1].df) def test_stream_table_regions(): df = pd.DataFrame(data_stream_table_areas) filename = os.path.join(testdir, "tabula/us-007.pdf") tables = camelot.read_pdf( filename, flavor="stream", table_regions=["320,460,573,335"] ) assert_frame_equal(df, tables[0].df) def test_stream_table_areas(): df = pd.DataFrame(data_stream_table_areas) filename = os.path.join(testdir, "tabula/us-007.pdf") tables = camelot.read_pdf( filename, flavor="stream", table_areas=["320,500,573,335"] ) assert_frame_equal(df, tables[0].df) def test_stream_columns(): df = pd.DataFrame(data_stream_columns) filename = os.path.join(testdir, "mexican_towns.pdf") tables = camelot.read_pdf( filename, flavor="stream", columns=["67,180,230,425,475"], row_tol=10 ) assert_frame_equal(df, tables[0].df) def test_stream_split_text(): df = pd.DataFrame(data_stream_split_text) filename = os.path.join(testdir, "tabula/m27.pdf") tables = camelot.read_pdf( filename, flavor="stream", columns=["72,95,209,327,442,529,566,606,683"], split_text=True, ) assert_frame_equal(df, tables[0].df) def test_stream_flag_size(): df = pd.DataFrame(data_stream_flag_size) filename = os.path.join(testdir, "superscript.pdf") tables = camelot.read_pdf(filename, flavor="stream", flag_size=True) assert_frame_equal(df, tables[0].df) def test_stream_strip_text(): df =
pd.DataFrame(data_stream_strip_text)
pandas.DataFrame
# This script performs the statistical analysis for the pollution growth paper # Importing required modules import pandas as pd import numpy as np import statsmodels.api as stats from ToTeX import restab # Reading in the data data = pd.read_csv('C:/Users/User/Documents/Data/Pollution/pollution_data.csv') W = pd.read_csv('C:/Users/User/Documents/Data/Pollution/pollution_data_W_reference.csv', header = None) # Creating a reference list of nations nations = list(data.Country.unique()) # Prepping data for pollution regression # Data sets for individual pollutants co2_data = data[['ln_co2', 'ln_co2_lag', 'ln_sk', 'ln_n5', 'ln_co2_intensity_rate', 'Country', 'Year', 'ln_co2_intensity_lag']].dropna() ch4_data = data[['ln_ch4', 'ln_ch4_lag', 'ln_sk', 'ln_n5', 'ln_ch4_intensity_rate', 'Country', 'Year', 'ln_ch4_intensity_lag']].dropna() nox_data = data[['ln_nox', 'ln_nox_lag', 'ln_sk', 'ln_n5', 'ln_nox_intensity_rate', 'Country', 'Year', 'ln_nox_intensity_lag']].dropna() # Creating dummy variables for each pollutant co2_national_dummies = pd.get_dummies(co2_data['Country']) co2_year_dummies = pd.get_dummies(co2_data['Year']) ch4_national_dummies = pd.get_dummies(ch4_data['Country']) ch4_year_dummies = pd.get_dummies(ch4_data['Year']) nox_national_dummies = pd.get_dummies(nox_data['Country']) nox_year_dummies = pd.get_dummies(nox_data['Year']) # Replacing Country and Year with fixed effects co2_data = pd.concat([co2_data, co2_national_dummies, co2_year_dummies], axis = 1) ch4_data = pd.concat([ch4_data, ch4_national_dummies, ch4_year_dummies], axis = 1) nox_data = pd.concat([nox_data, nox_national_dummies, nox_year_dummies], axis = 1) co2_data = co2_data.drop(['Country', 'Year', 1971, 'United States'], axis = 1) ch4_data = ch4_data.drop(['Country', 'Year', 1971, 'United States'], axis = 1) nox_data = nox_data.drop(['Country', 'Year', 1971, 'United States'], axis = 1) # Create the Y and X matrices CO2 = co2_data['ln_co2'] CH4 = ch4_data['ln_ch4'] NOX = nox_data['ln_nox'] X_CO2 = co2_data.drop(['ln_co2'], axis = 1) X_CH4 = ch4_data.drop(['ln_ch4'], axis = 1) X_NOX = nox_data.drop(['ln_nox'], axis = 1) # Running pollution regressions co2_mod = stats.OLS(CO2, X_CO2) ch4_mod = stats.OLS(CH4, X_CH4) nox_mod = stats.OLS(NOX, X_NOX) models = [co2_mod, ch4_mod, nox_mod] names = ['CO2', 'CH4', 'NOx'] res_list = [] for mod in models: res = mod.fit(cov_type = 'HC1') res_list.append(res) print(res.summary()) file = open('C:/Users/User/Documents/Data/Pollution/' + names[models.index(mod)] + '.txt', 'w') file.write(res.summary().as_text()) file.close() restab(res_list, 'C:/Users/User/Documents/Data/Pollution/restab.txt') # After running the conditional convergence models, we set up the network effects models # Compute technology growth rate # \widetilde{g} = \left(\frac{1}{T}\right)\sum\limits_{t=1}^{T}\left(\frac{\eta_{t}}{t-\gamma(t-1)}\right) g_co2 = (1/23) * sum([(co2_mod.fit().params[i] / ((i-1971) - (co2_mod.fit().params['ln_co2_lag'] * (i-1972)))) for i in range(1972,2015)]) g_ch4 = (1/21) * sum([(ch4_mod.fit().params[i] / ((i-1971) - (ch4_mod.fit().params['ln_ch4_lag'] * (i-1972)))) for i in range(1972,2013)]) g_nox = (1/21) * sum([(nox_mod.fit().params[i] / ((i-1971) - (nox_mod.fit().params['ln_nox_lag'] * (i-1972)))) for i in range(1972,2013)]) # Add technology parameters to the dataframe co2_tech = [] ch4_tech = [] nox_tech = [] for i in range(len(data)): if data.Year[i] > 1970 and data.Country[i] in co2_mod.fit().params.keys(): co2_tech.append(co2_mod.fit().params[data.Country[i]] + (g_co2 * (data.Year[i] - 1971))) else: co2_tech.append('') if data.Year[i] > 1970 and data.Country[i] in ch4_mod.fit().params.keys(): ch4_tech.append(ch4_mod.fit().params[data.Country[i]] + (g_ch4 * (data.Year[i] - 1971))) else: ch4_tech.append('') if data.Year[i] > 1970 and data.Country[i] in nox_mod.fit().params.keys(): nox_tech.append(nox_mod.fit().params[data.Country[i]] + (g_nox * (data.Year[i] - 1971))) else: nox_tech.append('') # Add technology values to data set co2_tech = pd.Series(co2_tech, name = 'co2_tech') ch4_tech = pd.Series(co2_tech, name = 'ch4_tech') nox_tech = pd.Series(co2_tech, name = 'nox_tech') data = pd.concat([data, co2_tech, ch4_tech, nox_tech], axis = 1) # Convert '' to np.nan to use pandas dropna data[data[['co2_tech', 'ch4_tech', 'nox_tech']] == ''] = np.nan # Data prep for network effects regressions for intensities tc_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'TC_CO2_ROB', 'Country', 'Year']].dropna() tc_ch4_rob = data[['ch4_intensity', 'ch4_intensity_init', 'ch4_intensity_lag', 'ch4_tech', 'TC_CH4_ROB', 'Country', 'Year']].dropna() tc_nox_rob = data[['nox_intensity', 'nox_intensity_init', 'nox_intensity_lag', 'nox_tech', 'TC_NOX_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(tc_co2_rob['Country']) co2_year_dummies = pd.get_dummies(tc_co2_rob['Year']) ch4_national_dummies = pd.get_dummies(tc_ch4_rob['Country']) ch4_year_dummies = pd.get_dummies(tc_ch4_rob['Year']) nox_national_dummies = pd.get_dummies(tc_nox_rob['Country']) nox_year_dummies = pd.get_dummies(tc_nox_rob['Year']) xtc_co2_rob = pd.concat([tc_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xtc_ch4_rob = pd.concat([tc_ch4_rob, ch4_national_dummies, ch4_year_dummies], axis = 1).drop(['ch4_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xtc_nox_rob = pd.concat([tc_nox_rob, nox_national_dummies, nox_year_dummies], axis = 1).drop(['nox_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) exp_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'EXP_CO2_ROB', 'Country', 'Year']].dropna() exp_ch4_rob = data[['ch4_intensity', 'ch4_intensity_init', 'ch4_intensity_lag', 'ch4_tech', 'EXP_CH4_ROB', 'Country', 'Year']].dropna() exp_nox_rob = data[['nox_intensity', 'nox_intensity_init', 'nox_intensity_lag', 'nox_tech', 'EXP_NOX_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(exp_co2_rob['Country']) co2_year_dummies = pd.get_dummies(exp_co2_rob['Year']) ch4_national_dummies = pd.get_dummies(exp_ch4_rob['Country']) ch4_year_dummies = pd.get_dummies(exp_ch4_rob['Year']) nox_national_dummies = pd.get_dummies(exp_nox_rob['Country']) nox_year_dummies = pd.get_dummies(exp_nox_rob['Year']) xexp_co2_rob = pd.concat([exp_co2_rob, co2_national_dummies, co2_year_dummies], axis = 1).drop(['co2_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xexp_ch4_rob = pd.concat([exp_ch4_rob, ch4_national_dummies, ch4_year_dummies], axis = 1).drop(['ch4_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) xexp_nox_rob = pd.concat([exp_nox_rob, nox_national_dummies, nox_year_dummies], axis = 1).drop(['nox_intensity', 'Country', 'Year', 'Zimbabwe', 1971], axis = 1) imp_co2_rob = data[['co2_intensity', 'co2_intensity_init', 'co2_intensity_lag', 'co2_tech', 'IMP_CO2_ROB', 'Country', 'Year']].dropna() imp_ch4_rob = data[['ch4_intensity', 'ch4_intensity_init', 'ch4_intensity_lag', 'ch4_tech', 'IMP_CH4_ROB', 'Country', 'Year']].dropna() imp_nox_rob = data[['nox_intensity', 'nox_intensity_init', 'nox_intensity_lag', 'nox_tech', 'IMP_NOX_ROB', 'Country', 'Year']].dropna() co2_national_dummies = pd.get_dummies(imp_co2_rob['Country']) co2_year_dummies = pd.get_dummies(imp_co2_rob['Year']) ch4_national_dummies = pd.get_dummies(imp_ch4_rob['Country']) ch4_year_dummies =
pd.get_dummies(imp_ch4_rob['Year'])
pandas.get_dummies
#!/usr/bin/env python """ coding=utf-8 Build model for a dataset by identifying type of column along with its respective parameters. """ from __future__ import print_function from __future__ import division import copy import random import re from collections import OrderedDict, defaultdict import warnings import pickle from datetime import datetime import logging import pandas as pd import numpy as np from . import utils from .. import data_readers from .column_profile_compilers import ColumnPrimitiveTypeProfileCompiler, \ ColumnStatsProfileCompiler, ColumnDataLabelerCompiler, UnstructuredCompiler from ..labelers.data_labelers import DataLabeler from .helpers.report_helpers import calculate_quantiles, _prepare_report from .profiler_options import ProfilerOptions, StructuredOptions, \ UnstructuredOptions from .. import dp_logging logger = dp_logging.get_child_logger(__name__) class StructuredColProfiler(object): def __init__(self, df_series=None, sample_size=None, min_sample_size=5000, sampling_ratio=0.2, min_true_samples=None, sample_ids=None, pool=None, options=None): """ Instantiate the StructuredColProfiler class for a given column. :param df_series: Data to be profiled :type df_series: pandas.core.series.Series :param sample_size: Number of samples to use in generating profile :type sample_size: int :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :param sample_ids: Randomized list of sample indices :type sample_ids: list(list) :param pool: pool utilized for multiprocessing :type pool: multiprocessing.Pool :param options: Options for the structured profiler. :type options: StructuredOptions Object """ self.name = None self.options = options self._min_sample_size = min_sample_size self._sampling_ratio = sampling_ratio self._min_true_samples = min_true_samples if self._min_true_samples is None: self._min_true_samples = 0 self.sample_size = 0 self.sample = list() self.null_count = 0 self.null_types = list() self.null_types_index = {} self._min_id = None self._max_id = None self._index_shift = None self._last_batch_size = None self.profiles = {} NO_FLAG = 0 self._null_values = { "": NO_FLAG, "nan": re.IGNORECASE, "none": re.IGNORECASE, "null": re.IGNORECASE, " *": NO_FLAG, "--*": NO_FLAG, "__*": NO_FLAG, } if options: if options.null_values is not None: self._null_values = options.null_values if df_series is not None and len(df_series) > 0: if not sample_size: sample_size = self._get_sample_size(df_series) if sample_size < len(df_series): warnings.warn("The data will be profiled with a sample size of {}. " "All statistics will be based on this subsample and " "not the whole dataset.".format(sample_size)) clean_sampled_df, base_stats = \ self.clean_data_and_get_base_stats( df_series=df_series, sample_size=sample_size, null_values=self._null_values, min_true_samples=self._min_true_samples, sample_ids=sample_ids) self.update_column_profilers(clean_sampled_df, pool) self._update_base_stats(base_stats) def update_column_profilers(self, clean_sampled_df, pool): """ Calculates type statistics and labels dataset :param clean_sampled_df: sampled series with none types dropped :type clean_sampled_df: Pandas.Series :param pool: pool utilized for multiprocessing :type pool: multiprocessing.pool """ if self.name is None: self.name = clean_sampled_df.name if self.name != clean_sampled_df.name: raise ValueError( 'Column names have changed, col {} does not match prior name {}', clean_sampled_df.name, self.name ) # First run, create the compilers if self.profiles is None or len(self.profiles) == 0: self.profiles = { 'data_type_profile': ColumnPrimitiveTypeProfileCompiler( clean_sampled_df, self.options, pool), 'data_stats_profile': ColumnStatsProfileCompiler( clean_sampled_df, self.options, pool) } use_data_labeler = True if self.options and isinstance(self.options, StructuredOptions): use_data_labeler = self.options.data_labeler.is_enabled if use_data_labeler: self.profiles.update({ 'data_label_profile': ColumnDataLabelerCompiler( clean_sampled_df, self.options, pool) }) else: # Profile compilers being updated for profile in self.profiles.values(): profile.update_profile(clean_sampled_df, pool) def __add__(self, other): """ Merges two Structured profiles together overriding the `+` operator. :param other: structured profile being add to this one. :type other: StructuredColProfiler :return: merger of the two structured profiles """ if type(other) is not type(self): raise TypeError('`{}` and `{}` are not of the same profiler type.'. format(type(self).__name__, type(other).__name__)) elif self.name != other.name: raise ValueError('Structured profile names are unmatched: {} != {}' .format(self.name, other.name)) elif set(self.profiles) != set(other.profiles): # options check raise ValueError('Structured profilers were not setup with the same' ' options, hence they do not calculate the same ' 'profiles and cannot be added together.') merged_profile = StructuredColProfiler( df_series=pd.Series([]), min_sample_size=max(self._min_sample_size, other._min_sample_size), sampling_ratio=max(self._sampling_ratio, other._sampling_ratio), min_true_samples=max(self._min_true_samples, other._min_true_samples), options=self.options, ) merged_profile.name = self.name merged_profile._update_base_stats( {"sample": self.sample, "sample_size": self.sample_size, "null_count": self.null_count, "null_types": copy.deepcopy(self.null_types_index), "min_id": self._min_id, "max_id": self._max_id} ) merged_profile._update_base_stats( {"sample": other.sample, "sample_size": other.sample_size, "null_count": other.null_count, "null_types": copy.deepcopy(other.null_types_index), "min_id": other._min_id, "max_id": other._max_id} ) samples = list(dict.fromkeys(self.sample + other.sample)) merged_profile.sample = random.sample(samples, min(len(samples), 5)) for profile_name in self.profiles: merged_profile.profiles[profile_name] = ( self.profiles[profile_name] + other.profiles[profile_name] ) return merged_profile def diff(self, other_profile, options=None): """ Finds the difference between 2 StructuredCols and returns the report :param other: Structured col finding the difference with this one. :type other: StructuredColProfiler :param options: options to change results of the difference :type options: dict :return: difference of the structured column :rtype: dict """ unordered_profile = dict() for key, profile in self.profiles.items(): if key in other_profile.profiles: comp_diff = self.profiles[key].diff(other_profile.profiles[key], options=options) utils.dict_merge(unordered_profile, comp_diff) name = self.name if isinstance(self.name, np.integer): name = int(name) unordered_profile.update({ "column_name": name, }) unordered_profile["statistics"].update({ "sample_size": utils.find_diff_of_numbers( self.sample_size, other_profile.sample_size), "null_count": utils.find_diff_of_numbers( self.null_count, other_profile.null_count), "null_types": utils.find_diff_of_lists_and_sets( self.null_types, other_profile.null_types), "null_types_index": utils.find_diff_of_dicts_with_diff_keys( self.null_types_index, other_profile.null_types_index), }) if unordered_profile.get("data_type", None) is not None: unordered_profile["statistics"].update({ "data_type_representation": unordered_profile["data_type_representation"] }) dict_order = [ "column_name", "data_type", "data_label", "categorical", "order", "statistics", ] profile = OrderedDict() if 'data_label_profile' not in self.profiles or\ 'data_label_profile' not in other_profile.profiles: dict_order.remove("data_label") for key in dict_order: try: profile[key] = unordered_profile[key] except KeyError as e: profile[key] = None return profile @property def profile(self): unordered_profile = dict() for profile in self.profiles.values(): utils.dict_merge(unordered_profile, profile.profile) name = self.name if isinstance(self.name, np.integer): name = int(name) unordered_profile.update({ "column_name": name, "samples": self.sample, }) unordered_profile["statistics"].update({ "sample_size": self.sample_size, "null_count": self.null_count, "null_types": self.null_types, "null_types_index": self.null_types_index }) if unordered_profile.get("data_type", None) is not None: unordered_profile["statistics"].update({ "data_type_representation": unordered_profile["data_type_representation"] }) dict_order = [ "column_name", "data_type", "data_label", "categorical", "order", "samples", "statistics", ] profile = OrderedDict() if 'data_label_profile' not in self.profiles: dict_order.remove("data_label") for key in dict_order: try: profile[key] = unordered_profile[key] except KeyError as e: profile[key] = None return profile def _update_base_stats(self, base_stats): self.sample_size += base_stats["sample_size"] self._last_batch_size = base_stats["sample_size"] self.sample = base_stats["sample"] self.null_count += base_stats["null_count"] self.null_types = utils._combine_unique_sets( self.null_types, list(base_stats["null_types"].keys()) ) base_min = base_stats["min_id"] base_max = base_stats["max_id"] base_nti = base_stats["null_types"] # Check if indices overlap, if they do, adjust attributes accordingly if utils.overlap(self._min_id, self._max_id, base_min, base_max): warnings.warn(f"Overlapping indices detected. To resolve, indices " f"where null data present will be shifted forward " f"when stored in profile: {self.name}") # Shift indices (min, max, and all indices in null types index self._index_shift = self._max_id + 1 base_min = base_min + self._index_shift base_max = base_max + self._index_shift base_nti = {k: {x + self._index_shift for x in v} for k, v in base_stats["null_types"].items()} # Store/compare min/max id with current if self._min_id is None: self._min_id = base_min elif base_min is not None: self._min_id = min(self._min_id, base_min) if self._max_id is None: self._max_id = base_max elif base_max is not None: self._max_id = max(self._max_id, base_max) # Update null row indices for null_type, null_rows in base_nti.items(): if type(null_rows) is list: null_rows.sort() self.null_types_index.setdefault(null_type, set()).update(null_rows) def update_profile(self, df_series, sample_size=None, min_true_samples=None, sample_ids=None, pool=None): """ Update the column profiler :param df_series: Data to be profiled :type df_series: pandas.core.series.Series :param sample_size: Number of samples to use in generating profile :type sample_size: int :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :param sample_ids: Randomized list of sample indices :type sample_ids: list(list) :param pool: pool utilized for multiprocessing :type pool: multiprocessing.Pool """ if not sample_size: sample_size = len(df_series) if not sample_size: sample_size = self._get_sample_size(df_series) if not min_true_samples: min_true_samples = self._min_true_samples clean_sampled_df, base_stats = \ self.clean_data_and_get_base_stats( df_series=df_series, sample_size=sample_size, null_values=self._null_values, min_true_samples=min_true_samples, sample_ids=sample_ids) self._update_base_stats(base_stats) self.update_column_profilers(clean_sampled_df, pool) def _get_sample_size(self, df_series): """ Determines the minimum sampling size for detecting column type. :param df_series: a column of data :type df_series: pandas.core.series.Series :return: integer sampling size :rtype: int """ len_df = len(df_series) if len_df <= self._min_sample_size: return int(len_df) return max(int(self._sampling_ratio * len_df), self._min_sample_size) # TODO: flag column name with null values and potentially return row # index number in the error as well @staticmethod def clean_data_and_get_base_stats(df_series, sample_size, null_values=None, min_true_samples=None, sample_ids=None): """ Identify null characters and return them in a dictionary as well as remove any nulls in column. :param df_series: a given column :type df_series: pandas.core.series.Series :param sample_size: Number of samples to use in generating the profile :type sample_size: int :param null_values: Dictionary mapping null values to regex flag where the key represents the null value to remove from the data and the flag represents the regex flag to apply :type null_values: dict[str, re.FLAG] :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :param sample_ids: Randomized list of sample indices :type sample_ids: list(list) :return: updated column with null removed and dictionary of null parameters :rtype: pd.Series, dict """ if min_true_samples is None: min_true_samples = 0 if null_values is None: null_values = dict() len_df = len(df_series) if not len_df: return df_series, { "sample_size": 0, "null_count": 0, "null_types": dict(), "sample": [], "min_id": None, "max_id": None } # Pandas reads empty values in the csv files as nan df_series = df_series.apply(str) # Record min and max index values if index is int is_index_all_ints = True try: min_id = min(df_series.index) max_id = max(df_series.index) if not (isinstance(min_id, int) and isinstance(max_id, int)): is_index_all_ints = False except TypeError: is_index_all_ints = False if not is_index_all_ints: min_id = max_id = None warnings.warn("Unable to detect minimum and maximum index values " "for overlap detection. Updating/merging profiles " "may result in inaccurate null row index reporting " "due to unhandled overlapping indices.") # Select generator depending if sample_ids availability if sample_ids is None: sample_ind_generator = utils.shuffle_in_chunks( len_df, chunk_size=sample_size) else: sample_ind_generator = utils.partition( sample_ids[0], chunk_size=sample_size) na_columns = dict() true_sample_list = set() total_sample_size = 0 query = '|'.join(null_values.keys()) regex = f"^(?:{(query)})$" for chunked_sample_ids in sample_ind_generator: total_sample_size += len(chunked_sample_ids) # Find subset of series based on randomly selected ids df_subset = df_series.iloc[chunked_sample_ids] # Query should search entire cell for all elements at once matches = df_subset.str.match(regex, flags=re.IGNORECASE) # Split series into None samples and true samples true_sample_list.update(df_subset[~matches].index) # Iterate over all the Nones for index, cell in df_subset[matches].items(): na_columns.setdefault(cell, list()).append(index) # Ensure minimum number of true samples met # and if total_sample_size >= sample size, exit if len(true_sample_list) >= min_true_samples \ and total_sample_size >= sample_size: break # close the generator in case it is not exhausted. if sample_ids is None: sample_ind_generator.close() # If min_true_samples exists, sort if min_true_samples > 0 or sample_ids is None: true_sample_list = sorted(true_sample_list) # Split out true values for later utilization df_series = df_series.loc[true_sample_list] total_na = total_sample_size - len(true_sample_list) base_stats = { "sample_size": total_sample_size, "null_count": total_na, "null_types": na_columns, "sample": random.sample(list(df_series.values), min(len(df_series), 5)), "min_id": min_id, "max_id": max_id } return df_series, base_stats class BaseProfiler(object): _default_labeler_type = None _option_class = None _allowed_external_data_types = None def __init__(self, data, samples_per_update=None, min_true_samples=0, options=None): """ Instantiate the BaseProfiler class :param data: Data to be profiled :type data: Data class object :param samples_per_update: Number of samples to use in generating profile :type samples_per_update: int :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :param options: Options for the profiler. :type options: ProfilerOptions Object :return: Profiler """ if min_true_samples is not None and not isinstance(min_true_samples, int): raise ValueError('`min_true_samples` must be an integer or `None`.') if self._default_labeler_type is None: raise ValueError('`_default_labeler_type` must be set when ' 'overriding `BaseProfiler`.') elif self._option_class is None: raise ValueError('`_option_class` must be set when overriding ' '`BaseProfiler`.') elif self._allowed_external_data_types is None: raise ValueError('`_allowed_external_data_types` must be set when ' 'overriding `BaseProfiler`.') options.validate() self._profile = None self.options = options self.encoding = None self.file_type = None self._samples_per_update = samples_per_update self._min_true_samples = min_true_samples self.total_samples = 0 self.times = defaultdict(float) # TODO: allow set via options self._sampling_ratio = 0.2 self._min_sample_size = 5000 # assign data labeler data_labeler_options = self.options.data_labeler if data_labeler_options.is_enabled \ and data_labeler_options.data_labeler_object is None: try: data_labeler = DataLabeler( labeler_type=self._default_labeler_type, dirpath=data_labeler_options.data_labeler_dirpath, load_options=None) self.options.set( {'data_labeler.data_labeler_object': data_labeler}) except Exception as e: utils.warn_on_profile('data_labeler', e) self.options.set({'data_labeler.is_enabled': False}) def _add_error_checks(self, other): """ Profiler type specific checks to ensure two profiles can be added together. """ raise NotImplementedError() def __add__(self, other): """ Merges two profiles together overriding the `+` operator. :param other: profile being added to this one. :type other: BaseProfiler :return: merger of the two profiles :rtype: BaseProfiler """ if type(other) is not type(self): raise TypeError('`{}` and `{}` are not of the same profiler type.'. format(type(self).__name__, type(other).__name__)) # error checks specific to its profiler self._add_error_checks(other) merged_profile = self.__class__( data=None, samples_per_update=self._samples_per_update, min_true_samples=self._min_true_samples, options=self.options ) merged_profile.encoding = self.encoding if self.encoding != other.encoding: merged_profile.encoding = 'multiple files' merged_profile.file_type = self.file_type if self.file_type != other.file_type: merged_profile.file_type = 'multiple files' merged_profile.total_samples = self.total_samples + other.total_samples merged_profile.times = utils.add_nested_dictionaries(self.times, other.times) return merged_profile def diff(self, other_profile, options=None): """ Finds the difference of two profiles :param other: profile being added to this one. :type other: BaseProfiler :return: diff of the two profiles :rtype: dict """ if type(other_profile) is not type(self): raise TypeError('`{}` and `{}` are not of the same profiler type.'. format(type(self).__name__, type(other_profile).__name__)) diff_profile = OrderedDict([ ("global_stats", { "file_type": utils.find_diff_of_strings_and_bools( self.file_type, other_profile.file_type), "encoding": utils.find_diff_of_strings_and_bools( self.encoding, other_profile.encoding), })]) return diff_profile def _get_sample_size(self, data): """ Determines the minimum sampling size for profiling the dataset. :param data: a dataset :type data: Union[pd.Series, pd.DataFrame, list] :return: integer sampling size :rtype: int """ if self._samples_per_update: return self._samples_per_update len_data = len(data) if len_data <= self._min_sample_size: return int(len_data) return max(int(self._sampling_ratio * len_data), self._min_sample_size) @property def profile(self): """ Returns the stored profiles for the given profiler. :return: None """ return self._profile def report(self, report_options=None): """ Returns the profile report based on all profiled data fed into the profiler. User can specify the output_formats: (pretty, compact, serializable, flat). Pretty: floats are rounded to four decimal places, and lists are shortened. Compact: Similar to pretty, but removes detailed statistics such as runtimes, label probabilities, index locations of null types, etc. Serializable: Output is json serializable and not prettified Flat: Nested output is returned as a flattened dictionary :var report_options: optional format changes to the report `dict(output_format=<FORMAT>)` :type report_options: dict :return: dictionary report :rtype: dict """ raise NotImplementedError() def _update_profile_from_chunk(self, data, sample_size, min_true_samples=None): """ Iterate over the dataset and identify its parameters via profiles. :param data: dataset to be profiled :type data: Union[pd.Series, pd.DataFrame, list] :param sample_size: number of samples for df to use for profiling :type sample_size: int :param min_true_samples: minimum number of true samples required :type min_true_samples: int :return: list of column profile base subclasses :rtype: list(BaseColumnProfiler) """ raise NotImplementedError() def update_profile(self, data, sample_size=None, min_true_samples=None): """ Update the profile for data provided. User can specify the sample size to profile the data with. Additionally, the user can specify the minimum number of non-null samples to profile. :param data: data to be profiled :type data: Union[data_readers.base_data.BaseData, pandas.DataFrame, pandas.Series] :param sample_size: number of samples to profile from the data :type sample_size: int :param min_true_samples: minimum number of non-null samples to profile :type min_true_samples :return: None """ encoding = None file_type = None if min_true_samples is not None \ and not isinstance(min_true_samples, int): raise ValueError('`min_true_samples` must be an integer or `None`.') if isinstance(data, data_readers.base_data.BaseData): encoding = data.file_encoding file_type = data.data_type data = data.data elif isinstance(data, self._allowed_external_data_types): file_type = str(data.__class__) else: raise TypeError( f"Data must either be imported using the data_readers or using " f"one of the following: {self._allowed_external_data_types}" ) if not len(data): warnings.warn("The passed dataset was empty, hence no data was " "profiled.") return # set sampling properties if not min_true_samples: min_true_samples = self._min_true_samples if not sample_size: sample_size = self._get_sample_size(data) self._update_profile_from_chunk(data, sample_size, min_true_samples) # set file properties since data will be processed if encoding is not None: self.encoding = encoding if file_type is not None: self.file_type = file_type def _remove_data_labelers(self): """ Helper method for removing all data labelers before saving to disk. :return: data_labeler used for unstructured labelling :rtype: DataLabeler """ data_labeler = None data_labeler_options = None # determine if the data labeler is enabled use_data_labeler = True if self.options and isinstance(self.options, (StructuredOptions, UnstructuredOptions)): data_labeler_options = self.options.data_labeler use_data_labeler = data_labeler_options.is_enabled # remove the data labeler from options if use_data_labeler and data_labeler_options is not None \ and data_labeler_options.data_labeler_object is not None: data_labeler = data_labeler_options.data_labeler_object data_labeler_options.data_labeler_object = None # get all profiles, unstructured is a single profile and hence needs to # be in a list, whereas structured is already a list profilers = [self._profile] if isinstance(self, StructuredProfiler): profilers = self._profile # Remove data labelers for all columns for profiler in profilers: # profiles stored differently in Struct/Unstruct, this unifies # labeler extraction # unstructured: _profile is a compiler # structured: StructuredColProfiler.profiles['data_label_profile'] if isinstance(self, StructuredProfiler): profiler = profiler.profiles.get('data_label_profile', None) if profiler and use_data_labeler and data_labeler is None: data_labeler = profiler._profiles['data_labeler'].data_labeler if profiler and 'data_labeler' in profiler._profiles: profiler._profiles['data_labeler'].data_labeler = None return data_labeler def _restore_data_labelers(self, data_labeler=None): """ Helper method for restoring all data labelers after saving to or loading from disk. :param data_labeler: unstructured data_labeler :type data_labeler: DataLabeler """ # Restore data labeler for options use_data_labeler = True data_labeler_dirpath = None if self.options and isinstance(self.options, (StructuredOptions, UnstructuredOptions)): data_labeler_options = self.options.data_labeler use_data_labeler = data_labeler_options.is_enabled data_labeler_dirpath = data_labeler_options.data_labeler_dirpath if use_data_labeler: try: if data_labeler is None: data_labeler = DataLabeler( labeler_type=self._default_labeler_type, dirpath=data_labeler_dirpath, load_options=None) self.options.set( {'data_labeler.data_labeler_object': data_labeler}) except Exception as e: utils.warn_on_profile('data_labeler', e) self.options.set({'data_labeler.is_enabled': False}) self.options.set( {'data_labeler.data_labeler_object': data_labeler}) except Exception as e: utils.warn_on_profile('data_labeler', e) self.options.set({'data_labeler.is_enabled': False}) # get all profiles, unstructured is a single profile and hence needs to # be in a list, whereas structured is already a list profilers = [self._profile] if isinstance(self, StructuredProfiler): profilers = self._profile # Restore data labelers for all columns for profiler in profilers: if use_data_labeler: # profiles stored differently in Struct/Unstruct, this unifies # label replacement # unstructured: _profile is a compiler # structured: StructuredColProfiler.profiles['data_label_profile'] if isinstance(self, StructuredProfiler): profiler = profiler.profiles['data_label_profile'] data_labeler_profile = profiler._profiles['data_labeler'] data_labeler_profile.data_labeler = data_labeler def _save_helper(self, filepath, data_dict): """ Save profiler to disk :param filepath: Path of file to save to :type filepath: String :param data_dict: profile data to be saved :type data_dict: dict :return: None """ # Set Default filepath if filepath is None: filepath = "profile-{}.pkl".format( datetime.now().strftime("%d-%b-%Y-%H:%M:%S.%f")) # Remove data labelers as they can't be pickled data_labelers = self._remove_data_labelers() # add profiler class to data_dict data_dict['profiler_class'] = self.__class__.__name__ # Pickle and save profile to disk with open(filepath, "wb") as outfile: pickle.dump(data_dict, outfile) # Restore all data labelers self._restore_data_labelers(data_labelers) def save(self, filepath=None): """ Save profiler to disk :param filepath: Path of file to save to :type filepath: String :return: None """ raise NotImplementedError() @classmethod def load(cls, filepath): """ Load profiler from disk :param filepath: Path of file to load from :type filepath: String :return: Profiler being loaded, StructuredProfiler or UnstructuredProfiler :rtype: BaseProfiler """ # Load profile from disk with open(filepath, "rb") as infile: data = pickle.load(infile) # remove profiler class if it exists profiler_class = data.pop('profiler_class', None) # if the user didn't load from the a given profiler class, we need # to determine which profiler is being loaded. profiler_cls = cls if cls is BaseProfiler: if profiler_class == 'StructuredProfiler': profiler_cls = StructuredProfiler elif profiler_class == 'UnstructuredProfiler': profiler_cls = UnstructuredProfiler elif profiler_class is None: # deprecated case profiler_cls = StructuredProfiler if '_empty_line_count' in data: profiler_cls = UnstructuredProfiler else: raise ValueError(f'Invalid profiler class {profiler_class} ' f'failed to load.') profile_options = profiler_cls._option_class() profile_options.data_labeler.is_enabled = False profiler = profiler_cls(None, options=profile_options) for key in data: setattr(profiler, key, data[key]) # Restore all data labelers profiler._restore_data_labelers() return profiler class UnstructuredProfiler(BaseProfiler): _default_labeler_type = 'unstructured' _option_class = UnstructuredOptions _allowed_external_data_types = (str, list, pd.Series, pd.DataFrame) def __init__(self, data, samples_per_update=None, min_true_samples=0, options=None): """ Instantiate the UnstructuredProfiler class :param data: Data to be profiled :type data: Data class object :param samples_per_update: Number of samples to use in generating profile :type samples_per_update: int :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :param options: Options for the profiler. :type options: ProfilerOptions Object :return: UnstructuredProfiler """ if not options: options = UnstructuredOptions() elif isinstance(options, ProfilerOptions): options = options.unstructured_options elif not isinstance(options, UnstructuredOptions): raise ValueError("The profile options must be passed as a " "ProfileOptions object.") super().__init__(data, samples_per_update, min_true_samples, options) # Unstructured specific properties self._empty_line_count = 0 self.memory_size = 0 self.sample = [] if data is not None: self.update_profile(data) def _add_error_checks(self, other): """ UnstructuredProfiler specific checks to ensure two profiles can be added together. """ pass def __add__(self, other): """ Merges two Unstructured profiles together overriding the `+` operator. :param other: unstructured profile being added to this one. :type other: UnstructuredProfiler :return: merger of the two profiles :rtype: UnstructuredProfiler """ merged_profile = super().__add__(other) # unstruct specific property merging merged_profile._empty_line_count = ( self._empty_line_count + other._empty_line_count) merged_profile.memory_size = self.memory_size + other.memory_size samples = list(dict.fromkeys(self.sample + other.sample)) merged_profile.sample = random.sample(list(samples), min(len(samples), 5)) # merge profiles merged_profile._profile = self._profile + other._profile return merged_profile def diff(self, other_profile, options=None): """ Finds the difference between 2 unstuctured profiles and returns the report. :param other: profile finding the difference with this one. :type other: UnstructuredProfiler :param options: options to impact the results of the diff :type options: dict :return: difference of the profiles :rtype: dict """ report = super().diff(other_profile, options) report["global_stats"].update({ "samples_used": utils.find_diff_of_numbers( self.total_samples, other_profile.total_samples), "empty_line_count": utils.find_diff_of_numbers( self._empty_line_count, other_profile._empty_line_count), "memory_size": utils.find_diff_of_numbers( self.memory_size, other_profile.memory_size), }) report["data_stats"] = self._profile.diff(other_profile._profile, options=options) return _prepare_report(report) def _update_base_stats(self, base_stats): """ Updates the samples and line count of the class for the given dataset batch. :param base_stats: dictionary of basic sampling / data stats :type base_stats: dict :return: None """ self.total_samples += base_stats["sample_size"] self.sample = base_stats["sample"] self._empty_line_count += base_stats["empty_line_count"] self.memory_size += base_stats["memory_size"] def report(self, report_options=None): """ Returns the unstructured report based on all profiled data fed into the profiler. User can specify the output_formats: (pretty, compact, serializable, flat). Pretty: floats are rounded to four decimal places, and lists are shortened. Compact: Similar to pretty, but removes detailed statistics such as runtimes, label probabilities, index locations of null types, etc. Serializable: Output is json serializable and not prettified Flat: Nested output is returned as a flattened dictionary :var report_options: optional format changes to the report `dict(output_format=<FORMAT>)` :type report_options: dict :return: dictionary report :rtype: dict """ if not report_options: report_options = { "output_format": None, "omit_keys": None, } output_format = report_options.get("output_format", None) omit_keys = report_options.get("omit_keys", None) report = OrderedDict([ ("global_stats", { "samples_used": self.total_samples, "empty_line_count": self._empty_line_count, "file_type": self.file_type, "encoding": self.encoding, "memory_size": self.memory_size, "times": self.times, }), ("data_stats", OrderedDict()), ]) report["data_stats"] = self._profile.profile return _prepare_report(report, output_format, omit_keys) @utils.method_timeit(name="clean_and_base_stats") def _clean_data_and_get_base_stats(self, data, sample_size, min_true_samples=None): """ Identify empty rows and return a cleaned version of text data without empty rows. :param data: a series of text data :type data: pandas.core.series.Series :param sample_size: Number of samples to use in generating the profile :type sample_size: int :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :return: updated column with null removed and dictionary of null parameters :rtype: pd.Series, dict """ if min_true_samples is None: min_true_samples = 0 len_data = len(data) if not len_data: return data, { "sample_size": 0, "empty_line_count": dict(), "sample": [], "memory_size": 0 } # ensure all data are of type str data = data.apply(str) # get memory size base_stats = {"memory_size": utils.get_memory_size(data, unit='M')} # Setup sample generator sample_ind_generator = utils.shuffle_in_chunks( len_data, chunk_size=sample_size) true_sample_list = set() total_sample_size = 0 regex = f"^\s*$" for chunked_sample_ids in sample_ind_generator: total_sample_size += len(chunked_sample_ids) # Find subset of series based on randomly selected ids data_subset = data.iloc[chunked_sample_ids] # Query should search entire cell for all elements at once matches = data_subset.str.match(regex, flags=re.IGNORECASE) # Split series into None samples and true samples true_sample_list.update(data_subset[~matches].index) # Ensure minimum number of true samples met # and if total_sample_size >= sample size, exit if len(true_sample_list) >= min_true_samples \ and total_sample_size >= sample_size: break # close the generator in case it is not exhausted. sample_ind_generator.close() true_sample_list = sorted(true_sample_list) # Split out true values for later utilization data = data.loc[true_sample_list] total_empty = total_sample_size - len(true_sample_list) base_stats.update( { "sample_size": total_sample_size, "empty_line_count": total_empty, "sample": random.sample(list(data.values), min(len(data), 5)), } ) return data, base_stats def _update_profile_from_chunk(self, data, sample_size, min_true_samples=None): """ Iterate over the dataset and identify its parameters via profiles. :param data: a text dataset :type data: Union[pd.Series, pd.DataFrame, list] :param sample_size: number of samples for df to use for profiling :type sample_size: int :param min_true_samples: minimum number of true samples required :type min_true_samples: int :return: list of column profile base subclasses :rtype: list(BaseColumnProfiler) """ if isinstance(data, pd.DataFrame): if len(data.columns) > 1: raise ValueError("The unstructured cannot handle a dataset " "with more than 1 column. Please make sure " "the data format of the dataset is " "appropriate.") data = data[data.columns[0]] elif isinstance(data, (str, list)): # we know that if it comes in as a list, it is a 1-d list based # bc of our data readers # for strings, we just need to put it inside a series for compute. data = pd.Series(data) # Format the data notification_str = "Finding the empty lines in the data..." logger.info(notification_str) data, base_stats = self._clean_data_and_get_base_stats( data, sample_size, min_true_samples) self._update_base_stats(base_stats) if sample_size < len(data): warnings.warn("The data will be profiled with a sample size of {}. " "All statistics will be based on this subsample and " "not the whole dataset.".format(sample_size)) # process the text data notification_str = "Calculating the statistics... " logger.info(notification_str) pool = None if self._profile is None: self._profile = UnstructuredCompiler(data, options=self.options, pool=pool) else: self._profile.update_profile(data, pool=pool) def save(self, filepath=None): """ Save profiler to disk :param filepath: Path of file to save to :type filepath: String :return: None """ # Create dictionary for all metadata, options, and profile data_dict = { "total_samples": self.total_samples, "sample": self.sample, "encoding": self.encoding, "file_type": self.file_type, "_samples_per_update": self._samples_per_update, "_min_true_samples": self._min_true_samples, "_empty_line_count": self._empty_line_count, "memory_size": self.memory_size, "options": self.options, "_profile": self.profile, "times": self.times, } self._save_helper(filepath, data_dict) class StructuredProfiler(BaseProfiler): _default_labeler_type = 'structured' _option_class = StructuredOptions _allowed_external_data_types = (list, pd.Series, pd.DataFrame) def __init__(self, data, samples_per_update=None, min_true_samples=0, options=None): """ Instantiate the StructuredProfiler class :param data: Data to be profiled :type data: Data class object :param samples_per_update: Number of samples to use in generating profile :type samples_per_update: int :param min_true_samples: Minimum number of samples required for the profiler :type min_true_samples: int :param options: Options for the profiler. :type options: ProfilerOptions Object :return: StructuredProfiler """ if not options: options = StructuredOptions() elif isinstance(options, ProfilerOptions): options = options.structured_options elif not isinstance(options, StructuredOptions): raise ValueError("The profile options must be passed as a " "ProfileOptions object.") if isinstance(data, data_readers.text_data.TextData): raise TypeError("Cannot provide TextData object to " "StructuredProfiler") super().__init__(data, samples_per_update, min_true_samples, options) # Structured specific properties self.row_has_null_count = 0 self.row_is_null_count = 0 self.hashed_row_dict = dict() self._profile = [] self._col_name_to_idx = defaultdict(list) self.correlation_matrix = None if data is not None: self.update_profile(data) def _add_error_checks(self, other): """ StructuredProfiler specific checks to ensure two profiles can be added together. """ # Pass with strict = True to enforce both needing to be non-empty self_to_other_idx = self._get_and_validate_schema_mapping(self._col_name_to_idx, other._col_name_to_idx, True) if not all([isinstance(other._profile[self_to_other_idx[idx]], type(self._profile[idx])) for idx in range(len(self._profile))]): # options check raise ValueError('The two profilers were not setup with the same ' 'options, hence they do not calculate the same ' 'profiles and cannot be added together.') def __add__(self, other): """ Merges two Structured profiles together overriding the `+` operator. :param other: profile being added to this one. :type other: StructuredProfiler :return: merger of the two profiles :rtype: StructuredProfiler """ merged_profile = super().__add__(other) # struct specific property merging merged_profile.row_has_null_count = \ self.row_has_null_count + other.row_has_null_count merged_profile.row_is_null_count = \ self.row_is_null_count + other.row_is_null_count merged_profile.hashed_row_dict.update(self.hashed_row_dict) merged_profile.hashed_row_dict.update(other.hashed_row_dict) self_to_other_idx = self._get_and_validate_schema_mapping(self._col_name_to_idx, other._col_name_to_idx) # merge profiles for idx in range(len(self._profile)): other_idx = self_to_other_idx[idx] merged_profile._profile.append(self._profile[idx] + other._profile[other_idx]) # schemas are asserted to be identical merged_profile._col_name_to_idx = copy.deepcopy(self._col_name_to_idx) # merge correlation if (self.options.correlation.is_enabled and other.options.correlation.is_enabled): merged_profile.correlation_matrix = self._merge_correlation(other) return merged_profile def diff(self, other_profile, options=None): """ Finds the difference between 2 Profiles and returns the report :param other: profile finding the difference with this one :type other: StructuredProfiler :param options: options to change results of the difference :type options: dict :return: difference of the profiles :rtype: dict """ report = super().diff( other_profile, options) report["global_stats"].update({ "samples_used": utils.find_diff_of_numbers( self._max_col_samples_used, other_profile._max_col_samples_used), "column_count": utils.find_diff_of_numbers( len(self._profile), len(other_profile._profile)), "row_count": utils.find_diff_of_numbers( self.total_samples, other_profile.total_samples), "row_has_null_ratio": utils.find_diff_of_numbers( self._get_row_has_null_ratio(), other_profile._get_row_has_null_ratio()), "row_is_null_ratio": utils.find_diff_of_numbers( self._get_row_is_null_ratio(), other_profile._get_row_is_null_ratio()), "unique_row_ratio": utils.find_diff_of_numbers( self._get_unique_row_ratio(), other_profile._get_unique_row_ratio()), "duplicate_row_count": utils.find_diff_of_numbers( self._get_duplicate_row_count(), other_profile._get_row_is_null_ratio()), "correlation_matrix": utils.find_diff_of_matrices( self.correlation_matrix, other_profile.correlation_matrix), "profile_schema": defaultdict(list)}) report.update({"data_stats": []}) # Extract the schema of each profile self_profile_schema = defaultdict(list) other_profile_schema = defaultdict(list) for i in range(len(self._profile)): col_name = self._profile[i].name self_profile_schema[col_name].append(i) for i in range(len(other_profile._profile)): col_name = other_profile._profile[i].name other_profile_schema[col_name].append(i) report["global_stats"]["profile_schema"] = \ utils.find_diff_of_dicts_with_diff_keys(self_profile_schema, other_profile_schema) # Only find the diff of columns if the schemas are exactly the same if self_profile_schema == other_profile_schema: for i in range(len(self._profile)): report["data_stats"].append( self._profile[i].diff(other_profile._profile[i], options=options)) return _prepare_report(report) @property def _max_col_samples_used(self): """ Calculates and returns the maximum samples used in any of the columns. """ samples_used = 0 for col in self._profile: samples_used = max(samples_used, col.sample_size) return samples_used @property def _min_col_samples_used(self): """ Calculates and returns the number of rows that were completely sampled i.e. every column in the Profile was read up to this row (possibly further in some cols) """ return min([col.sample_size for col in self._profile], default=0) @property def _min_sampled_from_batch(self): """ Calculates and returns the number of rows that were completely sampled in the most previous batch """ return min([col._last_batch_size for col in self._profile], default=0) @staticmethod def _get_and_validate_schema_mapping(schema1, schema2, strict=False): """ Validate compatibility between schema1 and schema2 and return a dict mapping indices in schema1 to their corresponding indices in schema2. In __add__: want to map self _profile idx -> other _profile idx In _update_profile_from_chunk: want to map data idx -> _profile idx :param schema1: a column name to index mapping :type schema1: Dict[str, list[int]] :param schema2: a column name to index mapping :type schema2: Dict[str, list[int]] :param strict: whether or not to strictly match (__add__ case) :type strict: bool :return: a mapping of indices in schema1 to indices in schema2 :rtype: Dict[int, int] """ len_schema1 = len(schema1) len_schema2 = len(schema2) # If both non-empty, must be same length if 0 < len_schema1 != len_schema2 > 0: raise ValueError("Attempted to merge profiles with different " "numbers of columns") # In the case of __add__ with one of the schemas not initialized if strict and (len_schema1 == 0 or len_schema2 == 0): raise ValueError("Cannot merge empty profiles.") # In the case of _update_from_chunk with uninitialized schema if not strict and len_schema2 == 0: return {col_ind: col_ind for col_ind_list in schema1.values() for col_ind in col_ind_list} # Map indices in schema1 to indices in schema2 schema_mapping = dict() for key in schema1: # Pandas columns are int by default, but need to fuzzy match strs if isinstance(key, str): key = key.lower() if key not in schema2: raise ValueError("Columns do not match, cannot update " "or merge profiles.") elif len(schema1[key]) != len(schema2[key]): raise ValueError(f"Different number of columns detected for " f"'{key}', cannot update or merge profiles.") is_duplicate_col = len(schema1[key]) > 1 for schema1_col_ind, schema2_col_ind in zip(schema1[key], schema2[key]): if is_duplicate_col and (schema1_col_ind != schema2_col_ind): raise ValueError(f"Different column indices under " f"duplicate name '{key}', cannot update " f"or merge unless schema is identical.") schema_mapping[schema1_col_ind] = schema2_col_ind return schema_mapping def report(self, report_options=None): if not report_options: report_options = { "output_format": None, "num_quantile_groups": 4, } output_format = report_options.get("output_format", None) omit_keys = report_options.get("omit_keys", []) num_quantile_groups = report_options.get("num_quantile_groups", 4) report = OrderedDict([ ("global_stats", { "samples_used": self._max_col_samples_used, "column_count": len(self._profile), "row_count": self.total_samples, "row_has_null_ratio": self._get_row_has_null_ratio(), "row_is_null_ratio": self._get_row_is_null_ratio(), "unique_row_ratio": self._get_unique_row_ratio(), "duplicate_row_count": self._get_duplicate_row_count(), "file_type": self.file_type, "encoding": self.encoding, "correlation_matrix": self.correlation_matrix, "profile_schema": defaultdict(list), "times": self.times, }), ("data_stats", []), ]) for i in range(len(self._profile)): col_name = self._profile[i].name report["global_stats"]["profile_schema"][col_name].append(i) report["data_stats"].append(self._profile[i].profile) quantiles = report["data_stats"][i]["statistics"].get('quantiles') if quantiles: quantiles = calculate_quantiles(num_quantile_groups, quantiles) report["data_stats"][i]["statistics"]["quantiles"] = quantiles return _prepare_report(report, output_format, omit_keys) def _get_unique_row_ratio(self): if self.total_samples: return len(self.hashed_row_dict) / self.total_samples return 0 def _get_row_is_null_ratio(self): if self._min_col_samples_used: return self.row_is_null_count / self._min_col_samples_used return 0 def _get_row_has_null_ratio(self): if self._min_col_samples_used: return self.row_has_null_count / self._min_col_samples_used return 0 def _get_duplicate_row_count(self): return self.total_samples - len(self.hashed_row_dict) @utils.method_timeit(name='row_stats') def _update_row_statistics(self, data, sample_ids=None): """ Iterate over the provided dataset row by row and calculate the row statistics. Specifically, number of unique rows, rows containing null values, and total rows reviewed. This function is safe to use in batches. :param data: a dataset :type data: pandas.DataFrame :param sample_ids: list of indices in order they were sampled in data :type sample_ids: list(int) """ if not isinstance(data, pd.DataFrame): raise ValueError("Cannot calculate row statistics on data that is" "not a DataFrame") self.total_samples += len(data) try: self.hashed_row_dict.update(dict.fromkeys( pd.util.hash_pandas_object(data, index=False), True )) except TypeError: self.hashed_row_dict.update(dict.fromkeys( pd.util.hash_pandas_object(data.astype(str), index=False), True )) # Calculate Null Column Count null_rows = set() null_in_row_count = set() first_col_flag = True for column in self._profile: null_type_dict = column.null_types_index null_row_indices = set() if null_type_dict: null_row_indices = set.union(*null_type_dict.values()) # If sample ids provided, only consider nulls in rows that # were fully sampled if sample_ids is not None: # This is the amount (integer) indices were shifted by in the # event of overlap shift = column._index_shift if shift is None: # Shift is None if index is str or if no overlap detected null_row_indices = null_row_indices.intersection( data.index[sample_ids[:self._min_sampled_from_batch]]) else: # Only shift if index shift detected (must be ints) null_row_indices = null_row_indices.intersection( data.index[sample_ids[:self._min_sampled_from_batch]] + shift) # Find the common null indices between the columns if first_col_flag: null_rows = null_row_indices null_in_row_count = null_row_indices first_col_flag = False else: null_rows = null_rows.intersection(null_row_indices) null_in_row_count = null_in_row_count.union(null_row_indices) # If sample_ids provided, increment since that means only new data read if sample_ids is not None: self.row_has_null_count += len(null_in_row_count) self.row_is_null_count += len(null_rows) else: self.row_has_null_count = len(null_in_row_count) self.row_is_null_count = len(null_rows) def _get_correlation(self, clean_samples, batch_properties): """ Calculate correlation matrix on the cleaned data. :param clean_samples: the input cleaned dataset :type clean_samples: dict() :param batch_properties: mean/std/counts of each batch column necessary for correlation computation :type batch_properties: dict() """ columns = self.options.correlation.columns clean_column_ids = [] if columns is None: for idx in range(len(self._profile)): data_type = self._profile[idx].\ profiles["data_type_profile"].selected_data_type if data_type not in ["int", "float"]: clean_samples.pop(idx) else: clean_column_ids.append(idx) data = pd.DataFrame(clean_samples).apply(pd.to_numeric, errors='coerce') means = {index:mean for index, mean in enumerate(batch_properties['mean'])} data = data.fillna(value=means) # Update the counts/std if needed (i.e. if null rows or exist) if (len(data) != batch_properties['count']).any(): adjusted_stds = np.sqrt( batch_properties['std']**2 * (batch_properties['count'] - 1) \ / (len(data) - 1) ) batch_properties['std'] = adjusted_stds # Set count key to a single number now that everything's been adjusted batch_properties['count'] = len(data) # fill correlation matrix with nan initially n_cols = len(self._profile) corr_mat = np.full((n_cols, n_cols), np.nan) # then, fill in the correlations for valid columns rows = [[id] for id in clean_column_ids] corr_mat[rows, clean_column_ids] = np.corrcoef(data, rowvar=False) return corr_mat @utils.method_timeit(name='correlation') def _update_correlation(self, clean_samples, prev_dependent_properties): """ Update correlation matrix for cleaned data. :param clean_samples: the input cleaned dataset :type clean_samples: dict() """ batch_properties = self._get_correlation_dependent_properties(clean_samples) batch_corr = self._get_correlation(clean_samples, batch_properties) self.correlation_matrix = self._merge_correlation_helper( self.correlation_matrix, prev_dependent_properties["mean"], prev_dependent_properties["std"], self.total_samples - self.row_is_null_count, batch_corr, batch_properties["mean"], batch_properties["std"], batch_properties['count']) @utils.method_timeit(name='correlation') def _merge_correlation(self, other): """ Merge correlation matrix from two profiles :param other: the other profile that needs to be merged :return: """ corr_mat1 = self.correlation_matrix corr_mat2 = other.correlation_matrix n1 = self.total_samples - self.row_is_null_count n2 = other.total_samples - other.row_is_null_count if n1 == 0: return corr_mat2 if n2 == 0: return corr_mat1 if corr_mat1 is None or corr_mat2 is None: return None # get column indices without nan col_ids1 = np.where(~np.isnan(corr_mat1).all(axis=0))[0] col_ids2 = np.where(~np.isnan(corr_mat2).all(axis=0))[0] if len(col_ids1) != len(col_ids2) or len(col_ids1) <= 1: return None if (col_ids1 != col_ids2).any(): return None mean1 = np.array( [self._profile[idx].profile['statistics']['mean'] for idx in range(len(self._profile)) if idx in col_ids1]) std1 = np.array( [self._profile[idx].profile['statistics']['stddev'] for idx in range(len(self._profile)) if idx in col_ids1]) mean2 = np.array( [other._profile[idx].profile['statistics']['mean'] for idx in range(len(self._profile)) if idx in col_ids2]) std2 = np.array( [other._profile[idx].profile['statistics']['stddev'] for idx in range(len(self._profile)) if idx in col_ids2]) return self._merge_correlation_helper(corr_mat1, mean1, std1, n1, corr_mat2, mean2, std2, n2) def _get_correlation_dependent_properties(self, batch=None): """ Obtains the necessary dependent properties of the data (mean/stddev) for calculating correlation. By default, it will compute it on all columns in the profiler, but if a batch is given, it will compute it only for the columns in the batch. :param batch: Batch data :type batch: dict :return: dependent properties :rtype: dict """ dependent_properties = { 'mean': np.full(len(self._profile), np.nan), 'std': np.full(len(self._profile), np.nan), 'count': np.full(len(self._profile), np.nan) } for id in range(len(self._profile)): compiler = self._profile[id] data_type_compiler = compiler.profiles["data_type_profile"] data_type = data_type_compiler.selected_data_type if data_type in ["int", "float"]: data_type_profiler = data_type_compiler._profiles[data_type] # Finding dependent values of previous, existing data if batch is None: n = data_type_profiler.match_count dependent_properties['mean'][id] = data_type_profiler.mean # Subtract null row count as those aren't included in corr. calc dependent_properties['std'][id] = \ np.sqrt(data_type_profiler._biased_variance * n / (self.total_samples - self.row_is_null_count- 1)) dependent_properties['count'][id] = n # Finding the properties of the batch data if given elif id in batch.keys(): history = data_type_profiler._batch_history[-1] n = history['match_count'] # Since we impute values, we want the total rows (including nulls) dependent_properties['mean'][id] = history['mean'] dependent_properties['std'][id] = \ np.sqrt(history['biased_variance'] * n / (n - 1)) dependent_properties['count'][id] = n return dependent_properties @staticmethod def _merge_correlation_helper(corr_mat1, mean1, std1, n1, corr_mat2, mean2, std2, n2): """ Helper function to merge correlation matrix from two profiles :param corr_mat1: correlation matrix of profile1 :type corr_mat1: pd.DataFrame :param mean1: mean of columns of profile1 :type mean1: np.array :param std1: standard deviation of columns of profile1 :type std1: np.array :param corr_mat2: correlation matrix of profile2 :type corr_mat2: pd.DataFrame :param mean2: mean of columns of profile2 :type mean2: np.array :param std2: standard deviation of columns of profile2 :type std2: np.array :return: merged correlation matrix """ if corr_mat1 is None: return corr_mat2 elif corr_mat2 is None: return corr_mat1 elif len(mean1) == 0: return corr_mat2 elif len(mean2) == 0: return corr_mat1 std_mat1 = np.outer(std1, std1) std_mat2 = np.outer(std2, std2) mean_diff_vector = mean1 - mean2 mean_diff_mat = np.outer(mean_diff_vector, mean_diff_vector) cov1 = corr_mat1 * std_mat1 cov2 = corr_mat2 * std_mat2 n = n1 + n2 cov = cov1 * (n1 - 1) + cov2 * (n2 - 1) + mean_diff_mat * (n1 * n2) / n cov = cov / (n - 1) delta = mean2 - mean1 M2_1 = (n1 - 1) * (std1 ** 2) M2_2 = (n2 - 1) * (std2 ** 2) M2 = M2_1 + M2_2 + delta ** 2 * n1 * n2 / n std = np.sqrt(M2 / (n - 1)) std_mat = np.outer(std, std) corr_mat = cov / std_mat return corr_mat def _update_profile_from_chunk(self, data, sample_size, min_true_samples=None): """ Iterate over the columns of a dataset and identify its parameters. :param data: a dataset :type data: pandas.DataFrame :param sample_size: number of samples for df to use for profiling :type sample_size: int :param min_true_samples: minimum number of true samples required :type min_true_samples: int :return: list of column profile base subclasses :rtype: list(BaseColumnProfiler) """ if isinstance(data, pd.Series): data = data.to_frame() elif isinstance(data, list): data =
pd.DataFrame(data, dtype=object)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib as mpl from matplotlib.colors import same_color, to_rgb, to_rgba import pytest from numpy.testing import assert_array_equal from seaborn.external.version import Version from seaborn._core.rules import categorical_order from seaborn._core.scales import Nominal, Continuous from seaborn._core.properties import ( Alpha, Color, Coordinate, EdgeWidth, Fill, LineStyle, LineWidth, Marker, PointSize, ) from seaborn._compat import MarkerStyle from seaborn.palettes import color_palette class DataFixtures: @pytest.fixture def num_vector(self, long_df): return long_df["s"] @pytest.fixture def num_order(self, num_vector): return categorical_order(num_vector) @pytest.fixture def cat_vector(self, long_df): return long_df["a"] @pytest.fixture def cat_order(self, cat_vector): return categorical_order(cat_vector) @pytest.fixture def dt_num_vector(self, long_df): return long_df["t"] @pytest.fixture def dt_cat_vector(self, long_df): return long_df["d"] @pytest.fixture def vectors(self, num_vector, cat_vector): return {"num": num_vector, "cat": cat_vector} class TestCoordinate(DataFixtures): def test_bad_scale_arg_str(self, num_vector): err = "Unknown magic arg for x scale: 'xxx'." with pytest.raises(ValueError, match=err): Coordinate("x").infer_scale("xxx", num_vector) def test_bad_scale_arg_type(self, cat_vector): err = "Magic arg for x scale must be str, not list." with pytest.raises(TypeError, match=err): Coordinate("x").infer_scale([1, 2, 3], cat_vector) class TestColor(DataFixtures): def assert_same_rgb(self, a, b): assert_array_equal(a[:, :3], b[:, :3]) def test_nominal_default_palette(self, cat_vector, cat_order): m = Color().get_mapping(Nominal(), cat_vector) n = len(cat_order) actual = m(np.arange(n)) expected = color_palette(None, n) for have, want in zip(actual, expected): assert same_color(have, want) def test_nominal_default_palette_large(self): vector = pd.Series(list("abcdefghijklmnopqrstuvwxyz")) m = Color().get_mapping(Nominal(), vector) actual = m(np.arange(26)) expected = color_palette("husl", 26) for have, want in zip(actual, expected): assert same_color(have, want) def test_nominal_named_palette(self, cat_vector, cat_order): palette = "Blues" m = Color().get_mapping(Nominal(palette), cat_vector) n = len(cat_order) actual = m(np.arange(n)) expected = color_palette(palette, n) for have, want in zip(actual, expected): assert same_color(have, want) def test_nominal_list_palette(self, cat_vector, cat_order): palette = color_palette("Reds", len(cat_order)) m = Color().get_mapping(Nominal(palette), cat_vector) actual = m(np.arange(len(palette))) expected = palette for have, want in zip(actual, expected): assert same_color(have, want) def test_nominal_dict_palette(self, cat_vector, cat_order): colors = color_palette("Greens") palette = dict(zip(cat_order, colors)) m = Color().get_mapping(Nominal(palette), cat_vector) n = len(cat_order) actual = m(np.arange(n)) expected = colors for have, want in zip(actual, expected): assert same_color(have, want) def test_nominal_dict_with_missing_keys(self, cat_vector, cat_order): palette = dict(zip(cat_order[1:], color_palette("Purples"))) with pytest.raises(ValueError, match="No entry in color dict"): Color("color").get_mapping(Nominal(palette), cat_vector) def test_nominal_list_too_short(self, cat_vector, cat_order): n = len(cat_order) - 1 palette = color_palette("Oranges", n) msg = rf"The edgecolor list has fewer values \({n}\) than needed \({n + 1}\)" with pytest.warns(UserWarning, match=msg): Color("edgecolor").get_mapping(Nominal(palette), cat_vector) def test_nominal_list_too_long(self, cat_vector, cat_order): n = len(cat_order) + 1 palette = color_palette("Oranges", n) msg = rf"The edgecolor list has more values \({n}\) than needed \({n - 1}\)" with pytest.warns(UserWarning, match=msg): Color("edgecolor").get_mapping(Nominal(palette), cat_vector) def test_continuous_default_palette(self, num_vector): cmap = color_palette("ch:", as_cmap=True) m = Color().get_mapping(Continuous(), num_vector) self.assert_same_rgb(m(num_vector), cmap(num_vector)) def test_continuous_named_palette(self, num_vector): pal = "flare" cmap = color_palette(pal, as_cmap=True) m = Color().get_mapping(Continuous(pal), num_vector) self.assert_same_rgb(m(num_vector), cmap(num_vector)) def test_continuous_tuple_palette(self, num_vector): vals = ("blue", "red") cmap = color_palette("blend:" + ",".join(vals), as_cmap=True) m = Color().get_mapping(Continuous(vals), num_vector) self.assert_same_rgb(m(num_vector), cmap(num_vector)) def test_continuous_callable_palette(self, num_vector): cmap = mpl.cm.get_cmap("viridis") m = Color().get_mapping(Continuous(cmap), num_vector) self.assert_same_rgb(m(num_vector), cmap(num_vector)) def test_continuous_missing(self): x = pd.Series([1, 2, np.nan, 4]) m = Color().get_mapping(Continuous(), x) assert np.isnan(m(x)[2]).all() def test_bad_scale_values_continuous(self, num_vector): with pytest.raises(TypeError, match="Scale values for color with a Continuous"): Color().get_mapping(Continuous(["r", "g", "b"]), num_vector) def test_bad_scale_values_nominal(self, cat_vector): with pytest.raises(TypeError, match="Scale values for color with a Nominal"): Color().get_mapping(Nominal(mpl.cm.get_cmap("viridis")), cat_vector) def test_bad_inference_arg(self, cat_vector): with pytest.raises(TypeError, match="A single scale argument for color"): Color().infer_scale(123, cat_vector) @pytest.mark.parametrize( "data_type,scale_class", [("cat", Nominal), ("num", Continuous)] ) def test_default(self, data_type, scale_class, vectors): scale = Color().default_scale(vectors[data_type]) assert isinstance(scale, scale_class) def test_default_numeric_data_category_dtype(self, num_vector): scale = Color().default_scale(num_vector.astype("category")) assert isinstance(scale, Nominal) def test_default_binary_data(self): x = pd.Series([0, 0, 1, 0, 1], dtype=int) scale = Color().default_scale(x) assert isinstance(scale, Continuous) # TODO default scales for other types @pytest.mark.parametrize( "values,data_type,scale_class", [ ("viridis", "cat", Nominal), # Based on variable type ("viridis", "num", Continuous), # Based on variable type ("muted", "num", Nominal), # Based on qualitative palette (["r", "g", "b"], "num", Nominal), # Based on list palette ({2: "r", 4: "g", 8: "b"}, "num", Nominal), # Based on dict palette (("r", "b"), "num", Continuous), # Based on tuple / variable type (("g", "m"), "cat", Nominal), # Based on tuple / variable type (mpl.cm.get_cmap("inferno"), "num", Continuous), # Based on callable ] ) def test_inference(self, values, data_type, scale_class, vectors): scale = Color().infer_scale(values, vectors[data_type]) assert isinstance(scale, scale_class) assert scale.values == values def test_inference_binary_data(self): x = pd.Series([0, 0, 1, 0, 1], dtype=int) scale = Color().infer_scale("viridis", x) assert isinstance(scale, Nominal) def test_standardization(self): f = Color().standardize assert f("C3") == to_rgb("C3") assert f("dodgerblue") == to_rgb("dodgerblue") assert f((.1, .2, .3)) == (.1, .2, .3) assert f((.1, .2, .3, .4)) == (.1, .2, .3, .4) assert f("#123456") == to_rgb("#123456") assert f("#12345678") == to_rgba("#12345678") if Version(mpl.__version__) >= Version("3.4.0"): assert f("#123") == to_rgb("#123") assert f("#1234") == to_rgba("#1234") class ObjectPropertyBase(DataFixtures): def assert_equal(self, a, b): assert self.unpack(a) == self.unpack(b) def unpack(self, x): return x @pytest.mark.parametrize("data_type", ["cat", "num"]) def test_default(self, data_type, vectors): scale = self.prop().default_scale(vectors[data_type]) assert isinstance(scale, Nominal) @pytest.mark.parametrize("data_type", ["cat", "num"]) def test_inference_list(self, data_type, vectors): scale = self.prop().infer_scale(self.values, vectors[data_type]) assert isinstance(scale, Nominal) assert scale.values == self.values @pytest.mark.parametrize("data_type", ["cat", "num"]) def test_inference_dict(self, data_type, vectors): x = vectors[data_type] values = dict(zip(categorical_order(x), self.values)) scale = self.prop().infer_scale(values, x) assert isinstance(scale, Nominal) assert scale.values == values def test_dict_missing(self, cat_vector): levels = categorical_order(cat_vector) values = dict(zip(levels, self.values[:-1])) scale = Nominal(values) name = self.prop.__name__.lower() msg = f"No entry in {name} dictionary for {repr(levels[-1])}" with pytest.raises(ValueError, match=msg): self.prop().get_mapping(scale, cat_vector) @pytest.mark.parametrize("data_type", ["cat", "num"]) def test_mapping_default(self, data_type, vectors): x = vectors[data_type] mapping = self.prop().get_mapping(Nominal(), x) n = x.nunique() for i, expected in enumerate(self.prop()._default_values(n)): actual, = mapping([i]) self.assert_equal(actual, expected) @pytest.mark.parametrize("data_type", ["cat", "num"]) def test_mapping_from_list(self, data_type, vectors): x = vectors[data_type] scale = Nominal(self.values) mapping = self.prop().get_mapping(scale, x) for i, expected in enumerate(self.standardized_values): actual, = mapping([i]) self.assert_equal(actual, expected) @pytest.mark.parametrize("data_type", ["cat", "num"]) def test_mapping_from_dict(self, data_type, vectors): x = vectors[data_type] levels = categorical_order(x) values = dict(zip(levels, self.values[::-1])) standardized_values = dict(zip(levels, self.standardized_values[::-1])) scale = Nominal(values) mapping = self.prop().get_mapping(scale, x) for i, level in enumerate(levels): actual, = mapping([i]) expected = standardized_values[level] self.assert_equal(actual, expected) def test_mapping_with_null_value(self, cat_vector): mapping = self.prop().get_mapping(Nominal(self.values), cat_vector) actual = mapping(np.array([0, np.nan, 2])) v0, _, v2 = self.standardized_values expected = [v0, self.prop.null_value, v2] for a, b in zip(actual, expected): self.assert_equal(a, b) def test_unique_default_large_n(self): n = 24 x = pd.Series(np.arange(n)) mapping = self.prop().get_mapping(Nominal(), x) assert len({self.unpack(x_i) for x_i in mapping(x)}) == n def test_bad_scale_values(self, cat_vector): var_name = self.prop.__name__.lower() with pytest.raises(TypeError, match=f"Scale values for a {var_name} variable"): self.prop().get_mapping(Nominal(("o", "s")), cat_vector) class TestMarker(ObjectPropertyBase): prop = Marker values = ["o", (5, 2, 0), MarkerStyle("^")] standardized_values = [MarkerStyle(x) for x in values] def unpack(self, x): return ( x.get_path(), x.get_joinstyle(), x.get_transform().to_values(), x.get_fillstyle(), ) class TestLineStyle(ObjectPropertyBase): prop = LineStyle values = ["solid", "--", (1, .5)] standardized_values = [LineStyle._get_dash_pattern(x) for x in values] def test_bad_type(self): p = LineStyle() with pytest.raises(TypeError, match="^Linestyle must be .+, not list.$"): p.standardize([1, 2]) def test_bad_style(self): p = LineStyle() with pytest.raises(ValueError, match="^Linestyle string must be .+, not 'o'.$"): p.standardize("o") def test_bad_dashes(self): p = LineStyle() with pytest.raises(TypeError, match="^Invalid dash pattern"): p.standardize((1, 2, "x")) class TestFill(DataFixtures): @pytest.fixture def vectors(self): return { "cat": pd.Series(["a", "a", "b"]), "num": pd.Series([1, 1, 2]), "bool": pd.Series([True, True, False]) } @pytest.fixture def cat_vector(self, vectors): return vectors["cat"] @pytest.fixture def num_vector(self, vectors): return vectors["num"] @pytest.mark.parametrize("data_type", ["cat", "num", "bool"]) def test_default(self, data_type, vectors): x = vectors[data_type] scale = Fill().default_scale(x) assert isinstance(scale, Nominal) @pytest.mark.parametrize("data_type", ["cat", "num", "bool"]) def test_inference_list(self, data_type, vectors): x = vectors[data_type] scale = Fill().infer_scale([True, False], x) assert isinstance(scale, Nominal) assert scale.values == [True, False] @pytest.mark.parametrize("data_type", ["cat", "num", "bool"]) def test_inference_dict(self, data_type, vectors): x = vectors[data_type] values = dict(zip(x.unique(), [True, False])) scale = Fill().infer_scale(values, x) assert isinstance(scale, Nominal) assert scale.values == values def test_mapping_categorical_data(self, cat_vector): mapping = Fill().get_mapping(Nominal(), cat_vector) assert_array_equal(mapping([0, 1, 0]), [True, False, True]) def test_mapping_numeric_data(self, num_vector): mapping = Fill().get_mapping(Nominal(), num_vector) assert_array_equal(mapping([0, 1, 0]), [True, False, True]) def test_mapping_list(self, cat_vector): mapping = Fill().get_mapping(Nominal([False, True]), cat_vector) assert_array_equal(mapping([0, 1, 0]), [False, True, False]) def test_mapping_truthy_list(self, cat_vector): mapping = Fill().get_mapping(Nominal([0, 1]), cat_vector) assert_array_equal(mapping([0, 1, 0]), [False, True, False]) def test_mapping_dict(self, cat_vector): values = dict(zip(cat_vector.unique(), [False, True])) mapping = Fill().get_mapping(Nominal(values), cat_vector) assert_array_equal(mapping([0, 1, 0]), [False, True, False]) def test_cycle_warning(self): x =
pd.Series(["a", "b", "c"])
pandas.Series
import pytest import numpy as np from datetime import date, timedelta, time, datetime import dateutil import pandas as pd import pandas.util.testing as tm from pandas.compat import lrange from pandas.compat.numpy import np_datetime64_compat from pandas import (DatetimeIndex, Index, date_range, DataFrame, Timestamp, offsets) from pandas.util.testing import assert_almost_equal randn = np.random.randn class TestDatetimeIndexLikeTimestamp(object): # Tests for DatetimeIndex behaving like a vectorized Timestamp def test_dti_date_out_of_range(self): # see gh-1475 pytest.raises(ValueError, DatetimeIndex, ['1400-01-01']) pytest.raises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'days_in_month', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) assert result == expected assert idx.freq == Timestamp(idx[-1], idx.freq).freq assert idx.freqstr == Timestamp(idx[-1], idx.freq).freqstr class TestDatetimeIndex(object): def test_get_loc(self): idx = pd.date_range('2000-01-01', periods=3) for method in [None, 'pad', 'backfill', 'nearest']: assert idx.get_loc(idx[1], method) == 1 assert idx.get_loc(idx[1].to_pydatetime(), method) == 1 assert idx.get_loc(str(idx[1]), method) == 1 if method is not None: assert idx.get_loc(idx[1], method, tolerance=pd.Timedelta('0 days')) == 1 assert idx.get_loc('2000-01-01', method='nearest') == 0 assert idx.get_loc('2000-01-01T12', method='nearest') == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance='1 day') == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance=pd.Timedelta('1D')) == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance=np.timedelta64(1, 'D')) == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance=timedelta(1)) == 1 with tm.assert_raises_regex(ValueError, 'unit abbreviation w/o a number'): idx.get_loc('2000-01-01T12', method='nearest', tolerance='foo') with pytest.raises(KeyError): idx.get_loc('2000-01-01T03', method='nearest', tolerance='2 hours') with pytest.raises( ValueError, match='tolerance size must match target index size'): idx.get_loc('2000-01-01', method='nearest', tolerance=[pd.Timedelta('1day').to_timedelta64(), pd.Timedelta('1day').to_timedelta64()]) assert idx.get_loc('2000', method='nearest') == slice(0, 3) assert idx.get_loc('2000-01', method='nearest') == slice(0, 3) assert idx.get_loc('1999', method='nearest') == 0 assert idx.get_loc('2001', method='nearest') == 2 with pytest.raises(KeyError): idx.get_loc('1999', method='pad') with pytest.raises(KeyError): idx.get_loc('2001', method='backfill') with pytest.raises(KeyError): idx.get_loc('foobar') with pytest.raises(TypeError): idx.get_loc(slice(2)) idx = pd.to_datetime(['2000-01-01', '2000-01-04']) assert idx.get_loc('2000-01-02', method='nearest') == 0 assert idx.get_loc('2000-01-03', method='nearest') == 1 assert idx.get_loc('2000-01', method='nearest') == slice(0, 2) # time indexing idx = pd.date_range('2000-01-01', periods=24, freq='H') tm.assert_numpy_array_equal(idx.get_loc(time(12)), np.array([12]), check_dtype=False) tm.assert_numpy_array_equal(idx.get_loc(time(12, 30)), np.array([]), check_dtype=False) with pytest.raises(NotImplementedError): idx.get_loc(time(12, 30), method='pad') def test_get_indexer(self): idx = pd.date_range('2000-01-01', periods=3) exp = np.array([0, 1, 2], dtype=np.intp) tm.assert_numpy_array_equal(idx.get_indexer(idx), exp) target = idx[0] + pd.to_timedelta(['-1 hour', '12 hours', '1 day 1 hour']) tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'), np.array([-1, 0, 1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'), np.array([0, 1, 2], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'), np.array([0, 1, 1], dtype=np.intp)) tm.assert_numpy_array_equal( idx.get_indexer(target, 'nearest', tolerance=pd.Timedelta('1 hour')), np.array([0, -1, 1], dtype=np.intp)) tol_raw = [pd.Timedelta('1 hour'), pd.Timedelta('1 hour'), pd.Timedelta('1 hour').to_timedelta64(), ] tm.assert_numpy_array_equal( idx.get_indexer(target, 'nearest', tolerance=[np.timedelta64(x) for x in tol_raw]), np.array([0, -1, 1], dtype=np.intp)) tol_bad = [pd.Timedelta('2 hour').to_timedelta64(), pd.Timedelta('1 hour').to_timedelta64(), 'foo', ] with pytest.raises( ValueError, match='abbreviation w/o a number'): idx.get_indexer(target, 'nearest', tolerance=tol_bad) with pytest.raises(ValueError): idx.get_indexer(idx[[0]], method='nearest', tolerance='foo') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: assert '2000' in str(e) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = date_range('20130101', periods=3, tz='US/Eastern', name='foo') unpickled = tm.round_trip_pickle(index) tm.assert_index_equal(index, unpickled) def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): # GH7774 index = date_range('20130101', periods=3, tz='US/Eastern') assert str(index.reindex([])[0].tz) == 'US/Eastern' assert str(index.reindex(np.array([]))[0].tz) == 'US/Eastern' def test_time_loc(self): # GH8667 from datetime import time from pandas._libs.index import _SIZE_CUTOFF ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64) key = time(15, 11, 30) start = key.hour * 3600 + key.minute * 60 + key.second step = 24 * 3600 for n in ns: idx = pd.date_range('2014-11-26', periods=n, freq='S') ts = pd.Series(np.random.randn(n), index=idx) i = np.arange(start, n, step) tm.assert_numpy_array_equal(ts.index.get_loc(key), i, check_dtype=False) tm.assert_series_equal(ts[key], ts.iloc[i]) left, right = ts.copy(), ts.copy() left[key] *= -10 right.iloc[i] *= -10 tm.assert_series_equal(left, right) def test_time_overflow_for_32bit_machines(self): # GH8943. On some machines NumPy defaults to np.int32 (for example, # 32-bit Linux machines). In the function _generate_regular_range # found in tseries/index.py, `periods` gets multiplied by `strides` # (which has value 1e9) and since the max value for np.int32 is ~2e9, # and since those machines won't promote np.int32 to np.int64, we get # overflow. periods = np.int_(1000) idx1 = pd.date_range(start='2000', periods=periods, freq='S') assert len(idx1) == periods idx2 = pd.date_range(end='2000', periods=periods, freq='S') assert len(idx2) == periods def test_nat(self): assert DatetimeIndex([np.nan])[0] is pd.NaT def test_week_of_month_frequency(self): # GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise d1 = date(2002, 9, 1) d2 = date(2013, 10, 27) d3 = date(2012, 9, 30) idx1 = DatetimeIndex([d1, d2]) idx2 = DatetimeIndex([d3]) result_append = idx1.append(idx2) expected = DatetimeIndex([d1, d2, d3]) tm.assert_index_equal(result_append, expected) result_union = idx1.union(idx2) expected = DatetimeIndex([d1, d3, d2]) tm.assert_index_equal(result_union, expected) # GH 5115 result = date_range("2013-1-1", periods=4, freq='WOM-1SAT') dates = ['2013-01-05', '2013-02-02', '2013-03-02', '2013-04-06'] expected = DatetimeIndex(dates, freq='WOM-1SAT') tm.assert_index_equal(result, expected) def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assert_raises_regex(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): # GH2658 import datetime start = datetime.datetime.now() idx = DatetimeIndex(start=start, freq="1d", periods=10) df = DataFrame(lrange(10), index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) assert isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now pytest.raises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) def test_comparisons_nat(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = pd.DatetimeIndex(['2014-01-01', pd.NaT, '2014-03-01', pd.NaT, '2014-05-01', '2014-07-01']) didx2 = pd.DatetimeIndex(['2014-02-01', '2014-03-01', pd.NaT, pd.NaT, '2014-06-01', '2014-07-01']) darr = np.array([np_datetime64_compat('2014-02-01 00:00Z'), np_datetime64_compat('2014-03-01 00:00Z'), np_datetime64_compat('nat'), np.datetime64('nat'), np_datetime64_compat('2014-06-01 00:00Z'), np_datetime64_compat('2014-07-01 00:00Z')]) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, pd.NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = Index([f(x) for x in rng], dtype='<U8') tm.assert_index_equal(result, exp) def test_iteration_preserves_tz(self): # see gh-8890 index = date_range("2012-01-01", periods=3, freq='H', tz='US/Eastern') for i, ts in enumerate(index): result = ts expected = index[i] assert result == expected index = date_range("2012-01-01", periods=3, freq='H', tz=dateutil.tz.tzoffset(None, -28800)) for i, ts in enumerate(index): result = ts expected = index[i] assert result._repr_base == expected._repr_base assert result == expected # 9100 index = pd.DatetimeIndex(['2014-12-01 03:32:39.987000-08:00', '2014-12-01 04:12:34.987000-08:00']) for i, ts in enumerate(index): result = ts expected = index[i] assert result._repr_base == expected._repr_base assert result == expected def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) assert isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) assert not idx.equals(list(idx)) non_datetime = Index(list('abc')) assert not idx.equals(list(non_datetime)) def test_string_index_series_name_converted(self): # #1644 df = DataFrame(np.random.randn(10, 4), index=date_range('1/1/2000', periods=10)) result = df.loc['1/3/2000'] assert result.name == df.index[2] result = df.T['1/3/2000'] assert result.name == df.index[2] def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) tm.assert_index_equal(result, ex) def test_argmin_argmax(self): idx =
DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02'])
pandas.DatetimeIndex
import itertools import os import random import tempfile from unittest import mock import pandas as pd import pytest import pickle import numpy as np import string import multiprocessing as mp from copy import copy import dask import dask.dataframe as dd from dask.dataframe._compat import tm, assert_categorical_equal from dask import delayed from dask.base import compute_as_if_collection from dask.optimization import cull from dask.dataframe.shuffle import ( shuffle, partitioning_index, rearrange_by_column, rearrange_by_divisions, maybe_buffered_partd, remove_nans, ) from dask.dataframe.utils import assert_eq, make_meta from dask.dataframe._compat import PANDAS_GT_120 dsk = { ("x", 0): pd.DataFrame({"a": [1, 2, 3], "b": [1, 4, 7]}, index=[0, 1, 3]), ("x", 1): pd.DataFrame({"a": [4, 5, 6], "b": [2, 5, 8]}, index=[5, 6, 8]), ("x", 2): pd.DataFrame({"a": [7, 8, 9], "b": [3, 6, 9]}, index=[9, 9, 9]), } meta = make_meta({"a": "i8", "b": "i8"}, index=pd.Index([], "i8")) d = dd.DataFrame(dsk, "x", meta, [0, 4, 9, 9]) full = d.compute() CHECK_FREQ = {} if dd._compat.PANDAS_GT_110: CHECK_FREQ["check_freq"] = False shuffle_func = shuffle # conflicts with keyword argument @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_shuffle(shuffle): s = shuffle_func(d, d.b, shuffle=shuffle) assert isinstance(s, dd.DataFrame) assert s.npartitions == d.npartitions x = dask.get(s.dask, (s._name, 0)) y = dask.get(s.dask, (s._name, 1)) assert not (set(x.b) & set(y.b)) # disjoint assert set(s.dask).issuperset(d.dask) assert shuffle_func(d, d.b)._name == shuffle_func(d, d.b)._name def test_default_partitions(): assert shuffle(d, d.b).npartitions == d.npartitions def test_shuffle_npartitions_task(): df = pd.DataFrame({"x": np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=10) s = shuffle(ddf, ddf.x, shuffle="tasks", npartitions=17, max_branch=4) sc = s.compute(scheduler="sync") assert s.npartitions == 17 assert set(s.dask).issuperset(set(ddf.dask)) assert len(sc) == len(df) assert list(s.columns) == list(df.columns) assert set(map(tuple, sc.values.tolist())) == set(map(tuple, df.values.tolist())) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_index_with_non_series(method): from dask.dataframe.tests.test_multi import list_eq list_eq(shuffle(d, d.b, shuffle=method), shuffle(d, "b", shuffle=method)) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_index_with_dataframe(method): res1 = shuffle(d, d[["b"]], shuffle=method).compute() res2 = shuffle(d, ["b"], shuffle=method).compute() res3 = shuffle(d, "b", shuffle=method).compute() assert sorted(res1.values.tolist()) == sorted(res2.values.tolist()) assert sorted(res1.values.tolist()) == sorted(res3.values.tolist()) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_shuffle_from_one_partition_to_one_other(method): df = pd.DataFrame({"x": [1, 2, 3]}) a = dd.from_pandas(df, 1) for i in [1, 2]: b = shuffle(a, "x", npartitions=i, shuffle=method) assert len(a.compute(scheduler="sync")) == len(b.compute(scheduler="sync")) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_shuffle_empty_partitions(method): df = pd.DataFrame({"x": [1, 2, 3] * 10}) ddf = dd.from_pandas(df, npartitions=3) s = shuffle(ddf, ddf.x, npartitions=6, shuffle=method) parts = compute_as_if_collection(dd.DataFrame, s.dask, s.__dask_keys__()) for p in parts: assert s.columns == p.columns df2 = pd.DataFrame( { "i32": np.array([1, 2, 3] * 3, dtype="int32"), "f32": np.array([None, 2.5, 3.5] * 3, dtype="float32"), "cat": pd.Series(["a", "b", "c"] * 3).astype("category"), "obj": pd.Series(["d", "e", "f"] * 3), "bool": np.array([True, False, True] * 3), "dt": pd.Series(pd.date_range("20130101", periods=9)), "dt_tz": pd.Series(pd.date_range("20130101", periods=9, tz="US/Eastern")), "td": pd.Series(pd.timedelta_range("2000", periods=9)), } ) def test_partitioning_index(): res = partitioning_index(df2.i32, 3) assert ((res < 3) & (res >= 0)).all() assert len(np.unique(res)) > 1 assert (partitioning_index(df2.i32, 3) == partitioning_index(df2.i32, 3)).all() res = partitioning_index(df2[["i32"]], 3) assert ((res < 3) & (res >= 0)).all() assert len(np.unique(res)) > 1 res = partitioning_index(df2[["cat", "bool", "f32"]], 2) assert ((0 <= res) & (res < 2)).all() res = partitioning_index(df2.index, 4) assert ((res < 4) & (res >= 0)).all() assert len(np.unique(res)) > 1 def test_partitioning_index_categorical_on_values(): df = pd.DataFrame({"a": list(string.ascii_letters), "b": [1, 2, 3, 4] * 13}) df.a = df.a.astype("category") df2 = df.copy() df2.a = df2.a.cat.set_categories(list(reversed(df2.a.cat.categories))) res = partitioning_index(df.a, 5) res2 = partitioning_index(df2.a, 5) assert (res == res2).all() res = partitioning_index(df, 5) res2 = partitioning_index(df2, 5) assert (res == res2).all() @pytest.mark.parametrize( "npartitions", [1, 4, 7, pytest.param(23, marks=pytest.mark.slow)] ) def test_set_index_tasks(npartitions): df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) ddf = dd.from_pandas(df, npartitions=npartitions) assert_eq(df.set_index("x"), ddf.set_index("x", shuffle="tasks")) assert_eq(df.set_index("y"), ddf.set_index("y", shuffle="tasks")) assert_eq(df.set_index(df.x), ddf.set_index(ddf.x, shuffle="tasks")) assert_eq(df.set_index(df.x + df.y), ddf.set_index(ddf.x + ddf.y, shuffle="tasks")) assert_eq(df.set_index(df.x + 1), ddf.set_index(ddf.x + 1, shuffle="tasks")) assert_eq(df.set_index(df.index), ddf.set_index(ddf.index, shuffle="tasks")) @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_self_index(shuffle): df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) a = dd.from_pandas(df, npartitions=4) b = a.set_index(a.index, shuffle=shuffle) assert a is b assert_eq(b, df.set_index(df.index)) @pytest.mark.parametrize("shuffle", ["tasks"]) def test_set_index_names(shuffle): df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) ddf = dd.from_pandas(df, npartitions=4) assert set(ddf.set_index("x", shuffle=shuffle).dask) == set( ddf.set_index("x", shuffle=shuffle).dask ) assert set(ddf.set_index("x", shuffle=shuffle).dask) != set( ddf.set_index("y", shuffle=shuffle).dask ) assert set(ddf.set_index("x", max_branch=4, shuffle=shuffle).dask) != set( ddf.set_index("x", max_branch=3, shuffle=shuffle).dask ) assert set(ddf.set_index("x", drop=True, shuffle=shuffle).dask) != set( ddf.set_index("x", drop=False, shuffle=shuffle).dask ) @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_tasks_2(shuffle): df = dd.demo.make_timeseries( "2000", "2004", {"value": float, "name": str, "id": int}, freq="2H", partition_freq="1M", seed=1, ) df2 = df.set_index("name", shuffle=shuffle) df2.value.sum().compute(scheduler="sync") @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_tasks_3(shuffle): df = pd.DataFrame(np.random.random((10, 2)), columns=["x", "y"]) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf.set_index( "x", shuffle=shuffle, max_branch=2, npartitions=ddf.npartitions ) df2 = df.set_index("x") assert_eq(df2, ddf2) assert ddf2.npartitions == ddf.npartitions @pytest.mark.parametrize("shuffle", ["tasks", "disk"]) def test_shuffle_sort(shuffle): df = pd.DataFrame({"x": [1, 2, 3, 2, 1], "y": [9, 8, 7, 1, 5]}) ddf = dd.from_pandas(df, npartitions=3) df2 = df.set_index("x").sort_index() ddf2 = ddf.set_index("x", shuffle=shuffle) assert_eq(ddf2.loc[2:3], df2.loc[2:3]) @pytest.mark.parametrize("shuffle", ["tasks", "disk"]) @pytest.mark.parametrize("scheduler", ["threads", "processes"]) def test_rearrange(shuffle, scheduler): df = pd.DataFrame({"x": np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(_partitions=ddf.x % 4) result = rearrange_by_column(ddf2, "_partitions", max_branch=32, shuffle=shuffle) assert result.npartitions == ddf.npartitions assert set(ddf.dask).issubset(result.dask) # Every value in exactly one partition a = result.compute(scheduler=scheduler) get = dask.base.get_scheduler(scheduler=scheduler) parts = get(result.dask, result.__dask_keys__()) for i in a._partitions.drop_duplicates(): assert sum(i in set(part._partitions) for part in parts) == 1 def test_rearrange_cleanup(): df = pd.DataFrame({"x": np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(_partitions=ddf.x % 4) tmpdir = tempfile.mkdtemp() with dask.config.set(temporay_directory=str(tmpdir)): result = rearrange_by_column(ddf2, "_partitions", max_branch=32, shuffle="disk") result.compute(scheduler="processes") assert len(os.listdir(tmpdir)) == 0 def mock_shuffle_group_3(df, col, npartitions, p): raise ValueError("Mock exception!") def test_rearrange_disk_cleanup_with_exception(): # ensure temporary files are cleaned up when there's an internal exception. with mock.patch("dask.dataframe.shuffle.shuffle_group_3", new=mock_shuffle_group_3): df = pd.DataFrame({"x": np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(_partitions=ddf.x % 4) tmpdir = tempfile.mkdtemp() with dask.config.set(temporay_directory=str(tmpdir)): with pytest.raises(ValueError, match="Mock exception!"): result = rearrange_by_column( ddf2, "_partitions", max_branch=32, shuffle="disk" ) result.compute(scheduler="processes") assert len(os.listdir(tmpdir)) == 0 def test_rearrange_by_column_with_narrow_divisions(): from dask.dataframe.tests.test_multi import list_eq A = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6], "y": [1, 1, 2, 2, 3, 4]}) a = dd.repartition(A, [0, 4, 5]) df = rearrange_by_divisions(a, "x", (0, 2, 5)) list_eq(df, a) def test_maybe_buffered_partd(): import partd f = maybe_buffered_partd() p1 = f() assert isinstance(p1.partd, partd.Buffer) f2 = pickle.loads(pickle.dumps(f)) assert not f2.buffer p2 = f2() assert isinstance(p2.partd, partd.File) def test_set_index_with_explicit_divisions(): df = pd.DataFrame({"x": [4, 1, 2, 5]}, index=[10, 20, 30, 40]) ddf = dd.from_pandas(df, npartitions=2) def throw(*args, **kwargs): raise Exception() with dask.config.set(get=throw): ddf2 = ddf.set_index("x", divisions=[1, 3, 5]) assert ddf2.divisions == (1, 3, 5) df2 = df.set_index("x") assert_eq(ddf2, df2) # Divisions must be sorted with pytest.raises(ValueError): ddf.set_index("x", divisions=[3, 1, 5]) def test_set_index_divisions_2(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6], "y": list("abdabd")}) ddf = dd.from_pandas(df, 2) result = ddf.set_index("y", divisions=["a", "c", "d"]) assert result.divisions == ("a", "c", "d") assert list(result.compute(scheduler="sync").index[-2:]) == ["d", "d"] def test_set_index_divisions_compute(): d2 = d.set_index("b", divisions=[0, 2, 9], compute=False) d3 = d.set_index("b", divisions=[0, 2, 9], compute=True) assert_eq(d2, d3) assert_eq(d2, full.set_index("b")) assert_eq(d3, full.set_index("b")) assert len(d2.dask) > len(d3.dask) d4 = d.set_index(d.b, divisions=[0, 2, 9], compute=False) d5 = d.set_index(d.b, divisions=[0, 2, 9], compute=True) exp = full.copy() exp.index = exp.b assert_eq(d4, d5) assert_eq(d4, exp) assert_eq(d5, exp) assert len(d4.dask) > len(d5.dask) def test_set_index_divisions_sorted(): p1 = pd.DataFrame({"x": [10, 11, 12], "y": ["a", "a", "a"]}) p2 = pd.DataFrame({"x": [13, 14, 15], "y": ["b", "b", "c"]}) p3 = pd.DataFrame({"x": [16, 17, 18], "y": ["d", "e", "e"]}) ddf = dd.DataFrame( {("x", 0): p1, ("x", 1): p2, ("x", 2): p3}, "x", p1, [None, None, None, None] ) df = ddf.compute() def throw(*args, **kwargs): raise Exception("Shouldn't have computed") with dask.config.set(get=throw): res = ddf.set_index("x", divisions=[10, 13, 16, 18], sorted=True) assert_eq(res, df.set_index("x")) with dask.config.set(get=throw): res = ddf.set_index("y", divisions=["a", "b", "d", "e"], sorted=True) assert_eq(res, df.set_index("y")) # with sorted=True, divisions must be same length as df.divisions with pytest.raises(ValueError): ddf.set_index("y", divisions=["a", "b", "c", "d", "e"], sorted=True) # Divisions must be sorted with pytest.raises(ValueError): ddf.set_index("y", divisions=["a", "b", "d", "c"], sorted=True) @pytest.mark.slow def test_set_index_consistent_divisions(): # See https://github.com/dask/dask/issues/3867 df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) ddf = dd.from_pandas(df, npartitions=4) ddf = ddf.clear_divisions() ctx = mp.get_context("spawn") pool = ctx.Pool(processes=8) with pool: results = [pool.apply_async(_set_index, (ddf, "x")) for _ in range(100)] divisions_set = set(result.get() for result in results) assert len(divisions_set) == 1 def _set_index(df, *args, **kwargs): return df.set_index(*args, **kwargs).divisions @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_reduces_partitions_small(shuffle): df = pd.DataFrame({"x": np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=50) ddf2 = ddf.set_index("x", shuffle=shuffle, npartitions="auto") assert ddf2.npartitions < 10 def make_part(n): return pd.DataFrame({"x": np.random.random(n), "y": np.random.random(n)}) @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_reduces_partitions_large(shuffle): nbytes = 1e6 nparts = 50 n = int(nbytes / (nparts * 8)) ddf = dd.DataFrame( {("x", i): (make_part, n) for i in range(nparts)}, "x", make_part(1), [None] * (nparts + 1), ) ddf2 = ddf.set_index( "x", shuffle=shuffle, npartitions="auto", partition_size=nbytes ) assert 1 < ddf2.npartitions < 20 @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_doesnt_increase_partitions(shuffle): nparts = 2 nbytes = 1e6 n = int(nbytes / (nparts * 8)) ddf = dd.DataFrame( {("x", i): (make_part, n) for i in range(nparts)}, "x", make_part(1), [None] * (nparts + 1), ) ddf2 = ddf.set_index( "x", shuffle=shuffle, npartitions="auto", partition_size=nbytes ) assert ddf2.npartitions <= ddf.npartitions @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_detects_sorted_data(shuffle): df = pd.DataFrame({"x": range(100), "y": range(100)}) ddf = dd.from_pandas(df, npartitions=10, name="x", sort=False) ddf2 = ddf.set_index("x", shuffle=shuffle) assert len(ddf2.dask) < ddf.npartitions * 4 def test_set_index_sorts(): # https://github.com/dask/dask/issues/2288 vals = np.array( [ 1348550149000000000, 1348550149000000000, 1348558142000000000, 1348558142000000000, 1348585928000000000, 1348585928000000000, 1348600739000000000, 1348601706000000000, 1348600739000000000, 1348601706000000000, 1348614789000000000, 1348614789000000000, 1348621037000000000, 1348621038000000000, 1348621040000000000, 1348621037000000000, 1348621038000000000, 1348621040000000000, 1348637628000000000, 1348638159000000000, 1348638160000000000, 1348638159000000000, 1348638160000000000, 1348637628000000000, 1348646354000000000, 1348646354000000000, 1348659107000000000, 1348657111000000000, 1348659107000000000, 1348657111000000000, 1348672876000000000, 1348672876000000000, 1348682787000000000, 1348681985000000000, 1348682787000000000, 1348681985000000000, 1348728167000000000, 1348728167000000000, 1348730745000000000, 1348730745000000000, 1348750198000000000, 1348750198000000000, 1348750198000000000, 1348753539000000000, 1348753539000000000, 1348753539000000000, 1348754449000000000, 1348754449000000000, 1348761333000000000, 1348761554000000000, 1348761610000000000, 1348761333000000000, 1348761554000000000, 1348761610000000000, 1348782624000000000, 1348782624000000000, 1348782624000000000, 1348782624000000000, ] ) vals = pd.to_datetime(vals, unit="ns") breaks = [10, 36, 58] dfs = [] for i in range(len(breaks)): lo = sum(breaks[:i]) hi = sum(breaks[i : i + 1]) dfs.append(pd.DataFrame({"timestamp": vals[lo:hi]}, index=range(lo, hi))) ddf = dd.concat(dfs).clear_divisions() assert ddf.set_index("timestamp").index.compute().is_monotonic is True def test_set_index(): dsk = { ("x", 0): pd.DataFrame({"a": [1, 2, 3], "b": [4, 2, 6]}, index=[0, 1, 3]), ("x", 1): pd.DataFrame({"a": [4, 5, 6], "b": [3, 5, 8]}, index=[5, 6, 8]), ("x", 2): pd.DataFrame({"a": [7, 8, 9], "b": [9, 1, 8]}, index=[9, 9, 9]), } d = dd.DataFrame(dsk, "x", meta, [0, 4, 9, 9]) full = d.compute() d2 = d.set_index("b", npartitions=3) assert d2.npartitions == 3 assert d2.index.name == "b" assert_eq(d2, full.set_index("b")) d3 = d.set_index(d.b, npartitions=3) assert d3.npartitions == 3 assert d3.index.name == "b" assert_eq(d3, full.set_index(full.b)) d4 = d.set_index("b") assert d4.index.name == "b" assert_eq(d4, full.set_index("b")) d5 = d.set_index(["b"]) assert d5.index.name == "b" assert_eq(d5, full.set_index(["b"])) @pytest.mark.parametrize("engine", ["pandas", "cudf"]) def test_set_index_interpolate(engine): if engine == "cudf": # NOTE: engine == "cudf" requires cudf/dask_cudf, # will be skipped by non-GPU CI. cudf = pytest.importorskip("cudf") dask_cudf = pytest.importorskip("dask_cudf") df = pd.DataFrame({"x": [4, 1, 1, 3, 3], "y": [1.0, 1, 1, 1, 2]}) if engine == "cudf": gdf = cudf.from_pandas(df) d = dask_cudf.from_cudf(gdf, npartitions=3) else: d = dd.from_pandas(df, 2) d1 = d.set_index("x", npartitions=3) assert d1.npartitions == 3 assert set(d1.divisions) == set([1, 2, 4]) d2 = d.set_index("y", npartitions=3) assert d2.divisions[0] == 1.0 assert 1.0 < d2.divisions[1] < d2.divisions[2] < 2.0 assert d2.divisions[3] == 2.0 @pytest.mark.parametrize("engine", ["pandas", "cudf"]) def test_set_index_interpolate_int(engine): if engine == "cudf": # NOTE: engine == "cudf" requires cudf/dask_cudf, # will be skipped by non-GPU CI. cudf = pytest.importorskip("cudf") dask_cudf = pytest.importorskip("dask_cudf") L = sorted(list(range(0, 200, 10)) * 2) df = pd.DataFrame({"x": 2 * L}) if engine == "cudf": gdf = cudf.from_pandas(df) d = dask_cudf.from_cudf(gdf, npartitions=2) else: d = dd.from_pandas(df, 2) d1 = d.set_index("x", npartitions=10) assert all(np.issubdtype(type(x), np.integer) for x in d1.divisions) @pytest.mark.parametrize("engine", ["pandas", "cudf"]) def test_set_index_interpolate_large_uint(engine): if engine == "cudf": # NOTE: engine == "cudf" requires cudf/dask_cudf, # will be skipped by non-GPU CI. cudf = pytest.importorskip("cudf") dask_cudf = pytest.importorskip("dask_cudf") """This test is for #7304""" df = pd.DataFrame( {"x": np.array([612509347682975743, 616762138058293247], dtype=np.uint64)} ) if engine == "cudf": gdf = cudf.from_pandas(df) d = dask_cudf.from_cudf(gdf, npartitions=2) else: d = dd.from_pandas(df, 1) d1 = d.set_index("x", npartitions=1) assert d1.npartitions == 1 assert set(d1.divisions) == set([612509347682975743, 616762138058293247]) def test_set_index_timezone(): s_naive = pd.Series(pd.date_range("20130101", periods=3)) s_aware = pd.Series(pd.date_range("20130101", periods=3, tz="US/Eastern")) df = pd.DataFrame({"tz": s_aware, "notz": s_naive}) d = dd.from_pandas(df, 2) d1 = d.set_index("notz", npartitions=1) s1 = pd.DatetimeIndex(s_naive.values, dtype=s_naive.dtype) assert d1.divisions[0] == s_naive[0] == s1[0] assert d1.divisions[-1] == s_naive[2] == s1[2] # We currently lose "freq". Converting data with pandas-defined dtypes # to numpy or pure Python can be lossy like this. d2 = d.set_index("tz", npartitions=1) s2 = pd.DatetimeIndex(s_aware, dtype=s_aware.dtype) assert d2.divisions[0] == s2[0] assert d2.divisions[-1] == s2[2] assert d2.divisions[0].tz == s2[0].tz assert d2.divisions[0].tz is not None s2badtype = pd.DatetimeIndex(s_aware.values, dtype=s_naive.dtype) if PANDAS_GT_120: # starting with pandas 1.2.0, comparing equality of timestamps with different # timezones returns False instead of raising an error assert not d2.divisions[0] == s2badtype[0] else: with pytest.raises(TypeError): d2.divisions[0] == s2badtype[0] def test_set_index_npartitions(): # https://github.com/dask/dask/issues/6974 data = pd.DataFrame( index=pd.Index( ["A", "A", "A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "C"] ) ) data = dd.from_pandas(data, npartitions=2) output = data.reset_index().set_index("index", npartitions=1) assert output.npartitions == 1 @pytest.mark.parametrize("unit", ["ns", "us"]) def test_set_index_datetime_precision(unit): # https://github.com/dask/dask/issues/6864 df = pd.DataFrame( [ [1567703791155681, 1], [1567703792155681, 2], [1567703790155681, 0], [1567703793155681, 3], ], columns=["ts", "rank"], ) df.ts = pd.to_datetime(df.ts, unit=unit) ddf = dd.from_pandas(df, npartitions=2) ddf = ddf.set_index("ts") assert_eq(ddf, df.set_index("ts")) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop(drop): pdf = pd.DataFrame( { "A": list("ABAABBABAA"), "B": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "C": [1, 2, 3, 2, 1, 3, 2, 4, 2, 3], } ) ddf = dd.from_pandas(pdf, 3) assert_eq(ddf.set_index("A", drop=drop), pdf.set_index("A", drop=drop)) assert_eq(ddf.set_index("B", drop=drop), pdf.set_index("B", drop=drop)) assert_eq(ddf.set_index("C", drop=drop), pdf.set_index("C", drop=drop)) assert_eq(ddf.set_index(ddf.A, drop=drop), pdf.set_index(pdf.A, drop=drop)) assert_eq(ddf.set_index(ddf.B, drop=drop), pdf.set_index(pdf.B, drop=drop)) assert_eq(ddf.set_index(ddf.C, drop=drop), pdf.set_index(pdf.C, drop=drop)) # numeric columns pdf = pd.DataFrame( { 0: list("ABAABBABAA"), 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2: [1, 2, 3, 2, 1, 3, 2, 4, 2, 3], } ) ddf = dd.from_pandas(pdf, 3) assert_eq(ddf.set_index(0, drop=drop), pdf.set_index(0, drop=drop)) assert_eq(ddf.set_index(2, drop=drop), pdf.set_index(2, drop=drop)) def test_set_index_raises_error_on_bad_input(): df = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7], "b": [7, 6, 5, 4, 3, 2, 1]}) ddf = dd.from_pandas(df, 2) msg = r"Dask dataframe does not yet support multi-indexes" with pytest.raises(NotImplementedError) as err: ddf.set_index(["a", "b"]) assert msg in str(err.value) with pytest.raises(NotImplementedError) as err: ddf.set_index([["a", "b"]]) assert msg in str(err.value) with pytest.raises(NotImplementedError) as err: ddf.set_index([["a"]]) assert msg in str(err.value) def test_set_index_sorted_true(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 20, 40], "z": [4, 3, 2, 1]}) a = dd.from_pandas(df, 2, sort=False) assert not a.known_divisions b = a.set_index("x", sorted=True) assert b.known_divisions assert set(a.dask).issubset(set(b.dask)) for drop in [True, False]: assert_eq(a.set_index("x", drop=drop), df.set_index("x", drop=drop)) assert_eq( a.set_index(a.x, sorted=True, drop=drop), df.set_index(df.x, drop=drop) ) assert_eq( a.set_index(a.x + 1, sorted=True, drop=drop), df.set_index(df.x + 1, drop=drop), ) with pytest.raises(ValueError): a.set_index(a.z, sorted=True) def test_set_index_sorted_single_partition(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [1, 0, 1, 0]}) ddf = dd.from_pandas(df, npartitions=1) assert_eq(ddf.set_index("x", sorted=True), df.set_index("x")) def test_set_index_sorted_min_max_same(): a = pd.DataFrame({"x": [1, 2, 3], "y": [0, 0, 0]}) b = pd.DataFrame({"x": [1, 2, 3], "y": [1, 1, 1]}) aa = delayed(a) bb = delayed(b) df = dd.from_delayed([aa, bb], meta=a) assert not df.known_divisions df2 = df.set_index("y", sorted=True) assert df2.divisions == (0, 1, 1) def test_set_index_empty_partition(): test_vals = [1, 2, 3] converters = [int, float, str, lambda x: pd.to_datetime(x, unit="ns")] for conv in converters: df = pd.DataFrame( [{"x": conv(i), "y": i} for i in test_vals], columns=["x", "y"] ) ddf = dd.concat( [ dd.from_pandas(df, npartitions=1), dd.from_pandas(df[df.y > df.y.max()], npartitions=1), ] ) assert any(ddf.get_partition(p).compute().empty for p in range(ddf.npartitions)) assert assert_eq(ddf.set_index("x"), df.set_index("x")) def test_set_index_on_empty(): test_vals = [1, 2, 3, 4] converters = [int, float, str, lambda x: pd.to_datetime(x, unit="ns")] for converter in converters: df = pd.DataFrame([{"x": converter(x), "y": x} for x in test_vals]) ddf = dd.from_pandas(df, npartitions=4) assert ddf.npartitions > 1 ddf = ddf[ddf.y > df.y.max()].set_index("x") expected_df = df[df.y > df.y.max()].set_index("x") assert assert_eq(ddf, expected_df, **CHECK_FREQ) assert ddf.npartitions == 1 def test_set_index_categorical(): # https://github.com/dask/dask/issues/5671 order = list(reversed(string.ascii_letters)) values = list(string.ascii_letters) random.shuffle(values) dtype = pd.api.types.CategoricalDtype(order, ordered=True) df = pd.DataFrame({"A": pd.Categorical(values, dtype=dtype), "B": 1}) result = dd.from_pandas(df, npartitions=2).set_index("A") assert len(result) == len(df) # sorted with the metric defined by the Categorical divisions = pd.Categorical(result.divisions, dtype=dtype) assert_categorical_equal(divisions, divisions.sort_values()) def test_compute_divisions(): from dask.dataframe.shuffle import compute_and_set_divisions df = pd.DataFrame( {"x": [1, 2, 3, 4], "y": [10, 20, 20, 40], "z": [4, 3, 2, 1]}, index=[1, 3, 10, 20], ) a = dd.from_pandas(df, 2, sort=False) assert not a.known_divisions b = compute_and_set_divisions(copy(a)) assert_eq(a, b, check_divisions=False) assert b.known_divisions def test_empty_partitions(): # See https://github.com/dask/dask/issues/2408 df = pd.DataFrame({"a": list(range(10))}) df["b"] = df["a"] % 3 df["c"] = df["b"].astype(str) ddf = dd.from_pandas(df, npartitions=3) ddf = ddf.set_index("b") ddf = ddf.repartition(npartitions=3) ddf.get_partition(0).compute() assert_eq(ddf, df.set_index("b")) ddf = ddf.set_index("c") assert_eq(ddf, df.set_index("b").set_index("c")) def test_remove_nans(): tests = [ ((1, 1, 2), (1, 1, 2)), ((None, 1, 2), (1, 1, 2)), ((1, None, 2), (1, 2, 2)), ((1, 2, None), (1, 2, 2)), ((1, 2, None, None), (1, 2, 2, 2)), ((None, None, 1, 2), (1, 1, 1, 2)), ((1, None, None, 2), (1, 2, 2, 2)), ((None, 1, None, 2, None, 3, None), (1, 1, 2, 2, 3, 3, 3)), ] converters = [ (int, np.nan), (float, np.nan), (str, np.nan), (lambda x: pd.to_datetime(x, unit="ns"), np.datetime64("NaT")), ] for conv, none_val in converters: for inputs, expected in tests: params = [none_val if x is None else conv(x) for x in inputs] expected = [conv(x) for x in expected] assert remove_nans(params) == expected @pytest.mark.slow def test_gh_2730(): large = pd.DataFrame({"KEY": np.arange(0, 50000)}) small = pd.DataFrame({"KEY": np.arange(25, 500)}) dd_left = dd.from_pandas(small, npartitions=3) dd_right = dd.from_pandas(large, npartitions=257) with dask.config.set(shuffle="tasks", scheduler="sync"): dd_merged = dd_left.merge(dd_right, how="inner", on="KEY") result = dd_merged.compute() expected = large.merge(small, how="inner", on="KEY") tm.assert_frame_equal(result.sort_values("KEY").reset_index(drop=True), expected) @pytest.mark.parametrize("npartitions", [None, "auto"]) def test_set_index_does_not_repeat_work_due_to_optimizations(npartitions): # Atomic counter count = itertools.count() def increment(): next(count) def make_part(dummy, n): return pd.DataFrame({"x": np.random.random(n), "y": np.random.random(n)}) nbytes = 1e6 nparts = 50 n = int(nbytes / (nparts * 8)) dsk = {("inc", i): (increment,) for i in range(nparts)} dsk.update({("x", i): (make_part, ("inc", i), n) for i in range(nparts)}) ddf = dd.DataFrame(dsk, "x", make_part(None, 1), [None] * (nparts + 1)) ddf.set_index("x", npartitions=npartitions) ntimes = next(count) assert ntimes == nparts def test_set_index_errors_with_inplace_kwarg(): df =
pd.DataFrame({"a": [9, 8, 7], "b": [6, 5, 4], "c": [3, 2, 1]})
pandas.DataFrame
import json import numpy import pandas import re from datetime import timedelta from GoogleSheetIOStream import GoogleSheetIOStream class BonusProcessor (object): def __init__(self, iostream, config_dir='config/', working_folder='Chouta Stand Payroll', input_folder='Input', config_folder='Config'): self.io_stream = iostream self.working_folder = self.io_stream.get_file(name=working_folder) self.input_folder = self.io_stream.get_file(name=input_folder, parent=self.working_folder) self.config_folder = self.io_stream.get_file(name=config_folder, parent=self.working_folder) with open(config_dir + 'format.json', 'r') as format_file: self.format = json.load(format_file) with open(config_dir + 'bonus_format.json', 'r') as format_file: self.bonus_format = json.load(format_file) def calc_payroll(self): # Calculate hours hours_date_range, hours = self.calc_hours() # Calculate bonus bonus_date_range, bonus = self.calc_bonus() # Combine hours and bonuses payroll = hours.merge(bonus, how='left', on='Name').fillna(0).round(2) date_range = [min([hours_date_range[0], bonus_date_range[0]]), max([hours_date_range[1], bonus_date_range[1]])] # Upload payroll to googlesheets top_line = 'Payroll Period,' + date_range[0] + ',' + date_range[1] payroll_name = 'Payroll ' + date_range[0] + ' To ' + date_range[1] payroll_data = ''.join([top_line, '\r\n', payroll.to_csv(line_terminator='\r\n', index=False)]) self.io_stream.upload_sheet(payroll_data, payroll_name, self.working_folder, format=self.format, numlines=len(payroll.index)+1) def calc_hours(self): # Read in schedule hours = self.io_stream.download_sheet('Schedule', self.input_folder) hours.loc[:, 'Clock In'] = pandas.to_datetime(hours['Clock In']) hours.loc[:, 'Clock Out'] =
pandas.to_datetime(hours['Clock Out'])
pandas.to_datetime
import os import logging import pandas as pd from slackbot import licence_plate log = logging.getLogger(__name__) class CarOwners: # Source data: # https://intranet.xebia.com/display/XNL/Xebia+Group+Kenteken+Registratie def __init__(self, csv_path='/data/car-owners.csv'): self.csv_path = csv_path self.owners_df = None self.load() def tag(self, plate, slackid=None, name=None): plate = licence_plate.normalize(plate) assert len(plate) == 6, 'Length of the licence plate must be 6 (without any dashes)' if slackid and slackid.startswith('@'): slackid = slackid[1:] self.load() if plate in self.owners_df.index: self.owners_df.loc[plate, 'slackid'] = slackid or '' self.owners_df.loc[plate, 'name'] = name or '' else: new_data = pd.Series({'slackid': slackid, 'name': name}, name=plate) self.owners_df = self.owners_df.append(new_data) self.owners_df = self.owners_df.where((pd.notnull(self.owners_df)), None) self.save() def untag(self, slackid, plate): self.load() if plate in self.owners_df.index: self.owners_df.drop([plate], inplace=True) self.save() def lookup(self, plate): """ :return: Dict with 'name' and 'slackid' or None is not found """ plate = licence_plate.normalize(plate) assert len(plate) == 6, 'Length of the licence plate must be 6 (without any dashes)' self.load() if plate not in self.owners_df.index: log.info('Owner lookup for %s result: not found.', plate) return None res = self.owners_df.loc[plate] log.info('Owner lookup for %s result: found: %s', plate, res.to_dict()) return res.to_dict() def load(self): if not os.path.exists(self.csv_path): empty_df = pd.DataFrame(columns=['kenteken', 'slackid', 'name'], dtype=str) empty_df.set_index('kenteken', inplace=True) self.owners_df = empty_df else: self.owners_df = pd.read_csv(self.csv_path, header=0, index_col='kenteken', quoting=1, dtype=str) self.owners_df = self.owners_df.where((
pd.notnull(self.owners_df)
pandas.notnull
import re import numpy as np import pandas as pd import random as rd from sklearn import preprocessing from sklearn.cluster import KMeans from sklearn.ensemble import RandomForestRegressor from sklearn.decomposition import PCA # Print options np.set_printoptions(precision=4, threshold=10000, linewidth=160, edgeitems=999, suppress=True) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.width', 160) pd.set_option('expand_frame_repr', False) pd.set_option('precision', 4) # constructing binary features def process_embarked(): global df_titanic_data # replacing the missing values with the most commmon value in the variable df_titanic_data.Embarked[df_titanic_data.Embarked.isnull()] = df_titanic_data.Embarked.dropna().mode().values # converting the values into numbers df_titanic_data['Embarked'] = pd.factorize(df_titanic_data['Embarked'])[0] # binarizing the constructed features if keep_binary: df_titanic_data = pd.concat([df_titanic_data, pd.get_dummies(df_titanic_data['Embarked']).rename( columns=lambda x: 'Embarked_' + str(x))], axis=1) # Define a helper function that can use RandomForestClassifier for handling the missing values of the age variable def set_missing_ages(): global df_titanic_data age_data = df_titanic_data[ ['Age', 'Embarked', 'Fare', 'Parch', 'SibSp', 'Title_id', 'Pclass', 'Names', 'CabinLetter']] input_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 1::] target_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 0] # Creating an object from the random forest regression function of sklearn<use the documentation for more details> regressor = RandomForestRegressor(n_estimators=2000, n_jobs=-1) # building the model based on the input values and target values above regressor.fit(input_values_RF, target_values_RF) # using the trained model to predict the missing values predicted_ages = regressor.predict(age_data.loc[(df_titanic_data.Age.isnull())].values[:, 1::]) # Filling the predicted ages in the origial titanic dataframe age_data.loc[(age_data.Age.isnull()), 'Age'] = predicted_ages # Helper function for constructing features from the age variable def process_age(): global df_titanic_data # calling the set_missing_ages helper function to use random forest regression for predicting missing values of age set_missing_ages() # # scale the age variable by centering it around the mean with a unit variance # if keep_scaled: # scaler_preprocessing = preprocessing.StandardScaler() # df_titanic_data['Age_scaled'] = scaler_preprocessing.fit_transform(df_titanic_data.Age.reshape(-1, 1)) # construct a feature for children df_titanic_data['isChild'] = np.where(df_titanic_data.Age < 13, 1, 0) # bin into quartiles and create binary features df_titanic_data['Age_bin'] = pd.qcut(df_titanic_data['Age'], 4) if keep_binary: df_titanic_data = pd.concat( [df_titanic_data, pd.get_dummies(df_titanic_data['Age_bin']).rename(columns=lambda y: 'Age_' + str(y))], axis=1) if keep_bins: df_titanic_data['Age_bin_id'] = pd.factorize(df_titanic_data['Age_bin'])[0] + 1 if keep_bins and keep_scaled: scaler_processing = preprocessing.StandardScaler() df_titanic_data['Age_bin_id_scaled'] = scaler_processing.fit_transform( df_titanic_data.Age_bin_id.reshape(-1, 1)) if not keep_strings: df_titanic_data.drop('Age_bin', axis=1, inplace=True) # Helper function for constructing features from the passengers/crew names def process_name(): global df_titanic_data # getting the different names in the names variable df_titanic_data['Names'] = df_titanic_data['Name'].map(lambda y: len(re.split(' ', y))) # Getting titles for each person df_titanic_data['Title'] = df_titanic_data['Name'].map(lambda y: re.compile(", (.*?)\.").findall(y)[0]) # handling the low occuring titles df_titanic_data['Title'][df_titanic_data.Title == 'Jonkheer'] = 'Master' df_titanic_data['Title'][df_titanic_data.Title.isin(['Ms', 'Mlle'])] = 'Miss' df_titanic_data['Title'][df_titanic_data.Title == 'Mme'] = 'Mrs' df_titanic_data['Title'][df_titanic_data.Title.isin(['Capt', 'Don', 'Major', 'Col', 'Sir'])] = 'Sir' df_titanic_data['Title'][df_titanic_data.Title.isin(['Dona', 'Lady', 'the Countess'])] = 'Lady' # binarizing all the features if keep_binary: df_titanic_data = pd.concat( [df_titanic_data, pd.get_dummies(df_titanic_data['Title']).rename(columns=lambda x: 'Title_' + str(x))], axis=1) # scalling if keep_scaled: scaler_preprocessing = preprocessing.StandardScaler() df_titanic_data['Names_scaled'] = scaler_preprocessing.fit_transform(df_titanic_data.Names.reshape(-1, 1)) # binning if keep_bins: df_titanic_data['Title_id'] = pd.factorize(df_titanic_data['Title'])[0] + 1 if keep_bins and keep_scaled: scaler = preprocessing.StandardScaler() df_titanic_data['Title_id_scaled'] = scaler.fit_transform(df_titanic_data.Title_id.reshape(-1, 1)) # Generate features from the cabin input variable def process_cabin(): # refering to the global variable that contains the titanic examples global df_titanic_data # repllacing the missing value in cabin variable "U0" df_titanic_data['Cabin'][df_titanic_data.Cabin.isnull()] = 'U0' # the cabin number is a sequence of of alphanumerical digits, so we are going to create some features # from the alphabetical part of it df_titanic_data['CabinLetter'] = df_titanic_data['Cabin'].map(lambda l: get_cabin_letter(l)) df_titanic_data['CabinLetter'] = pd.factorize(df_titanic_data['CabinLetter'])[0] # binarizing the cabin letters features if keep_binary: cletters = pd.get_dummies(df_titanic_data['CabinLetter']).rename(columns=lambda x: 'CabinLetter_' + str(x)) df_titanic_data = pd.concat([df_titanic_data, cletters], axis=1) # creating features from the numerical side of the cabin df_titanic_data['CabinNumber'] = df_titanic_data['Cabin'].map(lambda x: get_cabin_num(x)).astype(int) + 1 # scaling the feature if keep_scaled: scaler_processing = preprocessing.StandardScaler() df_titanic_data['CabinNumber_scaled'] = scaler_processing.fit_transform(df_titanic_data.CabinNumber.reshape(-1, 1)) def get_cabin_letter(cabin_value): # searching for the letters in the cabin alphanumerical value letter_match = re.compile("([a-zA-Z]+)").search(cabin_value) if letter_match: return letter_match.group() else: return 'U' def get_cabin_num(cabin_value): # searching for the numbers in the cabin alphanumerical value number_match = re.compile("([0-9]+)").search(cabin_value) if number_match: return number_match.group() else: return 0 # helper function for constructing features from the ticket fare variable def process_fare(): global df_titanic_data # handling the missing values by replacing it with the median feare df_titanic_data['Fare'][np.isnan(df_titanic_data['Fare'])] = df_titanic_data['Fare'].median() # zeros in the fare will cause some division problems so we are going to set them to 1/10th of the lowest fare df_titanic_data['Fare'][np.where(df_titanic_data['Fare'] == 0)[0]] = df_titanic_data['Fare'][ df_titanic_data['Fare'].nonzero()[ 0]].min() / 10 # Binarizing the features by binning them into quantiles df_titanic_data['Fare_bin'] = pd.qcut(df_titanic_data['Fare'], 4) if keep_binary: df_titanic_data = pd.concat( [df_titanic_data, pd.get_dummies(df_titanic_data['Fare_bin']).rename(columns=lambda x: 'Fare_' + str(x))], axis=1) # binning if keep_bins: df_titanic_data['Fare_bin_id'] = pd.factorize(df_titanic_data['Fare_bin'])[0] + 1 # scaling the value if keep_scaled: scaler_processing = preprocessing.StandardScaler() df_titanic_data['Fare_scaled'] = scaler_processing.fit_transform(df_titanic_data.Fare.reshape(-1, 1)) if keep_bins and keep_scaled: scaler_processing = preprocessing.StandardScaler() df_titanic_data['Fare_bin_id_scaled'] = scaler_processing.fit_transform( df_titanic_data.Fare_bin_id.reshape(-1, 1)) if not keep_strings: df_titanic_data.drop('Fare_bin', axis=1, inplace=True) # Helper function for constructing features from the ticket variable def process_ticket(): global df_titanic_data df_titanic_data['TicketPrefix'] = df_titanic_data['Ticket'].map(lambda y: get_ticket_prefix(y.upper())) df_titanic_data['TicketPrefix'] = df_titanic_data['TicketPrefix'].map(lambda y: re.sub('[\.?\/?]', '', y)) df_titanic_data['TicketPrefix'] = df_titanic_data['TicketPrefix'].map(lambda y: re.sub('STON', 'SOTON', y)) df_titanic_data['TicketPrefixId'] = pd.factorize(df_titanic_data['TicketPrefix'])[0] # binarzing features for each ticket layer if keep_binary: prefixes =
pd.get_dummies(df_titanic_data['TicketPrefix'])
pandas.get_dummies
"""This module contains nodes for signal filtering.""" import numpy as np import pandas as pd from scipy import signal from timeflux.core.branch import Branch from timeflux.core.node import Node from timeflux.nodes.window import Window from timeflux_dsp.utils.filters import ( construct_fir_filter, construct_iir_filter, design_edges, ) from timeflux_dsp.utils.import_helpers import make_object class DropRows(Node): """Decimate signal by an integer factor. This node uses Pandas computationally efficient functions to drop rows. By default, it simply transfers one row out of ``factor`` and drops the others. If ``method`` is `mean` (resp. median), it applies a rolling window of length equals ``factor``, computes the mean and returns one value per window. It maintains an internal state to ensure that every k'th sample is picked even across chunk boundaries. Attributes: i (Port): Default input, expects DataFrame. o (Port): Default output, provides DataFrame. Args: factor (int): Decimation factor. Only every k'th sample will be transferred into the output. method (str|None): Method to use to drop rows. If `None`, the values are transferred as it. If `mean` (resp. `median`), the mean (resp. median) of the samples is taken. Example: .. literalinclude:: /../../timeflux_dsp/test/graphs/droprows.yaml :language: yaml Example: In this exemple, we generate white noise to stream and we drop one sample out of two using DropRows, setting: * ``factor`` = `2` * ``method`` = `None` (see orange trace) | ``method`` = `"mean"` (see green trace) .. image:: /../../timeflux_dsp/doc/static/image/droprows_io.svg :align: center Notes: Note that this node is not supposed to dejitter the timestamps, so if the input chunk is not uniformly sampled, the output chunk won’t be either. Also, this filter does not implement any anti-aliasing filter. Hence, it is recommended to precede this node by a low-pass filter (e.g., FIR or IIR) which cuts out below half of the new sampling rate. """ def __init__(self, factor, method=None): super().__init__() self._factor = factor self._method = method self._previous = pd.DataFrame() def update(self): # copy the meta self.o.meta = self.i.meta # if nominal rate is specified in the meta, update it. if "rate" in self.o.meta: self.o.meta["rate"] /= self._factor # When we have not received data, there is nothing to do if not self.i.ready(): return # At this point, we are sure that we have some data to process self.i.data = pd.concat([self._previous, self.i.data], axis=0, sort=True) n = self.i.data.shape[0] remaining = n % self._factor self.i.data, self._previous = np.split(self.i.data, [n - remaining]) if self._method is None: # take every kth sample with k=factor starting from the k-1 position self.o.data = self.i.data.iloc[self._factor - 1 :: self._factor] else: # estimate rolling mean (or median) with window length=factor and take # every kth sample with k=factor starting from the k-1 position if self._method == "mean": self.o.data = ( self.i.data.rolling( window=self._factor, min_periods=self._factor, center=False ) .mean() .iloc[self._factor - 1 :: self._factor] ) elif self._method == "median": self.o.data = ( self.i.data.rolling( window=self._factor, min_periods=self._factor, center=False ) .median() .iloc[self._factor - 1 :: self._factor] ) class Resample(Node): """Resample signal. This node calls the `scipy.signal.resample` function to decimate the signal using Fourier method. Attributes: i (Port): Default input, expects DataFrame. o (Port): Default output, provides DataFrame. Args: factor (int): Decimation factor. Only every k'th sample will be transferred into the output. window (str|list|float): Specifies the window applied to the signal in the Fourier domain. Default: `None`. Example: .. literalinclude:: /../../timeflux_dsp/test/graphs/resample.yaml :language: yaml Notes: This node should be used after a buffer to assure that the FFT window has always the same length. References: * `scipy.signal.resample <https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.resample.html>`_ """ def __init__(self, factor, window=None): super().__init__() self._factor = factor self._window = window self._previous = pd.DataFrame() def update(self): # copy the meta self.o.meta = self.i.meta # if nominal rate is specified in the meta, update it. if "rate" in self.o.meta: self.o.meta["rate"] /= self._factor # When we have not received data, there is nothing to do if not self.i.ready(): return # At this point, we are sure that we have some data to process n = self.i.data.shape[0] if not self._previous.empty: self.i.data =
pd.concat([self._previous, self.i.data], axis=0)
pandas.concat
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from pandas._libs import lib from pandas._libs.tslibs import ( NaT, iNaT, ) import pandas as pd from pandas import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import pandas._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.isnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert isinstance(pydt, timedelta) and not isinstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert isinstance(td64, np.timedelta64) # this is NOT equal and cannot be roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert isinstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "minute", "min", "minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, pd.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).tolist()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).astype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").astype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").astype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").astype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"), Timedelta("-1 days 02:34:56.789123456"), ), ( "U", Timedelta("1 days 02:34:56.789123000"), Timedelta("-1 days 02:34:56.789123000"), ), ( "L", Timedelta("1 days 02:34:56.789000000"), Timedelta("-1 days 02:34:56.789000000"), ), ("S", Timedelta("1 days 02:34:57"), Timedelta("-1 days 02:34:57")), ("2S", Timedelta("1 days 02:34:56"), Timedelta("-1 days 02:34:56")), ("5S", Timedelta("1 days 02:34:55"), Timedelta("-1 days 02:34:55")), ("T", Timedelta("1 days 02:35:00"), Timedelta("-1 days 02:35:00")), ("12T", Timedelta("1 days 02:36:00"), Timedelta("-1 days 02:36:00")), ("H", Timedelta("1 days 03:00:00"), Timedelta("-1 days 03:00:00")), ("d", Timedelta("1 days"), Timedelta("-1 days")), ], ) def test_round(self, freq, s1, s2): t1 = Timedelta("1 days 02:34:56.789123456") t2 = Timedelta("-1 days 02:34:56.789123456") r1 = t1.round(freq) assert r1 == s1 r2 = t2.round(freq) assert r2 == s2 def test_round_invalid(self): t1 = Timedelta("1 days 02:34:56.789123456") for freq, msg in [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ]: with pytest.raises(ValueError, match=msg): t1.round(freq) def test_round_implementation_bounds(self): # See also: analogous test for Timestamp # GH#38964 result = Timedelta.min.ceil("s") expected = Timedelta.min + Timedelta(seconds=1) - Timedelta(145224193) assert result == expected result = Timedelta.max.floor("s") expected = Timedelta.max - Timedelta(854775807) assert result == expected with pytest.raises(OverflowError, match="value too large"): Timedelta.min.floor("s") # the second message here shows up in windows builds msg = "|".join( ["Python int too large to convert to C long", "int too big to convert"] ) with pytest.raises(OverflowError, match=msg): Timedelta.max.ceil("s") @pytest.mark.parametrize("n", range(100)) @pytest.mark.parametrize( "method", [Timedelta.round, Timedelta.floor, Timedelta.ceil] ) def test_round_sanity(self, method, n, request): val = np.random.randint(iNaT + 1, lib.i8max, dtype=np.int64) td = Timedelta(val) assert method(td, "ns") == td res = method(td, "us") nanos = 1000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "ms") nanos = 1_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "s") nanos = 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "min") nanos = 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "h") nanos = 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "D") nanos = 24 * 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit="d") + offsets.Hour(1) for v in [NaT, None, float("nan"), np.nan]: assert not (v in td) td = to_timedelta([NaT]) for v in [NaT, None, float("nan"), np.nan]: assert v in td def test_identity(self): td = Timedelta(10, unit="d") assert isinstance(td, Timedelta) assert isinstance(td, timedelta) def test_short_format_converters(self): def conv(v): return v.astype("m8[ns]") assert Timedelta("10") == np.timedelta64(10, "ns") assert Timedelta("10ns") == np.timedelta64(10, "ns") assert Timedelta("100") == np.timedelta64(100, "ns") assert Timedelta("100ns") == np.timedelta64(100, "ns") assert Timedelta("1000") == np.timedelta64(1000, "ns") assert Timedelta("1000ns") == np.timedelta64(1000, "ns") assert Timedelta("1000NS") == np.timedelta64(1000, "ns") assert Timedelta("10us") == np.timedelta64(10000, "ns") assert Timedelta("100us") == np.timedelta64(100000, "ns") assert Timedelta("1000us") == np.timedelta64(1000000, "ns") assert Timedelta("1000Us") == np.timedelta64(1000000, "ns") assert Timedelta("1000uS") == np.timedelta64(1000000, "ns") assert Timedelta("1ms") == np.timedelta64(1000000, "ns") assert Timedelta("10ms") == np.timedelta64(10000000, "ns") assert Timedelta("100ms") == np.timedelta64(100000000, "ns") assert Timedelta("1000ms") == np.timedelta64(1000000000, "ns") assert Timedelta("-1s") == -np.timedelta64(1000000000, "ns") assert Timedelta("1s") == np.timedelta64(1000000000, "ns") assert Timedelta("10s") == np.timedelta64(10000000000, "ns") assert Timedelta("100s") == np.timedelta64(100000000000, "ns") assert Timedelta("1000s") == np.timedelta64(1000000000000, "ns") assert Timedelta("1d") == conv(np.timedelta64(1, "D")) assert Timedelta("-1d") == -conv(np.timedelta64(1, "D")) assert Timedelta("1D") == conv(np.timedelta64(1, "D")) assert Timedelta("10D") == conv(np.timedelta64(10, "D")) assert Timedelta("100D") == conv(np.timedelta64(100, "D")) assert Timedelta("1000D") == conv(np.timedelta64(1000, "D")) assert Timedelta("10000D") == conv(np.timedelta64(10000, "D")) # space assert
Timedelta(" 10000D ")
pandas.Timedelta
"""Contains plotting code used by the web server.""" from datetime import timedelta from bokeh.models import ( ColumnDataSource, CustomJS, DataRange1d, Range1d, Whisker, LabelSet, HoverTool, ) from bokeh.models.formatters import DatetimeTickFormatter from bokeh.layouts import row, Row from bokeh.plotting import figure from bokeh.transform import factor_cmap from django.db.models import F import pandas as pd import networkx as nx from vast_pipeline.models import Measurement, Source def plot_lightcurve( source: Source, vs_abs_min: float = 4.3, m_abs_min: float = 0.26, use_peak_flux: bool = True, ) -> Row: """Create the lightcurve and 2-epoch metric graph for a source with Bokeh. Args: source (Source): Source object. vs_abs_min (float, optional): pairs of Measurement objects with an absolute vs metric greater than `vs_abs_min` and m metric greater than `m_abs_min` will be connected in the metric graph. Defaults to 4.3. m_abs_min (float, optional): See `vs_abs_min`. Defaults to 0.26. use_peak_flux (bool, optional): If True, use peak fluxes, otherwise use integrated fluxes. Defaults to True. Returns: Row: Bokeh Row layout object containing the lightcurve and graph plots. """ PLOT_WIDTH = 800 PLOT_HEIGHT = 300 flux_column = "flux_peak" if use_peak_flux else "flux_int" metric_suffix = "peak" if use_peak_flux else "int" measurements_qs = ( Measurement.objects.filter(source__id=source.id) .annotate( taustart_ts=F("image__datetime"), flux=F(flux_column), flux_err_lower=F(flux_column) - F(f"{flux_column}_err"), flux_err_upper=F(flux_column) + F(f"{flux_column}_err"), ) .values( "id", "pk", "taustart_ts", "flux", "flux_err_upper", "flux_err_lower", "forced", ) .order_by("taustart_ts") ) # lightcurve required cols: taustart_ts, flux, flux_err_upper, flux_err_lower, forced lightcurve = pd.DataFrame(measurements_qs) # remap method values to labels to make a better legend lightcurve["method"] = lightcurve.forced.map({True: "Forced", False: "Selavy"}) lc_source = ColumnDataSource(lightcurve) method_mapper = factor_cmap( "method", palette="Colorblind3", factors=["Selavy", "Forced"] ) min_y = min(0, lightcurve.flux_err_lower.min()) max_y = lightcurve.flux_err_upper.max() y_padding = (max_y - min_y) * 0.1 fig_lc = figure( plot_width=PLOT_WIDTH, plot_height=PLOT_HEIGHT, sizing_mode="stretch_width", x_axis_type="datetime", x_range=DataRange1d(default_span=timedelta(days=1)), y_range=DataRange1d(start=min_y, end=max_y + y_padding), ) # line source must be a COPY of the data for the scatter source for the hover and # selection to work properly, using the same ColumnDataSource will break it fig_lc.line("taustart_ts", "flux", source=lightcurve) lc_scatter = fig_lc.scatter( "taustart_ts", "flux", marker="circle", size=6, color=method_mapper, nonselection_color=method_mapper, selection_color="red", nonselection_alpha=1.0, hover_color="red", alpha=1.0, source=lc_source, legend_group="method", ) fig_lc.add_layout( Whisker( base="taustart_ts", upper="flux_err_upper", lower="flux_err_lower", source=lc_source, ) ) fig_lc.xaxis.axis_label = "Datetime" fig_lc.xaxis[0].formatter = DatetimeTickFormatter(days="%F", hours='%H:%M') fig_lc.yaxis.axis_label = ( "Peak flux (mJy/beam)" if use_peak_flux else "Integrated flux (mJy)" ) # determine legend location: either bottom_left or top_left legend_location = ( "top_left" if lightcurve.sort_values("taustart_ts").iloc[0].flux < (max_y - min_y) / 2 else "bottom_left" ) fig_lc.legend.location = legend_location # TODO add vs and m metrics to graph edges # create plot fig_graph = figure( plot_width=PLOT_HEIGHT, plot_height=PLOT_HEIGHT, x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1), x_axis_type=None, y_axis_type=None, sizing_mode="fixed", ) hover_tool_lc_callback = None measurement_pairs = source.get_measurement_pairs() if len(measurement_pairs) > 0: candidate_measurement_pairs_df =
pd.DataFrame(measurement_pairs)
pandas.DataFrame
#============================================================================== # Import packages #============================================================================== import numpy as np import pandas as pd # Utilities from sklearn.utils import resample # Transformer to select a subset of the Pandas DataFrame columns from sklearn.base import BaseEstimator, TransformerMixin # Pipeline from sklearn.pipeline import Pipeline from sklearn.pipeline import FeatureUnion # Data preprocessing from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures # Feature selection from sklearn.feature_selection import VarianceThreshold #============================================================================== # Custom transformer classes #============================================================================== # Class to select columns class FeatureSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, x): return self def transform(self, x): return x[self.attribute_names].values # Class to impute textual category class ImputerTextualCategory(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, df, y=None): return self def transform(self, x): return pd.DataFrame(x).apply(lambda x: x.fillna(x.value_counts().index[0])) # Class to encode labels across multiple columns class MultiColumnLabelEncoder(BaseEstimator, TransformerMixin): def __init__(self, astype=int): self.astype = astype def fit(self, x, y=None): return self def transform(self, x, y=None): if self.astype == int: return pd.DataFrame(x).apply(LabelEncoder().fit_transform) else: return pd.DataFrame(x).apply(LabelEncoder().fit_transform).astype(str) # Class for one-hot encoding of textual categorical values and optionally # drop the first dummy feature (if multi-collinearity is a concern) class GetDummies(BaseEstimator, TransformerMixin): def __init__(self, drop_first=False): self.drop_first = drop_first def fit(self, x, y=None): return self def transform(self, x): return pd.get_dummies(x, drop_first=self.drop_first) #============================================================================== # Initialization Settings #============================================================================== ID = 'id' Y = 'y' DIR = "input" DATAFILE = "{0}/data_example.csv".format(DIR) NTRAINROWS = None # Number of rows of data file to read; None reads all rows UPSAMPLEPCT = .4 # Percent of samples to have positive class; 0 <= pct < 1 SEED = 42 # Seed state for reproducibility VARTHRESHOLD = .001 # Minimum variability allowed for features #============================================================================== # Data import #============================================================================== df =
pd.read_csv(DATAFILE, index_col=ID, header=0, nrows=NTRAINROWS)
pandas.read_csv
from os.path import join import numpy as np import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt from src import utils as cutil def convert_non_monotonic_to_nan(array): """Converts a numpy array to a monotonically increasing one. Args: array (numpy.ndarray [N,]): input array Returns: numpy.ndarray [N,]: some values marked as missing, all non-missing values should be monotonically increasing Usage: >>> convert_non_monotonic_to_nan(np.array([0, 0, 5, 3, 4, 6, 3, 7, 6, 7, 8])) np.array([ 0., 0., np.nan, 3., np.nan, np.nan, 3., np.nan, 6., 7., 8.]) """ keep = np.arange(0, len(array)) is_monotonic = False while not is_monotonic: is_monotonic_array = np.hstack( (array[keep][1:] >= array[keep][:-1], np.array(True)) ) is_monotonic = is_monotonic_array.all() keep = keep[is_monotonic_array] out_array = np.full_like(array.astype(np.float), np.nan) out_array[keep] = array[keep] return out_array def log_interpolate(array): """Interpolates assuming log growth. Args: array (numpy.ndarray [N,]): input array with missing values Returns: numpy.ndarray [N,]: all missing values will be filled Usage: >>> log_interpolate(np.array([0, np.nan, 2, np.nan, 4, 6, np.nan, 7, 8])) np.array([0, 0, 2, 3, 4, 6, 7, 7, 8]) """ idx = np.arange(0, len(array)) log_array = np.log(array.astype(np.float32) + 1e-1) interp_array = np.interp( x=idx, xp=idx[~np.isnan(array)], fp=log_array[~np.isnan(array)] ) return np.round(np.exp(interp_array)).astype(int) DATA_CHINA = cutil.DATA_RAW / "china" health_dxy_file = join(DATA_CHINA, "DXYArea.csv") health_jan_file = join(DATA_CHINA, "china_city_health_jan.xlsx") policy_file = join(DATA_CHINA, "CHN_policy_data_sources.csv") pop_file = join(DATA_CHINA, "china_city_pop.csv") output_file = cutil.DATA_PROCESSED / "adm2" / "CHN_processed.csv" match_file = join(DATA_CHINA, "match_china_city_name_w_adm2.csv") shp_file = cutil.DATA_INTERIM / "adm" / "adm2" / "adm2.shp" end_date_file = cutil.CODE / "data" / "cutoff_dates.csv" end_date = pd.read_csv(end_date_file) (end_date,) = end_date.loc[end_date["tag"] == "default", "end_date"].values end_date = str(end_date) print("End Date: ", end_date) ## Load and clean pre 01/24 data # load pre 01/24 data df_jan = pd.read_excel(health_jan_file, sheet_name=None) # process pre 1/24 data df_jan_merged = pd.DataFrame(columns=["adm0_name", "adm1_name", "adm2_name", "date"]) for old_col, new_col in zip( ["confirmed", "death", "recovery"], ["cum_confirmed_cases", "cum_deaths", "cum_recoveries"], ): melted = ( df_jan[old_col] .melt( id_vars=["adm0_name", "adm1_name", "adm2_name"], var_name="date", value_name=new_col, ) .dropna() ) df_jan_merged = pd.merge( df_jan_merged, melted, how="outer", on=["adm0_name", "adm1_name", "adm2_name", "date"], ) df_jan_merged = df_jan_merged.loc[df_jan_merged["adm2_name"] != "Unknown", :] ## Load and clean main data (scraped), harmonize city names # data downloaded from # https://github.com/BlankerL/DXY-COVID-19-Data df = pd.read_csv(health_dxy_file) # drop aggregates and cases in other countries df = df.loc[df["countryEnglishName"] == "China", :] df = df.loc[df["cityName"].notna(), :] # df.describe(include='all') # quick summary # df['provinceName'].unique() # looks clean # df['provinceEnglishName'].unique() # looks clean # df['cityName'].unique() # looks messy, will keep raw data # # check unique English name for obs with the same Chinese cityName # for cn_name, group in df.groupby(['provinceName', 'cityName']): # en_name = group['cityEnglishName'].unique() # if len(en_name) > 1: # print(cn_name) # print(en_name) # print(group['cityEnglishName'].shape) # print(group['cityEnglishName'].value_counts()) # # check all english city names # for en_name, _ in df.groupby(['provinceEnglishName', 'cityEnglishName']): # print(en_name) # # check all chinese city names # for cn_name, _ in df.groupby(['provinceName', 'cityName']): # print(cn_name) # set and sort index df = df.set_index(["provinceName", "cityName"]).sort_index() # record notes df.loc[:, "notes"] = np.nan # recode city English names based on Chinese names cityEnglishName_dict = { # 'provinceName', 'cityName': 'cityEnglishName', 'assignedToCity' # for prisons ("浙江省", "省十里丰监狱"): ("Shilifeng Prison", "prison"), ("山东省", "任城监狱"): ("Rencheng Prison", "prison"), ("湖北省", "监狱系统"): ("Prison", "prison"), # for harmonizing names ("四川省", "凉山"): ("Liangshan Yi Autonomous Prefecture", np.nan), ("四川省", "凉山州"): ("Liangshan Yi Autonomous Prefecture", np.nan), # for imported cases (None, "境外输入人员"): ("International Imported Cases", "imported"), (None, "外地来沪人员"): ("Domestic Imported Cases", "imported"), (None, "武汉来京人员"): ("Domestic Imported Cases", "imported"), (None, "外地来京人员"): ("Domestic Imported Cases", "imported"), (None, "外地来津"): ("Domestic Imported Cases", "imported"), (None, "外地来津人员"): ("Domestic Imported Cases", "imported"), (None, "外地来穗人员"): ("Domestic Imported Cases", "imported"), (None, "外地来粤人员"): ("Domestic Imported Cases", "imported"), # for unknown (None, "待明确地区"): ("Unknown", "unknown"), (None, "未明确地区"): ("Unknown", "unknown"), (None, "未知"): ("Unknown", "unknown"), (None, "未知地区"): ("Unknown", "unknown"), (None, "不明地区"): ("Unknown", "unknown"), (None, "未明确地区"): ("Unknown", "unknown"), (None, "待明确"): ("Unknown", "unknown"), } # clean up cityEnglishName for cn_name, values in cityEnglishName_dict.items(): cn_name = tuple(slice(s) if s is None else s for s in cn_name) df.loc[cn_name, ["cityEnglishName", "notes"]] = values # # check remaining missing values # df.loc[df['cityEnglishName'].isna(), :].index.unique().tolist() # add new admin level df.loc[:, "adm3_name"] = "N/A" # recode city English names based on Chinese names cityEnglishName_dict = { ("上海市", "金山"): "Jinshan District", ("云南省", "红河"): "Honghe", ("云南省", "西双版纳州"): "Xishuangbanna", ("内蒙古自治区", "赤峰市松山区"): ("Chifeng", "Songshan"), ("内蒙古自治区", "赤峰市林西县"): ("Chifeng", "Linxi"), ("内蒙古自治区", "通辽市经济开发区"): "Tongliao", ("内蒙古自治区", "鄂尔多斯东胜区"): ("Ordos", "Dongsheng"), ("内蒙古自治区", "鄂尔多斯鄂托克前旗"): ("Ordos", "Etuokeqianqi"), ("内蒙古自治区", "锡林郭勒"): "Xilingol League", ("内蒙古自治区", "锡林郭勒盟"): "Xilingol League", ("内蒙古自治区", "锡林郭勒盟二连浩特"): ("Xilingol League", "Erlianhaote"), ("内蒙古自治区", "锡林郭勒盟锡林浩特"): ("Xilingol League", "Xilinhaote"), ("北京市", "石景山"): "Shijingshan District", ("北京市", "西城"): "Xicheng District", ("北京市", "通州"): "Tongzhou District", ("北京市", "门头沟"): "Mentougou District", ("北京市", "顺义"): "Shunyi District", ( "新疆维吾尔自治区", "石河子", ): "Shihezi, Xinjiang Production and Construction Corps 8th Division", ("新疆维吾尔自治区", "第七师"): "Xinjiang Production and Construction Corps 7th Division", ("新疆维吾尔自治区", "第九师"): "Xinjiang Production and Construction Corps 9th Division", ( "新疆维吾尔自治区", "第八师", ): "Shihezi, Xinjiang Production and Construction Corps 8th Division", ( "新疆维吾尔自治区", "第八师石河子", ): "Shihezi, Xinjiang Production and Construction Corps 8th Division", ( "新疆维吾尔自治区", "第八师石河子市", ): "Shihezi, Xinjiang Production and Construction Corps 8th Division", ("新疆维吾尔自治区", "第六师"): "Xinjiang Production and Construction Corps 6th Division", ("新疆维吾尔自治区", "胡杨河"): ( "Xinjiang Production and Construction Corps 7th Division", "Huyanghe", ), ("新疆维吾尔自治区", "阿克苏"): "Akesu", ("河北省", "邯郸市"): "Handan", ("河南省", "邓州"): "Zhengzhou", ("河南省", "长垣"): "Changyuan", ("河南省", "长垣县"): "Changyuan", ("河南省", "鹤壁市"): "Hebi", ("海南省", "陵水县"): "Lingshui Li Autonomous County", ("甘肃省", "白银市"): "Baiyin", ("甘肃省", "金昌市"): "Jinchang", ("重庆市", "石柱"): "Shizhu Tujia Autonomous County", ("重庆市", "秀山"): "Xiushan Tujia and Miao Autonomous County", ("重庆市", "酉阳"): "Youyang Tujia and Miao Autonomous County", ("青海省", "西宁市"): "Xining", # this is not missing but a typo in the original dataset ("河南省", "邓州"): "Dengzhou", ("江苏省", "淮安"): "Huai'an", } # clean up cityEnglishName for cn_name, values in cityEnglishName_dict.items(): if isinstance(values, str): df.loc[cn_name, "cityEnglishName"] = values elif len(values) == 2: df.loc[cn_name, ["cityEnglishName", "adm3_name"]] = values # rename variables df.rename( { "provinceEnglishName": "adm1_name", "cityEnglishName": "adm2_name", "city_confirmedCount": "cum_confirmed_cases", "city_deadCount": "cum_deaths", "city_curedCount": "cum_recoveries", }, axis=1, inplace=True, ) # extract dates df.loc[:, "updateTime"] = pd.to_datetime(df["updateTime"]) df.loc[:, "date"] = df["updateTime"].dt.date df.loc[:, "date"] = pd.to_datetime(df["date"]) # choose the latest observation in each day df = df.sort_values(by=["updateTime"]) df = df.drop_duplicates( subset=["adm1_name", "adm2_name", "adm3_name", "date"], keep="last" ) # subset columns df = df.loc[ :, [ "adm1_name", "adm2_name", "adm3_name", "date", "notes", "cum_confirmed_cases", "cum_deaths", "cum_recoveries", ], ] # for big cities, adjust adm level mask = df["adm1_name"].isin(["Shanghai", "Beijing", "Tianjin", "Chongqing"]) df.loc[mask, "adm3_name"] = df.loc[mask, "adm2_name"].tolist() df.loc[mask, "adm2_name"] = df.loc[mask, "adm1_name"].tolist() # drop cases unassigned to cities df = df.loc[df["notes"] != "prison", :] df = df.loc[ ~df["adm2_name"].isin( ["International Imported Cases", "Domestic Imported Cases", "Unknown"] ), :, ] # aggregate to city level df = ( df.groupby(["adm1_name", "adm2_name", "date"]) .agg( cum_confirmed_cases=pd.NamedAgg( column="cum_confirmed_cases", aggfunc=np.nansum ), cum_deaths=pd.NamedAgg(column="cum_deaths", aggfunc=np.nansum), cum_recoveries=pd.NamedAgg(column="cum_recoveries", aggfunc=np.nansum), ) .reset_index() ) # fill adm0_name variable df.loc[:, "adm0_name"] = "CHN" ## Merge with pre 01/24 data, create balanced panel # merge with pre 1/24 data df = pd.concat([df, df_jan_merged], sort=False) # createa balanced panel adm = df.loc[:, ["adm0_name", "adm1_name", "adm2_name"]].drop_duplicates() days = pd.date_range(start="20200110", end=end_date) adm_days = pd.concat([adm.assign(date=d) for d in days]) print(f"Sample: {len(adm)} cities; {len(days)} days.") df = pd.merge( adm_days, df, how="left", on=["adm0_name", "adm1_name", "adm2_name", "date"] ) # fill N/A for the first day df.loc[df["date"] == pd.Timestamp("2020-01-10"), :] = df.loc[ df["date"] == pd.Timestamp("2020-01-10"), : ].fillna(0) # forward fill df = df.set_index(["adm0_name", "adm1_name", "adm2_name"]).sort_index() for _, row in adm.iterrows(): df.loc[tuple(row), :] = df.loc[tuple(row), :].fillna(method="ffill") ## Load and clean policy data # load dataset of the policies in China df_policy = pd.read_csv(policy_file).dropna(how="all") # subset columns df_policy = df_policy.loc[ :, ["adm0_name", "adm1_name", "adm2_name", "date_start", "date_end", "policy"] ] # save set of policies policy_set = df_policy["policy"].unique().tolist() # parse df_policy.loc[:, "date_start"] = pd.to_datetime(df_policy["date_start"]) df_policy.loc[:, "date_end"] = pd.to_datetime(df_policy["date_end"]) # check city name agreement policy_city_set = set( df_policy.loc[:, ["adm0_name", "adm1_name", "adm2_name"]] .drop_duplicates() .apply(tuple, axis=1) .tolist() ) adm2_set = set(adm.drop_duplicates().apply(tuple, axis=1).tolist()) adm1_set = set( adm.loc[:, ["adm0_name", "adm1_name"]] .drop_duplicates() .apply(lambda x: (*x, "All"), axis=1) .tolist() ) print("Mismatched: ", policy_city_set - (adm1_set | adm2_set)) # subset adm1 policies adm1_policy = df_policy.loc[df_policy["adm2_name"] == "All", :] # merge to create balanced panel adm1_policy = pd.merge( adm, adm1_policy.drop(["adm2_name"], axis=1), how="left", on=["adm0_name", "adm1_name"], ).dropna(subset=["policy"]) print("no. of adm1 policies: ", adm1_policy.shape[0]) # subset adm2 policies adm2_policy = df_policy.loc[df_policy["adm2_name"] != "All", :] print("no. of adm2 policies: ", adm2_policy.shape[0]) # concat policies at different levels df_policy = pd.concat([adm1_policy, adm2_policy]) # sort by date to discard duplicates df_policy = df_policy.sort_values(by=["date_start"]) # drop duplicates df_policy = df_policy.drop_duplicates( subset=["adm1_name", "adm2_name", "policy"], keep="first" ) df_policy_set = set( df_policy.loc[:, ["adm0_name", "adm1_name", "adm2_name"]] .drop_duplicates() .apply(tuple, axis=1) .tolist() ) print("Cities without any policies: ", len(adm2_set - df_policy_set)) print(adm2_set - df_policy_set) # unstack to flip policy type to columns df_policy = df_policy.set_index( ["adm0_name", "adm1_name", "adm2_name", "policy"] ).unstack("policy") # prepare to merge with multi index adm_days.set_index(["adm0_name", "adm1_name", "adm2_name"], inplace=True) adm_days.columns =
pd.MultiIndex.from_tuples([("date", "")])
pandas.MultiIndex.from_tuples
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame =
sql.read_sql_query("SELECT * FROM iris_view", self.conn)
pandas.io.sql.read_sql_query
# -*- coding: utf-8 -*- """Device curtailment plots. This module creates plots are related to the curtailment of generators. @author: <NAME> """ import os import logging import pandas as pd from collections import OrderedDict import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.dates as mdates import matplotlib.ticker as mtick import marmot.config.mconfig as mconfig import marmot.plottingmodules.plotutils.plot_library as plotlib from marmot.plottingmodules.plotutils.plot_data_helper import PlotDataHelper from marmot.plottingmodules.plotutils.plot_exceptions import (MissingInputData, DataSavedInModule, UnderDevelopment, MissingZoneData) class MPlot(PlotDataHelper): """curtailment MPlot class. All the plotting modules use this same class name. This class contains plotting methods that are grouped based on the current module name. The curtailment.py module contains methods that are related to the curtailment of generators . MPlot inherits from the PlotDataHelper class to assist in creating figures. """ def __init__(self, argument_dict: dict): """ Args: argument_dict (dict): Dictionary containing all arguments passed from MarmotPlot. """ # iterate over items in argument_dict and set as properties of class # see key_list in Marmot_plot_main for list of properties for prop in argument_dict: self.__setattr__(prop, argument_dict[prop]) # Instantiation of MPlotHelperFunctions super().__init__(self.Marmot_Solutions_folder, self.AGG_BY, self.ordered_gen, self.PLEXOS_color_dict, self.Scenarios, self.ylabels, self.xlabels, self.gen_names_dict, Region_Mapping=self.Region_Mapping) self.logger = logging.getLogger('marmot_plot.'+__name__) self.x = mconfig.parser("figure_size","xdimension") self.y = mconfig.parser("figure_size","ydimension") self.y_axes_decimalpt = mconfig.parser("axes_options","y_axes_decimalpt") self.curtailment_prop = mconfig.parser("plot_data","curtailment_property") def curt_duration_curve(self, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Curtailment duration curve (line plot) Displays curtailment sorted from highest occurrence to lowest over given time period. Args: prop (str, optional): Controls type of re to include in plot. Controlled through the plot_select.csv. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,f"generator_{self.curtailment_prop}",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() for zone_input in self.Zones: self.logger.info(f"{self.AGG_BY} = {zone_input}") RE_Curtailment_DC = pd.DataFrame() PV_Curtailment_DC = pd.DataFrame() for scenario in self.Scenarios: self.logger.info(f"Scenario = {scenario}") re_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) # Timeseries [MW] RE curtailment [MWh] try: #Check for regions missing all generation. re_curt = re_curt.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info(f'No curtailment in {zone_input}') continue re_curt = self.df_process_gen_inputs(re_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': re_curt = self.assign_curtailment_techs(re_curt) # Timeseries [MW] PV curtailment [MWh] pv_curt = re_curt[re_curt.columns.intersection(self.pv_gen_cat)] re_curt = re_curt.sum(axis=1) pv_curt = pv_curt.sum(axis=1) re_curt = re_curt.squeeze() #Convert to Series pv_curt = pv_curt.squeeze() #Convert to Series if pd.notna(start_date_range): self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") re_curt = re_curt[start_date_range : end_date_range] pv_curt = pv_curt[start_date_range : end_date_range] if re_curt.empty is True and prop == "PV+Wind": self.logger.warning('No data in selected Date Range') continue if pv_curt.empty is True and prop == "PV": self.logger.warning('No data in selected Date Range') continue # Sort from larget to smallest re_cdc = re_curt.sort_values(ascending=False).reset_index(drop=True) pv_cdc = pv_curt.sort_values(ascending=False).reset_index(drop=True) re_cdc.rename(scenario, inplace=True) pv_cdc.rename(scenario, inplace=True) RE_Curtailment_DC = pd.concat([RE_Curtailment_DC, re_cdc], axis=1, sort=False) PV_Curtailment_DC = pd.concat([PV_Curtailment_DC, pv_cdc], axis=1, sort=False) # Remove columns that have values less than 1 RE_Curtailment_DC = RE_Curtailment_DC.loc[:, (RE_Curtailment_DC >= 1).any(axis=0)] PV_Curtailment_DC = PV_Curtailment_DC.loc[:, (PV_Curtailment_DC >= 1).any(axis=0)] # Replace _ with white space RE_Curtailment_DC.columns = RE_Curtailment_DC.columns.str.replace('_',' ') PV_Curtailment_DC.columns = PV_Curtailment_DC.columns.str.replace('_',' ') # Create Dictionary from scenario names and color list colour_dict = dict(zip(RE_Curtailment_DC.columns, self.color_list)) fig2, ax = plt.subplots(figsize=(self.x,self.y)) if prop == "PV": if PV_Curtailment_DC.empty: out = MissingZoneData() outputs[zone_input] = out continue # unit conversion return divisor and energy units unitconversion = PlotDataHelper.capacity_energy_unitconversion(PV_Curtailment_DC.values.max()) PV_Curtailment_DC = PV_Curtailment_DC/unitconversion['divisor'] Data_Table_Out = PV_Curtailment_DC Data_Table_Out = Data_Table_Out.add_suffix(f" ({unitconversion['units']})") x_axis_lim = 1.25 * len(PV_Curtailment_DC) for column in PV_Curtailment_DC: ax.plot(PV_Curtailment_DC[column], linewidth=3, color=colour_dict[column], label=column) ax.legend(loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) ax.set_ylabel(f"PV Curtailment ({unitconversion['units']})", color='black', rotation='vertical') if prop == "PV+Wind": if RE_Curtailment_DC.empty: out = MissingZoneData() outputs[zone_input] = out continue # unit conversion return divisor and energy units unitconversion = PlotDataHelper.capacity_energy_unitconversion(RE_Curtailment_DC.values.max()) RE_Curtailment_DC = RE_Curtailment_DC/unitconversion['divisor'] Data_Table_Out = RE_Curtailment_DC Data_Table_Out = Data_Table_Out.add_suffix(f" ({unitconversion['units']})") x_axis_lim = 1.25 * len(RE_Curtailment_DC) for column in RE_Curtailment_DC: ax.plot(RE_Curtailment_DC[column], linewidth=3, color=colour_dict[column], label=column) ax.legend(loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) ax.set_ylabel(f"PV + Wind Curtailment ({unitconversion['units']})", color='black', rotation='vertical') ax.set_xlabel('Hours', color='black', rotation='horizontal') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis='y', which='major', length=5, width=1) ax.tick_params(axis='x', which='major', length=5, width=1) ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda x, p: format(x, f',.{self.y_axes_decimalpt}f'))) ax.margins(x=0.01) #ax.set_xlim(0, 9490) ax.set_xlim(0,x_axis_lim) ax.set_ylim(bottom=0) if mconfig.parser("plot_title_as_region"): ax.set_title(zone_input) outputs[zone_input] = {'fig': fig2, 'data_table': Data_Table_Out} return outputs def curt_pen(self, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Plot of curtailment vs penetration. Each scenario is represented by a different symbel on a x, y axis Args: prop (str, optional): Controls type of re to include in plot. Controlled through the plot_select.csv. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True, "generator_Generation", self.Scenarios), (True, "generator_Available_Capacity", self.Scenarios), (True, f"generator_{self.curtailment_prop}", self.Scenarios), (True, "generator_Total_Generation_Cost", self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() for zone_input in self.Zones: Penetration_Curtailment_out = pd.DataFrame() self.logger.info(f"{self.AGG_BY } = {zone_input}") for scenario in self.Scenarios: self.logger.info(f"Scenario = {scenario}") gen = self["generator_Generation"].get(scenario) try: #Check for regions missing all generation. gen = gen.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info(f'No generation in {zone_input}') continue avail_gen = self["generator_Available_Capacity"].get(scenario) avail_gen = avail_gen.xs(zone_input,level=self.AGG_BY) re_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) try: re_curt = re_curt.xs(zone_input,level=self.AGG_BY) except KeyError: self.logger.info(f'No curtailment in {zone_input}') continue re_curt = self.df_process_gen_inputs(re_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': re_curt = self.assign_curtailment_techs(re_curt) # Finds the number of unique hours in the year no_hours_year = len(gen.index.unique(level="timestamp")) # Total generation across all technologies [MWh] total_gen = float(gen.sum()) # Timeseries [MW] and Total VRE generation [MWh] vre_gen = (gen.loc[(slice(None), self.vre_gen_cat),:]) total_vre_gen = float(vre_gen.sum()) # Timeseries [MW] and Total RE generation [MWh] re_gen = (gen.loc[(slice(None), self.re_gen_cat),:]) total_re_gen = float(re_gen.sum()) # Timeseries [MW] and Total PV generation [MWh] pv_gen = (gen.loc[(slice(None), self.pv_gen_cat),:]) total_pv_gen = float(pv_gen.sum()) # % Penetration of generation classes across the year VRE_Penetration = (total_vre_gen/total_gen)*100 RE_Penetration = (total_re_gen/total_gen)*100 PV_Penetration = (total_pv_gen/total_gen)*100 # Timeseries [MW] and Total RE available [MWh] re_avail = (avail_gen.loc[(slice(None), self.re_gen_cat),:]) total_re_avail = float(re_avail.sum()) # Timeseries [MW] and Total PV available [MWh] pv_avail = (avail_gen.loc[(slice(None), self.pv_gen_cat),:]) total_pv_avail = float(pv_avail.sum()) # Total RE curtailment [MWh] total_re_curt = float(re_curt.sum().sum()) # Timeseries [MW] and Total PV curtailment [MWh] pv_curt = re_curt[re_curt.columns.intersection(self.pv_gen_cat)] total_pv_curt = float(pv_curt.sum().sum()) # % of hours with curtailment Prct_hr_RE_curt = (len((re_curt.sum(axis=1)).loc[(re_curt.sum(axis=1))>0])/no_hours_year)*100 Prct_hr_PV_curt = (len((pv_curt.sum(axis=1)).loc[(pv_curt.sum(axis=1))>0])/no_hours_year)*100 # Max instantaneous curtailment if re_curt.empty == True: continue else: Max_RE_Curt = max(re_curt.sum(axis=1)) if pv_curt.empty == True: continue else: Max_PV_Curt = max(pv_curt.sum(axis=1)) # % RE and PV Curtailment Capacity Factor if total_pv_curt > 0: RE_Curt_Cap_factor = (total_re_curt/Max_RE_Curt)/no_hours_year PV_Curt_Cap_factor = (total_pv_curt/Max_PV_Curt)/no_hours_year else: RE_Curt_Cap_factor = 0 PV_Curt_Cap_factor = 0 # % Curtailment across the year if total_re_avail == 0: continue else: Prct_RE_curt = (total_re_curt/total_re_avail)*100 if total_pv_avail == 0: continue else: Prct_PV_curt = (total_pv_curt/total_pv_avail)*100 # Total generation cost Total_Gen_Cost = self["generator_Total_Generation_Cost"].get(scenario) Total_Gen_Cost = Total_Gen_Cost.xs(zone_input,level=self.AGG_BY) Total_Gen_Cost = float(Total_Gen_Cost.sum()) vg_out = pd.Series([PV_Penetration ,RE_Penetration, VRE_Penetration, Max_PV_Curt, Max_RE_Curt, Prct_PV_curt, Prct_RE_curt, Prct_hr_PV_curt, Prct_hr_RE_curt, PV_Curt_Cap_factor, RE_Curt_Cap_factor, Total_Gen_Cost], index=["% PV Penetration", "% RE Penetration", "% VRE Penetration", "Max PV Curtailment [MW]", "Max RE Curtailment [MW]", "% PV Curtailment", '% RE Curtailment',"% PV hrs Curtailed", "% RE hrs Curtailed", "PV Curtailment Capacity Factor", "RE Curtailment Capacity Factor", "Gen Cost"]) vg_out = vg_out.rename(scenario) Penetration_Curtailment_out = pd.concat([Penetration_Curtailment_out, vg_out], axis=1, sort=False) Penetration_Curtailment_out = Penetration_Curtailment_out.T # Data table of values to return to main program Data_Table_Out = Penetration_Curtailment_out VG_index = pd.Series(Penetration_Curtailment_out.index) # VG_index = VG_index.str.split(n=1, pat="_", expand=True) # VG_index.rename(columns = {0:"Scenario"}, inplace=True) VG_index.rename("Scenario", inplace=True) # VG_index = VG_index["Scenario"] Penetration_Curtailment_out.loc[:, "Scenario"] = VG_index[:,].values marker_dict = dict(zip(VG_index.unique(), self.marker_style)) colour_dict = dict(zip(VG_index.unique(), self.color_list)) Penetration_Curtailment_out["colour"] = [colour_dict.get(x, '#333333') for x in Penetration_Curtailment_out.Scenario] Penetration_Curtailment_out["marker"] = [marker_dict.get(x, '.') for x in Penetration_Curtailment_out.Scenario] if Penetration_Curtailment_out.empty: self.logger.warning(f'No Generation in {zone_input}') out = MissingZoneData() outputs[zone_input] = out continue fig1, ax = plt.subplots(figsize=(self.x,self.y)) for index, row in Penetration_Curtailment_out.iterrows(): if prop == "PV": ax.scatter(row["% PV Penetration"], row["% PV Curtailment"], marker=row["marker"], c=row["colour"], s=100, label = row["Scenario"]) ax.set_ylabel('% PV Curtailment', color='black', rotation='vertical') ax.set_xlabel('% PV Penetration', color='black', rotation='horizontal') elif prop == "PV+Wind": ax.scatter(row["% RE Penetration"], row["% RE Curtailment"], marker=row["marker"], c=row["colour"], s=40, label = row["Scenario"]) ax.set_ylabel('% PV + Wind Curtailment', color='black', rotation='vertical') ax.set_xlabel('% PV + Wind Penetration', color='black', rotation='horizontal') ax.set_ylim(bottom=0) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis='y', which='major', length=5, width=1) ax.tick_params(axis='x', which='major', length=5, width=1) ax.margins(x=0.01) if mconfig.parser("plot_title_as_region"): ax.set_title(zone_input) handles, labels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys(), loc = 'lower right') outputs[zone_input] = {'fig': fig1, 'data_table': Data_Table_Out} return outputs def curt_total(self, start_date_range: str = None, end_date_range: str = None, **_): """Creates stacked barplots of total curtailment by technology. A separate bar is created for each scenario. Args: start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True, f"generator_{self.curtailment_prop}", self.Scenarios), (True, "generator_Available_Capacity", self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() for zone_input in self.Zones: self.logger.info(f"{self.AGG_BY} = {zone_input}") Total_Curtailment_out = pd.DataFrame() Total_Available_gen = pd.DataFrame() vre_curt_chunks = [] avail_gen_chunks = [] for scenario in self.Scenarios: self.logger.info(f"Scenario = {scenario}") vre_collection = {} avail_vre_collection = {} vre_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) try: vre_curt = vre_curt.xs(zone_input,level=self.AGG_BY) except KeyError: self.logger.info(f'No curtailment in {zone_input}') continue vre_curt = self.df_process_gen_inputs(vre_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': vre_curt = self.assign_curtailment_techs(vre_curt) avail_gen = self["generator_Available_Capacity"].get(scenario) try: #Check for regions missing all generation. avail_gen = avail_gen.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info(f'No available generation in {zone_input}') continue avail_gen = self.df_process_gen_inputs(avail_gen) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': avail_gen = self.assign_curtailment_techs(avail_gen) all_empty = True if pd.notna(start_date_range): self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") for vre_type in self.vre_gen_cat: try: vre_curt_type = vre_curt[vre_type] # vre_curt_type = vre_curt.xs(vre_type,level='tech') except KeyError: self.logger.info(f'No {vre_type} in {zone_input}') continue avail_gen_type = avail_gen[vre_type] # Code to index data by date range, if a date range is listed in marmot_plot_select.csv if pd.notna(start_date_range): avail_gen_type = avail_gen_type.groupby(['timestamp']).sum() vre_curt_type = vre_curt_type.groupby(['timestamp']).sum() vre_curt_type = vre_curt_type[start_date_range : end_date_range] avail_gen_type = avail_gen_type[start_date_range : end_date_range] if vre_curt_type.empty is False and avail_gen_type.empty is False: all_empty = False vre_collection[vre_type] = float(vre_curt_type.sum()) avail_vre_collection[vre_type] = float(avail_gen_type.sum()) if all_empty: self.logger.warning('No data in selected Date Range') continue vre_table = pd.DataFrame(vre_collection,index=[scenario]) avail_gen_table = pd.DataFrame(avail_vre_collection,index=[scenario]) vre_curt_chunks.append(vre_table) avail_gen_chunks.append(avail_gen_table) if not vre_curt_chunks: outputs[zone_input] = MissingZoneData() continue Total_Curtailment_out = pd.concat(vre_curt_chunks, axis=0, sort=False) Total_Available_gen = pd.concat(avail_gen_chunks, axis=0, sort=False) vre_pct_curt = Total_Curtailment_out.sum(axis=1)/Total_Available_gen.sum(axis=1) Total_Curtailment_out.index = Total_Curtailment_out.index.str.replace('_',' ') if Total_Curtailment_out.empty == True: outputs[zone_input] = MissingZoneData() continue # unit conversion return divisor and energy units unitconversion = PlotDataHelper.capacity_energy_unitconversion(max(Total_Curtailment_out.sum())) Total_Curtailment_out = Total_Curtailment_out/unitconversion['divisor'] # Data table of values to return to main program Data_Table_Out = Total_Curtailment_out Data_Table_Out = Data_Table_Out.add_suffix(f" ({unitconversion['units']}h)") fig3, ax = plt.subplots(figsize=(self.x,self.y)) Total_Curtailment_out.plot.bar(stacked=True, color=[self.PLEXOS_color_dict.get(x, '#333333') for x in Total_Curtailment_out.columns], edgecolor='black', linewidth='0.1', ax=ax) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel(f"Total Curtailment ({unitconversion['units']}h)", color='black', rotation='vertical') ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda x, p: format(x, f',.{self.y_axes_decimalpt}f'))) # Set x-tick labels if len(self.custom_xticklabels) > 1: tick_labels = self.custom_xticklabels else: tick_labels = Total_Curtailment_out.index PlotDataHelper.set_barplot_xticklabels(tick_labels, ax=ax) ax.tick_params(axis='y', which='major', length=5, width=1) ax.tick_params(axis='x', which='major', length=5, width=1) ax.margins(x=0.01) if mconfig.parser("plot_title_as_region"): ax.set_title(zone_input) handles, labels = ax.get_legend_handles_labels() ax.legend(reversed(handles), reversed(labels), loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) curt_totals = Total_Curtailment_out.sum(axis=1) #inserts total bar value above each bar for k, patch in enumerate(ax.patches): height = curt_totals[k] width = patch.get_width() x, y = patch.get_xy() ax.text(x+width/2, y+height + 0.05*max(ax.get_ylim()), '{:.2%}\n|{:,.2f}|'.format(vre_pct_curt[k],curt_totals[k]), horizontalalignment='center', verticalalignment='center', fontsize=11, color='red') if k>=len(vre_pct_curt)-1: break outputs[zone_input] = {'fig': fig3, 'data_table': Data_Table_Out} return outputs def curt_total_diff(self, start_date_range: str = None, end_date_range: str = None, **_): """Creates stacked barplots of total curtailment by technology relative to a base scenario. Barplots show the change in total curtailment relative to a base scenario. The default is to comapre against the first scenario provided in the inputs list. Args: start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ return UnderDevelopment() outputs = {} properties = [(True, f"generator_{self.curtailment_prop}", self.Scenarios), (True, "generator_Available_Capacity", self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) # Checks if all data required by plot is available, if 1 in list required data is missing if 1 in check_input_data: outputs = MissingInputData() return outputs for zone_input in self.Zones: self.logger.info(self.AGG_BY + " = " + zone_input) Total_Curtailment_out = pd.DataFrame() Total_Available_gen = pd.DataFrame() vre_curt_chunks = [] avail_gen_chunks = [] for scenario in self.Scenarios: self.logger.info("Scenario = " + scenario) # Adjust list of values to drop from vre_gen_cat depending on if it exists in processed techs #self.vre_gen_cat = [name for name in self.vre_gen_cat if name in curtailment_collection.get(scenario).index.unique(level="tech")] vre_collection = {} avail_vre_collection = {} vre_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) try: vre_curt = vre_curt.xs(zone_input,level=self.AGG_BY) except KeyError: self.logger.info('No curtailment in ' + zone_input) continue vre_curt = self.df_process_gen_inputs(vre_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': vre_curt = self.assign_curtailment_techs(vre_curt) avail_gen = self["generator_Available_Capacity"].get(scenario) try: #Check for regions missing all generation. avail_gen = avail_gen.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info('No available generation in ' + zone_input) continue avail_gen = self.df_process_gen_inputs(avail_gen) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': avail_gen = self.assign_curtailment_techs(avail_gen) for vre_type in self.vre_gen_cat: try: vre_curt_type = vre_curt[vre_type] except KeyError: self.logger.info('No ' + vre_type + ' in ' + zone_input) continue vre_collection[vre_type] = float(vre_curt_type.sum()) avail_gen_type = avail_gen[vre_type] avail_vre_collection[vre_type] = float(avail_gen_type.sum()) vre_table = pd.DataFrame(vre_collection,index=[scenario]) avail_gen_table = pd.DataFrame(avail_vre_collection,index=[scenario]) vre_curt_chunks.append(vre_table) avail_gen_chunks.append(avail_gen_table) Total_Curtailment_out = pd.concat(vre_curt_chunks, axis=0, sort=False) Total_Available_gen = pd.concat(avail_gen_chunks, axis=0, sort=False) vre_pct_curt = Total_Curtailment_out.sum(axis=1)/Total_Available_gen.sum(axis=1) #Change to a diff on the first scenario. print(Total_Curtailment_out) Total_Curtailment_out = Total_Curtailment_out-Total_Curtailment_out.xs(self.Scenarios[0]) Total_Curtailment_out.drop(self.Scenarios[0],inplace=True) #Drop base entry Total_Curtailment_out.index = Total_Curtailment_out.index.str.replace('_',' ') # Data table of values to return to main program Data_Table_Out = Total_Curtailment_out if Total_Curtailment_out.empty == True: outputs[zone_input] = MissingZoneData() continue # unit conversion return divisor and energy units unitconversion = PlotDataHelper.capacity_energy_unitconversion(max(Total_Curtailment_out.sum())) Total_Curtailment_out = Total_Curtailment_out/unitconversion['divisor'] fig3, ax= plt.subplots(figsize=(self.x,self.y)) Total_Curtailment_out.plot.bar(stacked=True, color=[self.PLEXOS_color_dict.get(x, '#333333') for x in Total_Curtailment_out.columns], edgecolor='black', linewidth='0.1',ax=ax) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('Total Curtailment ({}h)'.format(unitconversion['units']), color='black', rotation='vertical') ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda x, p: format(x, f',.{self.y_axes_decimalpt}f'))) # Set x-tick labels if len(self.custom_xticklabels) > 1: tick_labels = self.custom_xticklabels else: tick_labels = Total_Curtailment_out.index PlotDataHelper.set_barplot_xticklabels(tick_labels, ax=ax) ax.tick_params(axis='y', which='major', length=5, width=1) ax.tick_params(axis='x', which='major', length=5, width=1) ax.margins(x=0.01) if mconfig.parser("plot_title_as_region"): ax.set_title(zone_input) handles, labels = ax.get_legend_handles_labels() ax.legend(reversed(handles), reversed(labels), loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) curt_totals = Total_Curtailment_out.sum(axis=1) print(Total_Curtailment_out) print(curt_totals) #inserts total bar value above each bar k=0 for i in ax.patches: height = curt_totals[k] width = i.get_width() x, y = i.get_xy() ax.text(x+width/2, y+height + 0.05*max(ax.get_ylim()), '{:.2%}\n|{:,.2f}|'.format(vre_pct_curt[k],curt_totals[k]), horizontalalignment='center', verticalalignment='center', fontsize=11, color='red') k += 1 if k>=len(vre_pct_curt): break outputs[zone_input] = {'fig': fig3, 'data_table': Data_Table_Out} return outputs def curt_ind(self, figure_name: str = None, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Curtailment as a percentage of total generation, of individual generators. The generators are specified as a comma seperated string in the fourth column of Marmot_plot_select.csv and is passed to the prop argument. The method outputs two.csv files: - one that contains curtailment, in percent, for each scenario and site. - the other contains total generation, in TWh, for each scenario and site. This method does not return data to MarmotPlot, data is saved within the method directly to the output folder. Args: figure_name (str, optional): User defined figure output name. Defaults to None. prop (str, optional): comma seperated string of generators to display. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True, "generator_Generation", self.Scenarios), (True, "generator_Available_Capacity", self.Scenarios), (True, f"generator_{self.curtailment_prop}", self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() Total_Curtailment_Out_perc =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from run import prediction import tensorflow as tf import time import os np.random.seed(12345) def top_k_movies(users,ratings_df,k): """ Returns top k movies for respective user INPUTS : users : list of numbers or number , list of user ids ratings_df : rating dataframe, store all users rating for respective movies k : natural number OUTPUT: Dictionary conatining user id as key and list of top k movies for that user as value """ # Extract unseen movies dicts={} if type(users) is not list: users=[users] for user in users: rated_movies=ratings_df[ratings_df['user']==user].drop(['st', 'user'], axis=1) rated_movie=list(rated_movies['item'].values) total_movies=list(ratings_df.item.unique()) unseen_movies=list(set(total_movies) - set(rated_movie)) rated_list = [] rated_list=prediction(np.full(len(unseen_movies),user),np.array(unseen_movies)) useen_movies_df=pd.DataFrame({'item': unseen_movies,'rate':rated_list}) top_k=list(useen_movies_df.sort_values(['rate','item'], ascending=[0, 0])['item'].head(k).values) dicts.update({user:top_k}) result=pd.DataFrame(dicts) result.to_csv("user_top_k.csv") return dicts def user_rating(users,movies): """ Returns user rating for respective user INPUTS : users : list of numbers or number, list of user ids or just user id movies : list of numbers or number, list of movie ids or just movie id OUTPUT: list of predicted movies """ if type(users) is not list: users=np.array([users]) if type(movies) is not list: movies=np.array([movies]) return prediction(users,movies) def top_k_similar_items(movies,ratings_df,k,TRAINED=False): """ Returns k similar movies for respective movie INPUTS : movies : list of numbers or number, list of movie ids ratings_df : rating dataframe, store all users rating for respective movies k : natural number TRAINED : TRUE or FALSE, weather use trained user vs movie table or untrained OUTPUT: list of k similar movies for respected movie """ if TRAINED: df=pd.read_pickle("user_item_table_train.pkl") else: df=
pd.read_pickle("user_item_table.pkl")
pandas.read_pickle
from config import engine import pandas as pd import numpy as np from datetime import datetime from collections import Counter def date_difference(my_date, max_date): ''' This function takes in a single date from the donations dataframe (per row) and compares the difference between that date and the date in which matching occurs. I.e. pipeline matching should provide a query_date so that this can work. ''' d1 = datetime.strptime(str(my_date), "%Y-%m-%d") d2 = datetime.strptime(str(max_date), "%Y-%m-%d") diff = (d2 - d1) return diff def create_scores(query_date): ''' requires query date as input-- must be string in the following format "%Y-%m-%d" returns a list of matching_ids and scores as tuples will also insert rfm scores into rfm_scores table----see src/server/api/admin_api.py ''' with engine.connect() as connection: # read in data from database via pull_donations_for_rfm() func (reads in as a list of tuples) df = pd.read_sql( """ select pc.matching_id, s.amount, s.close_date from salesforcedonations s inner join pdp_contacts pc on pc.source_id = s.contact_id and pc.source_type = 'salesforcecontacts' where pc.archived_date is null order by matching_id """ , connection) df =
pd.DataFrame(df, columns=['matching_id', 'amount', 'close_date'])
pandas.DataFrame
import seaborn as sns import matplotlib import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import matplotlib.colors as mcolors from matplotlib.ticker import ScalarFormatter from matplotlib import lines import pandas as pd import numpy as np from pathlib import Path import os import sys import csv import time import yaml cache = {} exp_base_folder = '/psp/experiments-data/' distros = { 'Figure3': 'DISP2', 'Figure4_a': 'DISP2', 'Figure4_b': 'SBIM2', 'Figure5_a': 'DISP2', 'Figure5_b': 'SBIM2', 'Figure6': 'TPCC', 'Figure7': 'ROCKSDB' } workloads = { 'BIM1': { 'avg_s': 1, 'name': '90.0:0.5 -- 10.0:5.5', 'max_load': 14000000, 'distribution': 'bimodal-90.0:0.5-10.0:5.5', 'SHORT': { 'MEAN': .5, 'RATIO': .9, 'YLIM': 60 }, 'LONG': { 'MEAN': 5.5, 'RATIO': .1, 'YLIM': 60 }, 'UNKNOWN': { 'MEAN': 1, 'RATIO': 1, 'YLIM': 60 } }, 'BIM2': { 'avg_s': 1, 'max_load': 14000000, 'name': '99.9:0.5-0.1:500.5', 'distribution': 'bimodal-99.9:0.5-0.1:500.5', 'SHORT': { 'MEAN': .5, 'RATIO': .999, 'YLIM': 400 }, 'LONG': { 'MEAN': 500.5, 'RATIO': .001, 'YLIM': 1500 }, 'UNKNOWN': { 'MEAN': 1, 'RATIO': 1, 'YLIM': 1500 } }, 'SBIM2': { 'avg_s': 2.9975, 'max_load': 4670558, 'name': '99.5:0.5-0.05:500', 'distribution': 'bimodal-99.5:0.5-0.5:500.0', 'SHORT': { 'MEAN': .5, 'RATIO': .995, 'YLIM': 300 }, 'LONG': { 'MEAN': 500, 'RATIO': .005, 'YLIM': 3600 }, 'UNKNOWN': { 'MEAN': 2.9975, 'RATIO': 1, 'YLIM': 3600 } }, 'DISP1': { 'avg_s': 5.5, 'name': '50.0:1.0 -- 50.0:10.0', 'max_load': 2545454, 'distribution': 'bimodal-50.0:1.0-50.0:10.0', 'SHORT': { 'MEAN': 1, 'RATIO': .5, 'YLIM': 50 }, 'LONG': { 'MEAN': 10, 'RATIO': .5, 'YLIM': 300 }, 'UNKNOWN': { 'MEAN': 5.5, 'RATIO': 1, 'YLIM': 300 } }, 'DISP2': { 'avg_s': 50.5, 'name': '50.0:1.0 -- 50.0:100.0', 'max_load': 277227, 'distribution': 'bimodal-50.0:1.0-50.0:100.0', 'SHORT': { 'MEAN': 1.0, 'RATIO': .5, 'YLIM': 300 }, 'LONG': { 'MEAN': 100.0, 'RATIO': .5, 'YLIM': 300 }, 'UNKNOWN': { 'MEAN': 50.5, 'RATIO': 1, 'YLIM': 300 } }, 'DISP3': { 'avg_s': 50.950, 'name': '95.0.0:1.0 -- 0.5:100.0', 'max_load': 274779, 'distribution': 'bimodal-95.0:1.0-0.5:100.0', 'SHORT': { 'MEAN': 1.0, 'RATIO': .95, 'YLIM': 300 }, 'LONG': { 'MEAN': 100.0, 'RATIO': .5, 'YLIM': 300 }, 'UNKNOWN': { 'MEAN': 50.5, 'RATIO': 1, 'YLIM': 300 } }, 'ROCKSDB': { 'avg_s': 526, 'name': 'ROCKSDB', 'max_load': 45000, 'distribution': 'bimodal-50.0:0.0-50.0:0.0', 'GET': { 'MEAN': 2.0, 'RATIO': .5, 'YLIM': 300 }, 'SCAN': { 'MEAN': 1050.0, 'RATIO': .5, 'YLIM': 1000 }, 'UNKNOWN': { 'MEAN': 526, 'RATIO': 1, 'YLIM': 200 } }, 'TPCC': { 'avg_s': 19, 'name': 'TPC-C', 'max_load': 735000, 'distribution': 'tpcc', 'NewOrder': { 'MEAN': 20, 'RATIO': .44, 'YLIM': 250 }, 'Payment': { 'MEAN': 5.7, 'RATIO': .44, 'YLIM': 250 }, 'Delivery': { 'MEAN': 88, 'RATIO': .04, 'YLIM': 250 }, 'OrderStatus': { 'MEAN': 6, 'RATIO': .04, 'YLIM': 250 }, 'StockLevel': { 'MEAN': 100, 'RATIO': .04, 'YLIM': 250 }, 'UNKNOWN': { 'MEAN': 19, 'RATIO': 1, 'YLIM': 50 } } } apps = { 'TPCC': ['Payment', 'OrderStatus', 'NewOrder', 'Delivery', 'StockLevel'], 'MB': ['SHORT', 'LONG'], 'REST': ['PAGE', 'REGEX'], 'ROCKSDB': ['GET', 'SCAN'], } policies = { 'DFCFS': 'd-FCFS', 'CFCFS': 'c-FCFS', 'shen-DFCFS': 'shen-DFCFS', 'shen-CFCFS': 'shen-CFCFS', 'SJF': 'ARS-FP', 'EDF': 'EDF', # 'CSCQ-half': 'CSCQ-half', # 'CSCQ': 'ARS-CS', # 'EDFNP': 'ARS-EDF', 'cPRESQ': 'cPRESQ', 'cPREMQ': 'cPREMQ', 'DARC': 'DARC' } # For final print pol_names = { 'DARC': 'DARC', 'c-FCFS': 'c-FCFS', 'd-FCFS': 'd-FCFS', 'cPREMQ': 'c-PRE', 'cPRESQ': 'c-PRE', 'ARS-FP': 'FP', 'EDF': 'EDF', 'shen-DFCFS': 'd-FCFS', 'shen-CFCFS': 'c-FCFS' } system_pol = { 'DFCFS': 'Perséphone', 'CFCFS': 'Perséphone', 'shen-DFCFS': 'Shenango', 'shen-CFCFS': 'Shenango', 'SJF': 'Perséphone', 'CSCQ-half': 'Perséphone', 'CSCQ': 'Perséphone', 'EDF': 'Perséphone', 'cPRESQ': 'Shinjuku', 'cPREMQ': 'Shinjuku', 'DARC': 'Perséphone' } trace_label_to_dtype = { 'client-end-to-end' : ['SENDING', 'COMPLETED'], 'client-receive' : ['READING', 'COMPLETED'], 'client-send' : ['SENDING', 'READING'], } CLT_TRACE_ORDER = [ 'SENDING', 'READING', 'COMPLETED' ] def read_profiling_node(exp, app, orders=CLT_TRACE_ORDER, verbose=True): # First get traces exp_folder = os.path.join(exp_base_folder, exp, app, '') filename = os.path.join(exp_folder, 'traces') if not Path(filename).is_file(): print('{} does not exist. Skipping {} {} traces.'.format(filename, exp, app)) return pd.DataFrame() if verbose: print(f"Parsing {filename}") app_trace_df =
pd.read_csv(filename, delimiter='\t')
pandas.read_csv
from itertools import permutations from typing import List, Dict import pandas as pd import scipy.stats import numpy as np import json import sys, os from statsmodels import api as sm from src.constants import AVG_SEED_WINS, ESPN_SCORES from scipy import stats myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, myPath + "/../") from src.constants import SEEDS # from line_profiler import profile def store_object_as_json(data, filename): with open(filename, "w") as f: json.dump(data, f) def flatten(lst: List) -> List: return [item for sublist in lst for item in sublist] class Region: def __init__(self, region_name: str, bid_teams: List, play_in_dict: Dict = {}): self.region_name = region_name self.bid_teams = bid_teams self.play_in_dict = play_in_dict self.seeds = SEEDS self.play_in_seeds = list(self.play_in_dict.keys()) self.play_in_teams = flatten(list(self.play_in_dict.values())) # self.teams = self.bid_teams + self.play_in_teams self.seed_teams() def seed_teams(self): """take the ordered list of bid teams (non-play-in) and play-in dictionary and make a dictionary of all team:seed combos.""" self.team_seeds = {} team_idx = 0 self.teams = [] for seed in self.seeds: if seed in self.play_in_seeds: team_a, team_b = self.play_in_dict[seed] self.team_seeds[team_a] = seed self.team_seeds[team_b] = seed self.teams.append(team_a) self.teams.append(team_b) else: team = self.bid_teams[team_idx] self.team_seeds[team] = seed team_idx += 1 self.teams.append(team) class Bracket: # @profile def __init__( self, ratings: Dict, *regions: Region, exp_stdev: float = 11.7, pace_modifier: float = 68.4 / 100 ): self.regions = regions self.ratings = ratings if pace_modifier: self.ratings = {k: v * pace_modifier for k, v in self.ratings.items()} self.exp_stdev = exp_stdev self.teams = [] self.team_regions = {} self.team_seeds = {} for region in self.regions: self.teams += region.teams for team in region.teams: self.team_regions[team] = region.region_name self.team_seeds[team] = region.team_seeds[team] self.remaining_teams = self.teams self.get_probabilities_dict() self.play_in_matchups = flatten([region.play_in_teams for region in regions]) self.non_play_in_teams = [ team for team in self.teams if team not in self.play_in_matchups ] self.play_in = len(self.play_in_matchups) > 0 self.n_rounds = int(np.log2(len(self.teams))) + self.play_in # print(f"rounds: {self.n_rounds}") self.current_round = None self.current_round_is_play_in = False self.current_round_team_a_list: List = [] self.current_round_team_b_list: List = [] self.num_sims = 0 # @profile def get_probabilities_dict(self): # by using permutations we are technically 2x the computational work here # but this makes the code much simpler # we use a dataframe for easy mapping and vectorization of scipy.stats.norm team_combos = permutations(self.ratings.keys(), 2) df = pd.DataFrame(list(team_combos), columns=["a", "b"]) df["a_rtg"] = df["a"].map(self.ratings) df["b_rtg"] = df["b"].map(self.ratings) df["rtg_diff"] = df["a_rtg"] - df["b_rtg"] df["p_win_a"] = scipy.stats.norm(0, self.exp_stdev).cdf( df["a_rtg"] - df["b_rtg"] ) df["p_win_b"] = 1 - df["p_win_a"] df.set_index(["a", "b"], inplace=True) self.probabilities_dict = dict(zip(df.index.values, df["p_win_a"].values)) # @profile def run_simulations(self, num_sims=100): self.num_sims = num_sims self.simulation_results = [] for sim in range(self.num_sims): self.sim_id = sim self.current_round = 1 # self.store_initial_round() while self.current_round <= self.n_rounds: self.run_round() self.sim_results_to_df_and_store() def merge_playin_winners_with_ro64(self): play_in_losers = [ team for team in self.play_in_matchups if team not in self.remaining_teams ] self.remaining_teams = [ team for team in self.teams if team not in play_in_losers ] # @profile def store_initial_round(self): self.store_simulation_results(initial_round=True) # @profile def check_play_in(self): self.current_round_is_play_in = self.current_round == 1 and self.play_in # @profile def merge_playin_winners_with_ro64_bracket(self): # remove the losers and then run the round play_in_losers = [ team for team in self.play_in_matchups if team not in self.remaining_teams ] self.remaining_teams = [ team for team in self.teams if team not in play_in_losers ] def set_current_matchups(self): if self.current_round == 2 and self.play_in: self.merge_playin_winners_with_ro64_bracket() if self.current_round == 1: if self.play_in: self.current_matchups = self.play_in_matchups else: self.current_matchups = self.teams else: self.current_matchups = self.remaining_teams self.current_round_team_a_list = self.current_matchups[::2] self.current_round_team_b_list = self.current_matchups[1::2] self.combined_current_matchups = zip( self.current_round_team_a_list, self.current_round_team_b_list ) # @profile def generate_simulation_seed(self): self.simulation_values = np.random.uniform( size=int(len(self.current_matchups) / 2) ) # @profile def get_team_a_probs(self): self.team_a_probs = [ self.probabilities_dict[(a, b)] for a, b in self.combined_current_matchups ] # @staticmethod # @profile def simulate_game(self, team_a, team_b, team_a_prob, rand_val): # why waste a function call on this? # this gives us flexibility to try different things in our simulation # print(f"Round{self.current_round}: {team_a} vs {team_b}") return team_a if rand_val <= team_a_prob else team_b # @profile def get_winners(self): self.remaining_teams = [ self.simulate_game(team_a, team_b, team_a_prob, rand_val) for team_a, team_b, team_a_prob, rand_val in zip( self.current_round_team_a_list, self.current_round_team_b_list, self.team_a_probs, self.simulation_values, ) ] # @profile def store_simulation_results(self, initial_round=False): teams_to_use = self.teams if initial_round else self.remaining_teams if self.current_round_is_play_in: teams_to_use += self.non_play_in_teams for team in teams_to_use: self.simulation_results.append( {"team": team, "round": self.current_round, "sim_id": self.sim_id} ) # @profile def increment_current_round(self): self.current_round += 1 # @profile def run_round(self): self.check_play_in() self.set_current_matchups() # self.update_teams() self.generate_simulation_seed() self.get_team_a_probs() self.get_winners() self.store_simulation_results() self.increment_current_round() # @profile def sim_results_to_df_and_store(self): # store_object_as_json(self.simulation_results, "sim_results.json") full_results =
pd.DataFrame(self.simulation_results)
pandas.DataFrame
import pandas as pd def _performer_list(): performers = [ ['FULL_NAME', 'SHORT_NAME'], #['Test and Evaluation Team', 'te'], ['Accenture', 'acc'], ['ARA','ara'], ['Astra', 'ast'], ['BlackSky', 'bla'], ['Kitware', 'kit'], ['STR', 'str'], ] return performers def _performer_df(): performers = _performer_list() df = pd.DataFrame(performers) new_header = df.iloc[0] #grab the first row for the header df = df[1:] #take the data less the header row df.columns = new_header #set the header row as the df header return(df) class TE_CONFIG: def __init__(self): print('hello from TE_CONFIG -- i am instantiated') self.performer_df = _performer_df() def __repr__(self): return f'{self.performer_df}' def get_short_names(self): df = self.performer_df short_names = df['SHORT_NAME'].to_list() return short_names def get_full_names(self): df = self.performer_df full_names = df['FULL_NAME'].to_list() a = (map(lambda x: x.lower(), full_names)) full_names = list(a) return full_names def get_bucket_pre(self): bucket_pre = 'smart-data-' return bucket_pre def get_my_test_regions(self): ''' Here is the complete set of regions to be processed in support of Eval-2 TA-1 assessment: RadCalNet sites (Absolute Radiometry) NA_R101 US_R108 CN_R101 FR_R101 GCP sites (Absolute Geometry) US_R109 US_R110 US_R111 SSH sites US_R113 (GSFC) MX_R101 (Sonoran Desert) AR_R101 (Barreal Blanco) CN_R102 (Dunhuang) ''' ssh_site_list = [ ['SSH_SITE', 'PLACE_NAME'], ['US_R109', 'Sioux Falls SD'], ['US_R110', 'Riverside CA'], ['US_R111', 'New Orleans LA'], ['US_R113', '(GSFC)'], ['MX_R101', '(Sonoran Desert)'], ['AR_R101', '(Barreal Blanco)'], ['CN_R102', '(Dunhuang)'], ] df =
pd.DataFrame(ssh_site_list)
pandas.DataFrame
import numpy as np import arviz as az import pandas as pd import seaborn as sns import matplotlib.pylab as plt from math import * import json import itertools import os import re sns.set_style("whitegrid") import tools from tools import toVec def jSonIterator(j): yield j if isinstance(j,dict): for key in j.keys(): for m in jSonIterator(j[key]): yield m else: if isinstance(j,list): for item in j: for m in jSonIterator(item): yield m def getByLabel(j,label): def hasLabel(j): if isinstance(j,dict) : if "label" in j.keys(): if j["label"]==label: return True return False ms=[ item for item in jSonIterator(j) if hasLabel(item) ] return ms def getForwardWalkingLabels(j,label): fwLabels=[] for m in j["measurements"] : if ("label" in m.keys() ) and (m["label"]==label ) and ("forwardWalkingSteps" in m.keys() ): for step in m["forwardWalkingSteps"]: fwLabels.append(label + "_fw" + str(step)) return fwLabels def average(data,labels=None,hues=None,minIndex=None): if minIndex is not None: data=data[data.index >= minIndex] if labels is None: labels=list(data.columns) if hues is None: hues = list( set(data.columns) -set(labels) ) averagedData={label : [] for label in labels } averagedData.update({hue : [] for hue in hues } ) averagedData.update( { "delta" + label : [] for label in toVec(labels) }) if hues == []: groups= { None : data } groups=groups.items() else: groups = data.groupby(hues) for hue_values,df in groups: for label in toVec(labels): x=np.array(df[label]) averagedData[label].append(np.mean(x) ) neff=az.ess(x) averagedData["delta" + label].append( np.sqrt(np.var(x) /neff ) ) for name,value in zip(toVec(hues),toVec(hue_values) ): averagedData[name].append(value) return pd.DataFrame(averagedData) def createHueLabel(hueNames,hueValues): hueNames=toVec(hueNames) hueValues=toVec(hueValues) labels= [ str(name) + "=" + str(value) for name,value in zip(hueNames,hueValues) ] return ", ".join(labels) def assemblePlot(func): def assemble(data,hues=None,table=False,nCols=2,width=10.,height=6.,x=None,y=None,delta=None,showLegend=True,*args,**kwds): fig=plt.figure() if hues is None: ax=fig.add_subplot(111) for x1,y1,delta1 in itertools.zip_longest(toVec(x),toVec(y),toVec(delta)): func(data,x=x1 ,y=y1 ,delta=delta1,ax=ax,label=y1,*args,**kwds) if showLegend: ax.legend() fig.set_size_inches(width, height) else: if not table : ax=fig.add_subplot(111) for hue,df in data.groupby(hues): for x1,y1,delta1 in itertools.zip_longest(toVec(x),toVec(y),toVec(delta)): func(df,x=x1,y=y1,delta=delta1,label=y1 + ";"+createHueLabel(hues,hue),ax=ax,*args,**kwds) if showLegend: ax.legend() fig.set_size_inches(width, height ) else: groups=data.groupby(hues) Nplots=len(groups) nRows=ceil(Nplots/nCols) i=1 for hue,df in data.groupby(hues): ax=fig.add_subplot(nRows,nCols,i) for x1,y1,delta1 in itertools.zip_longest(toVec(x),toVec(y),toVec(delta)): func(df,x=x1,y=y1,delta=delta1,label=y1 + ";" +createHueLabel(hues,hue),ax=ax,*args,**kwds) i+=1 if (showLegend): ax.legend() fig.set_size_inches(width, height/2. * len(groups) ) fig.tight_layout() return assemble @assemblePlot def plotVector(data,x,y,delta=None,label=None,ax=None,errorbar=False,*args,**kwds): if delta is not None and (not errorbar): ax.fill_between(data[x],data[y]-data[delta],data[y]+data[delta],alpha=0.5) if errorbar is not True: ax.plot(data[x],data[y],label=label,*args,**kwds) else: ax.errorbar(data[x],data[y],data[delta],label=label,*args,**kwds) ax.set_xlabel(x) ax.set_ylabel(y) @assemblePlot def plotScalar(data,y,x=None,label=None,ax=None,delta=None,alpha=0.5,trace=False,alpha_trace=1): if x is None: x1=np.arange(0,len(data[y])) else: x1=np.array(data[x]) if delta is None: p=ax.plot(x1,np.array(data[y]),label=label,marker="o",linestyle="dashed",alpha=alpha) else: p=ax.errorbar(x1,np.array(data[y]),yerr=np.array(data[delta]),label=label,marker="o",linestyle="dashed",alpha=alpha) if trace and (delta is None): movingAverage=data[y].expanding().mean() color=p[0].get_color() ax.plot(x1,np.array(movingAverage),linestyle="solid",alpha=alpha_trace,color=color) def compare(data,ax=None): columns=list(data.columns) labels = [label for label in columns if ( (re.match("(?!delta).*",label) is not None) and ( ("delta"+label) in columns ) ) ] if ax is None: fig=plt.figure() ax=fig.add_subplot(111) y=[ float(data[label]) for label in labels] deltay=[ float(data["delta"+label]) for label in labels] ax.errorbar(labels,y,yerr=deltay,marker="o",linestyle="None") def gatherByLabel(baseDir,label,jSonInput,getHues=None,maxRows=None,minIndex=0): measurements=getByLabel(jSonInput["measurements"],label) if len(measurements)!=0 and ("recordSteps" in measurements[0]): fwLabels=getForwardWalkingLabels(jSonInput,label) datas=[] for fwLabel in fwLabels: data=gatherByLabel(baseDir,fwLabel,jSonInput,getHues=getHues,maxRows=maxRows,minIndex=minIndex) data=data.rename(columns={fwLabel : label}) fwSteps=int(re.match(".*_fw(\d+)",fwLabel).group(1)) fwTime=jSonInput["correlationSteps"]*fwSteps*jSonInput["timeStep"] data["fwTime"]=float(fwTime) datas.append(data) return pd.concat(datas) filename=os.path.join(baseDir , label + ".dat") data=pd.read_csv(filename,sep=" ") if (maxRows is not None) and (len(data) > maxRows) : data.reset_index(drop=True) k=len(data)//maxRows data=data[data.index% k == 0] if getHues is not None: hues=getHues(jSonInput) for name,value in hues.items(): data[name]=value data=data[data.index >= minIndex] return data def gather(dirname,label,hues=None,maxRows=None,minIndex=0,max_level=1): datas=[] json_file="input.json" for subdir, dirs, files in tools.walk(dirname,max_level=max_level): if json_file in files: try: with open(os.path.join(subdir,json_file)) as f: j = json.load(f) data=gatherByLabel(subdir,label,jSonInput=j,getHues=hues,maxRows=maxRows,minIndex=minIndex) datas.append(data) except FileNotFoundError as e: print ("Warning: data not availible in " + subdir) print (str(e)) if datas != []: data=pd.concat(datas) #data=data.reset_index(drop=True) return data def merge(datas,hues=None,how="outer"): data=datas[0] for i in range(1,len(datas) ): data=pd.merge(data,datas[i],left_index=True,right_index=True,on=hues,how=how) return data def getOptimizationRange(data,x,label,hues,delta=None): data=data.dropna() optRanges= {hueName : [] for hueName in toVec(hues)} optRanges.update({x + "_min" : [],x + "_max": []}) for hueValues,df in data.groupby(hues): ys=np.array(df[label]) xs=np.array(df[x]) i=np.argmin(ys) miny=ys[i] minx=xs[i] if delta is None: deltays = np.zeros(len(ys)) else: deltays=df[delta] nonCompatibleXs=np.array( [x for x,y,deltay in zip(xs,ys,deltays) if abs(y - miny)> deltay ]) x_min= np.min(xs) x_max = np.max(xs) if len(nonCompatibleXs) > 0: left_xs = nonCompatibleXs[nonCompatibleXs < minx] right_xs = nonCompatibleXs[nonCompatibleXs > minx] if len(left_xs) > 0: x_min = np.max(left_xs) if len(right_xs) > 0 : x_max = np.min(right_xs) optRanges[x + "_min"].append( x_min ) optRanges[x + "_max"].append( x_max ) #optRanges[x ].append( minx ) for hueValue,hueName in zip(toVec(hueValues),toVec(hues)): optRanges[hueName].append(hueValue) return pd.DataFrame(optRanges) def expandOptimizationRanges(data,label,n): data=data.reset_index(drop=True) data=data.dropna() xs=[] i=0 for x_min,x_max in zip(data[label + "_min"],data[label + "_max"] ): x=np.linspace(x_min,x_max,num=n) x=pd.DataFrame({label : x}) x.index=x.index*0 + i xs.append(x) i+=1 if len(xs) > 0: xs= pd.concat(xs) new_parameters_table=
pd.merge(data,xs,left_index=True,right_index=True)
pandas.merge
import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter plt.rcParams['font.size'] = 6 root_path = os.path.dirname(os.path.abspath('__file__')) # root_path = os.path.abspath(os.path.join(root_path,os.path.pardir)) graphs_path = root_path+'/graphs/' results_path = root_path+'/results_analysis/results/' print("root path:{}".format(root_path)) sys.path.append(root_path) from tools.results_reader import read_two_stage, read_pure_esvr,read_pure_arma h_arma = read_pure_arma("Huaxian") x_arma = read_pure_arma("Xianyang") z_arma = read_pure_arma("Zhangjiashan") h_svr_1 = pd.read_csv(root_path+'/Huaxian/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') h_svr_3 = pd.read_csv(root_path+'/Huaxian/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') h_svr_5 = pd.read_csv(root_path+'/Huaxian/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') h_svr_7 = pd.read_csv(root_path+'/Huaxian/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') x_svr_1 = pd.read_csv(root_path+'/Xianyang/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') x_svr_3 = pd.read_csv(root_path+'/Xianyang/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') x_svr_5 = pd.read_csv(root_path+'/Xianyang/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') x_svr_7 = pd.read_csv(root_path+'/Xianyang/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') z_svr_1 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') z_svr_3 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') z_svr_5 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') z_svr_7 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') h_lstm_1 = pd.read_csv(root_path+'/Huaxian/projects/lstm/1_ahead/optimal/opt_pred.csv') h_lstm_3 = pd.read_csv(root_path+'/Huaxian/projects/lstm/3_ahead/optimal/opt_pred.csv') h_lstm_5 = pd.read_csv(root_path+'/Huaxian/projects/lstm/5_ahead/optimal/opt_pred.csv') h_lstm_7 =
pd.read_csv(root_path+'/Huaxian/projects/lstm/7_ahead/optimal/opt_pred.csv')
pandas.read_csv
# coding: utf-8 # In[1]: import pandas as pd import numpy as np import sklearn as sk import matplotlib.pyplot as plt import gc train = pd.read_csv("train.csv",parse_dates=["activation_date"]) test =
pd.read_csv("test.csv",parse_dates=["activation_date"])
pandas.read_csv
import numpy as np import pandas as pd from sklearn.model_selection import GroupShuffleSplit as sklearnGroupShuffleSplit class Split(): def __init__(self, dataset=None): self.dataset = dataset def UnSplit(self): """Unsplit the dataset by setting all values of the split column to null.""" self.dataset.df["split"] = np.nan def GroupShuffleSplit(df_main, train_pct=.6, test_pct=.25, val_pct=.25, group_col = 'img_filename', random_state=None): """ This function uses the GroupShuffleSplit command from sklearn. It can split into 3 groups (train, test, and val) by applying the command twice. """ gss = sklearnGroupShuffleSplit(n_splits=1, train_size=train_pct) train_indexes, test_indexes = next(gss.split(X=df_main, y=df_main[group_col], groups=df_main.index.values)) df_main.loc[train_indexes,'split'] = "train" df_main.loc[test_indexes,'split'] = "test" if val_pct: df_train = df_main.loc[df_main['split'] == 'train'] df_test = df_main.loc[df_main['split'] == 'test'] df_test = df_test.reset_index() second_split_pct = float(test_pct/(test_pct+val_pct)) gss2 = sklearnGroupShuffleSplit(n_splits=1, train_size=second_split_pct) test_indexes_2, val_indexes_2 = next(gss2.split(X=df_test, y=df_test[group_col], groups=df_test.index.values)) df_test.loc[test_indexes_2,'split'] = "test" df_test.loc[val_indexes_2,'split'] = "val" return df_train.append(df_test) else: return df_main #Written with the help of https://stackoverflow.com/questions/56872664/complex-dataset-split-stratifiedgroupshufflesplit def StratifiedGroupShuffleSplit(df_main, train_pct=.7, test_pct=.3, val_pct=.0, weight=0.01, group_col = 'img_filename', cat_col = 'cat_name', batch_size=1): """ This function will 'split" the dataframe by setting the split collumn equal to train, test, or val. When a split dataset is exported the annotations will be split into seperate groups so that can be used used in model training, testing, and validation. """ df_main = df_main.reindex(np.random.permutation(df_main.index)) # shuffle dataset # create empty train, val and test datasets df_train = pd.DataFrame() df_val = pd.DataFrame() df_test = pd.DataFrame() subject_grouped_df_main = df_main.groupby([group_col], sort=False, as_index=False) category_grouped_df_main = df_main.groupby(cat_col).count()[[group_col]]/len(df_main)*100 #Check inputs assert (0 <= weight <= 1), "Weight must be between 0 and 1" total_splits = round((train_pct) + float(test_pct) + float(val_pct),1) assert (total_splits == 1), "Sum of train_pct, test_pct, and val_pct must equal 1." assert (batch_size >= 1 and batch_size <= subject_grouped_df_main.ngroups / 10 ), \ "Batch must be greater than 1 and less than 1/10 count of groups" def calc_mse_loss(df): grouped_df = df.groupby(cat_col).count()[[group_col]]/len(df)*100 df_temp = category_grouped_df_main.join(grouped_df, on = cat_col, how = 'left', lsuffix = '_main') df_temp.fillna(0, inplace=True) df_temp['diff'] = (df_temp['img_filename_main'] - df_temp[group_col])**2 mse_loss = np.mean(df_temp['diff']) return mse_loss i = 0 #counter for all items in dataset b = 0 #counter for the batches batch_df = df_main[0:0] for _, group in subject_grouped_df_main: if (i < 3): if (i == 0): df_train = df_train.append(pd.DataFrame(group), ignore_index=True) i += 1 continue elif (i == 1): df_val = df_val.append(
pd.DataFrame(group)
pandas.DataFrame
from bs4 import BeautifulSoup from datetime import datetime, timedelta import warnings import requests import pandas as pd import re class RegionMatcher: """ Ironing out disrepances between RosPotrebNadzor labels and iso_alpha3 codes. """ def get_simplified_region(self, x): x = x.lower() x = ( x.replace("край", "") .replace("область", "") .replace("республика", "") .replace(" ао", "") .replace("г.", "") ) return x.split()[0] def get_matching_regions(self, soup, tag="li"): matches = [ re.match("(\d+\.\s){0,1}(.*)\s-\s(\d+)", x.text) for x in soup.find_all(tag) ] matches = [ [x.group(2).lower(), int(x.group(3))] for x in matches if x is not None ] return matches def collect_region_update(self, table_soup, region_df): matches = self.get_matching_regions(table_soup, "li") if len(matches) == 0: matches = self.get_matching_regions(table_soup, "p") if len(matches) == 0: matches = self.get_matching_regions(table_soup, "div") if len(matches) == 0: raise ValueError('Rospotrebnadzor parser is not working\ due to an unexpected page formatting change.') # to simplified format matches = [(self.get_simplified_region(x[0]), x[1]) for x in matches] # extracting iso codes iso_codes = region_df.set_index("name")["iso_code"].to_dict() iso_codes = {self.get_simplified_region(x): iso_codes[x] for x in iso_codes} matched_codes = [(iso_codes[x[0]], x[1]) for x in matches] # finding the last date date = table_soup.find("p", {"class": "date"}) date = datetime.strptime(date.text[:-3], "%d.%m.%Y").strftime("%Y-%m-%d") update_df = pd.DataFrame(matched_codes) update_df.columns = ["region", "confirmed"] update_df["date"] = date return update_df class ReportDownloader: def __init__(self, cfg): self.cfg = cfg def get_latest_info(self): rospage_response = requests.get(self.cfg["rospotreb_page"] + "about/info/news/") main_page_content = rospage_response.content.decode("Windows-1251") soup = BeautifulSoup(main_page_content, "html.parser") link = ( self.cfg["rospotreb_page"] + soup.find( "a", text=" О подтвержденных случаях новой коронавирусной инфекции COVID-2019 в России", )["href"] ) last_report_response = requests.get(link) report = last_report_response.content.decode("Windows-1251") soup = BeautifulSoup(report, "html.parser") div = soup.find("div", {"class": "news-detail"}) return div def download_report(self): confirmed_cases = pd.read_csv(self.cfg["timeseries_page"]) last_update = self.get_latest_info() return confirmed_cases, last_update class RussianRegionsParser: """ Getting up to date data about confirmed COVID-19 cases in Russia. """ def __init__(self, cfg): main_cfg = cfg["rospotreb"] aux_cfg = cfg["auxiliary"] self.downloader = ReportDownloader(main_cfg) self.regions_fname = aux_cfg["regions"] self.matcher = RegionMatcher() def fix_date(self, df): df["date"] = pd.to_datetime(df.date).dt.strftime("%Y-%m-%d") return df def convert_series_format(self, original_series_df, regions_df): """ Converting original files to a submission-based format. From regions as columns and dates as rows to the opposite. """ regions_df = regions_df.set_index("csse_province_state") new_cols = ["date"] + list(original_series_df["Province_State"]) date_series = ( original_series_df[original_series_df.columns[11:]] .transpose() .reset_index() ) date_series.columns = new_cols date_series = date_series.melt( id_vars=["date"], var_name="region_name", value_name="confirmed" ) date_series["region"] = date_series["region_name"].apply( lambda x: regions_df.loc[x, "iso_code"] ) return self.fix_date(date_series.set_index("region")) def merge_update(self, original, update): """ RosPotrebNadzor updates are measured in changes by day. We need to add them to the originals to make resulting update cumulative. """ date = datetime.strptime(update["date"][0], "%Y-%m-%d") - timedelta(days=1) date = date.strftime("%Y-%m-%d") update["region_name"] = update["region"].apply( lambda x: original.loc[x, "region_name"][0] ) update.set_index("region", inplace=True) original_prev = original.query(f'date == "{date}"') if original_prev.shape[0] == 0: warnings.warn( "Original timeseries source lags two days behind latest rospotrebnadzor update. Returning original." ) return original update["confirmed"] = original_prev["confirmed"] + update["confirmed"] # fill missing values for region_code in original.index.unique(): if region_code not in update.index: update.loc[region_code] = [ original_prev.loc[region_code, "confirmed"], update["date"][0], original_prev.loc[region_code, "region_name"], ] return original.append(update).sort_values(by=["region", "date"]) def load_data(self): regions_df =
pd.read_csv(self.regions_fname)
pandas.read_csv
# Copyright 2019 WISE-PaaS/AFS # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re import json import afs2datasource.utils as utils from afs2datasource.helper import Helper from pymongo import MongoClient import pandas as pd ISODATE_PREFIX = 'afs-isotime-' import dateutil.parser def ISODateDecoder(dic): for key, value in dic.items(): if not ISODATE_PREFIX in value: continue value = value.split(ISODATE_PREFIX)[-1].strip() try: value = dateutil.parser.isoparse(value) finally: dic[key] = value return dic class MongoHelper(Helper): def __init__(self, dataDir): self._connection = None data = utils.get_data_from_dataDir(dataDir) self.username, self.password, self.host, self.port, self.database = utils.get_credential_from_dataDir(data) self._db = self.database self._collection = data.get('collection', '') async def connect(self): if self._connection is None: uri = 'mongodb://{}:{}@{}:{}/{}'.format(self.username, self.password, self.host, self.port, self.database) self._connection = MongoClient(uri) self._connection.server_info() def disconnect(self): if self._connection: self._connection.close() self._connection = None async def execute_query(self, querySql): if not self._collection: raise AttributeError('No collection in data') data = list(self._connection[self._db][self._collection].find(querySql, {'_id': 0})) data =
pd.DataFrame(data=data)
pandas.DataFrame
# ============================================================================= # Pelote Network to Tabular Unit Tests # ============================================================================= import networkx as nx import pandas as pd from pytest import raises from pelote.exceptions import MissingPandasException from pelote.shim import missing_pandas from pelote.graph_to_tabular import ( graph_to_nodes_dataframe, graph_to_edges_dataframe, graph_to_dataframes, ) def get_basic_range_graph(n: int = 3) -> nx.Graph: g = nx.Graph() g.add_nodes_from(range(n)) for i, node in enumerate(g): g.nodes[node]["value"] = i return g class TestToNodesDataframe(object): def test_errors(self): with raises(MissingPandasException), missing_pandas(): graph_to_nodes_dataframe(nx.Graph()) with raises(TypeError): graph_to_nodes_dataframe(None) def test_default_behavior(self): g = get_basic_range_graph() df = graph_to_nodes_dataframe(g) expected = pd.DataFrame(data={"key": list(range(3)), "value": list(range(3))}) assert df.equals(expected) def test_node_key_col(self): g = get_basic_range_graph() df = graph_to_nodes_dataframe(g, node_key_col="node") expected = pd.DataFrame(data={"node": list(range(3)), "value": list(range(3))}) assert df.equals(expected) def test_node_key_as_index(self): g = get_basic_range_graph() df = graph_to_nodes_dataframe(g, node_key_col=None) expected = pd.DataFrame(index=list(range(3)), data={"value": list(range(3))}) assert df.equals(expected) class TestToEdgesDataframe(object): def test_errors(self): with raises(MissingPandasException), missing_pandas(): graph_to_edges_dataframe(nx.Graph()) with raises(TypeError): graph_to_edges_dataframe(None) def test_default_behavior(self): g = nx.Graph() g.add_edge(0, 1, weight=2.0) df = graph_to_edges_dataframe(g) expected = pd.DataFrame(data={"source": [0], "target": [1], "weight": [2.0]}) assert df.equals(expected) def test_source_target_cols(self): g = nx.Graph() g.add_edge(0, 1, weight=2.0) df = graph_to_edges_dataframe( g, edge_source_col="Source", edge_target_col="Target" ) expected = pd.DataFrame(data={"Source": [0], "Target": [1], "weight": [2.0]}) assert df.equals(expected) def test_source_target_data(self): g = nx.DiGraph() g.add_node(1, name="John", age=34) g.add_node(2, name="Lisa", age=47) g.add_edge(1, 2) # Source data df = graph_to_edges_dataframe(g, source_node_data=("age",)) expected = pd.DataFrame(data={"source": [1], "target": [2], "age": [34]}) assert df.equals(expected) # Target data df = graph_to_edges_dataframe(g, target_node_data=("age",)) expected =
pd.DataFrame(data={"source": [1], "target": [2], "age": [47]})
pandas.DataFrame
""" Author: <NAME> Modified: <NAME> """ import os import warnings import numpy as np import pandas as pd import scipy.stats import pytest from numpy.testing import assert_almost_equal, assert_allclose from statsmodels.tools.sm_exceptions import EstimationWarning from statsmodels.tsa.holtwinters import (ExponentialSmoothing, SimpleExpSmoothing, Holt, SMOOTHERS, PY_SMOOTHERS) base, _ = os.path.split(os.path.abspath(__file__)) housing_data = pd.read_csv(os.path.join(base, 'results', 'housing-data.csv')) housing_data = housing_data.set_index('DATE') housing_data = housing_data.asfreq('MS') SEASONALS = ('add', 'mul', None) TRENDS = ('add', 'mul', None) def _simple_dbl_exp_smoother(x, alpha, beta, l0, b0, nforecast=0): """ Simple, slow, direct implementation of double exp smoothing for testing """ n = x.shape[0] lvals = np.zeros(n) b = np.zeros(n) xhat = np.zeros(n) f = np.zeros(nforecast) lvals[0] = l0 b[0] = b0 # Special case the 0 observations since index -1 is not available xhat[0] = l0 + b0 lvals[0] = alpha * x[0] + (1 - alpha) * (l0 + b0) b[0] = beta * (lvals[0] - l0) + (1 - beta) * b0 for t in range(1, n): # Obs in index t is the time t forecast for t + 1 lvals[t] = alpha * x[t] + (1 - alpha) * (lvals[t - 1] + b[t - 1]) b[t] = beta * (lvals[t] - lvals[t - 1]) + (1 - beta) * b[t - 1] xhat[1:] = lvals[0:-1] + b[0:-1] f[:] = lvals[-1] + np.arange(1, nforecast + 1) * b[-1] err = x - xhat return lvals, b, f, err, xhat class TestHoltWinters(object): @classmethod def setup_class(cls): # Changed for backwards compatibility with pandas # oildata_oil_json = '{"851990400000":446.6565229,"883526400000":454.4733065,"915062400000":455.662974,"946598400000":423.6322388,"978220800000":456.2713279,"1009756800000":440.5880501,"1041292800000":425.3325201,"1072828800000":485.1494479,"1104451200000":506.0481621,"1135987200000":526.7919833,"1167523200000":514.268889,"1199059200000":494.2110193}' # oildata_oil = pd.read_json(oildata_oil_json, typ='Series').sort_index() data = [446.65652290000003, 454.47330649999998, 455.66297400000002, 423.63223879999998, 456.27132790000002, 440.58805009999998, 425.33252010000001, 485.14944789999998, 506.04816210000001, 526.79198329999997, 514.26888899999994, 494.21101929999998] index = ['1996-12-31 00:00:00', '1997-12-31 00:00:00', '1998-12-31 00:00:00', '1999-12-31 00:00:00', '2000-12-31 00:00:00', '2001-12-31 00:00:00', '2002-12-31 00:00:00', '2003-12-31 00:00:00', '2004-12-31 00:00:00', '2005-12-31 00:00:00', '2006-12-31 00:00:00', '2007-12-31 00:00:00'] oildata_oil = pd.Series(data, index) oildata_oil.index = pd.DatetimeIndex(oildata_oil.index, freq=pd.infer_freq(oildata_oil.index)) cls.oildata_oil = oildata_oil # air_ausair_json = '{"662601600000":17.5534,"694137600000":21.8601,"725760000000":23.8866,"757296000000":26.9293,"788832000000":26.8885,"820368000000":28.8314,"851990400000":30.0751,"883526400000":30.9535,"915062400000":30.1857,"946598400000":31.5797,"978220800000":32.577569,"1009756800000":33.477398,"1041292800000":39.021581,"1072828800000":41.386432,"1104451200000":41.596552}' # air_ausair = pd.read_json(air_ausair_json, typ='Series').sort_index() data = [17.5534, 21.860099999999999, 23.886600000000001, 26.929300000000001, 26.888500000000001, 28.831399999999999, 30.075099999999999, 30.953499999999998, 30.185700000000001, 31.579699999999999, 32.577568999999997, 33.477398000000001, 39.021580999999998, 41.386431999999999, 41.596552000000003] index = ['1990-12-31 00:00:00', '1991-12-31 00:00:00', '1992-12-31 00:00:00', '1993-12-31 00:00:00', '1994-12-31 00:00:00', '1995-12-31 00:00:00', '1996-12-31 00:00:00', '1997-12-31 00:00:00', '1998-12-31 00:00:00', '1999-12-31 00:00:00', '2000-12-31 00:00:00', '2001-12-31 00:00:00', '2002-12-31 00:00:00', '2003-12-31 00:00:00', '2004-12-31 00:00:00'] air_ausair = pd.Series(data, index) air_ausair.index = pd.DatetimeIndex(air_ausair.index, freq=pd.infer_freq(air_ausair.index)) cls.air_ausair = air_ausair # livestock2_livestock_json = '{"31449600000":263.917747,"62985600000":268.307222,"94608000000":260.662556,"126144000000":266.639419,"157680000000":277.515778,"189216000000":283.834045,"220838400000":290.309028,"252374400000":292.474198,"283910400000":300.830694,"315446400000":309.286657,"347068800000":318.331081,"378604800000":329.37239,"410140800000":338.883998,"441676800000":339.244126,"473299200000":328.600632,"504835200000":314.255385,"536371200000":314.459695,"567907200000":321.413779,"599529600000":329.789292,"631065600000":346.385165,"662601600000":352.297882,"694137600000":348.370515,"725760000000":417.562922,"757296000000":417.12357,"788832000000":417.749459,"820368000000":412.233904,"851990400000":411.946817,"883526400000":394.697075,"915062400000":401.49927,"946598400000":408.270468,"978220800000":414.2428}' # livestock2_livestock = pd.read_json(livestock2_livestock_json, typ='Series').sort_index() data = [263.91774700000002, 268.30722200000002, 260.662556, 266.63941899999998, 277.51577800000001, 283.834045, 290.30902800000001, 292.474198, 300.83069399999999, 309.28665699999999, 318.33108099999998, 329.37239, 338.88399800000002, 339.24412599999999, 328.60063200000002, 314.25538499999999, 314.45969500000001, 321.41377899999998, 329.78929199999999, 346.38516499999997, 352.29788200000002, 348.37051500000001, 417.56292200000001, 417.12356999999997, 417.749459, 412.233904, 411.94681700000001, 394.69707499999998, 401.49927000000002, 408.27046799999999, 414.24279999999999] index = ['1970-12-31 00:00:00', '1971-12-31 00:00:00', '1972-12-31 00:00:00', '1973-12-31 00:00:00', '1974-12-31 00:00:00', '1975-12-31 00:00:00', '1976-12-31 00:00:00', '1977-12-31 00:00:00', '1978-12-31 00:00:00', '1979-12-31 00:00:00', '1980-12-31 00:00:00', '1981-12-31 00:00:00', '1982-12-31 00:00:00', '1983-12-31 00:00:00', '1984-12-31 00:00:00', '1985-12-31 00:00:00', '1986-12-31 00:00:00', '1987-12-31 00:00:00', '1988-12-31 00:00:00', '1989-12-31 00:00:00', '1990-12-31 00:00:00', '1991-12-31 00:00:00', '1992-12-31 00:00:00', '1993-12-31 00:00:00', '1994-12-31 00:00:00', '1995-12-31 00:00:00', '1996-12-31 00:00:00', '1997-12-31 00:00:00', '1998-12-31 00:00:00', '1999-12-31 00:00:00', '2000-12-31 00:00:00'] livestock2_livestock = pd.Series(data, index) livestock2_livestock.index = pd.DatetimeIndex( livestock2_livestock.index, freq=pd.infer_freq(livestock2_livestock.index)) cls.livestock2_livestock = livestock2_livestock # aust_json = '{"1104537600000":41.727458,"1112313600000":24.04185,"1120176000000":32.328103,"1128124800000":37.328708,"1136073600000":46.213153,"1143849600000":29.346326,"1151712000000":36.48291,"1159660800000":42.977719,"1167609600000":48.901525,"1175385600000":31.180221,"1183248000000":37.717881,"1191196800000":40.420211,"1199145600000":51.206863,"1207008000000":31.887228,"1214870400000":40.978263,"1222819200000":43.772491,"1230768000000":55.558567,"1238544000000":33.850915,"1246406400000":42.076383,"1254355200000":45.642292,"1262304000000":59.76678,"1270080000000":35.191877,"1277942400000":44.319737,"1285891200000":47.913736}' # aust = pd.read_json(aust_json, typ='Series').sort_index() data = [41.727457999999999, 24.04185, 32.328102999999999, 37.328707999999999, 46.213152999999998, 29.346326000000001, 36.482909999999997, 42.977719, 48.901524999999999, 31.180221, 37.717880999999998, 40.420211000000002, 51.206862999999998, 31.887228, 40.978262999999998, 43.772491000000002, 55.558566999999996, 33.850915000000001, 42.076383, 45.642291999999998, 59.766779999999997, 35.191876999999998, 44.319737000000003, 47.913736] index = ['2005-03-01 00:00:00', '2005-06-01 00:00:00', '2005-09-01 00:00:00', '2005-12-01 00:00:00', '2006-03-01 00:00:00', '2006-06-01 00:00:00', '2006-09-01 00:00:00', '2006-12-01 00:00:00', '2007-03-01 00:00:00', '2007-06-01 00:00:00', '2007-09-01 00:00:00', '2007-12-01 00:00:00', '2008-03-01 00:00:00', '2008-06-01 00:00:00', '2008-09-01 00:00:00', '2008-12-01 00:00:00', '2009-03-01 00:00:00', '2009-06-01 00:00:00', '2009-09-01 00:00:00', '2009-12-01 00:00:00', '2010-03-01 00:00:00', '2010-06-01 00:00:00', '2010-09-01 00:00:00', '2010-12-01 00:00:00'] aust = pd.Series(data, index) aust.index = pd.DatetimeIndex(aust.index, freq=pd.infer_freq(aust.index)) cls.aust = aust def test_predict(self): fit1 = ExponentialSmoothing(self.aust, seasonal_periods=4, trend='add', seasonal='mul').fit() fit2 = ExponentialSmoothing(self.aust, seasonal_periods=4, trend='add', seasonal='mul').fit() # fit3 = ExponentialSmoothing(self.aust, seasonal_periods=4, trend='add', # seasonal='mul').fit(remove_bias=True, use_basinhopping=True) assert_almost_equal(fit1.predict('2011-03-01 00:00:00', '2011-12-01 00:00:00'), [61.3083, 37.3730, 46.9652, 51.5578], 3) assert_almost_equal(fit2.predict(end='2011-12-01 00:00:00'), [61.3083, 37.3730, 46.9652, 51.5578], 3) # assert_almost_equal(fit3.predict('2010-10-01 00:00:00', '2010-10-01 00:00:00'), [49.087], 3) def test_ndarray(self): fit1 = ExponentialSmoothing(self.aust.values, seasonal_periods=4, trend='add', seasonal='mul').fit() assert_almost_equal(fit1.forecast(4), [61.3083, 37.3730, 46.9652, 51.5578], 3) # FIXME: this is passing 2019-05-22 on some platforms; what has changed? @pytest.mark.xfail(reason='Optimizer does not converge', strict=False) def test_forecast(self): fit1 = ExponentialSmoothing(self.aust, seasonal_periods=4, trend='add', seasonal='add').fit() assert_almost_equal(fit1.forecast(steps=4), [60.9542, 36.8505, 46.1628, 50.1272], 3) def test_simple_exp_smoothing(self): fit1 = SimpleExpSmoothing(self.oildata_oil).fit(0.2, optimized=False) fit2 = SimpleExpSmoothing(self.oildata_oil).fit(0.6, optimized=False) fit3 = SimpleExpSmoothing(self.oildata_oil).fit() assert_almost_equal(fit1.forecast(1), [484.802468], 4) assert_almost_equal(fit1.level, [446.65652290, 448.21987962, 449.7084985, 444.49324656, 446.84886283, 445.59670028, 441.54386424, 450.26498098, 461.4216172, 474.49569042, 482.45033014, 484.80246797], 4) assert_almost_equal(fit2.forecast(1), [501.837461], 4) assert_almost_equal(fit3.forecast(1), [496.493543], 4) assert_almost_equal(fit3.params['smoothing_level'], 0.891998, 4) # has to be 3 for old python2.7 scipy versions assert_almost_equal(fit3.params['initial_level'], 447.478440, 3) def test_holt(self): fit1 = Holt(self.air_ausair).fit(smoothing_level=0.8, smoothing_slope=0.2, optimized=False) fit2 = Holt(self.air_ausair, exponential=True).fit( smoothing_level=0.8, smoothing_slope=0.2, optimized=False) fit3 = Holt(self.air_ausair, damped=True).fit(smoothing_level=0.8, smoothing_slope=0.2) assert_almost_equal(fit1.forecast(5), [43.76, 45.59, 47.43, 49.27, 51.10], 2) assert_almost_equal(fit1.slope, [3.617628, 3.59006512, 3.33438212, 3.23657639, 2.69263502, 2.46388914, 2.2229097, 1.95959226, 1.47054601, 1.3604894, 1.28045881, 1.20355193, 1.88267152, 2.09564416, 1.83655482], 4) assert_almost_equal(fit1.fittedfcast, [21.8601, 22.032368, 25.48461872, 27.54058587, 30.28813356, 30.26106173, 31.58122149, 32.599234, 33.24223906, 32.26755382, 33.07776017, 33.95806605, 34.77708354, 40.05535303, 43.21586036, 43.75696849], 4) assert_almost_equal(fit2.forecast(5), [44.60, 47.24, 50.04, 53.01, 56.15], 2) assert_almost_equal(fit3.forecast(5), [42.85, 43.81, 44.66, 45.41, 46.06], 2) @pytest.mark.smoke def test_holt_damp_fit(self): # Smoke test for parameter estimation fit1 = SimpleExpSmoothing(self.livestock2_livestock).fit() mod4 = Holt(self.livestock2_livestock, damped=True) fit4 = mod4.fit(damping_slope=0.98) mod5 = Holt(self.livestock2_livestock, exponential=True, damped=True) fit5 = mod5.fit() # We accept the below values as we getting a better SSE than text book assert_almost_equal(fit1.params['smoothing_level'], 1.00, 2) assert_almost_equal(fit1.params['smoothing_slope'], np.NaN, 2) assert_almost_equal(fit1.params['damping_slope'], np.NaN, 2) assert_almost_equal(fit1.params['initial_level'], 263.92, 2) assert_almost_equal(fit1.params['initial_slope'], np.NaN, 2) assert_almost_equal(fit1.sse, 6761.35, 2) # 6080.26 assert_almost_equal(fit4.params['smoothing_level'], 0.98, 2) assert_almost_equal(fit4.params['smoothing_slope'], 0.00, 2) assert_almost_equal(fit4.params['damping_slope'], 0.98, 2) assert_almost_equal(fit4.params['initial_level'], 257.36, 2) assert_almost_equal(fit4.params['initial_slope'], 6.64, 2) assert_almost_equal(fit4.sse, 6036.56, 2) # 6080.26 assert_almost_equal(fit5.params['smoothing_level'], 0.97, 2) assert_almost_equal(fit5.params['smoothing_slope'], 0.00, 2) assert_almost_equal(fit5.params['damping_slope'], 0.98, 2) assert_almost_equal(fit5.params['initial_level'], 258.95, 2) assert_almost_equal(fit5.params['initial_slope'], 1.04, 2) assert_almost_equal(fit5.sse, 6082.00, 2) # 6100.11 def test_holt_damp_R(self): # Test the damping parameters against the R forecast packages `ets` # library(ets) # livestock2_livestock <- c(...) # res <- ets(livestock2_livestock, model='AAN', damped=TRUE, phi=0.98) mod = Holt(self.livestock2_livestock, damped=True) params = { 'smoothing_level': 0.97402626, 'smoothing_slope': 0.00010006, 'damping_slope': 0.98, 'initial_level': 252.59039965, 'initial_slope': 6.90265918} fit = mod.fit(optimized=False, **params) # Check that we captured the parameters correctly for key in params.keys(): assert_allclose(fit.params[key], params[key]) # Summary output # print(res$mse) assert_allclose(fit.sse / mod.nobs, 195.4397924865488, atol=1e-3) # print(res$aicc) # TODO: this fails - different AICC definition? # assert_allclose(fit.aicc, 282.386426659408, atol=1e-3) # print(res$bic) # TODO: this fails - different BIC definition? # assert_allclose(fit.bic, 287.1563626818338) # print(res$states[,'l']) # note: this array includes the initial level desired = [ 252.5903996514365, 263.7992355246843, 268.3623324350207, 261.0312983437606, 266.6590942700923, 277.3958197247272, 283.8256217863908, 290.2962560621914, 292.5701438129583, 300.7655919939834, 309.2118057241649, 318.2377698496536, 329.2238709362550, 338.7709778307978, 339.3669793596703, 329.0127022356033, 314.7684267018998, 314.5948077575944, 321.3612035017972, 329.6924360833211, 346.0712138652086, 352.2534120008911, 348.5862874190927, 415.8839400693967, 417.2018843196238, 417.8435306633725, 412.4857261252961, 412.0647865321129, 395.2500605270393, 401.4367438266322, 408.1907701386275, 414.1814574903921] assert_allclose(np.r_[fit.params['initial_level'], fit.level], desired) # print(res$states[,'b']) # note: this array includes the initial slope desired = [ 6.902659175332394, 6.765062519124909, 6.629548973536494, 6.495537532917715, 6.365550989616566, 6.238702070454378, 6.113960476763530, 5.991730467006233, 5.871526257315264, 5.754346516684953, 5.639547926790058, 5.527116419415724, 5.417146212898857, 5.309238662451385, 5.202580636191761, 5.096941655567694, 4.993026494493987, 4.892645486210410, 4.794995106664251, 4.699468310763351, 4.606688340205792, 4.514725879754355, 4.423600168391240, 4.341595902295941, 4.254462303550087, 4.169010676686062, 4.084660399498803, 4.002512751871354, 3.920332298146730, 3.842166514133902, 3.765630194200260, 3.690553892582855] # TODO: not sure why the precision is so low here... assert_allclose(np.r_[fit.params['initial_slope'], fit.slope], desired, atol=1e-3) # print(res$fitted) desired = [ 259.3550056432622, 270.4289967934267, 274.8592904290865, 267.3969251260200, 272.8973342399166, 283.5097477537724, 289.8173030536191, 296.1681519198575, 298.3242395451272, 306.4048515803347, 314.7385626924191, 323.6543439406810, 334.5326742248959, 343.9740317200002, 344.4655083831382, 334.0077050580596, 319.6615926665040, 319.3896003340806, 326.0602987063282, 334.2979150278692, 350.5857684386102, 356.6778433630504, 352.9214155841161, 420.1387040536467, 421.3712573771029, 421.9291611265248, 416.4886933168049, 415.9872490289468, 399.0919861792231, 405.2020670104834, 411.8810877289437] assert_allclose(fit.fittedvalues, desired, atol=1e-3) # print(forecast(res)$mean) desired = [ 417.7982003051233, 421.3426082635598, 424.8161280628277, 428.2201774661102, 431.5561458813270, 434.8253949282395, 438.0292589942138, 441.1690457788685, 444.2460368278302, 447.2614880558126] assert_allclose(fit.forecast(10), desired, atol=1e-4) def test_hw_seasonal(self): mod = ExponentialSmoothing(self.aust, seasonal_periods=4, trend='additive', seasonal='additive') fit1 = mod.fit(use_boxcox=True) fit2 = ExponentialSmoothing(self.aust, seasonal_periods=4, trend='add', seasonal='mul').fit(use_boxcox=True) assert_almost_equal(fit1.forecast(8), [61.34, 37.24, 46.84, 51.01, 64.47, 39.78, 49.64, 53.90], 2) assert_almost_equal(fit2.forecast(8), [60.97, 36.99, 46.71, 51.48, 64.46, 39.02, 49.29, 54.32], 2) ExponentialSmoothing(self.aust, seasonal_periods=4, trend='mul', seasonal='add').fit(use_boxcox='log') ExponentialSmoothing(self.aust, seasonal_periods=4, trend='multiplicative', seasonal='multiplicative').fit(use_boxcox='log') # Skip since estimator is unstable # assert_almost_equal(fit5.forecast(1), [60.60], 2) # assert_almost_equal(fit6.forecast(1), [61.47], 2) # FIXME: this is passing 2019-05-22; what has changed? # @pytest.mark.xfail(reason='Optimizer does not converge') def test_hw_seasonal_buggy(self): fit3 = ExponentialSmoothing(self.aust, seasonal_periods=4, seasonal='add').fit(use_boxcox=True) assert_almost_equal(fit3.forecast(8), [59.91, 35.71, 44.64, 47.62, 59.91, 35.71, 44.64, 47.62], 2) fit4 = ExponentialSmoothing(self.aust, seasonal_periods=4, seasonal='mul').fit(use_boxcox=True) assert_almost_equal(fit4.forecast(8), [60.71, 35.70, 44.63, 47.55, 60.71, 35.70, 44.63, 47.55], 2) @pytest.mark.parametrize('trend_seasonal', (('mul', None), (None, 'mul'), ('mul', 'mul'))) def test_negative_multipliative(trend_seasonal): trend, seasonal = trend_seasonal y = -np.ones(100) with pytest.raises(ValueError): ExponentialSmoothing(y, trend=trend, seasonal=seasonal, seasonal_periods=10) @pytest.mark.parametrize('seasonal', SEASONALS) def test_dampen_no_trend(seasonal): y = -np.ones(100) with pytest.raises(TypeError): ExponentialSmoothing(housing_data, trend=False, seasonal=seasonal, damped=True, seasonal_periods=10) @pytest.mark.parametrize('seasonal', ('add', 'mul')) def test_invalid_seasonal(seasonal): y = pd.Series(-np.ones(100),index=pd.date_range('2000-1-1', periods=100, freq='MS')) with pytest.raises(ValueError): ExponentialSmoothing(y, seasonal=seasonal, seasonal_periods=1) def test_2d_data(): with pytest.raises(ValueError): ExponentialSmoothing(pd.concat([housing_data, housing_data], 1)).fit() def test_infer_freq(): hd2 = housing_data.copy() hd2.index = list(hd2.index) with warnings.catch_warnings(record=True) as w: mod = ExponentialSmoothing(hd2, trend='add', seasonal='add') assert len(w) == 1 assert 'ValueWarning' in str(w[0]) assert mod.seasonal_periods == 12 @pytest.mark.parametrize('trend', TRENDS) @pytest.mark.parametrize('seasonal', SEASONALS) def test_start_params(trend, seasonal): mod = ExponentialSmoothing(housing_data, trend='add', seasonal='add') res = mod.fit() res2 = mod.fit(start_params=res.mle_retvals.x) assert res2.sse <= res.sse def test_no_params_to_optimize(): mod = ExponentialSmoothing(housing_data) with pytest.warns(EstimationWarning): mod.fit(smoothing_level=0.5, initial_level=housing_data.iloc[0]) def test_invalid_start_param_length(): mod = ExponentialSmoothing(housing_data) with pytest.raises(ValueError): mod.fit(start_params=np.array([0.5])) def test_basin_hopping(reset_randomstate): mod = ExponentialSmoothing(housing_data, trend='add') res = mod.fit() res2 = mod.fit(use_basinhopping=True) # Basin hopping occasionally prduces a slightly larger objective tol = 1e-5 assert res2.sse <= res.sse + tol def test_debiased(): mod = ExponentialSmoothing(housing_data, trend='add') res = mod.fit() res2 = mod.fit(remove_bias=True) assert np.any(res.fittedvalues != res2.fittedvalues) @pytest.mark.smoke @pytest.mark.parametrize('trend', TRENDS) @pytest.mark.parametrize('seasonal', SEASONALS) def test_float_boxcox(trend, seasonal): res = ExponentialSmoothing(housing_data, trend=trend, seasonal=seasonal).fit(use_boxcox=0.5) assert_allclose(res.params['use_boxcox'], 0.5) @pytest.mark.parametrize('trend', TRENDS) @pytest.mark.parametrize('seasonal', SEASONALS) def test_equivalence_cython_python(trend, seasonal): mod = ExponentialSmoothing(housing_data, trend=trend, seasonal=seasonal) with pytest.warns(None): # Overflow in mul-mul case fixed res = mod.fit() res.summary() # Smoke test params = res.params nobs = housing_data.shape[0] y = np.squeeze(np.asarray(housing_data)) m = 12 if seasonal else 0 lvals = np.zeros(nobs) b = np.zeros(nobs) s = np.zeros(nobs + m - 1) p = np.zeros(6 + m) max_seen = np.finfo(np.double).max alpha = params['smoothing_level'] beta = params['smoothing_slope'] gamma = params['smoothing_seasonal'] phi = params['damping_slope'] phi = 1.0 if np.isnan(phi) else phi l0 = params['initial_level'] b0 = params['initial_slope'] p[:6] = alpha, beta, gamma, l0, b0, phi if seasonal: p[6:] = params['initial_seasons'] xi = np.ones_like(p).astype(np.uint8) py_func = PY_SMOOTHERS[(seasonal, trend)] cy_func = SMOOTHERS[(seasonal, trend)] p_copy = p.copy() sse_cy = cy_func(p, xi, p_copy, y, lvals, b, s, m, nobs, max_seen) sse_py = py_func(p, xi, p_copy, y, lvals, b, s, m, nobs, max_seen) assert_allclose(sse_py, sse_cy) def test_direct_holt_add(): mod = SimpleExpSmoothing(housing_data) res = mod.fit() x = np.squeeze(np.asarray(mod.endog)) alpha = res.params['smoothing_level'] l, b, f, err, xhat = _simple_dbl_exp_smoother(x, alpha, beta=0.0, l0=res.params['initial_level'], b0=0.0, nforecast=5) assert_allclose(l, res.level) assert_allclose(f, res.level.iloc[-1] * np.ones(5)) assert_allclose(f, res.forecast(5)) mod = ExponentialSmoothing(housing_data, trend='add') res = mod.fit() x = np.squeeze(np.asarray(mod.endog)) alpha = res.params['smoothing_level'] beta = res.params['smoothing_slope'] l, b, f, err, xhat = _simple_dbl_exp_smoother(x, alpha, beta=beta, l0=res.params['initial_level'], b0=res.params['initial_slope'], nforecast=5) assert_allclose(xhat, res.fittedvalues) assert_allclose(l + b, res.level + res.slope) assert_allclose(l, res.level) assert_allclose(b, res.slope) assert_allclose(f, res.level.iloc[-1] + res.slope.iloc[-1] * np.array([1, 2, 3, 4, 5])) assert_allclose(f, res.forecast(5)) def test_integer_array(reset_randomstate): rs = np.random.RandomState(12345) e = 10*rs.standard_normal((1000,2)) y_star = np.cumsum(e[:,0]) y = y_star + e[:,1] y = y.astype(np.long) res = ExponentialSmoothing(y,trend='add').fit() assert res.params['smoothing_level'] != 0.0 def test_damping_slope_zero(): endog = np.arange(10) mod = ExponentialSmoothing(endog, trend='add', damped=True) res1 = mod.fit(smoothing_level=1, smoothing_slope=0.0, damping_slope=1e-20) pred1 = res1.predict(start=0) assert_allclose(pred1, np.r_[0., np.arange(9)], atol=1e-10) res2 = mod.fit(smoothing_level=1, smoothing_slope=0.0, damping_slope=0) pred2 = res2.predict(start=0) assert_allclose(pred2, np.r_[0., np.arange(9)], atol=1e-10) assert_allclose(pred1, pred2, atol=1e-10) @pytest.fixture def austourists(): # austourists dataset from fpp2 package # https://cran.r-project.org/web/packages/fpp2/index.html data = [30.05251, 19.14850, 25.31769, 27.59144, 32.07646, 23.48796, 28.47594, 35.12375, 36.83848, 25.00702, 30.72223, 28.69376, 36.64099, 23.82461, 29.31168, 31.77031, 35.17788, 19.77524, 29.60175, 34.53884, 41.27360, 26.65586, 28.27986, 35.19115, 42.20566, 24.64917, 32.66734, 37.25735, 45.24246, 29.35048, 36.34421, 41.78208, 49.27660, 31.27540, 37.85063, 38.83704, 51.23690, 31.83855, 41.32342, 42.79900, 55.70836, 33.40714, 42.31664, 45.15712, 59.57608, 34.83733, 44.84168, 46.97125, 60.01903, 38.37118, 46.97586, 50.73380, 61.64687, 39.29957, 52.67121, 54.33232, 66.83436, 40.87119, 51.82854, 57.49191, 65.25147, 43.06121, 54.76076, 59.83447, 73.25703, 47.69662, 61.09777, 66.05576,] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") return
pd.Series(data, index)
pandas.Series
# coding: utf-8 import os import re import numpy as np import pandas as pd import ujson as json patient_ids = [] for filename in os.listdir('./raw'): # the patient data in PhysioNet contains 6-digits match = re.search('\d{6}', filename) if match: id_ = match.group() patient_ids.append(id_) out = pd.read_csv('./raw/Outcomes-a.txt').set_index('RecordID')['In-hospital_death'] # we select 35 attributes which contains enough non-values attributes = ['DiasABP', 'HR', 'Na', 'Lactate', 'NIDiasABP', 'PaO2', 'WBC', 'pH', 'Albumin', 'ALT', 'Glucose', 'SaO2', 'Temp', 'AST', 'Bilirubin', 'HCO3', 'BUN', 'RespRate', 'Mg', 'HCT', 'SysABP', 'FiO2', 'K', 'GCS', 'Cholesterol', 'NISysABP', 'TroponinT', 'MAP', 'TroponinI', 'PaCO2', 'Platelets', 'Urine', 'NIMAP', 'Creatinine', 'ALP'] # mean and std of 35 attributes mean = np.array([59.540976152469405, 86.72320413227443, 139.06972964987443, 2.8797765291788986, 58.13833409690321, 147.4835678885565, 12.670222585415166, 7.490957887101613, 2.922874149659863, 394.8899400819931, 141.4867570064675, 96.66380228136883, 37.07362841054398, 505.5576196473552, 2.906465787821709, 23.118951553526724, 27.413004968675743, 19.64795551193981, 2.0277491155660416, 30.692432164676188, 119.60137167841977, 0.5404785381886381, 4.135790642787733, 11.407767149315339, 156.51746031746032, 119.15012244292181, 1.2004983498349853, 80.20321011673151, 7.127188940092161, 40.39875518672199, 191.05877024038804, 116.1171573535279, 77.08923183026529, 1.5052390166989214, 116.77122488658458]) std = np.array( [13.01436781437145, 17.789923096504985, 5.185595006246348, 2.5287518090506755, 15.06074282896952, 85.96290370390257, 7.649058756791069, 8.384743923130074, 0.6515057685658769, 1201.033856726966, 67.62249645388543, 3.294112002091972, 1.5604879744921516, 1515.362517984297, 5.902070316876287, 4.707600932877377, 23.403743427107095, 5.50914416318306, 0.4220051299992514, 5.002058959758486, 23.730556355204214, 0.18634432509312762, 0.706337033602292, 3.967579823394297, 45.99491531484596, 21.97610723063014, 2.716532297586456, 16.232515568438338, 9.754483687298688, 9.062327978713556, 106.50939503021543, 170.65318497610315, 14.856134327604906, 1.6369529387005546, 133.96778334724377]) fs = open('./json/json', 'w') def to_time_bin(x): h, m = map(int, x.split(':')) return h def parse_data(x): x = x.set_index('Parameter').to_dict()['Value'] values = [] for attr in attributes: if attr in x: values.append(x[attr]) else: values.append(np.nan) return values def parse_delta(masks, dir_): if dir_ == 'backward': masks = masks[::-1] deltas = [] for h in range(48): if h == 0: deltas.append(np.ones(35)) else: deltas.append(np.ones(35) + (1 - masks[h]) * deltas[-1]) return np.array(deltas) def parse_rec(values, masks, evals, eval_masks, dir_): deltas = parse_delta(masks, dir_) # only used in GRU-D forwards =
pd.DataFrame(values)
pandas.DataFrame
# -*- coding: utf-8 -*- """ v17.csv (final submission) ... averaging model of v9s, v13 and v16 """ from logging import getLogger, Formatter, StreamHandler, INFO, FileHandler import subprocess import importlib import math from pathlib import Path import json import re import warnings import tqdm import click import tables as tb import pandas as pd import numpy as np import shapely.ops import shapely.geometry import skimage.transform import rasterio.features MODEL_NAME = 'v17' ORIGINAL_SIZE = 650 INPUT_SIZE = 256 STRIDE_SZ = 197 LOGFORMAT = '%(asctime)s %(levelname)s %(message)s' BASE_DIR = "/data/train" # Parameters MIN_POLYGON_AREA = 30 # Input files (required for validation) FMT_TRAIN_SUMMARY_PATH = str( Path(BASE_DIR) / Path("{prefix:s}_Train/") / Path("summaryData/{prefix:s}_Train_Building_Solutions.csv")) # --------------------------------------------------------- # Image list, Image container and mask container V5_IMAGE_DIR = "/data/working/images/{}".format('v5') FMT_VALTEST_IMAGELIST_PATH = V5_IMAGE_DIR + "/{prefix:s}_valtest_ImageId.csv" FMT_TEST_IMAGELIST_PATH = V5_IMAGE_DIR + "/{prefix:s}_test_ImageId.csv" # Model files MODEL_DIR = "/data/working/models/{}".format(MODEL_NAME) FMT_VALTESTPRED_PATH = MODEL_DIR + "/{}_eval_pred.h5" FMT_VALTESTPOLY_PATH = MODEL_DIR + "/{}_eval_poly.csv" FMT_VALTESTTRUTH_PATH = MODEL_DIR + "/{}_eval_poly_truth.csv" FMT_VALTESTPOLY_OVALL_PATH = MODEL_DIR + "/eval_poly.csv" FMT_VALTESTTRUTH_OVALL_PATH = MODEL_DIR + "/eval_poly_truth.csv" FMT_VALMODEL_EVALTHHIST = MODEL_DIR + "/{}_val_evalhist_th.csv" # --------------------------------------------------------- # Prediction & polygon result FMT_TESTPOLY_PATH = MODEL_DIR + "/{}_poly.csv" FN_SOLUTION_CSV = "/data/{}.csv".format(MODEL_NAME) # Logger warnings.simplefilter("ignore", UserWarning) warnings.simplefilter("ignore", FutureWarning) handler = StreamHandler() handler.setLevel(INFO) handler.setFormatter(Formatter(LOGFORMAT)) fh_handler = FileHandler(".{}.log".format(MODEL_NAME)) fh_handler.setFormatter(Formatter(LOGFORMAT)) logger = getLogger('spacenet2') logger.setLevel(INFO) if __name__ == '__main__': logger.addHandler(handler) logger.addHandler(fh_handler) def directory_name_to_area_id(datapath): """ Directory name to AOI number Usage: >>> directory_name_to_area_id("/data/test/AOI_2_Vegas") 2 """ dir_name = Path(datapath).name if dir_name.startswith('AOI_2_Vegas'): return 2 elif dir_name.startswith('AOI_3_Paris'): return 3 elif dir_name.startswith('AOI_4_Shanghai'): return 4 elif dir_name.startswith('AOI_5_Khartoum'): return 5 else: raise RuntimeError("Unsupported city id is given.") def _remove_interiors(line): if "), (" in line: line_prefix = line.split('), (')[0] line_terminate = line.split('))",')[-1] line = ( line_prefix + '))",' + line_terminate ) return line def get_model_parameter(area_id): prefix = area_id_to_prefix(area_id) fn_hist = FMT_VALMODEL_EVALTHHIST.format(prefix) best_row = pd.read_csv(fn_hist).sort_values( by='fscore', ascending=False, ).iloc[0] param = dict( min_poly_area=int(best_row['min_area_th']), ) return param def _remove_interiors(line): if "), (" in line: line_prefix = line.split('), (')[0] line_terminate = line.split('))",')[-1] line = ( line_prefix + '))",' + line_terminate ) return line def area_id_to_prefix(area_id): """ area_id から prefix を返す """ area_dict = { 2: 'AOI_2_Vegas', 3: 'AOI_3_Paris', 4: 'AOI_4_Shanghai', 5: 'AOI_5_Khartoum', } return area_dict[area_id] def _calc_fscore_per_aoi(area_id): prefix = area_id_to_prefix(area_id) truth_file = FMT_VALTESTTRUTH_PATH.format(prefix) poly_file = FMT_VALTESTPOLY_PATH.format(prefix) cmd = [ 'java', '-jar', '/root/visualizer-2.0/visualizer.jar', '-truth', truth_file, '-solution', poly_file, '-no-gui', '-band-triplets', '/root/visualizer-2.0/data/band-triplets.txt', '-image-dir', 'pass', ] proc = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout_data, stderr_data = proc.communicate() lines = [line for line in stdout_data.decode('utf8').split('\n')[-10:]] # Expected lines: """ Overall F-score : 0.85029 AOI_2_Vegas: TP : 27827 FP : 4999 FN : 4800 Precision: 0.847712 Recall : 0.852883 F-score : 0.85029 """ if stdout_data.decode('utf8').strip().endswith("Overall F-score : 0"): overall_fscore = 0 tp = 0 fp = 0 fn = 0 precision = 0 recall = 0 fscore = 0 elif len(lines) > 0 and lines[0].startswith("Overall F-score : "): assert lines[0].startswith("Overall F-score : ") assert lines[2].startswith("AOI_") assert lines[3].strip().startswith("TP") assert lines[4].strip().startswith("FP") assert lines[5].strip().startswith("FN") assert lines[6].strip().startswith("Precision") assert lines[7].strip().startswith("Recall") assert lines[8].strip().startswith("F-score") overall_fscore = float(re.findall("([\d\.]+)", lines[0])[0]) tp = int(re.findall("(\d+)", lines[3])[0]) fp = int(re.findall("(\d+)", lines[4])[0]) fn = int(re.findall("(\d+)", lines[5])[0]) precision = float(re.findall("([\d\.]+)", lines[6])[0]) recall = float(re.findall("([\d\.]+)", lines[7])[0]) fscore = float(re.findall("([\d\.]+)", lines[8])[0]) else: raise RuntimeError("Unsupported format") return { 'overall_fscore': overall_fscore, 'tp': tp, 'fp': fp, 'fn': fn, 'precision': precision, 'recall': recall, 'fscore': fscore, } def extract_y_pred(mod, area_id): prefix = area_id_to_prefix(area_id) fn = mod.FMT_VALTESTPRED_PATH.format(prefix) with tb.open_file(fn, 'r') as f: y_pred = np.array(f.get_node('/pred')) return y_pred def _internal_test_predict_best_param(area_id, rescale_pred_list=[], slice_pred_list=[]): prefix = area_id_to_prefix(area_id) # Load test imagelist fn_test = FMT_TEST_IMAGELIST_PATH.format(prefix=prefix) df_test = pd.read_csv(fn_test, index_col='ImageId') pred_values_array = np.zeros((len(df_test), 650, 650)) for idx, image_id in enumerate(df_test.index.tolist()): pred_values = np.zeros((650, 650)) pred_count = np.zeros((650, 650)) for slice_pos in range(9): slice_idx = idx * 9 + slice_pos pos_j = int(math.floor(slice_pos / 3.0)) pos_i = int(slice_pos % 3) x0 = STRIDE_SZ * pos_i y0 = STRIDE_SZ * pos_j for slice_pred in slice_pred_list: pred_values[x0:x0+INPUT_SIZE, y0:y0+INPUT_SIZE] += ( slice_pred[slice_idx][0]) pred_count[x0:x0+INPUT_SIZE, y0:y0+INPUT_SIZE] += 1 for rescale_pred in rescale_pred_list: y_pred_idx = skimage.transform.resize( rescale_pred[idx][0], (650, 650)) pred_values += y_pred_idx pred_count += 1 # Normalize pred_values = pred_values / pred_count pred_values_array[idx, :, :] = pred_values return pred_values_array def _internal_validate_predict_best_param(area_id, save_pred=True, enable_tqdm=False, rescale_pred_list=[], slice_pred_list=[]): prefix = area_id_to_prefix(area_id) # Load valtest imagelist fn_valtest = FMT_VALTEST_IMAGELIST_PATH.format(prefix=prefix) df_valtest = pd.read_csv(fn_valtest, index_col='ImageId') pred_values_array = np.zeros((len(df_valtest), 650, 650)) for idx, image_id in enumerate(df_valtest.index.tolist()): pred_values = np.zeros((650, 650)) pred_count = np.zeros((650, 650)) for slice_pos in range(9): slice_idx = idx * 9 + slice_pos pos_j = int(math.floor(slice_pos / 3.0)) pos_i = int(slice_pos % 3) x0 = STRIDE_SZ * pos_i y0 = STRIDE_SZ * pos_j for slice_pred in slice_pred_list: pred_values[x0:x0+INPUT_SIZE, y0:y0+INPUT_SIZE] += ( slice_pred[slice_idx][0]) pred_count[x0:x0+INPUT_SIZE, y0:y0+INPUT_SIZE] += 1 for rescale_pred in rescale_pred_list: y_pred_idx = skimage.transform.resize( rescale_pred[idx][0], (650, 650)) pred_values += y_pred_idx pred_count += 1 # Normalize pred_values = pred_values / pred_count pred_values_array[idx, :, :] = pred_values return pred_values_array def _internal_pred_to_poly_file_test(area_id, y_pred, min_th=MIN_POLYGON_AREA): """ Write out test poly """ prefix = area_id_to_prefix(area_id) # Load test imagelist fn_test = FMT_TEST_IMAGELIST_PATH.format(prefix=prefix) df_test = pd.read_csv(fn_test, index_col='ImageId') # Make parent directory fn_out = FMT_TESTPOLY_PATH.format(prefix) if not Path(fn_out).parent.exists(): Path(fn_out).parent.mkdir(parents=True) # Ensemble individual models and write out output files with open(fn_out, 'w') as f: f.write("ImageId,BuildingId,PolygonWKT_Pix,Confidence\n") for idx, image_id in enumerate(df_test.index.tolist()): df_poly = mask_to_poly(y_pred[idx], min_polygon_area_th=min_th) if len(df_poly) > 0: for i, row in df_poly.iterrows(): line = "{},{},\"{}\",{:.6f}\n".format( image_id, row.bid, row.wkt, row.area_ratio) line = _remove_interiors(line) f.write(line) else: f.write("{},{},{},0\n".format( image_id, -1, "POLYGON EMPTY")) def _internal_pred_to_poly_file(area_id, y_pred, min_th=MIN_POLYGON_AREA): """ Write out valtest poly and truepoly """ prefix = area_id_to_prefix(area_id) # Load valtest imagelist fn_valtest = FMT_VALTEST_IMAGELIST_PATH.format(prefix=prefix) df_valtest =
pd.read_csv(fn_valtest, index_col='ImageId')
pandas.read_csv
import numpy as np from numpy import nan import pytest from pandas._libs import groupby, lib, reduction from pandas.core.dtypes.common import ensure_int64 from pandas import Index, isna from pandas.core.groupby.ops import generate_bins_generic import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal def test_series_grouper(): from pandas import Series obj = Series(np.random.randn(10)) dummy = obj[:0] labels = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64) grouper = reduction.SeriesGrouper(obj, np.mean, labels, 2, dummy) result, counts = grouper.get_result() expected = np.array([obj[3:6].mean(), obj[6:].mean()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) def test_series_bin_grouper(): from pandas import Series obj = Series(np.random.randn(10)) dummy = obj[:0] bins = np.array([3, 6]) grouper = reduction.SeriesBinGrouper(obj, np.mean, bins, dummy) result, counts = grouper.get_result() expected = np.array([obj[:3].mean(), obj[3:6].mean(), obj[6:].mean()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) class TestBinGroupers: def setup_method(self, method): self.obj = np.random.randn(10, 1) self.labels = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2], dtype=np.int64) self.bins = np.array([3, 6], dtype=np.int64) def test_generate_bins(self): values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6, 9], dtype=np.int64) for func in [lib.generate_bins_dt64, generate_bins_generic]: bins = func(values, binner, closed="left") assert (bins == np.array([2, 5, 6])).all() bins = func(values, binner, closed="right") assert (bins == np.array([3, 6, 6])).all() for func in [lib.generate_bins_dt64, generate_bins_generic]: values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6], dtype=np.int64) bins = func(values, binner, closed="right") assert (bins == np.array([3, 6])).all() msg = "Invalid length for values or for binner" with pytest.raises(ValueError, match=msg): generate_bins_generic(values, [], "right") with pytest.raises(ValueError, match=msg): generate_bins_generic(values[:0], binner, "right") msg = "Values falls before first bin" with pytest.raises(ValueError, match=msg):
generate_bins_generic(values, [4], "right")
pandas.core.groupby.ops.generate_bins_generic
import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib as mpl from sklearn.model_selection import TimeSeriesSplit import matplotlib.pyplot as plt from numpy import nan cv_splits = 3 # time series cross validator ''' Load dataset ''' def load_data(path): raw_data = pd.read_csv(path,infer_datetime_format=True) return raw_data ''' Split data into training and validation sets ''' def split_data(training, perc=10): train_raw = np.arange(0, int(len(training)*(100-perc)/100)) # contains the first 90% of the data validation_raw = np.arange(int(len(training)*(100-perc)/100+1), len(training)) # contains the last 10% return train_raw, validation_raw ''' Convert data to univariate, using a single feature (incident_date) as input ''' def to_univariate(df): df_uni = df.drop(columns=['cause_of_incident', 'city_name', 'description', 'cause_of_incident', 'from_road', 'to_road', 'affected_roads', 'incident_category_desc','magnitude_of_delay_desc', 'length_in_meters', 'delay_in_seconds', 'latitude','longitude']) return df_uni ''' Convert data to multiariate, using multiple features (incident, length_in_meters, latitude, longitude) as input ''' def to_multivariate(df): df_uni = df.drop(columns=['cause_of_incident', 'city_name', 'description', 'cause_of_incident', 'from_road', 'to_road', 'affected_roads', 'incident_category_desc','magnitude_of_delay_desc','delay_in_seconds', ]) return df_uni ''' Prepare data to have the number of daily incidents ''' def to_daily(method, df): if method == 'univariate': df_uni = to_univariate(df) df_uni['incident_date'] = df_uni['incident_date'].str[:10] # delete the last 10 characters df_uni['Incidents'] = pd.DataFrame([1 for x in range(len(df_uni.index))]) # create a column with 1 to sum the incidents per day df_uni = df_uni.set_index('incident_date') # set the column incident_date to index df_uni.index =
pd.to_datetime(df_uni.index)
pandas.to_datetime
#import serial import keras import pandas as pd #import serial.tools.list_ports import os import numpy as np from scipy import signal import matplotlib.pyplot as plt #from com_serial import * #from filter import * from model import * from sklearn.metrics import confusion_matrix,classification_report rawdata = [] pipi = [] alis = [] wkt = [] count = 0 header_list = ['Waktu','Pipi','Alis'] data = [] X = [] y = [] #akuisisi() #write() #filtering() #extract_feature('Data_filter') #model = create_model() model = keras.models.load_model('model_lstm2') maindirs = 'Feature_extract' dirs = os.listdir(maindirs) emosi = ['kaget','marah','santai','senang'] df = pd.read_csv(maindirs+"/"+"tes_extracted.csv") #df = pd.read_csv(maindirs+"/"+"tes_extracted4.csv") d_t = df.drop('EMOSI',axis=1) label =
pd.get_dummies(df['EMOSI'])
pandas.get_dummies
#code will get the proper values like emyield, marketcap, cacl, etc, and supply a string and value to put back into the dataframe. import pandas as pd import numpy as np import logging import inspect from scipy import stats from dateutil.relativedelta import relativedelta from datetime import datetime from scipy import stats import math class quantvaluedata: #just contains functions, will NEVEFR actually get the data def __init__(self,allitems=None): if allitems is None: self.allitems=[] else: self.allitems=allitems return def get_value(self,origdf,key,i=-1): if key not in origdf.columns and key not in self.allitems and key not in ['timedepositsplaced','fedfundssold','interestbearingdepositsatotherbanks']: logging.error(key+' not found in allitems') #logging.error(self.allitems) return None df=origdf.copy() df=df.sort_values('yearquarter') if len(df)==0: ##logging.error("empty dataframe") return None if key not in df.columns: #logging.error("column not found:"+key) return None interested_quarter=df['yearquarter'].iloc[-1]+i+1#because if we want the last quarter we need them equal if not df['yearquarter'].isin([interested_quarter]).any(): #if the quarter we are interested in is not there return None s=df['yearquarter']==interested_quarter df=df[s] if len(df)>1: logging.error(df) logging.error("to many rows in df") exit() pass value=df[key].iloc[0] if pd.isnull(value): return None return float(value) def get_sum_quarters(self,df,key,seed,length): values=[] #BIG BUG, this was origionally -length-1, which was always truncating the array and producing nans. periods=range(seed,seed-length,-1) for p in periods: values.append(self.get_value(df,key,p)) #logging.info('values:'+str(values)) if pd.isnull(values).any(): #return None if any of the values are None return None else: return float(np.sum(values)) def get_market_cap(self,statements_df,prices_df,seed=-1): total_shares=self.get_value(statements_df,'weightedavedilutedsharesos',seed) if pd.isnull(total_shares): return None end_date=statements_df['end_date'].iloc[seed] if seed==-1: #get the latest price but see if there was a split between the end date and now s=pd.to_datetime(prices_df['date'])>pd.to_datetime(end_date) tempfd=prices_df[s] splits=tempfd['split_ratio'].unique() adj=pd.Series(splits).product() #multiply all the splits together to get the total adjustment factor from the last total_shares total_shares=total_shares*adj last_price=prices_df.sort_values('date').iloc[-1]['close'] price=float(last_price) market_cap=price*float(total_shares) return market_cap else: marketcap=self.get_value(statements_df,'marketcap',seed) if pd.isnull(marketcap): return None else: return marketcap def get_netdebt(self,statements_df,seed=-1): shorttermdebt=self.get_value(statements_df,'shorttermdebt',seed) longtermdebt=self.get_value(statements_df,'longtermdebt',seed) capitalleaseobligations=self.get_value(statements_df,'capitalleaseobligations',seed) cashandequivalents=self.get_value(statements_df,'cashandequivalents',seed) restrictedcash=self.get_value(statements_df,'restrictedcash',seed) fedfundssold=self.get_value(statements_df,'fedfundssold',seed) interestbearingdepositsatotherbanks=self.get_value(statements_df,'interestbearingdepositsatotherbanks',seed) timedepositsplaced=self.get_value(statements_df,'timedepositsplaced',seed) s=pd.Series([shorttermdebt,longtermdebt,capitalleaseobligations,cashandequivalents,restrictedcash,fedfundssold,interestbearingdepositsatotherbanks,timedepositsplaced]).astype('float') if pd.isnull(s).all(): #return None if everything is null return None m=pd.Series([1,1,1,-1,-1,-1,-1]) netdebt=s.multiply(m).sum() return float(netdebt) def get_enterprise_value(self,statements_df,prices_df,seed=-1): #calculation taken from https://intrinio.com/data-tag/enterprisevalue marketcap=self.get_market_cap(statements_df,prices_df,seed) netdebt=self.get_netdebt(statements_df,seed) totalpreferredequity=self.get_value(statements_df,'totalpreferredequity',seed) noncontrollinginterests=self.get_value(statements_df,'noncontrollinginterests',seed) redeemablenoncontrollinginterest=self.get_value(statements_df,'redeemablenoncontrollinginterest',seed) s=pd.Series([marketcap,netdebt,totalpreferredequity,noncontrollinginterests,redeemablenoncontrollinginterest]) if pd.isnull(s).all() or pd.isnull(marketcap): return None return float(s.sum()) def get_ebit(self,df,seed=-1,length=4): ebit=self.get_sum_quarters(df,'totaloperatingincome',seed,length) if pd.notnull(ebit): return float(ebit) totalrevenue=self.get_sum_quarters(df,'totalrevenue',seed,length) provisionforcreditlosses=self.get_sum_quarters(df,'provisionforcreditlosses',seed,length) totaloperatingexpenses=self.get_sum_quarters(df,'totaloperatingexpenses',seed,length) s=pd.Series([totalrevenue,provisionforcreditlosses,totaloperatingexpenses]) if pd.isnull(s).all(): return None ebit=(s.multiply(pd.Series([1,-1,-1]))).sum() if pd.notnull(ebit): return float(ebit) return None def get_emyield(self,statements_df,prices_df,seed=-1,length=4): ebit=self.get_ebit(statements_df,seed,length) enterprisevalue=self.get_enterprise_value(statements_df,prices_df,seed) if pd.isnull([ebit,enterprisevalue]).any() or enterprisevalue==0: return None return float(ebit/enterprisevalue) def get_scalednetoperatingassets(self,statements_df,seed=-1): """ SNOA = (Operating Assets Operating Liabilities) / Total Assets where OA = total assets cash and equivalents OL = total assets ST debt LT debt minority interest - preferred stock - book common oa=ttmsdfcompany.iloc[-1]['totalassets']-ttmsdfcompany.iloc[-1]['cashandequivalents'] ol=ttmsdfcompany.iloc[-1]['totalassets']-ttmsdfcompany.iloc[-1]['netdebt']-ttmsdfcompany.iloc[-1]['totalequityandnoncontrollinginterests'] snoa=(oa-ol)/ttmsdfcompany.iloc[-1]['totalassets'] """ totalassets=self.get_value(statements_df,'totalassets',seed) cashandequivalents=self.get_value(statements_df,'cashandequivalents',seed) netdebt=self.get_netdebt(statements_df,seed) totalequityandnoncontrollinginterests=self.get_value(statements_df,'totalequityandnoncontrollinginterests',seed) if pd.isnull(totalassets) or totalassets==0: return None s=pd.Series([totalassets,cashandequivalents]) m=pd.Series([1,-1]) oa=s.multiply(m).sum() s=pd.Series([totalassets,netdebt,totalequityandnoncontrollinginterests]) m=pd.Series([1,-1,-1]) ol=s.multiply(m).sum() scalednetoperatingassets=(oa-ol)/totalassets return float(scalednetoperatingassets) def get_scaledtotalaccruals(self,statements_df,seed=-1,length=4): netincome=self.get_sum_quarters(statements_df,'netincome',seed,length) netcashfromoperatingactivities=self.get_sum_quarters(statements_df,'netcashfromoperatingactivities',seed,length) start_assets=self.get_value(statements_df,'cashandequivalents',seed-length) end_assets=self.get_value(statements_df,'cashandequivalents',seed) if pd.isnull([start_assets,end_assets]).any(): return None totalassets=np.mean([start_assets,end_assets]) if pd.isnull(totalassets): return None num=pd.Series([netincome,netcashfromoperatingactivities]) if pd.isnull(num).all(): return None m=pd.Series([1,-1]) num=num.multiply(m).sum() den=totalassets if den==0: return None scaledtotalaccruals=num/den return float(scaledtotalaccruals) def get_grossmargin(self,statements_df,seed=-1,length=4): totalrevenue=self.get_sum_quarters(statements_df, 'totalrevenue', seed, length) totalcostofrevenue=self.get_sum_quarters(statements_df, 'totalcostofrevenue', seed, length) if pd.isnull([totalrevenue,totalcostofrevenue]).any() or totalcostofrevenue==0: return None grossmargin=(totalrevenue-totalcostofrevenue)/totalcostofrevenue return float(grossmargin) def get_margingrowth(self,statements_df,seed=-1,length1=20,length2=4): grossmargins=[] for i in range(seed,seed-length1,-1): grossmargins.append(self.get_grossmargin(statements_df, i, length2)) grossmargins=pd.Series(grossmargins) if pd.isnull(grossmargins).any(): return None growth=grossmargins.pct_change(periods=1) growth=growth[pd.notnull(growth)] if len(growth)==0: return None grossmargingrowth=stats.gmean(1+growth)-1 if pd.isnull(grossmargingrowth): return None return float(grossmargingrowth) def get_marginstability(self,statements_df,seed=-1,length1=20,length2=4): #length1=how far back to go, how many quarters to get 20 quarters #length2=for each quarter, how far back to go 4 quarters grossmargins=[] for i in range(seed,seed-length1,-1): grossmargins.append(self.get_grossmargin(statements_df, i, length2)) grossmargins=pd.Series(grossmargins) if pd.isnull(grossmargins).any() or grossmargins.std()==0: return None marginstability=grossmargins.mean()/grossmargins.std() if pd.isnull(marginstability): return None return float(marginstability) def get_cacl(self,df,seed=-1): a=self.get_value(df,'totalcurrentassets',seed) l=self.get_value(df,'totalcurrentliabilities',seed) if pd.isnull([a,l]).any() or l==0: return None else: return a/l def get_tatl(self,df,seed=-1): a=self.get_value(df,'totalassets',seed) l=self.get_value(df,'totalliabilities',seed) if pd.isnull([a,l]).any() or l==0: return None else: return a/l def get_longterm_cacl(self,df,seed=-1,length=20): ltcacls=[] for i in range(seed,seed-length,-1): ltcacls.append(self.get_cacl(df,i)) ltcacls=pd.Series(ltcacls) if pd.isnull(ltcacls).any(): return None return stats.gmean(1+ltcacls)-1 #not totally sure we need the 1+, and the -1 11/9/17 def get_longterm_tatl(self,df,seed=-1,length=20): lttatls=[] for i in range(seed,seed-length,-1): lttatls.append(self.get_tatl(df,i)) lttatls=pd.Series(lttatls) if pd.isnull(lttatls).any(): return None return stats.gmean(1+lttatls)-1 #not totally sure we need the 1+, and the -1 11/9/17 def get_capex(self,df,seed=-1,length=4): purchaseofplantpropertyandequipment=self.get_sum_quarters(df,'purchaseofplantpropertyandequipment',seed,length) saleofplantpropertyandequipment=self.get_sum_quarters(df,'saleofplantpropertyandequipment',seed,length) s=pd.Series([purchaseofplantpropertyandequipment,saleofplantpropertyandequipment]) if pd.isnull(s).all(): return None m=pd.Series([-1,-1]) capex=(s*m).sum() if capex is None: return None return float(capex) def get_freecashflow(self,df,seed=-1): netcashfromoperatingactivities=self.get_value(df,'netcashfromoperatingactivities',seed) capex=self.get_capex(df,seed,length=1) s=pd.Series([netcashfromoperatingactivities,capex]) if pd.isnull(s).all(): return None m=pd.Series([1,-1]) fcf=(s*m).sum() return float(fcf) #add a length2 paramater so we take the sums of cash flows def get_cashflowonassets(self,df,seed=-1,length1=20,length2=4): cfoas=[] for i in range(seed,seed-length1,-1): start_assets=self.get_value(df,'totalassets',i-length2) end_assets=self.get_value(df,'totalassets',i) fcfs=[] for k in range(i,i-length2,-1): fcf=self.get_freecashflow(df,k) fcfs.append(fcf) if pd.isnull(fcfs).any(): return None total_fcf=pd.Series(fcfs).sum() avg_assets=pd.Series([start_assets,end_assets]).mean() if pd.isnull([total_fcf,avg_assets]).any() or avg_assets==0: return None else: cfoas.append(total_fcf/avg_assets) if pd.isnull(cfoas).any(): return None else: if pd.isnull(stats.gmean(1+pd.Series(cfoas))-1): return None else: return stats.gmean(1+pd.Series(cfoas))-1 #we want to punish variability because the higher number the better def get_roa(self,df,seed=-1,length=4): netincome=self.get_sum_quarters(df,'netincome',seed,length) start_assets=self.get_value(df,'totalassets',seed-length) end_assets=self.get_value(df,'totalassets',seed) if pd.isnull([start_assets,end_assets]).any(): return None totalassets=pd.Series([start_assets,end_assets]).mean() if pd.isnull([netincome,totalassets]).any() or totalassets==0: return None roa=netincome/totalassets return float(roa) def get_roc(self,df,seed=-1,length=4): ebit=self.get_ebit(df,seed,length) dividends=self.get_sum_quarters(df,'paymentofdividends',seed,length) start_debt=self.get_netdebt(df,seed-length) end_debt=self.get_netdebt(df,seed) netdebt=pd.Series([start_debt,end_debt]).mean() start_equity=self.get_value(df,'totalequity',seed-length) end_equity=self.get_value(df,'totalequity',seed) totalequity=pd.Series([start_equity,end_equity]).mean() num=pd.Series([ebit,dividends]).sum() den=pd.Series([netdebt,totalequity]).sum() if pd.isnull([num,den]).any() or den==0: return None else: roc=(float(num/den)) return float(roc) def get_longtermroa(self,df,seed=-1,length1=20,length2=4): roas=[] for i in range(seed,seed-length1,-1): roas.append(self.get_roa(df,i,length2)) if pd.isnull(roas).any(): return None longtermroagmean=stats.gmean(1+pd.Series(roas))-1 if pd.isnull(longtermroagmean): return None return float(longtermroagmean) def get_longtermroc(self,df,seed=-1,length1=20,length2=4): rocs=[] for i in range(seed,seed-length1,-1): rocs.append(self.get_roc(df,i,length2)) rocs=pd.Series(rocs) if pd.isnull(rocs).any(): return None roc=stats.gmean(1+rocs)-1 if pd.isnull(roc): return None return float(roc) def get_momentum(self,df,period=relativedelta(months=11)): df=df[pd.to_datetime(df['date'])>=pd.to_datetime(df['date'].max())-period] df=df['adj_close'].astype('float') pctchange=df.pct_change() pctchange=pctchange.dropna() pctchange=1+pctchange pctchange=pctchange.tolist() gain=np.prod(pctchange) return float(gain-1) def get_fip(self,df,period=relativedelta(years=1)): orig_df=df.copy() df=df[pd.to_datetime(df['date'])>=pd.to_datetime(df['date'].max())-period] df=df['adj_close'].astype('float') pctchange=df.pct_change() pctchange=pctchange.dropna() if len(pctchange)==0: return None updays=(pctchange>0).sum() downdays=(pctchange<0).sum() fip=float(downdays)/float(len(pctchange))-float(updays)/float(len(pctchange)) if self.get_momentum(orig_df)<0: fip=-1*fip return fip #the lower the better def get_balance_sheet_mean_value(self,df,tag,seed=-1,length=1): start=self.get_value(df,tag,seed-length) end=self.get_value(df,tag,seed) if pd.isnull(pd.Series([start,end])).any() or start==0 or end==0: return None average=pd.Series([start,end]).mean() if pd.isnull(average): return None else: return float(average) def get_dsri(self,df,seed1=-1,seed2=-5,length=4): #seed1 and 2 are the quarters we are comparing between #dsri=(ttmsdfcompany.iloc[-1]['accountsreceivable']/ttmsdfcompany.iloc[-1]['totalrevenue'])/(ttmsdfcompany.iloc[-5]['accountsreceivable']/ttmsdfcompany.iloc[-5]['totalrevenue']) #accountsreceivable1=self.get_value(cik,'balance_sheet','accountsreceivable',seed1) #accountsreceivable2=self.get_value(cik,'balance_sheet','accountsreceivable',seed2) accountsreceivable1=self.get_balance_sheet_mean_value(df, 'accountsreceivable', seed1,length) accountsreceivable2=self.get_balance_sheet_mean_value(df, 'accountsreceivable', seed2,length) totalrevenue1=self.get_sum_quarters(df,'totalrevenue',seed1,length) totalrevenue2=self.get_sum_quarters(df,'totalrevenue',seed2,length) if pd.isnull([accountsreceivable1,accountsreceivable2,totalrevenue1,totalrevenue2]).any() or totalrevenue1==0 or totalrevenue2==0: return None num=accountsreceivable1/totalrevenue1 den=accountsreceivable2/totalrevenue2 if den==0: return None dsri=num/den return float(dsri) def get_gmi(self,df,seed1=-1,seed2=-5,length=4): #gmi=((ttmsdfcompany.iloc[-5]['totalrevenue']-ttmsdfcompany.iloc[-5]['totalcostofrevenue'])/ttmsdfcompany.iloc[-5]['totalrevenue'])/((ttmsdfcompany.iloc[-1]['totalrevenue']-ttmsdfcompany.iloc[-1]['totalcostofrevenue'])/ttmsdfcompany.iloc[-1]['totalrevenue']) totalrevenue1=self.get_sum_quarters(df,'totalrevenue',seed1,length) totalrevenue2=self.get_sum_quarters(df,'totalrevenue',seed2,length) totalcostofrevenue1=self.get_sum_quarters(df,'totalcostofrevenue',seed1,length) totalcostofrevenue2=self.get_sum_quarters(df,'totalcostofrevenue',seed2,length) if pd.isnull([totalrevenue1,totalrevenue2,totalcostofrevenue1,totalcostofrevenue2]).any(): return None if totalrevenue2==0 or totalrevenue1==0: return None num=(totalrevenue2-totalcostofrevenue2)/totalrevenue2 den=(totalrevenue1-totalcostofrevenue1)/totalrevenue1 gmi=num/den if den==0: return None return float(gmi) def get_aqi(self,df,seed1=-1,seed2=-5): #https://www.oldschoolvalue.com/blog/investment-tools/beneish-earnings-manipulation-m-score/ #otherlta1=companydf.iloc[-1]['totalassets']-(companydf.iloc[-1]['totalcurrentassets']+companydf.iloc[-1]['netppe']) #otherlta2=companydf.iloc[-5]['totalassets']-(companydf.iloc[-5]['totalcurrentassets']+companydf.iloc[-5]['netppe']) # aqi=(otherlta1/companydf.iloc[-1]['totalassets'])/(otherlta2/companydf.iloc[-5]['totalassets']) netppe1=self.get_value(df,'netppe',seed1) netppe2=self.get_value(df,'netppe',seed2) totalassets1=self.get_value(df,'totalassets',seed1) totalassets2=self.get_value(df,'totalassets',seed2) totalcurrentassets1=self.get_value(df,'totalcurrentassets',seed1) totalcurrentassets2=self.get_value(df,'totalcurrentassets',seed2) if pd.isnull([netppe1,netppe2,totalassets1,totalassets2,totalcurrentassets1,totalcurrentassets2]).any(): return None a=totalassets1-totalcurrentassets1-netppe1 b=totalassets2-totalcurrentassets2-netppe2 if totalassets1==0 or totalassets2==0: return None num=a/totalassets1 den=b/totalassets2 if den==0: return None aqi=num/den return float(aqi) def get_sgi(self,df,seed1=-1,seed2=-5,length=4): #sgi=ttmsdfcompany.iloc[-1]['totalrevenue']/ttmsdfcompany.iloc[-5]['totalrevenue'] totalrevenue1=self.get_sum_quarters(df,'totalrevenue',seed1,length) totalrevenue2=self.get_sum_quarters(df,'totalrevenue',seed2,length) if pd.isnull([totalrevenue1,totalrevenue2]).any(): return None if totalrevenue2==0: return None sgi=totalrevenue1/totalrevenue2 return float(sgi) def get_depi(self,df,seed1=-1,seed2=-5,length=4): #depit=ttmsdfcompany.iloc[-1]['depreciationexpense']/(ttmsdfcompany.iloc[-1]['depreciationexpense']+ttmsdfcompany.iloc[-1]['netppe']) #depit1=ttmsdfcompany.iloc[-5]['depreciationexpense']/(ttmsdfcompany.iloc[-5]['depreciationexpense']+ttmsdfcompany.iloc[-5]['netppe']) #depi=depit1/depit depreciationexpense1=self.get_sum_quarters(df,'depreciationexpense',seed1,length) depreciationexpense2=self.get_sum_quarters(df,'depreciationexpense',seed2,length) netppe1=self.get_balance_sheet_mean_value(df, 'netppe', seed1,length) netppe2=self.get_balance_sheet_mean_value(df, 'netppe', seed2,length) if pd.isnull([depreciationexpense1,depreciationexpense2,netppe1,netppe2]).any(): return None num=depreciationexpense2/(depreciationexpense2+netppe2) den=depreciationexpense1/(depreciationexpense1+netppe1) if den==0: return None depi=num/den return float(depi) def get_sgai(self,df,seed1=-1,seed2=-5,length=4): #sgait=ttmsdfcompany.iloc[-1]['sgaexpense']/ttmsdfcompany.iloc[-1]['totalrevenue'] #sgait1=ttmsdfcompany.iloc[-5]['sgaexpense']/ttmsdfcompany.iloc[-5]['totalrevenue'] #sgai=sgait/sgait1 sgaexpense1=self.get_sum_quarters(df,'sgaexpense',seed1,length) sgaexpense2=self.get_sum_quarters(df,'sgaexpense',seed2,length) totalrevenue1=self.get_sum_quarters(df,'totalrevenue',seed1,length) totalrevenue2=self.get_sum_quarters(df,'totalrevenue',seed2,length) if
pd.isnull([sgaexpense1,sgaexpense2,totalrevenue1,totalrevenue2])
pandas.isnull
""" sess_load_util.py This module contains functions for loading data from files generated by the Allen Institute OpenScope experiments for the Credit Assignment Project. Authors: <NAME> Date: August, 2018 Note: this code uses python 3.7. """ import copy import logging from pathlib import Path import cv2 import h5py import json import numpy as np import pandas as pd import pynwb from util import file_util, gen_util, logger_util from sess_util import sess_file_util, sess_gen_util, sess_sync_util logger = logging.getLogger(__name__) TAB = " " NWB_FILTER_KS = 5 ###################################### def get_sessid_from_mouse_df(mouse_n=1, sess_n=1, runtype="prod", mouse_df="mouse_df.csv"): """ get_sessid_from_mouse_df(sessid) Returns session ID, based on the mouse number, session number, and runtype, based on the mouse dataframe. Optional args: - mouse_n (int) : mouse number default: 1 - sess_n (int) : session number default: 1 - runtype (str) : type of data default: 1 - mouse_df (Path): path name of dataframe containing information on each session. Dataframe should have the following columns: mouse_n, sess_n, runtype default: "mouse_df.csv" Returns: - sessid (int): session ID """ if isinstance(mouse_df, (str, Path)): mouse_df = file_util.loadfile(mouse_df) df_line = gen_util.get_df_vals( mouse_df, ["mouse_n", "sess_n", "runtype"], [int(mouse_n), int(sess_n), runtype], single=True ) sessid = int(df_line["sessid"].tolist()[0]) return sessid ###################################### def load_info_from_mouse_df(sessid, mouse_df="mouse_df.csv"): """ load_info_from_mouse_df(sessid) Returns dictionary containing information from the mouse dataframe. Required args: - sessid (int): session ID Optional args: - mouse_df (Path): path name of dataframe containing information on each session. Dataframe should have the following columns: sessid, mouse_n, depth, plane, line, sess_n, pass_fail, all_files, any_files, notes default: "mouse_df.csv" Returns: - df_dict (dict): dictionary with following keys: - all_files (bool) : if True, all files have been acquired for the session - any_files (bool) : if True, some files have been acquired for the session - dandi_id (str) : Dandi session ID - date (str) : session date (i.e., yyyymmdd) - depth (int) : recording depth - plane (str) : recording plane ("soma" or "dend") - line (str) : mouse line (e.g., "L5-Rbp4") - mouse_n (int) : mouse number (e.g., 1) - mouseid (int) : mouse ID (6 digits) - notes (str) : notes from the dataframe on the session - pass_fail (str) : whether session passed "P" or failed "F" quality control - runtype (str) : "prod" (production) or "pilot" data - sess_n (int) : overall session number (e.g., 1) - stim_seed (int) : random seed used to generated stimulus """ if isinstance(mouse_df, (str, Path)): mouse_df = file_util.loadfile(mouse_df) df_line = gen_util.get_df_vals(mouse_df, "sessid", sessid, single=True) df_dict = { "mouse_n" : int(df_line["mouse_n"].tolist()[0]), "dandi_id" : df_line["dandi_session_id"].tolist()[0], "date" : int(df_line["date"].tolist()[0]), "depth" : df_line["depth"].tolist()[0], "plane" : df_line["plane"].tolist()[0], "line" : df_line["line"].tolist()[0], "mouseid" : int(df_line["mouseid"].tolist()[0]), "runtype" : df_line["runtype"].tolist()[0], "sess_n" : int(df_line["sess_n"].tolist()[0]), "stim_seed" : int(df_line["stim_seed"].tolist()[0]), "pass_fail" : df_line["pass_fail"].tolist()[0], "all_files" : bool(int(df_line["all_files"].tolist()[0])), "any_files" : bool(int(df_line["any_files"].tolist()[0])), "notes" : df_line["notes"].tolist()[0], } return df_dict ############################################# def get_mouseid_sessid_nwb(nwb_files): """ get_mouseid_sessid_nwb(nwb_files) Returns the mouse ID and session ID retrieve from NWB files. If several files are passed, they are expected to be for the same session (with identical mouse ID and session IDs). Required args: - nwb_files (Path or list): path(s) to the NWB file(s) for a single session Returns: - mouseid (str): mouse ID (Allen) - sessid (str) : session ID (Allen) """ nwb_files = gen_util.list_if_not(nwb_files) mouseid, sessid = None, None for nwb_file in nwb_files: with pynwb.NWBHDF5IO(str(nwb_file), "r") as f: nwbfile_in = f.read() new_mouseid = nwbfile_in.subject.subject_id if mouseid is None: mouseid = new_mouseid elif mouseid != new_mouseid: nwb_filenames = [str(filename) for filename in nwb_files] raise RuntimeError( "Mouse IDs for different NWB files for the same session " f"do not match: {', '.join(nwb_filenames)}." ) new_sessid = nwbfile_in.identifier if sessid is None: sessid = new_sessid elif sessid != new_sessid: nwb_filenames = [str(filename) for filename in nwb_files] raise RuntimeError( "Session IDs for different NWB files for the same session " f"do not match: {', '.join(nwb_filenames)}." ) return mouseid, sessid ############################################# def load_small_stim_pkl(stim_pkl, runtype="prod"): """ load_small_stim_pkl(stim_pkl) Loads a smaller stimulus dictionary from the stimulus pickle file in which "posbyframe" for visual flow stimuli is not included. If it does not exist, small stimulus dictionary is created and saved as a pickle with "_small" appended to name. Reduces the pickle size about 10 fold. Required args: - stim_pkl (Path): full path name for the full stimulus pickle file Optional args: - runtype (str): runtype ("prod" or "pilot") """ stim_pkl = Path(stim_pkl) stim_pkl_no_ext = Path(stim_pkl.parent, stim_pkl.stem) small_stim_pkl_name = Path(f"{stim_pkl_no_ext}_small.pkl") if small_stim_pkl_name.is_file(): return file_util.loadfile(small_stim_pkl_name) else: logger.info("Creating smaller stimulus pickle.", extra={"spacing": TAB}) stim_dict = file_util.loadfile(stim_pkl) if runtype == "pilot": stim_par_key = "stimParams" elif runtype == "prod": stim_par_key = "stim_params" else: gen_util.accepted_values_error( "runtype", runtype, ["prod", "pilot"]) for i in range(len(stim_dict["stimuli"])): stim_keys = stim_dict["stimuli"][i][stim_par_key].keys() stim_par = stim_dict["stimuli"][i][stim_par_key] if runtype == "pilot" and "posByFrame" in stim_keys: _ = stim_par.pop("posByFrame") elif runtype == "prod" and "square_params" in stim_keys: _ = stim_par["session_params"].pop("posbyframe") file_util.saveinfo(stim_dict, small_stim_pkl_name) return stim_dict ############################################# def load_stim_df_info(stim_pkl, stim_sync_h5, time_sync_h5, align_pkl, sessid, runtype="prod"): """ load_stim_df_info(stim_pkl, stim_sync_h5, time_sync_h5, align_pkl, sessid) Creates the alignment dataframe (stim_df) and saves it as a pickle in the session directory, if it does not already exist. Returns dataframe, alignment arrays, and frame rate. Required args: - stim_pkl (Path) : full path name of the experiment stim pickle file - stim_sync_h5 (Path): full path name of the experiment sync hdf5 file - time_sync_h5 (Path): full path name of the time synchronization hdf5 file - align_pkl (Path) : full path name of the output pickle file to create - sessid (int) : session ID, needed the check whether this session needs to be treated differently (e.g., for alignment bugs) Optional args: - runtype (str): runtype ("prod" or "pilot") default: "prod" Returns: - stim_df (pd DataFrame): stimlus alignment dataframe with columns: "stimtype", "unexp", "stim_seg", "gabfr", "gab_ori", "gabk", "visflow_dir", "visflow_size", "start_twop_fr", "end_twop_fr", "num_twop_fr" - stimtype_order (list) : stimulus type order - stim2twopfr (1D array): 2p frame numbers for each stimulus frame, as well as the flanking blank screen frames - twop_fps (num) : mean 2p frames per second - twop_fr_stim (int) : number of 2p frames recorded while stim was playing """ align_pkl = Path(align_pkl) sessdir = align_pkl.parent # create stim_df if doesn't exist if not align_pkl.is_file(): logger.info(f"Stimulus alignment pickle not found in {sessdir}, and " "will be created.", extra={"spacing": TAB}) sess_sync_util.get_stim_frames( stim_pkl, stim_sync_h5, time_sync_h5, align_pkl, sessid, runtype, ) align = file_util.loadfile(align_pkl) stim_df = align["stim_df"] stim_df = stim_df.rename( columns={"GABORFRAME": "gabfr", "surp": "unexp", # rename surprise to unexpected "stimType": "stimtype", "stimSeg": "stim_seg", "start_frame": "start_twop_fr", "end_frame": "end_twop_fr", "num_frames": "num_twop_fr"}) # rename bricks -> visflow stim_df["stimtype"] = stim_df["stimtype"].replace({"b": "v"}) stim_df = modify_visflow_segs(stim_df, runtype) stim_df = stim_df.sort_values("start_twop_fr").reset_index(drop=True) # note: STIMULI ARE NOT ORDERED IN THE PICKLE stimtype_map = { "g": "gabors", "v": "visflow" } stimtype_order = stim_df["stimtype"].map(stimtype_map).unique() stimtype_order = list( filter(lambda s: s in stimtype_map.values(), stimtype_order)) # split stimPar1 and stimPar2 into all stimulus parameters stim_df["gab_ori"] = stim_df["stimPar1"] stim_df["gabk"] = stim_df["stimPar2"] stim_df["visflow_size"] = stim_df["stimPar1"] stim_df["visflow_dir"] = stim_df["stimPar2"] stim_df = stim_df.drop(columns=["stimPar1", "stimPar2"]) for col in stim_df.columns: if "gab" in col: stim_df.loc[stim_df["stimtype"] != "g", col] = -1 if "visflow" in col: stim_df.loc[stim_df["stimtype"] != "v", col] = -1 # expand on direction info for direc in ["right", "left"]: stim_df.loc[(stim_df["visflow_dir"] == direc), "visflow_dir"] = \ sess_gen_util.get_visflow_screen_mouse_direc(direc) stim2twopfr = align["stim_align"].astype("int") twop_fps = sess_sync_util.get_frame_rate(stim_sync_h5)[0] twop_fr_stim = int(max(align["stim_align"])) return stim_df, stimtype_order, stim2twopfr, twop_fps, twop_fr_stim ############################################# def load_max_projection_nwb(sess_files): """ load_max_projection_nwb(sess_files) Returns maximum projection image of downsampled z-stack as an array, from NWB files. Required args: - sess_files (Path): full path names of the session files Returns: - max_proj (2D array): maximum projection image across downsampled z-stack (hei x wei), with pixel intensity in 0 (incl) to 256 (excl) range ("uint8" datatype). """ ophys_file = sess_file_util.select_nwb_sess_path(sess_files, ophys=True) with pynwb.NWBHDF5IO(str(ophys_file), "r") as f: nwbfile_in = f.read() ophys_module = nwbfile_in.get_processing_module("ophys") main_field = "PlaneImages" data_field = "max_projection" try: max_proj = ophys_module.get_data_interface( main_field).get_image(data_field)[()].astype("uint8") except KeyError as err: raise KeyError( "Could not find a maximum projection plane image " f"for {ophys_file} due to: {err}" ) return max_proj ############################################# def load_max_projection(max_proj_png): """ load_max_projection(max_proj_png) Returns maximum projection image of downsampled z-stack as an array. Required args: - max_proj_png (Path): full path names of the maximum projection png Returns: - max_proj (2D array): maximum projection image across downsampled z-stack (hei x wei), with pixel intensity in 0 (incl) to 256 (excl) range ("uint8" datatype). """ if not Path(max_proj_png).is_file(): raise OSError(f"{max_proj_png} does not exist.") import imageio max_proj = imageio.imread(max_proj_png).astype("uint8") return max_proj ############################################# def get_registration_transform_params(nway_match_path, sessid, targ_sess_idx=0): """ get_registration_transform_params(nway_match_path, sessid) Returns cv2.warpPerspective registration transform parameters used to register session planes to one another, saved in the n-way match files. (cv2.warpPerspective should be used with flags cv2.INTER_LINEAR and cv2.WARP_INVERSE_MAP) Required args: - nway_match_path (Path): full path name of the n-way registration path (should be a local path in a directory that other session registrations are also stored) - sessid (int) : session ID Optional args: - targ_sess_idx (int): session that the registration transform should be targetted to default: 0 Returns: - transform_params (3D array): registration transformation parameters for the session (None if the session was the registration target) """ if not Path(nway_match_path).is_file(): raise OSError(f"{nway_match_path} does not exist.") with open(nway_match_path, "r") as f: nway_metadata = pd.DataFrame().from_dict(json.load(f)["metadata"]) if len(nway_metadata) != 1: raise NotImplementedError( "Metadata dataframe expected to only have one line." ) nway_row = nway_metadata.loc[nway_metadata.index[0]] if sessid not in nway_row["sess_ids"]: raise RuntimeError( "sessid not found in the n-way match metadata dataframe." ) sess_idx = nway_row["sess_ids"].index(sessid) sess_n = nway_row["sess_ns"][sess_idx] n_reg_sess = len(nway_row["sess_ids"]) if targ_sess_idx >= n_reg_sess: raise ValueError( f"targ_sess_idx is {targ_sess_idx}, but only {n_reg_sess} " "sessions were registered to one another.") targ_sess_id = nway_row["sess_ids"][targ_sess_idx] targ_sess_n = nway_row["sess_ns"][targ_sess_idx] if targ_sess_id == sessid: return None # no transform needed # get transform from the target session's nway file if str(sessid) not in str(nway_match_path): raise ValueError( "Expected the n-way_match_path to contain the session ID." ) targ_nway_match_path = Path( str(nway_match_path).replace(str(sessid), str(targ_sess_id)) ) if not Path(targ_nway_match_path).is_file(): raise RuntimeError(f"Expected to find {targ_nway_match_path} to " "retrieve registration transform, but file does not exist.") with open(targ_nway_match_path, "r") as f: target_nway_metadata = pd.DataFrame().from_dict(json.load(f)["metadata"]) column_name = f"sess_{sess_n}_to_sess_{targ_sess_n}_transformation_matrix" if column_name not in target_nway_metadata.columns: raise RuntimeError( f"Expected to find {column_name} column in the metadata " "dataframe for the target session." ) if len(nway_metadata) != 1: raise NotImplementedError( "Target session metadata dataframe expected to only have one line." ) target_nway_row = target_nway_metadata.loc[target_nway_metadata.index[0]] transform_params = np.asarray(target_nway_row[column_name]) return transform_params ############################################# def apply_registration_transform(nway_match_path, sessid, image, targ_sess_idx=0): """ apply_registration_transform(nway_match_path, sessid, image) Returns an image transformed using registration transform parameters, saved in the n-way match files. Required args: - nway_match_path (Path): full path name of the n-way registration path (should be a local path in a directory that other session registrations are also stored) - sessid (int) : session ID - image (2 or 3D array) : image to transform, with dimensions (item x) hei x wid. Only certain datatypes are supported by the OpenCV function used, e.g. float or uint8. Optional args: - targ_sess_idx (int) : session that the registration transform should be targetted to default: 0 Returns: - registered_image (2 or 3D array) : transformed image, with dimensions (item x) hei x wid. """ registration_transform_params = get_registration_transform_params( nway_match_path, sessid, targ_sess_idx=targ_sess_idx ) if registration_transform_params is None: registered_image = image else: len_image_shape = len(image.shape) if len_image_shape == 2: image = np.asarray([image]) elif len_image_shape != 3: raise ValueError("image must be a 2D or 3D array.") image = np.asarray(image) if registration_transform_params.shape != (3, 3): raise RuntimeError( "registration_transform_params retrieved is expected to have " "shape (3, 3), but found shape " f"{registration_transform_params.shape}." ) try: registered_image = np.asarray( [cv2.warpPerspective( sub, registration_transform_params, dsize=sub.shape, flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP ) for sub in image] ) except cv2.error as err: # try to capture and clarify obscure datatype errors raised by # OpenCV if "ifunc" in str(err) or "argument 'src'" in str(err): raise RuntimeError( "The following error was raised by OpenCV during image " f"warping: {err}May be due to the use of an unsupported " "datatype. Supported datatypes include uint8, int16, " "uint16, float32, and float64." ) else: raise err if len_image_shape == 2: registered_image = registered_image[0] return registered_image ############################################# def get_tracking_perm_example_df(nway_match_path, sessid=None, idx_after_rem_bad=False): """ get_tracking_perm_example_df(nway_match_path) Returns dataframe with tracking permutation example data. (Only a few mice have this data included in their nway-match files.) Required args: - nway_match_path (Path): full path name of the n-way registration path (should be a local path in a directory that other session registrations are also stored) Optional args: - sessid (int) : session ID, for error message if file does not contain the tracking permutation example key default: None - idx_after_rem_bad (bool): if True, the ROI indices (not IDs, however) are shifted to as if bad ROIs did not exist (bad ROIs computed for dF/F only) default: False Returns: - nway_tracking_ex_df (pd.DataFrame): dataframe listing ROI tracking matches that were yielded using different session permutations, with columns: ['match_level'] (str): whether this permutation produces the 'most' or 'fewest' matches, or whether the row reflects the 'union' ['n_total'] (int): total number of ROIs for the match level if 'match_level' is 'most' or 'fewest' (NaN if 'union') ['sess_order'] (list): session number order for this permutation ['dff_local_missing_roi_idx'] (list): indices of ROIs that are included in the final tracked ROIs for the session, but were not identified with this permutation ['dff_local_extra_roi_idx'] (list): indices of ROIs that are not included in the final tracked ROIs for the session, but were identified with this permutation ['sess{}_missing_roi_id'] (list): ROI IDs/names corresponding to 'dff_local_missing_roi_idx' ['sess{}_extra_roi_id'] (list): ROI IDs/names corresponding to 'dff_local_extra_roi_idx' """ if not Path(nway_match_path).is_file(): raise OSError(f"{nway_match_path} does not exist.") with open(nway_match_path, "r") as f: nway_dict = json.load(f) match_key = "match_perm_examples" if match_key not in nway_dict.keys(): sess_str = "" if sessid is None else f" for session {sessid}" raise RuntimeError(f"nway-match file{sess_str} does not contain " f"example tracking permutation data under {match_key}." ) nway_tracking_ex_df = pd.DataFrame().from_dict(nway_dict[match_key]) # check that missing ROI indices are all tracked, and extra ROI indices are # all untracked for the session rois_df = pd.DataFrame().from_dict(nway_dict["rois"]) for col in nway_tracking_ex_df.columns: if "roi_idx" not in col: continue targ_vals = rois_df["dff-ordered_roi_index"].tolist() for row_idx in nway_tracking_ex_df.index: if nway_tracking_ex_df.loc[row_idx, "match_level"] == "union": continue roi_idxs = nway_tracking_ex_df.loc[row_idx, col] for n in roi_idxs: if n in targ_vals and "extra" in col: raise RuntimeError( "Some ROIs identified as 'extra' are in fact tracked." ) elif n not in targ_vals and "missing" in col: raise RuntimeError( "Some ROIs identified as 'missing' are not in fact " "tracked." ) # shift ROI indices to as if bad ROIs did not exist if idx_after_rem_bad: bad_rois_df =
pd.DataFrame()
pandas.DataFrame
from config_chbp_eeg import bids_root, deriv_root, N_JOBS import pandas as pd from joblib import Parallel, delayed import mne import coffeine from config_chbp_eeg import bids_root subjects_list = list(bids_root.glob('*')) subjects_list = list(bids_root.glob('*')) subjects_df =
pd.read_csv(bids_root / "participants.tsv", sep='\t')
pandas.read_csv
import os import json import pandas as pd import datetime import numpy as np import itertools from pprint import pprint from tqdm import tqdm as pbar from textblob import TextBlob pd.plotting.register_matplotlib_converters() #Input: N/A #Return: A list of strings containing all chat names def get_chats_names(): chat_names = [] for file in os.listdir(os.getcwd() + '/json'): chat_names.append(file.split('.')[0]) return chat_names #Input: String input #Return: JSON of chatname def get_json(name): with open('json/' + name + '.json', 'r') as json_file: return json.load(json_file) #Input: A list of JSON objects holding all the messages of a specific chat #Return: A list holding JSON of sentiment analysis per message def get_chat_sentiment(messages): analyzed_messages = [{"sentiment": message['sentiment'], "date": message['date']} for message in messages ] return analyzed_messages #Input: A list of JSON holding sentiment analysis #Return: A JSON of lists of the average sentiment over a weekly basis (Used to be data frame, might change it back) #Note: Changing the time is dependent on the resample library, in which the basis are 'D'ays, 'W'eeks, 'M'onths, etc. def sentiment_over_time(messages, time='W'): df = pd.io.json.json_normalize(messages) df['date'] = pd.to_datetime(df['date']) df = df[df.sentiment != 0] df = df.resample(time, on='date').mean() df = df.dropna() # df = df.loc[datetime.date(year=2019,month=3,day=1):datetime.date(year=2019,month=5,day=5)] #Personal Use, ignore this line dates = df.index.tolist() sentiments = df['sentiment'].tolist() return { #These are lists "date": dates, "sentiment": sentiments } #Input: N/A #Return: JSON of all messages amongst all conversations def all_conversations(): chats = get_chats_names() convs = [get_json(chat)['messages'] for chat in chats] all_convs = list(itertools.chain.from_iterable(convs)) return all_convs #Input: A JSON of a conversation #Return: A JSON of the conversation, divided by sender def split_conversation(messages): split_messages = {} for message in messages: if message['sender'] in split_messages: split_messages[message['sender']].append(message) else: split_messages[message['sender']] = [] return [{"name": conversation[0], "messages": conversation[1]} for conversation in split_messages.items()] #Input: A JSON of a conversation #Return: A list of JSONs of the sentiments split by person over time def split_sentiment(messages): conversations = split_conversation(messages) sentiments = [] for conversation in conversations: if len(conversation['messages']) == 0: #Person never sent messages continue sentiment = sentiment_over_time(get_chat_sentiment(conversation['messages'])) sentiment['name'] = conversation['name'] sentiments.append(sentiment) return sentiments #Input: A JSON of a conversation #Return: A JSON of a list of Dates and Message Counts. #This could use reworking because I literally just count the rows, no restructuring. def message_count_over_time(messages, time='W'): df = pd.io.json.json_normalize(messages) df['date'] = pd.to_datetime(df['date']) df = df.resample(time, on='date')['text'].agg('count') # df = df.loc[datetime.date(year=2019,month=3,day=25):datetime.date(year=2019,month=5,day=5)] #Personal Use, ignore this line dates = df.index.tolist() message_count = df.values.tolist() return { #These are lists "date": dates, "message_count": message_count } #Input: A JSON of a conversation #Return: Returns the sentiment sorted by time instead of date def count_by_time(messages): df =
pd.io.json.json_normalize(messages)
pandas.io.json.json_normalize
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from decouple import config BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def pandas_df(path_to_jsons): json_files = [pos_json for pos_json in os.listdir(path_to_jsons) if pos_json.endswith('.json')] json_file = path_to_jsons + json_files[0] data =
pd.read_json(json_file, lines=True)
pandas.read_json
from utils.support_functions import calculate_rate_exact_day, calculate_rate_exact_day_cop, \ calculate_rate_exact_day_cop_inversed from decimal import Decimal import os import pandas as pd from settings import CURRENCIES, calc_categories from statement_parser.preproccessing import get_category def conversion(x, to_currency): year = x[0] month = x[1] value = x[2] from_currency = x[3] # in case it is the same currency if from_currency == to_currency: return Decimal(str(round(value, 4))) # in case we have COP (not suppported with daily rates) if from_currency == 'COP': # we use an approximated way: rate = calculate_rate_exact_day_cop(to_currency) elif to_currency == 'COP': # we use an apporximated way: rate = calculate_rate_exact_day_cop_inversed(from_currency) else: rate = calculate_rate_exact_day(from_currency, month, year, to_currency) if value == "": return value else: #print(year,month,value, rate, from_currency, to_currency) new_with = Decimal(str(round(rate, 4))) * Decimal(str(round(value, 4))) return new_with def MANUAL_parser(file_path, directories): CATEGORIES, CATEGORIES_DEPOSIT, CATEGORIES_WITHDRAWAL = calc_categories(directories) # process data registry_accounts = [] # here we collect the name of the accounts we have read registry_currency_per_account = [] # here we collect the currency of every account registry_type_per_account = [] # here we collect the type of every account registry =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import os import click import logging from pathlib import Path from dotenv import find_dotenv, load_dotenv import pandas as pd import networkx as nx from src.utils.utils_features import NetworkFeatureComputation from src.data.financial_network import ( IndustryNetworkCreation, IndustryNetworkCreationEORA, ) from src.data.migration_network import MigrationNetworkCreation, EstimatedMigrationNetwork from src.data.panel_data_etl import PanelDataETL from src.utils.utils_s3 import read_s3_graphml, write_s3_graphml def network_from_adjacency(adjacency_matrix, node_index, path, tol_gfi=0.01, tol_favor=0.0001): df_adj =
pd.DataFrame(adjacency_matrix, index=node_index, columns=node_index)
pandas.DataFrame
# 국경일 : getHoliDeInfo # 공휴일 : getRestDeInfo import requests from bs4 import BeautifulSoup import csv import json import pandas as pd import matplotlib.pyplot as plt import numpy as np # holiday_csv 파일 만드는 함수 def make_holiday_csv(years_lst=[2018, 2019, 2020, 2021], filename='C:/Users/km_mz/Desktop/dacon/daconcup/Data/holiday.csv'): data_lst = [] for year in years_lst: url = "http://apis.data.go.kr/B090041/openapi/service/SpcdeInfoService/getRestDeInfo" key = '<KEY>' query = f"?solYear={year}&ServiceKey={key}&_type=json&numOfRows={100}" endpoint = url + query res = requests.get(endpoint) data = json.loads(res.text)['response']['body']['items']['item'] data_lst += data with open(filename, 'w', newline='') as f: cols = ['dateKind', 'dateName', 'isHoliday', 'locdate', 'seq'] writer = csv.DictWriter(f, fieldnames=cols) writer.writeheader() for row in data_lst: writer.writerow(row) print("Done making holiday.csv...") def make_holiday_df(years_lst=[2018, 2019, 2020, 2021]): data_lst = [] for year in years_lst: url = "http://apis.data.go.kr/B090041/openapi/service/SpcdeInfoService/getRestDeInfo" key = '<KEY>MTRowquqx%2BvsNwUWykYKqhmpX6jHhbDsIjhgYaq5UARFaZLTkQ7o75H%2BC%2FCfOHKMaLcA%3D%3D' query = f"?solYear={year}&ServiceKey={key}&_type=json&numOfRows={100}" endpoint = url + query res = requests.get(endpoint) data = json.loads(res.text)['response']['body']['items']['item'] data_lst += data cols = ['dateKind', 'dateName', 'isHoliday', 'date', 'seq'] df = pd.DataFrame(data_lst, columns = cols) return df # pandas에 공휴일 칼럼 추가하는 함수 def add_isHoliday_column(df_having_date): holiday = make_holiday_df() holiday.columns = ['dateKind', 'dateName', 'isHoliday', 'date', 'seq'] holiday['date'] = pd.to_datetime(holiday['date']) df = pd.merge(df_having_date, holiday[['date', 'isHoliday']], on='date', how='left') df['isHoliday'] = df.apply(lambda x: 1 if (x['date'].dayofweek == 5)|(x['date'].dayofweek == 6) | (x['isHoliday'] == 'Y') else 0, axis=1) return df # train 데이터 날짜별 데이터로 바꾸기 def train_prep(df): df['DateTime'] = pd.to_datetime(df['DateTime']) df['date'] = df.DateTime.dt.date df = df.groupby('date').sum().reset_index() return df # 데이터 날짜별 count 데이터프레임으로 바꾸기 def info_prep(df, col='count'): # date 변수 추출 df['c_time'] = pd.to_datetime(df['c_time']) df['date'] = df['c_time'].dt.date # missing value 제거 df = df.dropna(how='all') # 모든 row가 missing value 일 때 df = df.groupby('date')['date'].count().to_frame(name=col).reset_index() return df # 날짜별 히트맵 def check_date(df, title=''): """ input: > 'date', '원하는 count' 두 칼럼으로 이루어진 df """ import seaborn as sns df['date'] = pd.to_datetime(df['date']) df['year_month'] = df.apply(lambda x: x['date'].strftime('%Y') + '-' + x['date'].strftime('%m'), axis=1) df['day'] = df['date'].dt.strftime('%d') df_pivot =
pd.pivot_table(df, index='year_month', columns='day', values=df.columns[1])
pandas.pivot_table
from mpl_toolkits import mplot3d import sys, os import numpy as np import matplotlib.pyplot as plt import pandas as pd from plotnine import * import copy, math dist = 10 def find_min_discm_each_hyperparam(df): x = df.sort_values(by=['Discm_percent', 'Points-Removed']).groupby("Model-count", as_index=False).first() assert len(x) == 240 return x def process_rows(row, batches): # global batches model_count = 0 for perm in range(20): for h1units in [16, 24, 32]: for h2units in [8, 12]: for batch in batches: # different batch sizes for this dataset if perm == row['Dataperm'] and h1units == row['H1Units'] and h2units == row['H2Units'] and batch == row['Batch']: return model_count else: model_count += 1 def process_dfs(name, batches, df): # import ipdb; ipdb.set_trace() if 'Model-count' in df.columns: df['Model-count2'] = df.apply(process_rows, axis=1, args=((batches,))) assert (df['Model-count'] == df['Model-count2']).all() df.drop(columns=['Model-count2'], inplace=True) else: df['Model-count'] = df.apply(process_rows, axis=1, args=((batches,))) assert len(df['Model-count'].unique()) == 240 and df['Model-count'].max() == 239 and df['Model-count'].min() == 0 df = df.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines # df = df[['Model-count','Discm_percent','Test_acc']] df = df[['Model-count','Discm_percent','Test_acc', 'Class0_Pos', 'Class1_Pos']] df['diff'] = abs(df['Class0_Pos'] - df['Class1_Pos']) * 100 df['Test_acc'] = df['Test_acc'].apply(lambda x: x * 100) df['Techniques'] = name if len(name.split()) > 1: words = name.split() letters = [word[0] for word in words] x = "".join(letters) df['Baseline'] = x else: df['Baseline'] = name[:2] return df def boxplots_datasets(dataset, plot): df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1.csv") batches = sorted(list(df1.Batch.unique())) # sorting is important assert(len(batches) == 2) df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count','Discm_percent', 'Test_acc', 'Class0_Pos', 'Class1_Pos']] df_our['diff'] = abs(df_our['Class0_Pos'] - df_our['Class1_Pos'])*100 df_our['Test_acc'] = df_our['Test_acc'].apply(lambda x: x*100) df_our['Techniques'] = "Our Technique" df_our['Baseline'] = "Our" # Massaging df_massaging = process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}.csv")) # Preferential Sampling df_ps = process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}.csv")) # Learning Fair representations df_lfr = process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}.csv")) # Disparate Impact Removed df_DIR = process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}.csv")) # Adversarial Sampling df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}.csv") df_adver['Model-count'] = df_adver['Dataperm']*12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df_adver = df_adver[['Model-count','Discm_percent','Test_acc','diff']] df_adver['diff'] = df_adver['diff']*100 df_adver['Test_acc'] = df_adver['Test_acc'].apply(lambda x: x*100) df_adver['Techniques'] = "Adversa. debias" df_adver['Baseline'] = "AD" # # Sensitive Attribute removed, therefore no discrimination df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") df_nosensitive = df_nosensitive[['Model-count','Test_acc', 'Class0_Pos', 'Class1_Pos']] df_nosensitive['diff'] = abs(df_nosensitive['Class0_Pos'] - df_nosensitive['Class1_Pos'])*100 df_nosensitive['Discm_percent'] = 0.0 df_nosensitive['Test_acc'] = df_nosensitive['Test_acc'].apply(lambda x: x*100) df_nosensitive['Techniques'] = "Sens. Removed" df_nosensitive['Baseline'] = "SR" # df_nosensitive = process_dfs("Sensitive Removed", batches, pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv")) # No technique used df_noremoval = process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval.csv")) df_main = pd.concat([df_noremoval, df_nosensitive, df_massaging, df_ps, df_lfr, df_DIR, df_adver, df_our]) try: assert(len(df_main) == 7*240 + 20) except: import ipdb; ipdb.set_trace() if dataset == "compas-score": dataset = "Recidivism-score" elif dataset == "compas-ground": dataset = "Recidivism-ground" # df_main['Dataset'] = dataset.capitalize() if dataset == "adult": sizeofPSI = 4522200 id_ = "D1" elif dataset == "adult_race": sizeofPSI = 4313100 id_ = "D2" elif dataset == "german": sizeofPSI = 100000 id_ = "D3" elif dataset == "student": sizeofPSI = 64900 id_ = "D4" elif dataset == "Recidivism-ground": sizeofPSI = 615000 id_ = "D5" elif dataset == "Recidivism-score": sizeofPSI = 615000 id_ = "D6" elif dataset == "default": sizeofPSI = 3000000 id_ = "D7" elif dataset == "salary": sizeofPSI = 5200 id_ = "D8" else: raise NotImplementedError df_main['Dataset'] = id_ precision = 1 if plot == 0: min_discm = True test_accuracy_for_min_discm = True max_accuracy = True discm_for_max_accuracy = True median_discm = False mean_accuracy = False median_accuracy = False if min_discm: x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].min():.{precision}e}", '0.0' ,f"{df_DIR['Discm_percent'].min():.{precision}e}", f"{df_ps['Discm_percent'].min():.{precision}e}", f"{df_massaging['Discm_percent'].min():.{precision}e}", f"{df_lfr['Discm_percent'].min():.{precision}e}", f"{df_adver['Discm_percent'].min():.{precision}e}", f"{df_our['Discm_percent'].min():.{precision}e}"]) print_to_tex(x, 'min-discm.tex', dataset) if max_accuracy: y = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR['Test_acc'].max():.{precision}e}", f"{df_ps['Test_acc'].max():.{precision}e}", f"{df_massaging['Test_acc'].max():.{precision}e}", f"{df_lfr['Test_acc'].max():.{precision}e}", f"{df_adver['Test_acc'].max():.{precision}e}", f"{df_our['Test_acc'].max():.{precision}e}"]) print_to_tex(y, 'max-test-accuracy.tex', dataset) if test_accuracy_for_min_discm: # for sensitive there is always 0 discrimination. z = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Discm_percent'] == df_noremoval['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR.loc[df_DIR['Discm_percent'] == df_DIR['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_ps.loc[df_ps['Discm_percent'] == df_ps['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_massaging.loc[df_massaging['Discm_percent'] == df_massaging['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_lfr.loc[df_lfr['Discm_percent'] == df_lfr['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_adver.loc[df_adver['Discm_percent'] == df_adver['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['Test_acc'].max():.{precision}e}"]) print_to_tex(z, 'test_accuracy_for_min_discm.tex', dataset) if median_discm: x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(0.0) ,f"{df_DIR['Discm_percent'].median():.{precision}e}", f"{df_ps['Discm_percent'].median():.{precision}e}", f"{df_massaging['Discm_percent'].median():.{precision}e}", f"{df_lfr['Discm_percent'].median():.{precision}e}", f"{df_adver['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Discm_percent'].median():.{precision}e}")]) print_to_tex(x, 'median-discm.tex', dataset) if mean_accuracy: a = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].mean():.{precision}e}", f"{df_nosensitive['Test_acc'].mean():.{precision}e}", f"{df_DIR['Test_acc'].mean():.{precision}e}", f"{df_ps['Test_acc'].mean():.{precision}e}", f"{df_massaging['Test_acc'].mean():.{precision}e}", f"{df_lfr['Test_acc'].mean():.{precision}e}", f"{df_adver['Test_acc'].mean():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].mean():.{precision}e}")]) print_to_tex(a, 'mean-test-accuracy.tex', dataset) if median_accuracy: b = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].median():.{precision}e}", f"{df_nosensitive['Test_acc'].median():.{precision}e}", f"{df_DIR['Test_acc'].median():.{precision}e}", f"{df_ps['Test_acc'].median():.{precision}e}", f"{df_massaging['Test_acc'].median():.{precision}e}", f"{df_lfr['Test_acc'].median():.{precision}e}", f"{df_adver['Test_acc'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].median():.{precision}e}")]) print_to_tex(b, 'median-test-accuracy.tex', dataset) if discm_for_max_accuracy: k = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Test_acc'] == df_noremoval['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", "0.0", f"{df_DIR.loc[df_DIR['Test_acc'] == df_DIR['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_ps.loc[df_ps['Test_acc'] == df_ps['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_massaging.loc[df_massaging['Test_acc'] == df_massaging['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_lfr.loc[df_lfr['Test_acc'] == df_lfr['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_adver.loc[df_adver['Test_acc'] == df_adver['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_our.loc[df_our['Test_acc'] == df_our['Test_acc'].max()]['Discm_percent'].min():.{precision}e}"]) print_to_tex(k, 'discm_for_max_accuracy.tex', dataset) return df_main def boxplots_datasets_dist(dataset, plot): df1 = pd.read_csv(f"{dataset}/results_{dataset}_method1_dist{dist}.csv") batches = sorted(list(df1.Batch.unique())) # sorting is important assert(len(batches) == 2) df_our = find_min_discm_each_hyperparam(df1) df_our = df_our[['Model-count', 'Discm_percent', 'Test_acc', 'Class0_Pos', 'Class1_Pos']] df_our['diff'] = abs(df_our['Class0_Pos'] - df_our['Class1_Pos']) * 100 # Statistical parity diff df_our['Test_acc'] = df_our['Test_acc'].apply(lambda x: x * 100) df_our['Techniques'] = "Our Technique" df_our['Baseline'] = "Our" # Massaging df_massaging = process_dfs("MAssaging", batches, pd.read_csv(f"{dataset}/massaging/results_massaged_{dataset}_dist{dist}.csv")) # Preferential Sampling df_ps = process_dfs("Prefer. Sampling", batches, pd.read_csv(f"{dataset}/preferential_sampling/results_resampling_{dataset}_dist{dist}.csv")) # Learning Fair representations df_lfr = process_dfs("Learning Fair Repr.", batches, pd.read_csv(f"{dataset}/learning_fair_representations/results_lfr_{dataset}_dist{dist}.csv")) # Disparate Impact Removed df_DIR = process_dfs("Disp. Impact Rem", batches, pd.read_csv(f"{dataset}/disparate_impact_removed/results_disparate_removed_{dataset}_dist{dist}.csv")) # Adversarial Sampling df_adver = pd.read_csv(f"{dataset}/adversarial_debiasing/results_adversarial_debiased_{dataset}_dist{dist}.csv") df_adver['Model-count'] = df_adver['Dataperm'] * 12 df_adver = df_adver.sort_values("Discm_percent").groupby("Model-count", as_index=False).first() # must be sorted in order of model count for comparison across baselines df_adver = df_adver[['Model-count','Discm_percent','Test_acc','diff']] df_adver['diff'] = df_adver['diff'] * 100 df_adver['Test_acc'] = df_adver['Test_acc'].apply(lambda x: x*100) df_adver['Techniques'] = "Adversa. debias" df_adver['Baseline'] = "AD" # # Sensitive Attribute removed, therefore no discrimination # df_nosensitive = pd.read_csv(f"{dataset}/results_{dataset}_nosensitive.csv") df_nosensitive = process_dfs("Sens. Removed", batches, pd.read_csv(f"{dataset}/results_{dataset}_nosensitive_dist{dist}.csv")) # df_nosensitive = df_nosensitive[['Model-count','Test_acc', 'Class0_Pos', 'Class1_Pos']] # df_nosensitive['diff'] = abs(df_nosensitive['Class0_Pos'] - df_nosensitive['Class1_Pos'])*100 # df_nosensitive['Discm_percent'] = 0.0 # df_nosensitive['Test_acc'] = df_nosensitive['Test_acc'].apply(lambda x: x*100) # df_nosensitive['Techniques'] = "Sens. Removed" # df_nosensitive['Baseline'] = "SR" # No technique used df_noremoval = process_dfs("FULL", batches, pd.read_csv(f"{dataset}/results_{dataset}_noremoval_dist{dist}.csv")) df_main = pd.concat([df_noremoval, df_nosensitive, df_massaging, df_ps, df_lfr, df_DIR, df_adver, df_our], sort=True) try: assert(len(df_main) == 7*240 + 20) except: import ipdb; ipdb.set_trace() if dataset == "compas-score": dataset = "Recidivism-score" elif dataset == "compas-ground": dataset = "Recidivism-ground" # df_main['Dataset'] = dataset.capitalize() if dataset == "adult": sizeofPSI = 4522200 id_ = "D1" elif dataset == "adult_race": sizeofPSI = 4313100 id_ = "D2" elif dataset == "german": sizeofPSI = 100000 id_ = "D3" elif dataset == "student": sizeofPSI = 64900 id_ = "D4" elif dataset == "Recidivism-ground": sizeofPSI = 615000 id_ = "D5" elif dataset == "Recidivism-score": sizeofPSI = 615000 id_ = "D6" elif dataset == "default": sizeofPSI = 3000000 id_ = "D7" elif dataset == "salary": sizeofPSI = 5200 id_ = "D8" else: raise NotImplementedError df_main['Dataset'] = id_ precision = 1 if plot == 0: min_discm = True test_accuracy_for_min_discm = True max_accuracy = True discm_for_max_accuracy = True median_discm = False mean_accuracy = False median_accuracy = False if min_discm: x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].min():.{precision}e}", f"{df_nosensitive['Discm_percent'].min():.{precision}e}" ,f"{df_DIR['Discm_percent'].min():.{precision}e}", f"{df_ps['Discm_percent'].min():.{precision}e}", f"{df_massaging['Discm_percent'].min():.{precision}e}", f"{df_lfr['Discm_percent'].min():.{precision}e}", f"{df_adver['Discm_percent'].min():.{precision}e}", f"{df_our['Discm_percent'].min():.{precision}e}"]) print_to_tex(x, f'min-discm_dist{dist}.tex', dataset) if max_accuracy: y = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].max():.{precision}e}", f"{df_nosensitive['Test_acc'].max():.{precision}e}", f"{df_DIR['Test_acc'].max():.{precision}e}", f"{df_ps['Test_acc'].max():.{precision}e}", f"{df_massaging['Test_acc'].max():.{precision}e}", f"{df_lfr['Test_acc'].max():.{precision}e}", f"{df_adver['Test_acc'].max():.{precision}e}", f"{df_our['Test_acc'].max():.{precision}e}"]) print_to_tex(y, f'max-test-accuracy_dist{dist}.tex', dataset) if test_accuracy_for_min_discm: z = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Discm_percent'] == df_noremoval['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_nosensitive.loc[df_nosensitive['Discm_percent'] == df_nosensitive['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_DIR.loc[df_DIR['Discm_percent'] == df_DIR['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_ps.loc[df_ps['Discm_percent'] == df_ps['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_massaging.loc[df_massaging['Discm_percent'] == df_massaging['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_lfr.loc[df_lfr['Discm_percent'] == df_lfr['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_adver.loc[df_adver['Discm_percent'] == df_adver['Discm_percent'].min()]['Test_acc'].max():.{precision}e}", f"{df_our.loc[df_our['Discm_percent'] == df_our['Discm_percent'].min()]['Test_acc'].max():.{precision}e}"]) print_to_tex(z, f'test_accuracy_for_min_discm_dist{dist}.tex', dataset) if median_discm: raise NotImplementedError x = ' & '.join([f"{id_}", f"{df_noremoval['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(0.0) ,f"{df_DIR['Discm_percent'].median():.{precision}e}", f"{df_ps['Discm_percent'].median():.{precision}e}", f"{df_massaging['Discm_percent'].median():.{precision}e}", f"{df_lfr['Discm_percent'].median():.{precision}e}", f"{df_adver['Discm_percent'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Discm_percent'].median():.{precision}e}")]) print_to_tex(x, 'median-discm.tex', dataset) if mean_accuracy: raise NotImplementedError a = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].mean():.{precision}e}", f"{df_nosensitive['Test_acc'].mean():.{precision}e}", f"{df_DIR['Test_acc'].mean():.{precision}e}", f"{df_ps['Test_acc'].mean():.{precision}e}", f"{df_massaging['Test_acc'].mean():.{precision}e}", f"{df_lfr['Test_acc'].mean():.{precision}e}", f"{df_adver['Test_acc'].mean():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].mean():.{precision}e}")]) print_to_tex(a, 'mean-test-accuracy.tex', dataset) if median_accuracy: raise NotImplementedError b = ' & '.join([f"{id_}", f"{df_noremoval['Test_acc'].median():.{precision}e}", f"{df_nosensitive['Test_acc'].median():.{precision}e}", f"{df_DIR['Test_acc'].median():.{precision}e}", f"{df_ps['Test_acc'].median():.{precision}e}", f"{df_massaging['Test_acc'].median():.{precision}e}", f"{df_lfr['Test_acc'].median():.{precision}e}", f"{df_adver['Test_acc'].median():.{precision}e}", "\\textbf{%s}"%(f"{df_our['Test_acc'].median():.{precision}e}")]) print_to_tex(b, 'median-test-accuracy.tex', dataset) if discm_for_max_accuracy: k = ' & '.join([f"{id_}", f"{df_noremoval.loc[df_noremoval['Test_acc'] == df_noremoval['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_nosensitive.loc[df_nosensitive['Test_acc'] == df_nosensitive['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_DIR.loc[df_DIR['Test_acc'] == df_DIR['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_ps.loc[df_ps['Test_acc'] == df_ps['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_massaging.loc[df_massaging['Test_acc'] == df_massaging['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_lfr.loc[df_lfr['Test_acc'] == df_lfr['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_adver.loc[df_adver['Test_acc'] == df_adver['Test_acc'].max()]['Discm_percent'].min():.{precision}e}", f"{df_our.loc[df_our['Test_acc'] == df_our['Test_acc'].max()]['Discm_percent'].min():.{precision}e}"]) print_to_tex(k, f'discm_for_max_accuracy_dist{dist}.tex', dataset) return df_main def print_to_tex(string, file, dataset, mode=None): if mode == None: if dataset == "adult": mode = "w" else: mode = "a" # with open(f"../../neurips_fairness_paper/tables/{file}", mode) as f: with open(f"tables/{file}", mode) as f: if dataset == "salary": string += " \\\ \midrule" else: string += " \\\\ " print(string, file=f) # print(dataset) # print("Min discm: ", df_DIR['Discm_percent'].min()) # print("Min discm: ", df_ps['Discm_percent'].min()) # print("Min discm: ", df_massaging['Discm_percent'].min()) # print("Min discm: ", df_lfr['Discm_percent'].min()) # print("Min discm: ", df_adver['Discm_percent'].min()) # print("Min discm: ", df_our['Discm_percent'].min()) def main(plot): df_main = None benchmarks = ["adult", "adult_race", "german", "student", "compas-ground", "compas-score", "default", "salary"] for dataset in benchmarks: # df_onedataset = boxplots_datasets(dataset, plot) df_onedataset = boxplots_datasets_dist(dataset, plot) if not df_main is None: df_main = pd.concat([df_main, df_onedataset]) else: df_main = copy.deepcopy(df_onedataset) print(f"Done {dataset}") if plot == 0: return labels = ['FU', 'SR', 'DIR', 'PS', 'MA', 'LFR', 'AD', 'Our'] tech_cat = pd.Categorical(df_main['Baseline'], categories=labels) df_main = df_main.assign(Technique_x = tech_cat) dataset_order = ["D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8"] data_cat = pd.Categorical(df_main['Dataset'], categories=dataset_order) df_main = df_main.assign(Dataset_x = data_cat) # x = (ggplot(aes(x='Technique_x', y='Discm_percent', color='Techniques'), data=df_main) +\ # geom_boxplot() +\ # facet_wrap(['Dataset'], scales = 'free', nrow=2, labeller='label_both', shrink=False) + \ # ylab("Remaining Individual Discrimination") + \ # xlab("Discrimination reducing techniques") + \ # # ylim(0, 20) + \ # # ggtitle("Box plot showing remaining discrimination for each technique in each dataset") +\ # theme(axis_text_x = element_text(size=6), dpi=151) + \ # theme_seaborn() # ) # This is responsible for the legend - remove color='Techniques' x = (ggplot(aes(x='Technique_x', y='Discm_percent'), data=df_main) +\ geom_boxplot() +\ facet_wrap(['Dataset_x'], scales = 'free', nrow=2, labeller='label_value', shrink=True) + \ ylab("Remaining Individual Discrimination") + \ xlab("Discrimination reducing techniques") + \ # ylim(0, 20) + \ # ggtitle("Box plot showing remaining discrimination for each technique in each dataset") +\ theme(axis_text_x = element_text(size=6), dpi=151) + \ theme_seaborn() ) x = x.draw() x.set_figwidth(20) x.set_figheight(12) for ax in range(len(benchmarks)): low_limit = -0.05 top_limit = df_main[df_main['Dataset'] == f'D{ax+1}']['Discm_percent'].max() if df_main[df_main['Dataset'] == f'D{ax+1}']['Discm_percent'].max() > 20: top_limit = 20 if top_limit > 13: # These hacks are for aligning the 0 at the bottom of the plots. low_limit = -0.3 x.axes[ax].set_ylim(low_limit, top_limit) # x.tight_layout() # This didn't work x.savefig(f"boxplots/boxplot_discm_freeaxis_matplotlib_dist{dist}.eps", format='eps', bbox_inches='tight') x.savefig(f"boxplots/boxplot_discm_freeaxis_matplotlib_dist{dist}.png", bbox_inches='tight') # x.save(f"boxplot_discm_freeaxis_matplotlib.png", height=8, width=18) # x.save(f"boxplot_discm_freeaxis_withoutfull.png", height=12, width=15) # x.save(f"boxplot_discm_fixedaxis.png", height=5, width=12) y = (ggplot(aes(x='Technique_x', y='Test_acc'), data=df_main) +\ geom_boxplot() +\ facet_wrap(['Dataset_x'], scales = 'free', nrow=2, labeller='label_value', shrink=True) + \ ylab("Test Accuracy") + \ xlab("Discrimination reducing techniques") + \ # ylim(0, 100) + \ # ggtitle("Box plot showing remaining discrimination for each technique in each dataset") +\ theme(axis_text_x = element_text(size=6), dpi=151) + \ theme_seaborn() ) # y.save(f"boxplot_accuracy_freeaxis.png", height=8, width=18) y = y.draw() y.set_figwidth(20) y.set_figheight(12) for ax in range(len(benchmarks)): bot_limit = df_main[df_main['Dataset'] == f'D{ax+1}']['Test_acc'].min() top_limit = df_main[df_main['Dataset'] == f'D{ax+1}']['Test_acc'].max() y.axes[ax].set_ylim(bot_limit - 1, top_limit + 2) # y.tight_layout() y.savefig(f"boxplots/boxplot_accuracy_freeaxis_matplotlib_dist{dist}.eps", format='eps', bbox_inches='tight') y.savefig(f"boxplots/boxplot_accuracy_freeaxis_matplotlib_dist{dist}.png", bbox_inches='tight') def real_accuracy_tables(debiased): dataset = "compas-score" if debiased: deb = "debiased" else: deb = "full" df1 =
pd.read_csv(f"{dataset}/results_{dataset}_method1.csv")
pandas.read_csv
# AUTOGENERATED! DO NOT EDIT! File to edit: 02_process_duplicates_image_level.ipynb (unless otherwise specified). __all__ = ['create_vocab', 'convert_category_lists_to_probability_vectors', 'get_test_csvs', 'get_train_csv', 'get_image_level_csvs'] # Cell from fastcore.all import * from .find_duplicates import set_index_and_sort import numpy as np import pandas as pd from PIL import Image # Cell def create_vocab(category_names_df): categories = L(category_names_df.category_id.unique().tolist()) categories.sort() return categories.val2idx() # Cell def _category_list_to_probability_vector_helper(category_list, vocab): """Converts list of categories to probability vector.""" probs = np.zeros(len(vocab)) for category in category_list: probs[vocab[category]] += 1/len(category_list) return probs # Cell def convert_category_lists_to_probability_vectors(hash2categories: dict, vocab: dict): """Converts hash2categories category lists to probability vectors.""" for hash_, category_list in hash2categories.items(): hash2categories[hash_] = _category_list_to_probability_vector_helper(category_list, vocab) # Cell def get_test_csvs(test_hashes_df, hash2categories: dict): """Returns test images mapped to probability vector and test images to predict on.""" duplicated_imgs_idx = test_hashes_df.index.isin(hash2categories) duplicated_test_images_df, unique_test_images_df = test_hashes_df[duplicated_imgs_idx], test_hashes_df[~duplicated_imgs_idx] labeled_test = [ (name, hash2categories[hash_]) for hash_, name in zip(duplicated_test_images_df.index, duplicated_test_images_df.image_name) ] to_predict = unique_test_images_df.image_name.to_list() labeled_test_df =
pd.DataFrame(labeled_test, columns=["image_name", "probability"])
pandas.DataFrame
import time import sys import datetime import shutil import os import py7zr from ftplib import FTP import numpy as np import pandas as pd from stock.globalvar import * from stock.utils.symbol_util import symbol_to_exsymbol, is_symbol_kc from stock.utils.calc_price import get_zt_price pd.set_option('max_columns', None) pd.set_option('max_rows', None) def get_filepath(today): today_str = today.strftime("%Y%m%d") filename = "{}.7z".format(today_str) filepath = "/tmp/{}".format(filename) return filepath def download_kaipan(today): ftp = FTP('172.16.31.10') result = ftp.login(user='szq_stkauction_tick', passwd='<PASSWORD>') print(result) today_str = today.strftime("%Y%m%d") filename = "{}.7z".format(today_str) filepath = get_filepath(today) f = open(filepath, 'wb') cmd = 'RETR {}'.format(filename) ftp.retrbinary(cmd, f.write) ftp.quit() print("downloaded", filename) def extract_archive(today): filepath = get_filepath(today) with py7zr.SevenZipFile(filepath, mode='r') as z: z.extractall(path='/tmp') today_str = today.strftime("%Y%m%d") source_dir = '/tmp/{}'.format(today_str) target_dir = KAIPAN_DIR['stock'] for filename in os.listdir(target_dir): filepath = os.path.join(target_dir, filename) os.remove(filepath) filenames = os.listdir(source_dir) for filename in filenames: source_file = os.path.join(source_dir, filename) target_file = os.path.join(target_dir, filename) if os.path.isfile(target_file): continue shutil.move(source_file, target_dir) print("extracted all") def filter_stocks(today): filenames = os.listdir(KAIPAN_DIR['stock']) critical_time = datetime.datetime(year=today.year, month=today.month, day=today.day, hour=9, minute=20, second=0) dtype = { 'Stkcd': str, 'TradingDay': str, 'TimeStamp': str, 'PreClosePrice': np.float64, 'Volume': np.int64, 'Amount': np.float64, 'BidPrice1': np.float64, 'BidQty1': np.int64, 'BidQty2': np.int64, 'AskPrice1': np.float64, 'AskQty1': np.int64, 'AskQty2': np.int64, 'LastPrice': np.float64, } columns = dtype.keys() df_res =
pd.DataFrame(columns=["max_matched", "max_unmatched", "zt_seconds", "open_incr"])
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd def traceZig(bars): # size = len(bars.index) last_bar = bars.iloc[0] go_up = True go_down = True zigzags = [] # print(bars) for t, bar in bars[1:].iterrows(): # 最低价是否低于last_bar True 继续 | False last_bar为zig if go_down: if bar.l > last_bar.l: zigzags.append(last_bar) go_up = True go_down = False # 最高价是否高于last_bar if go_up: if bar.h < last_bar.h: zigzags.append(last_bar) go_down = True go_up = False # 重定义last_bar last_bar = bar # print (zigzags) return
pd.DataFrame(zigzags)
pandas.DataFrame
import typing as T from pathlib import Path import defopt import pandas as pd import seaborn as sb import matplotlib.pyplot as plt import sklearn.metrics as metrics from sklearn.calibration import calibration_curve def plot_calibration_curves(dset, ax=None): if ax is None: _, ax = plt.subplots() ax.plot([0, 1], [0, 1], "--k") for key, group in dset.groupby("fold"): prob_true, prob_pred = calibration_curve(group["injuryCrash"], group["y_prob"]) ax.plot(prob_true, prob_pred, "-o", label=key) ax.grid(True) ax.set_xlabel("True probabilities") ax.set_ylabel("Predicted probabilities") ax.legend() return ax def plot_roc_curves(dset, ax=None): if ax is None: _, ax = plt.subplots() ax.plot([0, 1], [0, 1], "k--") for key, group in dset.groupby("fold"): fpr, tpr, _ = metrics.roc_curve(group["injuryCrash"], group["y_prob"]) ax.plot(fpr, tpr, label=key) ax.grid(True) ax.set_xlabel("False positive rate") ax.set_ylabel("True positive rate") ax.legend() return ax def plot_precision_recall(dset, ax=None): if ax is None: _, ax = plt.subplots() for key, group in dset.groupby("fold"): precision, recall, _ = metrics.precision_recall_curve( group["injuryCrash"], group["y_prob"] ) ax.plot(recall, precision, label=key) ax.grid(True) ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) ax.set_xlabel("Recall") ax.set_ylabel("Precision") ax.legend() return ax def plot_curves(dset, axes=None): if axes is None: _, axes = plt.subplot(1, 3) plot_roc_curves(dset, ax=axes[0]) axes[0].set_title("ROC curve") plot_precision_recall(dset, ax=axes[1]) axes[1].set_title("Precision-Recall curve") plot_calibration_curves(dset, ax=axes[2]) axes[2].set_title("Calibration curve") return axes METRICS_FCN = { "accuracy": metrics.accuracy_score, "F1": metrics.f1_score, "precision": metrics.precision_score, "recall": metrics.recall_score, } def _score_method(dset): def score_fold(x): scores = { key: metric_fcn(x["injuryCrash"], x["y_pred"]) for key, metric_fcn in METRICS_FCN.items() } scores["neg_log_loss"] = metrics.log_loss(x["injuryCrash"], x["y_prob"]) scores["roc_auc"] = metrics.roc_auc_score(x["injuryCrash"], x["y_prob"]) scores["brier_score"] = metrics.brier_score_loss(x["injuryCrash"], x["y_prob"]) return
pd.Series(scores)
pandas.Series
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for USEquityPricingLoader and related classes. """ from parameterized import parameterized import sys import numpy as np from numpy.testing import ( assert_allclose, assert_array_equal, ) import pandas as pd from pandas.testing import assert_frame_equal from toolz.curried.operator import getitem from zipline.lib.adjustment import Float64Multiply from zipline.pipeline.domain import US_EQUITIES from zipline.pipeline.loaders.synthetic import ( NullAdjustmentReader, make_bar_data, expected_bar_values_2d, ) from zipline.pipeline.loaders.equity_pricing_loader import ( USEquityPricingLoader, ) from zipline.errors import WindowLengthTooLong from zipline.pipeline.data import USEquityPricing from zipline.testing import ( seconds_to_timestamp, str_to_seconds, MockDailyBarReader, ) from zipline.testing.fixtures import ( WithAdjustmentReader, ZiplineTestCase, ) import pytest # Test calendar ranges over the month of June 2015 # June 2015 # Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 # 15 16 17 18 19 20 21 # 22 23 24 25 26 27 28 # 29 30 TEST_CALENDAR_START = pd.Timestamp("2015-06-01", tz="UTC") TEST_CALENDAR_STOP = pd.Timestamp("2015-06-30", tz="UTC") TEST_QUERY_START = pd.Timestamp("2015-06-10", tz="UTC") TEST_QUERY_STOP = pd.Timestamp("2015-06-19", tz="UTC") # One asset for each of the cases enumerated in load_raw_arrays_from_bcolz. EQUITY_INFO = pd.DataFrame( [ # 1) The equity's trades start and end before query. {"start_date": "2015-06-01", "end_date": "2015-06-05"}, # 2) The equity's trades start and end after query. {"start_date": "2015-06-22", "end_date": "2015-06-30"}, # 3) The equity's data covers all dates in range. {"start_date": "2015-06-02", "end_date": "2015-06-30"}, # 4) The equity's trades start before the query start, but stop # before the query end. {"start_date": "2015-06-01", "end_date": "2015-06-15"}, # 5) The equity's trades start and end during the query. {"start_date": "2015-06-12", "end_date": "2015-06-18"}, # 6) The equity's trades start during the query, but extend through # the whole query. {"start_date": "2015-06-15", "end_date": "2015-06-25"}, ], index=np.arange(1, 7), columns=["start_date", "end_date"], ).astype(np.datetime64) EQUITY_INFO["symbol"] = [chr(ord("A") + n) for n in range(len(EQUITY_INFO))] EQUITY_INFO["exchange"] = "TEST" TEST_QUERY_SIDS = EQUITY_INFO.index # ADJUSTMENTS use the following scheme to indicate information about the value # upon inspection. # # 1s place is the equity # # 0.1s place is the action type, with: # # splits, 1 # mergers, 2 # dividends, 3 # # 0.001s is the date SPLITS = pd.DataFrame( [ # Before query range, should be excluded. { "effective_date": str_to_seconds("2015-06-03"), "ratio": 1.103, "sid": 1, }, # First day of query range, should be excluded. { "effective_date": str_to_seconds("2015-06-10"), "ratio": 3.110, "sid": 3, }, # Third day of query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 3.112, "sid": 3, }, # After query range, should be excluded. { "effective_date": str_to_seconds("2015-06-21"), "ratio": 6.121, "sid": 6, }, # Another action in query range, should have last_row of 1 { "effective_date": str_to_seconds("2015-06-11"), "ratio": 3.111, "sid": 3, }, # Last day of range. Should have last_row of 7 { "effective_date": str_to_seconds("2015-06-19"), "ratio": 3.119, "sid": 3, }, ], columns=["effective_date", "ratio", "sid"], ) MERGERS = pd.DataFrame( [ # Before query range, should be excluded. { "effective_date": str_to_seconds("2015-06-03"), "ratio": 1.203, "sid": 1, }, # First day of query range, should be excluded. { "effective_date": str_to_seconds("2015-06-10"), "ratio": 3.210, "sid": 3, }, # Third day of query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 3.212, "sid": 3, }, # After query range, should be excluded. { "effective_date": str_to_seconds("2015-06-25"), "ratio": 6.225, "sid": 6, }, # Another action in query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 4.212, "sid": 4, }, # Last day of range. Should have last_row of 7 { "effective_date": str_to_seconds("2015-06-19"), "ratio": 3.219, "sid": 3, }, ], columns=["effective_date", "ratio", "sid"], ) DIVIDENDS = pd.DataFrame( [ # Before query range, should be excluded. { "declared_date": pd.Timestamp("2015-05-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-03", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-05", tz="UTC").to_datetime64(), "amount": 90.0, "sid": 1, }, # First day of query range, should be excluded. { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-10", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-15", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-17", tz="UTC").to_datetime64(), "amount": 80.0, "sid": 3, }, # Third day of query range, should have last_row of 2 { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-12", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-15", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-17", tz="UTC").to_datetime64(), "amount": 70.0, "sid": 3, }, # After query range, should be excluded. { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-25", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-28", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-30", tz="UTC").to_datetime64(), "amount": 60.0, "sid": 6, }, # Another action in query range, should have last_row of 3 { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-15", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-18", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-20", tz="UTC").to_datetime64(), "amount": 50.0, "sid": 3, }, # Last day of range. Should have last_row of 7 { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-19", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-22", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-30", tz="UTC").to_datetime64(), "amount": 40.0, "sid": 3, }, ], columns=[ "declared_date", "ex_date", "record_date", "pay_date", "amount", "sid", ], ) DIVIDENDS_EXPECTED = pd.DataFrame( [ # Before query range, should be excluded. { "effective_date": str_to_seconds("2015-06-01"), "ratio": 0.1, "sid": 1, }, # First day of query range, should be excluded. { "effective_date": str_to_seconds("2015-06-10"), "ratio": 0.20, "sid": 3, }, # Third day of query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 0.30, "sid": 3, }, # After query range, should be excluded. { "effective_date": str_to_seconds("2015-06-25"), "ratio": 0.40, "sid": 6, }, # Another action in query range, should have last_row of 3 { "effective_date": str_to_seconds("2015-06-15"), "ratio": 0.50, "sid": 3, }, # Last day of range. Should have last_row of 7 { "effective_date": str_to_seconds("2015-06-19"), "ratio": 0.60, "sid": 3, }, ], columns=["effective_date", "ratio", "sid"], ) class USEquityPricingLoaderTestCase(WithAdjustmentReader, ZiplineTestCase): START_DATE = TEST_CALENDAR_START END_DATE = TEST_CALENDAR_STOP asset_ids = 1, 2, 3 @classmethod def make_equity_info(cls): return EQUITY_INFO @classmethod def make_splits_data(cls): return SPLITS @classmethod def make_mergers_data(cls): return MERGERS @classmethod def make_dividends_data(cls): return DIVIDENDS @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader( dates=cls.calendar_days_between(cls.START_DATE, cls.END_DATE), ) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): return make_bar_data( EQUITY_INFO, cls.equity_daily_bar_days, ) @classmethod def init_class_fixtures(cls): super(USEquityPricingLoaderTestCase, cls).init_class_fixtures() cls.sids = TEST_QUERY_SIDS cls.asset_info = EQUITY_INFO def test_input_sanity(self): # Ensure that the input data doesn't contain adjustments during periods # where the corresponding asset didn't exist. for table in SPLITS, MERGERS: for eff_date_secs, _, sid in table.itertuples(index=False): eff_date = pd.Timestamp(eff_date_secs, unit="s") asset_start, asset_end = EQUITY_INFO.loc[ sid, ["start_date", "end_date"] ] assert eff_date >= asset_start assert eff_date <= asset_end @classmethod def calendar_days_between(cls, start_date, end_date, shift=0): slice_ = cls.equity_daily_bar_days.slice_indexer(start_date, end_date) start = slice_.start + shift stop = slice_.stop + shift if start < 0: raise KeyError(start_date, shift) return cls.equity_daily_bar_days[start:stop] def expected_adjustments(self, start_date, end_date, tables, adjustment_type): price_adjustments = {} volume_adjustments = {} should_include_price_adjustments = ( adjustment_type == "all" or adjustment_type == "price" ) should_include_volume_adjustments = ( adjustment_type == "all" or adjustment_type == "volume" ) query_days = self.calendar_days_between(start_date, end_date) start_loc = query_days.get_loc(start_date) for table in tables: for eff_date_secs, ratio, sid in table.itertuples(index=False): eff_date = pd.Timestamp(eff_date_secs, unit="s", tz="UTC") # Ignore adjustments outside the query bounds. if not (start_date <= eff_date <= end_date): continue eff_date_loc = query_days.get_loc(eff_date) delta = eff_date_loc - start_loc # Pricing adjustments should be applied on the date # corresponding to the effective date of the input data. They # should affect all rows **before** the effective date. if should_include_price_adjustments: price_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta, first_col=sid - 1, last_col=sid - 1, value=ratio, ) ) # Volume is *inversely* affected by *splits only*. if table is SPLITS and should_include_volume_adjustments: volume_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta, first_col=sid - 1, last_col=sid - 1, value=1.0 / ratio, ) ) output = {} if should_include_price_adjustments: output["price_adjustments"] = price_adjustments if should_include_volume_adjustments: output["volume_adjustments"] = volume_adjustments return output @parameterized.expand( [ ([SPLITS, MERGERS, DIVIDENDS_EXPECTED], "all"), ([SPLITS, MERGERS, DIVIDENDS_EXPECTED], "price"), ([SPLITS, MERGERS, DIVIDENDS_EXPECTED], "volume"), ([SPLITS, MERGERS, None], "all"), ([SPLITS, MERGERS, None], "price"), ] ) def test_load_adjustments(self, tables, adjustment_type): query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, ) adjustments = self.adjustment_reader.load_adjustments( query_days, self.sids, should_include_splits=tables[0] is not None, should_include_mergers=tables[1] is not None, should_include_dividends=tables[2] is not None, adjustment_type=adjustment_type, ) expected_adjustments = self.expected_adjustments( TEST_QUERY_START, TEST_QUERY_STOP, [table for table in tables if table is not None], adjustment_type, ) if adjustment_type == "all" or adjustment_type == "price": expected_price_adjustments = expected_adjustments["price_adjustments"] for key in expected_price_adjustments: price_adjustment = adjustments["price"][key] for j, adj in enumerate(price_adjustment): expected = expected_price_adjustments[key][j] assert adj.first_row == expected.first_row assert adj.last_row == expected.last_row assert adj.first_col == expected.first_col assert adj.last_col == expected.last_col assert_allclose(adj.value, expected.value) if adjustment_type == "all" or adjustment_type == "volume": expected_volume_adjustments = expected_adjustments["volume_adjustments"] for key in expected_volume_adjustments: volume_adjustment = adjustments["volume"][key] for j, adj in enumerate(volume_adjustment): expected = expected_volume_adjustments[key][j] assert adj.first_row == expected.first_row assert adj.last_row == expected.last_row assert adj.first_col == expected.first_col assert adj.last_col == expected.last_col assert_allclose(adj.value, expected.value) @parameterized.expand([(True,), (False,)]) @pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows") def test_load_adjustments_to_df(self, convert_dts): reader = self.adjustment_reader adjustment_dfs = reader.unpack_db_to_component_dfs(convert_dates=convert_dts) name_and_raw = ( ("splits", SPLITS), ("mergers", MERGERS), ("dividends", DIVIDENDS_EXPECTED), ) def create_expected_table(df, name): expected_df = df.copy() if convert_dts: for colname in reader._datetime_int_cols[name]: expected_df[colname] = ( expected_df[colname] .astype("datetime64[s]") .dt.tz_localize("UTC") ) return expected_df def create_expected_div_table(df, name): expected_df = df.copy() for colname in reader._datetime_int_cols[name]: if not convert_dts: # todo: fix nanosecond hack expected_df[colname] = ( expected_df[colname] .astype("datetime64[s]") .view(int) .div(1000000000) .astype(int) ) else: expected_df[colname] = ( expected_df[colname] .astype("datetime64[s]") .dt.tz_localize("UTC") ) return expected_df for action_name, raw_tbl in name_and_raw: # todo: fix missing dividend value if action_name == "dividends": continue exp = create_expected_table(raw_tbl, action_name)
assert_frame_equal(adjustment_dfs[action_name], exp)
pandas.testing.assert_frame_equal
# import all the required files i.e. numpy , pandas and math library from graphlib.financialGraph import Data import numpy as np import pandas as pd from pandas import DataFrame , Series import math # All the indicators are defined and arranged in Alphabetical order # ------------------> A <------------------------ # [0] __ Average True Range (ATR) # Moving Average of True Range(TR) def atr(data: DataFrame, period: int = 14) -> Series: TR = tr(data) return pd.Series( TR.rolling(center=False, window=period, min_periods=1).mean(), name=f'{period} ATR' ) # [0] __ Adaptive Price Zone (APZ) # TODO def apz(data: DataFrame,period: int = 21,dev_factor: int = 2, MA: Series = None,adjust: bool = True,) -> DataFrame: if not isinstance(MA, pd.Series): MA = dema(data, period) price_range = pd.Series( (data["high"] - data["low"]).ewm(span=period, adjust=adjust).mean() ) volatility_value = pd.Series( price_range.ewm(span=period, adjust=adjust).mean(), name="vol_val" ) upper_band = pd.Series((volatility_value * dev_factor) + MA, name="UPPER") lower_band = pd.Series(MA - (volatility_value * dev_factor), name="LOWER") return pd.concat([upper_band, lower_band], axis=1) # ------------------> B <------------------------ # [0] __ Bollinger Bands (BBANDS) # TODO def bbands(data: DataFrame,period: int = 20,MA: Series = None, column: str = "close",std_multiplier: float = 2,) -> DataFrame: std = data[column].rolling(window=period).std() if not isinstance(MA, pd.core.series.Series): middle_band = pd.Series(sma(data, period), name="BB_MIDDLE") else: middle_band = pd.Series(MA, name="BB_MIDDLE") upper_bb = pd.Series(middle_band + (std_multiplier * std), name="BB_UPPER") lower_bb = pd.Series(middle_band - (std_multiplier * std), name="BB_LOWER") return pd.concat([upper_bb, middle_band, lower_bb], axis=1) # [0] __ Bollinger Bands Width (BBWidth) # TODO def bbwidth( data: DataFrame, period: int = 20, MA: Series = None, column: str = "close" ) -> Series: BB = bbands(data, period, MA, column) return pd.Series( (BB["BB_UPPER"] - BB["BB_LOWER"]) / BB["BB_MIDDLE"], name="{0} period BBWITH".format(period), ) # ------------------> D <------------------------ # [0] __ Double Exponential Moving Average (DEMA) # 2 * EWMA - ewm(EWMA) def dema(data : DataFrame,period: int = 10,column: str ='close',adjust: bool = True) -> Series: DEMA = ( 2*ema(data,period) - ema(data,period).ewm(span=period , adjust=adjust).mean() ) return pd.Series( DEMA , name = f'{period}_DEMA' ) # [0] __ Directional Movement Index (DMI) # TODO def dmi(data: DataFrame, column: str = "close", adjust: bool = True) -> Series: def _get_time(close): sd = close.rolling(5).std() asd = sd.rolling(10).mean() v = sd / asd t = 14 / v.round() t[t.isna()] = 0 t = t.map(lambda x: int(min(max(x, 5), 30))) return t def _dmi(index): time = t.iloc[index] if (index - time) < 0: subset = data.iloc[0:index] else: subset = data.iloc[(index - time) : index] return rsi(subset, period=time, adjust=adjust).values[-1] dates = Series(data.index) periods = Series(range(14, len(dates)), index=dates.index[14:].values) t = _get_time(data[column]) return periods.map(lambda x: _dmi(x)) # ------------------> E <------------------------ # [0] __ Exponential Weighted Moving Average (EWMA) or Exponential Moving Average(EMA) # Exponential average of prev n day prices def ema(data : DataFrame,period: int = 10,column: str ='close',adjust: bool = True) -> Series: return pd.Series( data[column].ewm(span=period, adjust=adjust).mean(), name = f'{period}_EMA' ) # [0] __ Kaufman Efficiency indicator (KER) or (ER) # change in price / volatility Here change and volatility are absolute def er(data : DataFrame,period: int = 10,column: str ='close') -> Series: change = data[column].diff(period).abs() volatility = data[column].diff().abs().rolling(window=period,min_periods=1).sum() return pd.Series(change / volatility, name=f'{period}_ER' ) # [0] __ TODO (EVSTC) # TODO def evstc(data: DataFrame,period_fast: int = 12,period_slow: int = 30, k_period: int = 10,d_period: int = 3,adjust: bool = True) -> Series: ema_slow = evwma(data, period_slow) ema_fast = evwma(data, period_fast) macd = ema_fast - ema_slow STOK = pd.Series(( (macd - macd.rolling(window=k_period).min()) / (macd.rolling(window=k_period).max() - macd.rolling(window=k_period).min()) ) * 100) STOD = STOK.rolling(window=d_period).mean() STOD_DoubleSmooth = STOD.rolling(window=d_period).mean() return pd.Series(STOD_DoubleSmooth, name="{0} period EVSTC".format(k_period)) # [0] __ Elastic Volume Weighted Moving Average (EVWMA) # x is ((volume sum for n period) - volume ) divided by (volume sum for n period) # y is volume * close / (volume sum for n period) def evwma(data, period: int = 20) -> Series: vol_sum = (data["volume"].rolling(window=period,min_periods=1).sum()) x = (vol_sum - data["volume"]) / vol_sum y = (data["volume"] * data["close"]) / vol_sum evwma = [0] for x, y in zip(x.fillna(0).iteritems(), y.iteritems()): if x[1] == 0 or y[1] == 0: evwma.append(0) else: evwma.append(evwma[-1] * x[1] + y[1]) return pd.Series( evwma[1:], index=data.index, name=f'{period}_EVWMA' ) # [0] __ Elastic Volume Weighted Moving average convergence divergence (EV_MACD) # MACD calculation on basis of Elastic Volume Weighted Moving average (EVWMA) def ev_macd(data: DataFrame,period_fast: int = 20,period_slow: int = 40, signal: int = 9,adjust: bool = True,) -> DataFrame: evwma_slow = evwma(data, period_slow) evwma_fast = evwma(data, period_fast) MACD = pd.Series(evwma_fast - evwma_slow, name="EV MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return pd.concat([MACD, MACD_signal], axis=1) # ------------------> F <------------------------ # [0] __ Fisher Transform # TODO def fish(data: DataFrame, period: int = 10, adjust: bool = True) -> Series: from numpy import log, seterr seterr(divide="ignore") med = (data["high"] + data["low"]) / 2 ndaylow = med.rolling(window=period).min() ndayhigh = med.rolling(window=period).max() raw = (2 * ((med - ndaylow) / (ndayhigh - ndaylow))) - 1 smooth = raw.ewm(span=5, adjust=adjust).mean() _smooth = smooth.fillna(0) return pd.Series( (log((1 + _smooth) / (1 - _smooth))).ewm(span=3, adjust=adjust).mean(), name="{0} period FISH.".format(period), ) # [0] __ Fractal Adaptive Moving Average (FRAMA) # TODO def FRAMA(data: DataFrame, period: int = 16, batch: int=10) -> Series: assert period % 2 == 0, print("FRAMA period must be even") c = data.close.copy() window = batch * 2 hh = c.rolling(batch).max() ll = c.rolling(batch).min() n1 = (hh - ll) / batch n2 = n1.shift(batch) hh2 = c.rolling(window).max() ll2 = c.rolling(window).min() n3 = (hh2 - ll2) / window # calculate fractal dimension D = (np.log(n1 + n2) - np.log(n3)) / np.log(2) alp = np.exp(-4.6 * (D - 1)) alp = np.clip(alp, .01, 1).values filt = c.values for i, x in enumerate(alp): cl = c.values[i] if i < window: continue filt[i] = cl * x + (1 - x) * filt[i - 1] return pd.Series(filt, index=data.index, name= f'{period} FRAMA' ) # [0] __ Finite Volume Element (FVE) # TODO def fve(data: DataFrame, period: int = 22, factor: int = 0.3) -> Series: hl2 = (data["high"] + data["low"]) / 2 tp_ = tp(data) smav = data["volume"].rolling(window=period).mean() mf = pd.Series((data["close"] - hl2 + tp_.diff()), name="mf") _mf = pd.concat([data["close"], data["volume"], mf], axis=1) def vol_shift(row): if row["mf"] > factor * row["close"] / 100: return row["volume"] elif row["mf"] < -factor * row["close"] / 100: return -row["volume"] else: return 0 _mf["vol_shift"] = _mf.apply(vol_shift, axis=1) _sum = _mf["vol_shift"].rolling(window=period).sum() return pd.Series((_sum / smav) / period * 100) # ------------------> H <------------------------ # [0] __ Hull Moving Average (HMA) # wma of change in wma where change in wma is 2 * (wma half period) - (wma full period) def hma(data, period: int = 16) -> Series: half_length = int(period / 2) sqrt_length = int(math.sqrt(period)) wmaf = wma(data, period=half_length) wmas = wma(data, period=period) data["deltawma"] = 2 * wmaf - wmas hma = wma(data, column="deltawma", period=sqrt_length) return pd.Series(hma, name=f'{period}_HMA') # ------------------> I <------------------------ # [0] __ Ichimoku Cloud # TODO def ichimoku(data: DataFrame,tenkan_period: int = 9,kijun_period: int = 26, senkou_period: int = 52,chikou_period: int = 26,) -> DataFrame: tenkan_sen = pd.Series( ( data["high"].rolling(window=tenkan_period).max() + data["low"].rolling(window=tenkan_period).min() ) / 2, name="TENKAN", ) ## conversion line kijun_sen = pd.Series( ( data["high"].rolling(window=kijun_period).max() + data["low"].rolling(window=kijun_period).min() ) / 2, name="KIJUN", ) ## base line senkou_span_a = pd.Series( ((tenkan_sen + kijun_sen) / 2), name="senkou_span_a" ) .shift(kijun_period) ## Leading span senkou_span_b = pd.Series( ( ( data["high"].rolling(window=senkou_period).max() + data["low"].rolling(window=senkou_period).min() ) / 2 ), name="SENKOU", ).shift(kijun_period) chikou_span = pd.Series( data["close"].shift(-chikou_period), name="CHIKOU", ) return pd.concat( [tenkan_sen, kijun_sen, senkou_span_a, senkou_span_b, chikou_span], axis=1 ) # [0] __ Inverse Fisher Transform (IFTRSI) # TODO def ift_rsi(data: DataFrame,column: str = "close",rsi_period: int = 5, wma_period: int = 9,) -> Series: v1 = pd.Series(0.1 * (rsi(data, rsi_period) - 50), name="v1") d = (wma_period * (wma_period + 1)) / 2 weights = np.arange(1, wma_period + 1) def linear(w): def _compute(x): return (w * x).sum() / d return _compute _wma = v1.rolling(wma_period, min_periods=wma_period) v2 = _wma.apply(linear(weights), raw=True) return pd.Series( ((v2 ** 2 - 1) / (v2 ** 2 + 1)), name="IFT_RSI" ) # ------------------> K <------------------------ # [0] __ Kaufman's Adaptive Moving Average (KAMA) # first KAMA is SMA # Current KAMA = Previous KAMA + smoothing_constant * (Price - Previous KAMA) def kama(data,er_: int = 10,ema_fast: int = 2, ema_slow: int = 30,period: int = 20, column: str ='close') -> Series: er_ = er(data) fast_alpha = 2 / (ema_fast + 1) slow_alpha = 2 / (ema_slow + 1) sc = pd.Series( (er_ * (fast_alpha - slow_alpha) + slow_alpha) ** 2, name="smoothing_constant", ) sma = pd.Series( data[column].rolling(period).mean(), name="SMA" ) kama = [] for s, ma, price in zip( sc.iteritems(), sma.shift().iteritems(), data[column].iteritems() ): try: kama.append(kama[-1] + s[1] * (price[1] - kama[-1])) except (IndexError, TypeError): if pd.notnull(ma[1]): kama.append(ma[1] + s[1] * (price[1] - ma[1])) else: kama.append(None) sma["KAMA"] = pd.Series( kama, index=sma.index, name=f'{period}_KAMA') return sma['KAMA'] # [0] __ Keltner Channels (KC) # TODO def kc(ohlc: DataFrame,period: int = 20,atr_period: int = 10, MA: Series = None,kc_mult: float = 2,) -> DataFrame: if not isinstance(MA, pd.core.series.Series): middle = pd.Series(ema(ohlc, period), name="KC_MIDDLE") else: middle = pd.Series(MA, name="KC_MIDDLE") up = pd.Series(middle + (kc_mult * atr(ohlc, atr_period)), name="KC_UPPER") down = pd.Series( middle - (kc_mult * atr(ohlc, atr_period)), name="KC_LOWER" ) return pd.concat([up, down], axis=1) # ------------------> M <------------------------ # [0] __ Moving average convergence divergence (MACD) # MACD is Difference of ema fast and ema slow # Here fast period is 12 and slow period is 26 # MACD Signal is ewm of MACD def macd(data,period_fast: int = 12,period_slow: int = 26, signal: int = 9,column: str = "close",adjust: bool = True ) -> DataFrame: EMA_fast = pd.Series( data[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(), name=f'{period_fast}_EMA_fast') EMA_slow = pd.Series( data[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(), name=f'{period_slow}_EMA_slow') MACD = pd.Series(EMA_fast - EMA_slow,name='MACD') MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(),name=f'{signal}_SIGNAL' ) DIFF = pd.Series( MACD - MACD_signal, name="diff MACD_MSIGNAL" ) return pd.concat( [DIFF, MACD, MACD_signal ], axis=1 ) # [0] __ Moving Standard Deviation (MSD) # Standard deviation of a given period for the column passed as arguement def msd(data: DataFrame, period: int = 21, column: str = "close") -> Series: return pd.Series(data[column].rolling(period).std(), name="MSD") # Momentum Breakout Bands (MOBO) # TODO def mobo(data: DataFrame,period: int = 10,std_multiplier: float = 0.8, column: str = "close",) -> DataFrame: BB = bbands(data, period=10, std_multiplier=0.8, column=column) return BB # [0] __ Market momentum (MOM) def mom(data: DataFrame, period: int = 10, column: str = "close") -> Series: return pd.Series(data[column].diff(period), name=f'{period}_MOM' ) # [0] __ Moving Volume Weighted Average Price (MVWAP) # SMA of (close * volume ) divided by SMA of volume def mvwap(data: DataFrame, period:int = 9) -> Series: data["cv"] =(data["close"] * data["volume"]) return pd.Series( (sma(data,period = period,column = "cv")/sma(data,period=period,column="volume")), name="MVWAP." ) # ------------------> P <------------------------ # ------------|| Pivot ||------------------------ # [0] __ Pivot Camarilla # TODO def pivot_camarilla(data: DataFrame) -> DataFrame: df_ = data.shift() pivot = pd.Series(tp(df_), name="pivot") s1 = df_['close']+(1.1*(df_['high']-df_['low'])/12) s2 = df_['close']-(1.1*(df_['high']-df_['low'])/6) s3 = df_['close']-(1.1*(df_['high']-df_['low'])/4) s4 =df_['close']-(1.1*(df_['high']-df_['low'])/2) r1 = df_['close']+(1.1*(df_['high']-df_['low'])/12) r2 = df_['close']+(1.1*(df_['high']-df_['low'])/6) r3 =df_['close']+(1.1*(df_['high']-df_['low'])/4) r4 = df_['close']+(1.1*(df_['high']-df_['low'])/2) return pd.concat( [ pivot, pd.Series(s1, name="s1"),
pd.Series(s2, name="s2")
pandas.Series
import pandas as pd import pyomo.environ as pe import pyomo.gdp as pyogdp import os import matplotlib.pyplot as plt import matplotlib.cm as cm from itertools import product class TheatreScheduler: def __init__(self, case_file_path, session_file_path): """ Read case and session data into Pandas DataFrames Args: case_file_path (str): path to case data in CSV format session_file_path (str): path to theatre session data in CSV format """ try: self.df_cases = pd.read_csv(case_file_path) except FileNotFoundError: print("Case data not found.") try: self.df_sessions = pd.read_csv(session_file_path) except FileNotFoundError: print("Session data not found") self.model = self.create_model() def _generate_case_durations(self): """ Generate mapping of cases IDs to median case time for the procedure Returns: (dict): dictionary with CaseID as key and median case time (mins) for procedure as value """ return pd.Series(self.df_cases["Median Duration"].values, index=self.df_cases["CaseID"]).to_dict() def _generate_session_durations(self): """ Generate mapping of all theatre sessions IDs to session duration in minutes Returns: (dict): dictionary with SessionID as key and session duration as value """ return pd.Series(self.df_sessions["Duration"].values, index=self.df_sessions["SessionID"]).to_dict() def _generate_session_start_times(self): """ Generate mapping from SessionID to session start time Returns: (dict): dictionary with SessionID as key and start time in minutes since midnight as value """ # Convert session start time from HH:MM:SS format into seconds elapsed since midnight self.df_sessions.loc[:, "Start"] = pd.to_timedelta(self.df_sessions["Start"]) self.df_sessions.loc[:, "Start"] = self.df_sessions["Start"].dt.total_seconds() / 60 return pd.Series(self.df_sessions["Start"].values, index=self.df_sessions["SessionID"]).to_dict() def _get_ordinal_case_deadlines(self): """ #TODO Returns: """ self.df_cases.loc[:, "TargetDeadline"] = pd.to_datetime(self.df_cases["TargetDeadline"], format="%d/%m/%Y") self.df_cases.loc[:, "TargetDeadline"] = self.df_cases["TargetDeadline"].apply(lambda date: date.toordinal()) return pd.Series(self.df_cases["TargetDeadline"].values, index=self.df_cases["CaseID"]).to_dict() def _get_ordinal_session_dates(self): """ #TODO Returns: """ self.df_sessions.loc[:, "Date"] = pd.to_datetime(self.df_sessions["Date"], format="%d/%m/%Y") self.df_sessions.loc[:, "Date"] = self.df_sessions["Date"].apply(lambda date: date.toordinal()) return pd.Series(self.df_sessions["Date"].values, index=self.df_sessions["SessionID"]).to_dict() def _generate_disjunctions(self): """ #TODO Returns: disjunctions (list): list of tuples containing disjunctions """ cases = self.df_cases["CaseID"].to_list() sessions = self.df_sessions["SessionID"].to_list() disjunctions = [] for (case1, case2, session) in product(cases, cases, sessions): if (case1 != case2) and (case2, case1, session) not in disjunctions: disjunctions.append((case1, case2, session)) return disjunctions def create_model(self): model = pe.ConcreteModel() # Model Data # List of case IDs in surgical waiting list model.CASES = pe.Set(initialize=self.df_cases["CaseID"].tolist()) # List of sessions IDs model.SESSIONS = pe.Set(initialize=self.df_sessions["SessionID"].tolist()) # List of tasks - all possible (caseID, sessionID) combination model.TASKS = pe.Set(initialize=model.CASES * model.SESSIONS, dimen=2) # The duration (median case time) for each operation model.CASE_DURATION = pe.Param(model.CASES, initialize=self._generate_case_durations()) # The duration of each theatre session model.SESSION_DURATION = pe.Param(model.SESSIONS, initialize=self._generate_session_durations()) # The start time of each theatre session model.SESSION_START_TIME = pe.Param(model.SESSIONS, initialize=self._generate_session_start_times()) # The deadline of each case model.CASE_DEADLINES = pe.Param(model.CASES, initialize=self._get_ordinal_case_deadlines()) # The date of each theatre session model.SESSION_DATES = pe.Param(model.SESSIONS, initialize=self._get_ordinal_session_dates()) model.DISJUNCTIONS = pe.Set(initialize=self._generate_disjunctions(), dimen=3) ub = 1440 # seconds in a day model.M = pe.Param(initialize=1e3*ub) # big M max_util = 0.85 num_cases = self.df_cases.shape[0] # Decision Variables model.SESSION_ASSIGNED = pe.Var(model.TASKS, domain=pe.Binary) model.CASE_START_TIME = pe.Var(model.TASKS, bounds=(0, ub), within=pe.PositiveReals) model.CASES_IN_SESSION = pe.Var(model.SESSIONS, bounds=(0, num_cases), within=pe.PositiveReals) # Objective def objective_function(model): return pe.summation(model.CASES_IN_SESSION) #return sum([model.SESSION_ASSIGNED[case, session] for case in model.CASES for session in model.SESSIONS]) model.OBJECTIVE = pe.Objective(rule=objective_function, sense=pe.maximize) # Constraints # Case start time must be after start time of assigned theatre session def case_start_time(model, case, session): return model.CASE_START_TIME[case, session] >= model.SESSION_START_TIME[session] - \ ((1 - model.SESSION_ASSIGNED[(case, session)])*model.M) model.CASE_START = pe.Constraint(model.TASKS, rule=case_start_time) # Case end time must be before end time of assigned theatre session def case_end_time(model, case, session): return model.CASE_START_TIME[case, session] + model.CASE_DURATION[case] <= model.SESSION_START_TIME[session] + \ model.SESSION_DURATION[session]*max_util + ((1 - model.SESSION_ASSIGNED[(case, session)]) * model.M) model.CASE_END_TIME = pe.Constraint(model.TASKS, rule=case_end_time) # Cases can be assigned to a maximum of one session def session_assignment(model, case): return sum([model.SESSION_ASSIGNED[(case, session)] for session in model.SESSIONS]) <= 1 model.SESSION_ASSIGNMENT = pe.Constraint(model.CASES, rule=session_assignment) def set_deadline_condition(model, case, session): return model.SESSION_DATES[session] <= model.CASE_DEADLINES[case] + ((1 - model.SESSION_ASSIGNED[case, session])*model.M) model.APPLY_DEADLINE = pe.Constraint(model.TASKS, rule=set_deadline_condition) def no_case_overlap(model, case1, case2, session): return [model.CASE_START_TIME[case1, session] + model.CASE_DURATION[case1] <= model.CASE_START_TIME[case2, session] + \ ((2 - model.SESSION_ASSIGNED[case1, session] - model.SESSION_ASSIGNED[case2, session])*model.M), model.CASE_START_TIME[case2, session] + model.CASE_DURATION[case2] <= model.CASE_START_TIME[case1, session] + \ ((2 - model.SESSION_ASSIGNED[case1, session] - model.SESSION_ASSIGNED[case2, session])*model.M)] model.DISJUNCTIONS_RULE = pyogdp.Disjunction(model.DISJUNCTIONS, rule=no_case_overlap) def theatre_util(model, session): return model.CASES_IN_SESSION[session] == \ sum([model.SESSION_ASSIGNED[case, session] for case in model.CASES]) model.THEATRE_UTIL = pe.Constraint(model.SESSIONS, rule=theatre_util) pe.TransformationFactory("gdp.bigm").apply_to(model) return model def solve(self, solver_name, options=None, solver_path=None, local=True): if solver_path is not None: solver = pe.SolverFactory(solver_name, executable=solver_path) else: solver = pe.SolverFactory(solver_name) # TODO remove - too similar to alstom if options is not None: for key, value in options.items(): solver.options[key] = value if local: solver_results = solver.solve(self.model, tee=True) else: solver_manager = pe.SolverManagerFactory("neos") solver_results = solver_manager.solve(self.model, opt=solver) results = [{"Case": case, "Session": session, "Session Date": self.model.SESSION_DATES[session], "Case Deadline": self.model.CASE_DEADLINES[case], "Days before deadline": self.model.CASE_DEADLINES[case] - self.model.SESSION_DATES[session], "Start": self.model.CASE_START_TIME[case, session](), "Assignment": self.model.SESSION_ASSIGNED[case, session]()} for (case, session) in self.model.TASKS] self.df_times =
pd.DataFrame(results)
pandas.DataFrame
from googleapiclient.discovery import build from datetime import datetime, timedelta from pandas import DataFrame, Timedelta, to_timedelta from structures import Structure from networkdays import networkdays from calendar import monthrange class Timesheet: def __init__(self, credentials, sheetid): # The ID and range of a sample spreadsheet. self.SAMPLE_SPREADSHEET_ID = sheetid self.service = build('sheets', 'v4', credentials=credentials) # Call the Sheets API self.sheet = self.service.spreadsheets() # Get the Sheet name sheet_metadata = self.sheet.get(spreadsheetId=self.SAMPLE_SPREADSHEET_ID).execute() sheetname = sheet_metadata['sheets'][0]['properties']['title'] # Get sheet version self.SAMPLE_RANGE_NAME = sheetname + "!" + "B2:N" # Google Credentials self.credentials = credentials self.values = list() self.data = list() self.total_hours = Timedelta("00:00:00") # Metadata information of the sheet self.person = '' self.month = '' self.year = '' self.max_working_hours =
Timedelta("00:00:00")
pandas.Timedelta
""" Used examples from SO: https://stackoverflow.com/questions/22780563/group-labels-in-matplotlib-barchart-using-pandas-multiindex """ import pandas as pd import matplotlib import matplotlib.pyplot as plt from itertools import groupby import numpy as np def add_line(ax, xpos, ypos): line = plt.Line2D([xpos, xpos], [ypos + .1, ypos], transform=ax.transAxes, color='gray') line.set_clip_on(False) ax.add_line(line) def label_len(my_index, level): labels = my_index.get_level_values(level) return [(k, sum(1 for i in g)) for k, g in groupby(labels)] def label_group_bar_table(ax, df): ypos = -.1 scale = 1./df.index.size for level in range(df.index.nlevels)[::-1]: pos = 0 for label, rpos in label_len(df.index, level): lxpos = (pos + .5 * rpos)*scale ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes) add_line(ax, pos*scale, ypos) pos += rpos add_line(ax, pos*scale, ypos) ypos -= .1 # set standard font size matplotlib.rcParams.update({'font.size': 8}) # read data raw_rmse_df = pd.read_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/rnn_lstm_comparison_results/" "full_testset_rmse.csv") raw_rmse_df.set_index(['Well', 'Forecast'], inplace=True) raw_nse_df = pd.read_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/rnn_lstm_comparison_results/" "full_testset_nse.csv") raw_nse_df.set_index(['Well', 'Forecast'], inplace=True) # set up multi-index dataframes group = ('MMPS-043', 'MMPS-125', 'MMPS-129', 'MMPS-153', 'MMPS-155', 'MMPS-170', 'MMPS-175') subgroup = ('t+1', 't+9', 't+18') obs = ('RNN', 'LSTM') index = pd.MultiIndex.from_tuples([('MMPS-043', 't+1'), ('MMPS-043', 't+9'), ('MMPS-043', 't+18'), ('MMPS-125', 't+1'), ('MMPS-125', 't+9'), ('MMPS-125', 't+18'), ('MMPS-129', 't+1'), ('MMPS-129', 't+9'), ('MMPS-129', 't+18'), ('MMPS-153', 't+1'), ('MMPS-153', 't+9'), ('MMPS-153', 't+18'), ('MMPS-155', 't+1'), ('MMPS-155', 't+9'), ('MMPS-155', 't+18'), ('MMPS-170', 't+1'), ('MMPS-170', 't+9'), ('MMPS-170', 't+18'), ('MMPS-175', 't+1'), ('MMPS-175', 't+9'), ('MMPS-175', 't+18')], names=['group', 'subgroup']) rmse_values = np.asarray(raw_rmse_df[["RNN", "LSTM"]]) nse_values = np.asarray(raw_nse_df[["RNN", "LSTM"]]) rmse_df =
pd.DataFrame(index=index)
pandas.DataFrame
# In[2]: """ Basic Configurations """ configs = {} configs['cdsign'] = '\\' configs['path_root'] = 'C:\\VQA_Project\\' configs['path_datasets'] = configs['path_root'] + 'Datasets' + configs['cdsign'] configs['datasets'] = {} ##################################################################### VQAv1 ######################################################################### configs['datasets']['VQAv1'] = {} configs['datasets']['VQAv1']['Train'] = {} configs['datasets']['VQAv1']['Train']['Questions'] = {} configs['datasets']['VQAv1']['Train']['Questions']['File'] = 'OpenEnded_mscoco_train2014_questions.json' configs['datasets']['VQAv1']['Train']['Questions']['Zip_File'] = 'Questions_Train_mscoco.zip' configs['datasets']['VQAv1']['Train']['Questions']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Train_mscoco.zip' configs['datasets']['VQAv1']['Train']['Questions']['Path'] = configs['path_datasets'] + 'VQAv1' + configs['cdsign'] + 'Questions' + configs['cdsign'] + configs['datasets']['VQAv1']['Train']['Questions']['File'] configs['datasets']['VQAv1']['Train']['Annotations'] = {} configs['datasets']['VQAv1']['Train']['Annotations']['File'] = 'mscoco_train2014_annotations.json' configs['datasets']['VQAv1']['Train']['Annotations']['Zip_File'] = 'Annotations_Train_mscoco.zip' configs['datasets']['VQAv1']['Train']['Annotations']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Train_mscoco.zip' configs['datasets']['VQAv1']['Train']['Annotations']['Path'] = configs['path_datasets'] + 'VQAv1' + configs['cdsign'] + 'Annotations' + configs['cdsign'] + configs['datasets']['VQAv1']['Train']['Annotations']['File'] configs['datasets']['VQAv1']['Train']['Images'] = {} configs['datasets']['VQAv1']['Train']['Images']['File'] = 'train2014' configs['datasets']['VQAv1']['Train']['Images']['Zip_File'] = 'train2014.zip' configs['datasets']['VQAv1']['Train']['Images']['Link'] = 'http://images.cocodataset.org/zips/train2014.zip' configs['datasets']['VQAv1']['Train']['Images']['Path'] = configs['path_datasets'] + 'VQAv1' + configs['cdsign'] + 'Images' + configs['cdsign'] + configs['datasets']['VQAv1']['Train']['Images']['File'] + configs['cdsign'] configs['datasets']['VQAv1']['Val'] = {} configs['datasets']['VQAv1']['Val']['Questions'] = {} configs['datasets']['VQAv1']['Val']['Questions']['File'] = 'OpenEnded_mscoco_val2014_questions.json' configs['datasets']['VQAv1']['Val']['Questions']['Zip_File'] = 'Questions_Val_mscoco.zip' configs['datasets']['VQAv1']['Val']['Questions']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Val_mscoco.zip' configs['datasets']['VQAv1']['Val']['Questions']['Path'] = configs['path_datasets'] + 'VQAv1' + configs['cdsign'] + 'Questions' + configs['cdsign'] + configs['datasets']['VQAv1']['Val']['Questions']['File'] configs['datasets']['VQAv1']['Val']['Annotations'] = {} configs['datasets']['VQAv1']['Val']['Annotations']['File'] = 'mscoco_val2014_annotations.json' configs['datasets']['VQAv1']['Val']['Annotations']['Zip_File'] = 'Annotations_Val_mscoco.zip' configs['datasets']['VQAv1']['Val']['Annotations']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Val_mscoco.zip' configs['datasets']['VQAv1']['Val']['Annotations']['Path'] = configs['path_datasets'] + 'VQAv1' + configs['cdsign'] + 'Annotations' + configs['cdsign'] + configs['datasets']['VQAv1']['Val']['Annotations']['File'] configs['datasets']['VQAv1']['Val']['Images'] = {} configs['datasets']['VQAv1']['Val']['Images']['File'] = 'val2014' configs['datasets']['VQAv1']['Val']['Images']['Zip_File'] = 'val2014.zip' configs['datasets']['VQAv1']['Val']['Images']['Link'] = 'http://images.cocodataset.org/zips/val2014.zip' configs['datasets']['VQAv1']['Val']['Images']['Path'] = configs['path_datasets'] + 'VQAv1' + configs['cdsign'] + 'Images' + configs['cdsign'] + configs['datasets']['VQAv1']['Val']['Images']['File'] + configs['cdsign'] ################################################################################################################################################### ##################################################################### VQAv2 ######################################################################### configs['datasets']['VQAv2'] = {} configs['datasets']['VQAv2']['Train'] = {} configs['datasets']['VQAv2']['Train']['Questions'] = {} configs['datasets']['VQAv2']['Train']['Questions']['File'] = 'v2_OpenEnded_mscoco_train2014_questions.json' configs['datasets']['VQAv2']['Train']['Questions']['Zip_File'] = 'v2_Questions_Train_mscoco.zip' configs['datasets']['VQAv2']['Train']['Questions']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_Train_mscoco.zip' configs['datasets']['VQAv2']['Train']['Questions']['Path'] = configs['path_datasets'] + 'VQAv2' + configs['cdsign'] + 'Questions' + configs['cdsign'] + configs['datasets']['VQAv2']['Train']['Questions']['File'] configs['datasets']['VQAv2']['Train']['Annotations'] = {} configs['datasets']['VQAv2']['Train']['Annotations']['File'] = 'v2_mscoco_train2014_annotations.json' configs['datasets']['VQAv2']['Train']['Annotations']['Zip_File'] = 'v2_Annotations_Train_mscoco.zip' configs['datasets']['VQAv2']['Train']['Annotations']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Annotations_Train_mscoco.zip' configs['datasets']['VQAv2']['Train']['Annotations']['Path'] = configs['path_datasets'] + 'VQAv2' + configs['cdsign'] + 'Annotations' + configs['cdsign'] + configs['datasets']['VQAv2']['Train']['Annotations']['File'] configs['datasets']['VQAv2']['Train']['Images'] = configs['datasets']['VQAv1']['Train']['Images'] configs['datasets']['VQAv2']['Val'] = {} configs['datasets']['VQAv2']['Val']['Questions'] = {} configs['datasets']['VQAv2']['Val']['Questions']['File'] = 'v2_OpenEnded_mscoco_val2014_questions.json' configs['datasets']['VQAv2']['Val']['Questions']['Zip_File'] = 'v2_Questions_Val_mscoco.zip' configs['datasets']['VQAv2']['Val']['Questions']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_Val_mscoco.zip' configs['datasets']['VQAv2']['Val']['Questions']['Path'] = configs['path_datasets'] + 'VQAv2' + configs['cdsign'] + 'Questions' + configs['cdsign'] + configs['datasets']['VQAv2']['Val']['Questions']['File'] configs['datasets']['VQAv2']['Val']['Annotations'] = {} configs['datasets']['VQAv2']['Val']['Annotations']['File'] = 'v2_mscoco_val2014_annotations.json' configs['datasets']['VQAv2']['Val']['Annotations']['Zip_File'] = 'v2_Annotations_Val_mscoco.zip' configs['datasets']['VQAv2']['Val']['Annotations']['Link'] = 'https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Annotations_Val_mscoco.zip' configs['datasets']['VQAv2']['Val']['Annotations']['Path'] = configs['path_datasets'] + 'VQAv2' + configs['cdsign'] + 'Annotations' + configs['cdsign'] + configs['datasets']['VQAv2']['Val']['Annotations']['File'] configs['datasets']['VQAv2']['Val']['Images'] = configs['datasets']['VQAv1']['Val']['Images'] ################################################################################################################################################### ##################################################################### VGv1.0 ######################################################################### configs['datasets']['VGv1.0'] = {} configs['datasets']['VGv1.0']['Images'] = {} configs['datasets']['VGv1.0']['Images']['Part_1'] = {} configs['datasets']['VGv1.0']['Images']['Part_1']['File'] = 'VG_100K' configs['datasets']['VGv1.0']['Images']['Part_1']['Zip_File'] = 'images.zip' configs['datasets']['VGv1.0']['Images']['Part_1']['Link'] = 'https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip' configs['datasets']['VGv1.0']['Images']['Part_1']['Path'] = configs['path_datasets'] + 'VGv1.0' + configs['cdsign'] + 'Images' + configs['cdsign'] + configs['datasets']['VGv1.0']['Images']['Part_1']['File'] + configs['cdsign'] configs['datasets']['VGv1.0']['Images']['Part_2'] = {} configs['datasets']['VGv1.0']['Images']['Part_2']['File'] = 'VG_100K_2' configs['datasets']['VGv1.0']['Images']['Part_2']['Zip_File'] = 'images2.zip' configs['datasets']['VGv1.0']['Images']['Part_2']['Link'] = 'https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip' configs['datasets']['VGv1.0']['Images']['Part_2']['Path'] = configs['path_datasets'] + 'VGv1.0' + configs['cdsign'] + 'Images' + configs['cdsign'] + configs['datasets']['VGv1.0']['Images']['Part_2']['File'] + configs['cdsign'] configs['datasets']['VGv1.0']['Questions_Answers'] = {} configs['datasets']['VGv1.0']['Questions_Answers']['File'] = 'question_answers.json' configs['datasets']['VGv1.0']['Questions_Answers']['Zip_File'] = 'question_answers.json.zip' configs['datasets']['VGv1.0']['Questions_Answers']['Link'] = 'https://visualgenome.org/static/data/dataset/question_answers.json.zip' configs['datasets']['VGv1.0']['Questions_Answers']['Path'] = configs['path_datasets'] + 'VGv1.0' + configs['cdsign'] + 'Questions_Answers' + configs['cdsign'] + configs['datasets']['VGv1.0']['Questions_Answers']['File'] ####################################################### VGv1.2##### ############################################################################### configs['datasets']['VGv1.2'] = configs['datasets']['VGv1.0'] ################################################################################################################################################### configs['chosen_datasets_list'] = ['VQAv1'] #['VQAv1', 'VQAv2', 'VGv1.0', 'VGv1.2'] configs['chosen_datasets_str'] = '_'.join(configs['chosen_datasets_list']) configs['image_model'] = 'YOLOv4-448-1024' # ['ResNet152-448-2048', 'YOLOv4-448-1024'] configs['random_seed'] = 100 configs['path_image_model'] = configs['path_root'] + 'Image_Models' + configs['cdsign'] + configs['image_model'] + configs['cdsign'] configs['path_images_features'] = configs['path_image_model'] + 'Images_Features' + configs['cdsign'] configs['path_histories'] = configs['path_root'] + 'Histories' + configs['cdsign'] + configs['chosen_datasets_str'] + '_' + configs['image_model'] + configs['cdsign'] configs['path_plots'] = configs['path_root'] + 'Plots' + configs['cdsign'] + configs['chosen_datasets_str'] + '_' + configs['image_model'] + configs['cdsign'] configs['path_test_images'] = configs['path_root'] + 'Test_Images' + configs['cdsign'] # In[3]: def create_directories(configs): for key, value in configs.items(): if 'path_' in key: Path(value).mkdir(parents=True, exist_ok=True) print('Created ', value) return True # In[4]: def save_pickle_data(data, path): try: with open(path, 'wb') as handle: pk.dump(data, handle, protocol=pk.HIGHEST_PROTOCOL) return True except: return False # In[5]: def load_pickle_data(path): if os.path.exists(path) == True: with open(path, 'rb') as handle: data = pk.load(handle) return data else: return False # In[6]: def check_MSCOCO_data(configs, dataset): directory = configs['path_datasets'] + dataset + configs['cdsign'] Path(directory).mkdir(parents=True, exist_ok=True) train_val = list(configs['datasets'][dataset].keys()) for tv in train_val: data_types = list(configs['datasets'][dataset][tv].keys()) for dt in data_types: file_name = configs['datasets'][dataset][tv][dt]['File'] file_path = configs['datasets'][dataset][tv][dt]['Path'] # file_path = directory + dt + configs['cdsign'] + file_name zip_file = configs['datasets'][dataset][tv][dt]['Zip_File'] file_link = configs['datasets'][dataset][tv][dt]['Link'] ##### Just for Development. Remove it Later ###### if dt == 'Images': Path(file_path).mkdir(parents=True, exist_ok=True) ################################################## if not os.path.exists(file_path): print('Donwloading {0}'.format(file_name)) os.system('cd {0} && wget {1} && unzip {2} && rm {2}'.format(directory, file_link, zip_file)) else: print('Exists {0}'.format(file_name)) # In[7]: def check_VG_data(configs, dataset): directory = configs['path_datasets'] + dataset + configs['cdsign'] Path(directory).mkdir(parents=True, exist_ok=True) data_types = list(configs['datasets'][dataset].keys()) for dt in data_types: if dt == 'Images': for p in configs['datasets'][dataset]['Images']: file_name = configs['datasets'][dataset][dt][p]['File'] file_path = configs['datasets'][dataset][dt][p]['Path'] # file_path = directory + dt + configs['cdsign'] + file_name zip_file = configs['datasets'][dataset][dt][p]['Zip_File'] file_link = configs['datasets'][dataset][dt][p]['Link'] ##### Just for Development. Remove it Later ###### Path(file_path).mkdir(parents=True, exist_ok=True) ################################################## if not os.path.exists(file_path): print('Donwloading {0}'.format(file_name)) os.system('cd {0} && wget {1} && unzip {2} && rm {2}'.format(directory, file_link, zip_file)) else: print('Exists {0}'.format(file_name)) else: file_name = configs['datasets'][dataset][dt]['File'] file_path = configs['datasets'][dataset][dt]['Path'] # file_path = directory + dt + configs['cdsign'] + file_name zip_file = configs['datasets'][dataset][dt]['Zip_File'] file_link = configs['datasets'][dataset][dt]['Link'] if not os.path.exists(file_path): print('Donwloading {0}'.format(file_name)) os.system('cd {0} && wget {1} && unzip {2} && rm {2}'.format(directory, file_link, zip_file)) else: print('Exists {0}'.format(file_name)) # In[8]: def get_MSCOCO_data(configs, dataset): results = [] for key, value in configs['datasets'][dataset].items(): path_questions = configs['path_datasets'] + dataset + configs['cdsign'] + 'Questions' + configs['cdsign'] + value['Questions']['File'] path_annotations = configs['path_datasets'] + dataset + configs['cdsign'] + 'Annotations' + configs['cdsign'] + value['Annotations']['File'] with open(file=path_questions, mode='r') as questions: data_questions = json.load(questions) with open(file=path_annotations, mode='r') as answers: data_answers = json.load(answers) data_size = len(data_answers['annotations']) for i in range(data_size): question = data_questions['questions'][i] answer = data_answers['annotations'][i] answer_type = answer['answer_type'] data = {} data['image_id'] = question['image_id'] data['question_id'] = question['question_id'] data['question'] = question['question'].lower() data['answer'] = answer['multiple_choice_answer'].lower() data['answers'] = answer['answers'] data['question_type'] = answer['question_type'].lower() results.append(data) print('{0} Q/A: {1}'.format(dataset, len(results))) return results # In[9]: def get_VG_data(configs, dataset): results = [] qap = configs['path_datasets'] + dataset + configs['cdsign'] + 'Questions_Answers' + configs['cdsign'] + configs['datasets'][dataset]['Questions_Answers']['File'] with open(file=qap, mode='r') as qa: data = json.load(qa) for d in data: for j in range(len(d['qas'])): que_ans = d['qas'][j] temp = {} temp['image_id'] = que_ans['image_id'] temp['question_id'] = que_ans['qa_id'] temp['answer'] = que_ans['answer'][:-1].lower() temp['question'] = que_ans['question'].lower() results.append(temp) print('{0} Q/A: {1}'.format(dataset, len(results))) return results # In[10]: def get_original_data(configs): data = [] for dataset in configs['chosen_datasets_list']: print('Preparing {0} Dataset:'.format(dataset)) if 'VQA' in dataset: check_MSCOCO_data(configs, dataset) data = data + get_MSCOCO_data(configs, dataset) elif 'VG' in dataset: check_VG_data(configs, dataset) data = data + get_VG_data(configs, dataset) return data # In[11]: def plot_questions_types_frequency(freqs, fname='Questions_Types'): temp = {} temp['keys'] = list(freqs.keys()) temp['vals'] = list(freqs.values()) temp =
pd.DataFrame(temp)
pandas.DataFrame
""" Copyright 2018 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt import pandas as pd import pytest from pandas.util.testing import assert_frame_equal, assert_series_equal from gs_quant.api.gs.data import GsDataApi from gs_quant.context_base import ContextMeta from gs_quant.errors import MqValueError from gs_quant.markets import MarketDataCoordinate from gs_quant.session import GsSession, Environment from gs_quant.target.assets import FieldFilterMap from gs_quant.target.coordinates import MDAPIDataQuery from gs_quant.target.data import MarketDataVendor, DataSetEntity, DataQuery, DataSetFieldEntity test_coordinates = ( MarketDataCoordinate(mkt_type='Prime', mkt_quoting_style='price', mkt_asset='335320934'), MarketDataCoordinate(mkt_type='IR', mkt_asset='USD', mkt_class='Swap', mkt_point=('2Y',)), ) test_str_coordinates = ( 'Prime_335320934_.price', 'IR_USD_Swap_2Y' ) test_defn_dict = {'id': 'EXAMPLE_FROM_SLANG', 'name': 'Example DataSet', 'description': 'This is a test.', 'shortDescription': '', 'vendor': 'Goldman Sachs', 'dataProduct': 'TEST', 'entitlements': {'query': ['internal'], 'view': ['internal', 'role:DataServiceView', 'role:DataServiceAdmin'], 'upload': ['internal'], 'admin': ['internal', 'role:DataServiceAdmin'], 'edit': ['internal', 'role:DataServiceAdmin']}, 'parameters': {'methodology': '', 'coverage': '', 'notes': '', 'history': '', 'frequency': '', 'applyMarketDataEntitlements': False, 'uploadDataPolicy': 'DEFAULT_POLICY', 'logicalDb': 'STUDIO_DAILY', 'symbolStrategy': 'ARCTIC_LINK', 'immutable': False, 'includeInCatalog': False, 'coverageEnabled': True}, 'dimensions': {'timeField': 'date', 'transactionTimeField': 'updateTime', 'symbolDimensions': ['assetId'], 'nonSymbolDimensions': [{'field': 'price', 'column': 'PRICE'}], 'measures': [{'field': 'updateTime', 'column': 'UPDATE_TIME'}], 'entityDimension': 'assetId'}, 'defaults': {'startSeconds': 2592000.0}, 'createdById': '9eb7226166a44236905cae2913cfbd3c', 'createdTime': '2018-07-24T00:32:25.77Z', 'lastUpdatedById': '4ad8ebb6480d49e6b2e9eea9210685cf', 'lastUpdatedTime': '2019-10-24T14:20:13.653Z'} bond_data = [ { 'mktType': 'Prime', 'mktAsset': '335320934', 'mktQuotingStyle': 'price', 'price': 1.0139, 'time': pd.to_datetime('2019-01-20T01:03:00Z') }, { 'mktType': 'Prime', 'mktAsset': '335320934', 'mktQuotingStyle': 'price', 'price': 1.0141, 'time':
pd.to_datetime('2019-01-20T01:08:00Z')
pandas.to_datetime
import os import pathlib import pickle import random import numpy as np import pandas as pd from sklearn.decomposition import PCA from S2S_load_sensor_data import read_data_datefolder_hourfile from S2S_settings import settings FPS = settings["FPS"] FRAME_INTERVAL = settings["FRAME_INTERVAL"] sample_counts = settings["sample_counts"] def load_start_time(start_time_file, vid): """ load start time Args: start_time_file: str vid: str, video Returns: int, start time """ df_start_time = pd.read_csv(start_time_file).set_index("video_name") if vid not in df_start_time.index: print("Error: ", vid, " not in ", start_time_file) exit() start_time = df_start_time.loc[vid]["start_time"] return int(start_time) def reliability_df_to_consecutive_seconds( df_sensor_rel, window_size_sec, stride_sec, threshold=sample_counts ): """ Convert from reliability df to consecutive seconds represented with start and end time. Args: df_sensor_rel: dataframe, sensor reliability window_size_sec:, int, window_size stride_sec: int, stride threshold: float Returns: win_start_end: a list of all the possible [window_start, window_end] pairs. """ # use the threshold criterion to select 'good' seconds rel_seconds = ( df_sensor_rel[df_sensor_rel["SampleCounts"] > threshold] .sort_values(by="Time")["Time"] .values ) win_start_end = consecutive_seconds(rel_seconds, window_size_sec, stride_sec) return win_start_end def consecutive_seconds(rel_seconds, window_size_sec, stride_sec=1): """ Return a list of all the possible [window_start, window_end] pairs containing consecutive seconds of length window_size_sec inside. Args: rel_seconds: a list of qualified seconds window_size_sec: int stride_sec: int Returns: win_start_end: a list of all the possible [window_start, window_end] pairs. Test: >>> rel_seconds = [2,3,4,5,6,7,9,10,11,12,16,17,18]; window_size_sec = 3; stride_sec = 1 >>> print(consecutive_seconds(rel_seconds, window_size_sec)) >>> [[2, 4], [3, 5], [4, 6], [5, 7], [9, 11], [10, 12], [16, 18]] """ win_start_end = [] for i in range(0, len(rel_seconds) - window_size_sec + 1, stride_sec): if rel_seconds[i + window_size_sec - 1] - rel_seconds[i] == window_size_sec - 1: win_start_end.append([rel_seconds[i], rel_seconds[i + window_size_sec - 1]]) return win_start_end def load_vid_feat(vid_file, fps, start_time): feat = np.load(vid_file)["feature"][0] print("video feature shape:", feat.shape) frame_len = 1000.0 / fps # duration of a frame in ms frames = feat.shape[0] # number of frames len_ms = frames * frame_len # duration of all frames in ms timestamps_int = np.arange( start_time, start_time + len_ms, frame_len ).astype(int) l = min(len(timestamps_int), feat.shape[0]) timestamps_int = timestamps_int[:l] feat = feat[:l, :] df_flow = pd.DataFrame( data=np.hstack((timestamps_int[:,None], feat)), index=[i for i in range(feat.shape[0])], columns=["time"]+['f'+str(i) for i in range(feat.shape[1])] ) df_flow["second"] = (df_flow["time"] / 1000).astype(int) df_flow = df_flow.reset_index() return df_flow, len_ms def load_sensors_cubic( sensor_path, sub, device, sensors, sensor_col_headers, start_time, end_time, fps ): """ load sensor data with cubic spline resampling Args: sensor_path: str, sub: str, subject device: str sensors: list, sensors sensor_col_headers: list of sensor column headers start_time: int end_time: int fps: float Returns: dataframe, sensor data """ df_list = [] for s, col in zip(sensors, sensor_col_headers): df_sensor = read_data_datefolder_hourfile( sensor_path, sub, device, s, start_time, end_time ) df_sensor = df_sensor[["time", col]] df_sensor["time"] = pd.to_datetime(df_sensor["time"], unit="ms") df_sensor = df_sensor.set_index("time") df_resample = df_sensor.resample(FRAME_INTERVAL).mean() # FRAME_INTERVAL as 0.03336707S is the most closest value to 1/29.969664 pandas accepts df_resample = df_resample.interpolate(method="spline", order=3) # cubic spline interpolation df_list.append(df_resample) df_sensors =
pd.concat(df_list, axis=1)
pandas.concat
import os import json import requests from pathlib import Path import pandas as pd from .formatUtil import formatTopStocks from .crawler import Crawler from datetime import datetime import tushare as ts class Plate(Crawler): def __init__(self): super().__init__() self.__fileBasePath = str(os.path.abspath('.')) + '/Data' self.__baseURL = "https://pchq.kaipanla.com/w1/api/index.php" def __getPlateFileData(self, fileName): filePath = self.__fileBasePath + "/plateMap/" + fileName if os.path.exists(filePath): with open(filePath, 'r', encoding='utf-8') as f: data = json.load(f) return data else: print(filePath + " does not exist!") return None def getAllStockPlateMapping(self): return self.__getPlateFileData("STOCKS_TO_PLATES.json") def getAllNormalPlates(self): return self.__getPlateFileData("NORMAL_TO_STOCKS.json") def getAllCarePlates(self): return self.__getPlateFileData("CARES_TO_STOCKS.json") def findOnePlateInfo(self, code): code = str(code) ctsMapInfo = self.getAllCarePlates() ntsMapInfo = self.getAllNormalPlates() if code in ctsMapInfo.keys(): name = ctsMapInfo[code]["name"] stocks = ctsMapInfo[code]["stocks"] return {"code": code, "name": name, "stocks": stocks} elif code in ntsMapInfo.keys(): name = ntsMapInfo[code]["name"] stocks = ntsMapInfo[code]["stocks"] return {"code": code, "name": name, "stocks": stocks} else: return None def getOnePlateData(self, code, lagDays=0): code = str(code) p = self.__fileBasePath + '/plateData/' fileName = str(code) + ".csv" filePath = Path(p + fileName) if filePath.is_file(): old_df =
pd.read_csv(filePath)
pandas.read_csv
""" /* * Copyright (C) 2019-2021 University of South Florida * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ """ import os # Import dependencies from collections import defaultdict from pathlib import Path import haversine as hs import numpy as np import pandas as pd from haversine import Unit from src.gt_merger import constants from src.gt_merger.args import get_parser from src.gt_merger.preprocess import preprocess_gt_data, preprocess_oba_data, is_valid_oba_dataframe, \ is_valid_gt_dataframe # ------------------------------------------- def main(): # Verify if the OBA input file exists if not os.path.isfile(command_line_args.obaFile): print("OBA data file not found:", command_line_args.obaFile) exit() # Verify if GT input file exists if not os.path.isfile(command_line_args.gtFile): print("Ground truth data file not found:", command_line_args.gtFile) exit() # Verify if there is a list of devices if command_line_args.deviceList: # Verify if the list of devices file exists if os.path.isfile(command_line_args.deviceList): with open(command_line_args.deviceList) as f: list_of_devices = f.readline().split(",") list_of_devices = [s.strip() for s in list_of_devices] else: print("File with white list of devices not found:", command_line_args.deviceList) exit() else: list_of_devices = [] # Verify if the data folder exists if not os.path.isdir(command_line_args.outputDir): print("Data folder not found, trying to create it in the current working directory:", command_line_args.outputDir) try: os.makedirs(command_line_args.outputDir, exist_ok=True) except OSError: print("There was an error while creating the data folder:", command_line_args.outputDir) exit() # Create sub-folders for output an logs path_logs = os.path.join(command_line_args.outputDir, constants.FOLDER_LOGS) if not os.path.isdir(path_logs): try: os.mkdir(path_logs) except OSError: print("There was an error while creating the sub folder for logs:", path_logs) exit() path_output = os.path.join(command_line_args.outputDir, constants.FOLDER_MERGED_DATA) if not os.path.isdir(path_output): try: os.mkdir(path_output) except OSError: print("There was an error while creating the sub-folder for output files:", path_logs) exit() # Create path OS independent for excel file excel_path = Path(command_line_args.gtFile) # Load ground truth data to a dataframe gt_data = pd.read_excel(excel_path) # Validate gt dataframe if not is_valid_gt_dataframe(gt_data): print("Ground truth data frame is empty or does not have the required columns.") exit() # Preprocess ground truth data gt_data, data_gt_dropped = preprocess_gt_data(gt_data, command_line_args.removeStillMode) print("Ground truth data preprocessed.") # Save data to be dropped to a csv file dropped_file_path = os.path.join(command_line_args.outputDir, constants.FOLDER_LOGS, constants.GT_DROPPED_DATA_FILE_NAME) data_gt_dropped.to_csv(path_or_buf=dropped_file_path, index=False) # Create path OS independent for csv file csv_path = Path(command_line_args.obaFile) # Load OBA data oba_data = pd.read_csv(csv_path) # Validate oba dataframe if not is_valid_oba_dataframe(oba_data): print("OBA data frame is empty or does not have the required columns.") exit() # If a devices white list was provided, list the devices if list_of_devices: oba_data = oba_data[oba_data["User ID"].isin(list_of_devices)] # Preprocess OBA data oba_data, data_csv_dropped = preprocess_oba_data(oba_data, command_line_args.minActivityDuration, command_line_args.minTripLength, command_line_args.removeStillMode) print("OBA data preprocessed.") print(oba_data.info()) print(gt_data.info()) # Data preprocessing IS OVER # Save oba dropped data to a csv file dropped_file_path = os.path.join(command_line_args.outputDir, constants.FOLDER_LOGS, constants.OBA_DROPPED_DATA_FILE_NAME) data_csv_dropped.to_csv(path_or_buf=dropped_file_path, index=False) if command_line_args.iterateOverTol: first_tol = 30000 save_to_path = os.path.join(constants.FOLDER_MERGED_DATA, "batch") else: save_to_path = os.path.join(constants.FOLDER_MERGED_DATA) first_tol = constants.TOLERANCE for tol in range(first_tol, command_line_args.tolerance + 1, constants.CALCULATE_EVERY_N_SECS): print("TOLERANCE:", str(tol)) # merge dataframes one to one or one to many according to the commandline parameter if command_line_args.mergeOneToOne: merged_data_frame, num_matches_df = merge(gt_data, oba_data, tol) else: merged_data_frame, num_matches_df, unmatched_oba_trips_df = merge_to_many(gt_data, oba_data, tol) # Save unmatched oba records to csv unmatched_file_path = os.path.join(command_line_args.outputDir, save_to_path, "oba_records_without_match_on_GT.csv") unmatched_oba_trips_df.to_csv(path_or_buf=unmatched_file_path, index=False) # Calculate difference merged_data_frame['Time_Difference'] = merged_data_frame.apply( lambda x: (x['Activity Start Date and Time* (UTC)'] - x['GT_DateTimeOrigUTC_Backup']) / np.timedelta64(1, 's') if pd.notna(x['Activity Start Date and Time* (UTC)']) else "", 1) # Calculate distance between GT and OBA starting points merged_data_frame['Distance_Difference'] = merged_data_frame.apply( lambda row: hs.haversine((row['GT_LatOrig'], row['GT_LonOrig']), (row['Origin latitude (*best)'], row['Origin longitude (*best)']), unit=Unit.METERS), axis=1) # Add Manual Assignment Column before reorganize merged_data_frame["Manual Assignment"] = '' # Reorder merged dataframe columns new_column_orders = constants.GT_NEW_COLUMNS_ORDER + constants.OBA_NEW_COLUMNS_ORDER merged_data_frame = merged_data_frame[new_column_orders] # Save merged data to csv merged_file_path = os.path.join(command_line_args.outputDir, save_to_path, constants.MERGED_DATA_FILE_NAME + "_" + str(tol) + ".csv") num_matches_file_path = os.path.join(command_line_args.outputDir, save_to_path, "num_matches" + "_" + str(tol) + ".csv") merged_data_frame.to_csv(path_or_buf=merged_file_path, index=False) num_matches_df.to_csv(path_or_buf=num_matches_file_path, index=False) def merge(gt_data, oba_data, tolerance): """ Merge gt_data dataframe and oba_data dataframe using the nearest value between columns 'gt_data.GT_DateTimeOrigUTC' and 'oba_data.Activity Start Date and Time* (UTC)'. Before merging, the data is grouped by 'GT_Collector' on gt_data and each row on gt_data will be paired with one or none of the rows on oba_data grouped by userId. :param tolerance: maximum allowed difference (seconds) between 'gt_data.GT_DateTimeOrigUTC' and 'oba_data.Activity Start Date and Time* (UTC)'. :param gt_data: dataframe with preprocessed data from ground truth XLSX data file :param oba_data: dataframe with preprocessed data from OBA firebase export CSV data file :return: dataframe with the merged data and a dataframe with summary of matches by collector/oba_user(phone). """ list_collectors = gt_data['GT_Collector'].unique() list_oba_users = oba_data['User ID'].unique() merged_df = pd.DataFrame() matches_df = pd.DataFrame(list_collectors, columns=['GT_Collector']) list_total_trips = [] list_matches = [] matches_dict = defaultdict(list) for collector in list_collectors: print("Merging data for collector ", collector) # Create dataframe for a collector on list_collectors gt_data_collector = gt_data[gt_data["GT_Collector"] == collector] # Make sure dataframe is sorted by 'ClosesTime' gt_data_collector.sort_values('GT_DateTimeOrigUTC', inplace=True) # Add total trips per collector list_total_trips.append(len(gt_data_collector)) i = 0 list_matches_by_phone = [] for oba_user in list_oba_users: # Create a dataframe with the oba_user activities only oba_data_user = oba_data[oba_data["User ID"] == oba_user] # Make sure dataframes is sorted by 'Activity Start Date and Time* (UTC)' oba_data_user.sort_values('Activity Start Date and Time* (UTC)', inplace=True) temp_merge = pd.merge_asof(gt_data_collector, oba_data_user, left_on="GT_DateTimeOrigUTC", right_on="Activity Start Date and Time* (UTC)", direction="forward", tolerance=pd.Timedelta(str(tolerance) + "ms"), left_by='GT_Mode', right_by='Google Activity') merged_df = pd.concat([merged_df, temp_merge], ignore_index=True) # Print number of matches print("\t Oba user", oba_user[-4:], "\tMatches: ", (temp_merge["User ID"] == oba_user).sum(), " out of ", (temp_merge["GT_Collector"] == collector).sum()) list_matches_by_phone.append((temp_merge["User ID"] == oba_user).sum()) matches_dict[oba_user[-4:]].append((temp_merge["User ID"] == oba_user).sum()) i += 1 list_matches.append(list_matches_by_phone) matches_df['total_trips'] = list_total_trips numbers_df =
pd.DataFrame.from_dict(matches_dict)
pandas.DataFrame.from_dict
from __future__ import absolute_import, division, print_function import logging import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch from torch.distributions import constraints import pyro import pyro.distributions as dist from pyro.infer import EmpiricalMarginal, SVI, Trace_ELBO from pyro.contrib.autoguide import AutoMultivariateNormal from pyro.infer.mcmc.api import MCMC from pyro.infer.mcmc import NUTS import pyro.optim as optim from pyro.util import optional from pyro import poutine pyro.set_rng_seed(1) logging.basicConfig(format='%(message)s', level=logging.INFO) # Enable validation checks pyro.enable_validation(True) smoke_test = ('CI' in os.environ) pyro.set_rng_seed(1) # Draw fake parameters -- set number of patches and subpatches SUBPATCHES_IN_PATCH = 16 N_PATCHES = 100 N_CHAINS = 3 training_data =
pd.DataFrame()
pandas.DataFrame
""" @<NAME> ============================================== Training the different models by multiple sequential trials ============================================== How to train mixtures and HMMs with various observation models on the same dataset. """ import bnpy import numpy as np import os from matplotlib import pylab import glob import pandas as pd import warnings warnings.filterwarnings("ignore", category= DeprecationWarning) SMALL_FIG_SIZE = (2.5, 2.5) FIG_SIZE = (5, 5) pylab.rcParams['figure.figsize'] = FIG_SIZE pylab.close('all') dataPath = '/home/birl/npBayesHMM/HIRO_SA_DATA/REAL_HIRO_ONE_SA_SUCCESS' file_id = ['02', '03', '04', '05', '06','07', '08', '09', '10', '11', '12', '13', '14', '15', '16'] nLap = 500 time_step = 0.005 dataType = ['R_Torques.dat'] #'R_Angles.dat','R_CartPos.dat' tuples can not edited STATE = ['APPROACH', 'ROTATION', 'INSERTION', 'MATING'] ############################################################################### def load_one_trial(dataPath,id): sensor = pd.DataFrame() Rstate = pd.DataFrame() for folders in glob.glob(os.path.join(dataPath, "*" + id)): for dat_file in os.listdir(folders): if dat_file in dataType: raw_data = pd.read_csv(folders +'/' + dat_file, sep='\s+', header=None, skiprows=1, usecols = range(1,7)) sensor = raw_data.transpose().append(sensor) # transpose to [ndim x length] elif dat_file == 'R_State.dat': Rstate =
pd.read_csv(folders + '/' + dat_file, sep='\s+', header=None, skiprows=1)
pandas.read_csv
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ts.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_date_unit(self, unit): df = self.tsframe.copy() df["date"] = Timestamp("20130101 20:43:42") dl = df.columns.get_loc("date") df.iloc[1, dl] = Timestamp("19710101 20:43:42") df.iloc[2, dl] = Timestamp("21460101 20:43:42") df.iloc[4, dl] = pd.NaT json = df.to_json(date_format="epoch", date_unit=unit) # force date unit result = read_json(json, date_unit=unit) tm.assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) tm.assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r"""{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }""" read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB")) dfj2["date"] = Timestamp("20130101") dfj2["ints"] = range(5) dfj2["bools"] = True dfj2.index = pd.date_range("20130101", periods=5) json = dfj2.to_json() result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_}) tm.assert_frame_equal(result, result) def test_misc_example(self): # parsing unordered input fails result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) error_msg = """DataFrame\\.index are different DataFrame\\.index values are different \\(100\\.0 %\\) \\[left\\]: Index\\(\\['a', 'b'\\], dtype='object'\\) \\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)""" with pytest.raises(AssertionError, match=error_msg): tm.assert_frame_equal(result, expected, check_index_type=False) result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]') expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @tm.network @pytest.mark.single def test_round_trip_exception_(self): # GH 3867 csv = "https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv" df = pd.read_csv(csv) s = df.to_json() result = pd.read_json(s) tm.assert_frame_equal(result.reindex(index=df.index, columns=df.columns), df) @tm.network @pytest.mark.single @pytest.mark.parametrize( "field,dtype", [ ["created_at", pd.DatetimeTZDtype(tz="UTC")], ["closed_at", "datetime64[ns]"], ["updated_at", pd.DatetimeTZDtype(tz="UTC")], ], ) def test_url(self, field, dtype): url = "https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5" # noqa result = read_json(url, convert_dates=True) assert result[field].dtype == dtype def test_timedelta(self): converter = lambda x: pd.to_timedelta(x, unit="ms") s = Series([timedelta(23), timedelta(seconds=5)]) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) s = Series([timedelta(23), timedelta(seconds=5)], index=pd.Index([0, 1])) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) frame = DataFrame([timedelta(23), timedelta(seconds=5)]) assert frame[0].dtype == "timedelta64[ns]" tm.assert_frame_equal(frame, pd.read_json(frame.to_json()).apply(converter)) frame = DataFrame( { "a": [timedelta(days=23), timedelta(seconds=5)], "b": [1, 2], "c": pd.date_range(start="20130101", periods=2), } ) result = pd.read_json(frame.to_json(date_unit="ns")) result["a"] = pd.to_timedelta(result.a, unit="ns") result["c"] = pd.to_datetime(result.c) tm.assert_frame_equal(frame, result) def test_mixed_timedelta_datetime(self): frame = DataFrame( {"a": [timedelta(23), pd.Timestamp("20130101")]}, dtype=object ) expected = DataFrame( {"a": [pd.Timedelta(frame.a[0]).value, pd.Timestamp(frame.a[1]).value]} ) result = pd.read_json(frame.to_json(date_unit="ns"), dtype={"a": "int64"}) tm.assert_frame_equal(result, expected, check_index_type=False) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize("date_format", ["iso", "epoch"]) @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta]) def test_timedelta_to_json(self, as_object, date_format, timedelta_typ): # GH28156: to_json not correctly formatting Timedelta data = [timedelta_typ(days=1), timedelta_typ(days=2), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) if date_format == "iso": expected = ( '{"P1DT0H0M0S":"P1DT0H0M0S","P2DT0H0M0S":"P2DT0H0M0S","null":null}' ) else: expected = '{"86400000":86400000,"172800000":172800000,"null":null}' if as_object: expected = expected.replace("}", ',"a":"a"}') result = ser.to_json(date_format=date_format) assert result == expected def test_default_handler(self): value = object() frame = DataFrame({"a": [7, value]}) expected = DataFrame({"a": [7, str(value)]}) result = pd.read_json(frame.to_json(default_handler=str)) tm.assert_frame_equal(expected, result, check_index_type=False) def test_default_handler_indirect(self): from pandas.io.json import dumps def default(obj): if isinstance(obj, complex): return [("mathjs", "Complex"), ("re", obj.real), ("im", obj.imag)] return str(obj) df_list = [ 9, DataFrame( {"a": [1, "STR", complex(4, -5)], "b": [float("nan"), None, "N/A"]}, columns=["a", "b"], ), ] expected = ( '[9,[[1,null],["STR",null],[[["mathjs","Complex"],' '["re",4.0],["im",-5.0]],"N\\/A"]]]' ) assert dumps(df_list, default_handler=default, orient="values") == expected def test_default_handler_numpy_unsupported_dtype(self): # GH12554 to_json raises 'Unhandled numpy dtype 15' df = DataFrame( {"a": [1, 2.3, complex(4, -5)], "b": [float("nan"), None, complex(1.2, 0)]}, columns=["a", "b"], ) expected = ( '[["(1+0j)","(nan+0j)"],' '["(2.3+0j)","(nan+0j)"],' '["(4-5j)","(1.2+0j)"]]' ) assert df.to_json(default_handler=str, orient="values") == expected def test_default_handler_raises(self): msg = "raisin" def my_handler_raises(obj): raise TypeError(msg) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, object()]}).to_json( default_handler=my_handler_raises ) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, complex(4, -5)]}).to_json( default_handler=my_handler_raises ) def test_categorical(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]}) df["B"] = df["A"] expected = df.to_json() df["B"] = df["A"].astype("category") assert expected == df.to_json() s = df["A"] sc = df["B"] assert s.to_json() == sc.to_json() def test_datetime_tz(self): # GH4377 df.to_json segfaults with non-ndarray blocks tz_range = pd.date_range("20130101", periods=3, tz="US/Eastern") tz_naive = tz_range.tz_convert("utc").tz_localize(None) df = DataFrame({"A": tz_range, "B": pd.date_range("20130101", periods=3)}) df_naive = df.copy() df_naive["A"] = tz_naive expected = df_naive.to_json() assert expected == df.to_json() stz = Series(tz_range) s_naive = Series(tz_naive) assert stz.to_json() == s_naive.to_json() def test_sparse(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = pd.DataFrame(np.random.randn(10, 4)) df.loc[:8] = np.nan sdf = df.astype("Sparse") expected = df.to_json() assert expected == sdf.to_json() s = pd.Series(np.random.randn(10)) s.loc[:8] = np.nan ss = s.astype("Sparse") expected = s.to_json() assert expected == ss.to_json() @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-10 05:00:00Z"), Timestamp("2013-01-10 00:00:00", tz="US/Eastern"), Timestamp("2013-01-10 00:00:00-0500"), ], ) def test_tz_is_utc(self, ts): from pandas.io.json import dumps exp = '"2013-01-10T05:00:00.000Z"' assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp @pytest.mark.parametrize( "tz_range", [ pd.date_range("2013-01-01 05:00:00Z", periods=2), pd.date_range("2013-01-01 00:00:00", periods=2, tz="US/Eastern"), pd.date_range("2013-01-01 00:00:00-0500", periods=2), ], ) def test_tz_range_is_utc(self, tz_range): from pandas.io.json import dumps exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]' dfexp = ( '{"DT":{' '"0":"2013-01-01T05:00:00.000Z",' '"1":"2013-01-02T05:00:00.000Z"}}' ) assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({"DT": dti}) result = dumps(df, iso_dates=True) assert result == dfexp def test_read_inline_jsonl(self): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @td.skip_if_not_us_locale def test_read_s3_jsonl(self, s3_resource): # GH17200 result = read_json("s3n://pandas-test/items.jsonl", lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_local_jsonl(self): # GH17200 with tm.ensure_clean("tmp_items.json") as path: with open(path, "w") as infile: infile.write('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n') result = read_json(path, lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(self): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) # simulate string json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_json_large_numbers(self): # GH18842 json = '{"articleId": "1404366058080022500245"}' json = StringIO(json) result = read_json(json, typ="series") expected = Series(1.404366e21, index=["articleId"]) tm.assert_series_equal(result, expected) json = '{"0": {"articleId": "1404366058080022500245"}}' json = StringIO(json) result = read_json(json) expected = DataFrame(1.404366e21, index=["articleId"], columns=[0]) tm.assert_frame_equal(result, expected) def test_to_jsonl(self): # GH9180 df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":1,"b":2}\n{"a":1,"b":2}' assert result == expected df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(pd.read_json(result, lines=True), df) # GH15096: escaped characters in columns and data df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(pd.read_json(result, lines=True), df) # TODO: there is a near-identical test for pytables; can we share? def test_latin_encoding(self): # GH 13774 pytest.skip("encoding not implemented in .to_json(), xref #13774") values = [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ] values = [ [x.decode("latin-1") if isinstance(x, bytes) else x for x in y] for y in values ] examples = [] for dtype in ["category", object]: for val in values: examples.append(Series(val, dtype=dtype)) def roundtrip(s, encoding="latin-1"): with tm.ensure_clean("test.json") as path: s.to_json(path, encoding=encoding) retr =
read_json(path, encoding=encoding)
pandas.read_json
import base64 import os, shutil, io, zipfile from re import L, match import json from datetime import datetime, timedelta from urllib.parse import urljoin import requests import pandas as pd import pint import numpy as np #import geopandas as gpd from django.views.decorators.csrf import csrf_protect, csrf_exempt from django.conf import settings from django.http import HttpResponse, HttpResponseRedirect, Http404, HttpResponseBadRequest from django.core.exceptions import ObjectDoesNotExist from django.contrib.auth import authenticate from django.core.files.storage import FileSystemStorage from django.shortcuts import redirect, render from django.contrib.auth.decorators import login_required from django.utils.text import slugify from api.exceptions import ModelNotExistException from api.models.outputs import Run, Cambium from api.tasks import run_model, task_status, build_model,upload_ts from api.models.calliope import Abstract_Tech, Abstract_Tech_Param, Parameter from api.models.configuration import Model, ParamsManager, Model_User,User_File, Location, Technology, Tech_Param, Loc_Tech, Loc_Tech_Param, Timeseries_Meta from api.utils import zip_folder, initialize_units, convert_units, noconv_units from taskmeta.models import CeleryTask @csrf_protect def build(request): """ Build and save the input files (YAML and CSV) for a Calliope run. Parameters: model_uuid (uuid): required scenario_id (int): required start_date (timestamp): required end_date (timestamp): required cluster (bool): optional manual (bool): optional Returns (json): Action Confirmation Example: GET: /api/build/ """ # Input parameters model_uuid = request.GET.get("model_uuid", None) scenario_id = request.GET.get("scenario_id", None) start_date = request.GET.get("start_date", None) end_date = request.GET.get("end_date", None) cluster = (request.GET.get("cluster", 'true') == 'true') manual = (request.GET.get("manual", 'false') == 'true') timestep = request.GET.get("timestep", '1H') try: pd.tseries.frequencies.to_offset(timestep) except ValueError: payload = { "status": "Failed", "message": "'"+timestep+"' is not a valid timestep.", } model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) try: start_date = datetime.strptime(start_date, "%Y-%m-%d") end_date = datetime.strptime(end_date, "%Y-%m-%d") + timedelta(hours=23) subset_time = str(start_date.date()) + " to " + str(end_date.date()) year = start_date.year # model and scenario instances scenario = model.scenarios.get(id=scenario_id) # Create run instance run = Run.objects.create( model=model, scenario=scenario, year=year, subset_time=subset_time, status=task_status.QUEUED, inputs_path="", cluster=cluster, manual=manual, timestep=timestep, ) # Generate File Path timestamp = datetime.now().strftime("%Y-%m-%d %H%M%S") model_name = ParamsManager.simplify_name(model.name) scenario_name = ParamsManager.simplify_name(scenario.name) inputs_path = "{}/{}/{}/{}/{}/{}/{}/inputs".format( settings.DATA_STORAGE, model.uuid, model_name, scenario_name, year, subset_time, timestamp, ) inputs_path = inputs_path.lower().replace(" ", "-") os.makedirs(inputs_path, exist_ok=True) # Celery task async_result = build_model.apply_async( kwargs={ "inputs_path": inputs_path, "run_id": run.id, "model_uuid": model_uuid, "scenario_id": scenario_id, "start_date": start_date, "end_date": end_date, } ) build_task = CeleryTask.objects.get(task_id=async_result.id) run.build_task = build_task run.save() payload = { "status": "Success", "model_uuid": model_uuid, "scenario_id": scenario_id, "year": start_date.year, } except Exception as e: payload = { "status": "Failed", "message": "Please contact admin at <EMAIL> ' \ 'regarding this error: {}".format( str(e) ), } return HttpResponse(json.dumps(payload, indent=4), content_type="application/json") @csrf_protect def optimize(request): """ Optimize a Calliope problem Parameters: model_uuid (uuid): required run_id (int): required Returns (json): Action Confirmation Example: POST: /api/optimize/ """ run_id = request.POST["run_id"] model_uuid = request.POST["model_uuid"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) payload = {"run_id": run_id} # run instance does not exist. try: run = model.runs.get(id=run_id) except ObjectDoesNotExist as e: print(e) payload["message"] = "Run ID {} does not exist.".format(run_id) return HttpResponse( json.dumps(payload, indent=4), content_type="application/json" ) # model path does not exist model_path = os.path.join(run.inputs_path, "model.yaml") if not os.path.exists(model_path): payload["message"] = "Invalid model config path!" return HttpResponse( json.dumps(payload, indent=4), content_type="application/json" ) # run celery task async_result = run_model.apply_async( kwargs={"run_id": run_id, "model_path": model_path, "user_id": request.user.id} ) run_task, _ = CeleryTask.objects.get_or_create(task_id=async_result.id) run.run_task = run_task run.status = task_status.QUEUED run.save() payload = {"task_id": async_result.id} return HttpResponse(json.dumps(payload, indent=4), content_type="application/json") @csrf_protect def delete_run(request): """ Delete a scenario run Parameters: model_uuid (uuid): required run_id (int): required Returns (json): Action Confirmation Example: POST: /api/delete_run/ """ model_uuid = request.POST["model_uuid"] run_id = request.POST["run_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) run = model.runs.get(id=run_id) if run.outputs_key: data = { 'filename': run.outputs_key, 'project_uuid': str(model.uuid), 'private_key': settings.CAMBIUM_API_KEY, } try: url = urljoin(settings.CAMBIUM_URL, "api/remove-data/") requests.post(url, data=data).json() except Exception as e: print("Cambium removal failed - {}".format(e)) run.delete() return HttpResponseRedirect("") @csrf_protect def publish_run(request): """ Publish a scenario run to Cambium (https://cambium.nrel.gov/) Parameters: model_uuid (uuid): required run_id (int): required Returns (json): Action Confirmation Example: POST: /api/publish_run/ """ model_uuid = request.POST["model_uuid"] run_id = request.POST["run_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) run = model.runs.filter(id=run_id).first() msg = Cambium.push_run(run) payload = {'message': msg} return HttpResponse(json.dumps(payload), content_type="application/json") @csrf_protect def update_run_description(request): """ Update the description for a run Parameters: model_uuid (uuid): required run_id (int): required description (str): required Returns (json): Action Confirmation Example: POST: /api/update_run_description/ """ model_uuid = request.POST["model_uuid"] run_id = int(request.POST["id"]) description = request.POST["value"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) try: run = model.runs.get(id=run_id) except ObjectDoesNotExist as e: print(e) payload = {} payload["message"] = "Run ID {} does not exist.".format(run_id) return HttpResponse( json.dumps(payload, indent=4), content_type="application/json" ) if description != run.description: run.description = description run.save() payload = description return HttpResponse(payload, content_type="text/plain") def basic_auth_required(api_view): def wrapper(request, *args, **kwargs): try: auth = request.META["HTTP_AUTHORIZATION"].split() assert auth[0].lower() == "basic" email, password = base64.b64decode(auth[1]).decode("utf-8").split(":") user = authenticate(username=email, password=password) if user is not None and user.is_active: request.user = user return api_view(request, *args, **kwargs) else: msg = "Invalid email or password! Please try again." return HttpResponse(json.dumps({"error": msg}), content_type="application/json") except Exception as e: msg = str(e) if str(e) == "'HTTP_AUTHORIZATION'": msg = "Authentorization failed! Please try Basic Auth." return HttpResponse(json.dumps({"error": msg}), content_type="application/json") return wrapper @csrf_protect def download(request): """ Download files from a path to client machine Parameters: model_uuid (uuid): required run_id (int): required Returns (json): Action Confirmation Example: GET: /api/download/ """ model_uuid = request.GET['model_uuid'] run_id = request.GET['run_id'] download_type = request.GET['type'] model = Model.by_uuid(model_uuid) model.handle_view_access(request.user) try: run = Run.objects.get(id=run_id) except Exception: raise Http404 if download_type == 'inputs': path = run.inputs_path elif download_type == "outputs": path = run.outputs_path else: raise Http404 if os.path.exists(path): file_path = zip_folder(path) with open(file_path, 'rb') as fh: response = HttpResponse(fh.read(), content_type="application/text") response['Content-Disposition'] = 'inline; filename='+slugify(model.name+'_'+run.scenario.name+'_'+str(run.year)+'_')+os.path.basename(file_path) return response return HttpResponse( json.dumps({"message": "Not Found!"}, indent=4), content_type="application/json" ) @csrf_protect def upload_outputs(request): """ Upload a zipped outputs file. Parameters: model_uuid (uuid): required run_id (int): required description (str): optional myfile (file): required Returns: Example: POST: /api/upload_outputs/ """ model_uuid = request.POST["model_uuid"] run_id = request.POST["run_id"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) try: run = Run.objects.get(id=run_id) except Exception: print("No Run Found") raise Http404 if (request.method == "POST") and ("myfile" in request.FILES): myfile = request.FILES["myfile"] if os.path.splitext(myfile.name)[1].lower() == '.zip': model_dir = run.inputs_path.replace("/inputs","") out_dir = os.path.join(model_dir,"outputs") if not os.path.exists(out_dir): os.makedirs(out_dir, exist_ok=True) print(myfile.name) fs = FileSystemStorage() filename = fs.save(os.path.join(out_dir,myfile.name), myfile) # Default assumes CSV files were directly zipped into archive run.outputs_path = out_dir shutil.unpack_archive(filename,out_dir) # Loop through options for archived output directories rather than base CSVs # TODO: Add user input on location of output CSVs via API option for dir in ['outputs','model_outputs']: if dir in os.listdir(out_dir): run.outputs_path = os.path.join(out_dir,dir) run.save() return redirect("/%s/runs/" % model_uuid) return redirect("/%s/runs/" % model_uuid) print("No File Found") raise Http404 @csrf_protect @login_required def upload_locations(request): """ Upload a CSV file with new/updated locations. Parameters: model_uuid (uuid): required description (str): optional myfile (file): required col_map (dict): optional Returns: Example: POST: /api/upload_locations/ """ model_uuid = request.POST["model_uuid"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) context = { 'logs':[], "model": model } if (request.method == "POST") and ("myfile" in request.FILES): myfile = request.FILES["myfile"] if os.path.splitext(myfile.name)[1].lower() == '.csv': df = pd.read_csv(myfile) else: context['logs'].append('File format not supported. Please use a .csv.') return render(request, "bulkresults.html", context) if not set(['pretty_name','longitude','latitude']).issubset(set(df.columns)): context['logs'].append('Missing required columns. pretty_name, longitude, latitude are required.') return render(request, "bulkresults.html", context) df = df.loc[:,df.columns.isin(['id','pretty_name','longitude','latitude','available_area','description'])] df['model_id'] = model.id df['name'] = df['pretty_name'].apply(lambda x: ParamsManager.simplify_name(x)) for i,row in df.iterrows(): if pd.isnull(row['pretty_name']): context['logs'].append(str(i)+'- Missing pretty name. Skipped') continue if pd.isnull(row['latitude']) or pd.isnull(row['longitude']): context['logs'].append(str(i)+'- Missing latitude or longitude. Skipped') continue if pd.isnull(row['available_area']): row['available_area'] = None if pd.isnull(row['description']): row['description'] = None if 'id' not in row.keys() or pd.isnull(row['id']): location = Location.objects.create(**(row.dropna())) else: location = Location.objects.filter(id=row['id']).first() if not location: context['logs'].append(str(i)+'- Location '+row['pretty_name']+': No location with id '+str(row['id'])+' found to update. Skipped.') continue location.name = row['name'] location.pretty_name = row['pretty_name'] location.longitude = row['longitude'] location.latitude = row['latitude'] location.available_area = row['available_area'] location.description = row['description'] location.save() return render(request, "bulkresults.html", context) context['logs'].append("No file found") return render(request, "bulkresults.html", context) @csrf_protect @login_required def upload_techs(request): """ Upload a CSV file with new/updated technologies. Parameters: model_uuid (uuid): required description (str): optional myfile (file): required col_map (dict): optional Returns: Example: POST: /api/upload_techs/ """ model_uuid = request.POST["model_uuid"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) context = { 'logs':[], "model": model } if (request.method == "POST") and ("myfile" in request.FILES): myfile = request.FILES["myfile"] if os.path.splitext(myfile.name)[1].lower() == '.csv': df = pd.read_csv(myfile) else: context['logs'].append('File format not supported. Please use a .csv.') return render(request, "bulkresults.html", context) if not set(['pretty_name','abstract_tech']).issubset(set(df.columns)): context['logs'].append('Missing required columns. pretty_name, abstract_tech are required.') return render(request, "bulkresults.html", context) df['name'] = df['pretty_name'].apply(lambda x: ParamsManager.simplify_name(str(x))) if 'pretty_tag' in df.columns: df['tag'] = df['pretty_tag'].apply(lambda x: ParamsManager.simplify_name(str(x))) ureg = initialize_units() for i,row in df.iterrows(): if pd.isnull(row['abstract_tech']): context['logs'].append(str(i)+'- Tech '+row['pretty_name']+': Missing abstract_tech. Skipped.') continue if row['abstract_tech'] in ['conversion','conversion_plus']: if 'carrier_in' not in row.keys() or 'carrier_out' not in row.keys() or pd.isnull(row['carrier_in']) or pd.isnull(row['carrier_out']): context['logs'].append(str(i)+'- Tech '+row['pretty_name']+': Conversion techs require both carrier_in and carrier_out. Skipped.') continue else: if 'carrier' not in row.keys() or pd.isnull(row['carrier']): context['logs'].append(str(i)+'- Tech '+row['pretty_name']+': Missing a carrier. Skipped.') continue if 'id' not in row.keys() or pd.isnull(row['id']): if pd.isnull(row['tag']): technology = Technology.objects.create( model_id=model.id, abstract_tech_id=Abstract_Tech.objects.filter(name=row['abstract_tech']).first().id, name=row['name'], pretty_name=row['pretty_name'], ) else: technology = Technology.objects.create( model_id=model.id, abstract_tech_id=Abstract_Tech.objects.filter(name=row['abstract_tech']).first().id, name=row['name'], pretty_name=row['pretty_name'], tag=row['tag'], pretty_tag=row['pretty_tag'] ) else: technology = Technology.objects.filter(model=model,id=row['id']).first() if not technology: context['logs'].append(str(i)+'- Tech '+row['pretty_name']+': No tech with id '+str(row['id'])+' found to update. Skipped.') continue technology.abstract_tech = Abstract_Tech.objects.filter(name=row['abstract_tech']).first() technology.name = row['name'] technology.pretty_name = row['pretty_name'] if pd.isnull(row['tag']) or pd.isnull(row['pretty_tag']): technology.tag = None technology.pretty_tag = None else: technology.tag = row['tag'] technology.pretty_tag = row['pretty_tag'] technology.save() Tech_Param.objects.filter(model_id=model.id,technology_id=technology.id).delete() Tech_Param.objects.create( model_id=model.id, technology_id=technology.id, parameter_id=1, value=row['abstract_tech'], ) Tech_Param.objects.create( model_id=model.id, technology_id=technology.id, parameter_id=2, value=row['pretty_name'], ) update_dict = {'edit':{'parameter':{},'timeseries':{}},'add':{},'essentials':{}} for f,v in row.iteritems(): if pd.isnull(v): continue pyear = f.rsplit('_',1) if len(pyear) > 1 and match('[0-9]{4}',pyear[1]): proot = pyear[0].rsplit('.',1) if len(proot) > 1: p = Parameter.objects.filter(root=proot[0],name=proot[1]).first() else: p = Parameter.objects.filter(name=pyear[0]).first() if p == None: p = Parameter.objects.filter(name=f).first() if p == None: continue else: pyear = pyear[1] else: pyear = None proot = f.rsplit('.',1) if len(proot) > 1: p = Parameter.objects.filter(root=proot[0],name=proot[1]).first() else: p = Parameter.objects.filter(name=f).first() if p == None: continue # Essential params if p.is_essential: update_dict['essentials'][p.pk] = v # Timeseries params elif str(v).startswith('file='): fields = v.split('=')[1].split(':') filename = fields[0] t_col = fields[1] v_col = fields[2] file = User_File.objects.filter(model=model, filename='user_files/'+filename) if not file: context['logs'].append(str(i)+'- Tech '+row['pretty_name']+': Column '+f+' missing file "' + filename+ '" for timeseries. Parameter skipped.') continue existing = Timeseries_Meta.objects.filter(model=model, original_filename=filename, original_timestamp_col=t_col, original_value_col=v_col).first() if not existing: existing = Timeseries_Meta.objects.create( model=model, name=filename+str(t_col)+str(v_col), original_filename=filename, original_timestamp_col=t_col, original_value_col=v_col, ) try: async_result = upload_ts.apply_async( kwargs={ "model_uuid": model_uuid, "timeseries_meta_id": existing.id, "file_id": file.first().id, "timestamp_col": t_col, "value_col": v_col, "has_header": True, } ) upload_task = CeleryTask.objects.get(task_id=async_result.id) existing.upload_task = upload_task existing.is_uploading = True existing.save() except Exception as e: context['logs'].append(e) update_dict['edit']['timeseries'][p.pk] = existing.id else: if p.units in noconv_units: if pyear: if p.pk not in update_dict['add'].keys(): update_dict['add'][p.pk] = {'year':[],'value':[]} if p.pk in update_dict['edit']['parameter']: update_dict['add'][p.pk]['year'].append('0') update_dict['add'][p.pk]['value'].append(update_dict['edit']['parameter'][p.pk]) update_dict['edit']['parameter'].pop(p.pk) update_dict['add'][p.pk]['year'].append(pyear) update_dict['add'][p.pk]['value'].append(v) elif p.pk in update_dict['add'].keys(): update_dict['add'][p.pk]['year'].append('0') update_dict['add'][p.pk]['value'].append(v) else: update_dict['edit']['parameter'][p.pk] = v else: try: if pyear: if p.pk not in update_dict['add'].keys(): update_dict['add'][p.pk] = {'year':[],'value':[]} if p.pk in update_dict['edit']['parameter']: update_dict['add'][p.pk]['year'].append('0') update_dict['add'][p.pk]['value'].append(update_dict['edit']['parameter'][p.pk]) update_dict['edit']['parameter'].pop(p.pk) update_dict['add'][p.pk]['year'].append(pyear) update_dict['add'][p.pk]['value'].append(convert_units(ureg,v,p.units)) elif p.pk in update_dict['add'].keys(): update_dict['add'][p.pk]['year'].append('0') update_dict['add'][p.pk]['value'].append(v) else: update_dict['edit']['parameter'][p.pk] = convert_units(ureg,v,p.units) except pint.errors.DimensionalityError as e: context['logs'].append(str(i)+'- Tech '+row['pretty_name']+': Column '+f+' '+str(e)+'. Parameter skipped.') continue technology.update(update_dict) return render(request, "bulkresults.html", context) context['logs'].append("No file found") return render(request, "bulkresults.html", context) @csrf_protect @login_required def upload_loctechs(request): """ Upload a CSV file with new/updated location technologies. Parameters: model_uuid (uuid): required description (str): optional myfile (file): required col_map (dict): optional Returns: Example: POST: /api/upload_loctechs/ """ model_uuid = request.POST["model_uuid"] model = Model.by_uuid(model_uuid) model.handle_edit_access(request.user) context = { 'logs':[], "model": model } if (request.method == "POST") and ("myfile" in request.FILES): myfile = request.FILES["myfile"] if os.path.splitext(myfile.name)[1].lower() == '.csv': df = pd.read_csv(myfile) else: context['logs'].append('File format not supported. Please use a .csv.') return render(request, 'bulkresults.html', context) if not set(['technology','location_1']).issubset(set(df.columns)): context['logs'].append("Missing required columns. technology, location_1 are required.") return render(request, 'bulkresults.html', context) df['tech'] = df['technology'].apply(lambda x: ParamsManager.simplify_name(x)) if 'pretty_tag' in df.columns: df['tag'] = df['pretty_tag'].apply(lambda x: ParamsManager.simplify_name(x)) if 'tag' not in df.columns: df['tag'] = None df['loc'] = df['location_1'].apply(lambda x: ParamsManager.simplify_name(x)) ureg = initialize_units() for i,row in df.iterrows(): if pd.isnull(row['tag']): row['tag'] = None technology = Technology.objects.filter(model_id=model.id,name=row['tech'],tag=row['tag']).first() if technology == None: technology = Technology.objects.filter(model_id=model.id,name=row['technology'],tag=row['tag']).first() if technology == None: if
pd.isnull(row['tag'])
pandas.isnull
# coding: utf-8 # # JDE ETL Source Design # ## Goal: Generate source SQL with friendly names and built-in data Conversion # 1. Pull *ALL* Field metadata based on QA 9.3: Name, Datatype, Decimals # 2. Pull *Specific* Table fields # 3. Create SQL mapiing pull with data-conversion # In[254]: import numpy as np import pandas as pd from sqlalchemy import create_engine import os, sys import warnings warnings.filterwarnings('ignore') # ### Connect to SQL DB # In[255]: sql_connection_str = 'mssql+pymssql://sql2srv:[email protected]:1433/BRSales' engine = create_engine(sql_connection_str) # ### 1. Pull *ALL* Field metadata based on QA 9.3: Name, Datatype, Decimals # In[256]: sql_field_meta_server = 'ESYS_PROD' sql_field_meta_lib = 'ARCPCOM93' #sql_field_meta_lib = 'ARCPCOM71' #sql_field_meta_lib = 'HSIPCOM93Q' # In[257]: sql_field_meta = ''' SELECT RTRIM("FRDTAI") AS data_item ,"FRDTAT" AS data_item_type ,"FROWTP" AS data_type ,"FRDTAS" AS data_item_size ,ISNULL("FRCDEC", 0) AS display_decimals ,ISNULL("FRDSCR", 'zNA') AS row_description FROM OPENQUERY ({}, ' SELECT t.FRDTAI ,FRDTAT ,FROWTP ,FRDTAS ,FRCDEC ,FRDSCR FROM {}.F9210 t LEFT JOIN {}.F9202 d ON t.FRDTAI = d.FRDTAI AND d.FRLNGP = '' '' AND d.FRSYR = '' '' ') '''.format(sql_field_meta_server, sql_field_meta_lib, sql_field_meta_lib) # In[258]: print(sql_field_meta) # In[259]: df_field_meta = pd.read_sql_query(sql_field_meta, engine); # In[260]: df_field_meta.iloc[:,[2,3,4]] = df_field_meta.iloc[:,[2,3,4]].apply(lambda x: pd.to_numeric(x, errors='coerce')) df_field_meta.fillna(value=0,inplace=True) # ### 2. Pull *Specific* Table fields # # Set Table Name HERE # In[261]: sql_table = 'F555116' sql_link_server = 'ESYS_PROD' sql_lib = 'ARCPDTA71' #sql_lib = 'HSIPDTA71' stage_db_schema = 'etl.' convert_julian_date = True # [ARC | HSI] [P | D] [DTA | CDC] [ 71 | 94] # In[262]: sql_table_fields = ''' SELECT * from OPENQUERY ({}, ' SELECT * FROM QSYS2.SYSCOLUMNS WHERE TABLE_SCHEMA = ''{}'' AND TABLE_NAME in( ''{}'') ORDER BY ORDINAL_POSITION ') ''' .format(sql_link_server, sql_lib, sql_table) # In[263]: #print (sql_table_fields) # In[264]: df_table_fields =
pd.read_sql_query(sql_table_fields, engine)
pandas.read_sql_query
import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy.stats import spearmanr as sr from scipy.cluster import hierarchy as hc from typing import List, Any, Union, Tuple, Optional, Dict import random, math # TODO: Remove Dependencies, starting with Sklearn from sklearn.metrics import roc_curve, \ precision_recall_curve, roc_auc_score, \ confusion_matrix import itertools import logging # TODO: Make categorical_cols optional argument (None) to # avoid ambiguity when there are no categorical cols def normalize_numeric( df, numerical_cols: List[str] = []): """ Normalizes numeric columns by substracting the mean and dividing by standard deviation. If the parameter numerical_cols is not provided, it will take all the columns of dtype np.number. :Example: norm_df = xai.normalize_numeric( df, normalize_numeric=["age", "other_numeric_attribute"]) :param df: Pandas Dataframe containing data (inputs and target) :type df: pd.DataFrame :param numerical_cols: List of strings containing numercial cols :type categorical_cols: str :returns: Dataframe with normalized numerical values. :rtype: pandas.DataFrame """ tmp_df = df.copy() if not len(numerical_cols): numerical_cols = df.select_dtypes(include=[np.number]).columns for k in numerical_cols: tmp_df[k] = tmp_df[k].astype(np.float32) tmp_df[k] -= tmp_df[k].mean() tmp_df[k] /= tmp_df[k].std() return tmp_df def convert_categories( df, categorical_cols: List[str] = []): """ Converts columns to numeric categories. If the categorical_cols parameter is passed as a list then those columns are converted. Otherwise, all np.object columns are converted. :Example: import xai cat_df = xai.convert_categories(df) :param df: Pandas Dataframe containing data (inputs and target) :type df: pandas.DataFrame :param categorical_cols: List of strings containing categorical cols :type categorical_cols: str :returns: Dataframe with categorical numerical values. :rtype: pandas.DataFrame """ tmp_df = df.copy() if not len(categorical_cols): categorical_cols = df.select_dtypes(include=[np.object, np.bool]).columns tmp_df[categorical_cols] = tmp_df[categorical_cols].astype('category') tmp_df[categorical_cols] = tmp_df[categorical_cols].apply(lambda x: x.cat.codes) tmp_df[categorical_cols] = tmp_df[categorical_cols].astype('int8') return tmp_df def group_by_columns( df: pd.DataFrame, columns: List[str], bins: int = 6, categorical_cols: List[str] = []): """ Groups dataframe by the categories (or bucketized values) for all columns provided. If categorical it uses categories, if numeric, it uses bins. If more than one column is provided, the columns provided are, for example, age and binary_target_label, then the result would be a pandas DataFrame that is grouped by age groups for each of the positive and negative/positive labels. :Example: columns=["loan", "gender"] df_groups = xai.group_by_columns( df, columns=columns, bins=10, categorical_cols=["gender", "loan"]) for group, df_group in df_groups: print(group) print(grouped_df.head()) :param df: Pandas Dataframe containing data (inputs and target) :type df: pandas.DataFrame :param bins: [Default: 6] Number of bins to be used for numerical cols :type bins: int :param categorical_cols: [Default: []] Columns within dataframe that are categorical. Columns that are not np.objects or np.bool and are not part explicitly provided here will be treated as numeric, and bins will be used. :type categorical_cols: List[str] :returns: Dataframe with categorical numerical values. :rtype: pandas.core.groupby.groupby.DataFrameGroupBy """ if not len(categorical_cols): categorical_cols = _infer_categorical(df) group_list = [] for c in columns: col = df[c] if c in categorical_cols or not bins: grp = c else: col_min = col.min() col_max = col.max() # TODO: Use the original bins for display purposes as they may come normalised col_bins = pd.cut(col, list(np.linspace(col_min, col_max, bins))) grp = col_bins group_list.append(grp) grouped = df.groupby(group_list) return grouped def imbalance_plot( df: pd.DataFrame, *cross_cols: str, categorical_cols: List[str] = [], bins: int = 6, threshold: float = 0.5): """ Shows the number of examples provided for each of the values across the product tuples in the columns provided. If you would like to do processing with the sub-groups created by this class please see the group_by_columns function. :Example: import xai class_counts = xai.imbalance_plot( df, "gender", "loan", bins=10, threshold=0.8) :param df: Pandas Dataframe containing data (inputs and target) :type df: pandas.DataFrame :param *cross_cols: One or more positional arguments (passed as *args) that are used to split the data into the cross product of their values :type cross_cross: List[str] :param categorical_cols: [Default: []] Columns within dataframe that are categorical. Columns that are not np.objects and are not part explicitly provided here will be treated as numeric, and bins will be used. :type categorical_cols: List[str] :param bins: [Default: 6] Number of bins to be used for numerical cols :type bins: int :param threshold: [Default: 0.5] Threshold to display in the chart. :type threshold: float :returns: Null :rtype: None """ if not cross_cols: raise TypeError("imbalance_plot requires at least 1 string column name") grouped = group_by_columns( df, list(cross_cols), bins=bins, categorical_cols=categorical_cols) grouped_col = grouped[cross_cols[0]] count_grp = grouped_col.count() count_max = count_grp.values.max() ratios = round(count_grp/count_max,4) # TODO: Make threshold a minimum number of examples per class imbalances = ratios < threshold cm = plt.cm.get_cmap('RdYlBu_r') colors = [cm(1-r/threshold/2) if t else cm(0) \ for r,t in zip(ratios, imbalances)] ax = count_grp.plot.bar(color=colors) lp = plt.axhline(threshold*count_max, color='r') lp.set_label(f"Threshold: {threshold*count_max:.2f} ({threshold*100:.2f}%)") plt.legend() plt.show() def balance( df: pd.DataFrame, *cross_cols: str, upsample: float = 0.5, downsample: int = 1, bins: int = 6, categorical_cols: List[str] = [], plot: bool = True): """ Balances a dataframe based on the columns and cross columns provided. The results can be upsampled or downsampled. By default, there is no downsample, and the upsample is towards a minimum of 50% of the frequency of the highest class. :Example: cat_df = xai.balance( df, "gender", "loan", upsample=0.8, downsample=0.8) :param df: Pandas Dataframe containing data (inputs and target ) :type df: pandas.DataFrame :param *cross_cols: One or more positional arguments (passed as *args) that are used to split the data into the cross product of their values :type cross_cols: List[str] :param upsample: [Default: 0.5] Target upsample for columns lower than percentage. :type upsample: float :param downsample: [Default: 1] Target downsample for columns higher than percentage. :type downsample: float :param bins: [Default: 6] Number of bins to be used for numerical cols :type bins: int :param categorical_cols: [Default: []] Columns within dataframe that are categorical. Columns that are not np.objects and are not part explicitly provided here will be treated as numeric, and bins will be used. :type categorical_cols: List[str] :param threshold: [Default: 0.5] Threshold to display in the chart. :type threshold: float :returns: Dataframe with categorical numerical values. :rtype: pandas.DataFrame """ if not len(categorical_cols): categorical_cols = df.select_dtypes(include=[np.object, np.bool]).columns grouped = group_by_columns( df, list(cross_cols), bins=bins, categorical_cols=categorical_cols) count_grp = grouped.count() count_max = count_grp.values.max() count_upsample = int(upsample*count_max) count_downsample = int(downsample*count_max) def norm(x): if x.shape[0] < count_upsample: return x.sample(count_upsample, replace=True) elif x.shape[0] > count_downsample: return x.sample(count_downsample) else: return x tmp_df = grouped.apply(norm) \ .reset_index(drop=True) if plot: imbalance_plot( tmp_df, *cross_cols, bins=bins, categorical_cols=categorical_cols) return tmp_df def _plot_correlation_dendogram( corr: pd.DataFrame, cols: List[str], plt_kwargs={}): """ Plot dendogram of a correlation matrix, using the columns provided. This consists of a chart that that shows hierarchically the variables that are most correlated by the connecting trees. The closer to the right that the connection is, the more correlated the features are. If you would like to visualise this as a tree, please see the function _plot_correlation_dendogram. :Example: columns_to_include=["age", "loan", "gender"] xai._plot_correlation_dendogram(df, cols=columns_to_include) :returns: Null :rtype: None """ corr = np.round(corr, 4) corr_condensed = hc.distance.squareform(1-corr) z = hc.linkage(corr_condensed, method="average") fig = plt.figure(**plt_kwargs) dendrogram = hc.dendrogram( z, labels=cols, orientation="left", leaf_font_size=16) plt.show() def _plot_correlation_matrix( corr, cols: List[str], plt_kwargs={}): """ Plot a matrix of the correlation matrix, using the columns provided in params. This visualisation contains all the columns in the X and Y axis, where the intersection of the column and row displays the correlation value. The closer this correlation factor is to 1, the more correlated the features are. If you would like to visualise this as a tree, please see the function _plot_correlation_dendogram. :Example: columns_to_include=["age", "loan", "gender"] xai._plot_correlation_matrix(df, cols=columns_to_include) :returns: Null :rtype: None """ fig = plt.figure(**plt_kwargs) ax = fig.add_subplot(111) cax = ax.matshow( corr, cmap='coolwarm', vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0,len(cols),1) ax.set_xticks(ticks) plt.xticks(rotation=90) ax.set_yticks(ticks) ax.set_xticklabels(cols) ax.set_yticklabels(cols) plt.show() def correlations( df: pd.DataFrame, include_categorical: bool = False, plot_type: str = "dendogram", plt_kwargs={}, categorical_cols: List[str] = []): """ Computes the correlations for the columns provided and plots the relevant image as requested by the parameters. :Example: cat_df = xai.balance( df, "gender", "loan", upsample=0.8, downsample=0.8) :param df: Pandas Dataframe containing data (inputs and target ) :type df: pandas.DataFrame :param *cross_cols: One or more positional arguments (passed as *args) that are used to split the data into the cross product of their values :type cross_cols: List[str] :param upsample: [Default: 0.5] Target upsample for columns lower than percentage. :type upsample: float :param downsample: [Default: 1] Target downsample for columns higher than percentage. :type downsample: float :param bins: [Default: 6] Number of bins to be used for numerical cols :type bins: int :param categorical_cols: [Default: []] Columns within dataframe that are categorical. Columns that are not np.objects and are not part explicitly provided here will be treated as numeric, and bins will be used. :type categorical_cols: List[str] :param threshold: [Default: 0.5] Threshold to display in the chart. :type threshold: float :returns: Returns a dataframe containing the correlation values for the features :rtype: pandas.DataFrame """ corr = None cols: List = [] if include_categorical: corr = sr(df).correlation cols = df.columns else: if not len(categorical_cols): categorical_cols = df.select_dtypes(include=[np.object, np.bool]).columns cols = [c for c in df.columns if c not in categorical_cols] corr = df[cols].corr() cols = corr.columns if plot_type == "dendogram": _plot_correlation_dendogram(corr, cols, plt_kwargs=plt_kwargs) elif plot_type == "matrix": _plot_correlation_matrix(corr, cols, plt_kwargs=plt_kwargs) else: raise ValueError(f"Variable plot_type not valid. Provided: {plot_type}") return corr def confusion_matrix_plot( y_test, pred, scaled=True, label_x_neg="PREDICTED NEGATIVE", label_x_pos="PREDICTED POSITIVE", label_y_neg="ACTUAL NEGATIVE", label_y_pos="ACTUAL POSITIVE"): """ Plots a confusion matrix for a binary classifier with the expected and predicted values provided. :Example: xai.confusion_matrix_plot( actual_labels, predicted_labels, scaled=True) :param y_test: Array containing binary "actual" labels for data :type y_test: Union[np.array, list] :param pred: Array containing binary "predictedd" labels for data :type pred: Union[np.array, list] :param scaled: [Default: True] Whether the values are scaled to 0-1 or displayed as total number of instances :type scaled: bool :param label_x_neg: [Default: "PREDICTED NEGATIVE"] Plot label for the predicted negative values :type label_x_neg: str :param label_x_pos: [Default: "PREDICTED POSITIVE"] Plot label for the predicted positive values :type label_x_pos: str :param label_y_neg: [Default: "ACTUAL NEGATIVE"] Plot label for the actual negative values :type label_y_neg: str :param label_y_pos: [Default: "ACTUAL POSITIVE"] Plot label for the actual positive values :type label_y_pos: str :returns: Null :rtype: None """ confusion = confusion_matrix(y_test, pred) columns = [label_y_neg, label_y_pos] index = [label_x_neg, label_x_pos] if scaled: confusion_scaled = (confusion.astype("float") / confusion.sum(axis=1)[:, np.newaxis]) confusion = pd.DataFrame( confusion_scaled, index=index, columns=columns) else: confusion = pd.DataFrame( confusion, index=index, columns=columns) cmap = plt.get_cmap("Blues") plt.figure() plt.imshow(confusion, interpolation="nearest", cmap=cmap) plt.title("Confusion matrix") plt.colorbar() plt.xticks(np.arange(2), columns, rotation=45) plt.yticks(np.arange(2), index, rotation=45) threshold = 0.5 if scaled else confusion.max().max() / 2 for i, j in itertools.product( range(confusion.shape[0]), range(confusion.shape[1])): txt = "{:,}".format(confusion.iloc[i,j]) if scaled: txt = "{:0.4f}".format(confusion.iloc[i,j]) plt.text(j, i, txt, horizontalalignment="center", color=("white" if confusion.iloc[i,j] > threshold else "black")) plt.tight_layout() plt.show() def balanced_train_test_split( x: pd.DataFrame, y: Union[np.ndarray, list], *cross_cols: str, categorical_cols: List[str] = [], min_per_group: int = 20, max_per_group: Optional[int] = None, fallback_type: str = "upsample", bins: int =6, random_state: int=None ) -> Tuple[ pd.DataFrame, np.ndarray, pd.DataFrame, np.ndarray, np.ndarray, np.ndarray]: """ Splits the "x" DataFrame and "y" Array into train/test split training sets with a balanced number of examples for each of the categories of the columns provided. For example, if the columns provided are "gender" and "loan", the resulting splits would contain an equal number of examples for Male with Loan Approved, Male with Loan Rejected, Female with Loan Approved, and Female with Loan Rejected. The "fallback_type" parameter provides the behaviour that is triggered if there are not enough datapoint examples for one of the subcategory groups - the default is "half" Example ------- .. code-block:: python x: pd.DataFrame # Contains the input features y: np.array # Contains the labels for the data categorical_cols: List[str] # Name of columns that are categorical x_train, y_train, x_test, y_test, train_idx, test_idx = \\ xai.balanced_train_test_split( x, y, balance_on=["gender"], categorical_cols=categorical_cols, min_per_group=300, fallback_type="half") Args ----- x : Pandas dataframe containing all the features in dataset y : Array containing "actual" labels for the dataset *cross_cols : One or more positional arguments (passed as *args) that are used to split the data into the cross product of their values categorical_cols : [Default: []] Columns within dataframe that are categorical. Columns that are not np.objects and are not part explicitly provided here will be treated as numeric, and bins will be used. min_per_group : [Default: 20] This is the number of examples for each of the groups created max_per_group : [Default: None] This is the maximum number of examples for each group to be provided with. fallback_type : [Default: upsample] This is the fallback mechanism for when one of the groups contains less elements than the number provided through min_per_group. The options are "upsample", "ignore" and "error". - "upsample": This will get samples with replacement so will repeat elements - "ignore": Will just ignore and return all the elements available - "error": Throw an exception for any groups with less elements bins : [Default: 6] Number of bins to be used for numerical cols random_state: [Default: None] Random seed for the internal sampling Returns ------- x_train : pd.DataFrame DataFrame containing traning datapoints y_train : np.ndarray Array containing labels for training datapoints x_test : pd.DataFrame DataFrame containing test datapoints y_test : np.ndarray Array containing labels for test datapoints train_idx : np.ndarray Boolean array with True on Training indexes test_idx : np.ndarray Boolean array with True on Testing indexes """ if not cross_cols: raise TypeError("imbalance_plot requires at least 1 string column name") if min_per_group < 1: raise TypeError("min_per_group must be at least 1") if max_per_group and max_per_group < min_per_group: raise TypeError(f"min_per_group ({min_per_group}) must be less or equal than " f"max_per_group ({max_per_group}) if max_per_group is provided.") if random_state: random.setstate(random_state) tmp_df = x.copy() tmp_df["target"] = y cross = ["target"] + list(cross_cols) if not categorical_cols: categorical_cols = _infer_categorical(tmp_df) # TODO: Enable for non-categorical targets categorical_cols = ["target"] + categorical_cols grouped = group_by_columns( tmp_df, cross, bins=bins, categorical_cols=categorical_cols) def resample(x): group_size = x.shape[0] if max_per_group: if group_size > max_per_group: return x.sample(max_per_group) if group_size > min_per_group: return x.sample(min_per_group) if fallback_type == "upsample": return x.sample(min_per_group, replace=True) elif fallback_type == "ignore": return x elif fallback_type == "error": raise ValueError("Number of samples for group are not enough," " and fallback_type provided was 'error'") else: raise(f"Sampling type provided not found: given {fallback_type}, "\ "expected: 'error', or 'half'") group = grouped.apply(resample) selected_idx = [g[-1] for g in group.index.values] train_idx = np.full(tmp_df.shape[0], True, dtype=bool) train_idx[selected_idx] = False test_idx = np.full(tmp_df.shape[0], False, dtype=bool) test_idx[selected_idx] = True df_train = tmp_df.iloc[train_idx] df_test = tmp_df.iloc[test_idx] x_train = df_train.drop("target", axis=1) y_train = df_train["target"].values x_test = df_test.drop("target", axis=1) y_test = df_test["target"].values return x_train, y_train, x_test, y_test, train_idx, test_idx def convert_probs( probs: np.ndarray, threshold: float = 0.5 ) -> np.ndarray: """ Converts all the probabilities in the array provided into binary labels as per the threshold provided which is 0.5 by default. Example --------- .. code-block:: python probs = np.array([0.1, 0.2, 0.7, 0.8, 0.6]) labels = xai.convert_probs(probs, threshold=0.65) print(labels) > [0, 0, 1, 1, 0] Args ------- probs : Numpy array or list containing a list of floats between 0 and 1 threshold : Float that provides the threshold for which probabilities over the threshold will be converted to 1 Returns ---------- : np.ndarray Numpy array containing the labels based on threshold provided """ return (probs >= threshold).astype(int) def evaluation_metrics( y_valid, y_pred ) -> Dict[str, float]: """ Calculates model performance metrics (accuracy, precision, recall, etc) from the actual and predicted lables provided. Example --------- .. code-block:: python y_actual: np.ndarray y_predicted: np.ndarray metrics = xai.evaluation_metrics(y_actual, y_predicted) for k,v in metrics.items(): print(f"{k}: {v}") > precision: 0.8, > recall: 0.9, > specificity: 0.7, > accuracy: 0.8, > auc: 0.7, > f1: 0.8 Args ------- y_valid : Numpy array with the actual labels for the datapoints y_pred : Numpy array with the predicted labels for the datapoints Returns ---------- : Dict[str, float] Dictionary containing the metrics as follows: .. code-block:: python return { "precision": precision, "recall": recall, "specificity": specificity, "accuracy": accuracy, "auc": auc, "f1": f1 } """ TP = np.sum( y_pred[y_valid==1] ) TN = np.sum( y_pred[y_valid==0] == 0 ) FP = np.sum( y_pred[y_valid==0] ) FN = np.sum( y_pred[y_valid==1] == 0 ) # Adding an OR to ensure it doesn't divide by zero precision = TP / ((TP+FP) or 0.001) recall = TP / ((TP+FN) or 0.001) specificity = TN / ((TN+FP) or 0.001) accuracy = (TP+TN) / (TP+TN+FP+FN) f1 = 2 * (precision * recall) / ((precision + recall) or 0.001) try: auc = roc_auc_score(y_valid, y_pred) except ValueError: auc = 0 return { "precision": precision, "recall": recall, "specificity": specificity, "accuracy": accuracy, "auc": auc, "f1": f1 } def metrics_plot( target: np.ndarray, predicted: np.ndarray, df: pd.DataFrame = pd.DataFrame(), cross_cols: List[str] = [], categorical_cols: List[str] = [], bins: int = 6, plot: bool = True, exclude_metrics: List[str] = [], plot_threshold: float = 0.5 ) -> pd.DataFrame: """ Creates a plot that displays statistical metrics including precision, recall, accuracy, auc, f1 and specificity for each of the groups created for the columns provided by cross_cols. For example, if the columns passed are "gender" and "age", the resulting plot will show the statistical metrics for Male and Female for each binned group. Example --------- .. code-block:: python target: np.ndarray predicted: np.ndarray df_metrics = xai.metrics_plot( target, predicted, df=df_data, cross_cols=["gender", "age"], bins=3 Args ------- target: Numpy array containing the target labels for the datapoints predicted : Numpy array containing the predicted labels for the datapoints df : Pandas dataframe containing all the features for the datapoints. It can be empty if only looking to calculate global metrics, but if you would like to compute for categories across columns, the columns you are grouping by need to be provided cross_cols : Contains the columns that you would like to use to cross the values bins : [Default: 6] The number of bins in which you'd like numerical columns to be split plot : [Default: True] If True a plot will be drawn with the results exclude_metrics : These are the metrics that you can choose to exclude if you only want specific ones (for example, excluding "f1", "specificity", etc) plot_threshold: The percentage that will be used to draw the threshold line in the plot which would provide guidance on what is the ideal metrics to achieve. Returns ---------- : pd.DataFrame Pandas Dataframe containing all the metrics for the groups provided """ grouped = _group_metrics( target, predicted, df, cross_cols, categorical_cols, bins, target_threshold=plot_threshold) prfs = [] classes = [] for group, group_df in grouped: group_valid = group_df['target'].values group_pred = group_df["predicted"].values metrics_dict = \ evaluation_metrics(group_valid, group_pred) # Remove metrics as specified by params [metrics_dict.pop(k, None) for k in exclude_metrics] prfs.append(list(metrics_dict.values())) classes.append(str(group)) prfs_cols = metrics_dict.keys() prfs_df = pd.DataFrame( np.array(prfs).transpose(), columns=classes, index=prfs_cols) if plot: prfs_df.plot.bar(figsize=(20,5)) lp = plt.axhline(0.5, color='r') lp = plt.axhline(1, color='g') return prfs_df def roc_plot( target, predicted, df=pd.DataFrame(), cross_cols=[], categorical_cols=[], bins=6, plot=True): return _curve( target=target, predicted=predicted, curve_type="roc", df=df, cross_cols=cross_cols, categorical_cols=categorical_cols, bins=bins, plot=plot) def pr_plot( target, predicted, df=pd.DataFrame(), cross_cols=[], categorical_cols=[], bins=6, plot=True): return _curve( target=target, predicted=predicted, curve_type="pr", df=df, cross_cols=cross_cols, categorical_cols=categorical_cols, bins=bins, plot=plot) def _curve( target, predicted, curve_type="roc", df=pd.DataFrame(), cross_cols=[], categorical_cols=[], bins=6, plot=True): if curve_type == "roc": curve_func = roc_curve y_label = 'False Positive Rate' x_label = 'True Positive Rate' p1 = [0,1] p2 = [0,1] y_lim = [0, 1.05] legend_loc = "lower right" elif curve_type == "pr": curve_func = precision_recall_curve y_label = "Recall" x_label = "Precision" p1 = [1,0] p2 = [0.5,0.5] y_lim = [0.25, 1.05] legend_loc = "lower left" else: raise ValueError("Curve function provided not valid. " f" curve_func provided: {curve_func}") grouped = _group_metrics( target, predicted, df, cross_cols, categorical_cols, bins) if plot: plt.figure() r1s = r2s = [] for group, group_df in grouped: group_valid = group_df["target"] group_pred = group_df["predicted"] r1, r2, _ = curve_func(group_valid, group_pred) r1s.append(r1) r2s.append(r2) if plot: if curve_type == "pr": r1,r2 = r2,r1 plt.plot(r1, r2, label=group) plt.plot(p1, p2, 'k--') if plot: plt.xlim([0.0, 1.0]) plt.ylim(y_lim) plt.xlabel(x_label) plt.ylabel(y_label) plt.legend(loc=legend_loc) plt.show() return r1s, r2s def _infer_categorical(df): categorical_cols = df.select_dtypes( include=[np.object, np.bool, np.int8]).columns logging.warn("No categorical_cols passed so inferred using np.object, " f"np.int8 and np.bool: {categorical_cols}. If you see an error" " these are not " "correct, please provide them as a string array as: " "categorical_cols=['col1', 'col2', ...]") return categorical_cols def _group_metrics( target, predicted, df, cross_cols, categorical_cols, bins, target_threshold=None): if not all(c in df.columns for c in cross_cols): raise KeyError("Cross columns don't match columns in dataframe provided.") df_tmp = df.copy() df_tmp["target"] = target df_tmp["predicted"] = predicted # Convert predictions into classes if target_threshold and df_tmp["predicted"].dtype.kind == 'f': df_tmp["predicted"] = convert_probs( df_tmp["predicted"], threshold=target_threshold) if not categorical_cols and cross_cols: categorical_cols = _infer_categorical(df_tmp) if not cross_cols: grouped = [("target", df_tmp),] else: grouped = group_by_columns( df_tmp, cross_cols, bins=bins, categorical_cols=categorical_cols) return grouped def smile_imbalance( y_test, probs: np.ndarray, threshold=0.5, manual_review=None, display_breakdown=False, bins=10): # TODO: Change function so it only iterates once probs = np.array(probs) preds = convert_probs(probs, threshold).flatten() d =
pd.DataFrame(probs)
pandas.DataFrame
#!/usr/bin/env python import argparse import pandas as pd import numpy as np import umap import warnings import sys warnings.filterwarnings('ignore') from bokeh.plotting import figure, output_file, show from bokeh.layouts import column from bokeh.core.properties import value from bokeh.palettes import all_palettes from bokeh.models import Legend, HoverTool, LegendItem from bokeh.transform import linear_cmap from bokeh.palettes import inferno import pdb def read_input(input_file): print("Reading data..") in_data = pd.read_csv(input_file, sep = "\s+" ) return in_data def do_UMAP(data): print("Performing dimensionality reduction") reducer = umap.UMAP() data_NO_index=data.drop(data.columns[[0,1]], axis=1) embedding = reducer.fit_transform(data_NO_index) return embedding def plotting(umaped_data, raw_data, output, key_file): key=key_file print("Building plot") umaped_df = pd.DataFrame(data=umaped_data) source =
pd.concat([raw_data[['FID','IID']], umaped_df], axis=1)
pandas.concat
from pycountry_convert import country_alpha2_to_continent_code, country_name_to_country_alpha2 import pandas as pd from sklearn.linear_model import LinearRegression as LR from datetime import datetime, timedelta import matplotlib.pyplot as plt import numpy as np producers = [ # ' Qatar', ' United States (USA)', ' Nigeria', ' Algeria', # ' Canada', on n'a pas le canada ? # ' Norway', ' Russia', # ' Mozambique', idem # ' Indonesia', # ' Australia' ] cn_to_ca2 = { # Bad country name to country alpha 2 'United Arab Emirates (UAE)': 'AE', 'Korea': 'KR', # South Korea 'Trinidad & Tobago': 'TT', 'United States (USA)': 'US', 'United Kingdom (UK)': 'GB', "Cote d'Ivoire": 'CI', } price_of_country = { 'NA': 'America', # North America 'SA': 'America', # South America 'AS': 'Asia', # Asia 'OC': 'Asia', # Australia 'AF': 'Europe', # Africa 'EU': 'Europe', # Europe } def convertNameToCode(country_name, continent): # Permet de passer de noms de pays dans nos documents à un code correspondant à un continent try: # code a deux lettres du pays calpha2 = country_name_to_country_alpha2(country_name.strip()) except KeyError: # Certains noms de pays de nos jeux de données ne respectent pas la norme dispo sur wikipedia # https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 calpha2 = cn_to_ca2[country_name.strip()] # par exemple 'EU' concode = country_alpha2_to_continent_code(calpha2) return int(concode == continent) def changeDate(date_str): return datetime.strptime(date_str, "%m/%d, %H:%M").strftime("2021-%m-%d") def loadTripsAndPriceData(): df_trips = pd.read_csv('./Data/Portcalls/voyages.csv') # On ajoute des colonnes avec les codes des pays de départ et d'arrivée for continent in price_of_country.keys(): df_trips[f'D_{continent}'] = df_trips['Dcountry'].apply(convertNameToCode, args=(continent,)) df_trips[f'A_{continent}'] = df_trips['Acountry'].apply(convertNameToCode, args=(continent,)) # On modifie l'écriture des dates de départ et d'arrivées pour matcher celle des prix Europe df_trips['Dtime'] = df_trips['Dtime'].apply(changeDate) df_trips['Atime'] = df_trips['Atime'].apply(changeDate) # On charge les prix spots de l'Europe df_eur_price =
pd.read_csv('./Data/SpotEur.csv', index_col='Date')
pandas.read_csv
from src.report_generators.base_report_generator import BaseReportGenerator from src.helpers.preprocess_text import extract_links_from_html from src.helpers.preprocess_text import extract_from_path from src.helpers.preprocess_text import extract_subtext import os import ast import re from bs4 import BeautifulSoup import pandas as pd class NonHtmlAttachmentReportGenerator(BaseReportGenerator): @property def headers(self): return ["base_path", "primary_publishing_organisation", "publishing_app", "document_type", "first_published_at", "attachment_path"] @property def filename(self): return "non_html_page_report.csv" def process_page(self, content_item, html): content_item['primary_publishing_organisation'] = extract_subtext(text=content_item['organisations'], key='primary_publishing_organisation', index=1) # ignore cases we do not want to return publishers = ["publisher", "service-manual-publisher", "specialist-publisher", "travel-advice-publisher"] if not content_item['publishing_app'] in publishers: return [] attachments = (".chm|.csv|.diff|.doc|.docx|.dot|.dxf|.eps|" + ".gif|.gml|.ics|.jpg|.kml|.odp|.ods|.odt|.pdf|" + ".png|.ppt|.pptx|.ps|.rdf|.ris|.rtf|.sch|.txt|" + ".vcf|.wsdl|.xls|.xlsm|.xlsx|.xlt|.xml|.xsd|.xslt|" + ".zip") if not any(re.findall(pattern=attachments, string=content_item['details'])): return [] if
pd.isna(content_item['details'])
pandas.isna
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler housing = fetch_california_housing() X_train_full, X_test, y_train_full, y_test = train_test_split(housing.data, housing.target, random_state=42) X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_valid = scaler.transform(X_valid) X_test = scaler.transform(X_test) keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=X_train.shape[1:]), keras.layers.Dense(1) ]) model.compile(loss="mean_squared_error", optimizer=keras.optimizers.SGD(learning_rate=1e-3)) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) X_new = X_test[:3] y_pred = model.predict(X_new) plt.plot(
pd.DataFrame(history.history)
pandas.DataFrame
import asyncio import threading import logging import logging.handlers import numpy as np import os import time import tqdm from datetime import datetime from itertools import zip_longest from collections import OrderedDict import pandas as pd import IPython from ophyd import Device from ophyd.status import Status from ophyd.device import Staged from ophyd.areadetector import FilePlugin from nslsii.detectors.xspress3 import Xspress3Detector from hxntools.shutter import (shutter_open, shutter_close) from . import SCRIPT_PATH from ppmac.pp_comm import (GPError, ScriptCancelled, TimeoutError as PpmacTimeoutError) from .ppmac_util import (ppmac_connect, filter_ppmac_data as filter_data, gather_setup, is_closed_loop) from .log import log_time # from .plot import plot_position # ip = IPython.get_ipython() # global_state = ip.user_ns['gs'] # zebra = ip.user_ns['zebra'] # sclr1 = ip.user_ns['sclr1'] # from hxntools import HxnTriggeringScaler # sclr1 = HxnTriggeringScaler('XF:03IDC-ES{Sclr:1}', name='sclr1') logger = logging.getLogger(__name__) UNSTAGE_TIME_LIMIT = 300 class FlyStatus(Status): pass def get_dataframe(df_data, n_points): '''Create a dataframe from df_data, adjusting the size of lists if necessary Note: this should not really be happening (and hasn't recently I believe), but we'd rather a point or two to be clipped off than for the whole scan to die in case something went a bit wrong. ''' for key in df_data.keys(): len_ = len(df_data[key]) if len_ < n_points: df_data[key] = np.pad(df_data[key], (0, n_points - len_), mode='constant') elif len_ > n_points: df_data[key] = df_data[key][:n_points] return
pd.DataFrame(df_data)
pandas.DataFrame
from flask import Flask from flask_restful import Resource, Api, reqparse import pandas as pd import ast app = Flask(__name__) api = Api(app) class Users(Resource): def get(self): data = pd.read_csv('users.csv') # read local CSV data = data.to_dict() # convert dataframe to dict return {'data': data}, 200 # return data and 200 OK def post(self): parser = reqparse.RequestParser() # initialize parser.add_argument('userId', required=True) # add args parser.add_argument('name', required=True) parser.add_argument('city', required=True) args = parser.parse_args() # parse arguments to dictionary # read our CSV data = pd.read_csv('users.csv') if args['userId'] in list(data['userId']): return { 'message': f"'{args['userId']}' already exists." }, 409 else: # create new dataframe containing new values new_data = pd.DataFrame({ 'userId': [args['userId']], 'name': [args['name']], 'city': [args['city']], 'locations': [[]] }) # add the newly provided values data = data.append(new_data, ignore_index=True) data.to_csv('users.csv', index=False) # save back to CSV return {'data': data.to_dict()}, 200 # return data with 200 OK def put(self): parser = reqparse.RequestParser() # initialize parser.add_argument('userId', required=True) # add args parser.add_argument('location', required=True) args = parser.parse_args() # parse arguments to dictionary # read our CSV data = pd.read_csv('users.csv') if args['userId'] in list(data['userId']): # evaluate strings of lists to lists !!! never put something like this in prod data['locations'] = data['locations'].apply( lambda x: ast.literal_eval(x) ) # select our user user_data = data[data['userId'] == args['userId']] # update user's locations user_data['locations'] = user_data['locations'].values[0] \ .append(args['location']) # save back to CSV data.to_csv('users.csv', index=False) # return data and 200 OK return {'data': data.to_dict()}, 200 else: # otherwise the userId does not exist return { 'message': f"'{args['userId']}' user not found." }, 404 def delete(self): parser = reqparse.RequestParser() # initialize parser.add_argument('userId', required=True) # add userId arg args = parser.parse_args() # parse arguments to dictionary # read our CSV data = pd.read_csv('users.csv') if args['userId'] in list(data['userId']): # remove data entry matching given userId data = data[data['userId'] != args['userId']] # save back to CSV data.to_csv('users.csv', index=False) # return data and 200 OK return {'data': data.to_dict()}, 200 else: # otherwise we return 404 because userId does not exist return { 'message': f"'{args['userId']}' user not found." }, 404 class Locations(Resource): def get(self): data =
pd.read_csv('locations.csv')
pandas.read_csv
from selenium import webdriver import pandas as pd from bs4 import BeautifulSoup import hashlib import datetime import multiprocessing as mp import concurrent as cc df = pd.DataFrame(columns=['Title','Location','Company','Salary','Sponsored','Description','Time']) class Indeed(): @staticmethod def get_data(start, end, location='India', webdriver_location='D:/A/3T_Project/chromedriver.exe'): ''' start: The starting page of search to retrieve data from end: The ending page of search to retrieve data from location: which particular place, city or country you want to retrive data of This is a static method hence will return the dataframe which is processed during the training ''' df =
pd.DataFrame(columns=['Title','Location','Company','Salary','Sponsored','Description','Time'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 5 22:54:58 2020 @author: arti """ import pandas as pd import numpy as np student1 = pd.Series({'Korean': np.nan, 'English':80, 'Math':90}) student2 =
pd.Series({'Korean':80, 'Math':90})
pandas.Series
''' This script provides code for training a neural network with entity embeddings of the 'cat' variables. For more details on entity embedding, see: https://github.com/entron/entity-embedding-rossmann 8-Fold training with 3 averaged runs per fold. Results may improve with more folds & runs. ''' import numpy as np import pandas as pd #random seeds for stochastic parts of neural network np.random.seed(10) from tensorflow import set_random_seed set_random_seed(15) from keras.models import Model from keras.layers import Input, Dense, Concatenate, Reshape, Dropout from keras.layers.embeddings import Embedding from sklearn.model_selection import StratifiedKFold #Data loading & preprocessing df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') X_train, y_train = df_train.iloc[:,2:], df_train.target X_test = df_test.iloc[:,1:] cols_use = [c for c in X_train.columns if (not c.startswith('ps_calc_'))] X_train = X_train[cols_use] X_test = X_test[cols_use] col_vals_dict = {c: list(X_train[c].unique()) for c in X_train.columns if c.endswith('_cat')} embed_cols = [] for c in col_vals_dict: if len(col_vals_dict[c])>2: embed_cols.append(c) print(c + ': %d values' % len(col_vals_dict[c])) #look at value counts to know the embedding dimensions print('\n') def build_embedding_network(): inputs = [] embeddings = [] input_ps_ind_02_cat = Input(shape=(1,)) embedding = Embedding(5, 3, input_length=1)(input_ps_ind_02_cat) embedding = Reshape(target_shape=(3,))(embedding) inputs.append(input_ps_ind_02_cat) embeddings.append(embedding) input_ps_ind_04_cat = Input(shape=(1,)) embedding = Embedding(3, 2, input_length=1)(input_ps_ind_04_cat) embedding = Reshape(target_shape=(2,))(embedding) inputs.append(input_ps_ind_04_cat) embeddings.append(embedding) input_ps_ind_05_cat = Input(shape=(1,)) embedding = Embedding(8, 5, input_length=1)(input_ps_ind_05_cat) embedding = Reshape(target_shape=(5,))(embedding) inputs.append(input_ps_ind_05_cat) embeddings.append(embedding) input_ps_car_01_cat = Input(shape=(1,)) embedding = Embedding(13, 7, input_length=1)(input_ps_car_01_cat) embedding = Reshape(target_shape=(7,))(embedding) inputs.append(input_ps_car_01_cat) embeddings.append(embedding) input_ps_car_02_cat = Input(shape=(1,)) embedding = Embedding(3, 2, input_length=1)(input_ps_car_02_cat) embedding = Reshape(target_shape=(2,))(embedding) inputs.append(input_ps_car_02_cat) embeddings.append(embedding) input_ps_car_03_cat = Input(shape=(1,)) embedding = Embedding(3, 2, input_length=1)(input_ps_car_03_cat) embedding = Reshape(target_shape=(2,))(embedding) inputs.append(input_ps_car_03_cat) embeddings.append(embedding) input_ps_car_04_cat = Input(shape=(1,)) embedding = Embedding(10, 5, input_length=1)(input_ps_car_04_cat) embedding = Reshape(target_shape=(5,))(embedding) inputs.append(input_ps_car_04_cat) embeddings.append(embedding) input_ps_car_05_cat = Input(shape=(1,)) embedding = Embedding(3, 2, input_length=1)(input_ps_car_05_cat) embedding = Reshape(target_shape=(2,))(embedding) inputs.append(input_ps_car_05_cat) embeddings.append(embedding) input_ps_car_06_cat = Input(shape=(1,)) embedding = Embedding(18, 8, input_length=1)(input_ps_car_06_cat) embedding = Reshape(target_shape=(8,))(embedding) inputs.append(input_ps_car_06_cat) embeddings.append(embedding) input_ps_car_07_cat = Input(shape=(1,)) embedding = Embedding(3, 2, input_length=1)(input_ps_car_07_cat) embedding = Reshape(target_shape=(2,))(embedding) inputs.append(input_ps_car_07_cat) embeddings.append(embedding) input_ps_car_09_cat = Input(shape=(1,)) embedding = Embedding(6, 3, input_length=1)(input_ps_car_09_cat) embedding = Reshape(target_shape=(3,))(embedding) inputs.append(input_ps_car_09_cat) embeddings.append(embedding) input_ps_car_10_cat = Input(shape=(1,)) embedding = Embedding(3, 2, input_length=1)(input_ps_car_10_cat) embedding = Reshape(target_shape=(2,))(embedding) inputs.append(input_ps_car_10_cat) embeddings.append(embedding) input_ps_car_11_cat = Input(shape=(1,)) embedding = Embedding(104, 10, input_length=1)(input_ps_car_11_cat) embedding = Reshape(target_shape=(10,))(embedding) inputs.append(input_ps_car_11_cat) embeddings.append(embedding) input_numeric = Input(shape=(24,)) embedding_numeric = Dense(16)(input_numeric) inputs.append(input_numeric) embeddings.append(embedding_numeric) x = Concatenate()(embeddings) x = Dense(80, activation='relu')(x) x = Dropout(.35)(x) x = Dense(20, activation='relu')(x) x = Dropout(.15)(x) x = Dense(10, activation='relu')(x) x = Dropout(.15)(x) output = Dense(1, activation='sigmoid')(x) model = Model(inputs, output) model.compile(loss='binary_crossentropy', optimizer='adam') return model #converting data to list format to match the network structure def preproc(X_train, X_val, X_test): input_list_train = [] input_list_val = [] input_list_test = [] #the cols to be embedded: rescaling to range [0, # values) for c in embed_cols: raw_vals = np.unique(X_train[c]) val_map = {} for i in range(len(raw_vals)): val_map[raw_vals[i]] = i input_list_train.append(X_train[c].map(val_map).values) input_list_val.append(X_val[c].map(val_map).fillna(0).values) input_list_test.append(X_test[c].map(val_map).fillna(0).values) #the rest of the columns other_cols = [c for c in X_train.columns if (not c in embed_cols)] input_list_train.append(X_train[other_cols].values) input_list_val.append(X_val[other_cols].values) input_list_test.append(X_test[other_cols].values) return input_list_train, input_list_val, input_list_test #gini scoring function from kernel at: #https://www.kaggle.com/tezdhar/faster-gini-calculation def ginic(actual, pred): n = len(actual) a_s = actual[np.argsort(pred)] a_c = a_s.cumsum() giniSum = a_c.sum() / a_c[-1] - (n + 1) / 2.0 return giniSum / n def gini_normalizedc(a, p): return ginic(a, p) / ginic(a, a) #network training K = 8 runs_per_fold = 3 n_epochs = 15 cv_ginis = [] full_val_preds = np.zeros(np.shape(X_train)[0]) y_preds = np.zeros((np.shape(X_test)[0],K)) kfold = StratifiedKFold(n_splits = K, random_state = 231, shuffle = True) for i, (f_ind, outf_ind) in enumerate(kfold.split(X_train, y_train)): X_train_f, X_val_f = X_train.loc[f_ind].copy(), X_train.loc[outf_ind].copy() y_train_f, y_val_f = y_train[f_ind], y_train[outf_ind] X_test_f = X_test.copy() #upsampling adapted from kernel: #https://www.kaggle.com/ogrellier/xgb-classifier-upsampling-lb-0-283 pos = (pd.Series(y_train_f == 1)) # Add positive examples X_train_f = pd.concat([X_train_f, X_train_f.loc[pos]], axis=0) y_train_f = pd.concat([y_train_f, y_train_f.loc[pos]], axis=0) # Shuffle data idx = np.arange(len(X_train_f)) np.random.shuffle(idx) X_train_f = X_train_f.iloc[idx] y_train_f = y_train_f.iloc[idx] #preprocessing proc_X_train_f, proc_X_val_f, proc_X_test_f = preproc(X_train_f, X_val_f, X_test_f) #track oof prediction for cv scores val_preds = 0 for j in range(runs_per_fold): NN = build_embedding_network() NN.fit(proc_X_train_f, y_train_f.values, epochs=n_epochs, batch_size=4096, verbose=0) val_preds += NN.predict(proc_X_val_f)[:,0] / runs_per_fold y_preds[:,i] += NN.predict(proc_X_test_f)[:,0] / runs_per_fold full_val_preds[outf_ind] += val_preds cv_gini = gini_normalizedc(y_val_f.values, val_preds) cv_ginis.append(cv_gini) print ('\nFold %i prediction cv gini: %.5f\n' %(i,cv_gini)) print('Mean out of fold gini: %.5f' % np.mean(cv_ginis)) print('Full validation gini: %.5f' % gini_normalizedc(y_train.values, full_val_preds)) y_pred_final = np.mean(y_preds, axis=1) df_sub = pd.DataFrame({'id' : df_test.id, 'target' : y_pred_final}, columns = ['id','target']) df_sub.to_csv('NN_EntityEmbed_10fold-sub.csv', index=False)
pd.DataFrame(full_val_preds)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from causalml.inference.tree import UpliftTreeClassifier from causalml.inference.tree import UpliftRandomForestClassifier from causalml.metrics import get_cumgain from .const import RANDOM_SEED, N_SAMPLE, CONTROL_NAME, TREATMENT_NAMES, CONVERSION def test_make_uplift_classification(generate_classification_data): df, _ = generate_classification_data() assert df.shape[0] == N_SAMPLE * len(TREATMENT_NAMES) def test_UpliftRandomForestClassifier(generate_classification_data): df, x_names = generate_classification_data() df_train, df_test = train_test_split(df, test_size=0.2, random_state=RANDOM_SEED) # Train the UpLift Random Forest classifer uplift_model = UpliftRandomForestClassifier( min_samples_leaf=50, control_name=TREATMENT_NAMES[0] ) uplift_model.fit(df_train[x_names].values, treatment=df_train['treatment_group_key'].values, y=df_train[CONVERSION].values) y_pred = uplift_model.predict(df_test[x_names].values) result = pd.DataFrame(y_pred, columns=uplift_model.classes_) best_treatment = np.where((result < 0).all(axis=1), CONTROL_NAME, result.idxmax(axis=1)) # Create a synthetic population: # Create indicator variables for whether a unit happened to have the # recommended treatment or was in the control group actual_is_best = np.where( df_test['treatment_group_key'] == best_treatment, 1, 0 ) actual_is_control = np.where( df_test['treatment_group_key'] == CONTROL_NAME, 1, 0 ) synthetic = (actual_is_best == 1) | (actual_is_control == 1) synth = result[synthetic] auuc_metrics = synth.assign( is_treated=1 - actual_is_control[synthetic], conversion=df_test.loc[synthetic, CONVERSION].values, uplift_tree=synth.max(axis=1) ).drop(columns=list(uplift_model.classes_)) cumgain = get_cumgain(auuc_metrics, outcome_col=CONVERSION, treatment_col='is_treated', steps=20) # Check if the cumulative gain of UpLift Random Forest is higher than # random assert cumgain['uplift_tree'].sum() > cumgain['Random'].sum() def test_UpliftTreeClassifier(generate_classification_data): df, x_names = generate_classification_data() df_train, df_test = train_test_split(df, test_size=0.2, random_state=RANDOM_SEED) # Train the UpLift Random Forest classifer uplift_model = UpliftTreeClassifier(control_name=TREATMENT_NAMES[0]) uplift_model.fit(df_train[x_names].values, treatment=df_train['treatment_group_key'].values, y=df_train[CONVERSION].values) _, _, _, y_pred = uplift_model.predict(df_test[x_names].values, full_output=True) result =
pd.DataFrame(y_pred)
pandas.DataFrame
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gps_building_blocks.ml.statistical_inference.inference.""" from unittest import mock from absl.testing import parameterized import numpy as np import pandas as pd from scipy import stats from sklearn import datasets from sklearn import model_selection from absl.testing import absltest from gps_building_blocks.ml.statistical_inference import data_preparation class InferenceTest(parameterized.TestCase): _missing_data = pd.DataFrame( data=[[np.nan, 0.0000], [0.6000, 0.0000], [0.4000, 3.0000], [0.2000, np.nan]], columns=['first', 'second']) def test_missing_value_emits_warning_twice(self): with self.assertWarns(data_preparation.MissingValueWarning): data_preparation.InferenceData(self._missing_data) with self.assertWarns(data_preparation.MissingValueWarning): data_preparation.InferenceData(self._missing_data) def test_check_data_raises_exception_on_missing_data(self): inference_data = data_preparation.InferenceData(self._missing_data) with self.assertRaises(data_preparation.MissingValueError): inference_data.data_check(raise_on_error=True) def test_invalid_target_column_raise_exception(self): with self.assertRaises(KeyError): data_preparation.InferenceData( initial_data=self._missing_data, target_column='non_ci_sono') def test_impute_missing_values_replaced_with_mean(self): inference_data = data_preparation.InferenceData(self._missing_data) expected_result = pd.DataFrame( data=[[0.4000, 0.0000], [0.6000, 0.0000], [0.4000, 3.0000], [0.2000, 1.0000]], columns=['first', 'second']) result = inference_data.impute_missing_values(strategy='mean') pd.testing.assert_frame_equal(result, expected_result) def test_fixed_effect_raise_exception_on_categorical_covariate(self): data = pd.DataFrame( data=[['0', 0.0, '1', 3.0], ['1', 0.0, '2', 2.0], ['1', 1.0, '3', 2.0], ['1', 1.0, '4', 1.0]], columns=['control_1', 'control_2', 'variable_1', 'variable_2'], index=['group1', 'group2', 'group3', 'group3']) inference_data = data_preparation.InferenceData(data) with self.assertRaises(data_preparation.CategoricalCovariateError): inference_data.control_with_fixed_effect( strategy='quick', control_columns=['control_1', 'control_2'], min_frequency=1) def test_fixed_effect_demeaning_subtract_mean_in_groups(self): data = pd.DataFrame( data=[['0', 0.0, 1, 3.0], ['1', 0.0, 2, 2.0], ['1', 1.0, 3, 2.0], ['1', 1.0, 4, 1.0]], columns=['control_1', 'control_2', 'variable_1', 'variable_2'], index=['group1', 'group2', 'group3', 'group3']) expected_result = pd.DataFrame( data=[['0', 0.0, 2.5, 2.0], ['1', 0.0, 2.5, 2.0], ['1', 1.0, 2.0, 2.5], ['1', 1.0, 3.0, 1.5]], columns=data.columns, index=data.index).set_index(['control_1', 'control_2'], append=True) inference_data = data_preparation.InferenceData(data) result = inference_data.control_with_fixed_effect( strategy='quick', control_columns=['control_1', 'control_2'], min_frequency=1) pd.testing.assert_frame_equal(result, expected_result) def test_address_low_variance_removes_column(self): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [0.0, 1.0, 0.0, 10.0], [1.0, 1.0, 0.0, 5.00], [1.0, 0.0, 0.0, 0.00]], columns=['control', 'variable', 'variable_1', 'outcome']) expected_result = pd.DataFrame( data=[[0.0, 1.0, 10.0], [0.0, 1.0, 10.0], [1.0, 1.0, 5.00], [1.0, 0.0, 0.00]], columns=['control', 'variable', 'outcome']) inference_data = data_preparation.InferenceData( data, target_column='outcome') result = inference_data.address_low_variance(drop=True) pd.testing.assert_frame_equal(result, expected_result) def test_vif_raises_error_on_singular_correlation_matrix(self): singular_correlation_matrix_df = pd.DataFrame( data=[[1.1, 2.1, 3.1, 4.1, 1.0], [1.0, 2.0, 3.0, 4.0, 1.0], [1.0, 2.0, 3.0, 4.0, 1.0], [1.0, 2.0, 3.0, 4.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( singular_correlation_matrix_df, target_column='outcome') with self.assertRaises(data_preparation.SingularDataError): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=False) def test_vif_raises_error_on_ill_conditioned_correlation_matrix(self): ill_conditioned_correlation_matrix_df = pd.DataFrame( data=[[1.0, 2.0, 3.0, 4.0, 1.0], [0.0, 2.0, 0.0, 1.0, 1.0], [1.0, 1.0, 2.0, 5.0, 1.0], [0.0, 2.0, 3.0, 0.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( ill_conditioned_correlation_matrix_df, target_column='outcome') with self.assertRaises(data_preparation.SingularDataError): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=False) def test_vif_error_has_correct_message(self): ill_conditioned_correlation_matrix_df = pd.DataFrame( data=[[1.0, 2.0, 3.0, 4.0, 1.0], [0.0, 2.0, 0.0, 1.0, 1.0], [1.0, 1.0, 2.0, 5.0, 1.0], [0.0, 2.0, 3.0, 0.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( ill_conditioned_correlation_matrix_df, target_column='outcome') expected_message = ( 'Inference Data has a singular or nearly singular correlation matrix. ' 'This could be caused by extremely correlated or collinear columns. ' 'The three pairs of columns with the highest absolute correlation ' 'coefficients are: (control,variable_3): 0.970, (variable_1,variable_3)' ': -0.700, (control,variable_1): -0.577. This could also be caused by ' 'columns with extremiely low variance. Recommend running the ' 'address_low_variance() method before VIF. Alternatively, consider ' 'running address_collinearity_with_vif() with ' 'use_correlation_matrix_inversion=False to avoid this error.' ) with self.assertRaises( data_preparation.SingularDataError, msg=expected_message): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=False) def test_vif_noise_injection_catches_perfect_correlation(self): iris = datasets.load_iris() iris_data = pd.DataFrame( data=np.c_[iris['data'], iris['target']], columns=iris['feature_names'] + ['target']) iris_data['perfectly_correlated_column'] = iris_data['petal length (cm)'] expected_result = iris_data.drop( columns=['petal length (cm)', 'perfectly_correlated_column']) inference_data = data_preparation.InferenceData( iris_data, target_column='target') result = inference_data.address_collinearity_with_vif( vif_method='quick', drop=True, handle_singular_data_errors_automatically=True, vif_threshold=50.0) pd.testing.assert_frame_equal(result, expected_result) def test_vif_noise_injection_catches_perfect_collinearity(self): iris = datasets.load_iris() iris_data = pd.DataFrame( data=np.c_[iris['data'], iris['target']], columns=iris['feature_names'] + ['target']) iris_data['perfectly_collinear_column'] = iris_data[ 'petal length (cm)'] + iris_data['petal width (cm)'] expected_result = iris_data.drop(columns=[ 'petal length (cm)', 'petal width (cm)', 'perfectly_collinear_column' ]) inference_data = data_preparation.InferenceData( iris_data, target_column='target') result = inference_data.address_collinearity_with_vif( vif_method='quick', drop=True, handle_singular_data_errors_automatically=True, vif_threshold=50.0) pd.testing.assert_frame_equal(result, expected_result) def test_vif_noise_injection_fails_correctly_when_too_few_samples(self): too_few_samples_df = pd.DataFrame( data=[[1.0, 2.0, 3.0, 4.0, 1.0], [0.0, 2.0, 0.0, 1.0, 1.0], [1.0, 1.0, 2.0, 5.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( too_few_samples_df, target_column='outcome') expected_regex = ( 'Automatic attempt to resolve SingularDataError by ' 'injecting artifical noise to the data has failed. This ' 'probably means the dataset has too many features relative ' 'to the number of samples.') with self.assertRaisesRegex(data_preparation.SingularDataError, expected_regex): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=True) def test_vif_method_fails_correctly_with_unknown_value(self): inference_data = data_preparation.InferenceData(self._missing_data) with self.assertRaises(ValueError): inference_data.address_collinearity_with_vif( vif_method='incorrect_value') @parameterized.named_parameters({ 'testcase_name': 'scale_10', 'scaling': 10, }, { 'testcase_name': 'scale_50', 'scaling': 50, }, { 'testcase_name': 'scale_-50', 'scaling': -50, }) def test_minmaxscaling_drops_appropriate_variables(self, scaling): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [-0.5, 1.0, 0.0, 10.0], [0.1, 1.0, 0.0, 5.00], [0.2, 0.0, 0.0, 0.00]], columns=['variable_0', 'variable_1', 'variable_2', 'outcome']) data = data * scaling expected_result = data[['variable_1', 'outcome']] inference_data = data_preparation.InferenceData( data) result = inference_data.address_low_variance( threshold=.15, drop=True, minmax_scaling=True, ) pd.testing.assert_frame_equal(result, expected_result) def test_zscored_input_raises_warning(self): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [-0.5, 1.0, 0.0, 10.0], [0.1, 1.0, 0.0, 5.00], [0.2, 0.0, 0.0, 0.00]], columns=['variable_0', 'variable_1', 'variable_2', 'variable_3']) data = data.apply(stats.zscore).fillna(0) inference_data = data_preparation.InferenceData(data) with self.assertWarns(Warning): _ = inference_data.address_low_variance() def test_minmaxscaling_with_invalid_threshold_raises_warning(self): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [-0.5, 1.0, 0.0, 10.0], [0.1, 1.0, 0.0, 5.00], [0.2, 0.0, 0.0, 0.00]], columns=['variable_0', 'variable_1', 'variable_2', 'variable_3']) inference_data = data_preparation.InferenceData(data) with self.assertWarns(Warning): _ = inference_data.address_low_variance(minmax_scaling=True, threshold=.5) def test_address_collinearity_with_vif_removes_column(self): iris = datasets.load_iris() iris_data = pd.DataFrame( data=np.c_[iris['data'], iris['target']], columns=iris['feature_names'] + ['target']) expected_result = iris_data.drop(columns='petal length (cm)') inference_data = data_preparation.InferenceData( iris_data, target_column='target') result = inference_data.address_collinearity_with_vif( vif_method='sequential', drop=True) pd.testing.assert_frame_equal(result, expected_result) def test_encode_categorical_covariate_dummy_variable_2(self): data = pd.DataFrame( data=[[0.0, 1.0, 'a', 10.0], [0.0, 1.0, 'b', 10.0], [1.0, 1.0, 'c', 5.00], [1.0, 0.0, 'a', 0.00]], columns=['control', 'variable_1', 'variable_2', 'outcome']) expected_result = pd.DataFrame( data=[[0.0, 1.0, 10.0, 1, 0, 0], [0.0, 1.0, 10.0, 0, 1, 0], [1.0, 1.0, 5.00, 0, 0, 1], [1.0, 0.0, 0.00, 1, 0, 0]], columns=[ 'control', 'variable_1', 'outcome', 'variable_2_a', 'variable_2_b', 'variable_2_c' ]) inference_data = data_preparation.InferenceData( data, target_column='outcome') result = inference_data.encode_categorical_covariates( columns=['variable_2']) pd.testing.assert_frame_equal(result, expected_result) @parameterized.named_parameters( ('single_selections', ['1', '2', '3'], ['1', '2', '3']), ('double_selection', ['1,2', '3'], ['1', '2', '3']), ('early_stopping', ['1', ''], ['1']), ('all_at_once', ['1,2,3'], ['1', '2', '3']), ) def test_address_collinearity_with_vif_interactive( self, user_inputs, expected_dropped): dataframe = pd.DataFrame( data=[[1.1, 2.1, 3.1, 4.1, 0], [1.0, 2.0, 3.0, 4.0, 0], [1.0, 2.0, 3.0, 4.0, 0], [1.0, 2.0, 3.0, 4.0, 1]], columns=['1', '2', '3', '4', 'target']) data = data_preparation.InferenceData(dataframe, target_column='target') with mock.patch.object(data_preparation, '_input_mock') as input_mock: # Avoid Colab\Notebook prints in tests output with mock.patch.object(data_preparation, '_print_mock') as _: user_inputs = list(reversed(user_inputs)) input_mock.side_effect = lambda x: user_inputs.pop() result = data.address_collinearity_with_vif( vif_method='interactive', drop=True, use_correlation_matrix_inversion=False ) pd.testing.assert_frame_equal( result, dataframe.drop(expected_dropped, axis=1)) @parameterized.named_parameters( ('onehot_returns_expected_bins', False, False, pd.DataFrame( [[1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]], columns=['variable_(-0.02, 4.0]', 'variable_(4.0, 8.0]', 'variable_(8.0, 12.0]', 'variable_(12.0, 16.0]', 'variable_(16.0, 20.0]'])), ('equal_sized_onehot_returns_expected_bins', True, False, pd.DataFrame( [[1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], columns=['variable_(-0.001, 2.0]', 'variable_(2.0, 4.0]', 'variable_(4.0, 6.0]', 'variable_(6.0, 8.0]', 'variable_(8.0, 20.0]'])), ('scalar_numeric_returns_expected_bins', False, True, pd.DataFrame( [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4], columns=['variable'])), ('equal_sized_numeric_expected_bins', True, True, pd.DataFrame( [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4], columns=['variable'])), ) def test_descretize(self, equal_sized_bins, numeric, expected_result): data = data_preparation.InferenceData(pd.DataFrame( data=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20], columns=['variable'])) result = data.discretize_numeric_covariate( 'variable', equal_sized_bins=equal_sized_bins, bins=5, numeric=numeric) pd.testing.assert_frame_equal(result, expected_result, check_dtype=False) @parameterized.named_parameters( ('with_groups_kfold_as_int', 3, np.array([0, 0, 1, 1, 2, 2, 3, 3, 3, 3]), [pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5]}), pd.DataFrame({'variable': [2, 3, 6, 7, 8, 9]}, index=[2, 3, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5, 6, 7, 8, 9]}, index=[0, 1, 4, 5, 6, 7, 8, 9])], [pd.DataFrame({'variable': [6, 7, 8, 9]}, index=[6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5]}, index=[0, 1, 4, 5]), pd.DataFrame({'variable': [2, 3]}, index=[2, 3])]), ('with_groups_kfold_as_object', model_selection.GroupKFold(n_splits=3), np.array([0, 0, 1, 1, 2, 2, 3, 3, 3, 3]), [pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5]}), pd.DataFrame({'variable': [2, 3, 6, 7, 8, 9]}, index=[2, 3, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5, 6, 7, 8, 9]}, index=[0, 1, 4, 5, 6, 7, 8, 9])], [pd.DataFrame({'variable': [6, 7, 8, 9]}, index=[6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5]}, index=[0, 1, 4, 5]), pd.DataFrame({'variable': [2, 3]}, index=[2, 3])]), ) def test_split_with_groups_yields_expected_folds_with_non_overlaping_groups( self, cross_validation, groups, expected_trains, expected_tests): data = data_preparation.InferenceData( pd.DataFrame({ 'variable': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], })) iterator = zip(data.split(cross_validation=cross_validation, groups=groups), expected_trains, expected_tests) for (train_data, test_data), expected_train, expected_test in iterator: train_groups = set(groups[train_data.data.index.tolist()]) test_groups = set(groups[test_data.data.index.tolist()]) pd.testing.assert_frame_equal( train_data.data, expected_train, check_dtype=False) pd.testing.assert_frame_equal( test_data.data, expected_test, check_dtype=False) self.assertEmpty(train_groups.intersection(test_groups)) @parameterized.named_parameters( ('without_groups_kfold_as_int', 3, [pd.DataFrame({'variable': [4, 5, 6, 7, 8, 9]}, index=[4, 5, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 7, 8, 9]}, index=[0, 1, 2, 3, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5, 6]}, index=[0, 1, 2, 3, 4, 5, 6])], [pd.DataFrame({'variable': [0, 1, 2, 3]}, index=[0, 1, 2, 3]), pd.DataFrame({'variable': [4, 5, 6]}, index=[4, 5, 6]), pd.DataFrame({'variable': [7, 8, 9]}, index=[7, 8, 9])]), ('without_groups_kfold_as_object', model_selection.KFold(n_splits=3), [pd.DataFrame({'variable': [4, 5, 6, 7, 8, 9]}, index=[4, 5, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 7, 8, 9]}, index=[0, 1, 2, 3, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5, 6]}, index=[0, 1, 2, 3, 4, 5, 6])], [
pd.DataFrame({'variable': [0, 1, 2, 3]}, index=[0, 1, 2, 3])
pandas.DataFrame
import numpy as np import pandas as pd import pymatgen as mg # %% define filepath constant TABLE_PATH = "./torrance_tabulated.xlsx" # %% read in the tables # read in the tabulated data of closed_shell oxides in table 2 in the original paper closed_shell_oxides = pd.read_excel(TABLE_PATH, sheet_name="table_2") # rename beta-Ga2O3 as Ga2O3 closed_shell_oxides.loc[closed_shell_oxides.formula == "b-Ga2O3", "formula"] = "Ga2O3" # read in the tabulated data of all the other oxides in table 3 in the original paper all_other_oxides =
pd.read_excel(TABLE_PATH, sheet_name="table_3")
pandas.read_excel
import argparse import json import os import math import heapq from sklearn.cluster import KMeans import pandas as pd import matplotlib.pyplot as plt import random import time from rich.progress import track # --roadnetFile Shuanglong.json --dir .\tools\generator # --roadnetFile roadnet_10_10.json --dir .\tools\generator # --roadnetFile nanjingmega.json --dir .\tools\generator --engineNum 200 def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--rowNum", type=int) parser.add_argument("--colNum", type=int) parser.add_argument("--engineNum", type=int, default=4) parser.add_argument("--roadnetFile", type=str) parser.add_argument("--dir", type=str, default="./") parser.add_argument("--output", type=str) parser.add_argument("--turn", action="store_true") return parser.parse_args() def group_roads_by_length(roads, n): lists = [[] for _ in range(n)] number_list = list(roads) totals = [(0, i) for i in range(n)] heapq.heapify(totals) for _ in range(len(roads)): total, index = heapq.heappop(totals) lists[index].append(roads[_]) heapq.heappush(totals, (total + roads[_]['length'], index)) number_list[_] = index return number_list, lists def group_roads_by_midpoint(roads, n): kmeans = KMeans(n_clusters=n, init='k-means++', n_init=10, max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='auto' ) midpoints = pd.DataFrame(data=roads, columns=['midpoint'])[ 'midpoint'].apply(pd.Series) kmeans.fit(midpoints) labels = list() for _ in range(len(kmeans.labels_)): labels.append(int(kmeans.labels_[_])) return labels def group_intersections_by_point(intersections, n): kmeans = KMeans(n_clusters=n, init='k-means++', n_init=10, max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='auto' ) points =
pd.DataFrame(data=intersections, columns=['point'])
pandas.DataFrame
"""Compilation of functions used for data processing.""" import os import yaml from itertools import compress from datetime import datetime import pandas as pd import numpy as np from ideotype.utils import get_filelist from ideotype import DATA_PATH def read_sims(path): """ Read and condense all maizsim raw output. 1. Reset column names for model output 2. Fetch year/site/cvar info from file name 3. Read in last line of model output 4. Document files with abnormal line output length and does not read them 5. Compile year/site/cvar info & last line of model output 6. Compile issues Parameters ---------- files : str Root directory of all simulation outputs. Returns ------- DataFrame df_sims : df with all simulated yield. df_issues : df recording failed site-year recordings. """ fpaths = get_filelist(path) fpaths_select = [ (fpath.split('/')[-1].split('_')[0] == 'out1') and (fpath.split('/')[-1].split('.')[-1] == 'txt') for fpath in fpaths] fpath_sims = list(compress(fpaths, fpaths_select)) cols = ['year', 'cvar', 'site', 'date', 'jday', 'time', 'leaves', 'mature_lvs', 'drop_lvs', 'LA', 'LA_dead', 'LAI', 'RH', 'leaf_WP', 'PFD', 'Solrad', 'temp_soil', 'temp_air', 'temp_can', 'ET_dmd', 'ET_suply', 'Pn', 'Pg', 'resp', 'av_gs', 'LAI_sunlit', 'LAI_shaded', 'PFD_sunlit', 'PFD_shaded', 'An_sunlit', 'An_shaded', 'Ag_sunlit', 'Ag_shaded', 'gs_sunlit', 'gs_shaded', 'VPD', 'N', 'N_dmd', 'N_upt', 'N_leaf', 'PCRL', 'dm_total', 'dm_shoot', 'dm_ear', 'dm_totleaf', 'dm_dropleaf', 'df_stem', 'df_root', 'soil_rt', 'mx_rootdept', 'available_water', 'soluble_c', 'note'] data_all = [] issues = [] for fpath_sim in fpath_sims: # extrating basic file info year = int(fpath_sim.split('/')[-3]) site = fpath_sim.split('/')[-1].split('_')[1] cvar = int(fpath_sim.split('/')[-1].split('_')[-1].split('.')[0]) # reading in file and setting up structure with open(fpath_sim, 'r') as f: f.seek(0, os.SEEK_END) # move pointer to end of file # * f.seek(offset, whence) # * Position computed from adding offset to a reference point, # * the reference point is selected by the whence argument. # * os.SEEK_SET (=0) # * os.SEEK_CUR (=1) # * os.SEEK_END (=2) try: # find current position (now at the end of file) # and count back a few positions and read forward from there f.seek(f.tell() - 3000, os.SEEK_SET) # * f.tell() returns an integer giving the file object’s # * current position in the file represented as number of bytes # * from the beginning of the file when in binary mode # * and an opaque number when in text mode. for line in f: f_content = f.readlines() if len(f_content[-1]) == 523: # normal character length sim_output = list(f_content[-1].split(',')) data = [i.strip() for i in sim_output] data.insert(0, year) data.insert(1, cvar) data.insert(2, site) data_all.append(data) else: issues.append(fpath_sim) except ValueError: issues.append(fpath_sim.split('/')[-1] + str(', value_error')) df_sims = pd.DataFrame(data_all, columns=cols) df_sims.dm_total = df_sims.dm_total.astype(float) df_sims.dm_ear = df_sims.dm_ear.astype(float) df_issues =
pd.Series(issues, dtype='str')
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Home Broker API - Market data downloader # https://github.com/crapher/pyhomebroker.git # # Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd import numpy as np from datetime import datetime from .exceptions import DataException __settlements_int = { '1': 'spot', '2': '24hs', '3': '48hs'} __settlements_str = { 'spot': '1', '24hs': '2', '48hs': '3'} __callput = { 0: '', 1: 'CALL', 2: 'PUT'} ############################ ## PROCESS JSON DOCUMENTS ## ############################ def convert_to_numeric_columns(df, columns): for col in columns: df[col] = df[col].apply(lambda x: x.replace('.', '').replace(',','.') if isinstance(x, str) else x) df[col] = pd.to_numeric(df[col].apply(lambda x: np.nan if x == '-' else x)) return df def process_personal_portfolio(df): result_index = ['symbol', 'settlement'] filter_columns = ['Symbol', 'Term', 'BuyQuantity', 'BuyPrice', 'SellPrice', 'SellQuantity', 'LastPrice', 'VariationRate', 'StartPrice', 'MaxPrice', 'MinPrice', 'PreviousClose', 'TotalAmountTraded', 'TotalQuantityTraded', 'Trades', 'TradeDate', 'MaturityDate', 'StrikePrice', 'PutOrCall'] result_columns = ['symbol', 'settlement', 'bidsize', 'bid', 'ask', 'asksize', 'last', 'change', 'open', 'high', 'low', 'previous_close', 'turnover', 'volume', 'operations', 'datetime', 'expiration', 'strike', 'kind'] numeric_columns = ['last', 'open', 'high', 'low', 'volume', 'turnover', 'operations', 'change', 'bidsize', 'bid', 'asksize', 'ask', 'previous_close', 'strike'] options_columns = ['MaturityDate','StrikePrice','PutOrCall'] if not df.empty: df.TradeDate = pd.to_datetime(df.TradeDate, format='%Y%m%d', errors='coerce') + pd.to_timedelta(df.Hour, errors='coerce') df.loc[df.StrikePrice == 0, options_columns] = np.nan df.MaturityDate = pd.to_datetime(df.MaturityDate, format='%Y%m%d', errors='coerce') df.PutOrCall = df.PutOrCall.apply(lambda x: __callput[x] if x in __callput else __callput[0]) df.Term = df.Term.apply(lambda x: __settlements_int[x] if x in __settlements_int else '') df = df[filter_columns].copy() df.columns = result_columns df = convert_to_numeric_columns(df, numeric_columns) else: df = pd.DataFrame(columns=result_columns) df = df.set_index(result_index) return df def process_securities(df): result_index = ['symbol', 'settlement'] filter_columns = ['Symbol', 'Term', 'BuyQuantity', 'BuyPrice', 'SellPrice', 'SellQuantity', 'LastPrice', 'VariationRate', 'StartPrice', 'MaxPrice', 'MinPrice', 'PreviousClose', 'TotalAmountTraded', 'TotalQuantityTraded', 'Trades', 'TradeDate'] result_columns = ['symbol', 'settlement', 'bidsize', 'bid', 'ask', 'asksize', 'last', 'change', 'open', 'high', 'low', 'previous_close', 'turnover', 'volume', 'operations', 'datetime'] numeric_columns = ['last', 'open', 'high', 'low', 'volume', 'turnover', 'operations', 'change', 'bidsize', 'bid', 'asksize', 'ask', 'previous_close'] if not df.empty: df.TradeDate = pd.to_datetime(df.TradeDate, format='%Y%m%d', errors='coerce') + pd.to_timedelta(df.Hour, errors='coerce') df.Term = df.Term.apply(lambda x: __settlements_int[x] if x in __settlements_int else '') df = df[filter_columns].copy() df.columns = result_columns df = convert_to_numeric_columns(df, numeric_columns) else: df =
pd.DataFrame(columns=result_columns)
pandas.DataFrame
# -*- coding: utf-8 -*- # @Time : 2018/10/3 下午2:36 # @Author : yidxue import pandas as pd from common.util_function import * """ http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html """ df1 =
pd.DataFrame({'a': ['a', 'c', 'd'], 'b': [4, 6, 7]})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import requests import pandas as pd from bs4 import BeautifulSoup import numpy as np from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) page = requests.get('https://www.indec.gob.ar/Nivel4/Tema/3/35/45') soup = BeautifulSoup(page.content, 'html.parser') link_xls=[] for link in soup.find_all('a'): if 'Estadísticas integradas de balanza de pagos, posición de inversión internacional y deuda externa. Años 2006-2021' in link.get_text(): link_xls.append('https://www.indec.gob.ar' + link.get('href')) file_xls = requests.get(link_xls[0]) ##### Por Categoría de Mercado ##### df = pd.read_excel(file_xls.content, sheet_name='Cuadro 15', skiprows=3) df = df.dropna(how = 'all', axis = 0).dropna(how = 'all', axis = 1) df = df.dropna(how = 'all', subset = df.columns[1:]) #Replico el nombre en todas las columnas 'Unnamed' df.columns = df.columns.astype(str) df.columns = pd.Series([np.nan if 'Unnamed:' in x else x for x in df.columns.values]).ffill().values.flatten() # Reemplazo 'Año' y * df.columns = df.columns.astype(str) for col in df.columns: new_col = col.replace("Año", "").replace('*','') df = df.rename(columns={col: new_col}) #Transpongo el df df.rename(columns={df.columns[0]: "Date"}, inplace=True) df = df.set_index('Date') df = df.T df = df.reset_index() #Arreglo las fechas de los trimestres y armo 'Date' df.rename(columns={df.columns[1]: "Trim"}, inplace=True) df['Trim'] = df['Trim'].replace({ np.nan:'12-01', 'I':'03-01', 'II':'06-01', 'III':'09-01', 'IV':'12-01' }) df['Date'] = df['index'].astype('str')+'-'+df['Trim'].astype('str') df = df.set_index('Date') df = df.drop(['index','Trim'], axis = 1) #Agrego el prefijo 'Activos' y 'Pasivos' a las columnas segun corresponda #Pasivos df2 = df.copy() df2 = df2.iloc[:,25:] newCols=[] for col in df2.columns: newCols += ['PASIVOS - '+col] df2.columns = newCols #Activos df = df.iloc[:,:25] newCols=[] for col in df.columns: newCols += ['ACTIVOS - '+col] df.columns = newCols #Junto de nuevo los dfs y renombro las columnas de totales df = df.merge(df2, how='outer', left_index=True, right_index=True) df = df.rename(columns={'ACTIVOS - B90. POSICIÓN DE INVERSIÓN INTERNACIONAL NETA (A-L)':'B90. POSICIÓN DE INVERSIÓN INTERNACIONAL NETA (A-L)', 'ACTIVOS - A. ACTIVOS':'A. ACTIVOS', 'PASIVOS - L. PASIVOS':'L. PASIVOS'}) df['country'] = 'Argentina' alphacast.datasets.dataset(8298).upload_data_from_df(df, deleteMissingFromDB = False, onConflictUpdateDB = True, uploadIndex=True) ##### Por Sector Institucional ##### df_inst = pd.read_excel(file_xls.content, sheet_name='Cuadro 16', skiprows=3) df_inst = df_inst.dropna(how = 'all', axis = 0).dropna(how = 'all', axis = 1) df_inst = df_inst.dropna(how = 'all', subset = df_inst.columns[1:]) #Replico el nombre en todas las columnas 'Unnamed' df_inst.columns = df_inst.columns.astype(str) df_inst.columns = pd.Series([np.nan if 'Unnamed:' in x else x for x in df_inst.columns.values]).ffill().values.flatten() # Reemplazo 'Año' y * df_inst.columns = df_inst.columns.astype(str) for col in df_inst.columns: new_col = col.replace("Año", "").replace('*','') df_inst = df_inst.rename(columns={col: new_col}) # #Transpongo el df_inst df_inst.rename(columns={df_inst.columns[0]: "Date"}, inplace=True) df_inst = df_inst.set_index('Date') df_inst = df_inst.T df_inst = df_inst.reset_index() #Arreglo las fechas de los trimestres y armo 'Date' df_inst.rename(columns={df_inst.columns[1]: "Trim"}, inplace=True) df_inst['Trim'] = df_inst['Trim'].replace({ np.nan:'12-01', 'I':'03-01', 'II':'06-01', 'III':'09-01', 'IV':'12-01' }) df_inst['Date'] = df_inst['index'].astype('str')+'-'+df_inst['Trim'].astype('str') df_inst = df_inst.drop(['index','Trim'], axis = 1) df_inst.drop(df_inst.index[30], inplace = True) df_inst = df_inst.set_index('Date') #Agrego el prefijo 'Activos' y 'Pasivos' a las columnas segun corresponda #Pasivos df_inst2 = df_inst.copy() df_inst2 = df_inst2.iloc[:,20:] newCols=[] for col in df_inst2.columns: newCols += ['PASIVOS - '+col] df_inst2.columns = newCols #Activos df_inst = df_inst.iloc[:,:20] newCols=[] for col in df_inst.columns: newCols += ['ACTIVOS - '+col] df_inst.columns = newCols #Junto de nuevo los dfs y renombro las columnas de totales df_inst = df_inst.merge(df_inst2, how='outer', left_index=True, right_index=True) df_inst = df_inst.rename(columns={'ACTIVOS - B90. POSICIÓN DE INVERSIÓN INTERNACIONAL NETA (A-L)':'B90. POSICIÓN DE INVERSIÓN INTERNACIONAL NETA (A-L)', 'ACTIVOS - S121. Banco Central':'S121. Banco Central', 'ACTIVOS - S122. Sociedades captadoras de depósitos':'S122. Sociedades captadoras de depósitos', 'ACTIVOS - S13. Gobierno general':'S13. Gobierno general', 'ACTIVOS - S1Z. Otros sectores':'S1Z. Otros sectores', 'ACTIVOS - A. ACTIVOS':'A. ACTIVOS', 'PASIVOS - L. PASIVOS':'L. PASIVOS'}) df_inst['country'] = 'Argentina' alphacast.datasets.dataset(8299).upload_data_from_df(df_inst, deleteMissingFromDB = False, onConflictUpdateDB = True, uploadIndex=True) ##### Por categoría funcional e instrumento ##### df_cat =
pd.read_excel(file_xls.content, sheet_name='Cuadro 18', skiprows=3)
pandas.read_excel
import requests import pandas as pd import json import os from pandas.io.json import json_normalize #package for flattening json in pandas df import flatjson import warnings warnings.filterwarnings('ignore') def show_table(): jtoken = os.getenv('GITHUB_TOKEN', '') ztoken = '' url = f"https://api.github.com/repositories/292545304/issues" urlz = 'https://api.zenhub.io/p1/repositories/292545304/board' headers = {'Authorization': f'token {jtoken}'} r = requests.get(url, headers=headers, params={'state': 'all'}).json() data = json_normalize(r, max_level=1) dfn = pd.DataFrame.from_dict(data) dfn1 = dfn[['created_at', 'state','closed_at','user.login','author_association','title','body', 'number', 'assignee.login']] dfn = dfn[['state', 'number', 'assignee.login']] headersz = {'X-Authentication-Token': ztoken, } rz = requests.get(urlz, headers=headersz).json() dataz = flatjson.dumps(rz) data1 = json_normalize(dataz) df = pd.DataFrame.from_dict(data1) df = df.loc[:, ~df.columns.str.endswith('id')] df = df.loc[:, ~df.columns.str.endswith('is_epic')] df = df.loc[:, ~df.columns.str.endswith('position')] new = df[df.columns[pd.Series(df.columns).str.startswith('pipelines[0]')]] new = new.transpose() new.columns = new.iloc[0] new = new[1:] new = new.rename({'New Issues':'number'}, axis=1) new['New Issues'] = 'New Issues' bak = df[df.columns[pd.Series(df.columns).str.startswith('pipelines[1]')]] bak = bak.transpose() bak.columns = bak.iloc[0] bak = bak[1:] bak = bak.rename({'Backlog':'number'}, axis=1) bak['Backlog'] = 'Backlog' prog = df[df.columns[pd.Series(df.columns).str.startswith('pipelines[2]')]] prog = prog.transpose() prog.columns = prog.iloc[0] prog = prog[1:] prog = prog.rename({'In Progress':'number'}, axis=1) prog['In Progress'] = 'In Progress' peer = df[df.columns[pd.Series(df.columns).str.startswith('pipelines[3]')]] peer = peer.transpose() peer.columns = peer.iloc[0] peer = peer[1:] peer = peer.rename({'Peer Review':'number'}, axis=1) peer['Peer Review'] = 'Peer Review' gw = df[df.columns[pd.Series(df.columns).str.startswith('pipelines[4]')]] gw = gw.transpose() gw.columns = gw.iloc[0] gw = gw[1:] gw = gw.rename({'GW Team Review':'number'}, axis=1) gw['GW Team Review'] = 'GW Team Review' dfv =
pd.concat([new, bak, prog, peer, gw])
pandas.concat
import numpy as np import pandas as pd import random from rpy2.robjects.packages import importr utils = importr('utils') prodlim = importr('prodlim') survival = importr('survival') #KMsurv = importr('KMsurv') #cvAUC = importr('pROC') #utils.install_packages('pseudo') #utils.install_packages('prodlim') #utils.install_packages('survival') #utils.install_packages('KMsurv') #utils.install_packages('pROC') import rpy2.robjects as robjects from rpy2.robjects import r def sim_event_times_case1(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) censored_times = np.random.uniform(low=0,high=true_times) censored_indicator = np.random.binomial(n=1,p=.3,size=digits.shape[0]) times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen #split data train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case2(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 censored_times = np.sqrt(-np.log(np.random.uniform(low=0,high=1,size=num_samples))/denom ) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case3(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1* digits- 1.6*np.cos(digits)*clinical_data[:,0]+.3*clinical_data[:,1]*clinical_data[:,0] )* (.7/2) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) #denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 shape_c = np.maximum(0.001,np.exp(-1.8*clinical_data[:,0]+1.4*clinical_data[:,1]+1.5 *clinical_data[:,0]*clinical_data[:,1])) censored_times = np.random.gamma(shape_c,digits, num_samples) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all =
pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID')
pandas.merge
import math from tqdm import tqdm import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder, QuantileTransformer from sklearn.neighbors import NearestNeighbors from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline ''' In this file we have all the preprocessing methods 1- Intrinsic dimensionality 2- define feature and target 3- identify numeric and categorical features ''' """ Python Implementation of 'Maximum Likelihood Estimation of Intrinsic Dimension' <NAME> and <NAME>, Advances in neural information processing systems, 2005 ---------- The goal is to estimate intrinsic dimensionality of data, the estimation of dimensionality is scale dependent (depending on how much you zoom into the data distribution you can find different dimesionality), so they propose to average it over different scales, the interval of the scales [k1, k2] are the only parameters of the algorithm. This code also provides a way to repeat the estimation with bootstrapping to estimate uncertainty. """ def load_data(data, filetype): """ loads data from CSV file into dataframe. Parameters ---------- data : String path to input dataset filetype : String type of file Returns ---------- df_Data : dataframe dataframe with data """ if filetype == "csv": df_Data = pd.read_csv(data) else: df_Data =
pd.read_excel(data)
pandas.read_excel
# RESpost.py import json from numpy import product import pandas as pd import os import glob wd = os.getcwd() simulations_raw = glob.glob(wd+'/cache/2030*.json') extractor = lambda x: x.split('\\')[-1].replace(".json", '').replace("2030RES_", '') simulations_keys = [extractor(x) for x in simulations_raw] #%% # sim_list = [json.load(sim) for sim in simulations_raw] roundd = lambda x: [round(i,1) for i in x] results = list() for sim in simulations_raw: with open(sim) as infile: results.append(json.load(infile)) pv, wind, bat, h2, etm, grid = [], [], [], [], [], [] for res in results: for key in res.keys(): if 'pv' in key: pv.append(res[key]['settings']['installed']) if 'wind' in key: wind.append(res[key]['settings']['installed']) if 'lith' in key: bat.append(res[key]['settings']['installed']) if 'hydro' in key: h2.append(res[key]['settings']['installed']) if 'dem' in key: etm.append(-min(res[key]['state']['power [-]'])) if 'grid' in key: grid.append(res[key]['settings']['installed']) predf = { "PV power capacity (MWp)": roundd(pv), "Wind power capacity (MWp)": roundd(wind), "Lithium storage capacity (MWh)": roundd(bat), "Hydrogen storage capacity (MWh)": roundd(h2), "Maximum power demand (MW)": roundd(etm), "Installed grid capacity (MW)": roundd(grid), } df =
pd.DataFrame(predf, index=simulations_keys)
pandas.DataFrame
import argparse import os import shutil import zipfile import pathlib import re from datetime import datetime import collections import pandas as pd import geohash import math import helpers import plotly.express as px ControlInfo = collections.namedtuple("ControlInfo", ["num_tracks", "date", "duration"]) def parse_args(): parser = argparse.ArgumentParser( description="Converts HYSPLIT Locust model output into a geohashed CSV" ) parser.add_argument("--input_dir", type=str, required=True) parser.add_argument("--output_file", type=str, default="./output.csv") parser.add_argument("--temp_dir", type=str, default="./temp") return parser.parse_args() def extract_input(input_dir, temp_dir): os.makedirs(temp_dir, exist_ok=True) p = pathlib.Path(input_dir) swarm_ids = [] zip_files = p.glob("*.zip") for zf in zip_files: shutil.copy(zf, temp_dir) temp_zip_file = os.path.join(temp_dir, zf.name) with zipfile.ZipFile(temp_zip_file, "r") as zip_ref: zip_ref.extractall(temp_dir) swarm_ids.append(zf.stem) return swarm_ids def parse_control_files(data_dir, ids): # regex to ignore comments on a line line_re = re.compile("(.*)#") # map to hold extract control info swarm_control_info = {} p = pathlib.Path(data_dir) # find control files for each swarm id for id in ids: swarm_control_info[id] = [] control_files = p.glob(f"{id}_CONTROL.*.txt") for cf in control_files: # open the control file with open(cf, "r") as f: # strip comments lines = f.read().splitlines() stripped_lines = [] for l in lines: m = line_re.match(l) if m: stripped_lines.append(m.group(1).strip()) else: stripped_lines.append(l.strip()) # read in required data parsed_date = datetime.strptime(stripped_lines[0], "%y %m %d %H %M") number_of_tracks = stripped_lines[1] duration_hrs = stripped_lines[2 + int(number_of_tracks)] swarm_control_info[id].append( ControlInfo(number_of_tracks, parsed_date, duration_hrs) ) swarm_control_info[id].sort(key=lambda d: d.date) ctrl_arr = swarm_control_info[id] return swarm_control_info def parse_trajectory_files(data_dir, ids, control_info): day_re = re.compile(".*_day(\d+)") p = pathlib.Path(data_dir) # list of trajectory dataframes trajectories = [] # find control files for each swarm id for id in ids: trajectory_data = {} trajectory_files = p.glob(f"{id}_day*.txt") for tf in trajectory_files: # extract the day and use that to look up the control info day = int(day_re.match(str(tf)).group(1)) ci = control_info[id][day - 1] # load csv tdf = pd.read_csv(tf, names=["point_id", "x", "y", "altitude"]) # get rid of the end marker tdf = tdf[tdf["point_id"] != "END"] # ID field consists of a track number in the first digit, and a record # number in the remaining. They need to be split out. tdf["track"] = tdf["point_id"].str.strip().str[0] tdf["point_id"] = tdf["point_id"].str.strip().str[1:] tdf["date"] = ci.date # Group by the track ID number. track_groups = tdf.groupby("track") # Collect the grouped data frames by track/day for track, frame in track_groups: if track not in trajectory_data: trajectory_data[track] = [] trajectory_data[track].append(frame) # Compose the data for each track into a single df spanning multiple days for _, d in trajectory_data.items(): tdf = pd.concat(d) # recompute index/point ids to enmerate final point orderings tdf = tdf.sort_values(["date", "point_id"]) tdf = tdf.reset_index(drop=True) tdf["point_id"] = tdf.index # write the swarm id and the starting altitude in for each tdf["swarm_id"] = id tdf["altitude_id"] = int(tdf.loc[0, "altitude"]) # save out the final dataframe trajectories.append(tdf) return trajectories def geohash_cell_size(level): bounds = geohash.bbox("0" * level) return (bounds["e"] - bounds["w"], bounds["n"] - bounds["s"]) def get_cell_loc(p, cell_size): idx = int(math.floor(p / cell_size)) return cell_size * idx def line_to_geohashes(x0, y0, x1, y1, level): # effectively a ray tracing operation over a rectangular grid line_geohashes = set() cell_x_size, cell_y_size = geohash_cell_size(level) # compute the coordinate of the LL corner of each cell x0_cell_loc = get_cell_loc(x0, cell_x_size) y0_cell_loc = get_cell_loc(y0, cell_y_size) x1_cell_loc = get_cell_loc(x1, cell_x_size) y1_cell_loc = get_cell_loc(y1, cell_y_size) # compute the difference between the endpoints dx = math.fabs(x1 - x0) dy = math.fabs(y1 - y0) dt_dx = 1.0 / dx if dx != 0.0 else 0.0 dt_dy = 1.0 / dy if dy != 0.0 else 0.0 x = x0_cell_loc y = y0_cell_loc num_steps = 1 x_inc = 0.0 y_inc = 0.0 t_next_horiz = 0.0 t_next_vert = 0.0 if dx == 0.0: x_inc = 0.0 t_next_horiz = dt_dx * cell_x_size elif x1 > x0: x_inc = cell_x_size # number of horizontal intersections num_steps += (x1_cell_loc - x) / cell_x_size t_next_horiz = (x0_cell_loc + cell_x_size - x0) * dt_dx else: x_inc = -cell_x_size # number of horizontal intersections num_steps += (x - x1_cell_loc) / cell_x_size t_next_horiz = (x0 - x0_cell_loc) * dt_dx if dy == 0.0: y_inc = 0 t_next_vert = dt_dy * cell_y_size elif y1 > y0: y_inc = cell_y_size # number of vertical intersections num_steps += (y1_cell_loc - y) / cell_y_size t_next_vert = (y0_cell_loc + cell_y_size - y0) * dt_dy else: y_inc = -cell_y_size # number of vertical intersections num_steps += (y - y1_cell_loc) / cell_y_size t_next_vert = (y0 - y0_cell_loc) * dt_dy for n in range(int(num_steps), 0, -1): line_geohashes.add(geohash.encode(y, x, level)) if t_next_vert < t_next_horiz: y += y_inc t_next_vert += dt_dy * cell_y_size else: x += x_inc t_next_horiz += dt_dx * cell_x_size return line_geohashes def trajectories_to_df(trajectories, level): trajectory_dataframes = [] # loop over the trajectory dataframes and extract the flight paths as a list of x,y coords for tdf in trajectories: points = zip(tdf["x"], tdf["y"]) last_p = next(points) geohashes = set() for p in points: geohashes = geohashes.union( line_to_geohashes(p[0], p[1], last_p[0], last_p[1], level) ) last_p = p geohashes = list(geohashes) bounds = [helpers.geohash_to_array_str(gh) for gh in geohashes] gdf = pd.DataFrame( columns=["swarm_id", "altitude_id", "date", "geohash", "bounds"] ) gdf["geohash"] = geohashes gdf["bounds"] = bounds gdf["swarm_id"] = tdf["swarm_id"] gdf["altitude_id"] = tdf["altitude_id"] gdf["date"] = tdf["date"] trajectory_dataframes.append(gdf) return pd.concat(trajectory_dataframes) def debug(): df = pd.read_csv("temp/swarm_7055_day3.txt", names=["id", "x", "y", "alt"]) df = df.head(100) points = zip(df["x"], df["y"]) last_p = next(points) geohashes = set() idx = 0 for p in points: idx += 1 if idx == 25: print("25") geohashes = geohashes.union( line_to_geohashes(p[0], p[1], last_p[0], last_p[1], 5) ) last_p = p geohashes = list(geohashes) p = [geohash.decode(g) for g in geohashes] gh_p = list(zip(*p)) pdf = pd.DataFrame(columns=["x", "y", "source"]) pdf["x"] = gh_p[0] pdf["y"] = gh_p[1] pdf["source"] = False edf = pd.DataFrame(columns=pdf.columns) edf["y"] = df["x"] edf["x"] = df["y"] edf["source"] = True pdf =
pd.concat([pdf, edf])
pandas.concat
import pandas as pd from sankeyview.sankey_definition import SankeyDefinition, Ordering, ProcessGroup, Waypoint, Bundle from sankeyview.sankey_view import sankey_view from sankeyview.partition import Partition from sankeyview.dataset import Dataset def test_sankey_view_accepts_dataframe_as_dataset(): nodes = { 'a': ProcessGroup(selection=['a']), 'b': ProcessGroup(selection=['b']), } bundles = [ Bundle('a', 'b'), ] ordering = [['a'], ['b']] vd = SankeyDefinition(nodes, bundles, ordering) flows = pd.DataFrame.from_records( [('a', 'b', 'm', 3)], columns=('source', 'target', 'material', 'value')) GR, groups = sankey_view(vd, flows) def test_sankey_view_results(): nodes = { 'a': ProcessGroup(selection=['a1', 'a2']), 'b': ProcessGroup(selection=['b1']), 'c': ProcessGroup(selection=['c1', 'c2'], partition=Partition.Simple('process', ['c1', 'c2'])), 'via': Waypoint(partition=Partition.Simple('material', ['m', 'n'])), } bundles = [ Bundle('a', 'c', waypoints=['via']), Bundle('b', 'c', waypoints=['via']), ] ordering = [[['a', 'b']], [['via']], [['c']]] vd = SankeyDefinition(nodes, bundles, ordering) # Dataset flows = pd.DataFrame.from_records( [ ('a1', 'c1', 'm', 3), ('a2', 'c1', 'n', 1), ('b1', 'c1', 'm', 1), ('b1', 'c2', 'm', 2), ('b1', 'c2', 'n', 1), ], columns=('source', 'target', 'material', 'value')) dim_process = pd.DataFrame({ 'id': list(flows.source.unique()) + list(flows.target.unique()) }).set_index('id') dataset = Dataset(flows, dim_process) GR, groups = sankey_view(vd, dataset) assert set(GR.nodes()) == {'a^*', 'b^*', 'via^m', 'via^n', 'c^c1', 'c^c2'} assert sorted(GR.edges(keys=True, data=True)) == [ ('a^*', 'via^m', ('*', '*'), {'value': 3, 'measures': {}, 'bundles': [0]}), ('a^*', 'via^n', ('*', '*'), {'value': 1, 'measures': {}, 'bundles': [0]}), ('b^*', 'via^m', ('*', '*'), {'value': 3, 'measures': {}, 'bundles': [1]}), ('b^*', 'via^n', ('*', '*'), {'value': 1, 'measures': {}, 'bundles': [1]}), ('via^m', 'c^c1', ('*', '*'), {'value': 4, 'measures': {}, 'bundles': [0, 1]}), ('via^m', 'c^c2', ('*', '*'), {'value': 2, 'measures': {}, 'bundles': [0, 1]}), ('via^n', 'c^c1', ('*', '*'), {'value': 1, 'measures': {}, 'bundles': [0, 1]}), ('via^n', 'c^c2', ('*', '*'), {'value': 1, 'measures': {}, 'bundles': [0, 1]}), ] assert GR.ordering == Ordering([ [['a^*', 'b^*']], [['via^m', 'via^n']], [['c^c1', 'c^c2']], ]) assert groups == [ {'id': 'a', 'title': '', 'type': 'process', 'nodes': ['a^*']}, {'id': 'b', 'title': '', 'type': 'process', 'nodes': ['b^*']}, {'id': 'via', 'title': '', 'type': 'group', 'nodes': ['via^m', 'via^n']}, {'id': 'c', 'title': '', 'type': 'process', 'nodes': ['c^c1', 'c^c2']}, ] # Can also set flow_partition for all bundles at once vd2 = SankeyDefinition( nodes, bundles, ordering, flow_partition=Partition.Simple('material', ['m', 'n'])) GR, groups = sankey_view(vd2, dataset) assert sorted(GR.edges(keys=True, data=True)) == [ ('a^*', 'via^m', ('m', '*'), {'value': 3, 'measures': {}, 'bundles': [0]}), ('a^*', 'via^n', ('n', '*'), {'value': 1, 'measures': {}, 'bundles': [0]}), ('b^*', 'via^m', ('m', '*'), {'value': 3, 'measures': {}, 'bundles': [1]}), ('b^*', 'via^n', ('n', '*'), {'value': 1, 'measures': {}, 'bundles': [1]}), ('via^m', 'c^c1', ('m', '*'), {'value': 4, 'measures': {}, 'bundles': [0, 1]}), ('via^m', 'c^c2', ('m', '*'), {'value': 2, 'measures': {}, 'bundles': [0, 1]}), ('via^n', 'c^c1', ('n', '*'), {'value': 1, 'measures': {}, 'bundles': [0, 1]}), ('via^n', 'c^c2', ('n', '*'), {'value': 1, 'measures': {}, 'bundles': [0, 1]}), ] def test_sankey_view_results_time_partition(): nodes = { 'a': ProcessGroup(selection=['a1']), 'b': ProcessGroup(selection=['b1']), } bundles = [Bundle('a', 'b')] ordering = [[['a']], [['b']]] time_partition = Partition.Simple('time', [1, 2]) vd = SankeyDefinition( nodes, bundles, ordering, time_partition=time_partition) # Dataset flows = pd.DataFrame.from_records( [ ('a1', 'b1', 'm', 1, 3), ('a1', 'b1', 'm', 2, 2), ], columns=('source', 'target', 'material', 'time', 'value')) dim_process =
pd.DataFrame({'id': ['a1', 'b1']})
pandas.DataFrame
import datetime import pandas as pd from local_group_support.config.config import get_config from rebel_management_utilities.action_network import get_forms, query, query_all FORMATION_DATE = datetime.date(2018, 4, 1) def get_form(submission): form_id = submission['action_network:form_id'] has_website = 'action_network:referrer_data' in submission.keys() and \ submission['action_network:referrer_data']['source'] != 'none' form_mapping = get_forms().set_index('identifier')['name'] submission_date =
pd.to_datetime(submission['created_date'])
pandas.to_datetime
import wx.grid as gridlib import pandas as pd import numpy as np import copy import ciw import re import math import statistics import random import imp adapt = imp.load_source('adapt', 'src/adapt.py') summary = imp.load_source('summary', 'src/Summary.py') cluster = imp.load_source('cluster', 'src/clustering.py') transitions = imp.load_source('transitions', 'src/transitions.py') capacity = imp.load_source('capacity', 'src/capacity.py') results = imp.load_source('results', 'src/results.py') sim = imp.load_source('sim', 'src/simulation.py') custom_ciw = imp.load_source('custom_ciw', 'src/custom_ciw.py') #========= Data Panel =========== #--------------- on Columns ---------------- def onHeaders_selection(columns, selected): """Create list of selected column names.""" headers = [columns[value] for value in selected] return headers def create_codes(headers): """Create character code for each activity.""" activity_codes = adapt.codes(headers) letters = [key for key in activity_codes.keys()] return(letters, activity_codes) def Create_pathways_data(activity_codes, data, save_location, data_name): """Creates pathway data for non formatted input data. Add pathway, waiting time per activity and total time in system to data. df created is each unique pathways and the number of times performed. """ data['pathways'] = data.apply(lambda row: adapt.find_pathways(row, activity_codes),axis=1) for index,key in enumerate(activity_codes.keys()): data[key] = data.apply(lambda row: adapt.find_time_from_previous(row, key, activity_codes), axis=1) if index == 0: first = key if index == len(activity_codes)-1: last = key data['totaltime'] = data.apply(lambda row: row[first:last].sum(),axis=1) data = data.replace(' ', np.NaN) df = transitions.pathway_counts(data) with pd.ExcelWriter(save_location + 'SimProFlow_' + data_name, mode='w') as writer: data.to_excel(writer,'Data') df.to_excel(writer,'dataframe') return(data, df) #-------------- on Format ----------------- def Create_multi_pathways_data(data, id_column, activity_column, dates_column, columns, selected, save_location, data_name): """Creates pathway data for formatted input data. Add multi_pathway (double codes) and pathway (single codes), and total time in system to data. Waiting time per single code activity recorded with list of waiting time. df created is each unique pathways and the number of times performed. """ if id_column != None: # format data data = data.dropna().reset_index(drop=True) data = adapt.rename_duplicates(data, id_column, activity_column, dates_column) headers = adapt.multi_headers(data, id_column) else: # multi columns headers = onHeaders_selection(columns, selected) activity_codes, multi_activity_codes = adapt.multi_codes(headers) letters = [code for code in activity_codes.keys()] multi_letters = [code for code in multi_activity_codes.keys()] data['multi_pathways'] = data.apply(lambda row: adapt.find_pathways(row, multi_activity_codes),axis=1) data['pathways'] = data.apply(lambda row: adapt.condense_pathways(row), axis=1) for index,key in enumerate(multi_activity_codes.keys()): data[key] = data.apply(lambda row: adapt.find_time_from_previous_Double(row, key, multi_activity_codes), axis=1) for general_key in activity_codes.keys(): all_code = [key for key in multi_activity_codes.keys() if key[0] == general_key] data[general_key] = data[all_code].values.tolist() for index,key in enumerate(multi_activity_codes.keys()): if index == 0: first = key if index == len(multi_activity_codes)-1: last = key data['totaltime'] = data.apply(lambda row: row[first:last].sum(),axis=1) for key in multi_activity_codes.keys(): data = data.drop(key, axis=1) data = data.replace(' ', np.NaN) df = transitions.pathway_counts(data) with pd.ExcelWriter(save_location + 'SimProFlow_' + data_name, mode='w') as writer: data.to_excel(writer,'Data') df.to_excel(writer,'dataframe') return(data, df, activity_codes, multi_activity_codes, headers, letters, multi_letters) def Create_Summary_Sheet(data, df, multi_activity_codes, save_location, original_name): """Create summary sheet and save to output folder.""" summary.SummarySheet(data, df, multi_activity_codes, save_location, original_name) #========= Clustering Panel =========== def Get_default_ranks(activity_codes, data): """Generates the default rankings per activity based on occurance frequency in data.""" default_rank = adapt.freq_Rankings(activity_codes, data) return default_rank def Get_Weights(dict_rank): """Converts rankings into weights.""" Weights = adapt.create_Weightings(dict_rank) return Weights def GetMedoids(select_medoids, df, max_k, data, comp_Matrix, Specify_textbox): """From user selections, generate initial medoids for clustering.""" if select_medoids.IsChecked(0): # ensure no repeats all_options = [i for i in range(len(df))] set_medoids = random.sample(all_options, max_k) elif select_medoids.IsChecked(1): # as df is ordered by counts set_medoids = [i for i in range(max_k)] elif select_medoids.IsChecked(2): sum_matrix = [sum(x) for x in comp_Matrix] smallest = sorted(sum_matrix)[:max_k] set_medoids = [sum_matrix.index(sum_values) for sum_values in smallest] elif select_medoids.IsChecked(3) == True: specify_medoids = Specify_textbox.GetValue() if specify_medoids == 'Enter values': return([], 'Enter values Error') potential_set_medoids = list(map(int, specify_medoids.split(','))) if len(potential_set_medoids) != max_k: return(potential_set_medoids, 'Large Error') set_medoids = potential_set_medoids return(set_medoids, 'No') def RunClustering(data, df, comp_Matrix, set_medoids, max_k, save_location, save_name, result_type, include_centroids): """Run clustering and display results level from user selection.""" cluster_results = cluster.classic_cluster(data, df, comp_Matrix, set_medoids, max_k, save_location, save_name, results=result_type, include_centroids=include_centroids) return cluster_results def RunProcessClustering(data, df, letters, comp_Matrix, set_medoids, max_k, save_location, save_name, tol, result_type, include_centroids, adjust): """Run process clustering and display results level from user selection.""" k, process_cluster_results, plot_name = cluster.process_cluster(data, df, letters, comp_Matrix, set_medoids, max_k, save_location , save_name, tol, results=result_type, include_centroids=include_centroids, adjust=adjust) return (k, process_cluster_results, plot_name) #========= Draw =========== def get_draw_network(sim_type, letters, Matrix, save_location, file_name, process_k, centroids, adjust, LR, penwidth, round_to): """Draw transitions network. + Full Transitions: One diagram for whole transtions matrix + Clustered Transtions: Diagram per class (k) for class transition matrix + Process Based: Three diagrams, full transitions, seperated pathways and linked by postion. """ if sim_type == 'Full Transitions': save_file_name = save_location + 'Network_diagrams/' + file_name transitions.draw_network(letters, Matrix, save_file_name, LR, penwidth, round_to) if sim_type == 'Clustered Transitions': for c_class, c_matrix in Matrix.items(): c_file_name = save_location + 'Network_diagrams/' + file_name + '_' + c_class transitions.draw_network(letters, c_matrix, c_file_name, LR, penwidth, round_to) if sim_type == 'Process Medoids': adjust_save_file_name = save_location + 'Network_diagrams/' + file_name + '_' + str(process_k) + '_adjust_' + str(adjust) transitions.draw_network(letters, Matrix[0], adjust_save_file_name, LR, penwidth, round_to) file_name_network = save_location + 'Network_diagrams/' + file_name + '_' + str(process_k) transitions.draw_network(letters, Matrix[1], file_name_network, LR, penwidth, round_to) file_name_centroids = file_name_network + '_pathways' transitions.draw_centroids(centroids, str(process_k), file_name_centroids) max_length = centroids[str(process_k)].str.len().max() first = [[path[i:i+1] for path in centroids[str(process_k)]] for i in range(0, max_length)] all_firsts = [list(set(row)) for row in first] for r, row in enumerate(all_firsts): all_firsts[r] = ['End' if x=='' else x for x in row] file_name_grouped = file_name_network + '_linked' transitions.draw_centroids_linked(centroids[str(process_k)], all_firsts, file_name_grouped) #========= Simulation =========== def initialise_results_tables(data, letters): """Iitialise the four simulation results data frames.""" dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions = results.initialise_results_tables(data, 'pathways', letters) return(dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions) def initial_vis_inputs(data, headers, activity_codes, formatted): """Generate initial values from raw data for results tables.""" initial_individuals = len(data) overall_min, overall_max, overall_period = capacity.get_total_time_period(data, headers) df_start = transitions.initial_last_arrival(data, activity_codes, formatted) column_min, column_max, real_last_arrival = capacity.get_column_time_period(df_start.Start_dates) return(initial_individuals, real_last_arrival, overall_period) def get_vis_summary(results_data, time_column, pathway_column, table_letters, letters, dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions, simulation_transitions, intervention_codes, target, individuals, save_location, simulation_name, listed_times, last_arrival, period): """Fill results tables.""" T1_results, T2_results, T3_results, T4_results = results.run_results(results_data, time_column, pathway_column, table_letters, letters, dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions, simulation_transitions, intervention_codes, target, individuals, save_location, simulation_name, listed_times, last_arrival, period) sim.plot_totaltime(save_location, simulation_name, results_data) sim.plot_activity_waittimes(save_location, simulation_name, results_data, table_letters) return(T1_results, T2_results, T3_results, T4_results) def get_period(data, headers): """Get overall period covered by raw data.""" overall_min, overall_max, overall_period = capacity.get_total_time_period(data, headers) return overall_period def AutoSetupInputs(sim_type, data, activity_codes, multi_activity_codes, headers, letters, individuals, overall_period, clusters, process_k, centroids, original_name, adjust): """Generate basic sim default inputs. Service default 0.1 for all types. Servers capacity same for all. + Raw Pathways: Routing and arrivals at dummy node created + Full Transitions: arrivals row matrix and routing transition matrix + Clustered Transitions: arrivals row matrix and routing transition matrix per class (k) + Process Medoids: Routing of centroids and arrivals per class """ # if formatted data use multi_activity_codes if original_name == 'original_formatted': input_servers = sim.define_input_capacity(data, multi_activity_codes, headers, letters, original_name) else: input_servers = sim.define_input_capacity(data, activity_codes, headers, letters, original_name) input_service = 0.1 if sim_type == 'Raw Pathways': draw_matrix = [] input_routing = sim.define_input_routing(sim_type, data['pathways'], letters, None) input_arrival = individuals/overall_period if sim_type == 'Full Transitions': # allow draw of adjusted matrix input_arrival, draw_matrix, Matrix_prob = transitions.get_transitions(data['pathways'], letters, False) input_routing = sim.define_input_routing(sim_type, data['pathways'], letters, Matrix_prob) if sim_type == 'Clustered Transitions': pathway_counts = transitions.pathway_counts(data) propergated_clusters = transitions.propergate_clusters(pathway_counts, clusters) input_arrival = {} input_routing = {} draw_matrix = {} for c, cluster in enumerate(propergated_clusters): class_name = 'Class '+ str(c) prop_df = pd.DataFrame(cluster) prop_df.columns = ['centroids'] Start, c_draw_matrix, Matrix_prob = transitions.get_transitions(prop_df.centroids, letters, False) input_arrival[class_name] = Start input_routing[class_name] = Matrix_prob draw_matrix[class_name] = c_draw_matrix if sim_type == 'Process Medoids': draw_matrix = [] adjust_input_arrival, adjust_draw_matrix, adjust_Matrix_prob = transitions.get_transitions(data['pathways'], letters, adjust) draw_matrix.append(adjust_draw_matrix) Start, process_draw_matrix, Matrix_prob = transitions.get_transitions(centroids[str(process_k)], letters, centroids['prop_counter_' + str(process_k)]) draw_matrix.append(process_draw_matrix) input_arrival = {} for c, route in enumerate(centroids[str(process_k)]): arrival = [centroids['prop_counter_' + str(process_k)][c] if route[0] == code else 'NoArrivals' for code in letters] class_name = 'Class '+ str(c) input_arrival[class_name] = arrival input_routing = sim.define_input_routing(sim_type, centroids[str(process_k)], letters, None) return(input_arrival, input_service, input_servers, input_routing, draw_matrix) def ConstructSim(sim_type, week, warm_type, letters, individuals, overall_period, cluster_k, arrivals, service, capacity, warm, Routes): """Constructs the simulation network. Takes warm up type into consideration. + Routing type for process based different for Raw Pathways and Process Cetroids + Both routing functions defined here. """ def raw_routing_function(ind): """Return route from id_number - for Raw Pathways.""" route_number = ind.id_number - 1 return copy.deepcopy(Routes[route_number]) def process_routing_function(ind): """Return route from customer class - for Process Medoids.""" route_number = ind.customer_class return copy.deepcopy(Routes[route_number]) if warm_type == 'Itterative': time_run = individuals * warm individuals = individuals * warm else: time_run = individuals Arrival = sim.define_arrivals(sim_type, letters, individuals, arrivals, Routes) Service = sim.define_service(sim_type, letters, service, cluster_k) Servers = sim.define_servers(sim_type, warm_type, letters, overall_period, capacity, week, warm) if sim_type == 'Raw Pathways': if warm_type == 'Itterative': Routes = Routes * warm All_Routing = [raw_routing_function for _ in range(len(letters)+1)] elif sim_type == 'Process Medoids': All_Routing = [process_routing_function for _ in range(len(letters))] else: All_Routing = Routes Network = ciw.create_network( arrival_distributions = Arrival, service_distributions = Service, number_of_servers = Servers, routing = All_Routing ) return(Network, Servers, time_run, individuals) def RunBasicSim(Network, sim_seed, time_run): """Run the simulation.""" ciw.seed(sim_seed) Q = ciw.Simulation(Network, node_class=custom_ciw.CustomNode) Q.simulate_until_max_customers(time_run, method='Finish', progress_bar=True) return(Q) def RunSimData(Q, warm_type, warm, letters, Servers_Schedules, week_type, dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions, activity_codes, target, individuals, save_location, simulation_name, basic): """Produce the simulation results. Results adjusted if warm up Itterative selected. + Basic simulation will include utilisation table and graphics and waiting time graphics + Otherwise not produced becuase trials run """ if letters[0] == 'Dummy': original_letters = letters[1:] current_letters = [''] + original_letters else: original_letters = letters current_letters = letters df_recs = pd.DataFrame(Q.get_all_records()) df_recs2, all_unique_pathways, sim_waiting_columns = transitions.convert_records(Q, current_letters, True) df_all = transitions.sim_results(df_recs2, all_unique_pathways) if basic == True: with pd.ExcelWriter(save_location + 'Raw_Sim_Results.xlsx', engine="openpyxl", mode='a') as writer: df_all.to_excel(writer,simulation_name) if warm_type == 'Itterative': start_collection = individuals - int((individuals/warm)) individuals = int((individuals/warm)) df_recs = df_recs[df_recs.id_number > start_collection] df_recs = df_recs.reset_index() df_all = df_all[df_all.id_number > start_collection] df_all = df_all.reset_index() simulation_name = simulation_name + '_selected' if basic == True: with pd.ExcelWriter(save_location + 'Raw_Sim_Results.xlsx', engine="openpyxl", mode='a') as writer: df_all.to_excel(writer,simulation_name) simulation_transitions = transitions.find_transitions(original_letters, df_all['pathway'], None, False) dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4 = get_vis_summary(df_all, 'totaltime', 'pathway', sim_waiting_columns, current_letters, dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions, simulation_transitions, activity_codes, target, individuals, save_location, simulation_name, listed_times=True, last_arrival=df_recs, period=df_recs) if basic == True: week_type = int(week_type[0]) df_utilisation = sim.run_utilisation_results(df_recs, current_letters, Servers_Schedules, week_type, save_location, simulation_name) with pd.ExcelWriter(save_location + 'Raw_Sim_Results.xlsx', engine="openpyxl", mode='a') as writer: # added to save util table df_utilisation.to_excel(writer,simulation_name + '_Util') # added to save util table return(dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, df_utilisation) else: return(dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4) #----------------- Trials ------------------------- def RunTrialSim(Network, trials, time_run, warm_type, warm, letters, Servers_Schedules, week_type, dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions, activity_codes, target, individuals, save_location, simulation_name, basic): """Run simulation for trials. Seed will change for each run. Results recorded and then reported in the form of confidence intervals. Results only for T1, T2 and T4. Standard deviation graphics produced to allow user decision on sufficient runs. """ # Set up empty tables for results Trials_dataframe_T1 = pd.DataFrame(columns=['Name', 'Mean Time in System', 'Median Time in System', 'Target [days, %]', 'No. Unique Pathways', 'Occurs Once', 'Occurs > Once', 'Total Transitions', 'Mean Transitions', 'Largest Transition', 'Day Last Arrival', 'Overall Period']) Trials_dataframe_T2 =
pd.DataFrame({'Activity': letters})
pandas.DataFrame