prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os, sys, re, getopt, functools, pysam import pandas as pd import numpy as np from plotnine import * from PIL import Image from ATACFragQC import __version__ class ArgumentList: file_bam = '' file_ref = '' file_out = False quality = 50 isize = 147 cn_len = 10 chr_filter = '' chr_list = '' pic_list = 'a,b,c' def __init__(self): self.file_bam = '' self.file_ref = '' self.file_out = False self.quality = 50 self.isize = 147 cn_len = 10 self.chr_filter = '' self.chr_list = '' self.pic_list = 'a,b,c' def chr_cmp(a, b): sa = str(a) sb = str(b) la = len(sa) lb = len(sb) lm = min(la, lb) for i in range(0, lm): if sa[i] != sb[i]: oa = ord(sa[i]) if sa[i] != 'M' and sa[i] != 'm' else 0x7A ob = ord(sb[i]) if sb[i] != 'M' and sb[i] != 'm' else 0x7A if oa < 0x3A and oa > 0x2F and ob < 0x3A and ob > 0x2F and la != lb: return la - lb cd = oa - ob return cd return la - lb def bedScan(args): (pathname, extension) = os.path.splitext(args.file_bam) (filepath, filename) = os.path.split(pathname) if not os.path.isfile(args.file_bam+'.bai'): print('There is no index file for the bam...') return print('Processing the reference...') ref_raw = pd.read_table(args.file_ref, comment='#', header=None, dtype={0:str}) ref_raw.columns = ['seq_id', 'source', 'type', 'start', 'end', 'score', 'strand', 'phase', 'attributes'] type_list = list(set(ref_raw['type'])) type_test = 'transcript' if 'transcript' in type_list else 'gene' if not type_test in type_list: print('There is no suitable term in the gtf to confirm TSSs...') return chr_list = list(set(ref_raw['seq_id'])) if args.chr_list != '': chr_list = list(set(args.chr_list.split(',')).intersection(set(chr_list))) if args.cn_len > 0: chr_list = [x for x in chr_list if len(x) < min(args.cn_len, min(list(map(lambda x: len(x), chr_list)))*4)] if len(chr_list) == 0: print('There is no chromosome would be calculated...') return fs = pysam.AlignmentFile(args.file_bam, 'rb') chr_detect = [] fs_header = fs.header.to_dict() if 'SQ' in fs_header.keys(): for term in fs_header['SQ']: if 'SN' in term.keys(): chr_detect.append(str(term['SN'])) if len(chr_detect) > 0: chr_list = list(set(chr_list).intersection(set(chr_detect))) if len(chr_list) == 0: print('There is no chromosome would be calculated...') return chr_list = sorted(list(set(chr_list).difference(set(args.chr_filter.split(',')))), key=functools.cmp_to_key(chr_cmp)) chr_list_frag = [x for x in chr_list if re.match(r'.*[Mm]+,*', x) == None] ref = ref_raw[(ref_raw['type'] == type_test) & (ref_raw['strand'] != '-') & ref_raw['seq_id'].str.match('^'+chr_list_frag[0]+'$') & (ref_raw['start'] > 1000)] for term in chr_list_frag[1:]: ref = ref.append(ref_raw[(ref_raw['type'] == type_test) & (ref_raw['strand'] != '-') & ref_raw['seq_id'].str.match('^'+term+'$') & (ref_raw['start'] > 1000)]) ref = ref[['seq_id', 'strand', 'start', 'end']].sort_values(by=['seq_id', 'start', 'strand']) ref = ref.drop_duplicates(subset=['seq_id', 'start', 'strand'], keep='first') ref.loc[ref['strand'] == '+', 'start'] -= 1000 ref.loc[ref['strand'] == '+', 'end'] = ref.loc[ref['strand'] == '+', 'start'] + 2000 ref.index = list(range(ref.index.size)) print('Scaning the distribution of fragments...') chr_count = {} len_count = [0] * 501 for chr in chr_list: count = 0 for read in fs.fetch(chr): if read.flag == 99 and read.mapq > args.quality and read.isize < 501: len_count[read.isize] += 1 count += 1 chr_count[chr] = count len_count = pd.DataFrame({'V1': list(range(1, 501)), 'V2': len_count[1:]}) chr_count = pd.DataFrame({'V1': list(chr_count.keys()), 'V2': list(chr_count.values())}) chr_count['V1'] = pd.Categorical(chr_count['V1'], categories=chr_list, ordered=True) print('Scaning the fragments around TSSs...') dist_count = [] for index, row in ref.iterrows(): count = np.zeros(2001, dtype=np.int64) for frag in fs.fetch(row['seq_id'], row['start'], row['end']): if frag.flag == 99 and frag.mapq > args.quality and frag.isize < args.isize: count[range(max(0, frag.pos - row['start']), min(2001, frag.pos + frag.isize - row['start']))] += 1 if sum(count) > 0: dist_count.append(count) dist_count = np.array(dist_count) if dist_count.size > 0: factors = np.mean(dist_count[:, list(range(0,100))+list(range(1901,2001))], axis=1) factors[factors == 0] = np.mean(factors) dist_count = pd.DataFrame({'V1': list(range(-900, 901)), 'V2': list(np.mean(dist_count[:, 100:1901] / factors.reshape(len(factors), 1), axis=0))}) print('Saving the results...') if args.file_out: chr_count.to_csv(pathname+'_chr.tsv', sep='\t', index=False, header=False) len_count.to_csv(pathname+'_fl.tsv', sep='\t', index=False, header=False) if dist_count.size > 0: dist_count.to_csv(pathname+'_tss.tsv', sep='\t', index=False, header=False)
pd.DataFrame({'V1': factors})
pandas.DataFrame
import pandas as pd import numpy as np np.random.seed(99) from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV from sklearn.multioutput import MultiOutputClassifier, MultiOutputRegressor from sklearn.multiclass import OneVsRestClassifier import xgboost as xgb from xgboost.sklearn import XGBClassifier from xgboost.sklearn import XGBRegressor from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import LabelEncoder import lightgbm as lgbm from sklearn.model_selection import KFold, cross_val_score,StratifiedKFold import seaborn as sns from sklearn.preprocessing import OneHotEncoder, LabelEncoder, label_binarize import csv import re from xgboost import XGBRegressor, XGBClassifier from sklearn.metrics import mean_squared_log_error, mean_squared_error,balanced_accuracy_score from scipy import stats from sklearn.model_selection import RandomizedSearchCV import scipy as sp import time import copy from sklearn.preprocessing import StandardScaler, MinMaxScaler from collections import Counter, defaultdict import pdb ################# All these imports are needed for the pipeline ####### import time from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.base import BaseEstimator, TransformerMixin #gives fit_transform method for free import pdb from sklearn.base import TransformerMixin from collections import defaultdict from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import FunctionTransformer ################################################################################################### ############# This is where you import from other Auto_TS modules ############ from ..utils import My_LabelEncoder, My_LabelEncoder_Pipe from ..utils import left_subtract ################################################################################# def complex_XGBoost_model(X_train, y_train, X_test, log_y=False, GPU_flag=False, scaler = '', enc_method='label', n_splits=5, num_boost_round=1000, verbose=-1): """ This model is called complex because it handle multi-label, mulit-class datasets which XGBoost ordinarily cant. Just send in X_train, y_train and what you want to predict, X_test It will automatically split X_train into multiple folds (10) and train and predict each time on X_test. It will then use average (or use mode) to combine the results and give you a y_test. It will automatically detect modeltype as "Regression" or 'Classification' It will also add MultiOutputClassifier and MultiOutputRegressor to multi_label problems. The underlying estimators in all cases is XGB. So you get the best of both worlds. Inputs: ------------ X_train: pandas dataframe only: do not send in numpy arrays. This is the X_train of your dataset. y_train: pandas Series or DataFrame only: do not send in numpy arrays. This is the y_train of your dataset. X_test: pandas dataframe only: do not send in numpy arrays. This is the X_test of your dataset. log_y: default = False: If True, it means use the log of the target variable "y" to train and test. GPU_flag: if your machine has a GPU set this flag and it will use XGBoost GPU to speed up processing. scaler : default is StandardScaler(). But you can send in MinMaxScaler() as input to change it or any other scaler. enc_method: default is 'label' encoding. But you can choose 'glmm' as an alternative. But those are the only two. verbose: default = 0. Choosing 1 will give you lot more output. Outputs: ------------ y_preds: Predicted values for your X_XGB_test dataframe. It has been averaged after repeatedly predicting on X_XGB_test. So likely to be better than one model. """ X_XGB = copy.deepcopy(X_train) Y_XGB = copy.deepcopy(y_train) X_XGB_test = copy.deepcopy(X_test) #################################### start_time = time.time() top_num = 10 if isinstance(Y_XGB, pd.Series): targets = [Y_XGB.name] else: targets = Y_XGB.columns.tolist() if len(targets) == 1: multi_label = False if isinstance(Y_XGB, pd.DataFrame): Y_XGB = pd.Series(Y_XGB.values.ravel(),name=targets[0], index=Y_XGB.index) else: multi_label = True modeltype, _ = analyze_problem_type(Y_XGB, targets) columns = X_XGB.columns ##### Now continue with scaler pre-processing ########### if isinstance(scaler, str): if not scaler == '': scaler = scaler.lower() if scaler == 'standard': scaler = StandardScaler() elif scaler == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() ######### G P U P R O C E S S I N G B E G I N S ############ ###### This is where we set the CPU and GPU parameters for XGBoost if GPU_flag: GPU_exists = check_if_GPU_exists() else: GPU_exists = False ##### Set the Scoring Parameters here based on each model and preferences of user ### cpu_params = {} param = {} cpu_params['tree_method'] = 'hist' cpu_params['gpu_id'] = 0 cpu_params['updater'] = 'grow_colmaker' cpu_params['predictor'] = 'cpu_predictor' if GPU_exists: param['tree_method'] = 'gpu_hist' param['gpu_id'] = 0 param['updater'] = 'grow_gpu_hist' #'prune' param['predictor'] = 'gpu_predictor' print(' Hyper Param Tuning XGBoost with GPU parameters. This will take time. Please be patient...') else: param = copy.deepcopy(cpu_params) print(' Hyper Param Tuning XGBoost with CPU parameters. This will take time. Please be patient...') ################################################################################# if modeltype == 'Regression': if log_y: Y_XGB.loc[Y_XGB==0] = 1e-15 ### just set something that is zero to a very small number ######### Now set the number of rows we need to tune hyper params ### scoreFunction = { "precision": "precision_weighted","recall": "recall_weighted"} random_search_flag = True #### We need a small validation data set for hyper-param tuning ######################### hyper_frac = 0.2 #### now select a random sample from X_XGB ## if modeltype == 'Regression': X_train, X_valid, Y_train, Y_valid = train_test_split(X_XGB, Y_XGB, test_size=hyper_frac, random_state=999) else: X_train, X_valid, Y_train, Y_valid = train_test_split(X_XGB, Y_XGB, test_size=hyper_frac, random_state=999, stratify = Y_XGB) ###### This step is needed for making sure y is transformed to log_y #################### if modeltype == 'Regression' and log_y: Y_train = np.log(Y_train) Y_valid = np.log(Y_valid) #### First convert test data into numeric using train data ### X_train, Y_train, X_valid, Y_valid, scaler = data_transform(X_train, Y_train, X_valid, Y_valid, modeltype, multi_label, scaler=scaler, enc_method=enc_method) ###### Time to hyper-param tune model using randomizedsearchcv and partial train data ######### num_boost_round = xgbm_model_fit(random_search_flag, X_train, Y_train, X_valid, Y_valid, modeltype, multi_label, log_y, num_boost_round=num_boost_round) #### First convert test data into numeric using train data ############################### if not isinstance(X_XGB_test, str): x_train, y_train, x_test, _, _ = data_transform(X_XGB, Y_XGB, X_XGB_test, "", modeltype, multi_label, scaler=scaler, enc_method=enc_method) ###### Time to train the hyper-tuned model on full train data ########################## random_search_flag = False model = xgbm_model_fit(random_search_flag, x_train, y_train, x_test, "", modeltype, multi_label, log_y, num_boost_round=num_boost_round) ############# Time to get feature importances based on full train data ################ if multi_label: for i,target_name in enumerate(targets): each_model = model.estimators_[i] imp_feats = dict(zip(x_train.columns, each_model.feature_importances_)) importances = pd.Series(imp_feats).sort_values(ascending=False)[:top_num].values important_features = pd.Series(imp_feats).sort_values(ascending=False)[:top_num].index.tolist() print('Top 10 features for {}: {}'.format(target_name, important_features)) else: imp_feats = model.get_score(fmap='', importance_type='gain') importances = pd.Series(imp_feats).sort_values(ascending=False)[:top_num].values important_features = pd.Series(imp_feats).sort_values(ascending=False)[:top_num].index.tolist() print('Top 10 features:\n%s' %important_features[:top_num]) ####### order this in the same order in which they were collected ###### feature_importances = pd.DataFrame(importances, index = important_features, columns=['importance']) ###### Time to consolidate the predictions on test data ################################ if not multi_label and not isinstance(X_XGB_test, str): x_test = xgb.DMatrix(x_test) if isinstance(X_XGB_test, str): print('No predictions since X_XGB_test is empty string. Returning...') return {} if modeltype == 'Regression': if not isinstance(X_XGB_test, str): if log_y: pred_xgbs = np.exp(model.predict(x_test)) else: pred_xgbs = model.predict(x_test) #### if there is no test data just return empty strings ### else: pred_xgbs = [] else: if multi_label: pred_xgbs = model.predict(x_test) pred_probas = model.predict_proba(x_test) else: pred_probas = model.predict(x_test) if modeltype =='Multi_Classification': pred_xgbs = pred_probas.argmax(axis=1) else: pred_xgbs = (pred_probas>0.5).astype(int) ##### once the entire model is trained on full train data ################## print(' Time taken for training XGBoost on entire train data (in minutes) = %0.1f' %( (time.time()-start_time)/60)) if multi_label: for i,target_name in enumerate(targets): each_model = model.estimators_[i] xgb.plot_importance(each_model, importance_type='gain', title='XGBoost model feature importances for %s' %target_name) else: xgb.plot_importance(model, importance_type='gain', title='XGBoost final model feature importances') print('Returning the following:') print(' Model = %s' %model) print(' Scaler = %s' %scaler) if modeltype == 'Regression': if not isinstance(X_XGB_test, str): print(' (3) sample predictions:%s' %pred_xgbs[:3]) return (pred_xgbs, scaler, model) else: if not isinstance(X_XGB_test, str): print(' (3) sample predictions (may need to be transformed to original labels):%s' %pred_xgbs[:3]) print(' (3) sample predicted probabilities:%s' %pred_probas[:3]) return (pred_xgbs, scaler, model) ############################################################################################## import xgboost as xgb def xgbm_model_fit(random_search_flag, x_train, y_train, x_test, y_test, modeltype, multi_label, log_y, num_boost_round=100): start_time = time.time() if multi_label and not random_search_flag: model = num_boost_round else: rand_params = { 'learning_rate': sp.stats.uniform(scale=1), 'gamma': sp.stats.randint(0, 100), 'n_estimators': sp.stats.randint(100,500), "max_depth": sp.stats.randint(3, 15), } if modeltype == 'Regression': objective = 'reg:squarederror' eval_metric = 'rmse' shuffle = False stratified = False num_class = 0 score_name = 'Score' scale_pos_weight = 1 else: if modeltype =='Binary_Classification': objective='binary:logistic' eval_metric = 'error' ## dont foolishly change to auc or aucpr since it doesnt work in finding feature imps later shuffle = True stratified = True num_class = 1 score_name = 'Error Rate' scale_pos_weight = get_scale_pos_weight(y_train) else: objective = 'multi:softprob' eval_metric = 'merror' ## dont foolishly change to auc or aucpr since it doesnt work in finding feature imps later shuffle = True stratified = True if multi_label: num_class = y_train.nunique().max() else: if isinstance(y_train, np.ndarray): num_class = np.unique(y_train).max() + 1 elif isinstance(y_train, pd.Series): num_class = y_train.nunique() else: num_class = y_train.nunique().max() score_name = 'Multiclass Error Rate' scale_pos_weight = 1 ### use sample_weights in multi-class settings ## ###################################################### final_params = { 'booster' :'gbtree', 'colsample_bytree': 0.5, 'alpha': 0.015, 'gamma': 4, 'learning_rate': 0.01, 'max_depth': 8, 'min_child_weight': 2, 'reg_lambda': 0.5, 'subsample': 0.7, 'random_state': 99, 'objective': objective, 'eval_metric': eval_metric, 'verbosity': 0, 'n_jobs': -1, 'scale_pos_weight':scale_pos_weight, 'num_class': num_class, 'silent': True } ####### This is where we split into single and multi label ############ if multi_label: ###### This is for Multi_Label problems ############ rand_params = {'estimator__learning_rate':[0.1, 0.5, 0.01, 0.05], 'estimator__n_estimators':[50, 100, 150, 200, 250], 'estimator__gamma':[2, 4, 8, 16, 32], 'estimator__max_depth':[3, 5, 8, 12], } if random_search_flag: if modeltype == 'Regression': clf = XGBRegressor(n_jobs=-1, random_state=999, max_depth=6) clf.set_params(**final_params) model = MultiOutputRegressor(clf, n_jobs=-1) else: clf = XGBClassifier(n_jobs=-1, random_state=999, max_depth=6) clf.set_params(**final_params) model = MultiOutputClassifier(clf, n_jobs=-1) if modeltype == 'Regression': scoring = 'neg_mean_squared_error' else: scoring = 'precision' model = RandomizedSearchCV(model, param_distributions = rand_params, n_iter = 15, return_train_score = True, random_state = 99, n_jobs=-1, cv = 3, refit=True, scoring = scoring, verbose = False) model.fit(x_train, y_train) print('Time taken for Hyper Param tuning of multi_label XGBoost (in minutes) = %0.1f' %( (time.time()-start_time)/60)) cv_results =
pd.DataFrame(model.cv_results_)
pandas.DataFrame
import pandas as pd sec_file = 'uniprot_sec_ac.txt' lines = open(sec_file, 'rt').readlines() for i, l in enumerate(lines): if l.startswith('Secondary AC'): entry_lines = lines[i+2:] sec_id = [] prim_id = [] for l in entry_lines: s, p = l.split() sec_id.append(s) prim_id.append(p) d = {'Secondary_ID': sec_id, 'Primary_ID': prim_id} df =
pd.DataFrame(data=d)
pandas.DataFrame
import json import numpy as np import pandas as pd import os def scan(file_path): for file in os.listdir(file_path): file_real = file_path + "/" + file if os.path.isdir(file_real): scan(file_real) else: if file_real.endswith("json"): file_handle(file_real) def file_handle(file): file_path, file_name = os.path.split(file) data_path = file_path + "/excel数据/" if not os.path.exists(data_path): os.mkdir(data_path) with open(file, 'rb') as f: data = f.readlines()[0] res_data = json.loads(data.decode('utf-8').strip('\ufeff')).get('data') pd_spr =
pd.DataFrame(res_data)
pandas.DataFrame
import pandas as pd import os import re import numpy as np import argparse def get_args_from_command_line(): """Parse the command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument("--country_code", type=str, default="US") parser.add_argument("--method", type=str) parser.add_argument("--threshold", type=float, default=0.95) parser.add_argument("--topk", type=int) args = parser.parse_args() return args if __name__ == '__main__': args = get_args_from_command_line() rank_threshold_dict = { 'is_hired_1mo': { 0: 95249, 1: 31756, 2: 4819, 3: 23401, 4: 3834}, 'is_unemployed': { 0: 2177012, 1: 4260, 2: 5719, 3: 108568, 4: 26946}, 'job_offer': { 0: 3101900, 1: 1235111, 2: 562596, 3: 523967, 4: 1258549}, 'job_search': { 0: 1501613, 1: 136421, 2: 205400, 3: 36363, 4: 456326}, 'lost_job_1mo': { 0: 89397, 1: 1, 2: 130115, 3: 11613, 4: 0}} list_folder_dict = { 'US': ['iter_0-convbert-969622-evaluation', 'iter_1-convbert-3050798-evaluation', 'iter_2-convbert-3134867-evaluation', 'iter_3-convbert-3174249-evaluation', 'iter_4-convbert-3297962-evaluation']} country_code = args.country_code data_path = f'/home/manuto/Documents/world_bank/bert_twitter_labor/twitter-labor-data/data/active_learning/evaluation_inference/{country_code}' results_dict = dict() for inference_folder in list_folder_dict[country_code]: for label in ['is_hired_1mo', 'lost_job_1mo', 'job_search', 'is_unemployed', 'job_offer']: if label not in results_dict.keys(): results_dict[label] = dict() csv_path = os.path.join(data_path, inference_folder, f'{label}.csv') iter_number = int(re.findall('iter_(\d)', inference_folder)[0]) df = pd.read_csv(csv_path) results_dict[label][f'iter_{iter_number}'] = dict() # compute and save metrics precision_top20 = df[:20]['class'].value_counts(dropna=False, normalize=True)[1] if args.method == 'topk': df_top_T = df.loc[df['rank'] < args.topk] elif args.method == 'threshold': df_top_T = df.loc[df['rank'] < rank_threshold_dict[label][iter_number]] if df_top_T.shape[0] < 2: precision_top_T = np.nan else: precision_top_T = df_top_T['class'].value_counts(dropna=False, normalize=True)[1] results_dict[label][f'iter_{iter_number}']['precision_top20'] = precision_top20 results_dict[label][f'iter_{iter_number}']['precision_top_T'] = precision_top_T # print(pd.DataFrame.from_dict(results_dict).T) # organize results results_df =
pd.DataFrame.from_dict(results_dict)
pandas.DataFrame.from_dict
import sys sys.path.append('gen') from collections import defaultdict from pathlib import Path import argparse import datetime import locale import logging from dash import Dash, dcc, html from sqlitedict import SqliteDict import grpc import pandas as pd from gen import users_pb2 from models import constants as cnst from models import currency, instruments, operations, positions from models import positions as pstns from models import prices, stats from models.base_classes import ApiContext, Currency from models.operations import Operation from views.plots import Plot from views.tables import Table DB_NAME = 'my_db.sqlite' TOKEN = Path('.token').read_text() locale.setlocale(locale.LC_ALL, ('RU', 'UTF8')) pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.max_rows', None)
pandas.set_option
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 12 16:44:53 2018. @author: dmitriy """ import datetime as dt import os import time as t from datetime import datetime from typing import Any, List, Tuple, Iterable import pandas as pd import psycopg2 import requests # import all the necessary libraries from bs4 import BeautifulSoup from dotenv import find_dotenv, load_dotenv from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.common.keys import Keys from selenium.webdriver.firefox.options import Options as FirefoxOptions load_dotenv() def catch_error(something: str) -> str: """Try catch an exception. __Attributes__ something: Where we will search for Exception. __Returns__ something if not error or "" if error is. """ try: something except IndexError: something = "" print("An Index Error!") return something else: # print(something) return something def create_conn() -> Tuple[Any, Any]: """Create connection to PostgreSQL DB.""" DATABASE_URL = os.environ["DATABASE_URL"] conn = psycopg2.connect(DATABASE_URL) cursor = conn.cursor() return conn, cursor def create_table(conn, cursor) -> None: """Create a table if not exists in DB.""" sql_query = """CREATE TABLE IF NOT EXISTS messages ( id serial NOT NULL, title character varying(255), date4 date, time3 character varying(50), author character varying(50), counts int, sometext character varying(512), category character varying(50), date2 character varying(255), CONSTRAINT persons_pkey PRIMARY KEY (id) )""" cursor.execute(sql_query) def fill_table(conn, cursor, csv_file_name) -> None: """Fill empty table with data from csv.""" sql = """COPY messages(title, date4, time3, author, counts, sometext, category, date2) FROM STDIN DELIMITER ',' CSV HEADER;""" cursor.copy_expert(sql, open(csv_file_name, "r")) def check_table(conn, cursor): """See data in our table as df.""" df = pd.read_sql("SELECT * FROM messages", conn) print(df.head(5)) print(len(df)) return df def delete_duplicates(conn, cursor) -> None: """Delete duplicates in table.""" # Delete duplicates sql_query = """DELETE FROM messages WHERE id IN (SELECT id FROM (SELECT id, ROW_NUMBER() OVER( PARTITION BY title ORDER BY id ) AS row_num FROM messages ) t WHERE t.row_num > 1 );""" cursor.execute(sql_query) def delete_counts_null(conn, cursor) -> None: """Delete duplicates in table.""" # Delete duplicates sql_query = """DELETE FROM messages WHERE counts IS NULL;""" cursor.execute(sql_query) def sort_by_dates(conn, cursor): """Sort data by date4 column.""" # to_char(date2, 'HH12:MI PM DD/MM/YYYY') newsdate, sql_query = """SELECT * FROM messages GROUP BY messages.id ORDER BY messages.date4 DESC;""" df = pd.read_sql(sql_query, conn) print(df.head(5)) print(len(df)) return df def drop_table(conn, cursor) -> None: """Drop a table if exists.""" sql_query = "DROP TABLE IF EXISTS messages;" cursor.execute(sql_query) def save_changes(conn, cursor) -> None: """Commit changes to DB.""" # Make the changes to the database persistent conn.commit() def close_conn(conn, cursor) -> None: """Close connection to DB.""" conn.close() cursor.close() def get_count(adres: str) -> List[int]: # options = FirefoxOptions() # options.add_argument("--headless") # caps = DesiredCapabilities.FIREFOX.copy() # caps['marionette'] = False from selenium.webdriver.firefox.options import Options options = Options() options.headless = True from selenium.webdriver.common.desired_capabilities import DesiredCapabilities cap = DesiredCapabilities().FIREFOX cap["marionette"] = True options.binary = os.environ['FIREFOX_BIN'] driver = webdriver.Firefox( capabilities=cap, options=options, executable_path=os.environ["GECKODRIVER_PATH"] ) # driver = webdriver.Firefox(options=options) driver.get(adres) elems = driver.find_elements_by_xpath("//span[contains(@class, 'comments part')]") # Without those two lines wouldn't recognize disqus count correctly [i.get_attribute('a') for i in elems] [i.text for i in elems] list_counts = [int(i.text) if i.text is not '' else 0 for i in elems] # list_counts = [i for i in list_counts if i != 0] # list_counts = list_counts[5:29] # Filter out other counts from bottom and right corner of page list_counts = list_counts[:-31] driver.close() return list_counts def prep_dashboard(conn, cursor): """Get dates from DB; needed for DatePicker in Dashboard.""" df = sort_by_dates(conn, cursor) df["date4"] = pd.to_datetime(df["date2"], format="%I:%M %p %d/%m/%Y") last_date_string = df["date4"].dt.strftime("%d %B, %Y").tolist()[0] first_date_string = df["date4"].dt.strftime("%d %B, %Y").tolist()[-1] month_allowed = df["date4"].dt.strftime("%m-%Y").tolist()[0] df["date4"] = df["date4"].dt.strftime("%Y-%m-%d") first_date, last_date = df["date4"].min(), df["date4"].max() df = check_table(conn, cursor) df["date4"] = pd.to_datetime(df["date2"], format="%I:%M %p %d/%m/%Y") df["date4"] = df["date4"].apply(lambda x: dt.datetime.strftime(x, "%Y-%m-%d %H:%M")) df = df.sort_values("date4", ascending=False) df = df.reset_index(drop=True) return ( last_date_string, first_date_string, month_allowed, first_date, last_date, df, ) def get_dates(df) -> Tuple[str, str]: """Get last date and date today.""" # print(df.columns) # print(df.dtypes) today_date = datetime.now().strftime("%d-%m-%Y") print(today_date) df["date3"] = pd.to_datetime(df["date2"], format="%I:%M %p %d/%m/%Y") # df["date3"] = pd.to_datetime(df["date2"], format="%I:%M %p %m/%d/%Y") df["date3"] = df["date3"].dt.strftime("%d-%m-%Y") last_date = df["date3"].tolist()[0] # last_date = df["date4"].max() print(last_date) del df["date3"] return last_date, today_date def prep_list_dates(last_date: str, today_date: str) -> List[str]: """Prep list with dates.""" list2 = [last_date, today_date] return list2 # list2 = ['18-03-2012', '21-03-2012'] # d-m-y # list1 = [i for i in range(1, args["count"])] def get_search_query(list2: List[str], t: int) -> str: """Create a query, that we will parse. __Attributes__ list2: List, which contain start and end date. t: if 1 change search query (look below) __Returns__ search_query: List, which contain search query. """ if t > 1: search_query = ( "https://itc.ua/page/" + str(t) + "/?s&after=" + str(list2[0]) + "&before=" + str(list2[1]) ) else: search_query = ( "https://itc.ua/?s&after=" + str(list2[0]) + "&before=" + str(list2[1]) ) return search_query def prep_numbers_2(count: int, list2: List[str]) -> List[str]: """Prep list to parse. __Attributes__ list2: list with dates. __Returns__ listadres: list with data to parse. """ # https://itc.ua/?s&after=10-01-2019&before=12-01-2019 # https://itc.ua/page/3/?s&after=10-01-2019&before=12-01-2019 # Create list which contains how many pages you want to scraping numbers = list(range(0, count)) # Create an empty list for all of the page adresses listadres = [] # Use for loop to fill list above with page adresses for i in numbers: if i == 1: example = ( "https://itc.ua/?s&after=" + str(list2[0]) + "&before=" + str(list2[1]) ) else: example = ( "https://itc.ua/page/" + str(i) + "/?s&after=" + str(list2[0]) + "&before=" + str(list2[1]) ) listadres.append(example) # Check output print(listadres) return listadres def onepage(adres: str): """Take one query and get DataFrame. __Attributes__ adres: one query. __Returns__ df: DataFrame with parsed values. """ # Use headers to prevent hide our script headers = {"User-Agent": "Mozilla/5.0"} # Get page page = requests.get(adres, headers=headers) # read_timeout=5 # Get all of the html code soup = BeautifulSoup(page.content, "html.parser") header = soup.find("header", class_="entry-header") # header_text = header.get_text() if header is not None: print("That's all!") return None # Find title the topic title = soup.find_all("h2", class_="entry-title") # Find time when topic is published time = soup.find_all("time", class_="published") # Find time when topic is updated timeup = soup.find_all("time", class_="screen-reader-text updated") # Find author the topic author = soup.find_all("a", class_="screen-reader-text fn") # Find how many comments have topic # counts = soup.find_all("span", class_="comments part") listcounts = get_count(adres) # counts = soup.find_all("a", class_="disqus-comment-count") # Find preface for topic sometext = soup.find_all("div", class_="entry-excerpt hidden-xs") # Category category = soup.find_all("span", class_="cat part text-uppercase") # Create an empty lists listtitle = [] listtime = [] listtimeup = [] listauthor = [] # listcounts = [] listsometext = [] listcategory = [] limit = min( [ len(list(title)), len(list(time)), len(list(timeup)), len(list(timeup)), len(list(author)), len(listcounts), len(list(sometext)), len(list(category)), ] ) # Fill the lists above our scraping date for i in range(0, limit): k = title[i].get_text().replace("\n", "").replace("\t", "") listtitle.append(k) # listtitle = " ".join(title[i].get_text().split()) # listtitle = " ".join(title[i].get_text().split()) ll = time[i].get_text().replace("\n", "").replace("\t", "") listtime.append(ll) # listtime = " ".join(time[i].get_text().split()) m = timeup[i].get_text().replace("\n", "").replace("\t", "") listtimeup.append(m) # listtimeup = " ".join(timeup[i].get_text().split()) try: n = author[i].get_text().replace("\n", "").replace("\t", "") except IndexError: n = "" listauthor.append(n) # n = catch_error(author[i].get_text()) # listauthor.append(n) """ o = counts[i].get_text().replace("\n", "").replace("\t", "") listcounts.append(o) """ # listcounts = " ".join(counts[i].get_text().split()) try: p = sometext[i].get_text().replace("\n", "").replace("\t", "") except IndexError: p = "" listsometext.append(p) c = category[i].get_text() listcategory.append(c) # listcategory = " ".join(category[i].get_text().split()) # Create DataFrame, that will contains info from lists df = pd.DataFrame( { "title": listtitle, "date4": listtime, "time3": listtimeup, "author": listauthor, "counts": listcounts, "sometext": listsometext, "category": listcategory, } ) # Function will return that DataFrame return df def calc2(listadres: List[str]): """Take list and return df with parsed data. __Attributes__ listadres: list with prepared adresses. __Returns__ df: DataFrame with parsed values. """ # Create an empty DataFrame df = pd.DataFrame() # Adding each new page in one DataFrame for c, v in enumerate(listadres): if onepage(v) is None: break else: t.sleep(1.5) df = pd.concat([df, onepage(v)], ignore_index=True) print("Parsed {} pages".format(c + 1)) listadres.append(get_search_query(list2, c + 1)) t.sleep(1.5) return df def get_one_csv(df): """Prepare DataFrame. __Attributes__ df: DataFrame with parsed data. __Returns__ df: DataFrame sorted by date abd without duplicates. """ # 3:19 PM 13/12/2018 # Change datetime format to what we want (example above) df["date4"] = df["date4"].str.strip().str.replace(" в ", "/") df["date2"] = pd.to_datetime(df["date4"], format="%d.%m.%Y/%H:%M") df["date2"] = df["date2"].apply( lambda x: dt.datetime.strftime(x, "%I:%M %p %d/%m/%Y") ) df.drop_duplicates(subset="title", inplace=True) df["date4"] = pd.to_datetime(df["date2"], format="%I:%M %p %d/%m/%Y") df["date4"] = df["date4"].apply(lambda x: dt.datetime.strftime(x, "%Y-%m-%d %H:%M")) df = df.sort_values("date4", ascending=False) df = df.reset_index(drop=True) return df def remove_csv(names: List[str]) -> None: """Remove all csv.""" for i in names: if os.path.exists(i): os.remove(i) print("Remove complete") if __name__ == "__main__": print("Begin") start0 = t.time() names = ["itctray41.csv", "itctray42.csv", "itctray43.csv"] print("Connnect to DB") conn, cursor = create_conn() print("Create table if not exists in DB") create_table(conn, cursor) """ conn, cursor = create_conn() print("Create table if not exists in DB") create_table(conn, cursor) # print("Fill DB with data from csv") fill_table(conn, cursor, "itctray.csv") """ print("Get old df from DB") df1 = sort_by_dates(conn, cursor) # df1 = df1.select_dtypes(include=['object']).applymap(lambda x: x.strip() if x else x) df1.to_csv(names[0], index=False) print("Get datetime now and last date from old df") last_date, today_date = get_dates(df1) # 27.05 15.03 print(last_date) print(today_date) # drop_table(conn, cursor) # save_changes(conn, cursor) # print("Close connection to DB") # close_conn(conn, cursor) """ today_date = "27-05-2019" last_date = "25-05-2019" """ print("Parse data") list2 = prep_list_dates(last_date, today_date) print("1") listadres = prep_numbers_2(1, list2) df2 = calc2(listadres) # print(df.date2.tolist()[:10]) df2 = get_one_csv(df2) # df = df.select_dtypes(include=['object']).applymap(lambda x: x.strip() if x else x) old_columns = df2.columns.tolist() df2['id'] = [i for i in range(len(df1), len(df1) + len(df2))] new_columns = ['id'] + old_columns df2 = df2[new_columns] df2['date4'] = df2['date4'].apply(lambda x: x.split(" ")[0]) df2.to_csv(names[1], index=False) df3 =
pd.concat([df2, df1])
pandas.concat
import pytest import numpy as np import pandas as pd from ..linkages import sortLinkages from ..linkages import calcDeltas ### Create test data set linkage_ids = ["a", "b", "c"] linkage_lengths = [4, 5, 6] linkage_members_ids = [] for i, lid in enumerate(linkage_ids): linkage_members_ids += [lid for j in range(linkage_lengths[i])] obs_ids = [f"o{i:04d}" for i in range(len(linkage_members_ids))] times = [] for i in range(len(linkage_ids)): times += [np.arange(59000, 59000 + linkage_lengths[i])] times = np.concatenate(times) LINKAGES = pd.DataFrame({ "linkage_id" : linkage_ids }) LINKAGE_MEMBERS = pd.DataFrame({ "linkage_id" : linkage_members_ids, "obs_id" : obs_ids, "mjd_utc" : times, }) OBSERVATIONS = pd.DataFrame({ "obs_id" : obs_ids, "mjd_utc" : times, }) OBSERVATIONS.sort_values( by=["mjd_utc", "obs_id"], inplace=True, ignore_index=True ) def test_sortLinkages_timePresent(): # Scramble the linkages dataframe len_linkages = len(LINKAGES) scramble = np.random.choice(len_linkages, len_linkages, replace=False) linkages_unsorted = LINKAGES.loc[scramble].reset_index( drop=True ) # Scramble the linkage_members dataframe len_members = len(LINKAGE_MEMBERS) scramble = np.random.choice(len_members, len_members, replace=False) linkage_members_unsorted = LINKAGE_MEMBERS.loc[scramble].reset_index( drop=True ) # Sort scrambled linkages linkages_sorted, linkage_members_sorted = sortLinkages( linkages_unsorted, linkage_members_unsorted, OBSERVATIONS, linkage_id_col="linkage_id" ) # Make sure they returned dataframes match those created pd.testing.assert_frame_equal(LINKAGES, linkages_sorted) pd.testing.assert_frame_equal(LINKAGE_MEMBERS, linkage_members_sorted) def test_sortLinkages_timeMissing(): # Scramble the linkages dataframe len_linkages = len(LINKAGES) scramble = np.random.choice(len_linkages, len_linkages, replace=False) linkages_unsorted = LINKAGES.loc[scramble].reset_index( drop=True ) # Scramble the linkage_members dataframe len_members = len(LINKAGE_MEMBERS) scramble = np.random.choice(len_members, len_members, replace=False) linkage_members_unsorted = LINKAGE_MEMBERS.loc[scramble].reset_index( drop=True ) linkage_members_unsorted.drop( columns=["mjd_utc"], inplace=True ) # Sort scrambled linkages linkages_sorted, linkage_members_sorted = sortLinkages( linkages_unsorted, linkage_members_unsorted, OBSERVATIONS, linkage_id_col="linkage_id" ) # Make sure they returned dataframes match those created pd.testing.assert_frame_equal(LINKAGES, linkages_sorted)
pd.testing.assert_frame_equal(LINKAGE_MEMBERS[["linkage_id", "obs_id"]], linkage_members_sorted)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import time import sys import json import numpy as np import pandas as pd from pathlib import Path import subprocess as subp import traceback from sklearn.model_selection import train_test_split, TimeSeriesSplit import sklearn.metrics as skmet from autogluon.tabular import TabularPredictor from sklearn.metrics import accuracy_score this_dir = Path(os.getcwd()).resolve() bert_sort_root = this_dir.parent.parent DATA_DIR = bert_sort_root / 'benchmarks' test_info_path = bert_sort_root / 'automl' / 'task_spec.json' output_dir = Path('output') if not output_dir.exists(): output_dir.mkdir() with open(test_info_path) as f: test_info = json.load(f) def drop_columns(dataset, project_key, ignore): '''drop columns for ignored fields such as IDs''' if ignore: for c in ignore: if c in dataset.columns: print('dropping column %s' % (c)) dataset = dataset.drop(c, axis=1) return dataset def split(X, y, project_key, random_seed): '''split data sets with 75%/25% ratios for training and testing, respectively''' X_training, X_test, y_training, y_test = train_test_split(X, y, test_size=0.25, random_state=int(random_seed)) return X_training, X_test, y_training, y_test train_time=5 #set maximum allowance time for each experiment (per data set per Method) in minutes datasets = ['audiology', 'bank', 'car_eval', 'labor-relations', 'Nursery', 'Post-Operative', 'Pittsburgh_Bridges', 'cat-in-the-dat-ii' #'Coil_1999', #'uci-automobile', ] file_extensions = [ '_Raw.csv', '_bs__roberta.csv', '_EncodedBERT.csv' , '_OrdinalEncoder.csv', '_GroundTruth.csv' ] seeds=['108', '180', '234', '309', # '533' used for 5 seeds ] max_seeds=None for seed in seeds[:max_seeds]: for dataname in datasets: for tail in file_extensions: try: print(f'Processing:{dataname}, Seed:{seed}, Encoded Method:{tail}') # construct the path of benchmark subfolder_name = dataname + '_' + str(seed) + '_m' + str(train_time) + tail result_output_path = 'output/' + subfolder_name Path(result_output_path).mkdir(exist_ok=True) ignore = None target_column_name = test_info[dataname]['target_feature'] #print('target_columns:', target_column_name) target_dataset = test_info[dataname]['target_dataset'] task_type = test_info[dataname]['task'] if 'ignore' in test_info[dataname]: ignore_column_name = test_info[dataname]['ignore'] if isinstance(ignore_column_name, list): ignore_column_name = ','.join(ignore_column_name) else: ignore_column_name = None filepath = DATA_DIR / (('%s' % (target_dataset)) + tail) if ignore_column_name: ignore = ignore_column_name.split(',') if dataname == 'bank' and tail == '': main_df =
pd.read_csv(filepath, sep=';', header='infer')
pandas.read_csv
import matplotlib matplotlib.use('Agg') import pdb import sys import Pipelines as pl import pandas as pd from datetime import datetime import numpy as np import time # saving the models for the iteration tests: # to save the models for the iteration tests, we will save a dataframe (in the form of the final dataframe from Analyzer...) instead of a full model, because it is too computationally expensive, and as of this day, we are running out of room on QUEST. def str2bool(v): return v.lower() in ("yes", "true", "t", "1") def main(data_folder, output_path, target_dataset, my_iterating_param, param_test_style, param_tests, n_trials): current_time = datetime.now().strftime('%Y-%m-%d_%H:%M:%S') default_params = {'data_folder':data_folder, 'file_path':target_dataset, 'td_window':4,'min_lag':0,'max_lag':2,'n_trees':500,'permutation_n':5, 'lag_method':'mean_mean', 'calc_mse':False, 'bootstrap_n':50,'n_trials':n_trials, 'run_time':current_time, 'sort_by': 'rank','iterating_param':my_iterating_param, 'filter_noisy':True, 'alpha': None} overall_df =
pd.DataFrame()
pandas.DataFrame
from configs import Level, LEVEL_MAP from db.DBConnector import close_connection from refactoring_statistics.plot_utils import box_plot_seaborn from refactoring_statistics.query_utils import get_metrics_refactoring_level, get_metrics_refactorings, retrieve_columns from utils.log import log_init, log_close, log import time import datetime import pandas as pd from pathlib import Path from os import path REFACTORING_SAMPLES = 50000 REFACTORING_LEVELS = [Level.Class, Level.Method, Level.Variable, Level.Field, Level.Other] IMG_FORMAT = "svg" DATASET = "" # metrics CLASS_METRICS_Fields = ["classCbo", # "classLcom", "classLCC", "classTCC", "classRfc", "classWmc"] CLASS_METRICS_REDUCED_Fields = ["classCbo", "classTCC", "classWmc"] CLASS_LARGE_Fields = ["classLcom", "classLoc"] CLASS_ATTRIBUTES_QTY_Fields = ["classUniqueWordsQty", "classNumberOfMethods", "classStringLiteralsQty", "classNumberOfPublicFields", "classVariablesQty"] # plot all refactoring for each level def metrics_refactorings_individual_levels(dataset, save_dir, yticks, metrics, title, file_descriptor): # refactoring metrics per level for level in REFACTORING_LEVELS: fig_path_box = f"{save_dir}{file_descriptor}_{str(level)}_log_box_plot_{dataset}.{IMG_FORMAT}" if not path.exists(fig_path_box): refactoring_metrics_level = get_metrics_refactorings(level, dataset, LEVEL_MAP[level], metrics, REFACTORING_SAMPLES) refactoring_metrics_level = pd.melt(refactoring_metrics_level, id_vars="refactoring", var_name="Metric", value_vars=metrics, value_name="values") refactoring_metrics_level['refactoring'] = refactoring_metrics_level['refactoring'].astype('category') refactoring_metrics_level['Metric'] = refactoring_metrics_level['Metric'].astype('category') box_plot_seaborn(refactoring_metrics_level, f"{title} {str(level)}", fig_path_box, scale="log", yticks=yticks, hue="refactoring") else: log(f"--Skipped box plot at {fig_path_box}, because it already exists.") # plot the metrics for each refactoring level def metrics_refactoring_levels(dataset, save_dir, yticks, metrics, title, file_descriptor): fig_path_box = f"{save_dir}{file_descriptor}_log_box_plot_{dataset}.{IMG_FORMAT}" if not path.exists(fig_path_box): combined_refactoring_metrics =
pd.DataFrame()
pandas.DataFrame
""" Coding: UTF-8 Author: Randal Time: 2021/2/20 E-mail: <EMAIL> Description: This is a simple toolkit for data extraction of text. The most important function in the script is about word frequency statistics. Using re, I generalized the process in words counting, regardless of any preset word segmentation. Besides, many interesting functions, like getting top sentences are built here. All rights reserved. """ import xlwings as xw import pandas as pd import numpy as np import os import re from alive_progress import alive_bar from alive_progress import show_bars, show_spinners import jieba import datetime from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import math class jieba_vectorizer(CountVectorizer): def __init__(self, tf, userdict, stopwords, orient=False): """ :param tf: 输入的样本框,{axis: 1, 0: id, 1: 标题, 2: 正文, 3: 来源, 4: freq} :param stopwords: 停用词表的路径 :param user_dict_link: 关键词清单的路径 :param orient: {True: 返回的 DTM 只包括关键词清单中的词,False: 返回 DTM 中包含全部词语} :return: 可以直接使用的词向量样本 """ self.userdict = userdict self.orient = orient self.stopwords = stopwords jieba.load_userdict(self.userdict) # 载入关键词词典 tf = tf.copy() # 防止对函数之外的原样本框造成改动 print('切词中,请稍候……') rule = re.compile(u'[^\u4e00-\u9fa5]') # 清洗所有样本,只保留汉字 for i in range(0, tf.shape[0]): try: tf.iloc[i, 2] = rule.sub('', tf.iloc[i, 2]) except TypeError: print('样本清洗Error: doc_id = ' + str(i)) continue if self.stopwords is not None: stopwords = txt_to_list(self.stopwords) # 载入停用词表 else: stopwords = [] # 开始切词 words = [] items = range(0, len(tf)) with alive_bar(len(items), force_tty=True, bar='circles') as bar: for i, row in tf.iterrows(): item = row['正文'] result = jieba.cut(item) # 同时过滤停用词 word = '' for element in result: if element not in stopwords: if element != '\t': word += element word += " " words.append(word) bar() # CountVectorizer() 可以自动完成词频统计,通过fit_transform生成文本向量和词袋库 # 如果需要换成 tfidfVectorizer, 把下面三行修改一下就可以了 vect = CountVectorizer() X = vect.fit_transform(words) self.vectorizer = vect matrix = X X = X.toarray() # 二维ndarray可以展示在pycharm里,但是和DataFrame性质完全不同 # ndarray 没有 index 和 column features = vect.get_feature_names() XX = pd.DataFrame(X, index=tf['id'], columns=features) self.DTM0 = matrix self.DTM = XX self.features = features # # 下面是之前走的弯路,不足一哂 # words_bag = vect.vocabulary_ # # 字典的转置(注意只适用于vk一一对应的情况,1v多k请参考setdefault) # bag_words = dict((v, k) for k, v in words_bag.items()) # # # 字典元素的排列顺序不等于字典元素值的排列顺序 # lst = [] # for i in range(0, len(XX.columns)): # lst.append(bag_words[i]) # XX.columns = lst if orient: dict_filter = txt_to_list(self.userdict) for word in features: if word not in dict_filter: XX.drop([word], axis=1, inplace=True) self.DTM_key = XX def get_feature_names(self): return self.features def strip_non_keywords(self, df): ff = df.copy() dict_filter = txt_to_list(self.userdict) for word in self.features: if word not in dict_filter: ff.drop([word], axis=1, inplace=True) return ff def make_doc_freq(word, doc): """ :param word: 指的是要对其进行词频统计的关键词 :param doc: 指的是要遍历的文本 :return: lst: 返回字典,记录关键词在文本当中出现的频次以及上下文 """ # 使用正则表达式进行匹配, 拼接成pattern # re.S表示会自动换行 # finditer是findall的迭代器版本,通过遍历可以依次打印出子串所在的位置 it = re.finditer(word, doc, re.S) # match.group()可以返回子串,match.span()可以返回索引 lst = [] for match in it: lst.append(match.span()) freq = dict() freq['Frequency'] = len(lst) # 将上下文结果也整理为一个字典 context = dict() for i in range(0, len(lst)): # 将span的范围前后各扩展不多于10个字符,得到上下文 try: # 为了划出适宜的前后文范围,需要设定索引的最大值和最小值 # 因此要比较span+10和doc极大值,span-10和doc极小值 # 最大值在两者间取小,最小值在两者间取大 MAX = min(lst[i][1] + 10, len(doc)) MIN = max(0, lst[i][0] - 10) # 取得上下文 context[str(i)] = doc[MIN: MAX] except IndexError: print('IndexError: ' + word) freq['Context'] = context return freq def make_info_freq(name, pattern, doc): """ :param name: 指的是对其进行词频统计的形式 :param pattern: 指的是对其进行词频统计的正则表达式 :param doc: 指的是要遍历的文本 :return: lst: 返回字典,记录关键词在文本当中出现的频次以及上下文 注:该函数返回字典中的context元素为元组:(关键词,上下文) """ # 使用正则表达式进行匹配, 拼接成pattern # re.S表示会自动换行 # finditer是findall的迭代器版本,通过遍历可以依次打印出子串所在的位置 it = re.finditer(pattern[0], doc, re.S) # match.group()可以返回子串,match.span()可以返回索引 cls = pattern[1] lst = [] for match in it: lst.append(match.span()) freq = dict() freq['Frequency'] = len(lst) freq['Name'] = name # 将上下文结果也整理为一个字典 context = dict() for i in range(0, len(lst)): # 将span的范围前后各扩展不多于10个字符,得到上下文 try: # 为了划出适宜的前后文范围,需要设定索引的最大值和最小值 # 因此要比较span+10和doc极大值,span-10和doc极小值 # 最大值在两者间取小,最小值在两者间取大 MAX = min(lst[i][1] + 10, len(doc)) MIN = max(0, lst[i][0] - 10) # 取得匹配到的关键词,并做掐头去尾处理 word = match_cut(doc[lst[i][0]: lst[i][1]], cls) # 将关键词和上下文打包,存储到 context 条目中 context[str(i)] = (word, doc[MIN: MAX]) except IndexError: print('IndexError: ' + name) freq['Context'] = context return freq def make_docs_freq(word, docs): """ :param word: 指的是要对其进行词频统计的关键词 :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列 (iloc: 0),正文列 (iloc: 2) 和预留出的频次列 (iloc: 4) :return: 返回字典,其中包括“单关键词-单文本”的词频字典集合,以及计数结果汇总 """ freq = dict() # 因为总频数是通过"+="的方式计算,不是简单赋值,所以要预设为0 freq['Total Frequency'] = 0 docs = docs.copy() # 防止对函数之外的原样本框造成改动 for i in range(0, len(docs)): # 对于每个文档,都形成一个字典,字典包括关键词在该文档出现的频数和上下文 # id需要在第0列,正文需要在第2列 freq['Doc' + str(docs.iloc[i, 0])] = make_doc_freq(word, docs.iloc[i, 2]) # 在给每个文档形成字典的同时,对于总概率进行滚动加总 freq['Total Frequency'] += freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] docs.iloc[i, 4] = freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] # 接下来建立一个DFC(doc-freq-context)统计面板,汇总所有文档对应的词频数和上下文 # 首先构建(id, freq)的字典映射 xs = docs['id'] ys = docs['freq'] # zip(迭代器)是一个很好用的方法,建议多用 id_freq = {x: y for x, y in zip(xs, ys)} # 新建一个空壳DataFrame,接下来把数据一条一条粘贴进去 data = pd.DataFrame(columns=['id', 'freq', 'word', 'num', 'context']) for item in xs: doc = freq['Doc' + str(item)] num = doc['Frequency'] context = doc['Context'] for i in range(0, num): strip = {'id': item, 'freq': id_freq[item], 'word': word, 'num': i, 'context': context[str(i)]} # 默认orient参数等于columns # 如果字典的值是标量,那就必须传递一个index,这是规定 strip = pd.DataFrame(strip, index=[None]) # df的append方法只能通过重新赋值来进行修改 data = data.append(strip) data.set_index(['id', 'freq', 'word'], drop=True, inplace=True) freq['DFC'] = data return freq def make_infos_freq(name, pattern, docs): """ :param name: 指的是对其进行词频统计的形式 :param pattern: 指的是对其进行词频统计的(正则表达式, 裁剪方法) :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列(iloc: 0)和正文列(iloc: 2) :return: 返回字典,其中包括“单关键词-单文本”的词频字典集合,以及计数结果汇总 """ freq = dict() # 因为总频数是通过"+="的方式计算,不是简单赋值,所以要预设为0 freq['Total Frequency'] = 0 docs = docs.copy() # 防止对函数之外的原样本框造成改动 items = range(0, len(docs)) with alive_bar(len(items), force_tty=True, bar='circles') as bar: for i in items: # 对于每个文档,都形成一个字典,字典包括关键词在该文档出现的频数和上下文 # id需要在第0列,正文需要在第2列 # pattern 要全须全尾地传递进去,因为make_info_freq两个参数都要用 freq['Doc' + str(docs.iloc[i, 0])] = make_info_freq(name, pattern, docs.iloc[i, 2]) # 在给每个文档形成字典的同时,对于总概率进行滚动加总 freq['Total Frequency'] += freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] docs.iloc[i, 4] = freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] bar() # 接下来建立一个DFC(doc-freq-context)统计面板,汇总所有文档对应的词频数和上下文 # 首先构建(id, freq)的字典映射 xs = docs['id'] ys = docs['freq'] # zip(迭代器)是一个很好用的方法,建议多用 id_freq = {x: y for x, y in zip(xs, ys)} # 新建一个空壳DataFrame,接下来把数据一条一条粘贴进去 data = pd.DataFrame(columns=['id', 'freq', 'form', 'word', 'num', 'context']) for item in xs: doc = freq['Doc' + str(item)] num = doc['Frequency'] # 从(关键词,上下文)中取出两个元素 context = doc['Context'] for i in range(0, num): # context 中的关键词已经 match_cut 完毕,不需要重复处理 strip = {'id': item, 'form': name, 'freq': id_freq[item], 'word': context[str(i)][0], 'num': i, 'context': context[str(i)][1]} # 默认orient参数等于columns # 如果字典的值是标量,那就必须传递一个index,这是规定 strip = pd.DataFrame(strip, index=[None]) # df的append方法只能通过重新赋值来进行修改 data = data.append(strip) data.set_index(['id', 'freq', 'form', 'word'], drop=True, inplace=True) freq['DFC'] = data print(name + ' Completed') return freq def words_docs_freq(words, docs): """ :param words: 表示要对其做词频统计的关键词清单 :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列、正文列、和频率列 :return: 返回字典,其中包括“单关键词-多文本”的词频字典集合,以及最终的DFC(doc-frequency-context)和DTM(doc-term matrix) """ freqs = dict() # 与此同时新建一个空壳DataFrame,用于汇总DFC data = pd.DataFrame() # 新建一个空壳,用于汇总DTM(Doc-Term-Matrix) dtm = pd.DataFrame(None, columns=words, index=docs['id']) # 来吧,一个循环搞定所有 items = range(len(words)) with alive_bar(len(items), force_tty=True, bar='blocks') as bar: for word in words: freq = make_docs_freq(word, docs) freqs[word] = freq data = data.append(freq['DFC']) for item in docs['id']: dtm.loc[item, word] = freq['Doc' + str(item)]['Frequency'] bar() # 记得要sort一下,不然排序的方式不对(应该按照doc id来排列) data.sort_index(inplace=True) freqs['DFC'] = data freqs['DTM'] = dtm return freqs def infos_docs_freq(infos, docs): """ :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列和正文列 :param infos: 指的是正则表达式的列表,格式为字典,key是示例,如“(1)”,value 是正则表达式,如“([0-9])” :return: 返回字典,其中包括“单关键词-多文本”的词频字典集合,以及最终的DFC(doc-frequency-context)和DTM(doc-term matrix) """ freqs = dict() # 与此同时新建一个空壳DataFrame,用于汇总DFC data = pd.DataFrame() # 新建一个空壳,用于汇总DTM(Doc-Term-Matrix) dtm = pd.DataFrame(None, columns=list(infos.keys()), index=docs['id']) # 来吧,一个循环搞定所有 items = range(len(infos)) with alive_bar(len(items), force_tty=True, bar='blocks') as bar: for k, v in infos.items(): freq = make_infos_freq(k, v, docs) freqs[k] = freq data = data.append(freq['DFC']) for item in docs['id']: dtm.loc[item, k] = freq['Doc' + str(item)]['Frequency'] bar() # 记得要sort一下,不然排序的方式不对(应该按照doc id来排列) data.sort_index(inplace=True) freqs['DFC'] = data freqs['DTM'] = dtm return freqs def massive_pop(infos, doc): """ :param infos: List,表示被删除内容对应的正则表达式 :param doc: 表示正文 :return: 返回一个完成删除的文本 """ for info in infos: doc = re.sub(info, '', doc) return doc def massive_sub(infos, doc): """ :param infos: Dict, 表示被替换内容对应的正则表达式及替换对象 :param doc: 表示正文 :return: 返回一个完成替换的文本 """ for v, k in infos: doc = re.sub(v, k, doc) return doc # 接下来取每个样本的前n句话(或者不多于前n句话的内容),再做一次进行对比 # 取前十句话的原理是,对!?。等表示语义结束的符号进行计数,满十次为止 def top_n_sent(n, doc, percentile=1): """ :param n: n指句子的数量,这个函数会返回一段文本中前n句话,若文本内容不多于n句,则全文输出 :param word: 指正文内容 :param percentile: 按照分位数来取句子时,要输入的分位,比如一共有十句话,取50%分位就是5句 如果有11句话,向下取整也是输出5句 :return: 返回字符串:前n句话 """ info = '[。?!]' # 在这个函数体内,函数主体语句的作用域大于循环体,因此循环内的变量相当于局部变量 # 因此想在循环外直接返回,就会出现没有定义的错误,因此可以做一个全局声明 # 但是不建议这样做,因为如果函数外有一个变量恰巧和局部变量重名,那函数外的变量也会被改变 # 因此还是推荐多使用迭代器,把循环包裹成迭代器,可以解决很多问题 # 而且已经封装好的迭代器,例如re.findall_iter,就不用另外再去写了,调用起来很方便 # 如下,第一行代码的作用是用列表包裹迭代器,形成一个生成器的列表 # 每个生成器都存在自己的 Attribute re_iter = list(re.finditer(info, doc)) # max_iter 是 re 匹配到的最大次数 max_iter = len(re_iter) # 这一句表示,正文过于简短,或者没有标点,此时直接输出全文 if max_iter == 0: return doc # 考虑 percentile 的情况,如果总共有11句,就舍弃掉原来的 n,直接改为总句数的 percentile 对应的句子数 # 注意是向下取整 if percentile != 1: n = math.ceil(percentile * max_iter) # 如果匹配到至少一句,循环自然结束,输出结果 if n > 0: return doc[0: re_iter[n - 1].end()] # 如果正文过于简短,或设定的百分比过低,一句话都凑不齐,此时直接输出第一句 elif n == 0: return doc[0: re_iter[0].end()] # 如果匹配到的句子数大于 n,此时只取前 n 句 if max_iter >= n: return doc[0: re_iter[n - 1].end()] # 如果匹配到的句子不足 n 句,直接输出全部内容 elif 0 < max_iter < n: return doc[0: re_iter[-1].end()] # 为减少重名的可能,尽量在函数体内减少变量的使用 def dtm_sort_filter(dtm, keymap, name=None): """ :param dtm: 前面生成的词频统计矩阵:Doc-Term-Matrix :param keymap: 字典,标明了 类别-关键词列表 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个字典,字典包含两个 pandas.DataFrame: 一个是表示各个种类是否存在的二进制表,另一个是最终的种类数 """ dtm = dtm.applymap(lambda x: 1 if x != 0 else 0) strips = {} for i, row in dtm.iterrows(): strip = {} for k, v in keymap.items(): strip[k] = 0 for item in v: try: strip[k] += row[item] except KeyError: pass strips[i] = strip dtm_class = pd.DataFrame.from_dict(strips, orient='index') dtm_class = dtm_class.applymap(lambda x: 1 if x != 0 else 0) dtm_final = dtm_class.agg(np.sum, axis=1) result = {'DTM_class': dtm_class, 'DTM_final': dtm_final} return result def dtm_point_giver(dtm, keymap, scoremap, name=None): """ :param dtm: 前面生成的词频统计矩阵:Doc-Term-Matrix :param keymap: 字典,{TypeA: [word1, word2, word3, ……], TypeB: ……} :param scoremap: 字典,标明了 类别-分值 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本的分值(所有关键词的分值取最高) """ dtm = dtm.applymap(lambda x: 1 if x != 0 else 0) # 非 keymap 中词会被过滤掉 strips = {} for i, row in dtm.iterrows(): strip = {} for k, v in keymap.items(): strip[k] = 0 for item in v: try: strip[k] += row[item] except KeyError: pass strips[i] = strip dtm_class = pd.DataFrame.from_dict(strips, orient='index') dtm_class = dtm_class.applymap(lambda x: 1 if x != 0 else 0) # 找到 columns 对应的分值 keywords = list(dtm_class.columns) multiplier = [] for keyword in keywords: multiplier.append(scoremap[keyword]) # DataFrame 的乘法运算,不会改变其 index 和 columns dtm_score = dtm_class.mul(multiplier, axis=1) # 取一个最大值来赋分 dtm_score = dtm_score.agg(np.max, axis=1) return dtm_score def dfc_sort_filter(dfc, keymap, name=None): """ :param dfc: 前面生成的词频统计明细表:Doc-Frequency-Context :param keymap: 字典,标明了 关键词-所属种类 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本中所包含的业务种类数 """ # 接下来把关键词从 dfc 的 Multi-index 中拿出来(这个index本质上就是一个ndarray) # 拿出来关键词就可以用字典进行映射 # 先新建一列class-id,准备放置映射的结果 dfc.insert(0, 'cls-id', None) # 开始遍历 for i in range(0, len(dfc.index)): dfc.iloc[i, 0] = keymap[dfc.index[i][2]] # 理论上就可以直接通过 excel 的分类计数功能来看业务种类数了 # 失败了,excel不能看种类数,只能给所有值做计数,因此还需要借助python的unique语句 # dfc.to_excel('被监管业务统计.xlsx') # 可以对于每一种index做一个计数,使用loc索引到的对象是一个DataFrame # 先拿到一个doc id的列表 did = [] for item in dfc.index.unique(): did.append(item[0]) did = list(pd.Series(did).unique()) # 接下来获得每一类的结果,注:多重索引的取值值得关注 uni = {} for item in did: uni[item] = len(dfc.loc[item, :, :]['cls-id'].unique()) # 把生成的字典转换为以键值行索引的 DataFrame uni = pd.DataFrame.from_dict(uni, orient='index') uni.fillna(0, axis=1, inplace=True) # uni.to_excel(name) return uni def dfc_point_giver(dfc, keymap, name=None): """ :param dfc: 前面生成的词频统计明细表:Doc-Frequency-Context :param keymap: 字典,标明了 关键词-分值 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本的分值(所有关键词的分值取最高) """ dfc.insert(0, 'point', None) # 开始遍历 for i in range(0, len(dfc.index)): dfc.iloc[i, 0] = keymap[dfc.index[i][2]] # 可以对于每一种index做一个计数,使用loc索引到的对象是一个DataFrame # 先拿到一个doc id的列表 did = [] for item in dfc.index.unique(): did.append(item[0]) did = list(pd.Series(did).unique()) # 接下来获得每一类的结果,注:多重索引的取值值得关注 uni = {} for item in did: uni[item] = max(dfc.loc[item, :, :]['point'].unique()) # 把生成的字典转换为以键值行索引的 DataFrame uni = pd.DataFrame.from_dict(uni, orient='index') uni.fillna(0, axis=1, inplace=True) # uni.to_excel(name) return uni def dfc_sort_counter(dfc, name=None): """ :param dfc: 前面生成的词频统计明细表:Doc-Frequency-Context :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本中所包含的业务种类数 """ # 可以对于每一种index做一个计数,使用loc索引到的对象是一个DataFrame dfc.insert(0, 'form', None) for i in range(0, dfc.shape[0]): dfc.iloc[i, 0] = dfc.index[i][2] # 先拿到一个doc id的列表 did = [] for item in dfc.index.unique(): did.append(item[0]) did = list(pd.Series(did).unique()) # 接下来获得每一类的结果,注:多重索引的取值值得关注 uni = {} for item in did: uni[item] = len(dfc.loc[item, :, :, :]['form'].unique()) # 把生成的字典转换为以键值行索引的 DataFrame uni =
pd.DataFrame.from_dict(uni, orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """System transmission plots. This code creates transmission line and interface plots. @author: <NAME>, <NAME> """ import os import logging import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors import matplotlib.dates as mdates import marmot.config.mconfig as mconfig from marmot.plottingmodules.plotutils.plot_library import PlotLibrary from marmot.plottingmodules.plotutils.plot_data_helper import PlotDataHelper from marmot.plottingmodules.plotutils.plot_exceptions import (MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData) class MPlot(PlotDataHelper): """transmission MPlot class. All the plotting modules use this same class name. This class contains plotting methods that are grouped based on the current module name. The transmission.py module contains methods that are related to the transmission network. MPlot inherits from the PlotDataHelper class to assist in creating figures. """ def __init__(self, argument_dict: dict): """ Args: argument_dict (dict): Dictionary containing all arguments passed from MarmotPlot. """ # iterate over items in argument_dict and set as properties of class # see key_list in Marmot_plot_main for list of properties for prop in argument_dict: self.__setattr__(prop, argument_dict[prop]) # Instantiation of MPlotHelperFunctions super().__init__(self.Marmot_Solutions_folder, self.AGG_BY, self.ordered_gen, self.PLEXOS_color_dict, self.Scenarios, self.ylabels, self.xlabels, self.gen_names_dict, self.TECH_SUBSET, Region_Mapping=self.Region_Mapping) self.logger = logging.getLogger('marmot_plot.'+__name__) self.font_defaults = mconfig.parser("font_settings") def line_util(self, **kwargs): """Creates a timeseries line plot of transmission lineflow utilization for each region. Utilization is plotted between 0 and 1 on the y-axis. The plot will default to showing the 10 highest utilized lines. A Line category can also be passed instead, using the property field in the Marmot_plot_select.csv Each scenarios is plotted on a separate Facet plot. This methods calls _util() to create the figure. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = self._util(**kwargs) return outputs def line_hist(self, **kwargs): """Creates a histogram of transmission lineflow utilization for each region. Utilization is plotted between 0 and 1 on the x-axis, with # lines on the y-axis. Each bar is equal to a 0.05 utilization rate The plot will default to showing all lines. A Line category can also be passed instead using the property field in the Marmot_plot_select.csv Each scenarios is plotted on a separate Facet plot. This methods calls _util() and passes the hist=True argument to create the figure. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = self._util(hist=True, **kwargs) return outputs def _util(self, hist: bool = False, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Creates utilization plots, line plot and histograms This methods is called from line_util() and line_hist() Args: hist (bool, optional): If True creates a histogram of utilization. Defaults to False. prop (str, optional): Optional PLEXOS line category to display. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"line_Flow",self.Scenarios), (True,"line_Import_Limit",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() # sets up x, y dimensions of plot ncols, nrows = self.set_facet_col_row_dimensions(facet=True, multi_scenario=self.Scenarios) grid_size = ncols*nrows # Used to calculate any excess axis to delete plot_number = len(self.Scenarios) excess_axs = grid_size - plot_number for zone_input in self.Zones: self.logger.info(f"For all lines touching Zone = {zone_input}") mplt = PlotLibrary(nrows, ncols, sharey=True, squeeze=False, ravel_axs=True) fig, axs = mplt.get_figure() plt.subplots_adjust(wspace=0.1, hspace=0.25) data_table=[] for n, scenario in enumerate(self.Scenarios): self.logger.info(f"Scenario = {str(scenario)}") # gets correct metadata based on area aggregation if self.AGG_BY=='zone': zone_lines = self.meta.zone_lines(scenario) else: zone_lines = self.meta.region_lines(scenario) try: zone_lines = zone_lines.set_index([self.AGG_BY]) except: self.logger.warning("Column to Aggregate by is missing") continue try: zone_lines = zone_lines.xs(zone_input) zone_lines=zone_lines['line_name'].unique() except KeyError: self.logger.warning('No data to plot for scenario') outputs[zone_input] = MissingZoneData() continue flow = self["line_Flow"].get(scenario).copy() #Limit to only lines touching to this zone flow = flow[flow.index.get_level_values('line_name').isin(zone_lines)] if self.shift_leapday == True: flow = self.adjust_for_leapday(flow) limits = self["line_Import_Limit"].get(scenario).copy() limits = limits.droplevel('timestamp').drop_duplicates() limits.mask(limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value # This checks for a nan in string. If no scenario selected, do nothing. if pd.notna(prop): self.logger.info(f"Line category = {str(prop)}") line_relations = self.meta.lines(scenario).rename(columns={"name":"line_name"}).set_index(["line_name"]) flow=pd.merge(flow,line_relations, left_index=True, right_index=True) flow=flow[flow["category"] == prop] flow=flow.drop('category',axis=1) flow = pd.merge(flow,limits[0].abs(),on = 'line_name',how='left') flow['Util']=(flow['0_x'].abs()/flow['0_y']).fillna(0) #If greater than 1 because exceeds flow limit, report as 1 flow['Util'][flow['Util'] > 1] = 1 annual_util=flow['Util'].groupby(["line_name"]).mean().rename(scenario) # top annual utilized lines top_utilization = annual_util.nlargest(10, keep='first') color_dict = dict(zip(self.Scenarios,self.color_list)) if hist == True: mplt.histogram(annual_util, color_dict,label=scenario, sub_pos=n) else: for line in top_utilization.index.get_level_values(level='line_name').unique(): duration_curve = flow.loc[line].sort_values(by='Util', ascending=False).reset_index(drop=True) mplt.lineplot(duration_curve, 'Util' ,label=line, sub_pos=n) axs[n].set_ylim((0,1.1)) data_table.append(annual_util) mplt.add_legend() #Remove extra axes mplt.remove_excess_axs(excess_axs,grid_size) # add facet labels mplt.add_facet_labels(xlabels=self.xlabels, ylabels = self.ylabels) if hist == True: if pd.notna(prop): prop_name = 'All Lines' else: prop_name = prop plt.ylabel('Number of lines', color='black', rotation='vertical', labelpad=30) plt.xlabel(f'Line Utilization: {prop_name}', color='black', rotation='horizontal', labelpad=30) else: if pd.notna(prop): prop_name ='Top 10 Lines' else: prop_name = prop plt.ylabel(f'Line Utilization: {prop_name}', color='black', rotation='vertical', labelpad=60) plt.xlabel('Intervals', color='black', rotation='horizontal', labelpad=20) if mconfig.parser("plot_title_as_region"): mplt.add_main_title(zone_input) try: del annual_util, except: continue Data_Out = pd.concat(data_table) outputs[zone_input] = {'fig': fig,'data_table':Data_Out} return outputs def int_flow_ind(self, figure_name: str = None, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Creates a line plot of interchange flows and their import and export limits. Each interchange is potted on a separate facet plot. The plot includes every interchange that originates or ends in the aggregation zone. This can be adjusted by passing a comma separated string of interchanges to the property input. The code will create either a timeseries or duration curve depending on if the word 'duration_curve' is in the figure_name. To make a duration curve, ensure the word 'duration_curve' is found in the figure_name. Args: figure_name (str, optional): User defined figure output name. Defaults to None. prop (str, optional): Comma separated string of interchanges. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table """ duration_curve=False if 'duration_curve' in figure_name: duration_curve = True # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"interface_Flow",self.Scenarios), (True,"interface_Import_Limit",self.Scenarios), (True,"interface_Export_Limit",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() scenario = self.Scenarios[0] outputs = {} if pd.notna(start_date_range): self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") for zone_input in self.Zones: self.logger.info(f"For all interfaces touching Zone = {zone_input}") Data_Table_Out = pd.DataFrame() # gets correct metadata based on area aggregation if self.AGG_BY=='zone': zone_lines = self.meta.zone_lines(scenario) else: zone_lines = self.meta.region_lines(scenario) try: zone_lines = zone_lines.set_index([self.AGG_BY]) except: self.logger.info("Column to Aggregate by is missing") continue zone_lines = zone_lines.xs(zone_input) zone_lines = zone_lines['line_name'].unique() #Map lines to interfaces all_ints = self.meta.interface_lines(scenario) #Map lines to interfaces all_ints.index = all_ints.line ints = all_ints.loc[all_ints.index.intersection(zone_lines)] #flow = flow[flow.index.get_level_values('interface_name').isin(ints.interface)] #Limit to only interfaces touching to this zone #flow = flow.droplevel('interface_category') export_limits = self["interface_Export_Limit"].get(scenario).copy().droplevel('timestamp') export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value export_limits = export_limits[export_limits.index.get_level_values('interface_name').isin(ints.interface)] export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced interfaces. #Drop unnecessary columns. export_limits.reset_index(inplace = True) export_limits.drop(columns=['interface_category', 'units'], inplace=True) export_limits.set_index('interface_name',inplace = True) import_limits = self["interface_Import_Limit"].get(scenario).copy().droplevel('timestamp') import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value import_limits = import_limits[import_limits.index.get_level_values('interface_name').isin(ints.interface)] import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced interfaces. reported_ints = import_limits.index.get_level_values('interface_name').unique() #Drop unnecessary columns. import_limits.reset_index(inplace = True) import_limits.drop(columns=['interface_category', 'units'], inplace=True) import_limits.set_index('interface_name',inplace = True) #Extract time index ti = self["interface_Flow"][self.Scenarios[0]].index.get_level_values('timestamp').unique() if pd.notna(prop): interf_list = prop.split(',') self.logger.info('Plotting only interfaces specified in Marmot_plot_select.csv') self.logger.info(interf_list) else: interf_list = reported_ints.copy() self.logger.info('Plotting full time series results.') xdim,ydim = self.set_x_y_dimension(len(interf_list)) mplt = PlotLibrary(ydim, xdim, squeeze=False, ravel_axs=True) fig, axs = mplt.get_figure() grid_size = xdim * ydim excess_axs = grid_size - len(interf_list) plt.subplots_adjust(wspace=0.05, hspace=0.2) missing_ints = 0 chunks = [] n = -1 for interf in interf_list: n += 1 #Remove leading spaces if interf[0] == ' ': interf = interf[1:] if interf in reported_ints: chunks_interf = [] single_exp_lim = export_limits.loc[interf] / 1000 #TODO: Use auto unit converter single_imp_lim = import_limits.loc[interf] / 1000 #Check if all hours have the same limit. check = single_exp_lim.to_numpy() identical = check[0] == check.all() limits = pd.concat([single_exp_lim,single_imp_lim],axis = 1) limits.columns = ['export limit','import limit'] limits.index = ti for scenario in self.Scenarios: flow = self["interface_Flow"].get(scenario) single_int = flow.xs(interf, level='interface_name') / 1000 single_int.index = single_int.index.droplevel(['interface_category','units']) single_int.columns = [interf] single_int = single_int.reset_index().set_index('timestamp') limits = limits.reset_index().set_index('timestamp') if self.shift_leapday == True: single_int = self.adjust_for_leapday(single_int) if
pd.notna(start_date_range)
pandas.notna
import pandas as pd import numpy as np from copy import deepcopy from rdkit import Chem from data import * from sklearn.externals import joblib from sklearn.manifold import TSNE import matplotlib #matplotlib.use('TkAgg') import matplotlib.pyplot as plot def can_smile(smi_list): can_list = [] for item in smi_list: if Chem.MolFromSmiles(item) is not None: can_item = Chem.MolToSmiles(Chem.MolFromSmiles(item)) can_list.append(can_item) return can_list def drop_internal_overlap(fname): """ Drop internal overlap within generated SMILES file Args: fname: path to the file containing SMILES separated by \n Returns: None. Save output file. """ smi_list = [] with open (fname) as f: for line in f: smi_list.append(line.rstrip()) can_smi_list = can_smile(smi_list) unique_lst = set(can_smi_list) unique_lst = list(unique_lst) outf = pd.DataFrame() outf['Cano_SMILES'] = pd.Series(data=unique_lst) outf.to_csv('Unique_'+fname, index=False) def get_smi_list_overlap(large, small): """ Args: large: list containing the SMILE structures for transfer training small: list containing the SMILE structures for transfer sampling Returns: num of repeat SMILES, num of unique SMILES in transfer sampling, list of unique SMILES """ large_can, small_can = can_smile(large), can_smile(small) small_copy = deepcopy(small_can) overlap = set(small_can).intersection(large_can) #for item in overlap: #list(filter(lambda a: a != item, small_copy)) small_copy_novel = [item for item in small_copy if item not in large_can] return len(overlap), len(small_copy), small_copy_novel def predict_property(model_file, fps): """ Function to predict the properties of generated molecules Args: model_file: File containing pre-trained ML model for prediction fps: list of molecular fingerprints Returns: list of predicted valued """ model = joblib.load(model_file) return model.predict(fps) def save_predict_results(): """ Predict the gap and dip of generated SMILES from files and save the results Also save the generated with gap < 2, dip <3.66 as promising candidates Returns: """ ori_lst = [] for i in range(1, 4): ori_df = pd.read_csv('Training_Model'+str(i)+'.csv') ori_list = ori_df['SMILES'].tolist() ori_lst.append(ori_list) frames = [] gen_mols = [] gen_fps = [] for i, group in enumerate(['all', 'class3', 'prom']): gen_df = pd.read_csv('novel_sampled_cano_script_'+group+'_until.csv') gen_list = gen_df['SMILES'].tolist() print('Number of molecules in training for model {} is {}'.format(i+1, len(ori_lst[i]))) over, num, smi_list = get_smi_list_overlap(ori_lst[i], gen_list) smi_mols = get_mols(smi_list) smi_fps, failed_mols = get_fingerprints(smi_mols) for idx in sorted(failed_mols, reverse=True): del smi_list[idx] smi_df =
pd.Series(data=smi_list, name='SMILES')
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # # QTPyLib: Quantitative Trading Python Library # https://github.com/ranaroussi/qtpylib # # Copyright 2016-2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings import sys from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas.core.base import PandasObject # ============================================= # check min, python version from .supertrend import SuperTrend # ============================================= warnings.simplefilter(action="ignore", category=RuntimeWarning) # ============================================= def numpy_rolling_window(data, window): shape = data.shape[:-1] + (data.shape[-1] - window + 1, window) strides = data.strides + (data.strides[-1],) return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides) def numpy_rolling_series(func): def func_wrapper(data, window, as_source=False): series = data.values if isinstance(data, pd.Series) else data new_series = np.empty(len(series)) * np.nan calculated = func(series, window) new_series[-len(calculated):] = calculated if as_source and isinstance(data, pd.Series): return pd.Series(index=data.index, data=new_series) return new_series return func_wrapper @numpy_rolling_series def numpy_rolling_mean(data, window, as_source=False): return np.mean(numpy_rolling_window(data, window), axis=-1) @numpy_rolling_series def numpy_rolling_std(data, window, as_source=False): return np.std(numpy_rolling_window(data, window), axis=-1, ddof=1) # --------------------------------------------- def session(df, start='17:00', end='16:00'): """ remove previous globex day from df """ if df.empty: return df # get start/end/now as decimals int_start = list(map(int, start.split(':'))) int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001 int_end = list(map(int, end.split(':'))) int_end = int_end[0] + int_end[1] / 100 int_now = (df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100) # same-dat session? is_same_day = int_end > int_start # set pointers curr = prev = df[-1:].index[0].strftime('%Y-%m-%d') # globex/forex session if not is_same_day: prev = (datetime.strptime(curr, '%Y-%m-%d') - timedelta(1)).strftime('%Y-%m-%d') # slice if int_now >= int_start: df = df[df.index >= curr + ' ' + start] else: df = df[df.index >= prev + ' ' + start] return df.copy() # --------------------------------------------- def heikinashi(bars): bars = bars.copy() bars['ha_close'] = (bars['open'] + bars['high'] + bars['low'] + bars['close']) / 4 # ha open bars.at[0, 'ha_open'] = (bars.at[0, 'open'] + bars.at[0, 'close']) / 2 for i in range(1, len(bars)): bars.at[i, 'ha_open'] = (bars.at[i - 1, 'ha_open'] + bars.at[i - 1, 'ha_close']) / 2 bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1) bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1) return pd.DataFrame(index=bars.index, data={'open': bars['ha_open'], 'high': bars['ha_high'], 'low': bars['ha_low'], 'close': bars['ha_close']}) # --------------------------------------------- def tdi(series, rsi_lookback=13, rsi_smooth_len=2, rsi_signal_len=7, bb_lookback=34, bb_std=1.6185): rsi_data = rsi(series, rsi_lookback) rsi_smooth = sma(rsi_data, rsi_smooth_len) rsi_signal = sma(rsi_data, rsi_signal_len) bb_series = bollinger_bands(rsi_data, bb_lookback, bb_std) return pd.DataFrame(index=series.index, data={ "rsi": rsi_data, "rsi_signal": rsi_signal, "rsi_smooth": rsi_smooth, "rsi_bb_upper": bb_series['upper'], "rsi_bb_lower": bb_series['lower'], "rsi_bb_mid": bb_series['mid'] }) # --------------------------------------------- def awesome_oscillator(df, weighted=False, fast=5, slow=34): midprice = (df['high'] + df['low']) / 2 if weighted: ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values else: ao = numpy_rolling_mean(midprice, fast) - \ numpy_rolling_mean(midprice, slow) return pd.Series(index=df.index, data=ao) # --------------------------------------------- def nans(length=1): mtx = np.empty(length) mtx[:] = np.nan return mtx # --------------------------------------------- def typical_price(bars): res = (bars['high'] + bars['low'] + bars['close']) / 3. return pd.Series(index=bars.index, data=res) # --------------------------------------------- def mid_price(bars): res = (bars['high'] + bars['low']) / 2. return pd.Series(index=bars.index, data=res) # --------------------------------------------- def ibs(bars): """ Internal bar strength """ res = np.round((bars['close'] - bars['low']) / (bars['high'] - bars['low']), 2) return pd.Series(index=bars.index, data=res) # --------------------------------------------- def true_range(bars): return pd.DataFrame({ "hl": bars['high'] - bars['low'], "hc": abs(bars['high'] - bars['close'].shift(1)), "lc": abs(bars['low'] - bars['close'].shift(1)) }).max(axis=1) # --------------------------------------------- def atr(bars, window=14, exp=False): tr = true_range(bars) if exp: res = rolling_weighted_mean(tr, window) else: res = rolling_mean(tr, window) return pd.Series(res) # --------------------------------------------- def crossed(series1, series2, direction=None): if isinstance(series1, np.ndarray): series1 = pd.Series(series1) if isinstance(series2, (float, int, np.ndarray)): series2 = pd.Series(index=series1.index, data=series2) if direction is None or direction == "above": above = pd.Series((series1 > series2) & ( series1.shift(1) <= series2.shift(1))) if direction is None or direction == "below": below = pd.Series((series1 < series2) & ( series1.shift(1) >= series2.shift(1))) if direction is None: return above or below return above if direction == "above" else below def crossed_above(series1, series2): return crossed(series1, series2, "above") def crossed_below(series1, series2): return crossed(series1, series2, "below") # --------------------------------------------- def rolling_std(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods if min_periods == window and len(series) > window: return numpy_rolling_std(series, window, True) else: try: return series.rolling(window=window, min_periods=min_periods).std() except Exception as e: return pd.Series(series).rolling(window=window, min_periods=min_periods).std() # --------------------------------------------- def rolling_mean(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods if min_periods == window and len(series) > window: return numpy_rolling_mean(series, window, True) else: try: return series.rolling(window=window, min_periods=min_periods).mean() except Exception as e: return pd.Series(series).rolling(window=window, min_periods=min_periods).mean() # --------------------------------------------- def rolling_min(series, window=14, min_periods=None): min_periods = window if min_periods is None else min_periods try: return series.rolling(window=window, min_periods=min_periods).min() except Exception as e: return pd.Series(series).rolling(window=window, min_periods=min_periods).min() # --------------------------------------------- def rolling_max(series, window=14, min_periods=None): min_periods = window if min_periods is None else min_periods try: return series.rolling(window=window, min_periods=min_periods).min() except Exception as e: return pd.Series(series).rolling(window=window, min_periods=min_periods).min() # --------------------------------------------- def rolling_weighted_mean(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods try: return series.ewm(span=window, min_periods=min_periods).mean() except Exception as e: return
pd.ewma(series, span=window, min_periods=min_periods)
pandas.ewma
from Bio import SeqIO from src.inputValueException import InputValueException import os import pandas as pd import re # calculates kmer frequencies # k: kmer-length # peak: peak-position, where sequences should be aligned # selected: input files # no_sec_peak: status (-1= no structural data available, 0= False, 1= True) if only kmer # with peak position should be saved def calcFrequency(k, peak, selected, no_sec_peak): profile1 = dict() # for file1 if no_sec_peak == -1: profile2 = dict() # for file2 else: # if structural data is available, use profile2 as list # therefore method is called twice profile2 = [] # saves alphabet of structural fasta-files kmer = '' for file in selected: # selects data if file == selected[0]: # Name of first File profile = profile1 else: profile = profile2 for record in SeqIO.parse(file, "fasta"): # reads fasta-file sequence = str(record.seq) seq_length = len(sequence) if peak is not None: if seq_length < peak: # is thrown if peak is greater than sequence length raise InputValueException( 'ERROR: Invalid peak. Must be smaller or equal than sequence length. For help use option -h.') sequence = createPeakPosition(peak, sequence) if seq_length <= k: raise InputValueException( # is thrown if k is greater or equal than sequence length "ERROR: Invalid k. Must be smaller than sequence length. For help use option -h.") # if structural data is available, generate alphabet if no_sec_peak > -1: if no_sec_peak is 1: sequence = sequence.upper() for c in sequence: if c not in profile2: profile2.append(c) # profile2 is used as alphabet if profiles for structural data are created for i in range(0, (seq_length - k + 1)): if i == 0: kmer = sequence[0:k] # init first kmer else: kmer = ''.join([kmer[1:], sequence[k + i - 1]]) # if peak position for RNA-structure is needed, only save k-mer containing capital letter if no_sec_peak is 0 and not re.findall('[A-Z]', kmer): continue if profile.get(kmer) is not None: profile[kmer] += 1 else: profile[kmer] = 1 return [profile1, profile2] # determines sequence length of first sequence of file # it is assumed, that every sequence has same length # file: not empty fasta file def getSeqLength(file): records = list(SeqIO.parse(file, "fasta").records) seq_len = len(records[0].seq) return seq_len # changes sequence with only capital letters to sequence with only one capital letter (peak position) # peak: peak-position, where sequences should be aligned # seq: sequence def createPeakPosition(peak, seq): sequence = seq.lower() peak_val = seq[peak - 1] res = ''.join([sequence[:peak - 1], peak_val, sequence[peak:]]) return res # table which contains kmer-frequencies as coordinates (kmer: x:(file1) = fre1,y:(file2)= fre2) def createDataFrame(p1, p2, selected): x_axis = [] # frequency count from file 1 y_axis = [] # frequency count from file 2 kmer_list = [] profile1 = p1.getProfile() profile2 = p2.getProfile() file1_kmer = list(p1.getProfile().keys()) file2_kmer = list(p2.getProfile().keys()) # calculates coordinates intersec = set(file1_kmer).intersection(file2_kmer) # ascertains kmeres which appear in both files # all kmers, which are in profile1 but not in profile2 p1_diff = set(file1_kmer).difference(file2_kmer) # all kmers, which are in profile2 but not in profile1 p2_diff = set(file2_kmer).difference(file1_kmer) for kmer in intersec: x_axis.append(profile1[kmer]) y_axis.append(profile2[kmer]) kmer_list.append(kmer) for k1 in p1_diff: kmer_freq = profile1[k1] x_axis.append(kmer_freq) y_axis.append(0) kmer_list.append(k1) for k2 in p2_diff: kmer_freq = profile2[k2] x_axis.append(0) y_axis.append(kmer_freq) kmer_list.append(k2) file_name1 = os.path.basename(selected[0]) file_name2 = os.path.basename(selected[1]) res =
pd.DataFrame(x_axis, index=kmer_list, columns=[file_name1])
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from __future__ import print_function # Created at UC Berkeley 2015 # Authors: <NAME> # ============================================================================== '''This code trains and evaluates a CRF model for MHG scansion based on the paper presented at the NAACL-CLFL 2016 by <NAME> and <NAME>. This model is for the held-out data.''' import codecs from pickle import dump from CLFL_mdf_classification import confusion_matrix import pycrfsuite import numpy as np import pandas as pd from scan_text_rev import only_four_stresses from process_feats import syllable2features, line2features, line2labels, line2tokens from prep_crf import prep_crf from new_bio_class_report import bio_classification_report # open hand-tagged data with open("Data/CLFL_dev-data.txt", 'r', encoding='utf-8') as f: training_tagged = f.read() # add features to data ftuples = prep_crf(training_tagged) # open hand-tagged data with open("Data/CLFL_held-out.txt", 'r', encoding='utf-8') as f: heldout = f.read() # add features to data htuples = prep_crf(heldout) sylls_list = [[t[0] for t in l] for l in htuples] test_lines = htuples train_lines = ftuples X_train = [line2features(s) for s in train_lines] y_train = [line2labels(s) for s in train_lines] X_test = [line2features(s) for s in test_lines] y_test = [line2labels(s) for s in test_lines] trainer = pycrfsuite.Trainer(verbose=False) for xseq, yseq in zip(X_train, y_train): trainer.append(xseq, yseq) # parameters to fiddle with trainer.set_params({ 'c1': 1.3, # coefficient for L1 penalty 'c2': 10e-4, # coefficient for L2 penalty 'num_memories': 6, # default is 6 # 'max_iterations': 100, # stop earlier # include transitions that are possible, but not observed 'feature.possible_transitions': False, # 'max_linesearch': 1000, # 'linesearch': 'Backtracking' # 'feature.minfreq': 5 # 'feature.possible_states': True, }) # run trainer and tagger trainer.params() trainer.train('MHGMETRICS_heldout.crfsuite') tagger = pycrfsuite.Tagger() tagger.open('MHGMETRICS_heldout.crfsuite') # y_pred = [tagger.tag(xseq) for xseq in X_test] y_pred = only_four_stresses(X_test, tagger, sylls_list) bioc = bio_classification_report(y_test, y_pred) p, r, f1, s = bioc[0] tot_avgs = [] for v in (np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s)): tot_avgs.append(v) toext = [0] * (len(s) - 3) tot_avgs.extend(toext) all_s = [sum(s)] * len(s) rep = bioc[1] all_labels = [] for word in rep.split(): if word.isupper(): all_labels.append(word) ext_labels = [ "DOPPEL", "EL", "HALB", "HALB_HAUPT", "MORA", "MORA_HAUPT"] abs_labels = [l for l in ext_labels if l not in all_labels] # print(bio_classification_report(y_test, y_pred)[1]) data = { "labels": all_labels, "precision": p, "recall": r, "f1": f1, "support": s, "tots": tot_avgs, "all_s": all_s} df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd from collections import deque import sys def addExtension(tVal): return str(tVal) + ".png" if __name__ == '__main__': dataDir = sys.argv[1] timestampPath = sys.argv[2] gyroPath = sys.argv[3] # ----------# timestampLabels = ["#timestamp [ns]", "filename"] timestamps = pd.read_csv(timestampPath, header=None, dtype=str) outputFilename = dataDir + "/timestamps.csv" data = { timestampLabels[0]: timestamps[0], timestampLabels[1]: timestamps[0] + ".png" } dataframe = pd.DataFrame(data=data) dataframe.to_csv(outputFilename, sep=',', encoding='utf-8', index=False, line_terminator='\r\n') # ----------# imuLabels = [ "#timestamp [ns]", "w_RS_S_x [rad s^-1]", "w_RS_S_y [rad s^-1]", "w_RS_S_z [rad s^-1]", "a_RS_S_x [m s^-2]", "a_RS_S_y [m s^-2]", "a_RS_S_z [m s^-2]" ] gyro = pd.read_csv(gyroPath, header=None) outputFilename = dataDir + "/gyro_accel.csv" if len(sys.argv) == 5: accelPath = sys.argv[4] accel = pd.read_csv(accelPath, header=None) data = pd.merge_asof(gyro, accel, on=3, direction='nearest') data = data.reindex(columns=[3, '0_x', '1_x', '2_x', '0_y', '1_y', '2_y']) data.columns = [imuLabels[0], imuLabels[1], imuLabels[2], imuLabels[3], imuLabels[4], imuLabels[5], imuLabels[6]] else: data = { imuLabels[0]: gyro[3], imuLabels[1]: gyro[0], imuLabels[2]: gyro[1], imuLabels[3]: gyro[2], imuLabels[4]: "", imuLabels[5]: "", imuLabels[6]: "" } dataframe =
pd.DataFrame(data=data)
pandas.DataFrame
from pandas import Series, DataFrame daeshin = {'open': [11650, 11100, 11200, 11100, 11000], 'high': [12100, 11800, 11200, 11100, 11150], 'low' : [11600, 11050, 10900, 10950, 10900], 'close': [11900, 11600, 11000, 11100, 11050]} #daeshin_day = DataFrame(daeshin) daeshin_day =
DataFrame(daeshin, columns=['open', 'high', 'low', 'close'])
pandas.DataFrame
import logging from concurrent.futures import ThreadPoolExecutor import numpy as np import pandas as pd from msi_recal.join_by_mz import join_by_mz from msi_recal.math import get_centroid_peaks, is_valid_formula_adduct from msi_recal.mean_spectrum import hybrid_mean_spectrum from msi_recal.params import RecalParams logger = logging.getLogger(__name__) def _spectral_score(ref_ints: np.ndarray, ints: np.ndarray): """Calculates a spectral score based on the relative intensities of isotopic peaks.""" if len(ref_ints) > 1: # Sort peaks by decreasing predicted intensity and normalize relative to the first peak order = np.argsort(ref_ints)[::-1] ints = ints[order[1:]] / ints[order[0]] ref_ints = ref_ints[order[1:]] / ref_ints[order[0]] ints_ratio_error = np.abs(ints / (ints + ref_ints) - 0.5) * 2 return 1 - np.average(ints_ratio_error, weights=ref_ints) else: return 0 def calc_spectral_scores( spectrum, db_hits, params: RecalParams, sigma_1: float, limit_of_detection: float ) -> pd.DataFrame: """For each DB match, searches for isotopic peaks with the same approximate mass error and calculates a spectral score""" # Make list of expected isotopic peaks for each DB hit spectral_peaks = [] for db_hit in db_hits.itertuples(): if 'coverage' in db_hits.columns: min_abundance = min(limit_of_detection / db_hit.ints / db_hit.coverage, 0.9) else: min_abundance = min(limit_of_detection / db_hit.ints, 0.9) mol_peaks = get_centroid_peaks( db_hit.formula, db_hit.adduct, db_hit.charge, min_abundance, params.instrument_model, ) # Recalc error as centroid may be slightly different to monoisotopic peak mz_error = db_hit.mz - mol_peaks[0][0] for mz, ref_ints in mol_peaks: spectral_peaks.append((db_hit[0], mz + mz_error, ref_ints)) # Search for peaks in the spectrum spectral_peaks =
pd.DataFrame(spectral_peaks, columns=['hit_index', 'ref_mz', 'ref_ints'])
pandas.DataFrame
from league import League import playerID from authorize import Authorize from team import Team from player import Player from utils.building_utils import getUrl from itertools import chain import pandas as pd import numpy as np import requests import math from tabulate import tabulate as table import os import sys from fpdf import FPDF import argparse import progressbar parser = argparse.ArgumentParser() parser.add_argument("week", help='Get week of the season') args = parser.parse_args() week = int(args.week) # Define user and season year user_id = 'desi' year = 2021 # Get login credentials for leagues # login = pd.read_csv('C:\\Users\\desid\\Documents\\Fantasy_Football\\espn-api-v3\\login.csv') # _, username, password, league_id, swid, espn_s2 = login[login['id'] == user_id].values[0] username = 'cgeer98' password = '<PASSWORD>' league_id = 916709 swid = '{75C7094F-C467-4145-8709-4FC467C1457E}' espn_s2 = 'AECbQaX7HoUGyJ5X5cmNlFHVs%2FmDl0RKfnVV%2FazefK9PxoSfENQFF6ULNnR421xium4UYV5dC0GsOhS%2BeigBuhk1abpSjhlXDCJnIGt0PjUHCZpV6qF5S9qMS40ichi2XnVZFSKwAid6h8bFbWA4eHclC%2BJHqMyirQ85yLRG6zc6nULRaovpF2Cx2j5U55OuvwTnI2HCztRnEJIVucnKxlem7pAidup27BIggM3c42%2BrH7vXUlRaIYXhjE%2BGH3cWbL88H8AcpIQpG%2Bft96vAZXuB' root = '/Users/christiangeer/Fantasy_Sports/football/power_rankings/espn-api-v3/' # Generate cookies payload and API endpoint cookies = {'swid' : swid, 'espn_s2' : espn_s2} url = getUrl(year, league_id) league = League(league_id, year, username, password, swid, espn_s2) print(league, "\n") # import dynasty process values # dynastyProcessValues = pd.read_csv("/Users/christiangeer/Fantasy_Sports/Fantasy_FF/data/files/values-players.csv") # dynastyProcessValues = dynastyProcessValues[["player","value_1qb"]] # create for loop to add team names from team objects into list teams = league.teams teams_list = list(teams.values()) team_names = [] for team in teams_list: team_name = team.teamName team_names.append(team_name) # create list of the weekly scores for the season seasonScores = [] for team in teams_list: weeklyScores = team.scores seasonScores.append(weeklyScores) # turn into dataframes seasonScores_df =
pd.DataFrame(data=seasonScores)
pandas.DataFrame
from collections import Counter from sklearn.cross_validation import cross_val_score import pandas as pd import numpy as np # pandas importando data frame d. f. df =
pd.read_csv('situacao_cliente.csv')
pandas.read_csv
import pandas as pd import numpy as np import datetime as dt import math #输入H 文件名 def cal_riskrt(H,source): source=source.iloc[:,0:6] source=source.drop(columns=["Unnamed: 0"]) source=source.set_index('date').dropna(subset=['long_rt','short_rt','long_short_rt'],how='all') #新建一个数据框记录各种指标 df=pd.DataFrame(columns=['rt','volatility','mdd','sharpe','calmar'],index=['long','short','long_short','excess']) #计算多头各项指标 rt=pd.DataFrame(source['long_rt']) rt['prod'] = np.cumprod(rt['long_rt'] + 1) holding_period = pd.to_datetime(rt.index.values[-1]) - pd.to_datetime(rt.index.values[0]) # #年化收益率 annual_ret = pow(rt['prod'][-1], 365 / holding_period.days) - 1 # #年化波动率 volatility = rt['long_rt'].std() * (math.sqrt(250 / H)) # #sharpe sharpe = annual_ret / volatility # #计算最大回撤 rt['max2here'] = rt['prod'].expanding(1).max() rt['dd2here'] = (rt['prod'] / rt['max2here']) - 1 mdd = rt['dd2here'].min() calmar = annual_ret / abs(mdd) df.loc['long','rt']=annual_ret df.loc['long','volatility']=volatility df.loc['long','mdd']=mdd df.loc['long','sharpe']=sharpe df.loc['long','calmar']=calmar #计算空头组合的指标(对照组) rt = pd.DataFrame(source['short_rt']) rt['short_rt']=rt['short_rt'] rt['prod'] = np.cumprod(rt['short_rt'] + 1) holding_period = pd.to_datetime(rt.index.values[-1]) - pd.to_datetime(rt.index.values[0]) # #年化收益率 annual_ret = pow(rt['prod'][-1], 365 / holding_period.days) - 1 # #年化波动率 volatility = rt['short_rt'].std() * (math.sqrt(250 / H)) # #sharpe sharpe = annual_ret / volatility # #计算最大回撤 rt['max2here'] = rt['prod'].expanding(1).max() rt['dd2here'] = (rt['prod'] / rt['max2here']) - 1 mdd = rt['dd2here'].min() calmar = annual_ret / abs(mdd) df.loc['short', 'rt'] = annual_ret df.loc['short', 'volatility'] = volatility df.loc['short', 'mdd'] = mdd df.loc['short', 'sharpe'] = sharpe df.loc['short', 'calmar'] = calmar # 计算多空组合的指标 rt = pd.DataFrame(source['long_short_rt']) rt['long_short_rt'] = rt['long_short_rt'] rt['prod'] = np.cumprod(rt['long_short_rt'] + 1) holding_period = pd.to_datetime(rt.index.values[-1]) - pd.to_datetime(rt.index.values[0]) # #年化收益率 annual_ret = pow(rt['prod'][-1], 365 / holding_period.days) - 1 # #年化波动率 volatility = rt['long_short_rt'].std() * (math.sqrt(250 / H)) # #sharpe sharpe = annual_ret / volatility # #计算最大回撤 rt['max2here'] = rt['prod'].expanding(1).max() rt['dd2here'] = (rt['prod'] / rt['max2here']) - 1 mdd = rt['dd2here'].min() calmar = annual_ret / abs(mdd) df.loc['long_short', 'rt'] = annual_ret df.loc['long_short', 'volatility'] = volatility df.loc['long_short', 'mdd'] = mdd df.loc['long_short', 'sharpe'] = sharpe df.loc['long_short', 'calmar'] = calmar # 计算超额收益的指标 rt = pd.DataFrame(source['long_rt']-source['benchmark']) rt.columns=['excess_rt'] rt['prod'] = np.cumprod(rt['excess_rt'] + 1) holding_period = pd.to_datetime(rt.index.values[-1]) - pd.to_datetime(rt.index.values[0]) # #年化收益率 annual_ret = pow(rt['prod'][-1], 365 / holding_period.days) - 1 # #年化波动率 volatility = rt['excess_rt'].std() * (math.sqrt(250 / H)) # #sharpe sharpe = annual_ret / volatility # #计算最大回撤 rt['max2here'] = rt['prod'].expanding(1).max() rt['dd2here'] = (rt['prod'] / rt['max2here']) - 1 mdd = rt['dd2here'].min() calmar = annual_ret / abs(mdd) df.loc['excess', 'rt'] = annual_ret df.loc['excess', 'volatility'] = volatility df.loc['excess', 'mdd'] = mdd df.loc['excess', 'sharpe'] = sharpe df.loc['excess', 'calmar'] = calmar return df rt_df=pd.read_csv("../draw/inv_level_H30.csv") risk_rt=cal_riskrt(20,rt_df) risk_rt.to_csv("inv_level.csv") rt_df=pd.read_csv("../draw/warehouseR90H5.csv") risk_rt=cal_riskrt(5,rt_df) risk_rt.to_csv("warehouse.csv") rt_df=
pd.read_csv("../draw/rollrt2H35.csv")
pandas.read_csv
#################################################################################################### """ dashboard.py This script implements a dashboard-application for the efficient planning of the municipal enforcement process, based on housing fraud signals, within the municipality of Amsterdam. <NAME> & <NAME> 2019 Basic intro on working with Dash: https://dash.plot.ly/getting-started Example dashboards using maps in Dash (from dash-gallery.plotly.host/Portal): github.com/plotly/dash-sample-apps/blob/master/apps/dash-oil-and-gas/app.py github.com/plotly/dash-oil-gas-ternary This dashboard took some inspiration from this video: https://www.youtube.com/watch?v=lu0PtsMor4E Inspiration has also been taken from the corresponding codebase: https://github.com/amyoshino/Dash_Tutorial_Series (careful: this repo seems to be full of errors!!) """ #################################################################################################### ############# ## Imports ## ############# import dash import dash_core_components as dcc import dash_html_components as html import dash_table as dt import dash_table.FormatTemplate as FormatTemplate from dash.dependencies import Input, Output, State, ClientsideFunction import pandas as pd import urllib import json import sys import os import re import q from copy import deepcopy import plotly.graph_objs as go # Add the parent paths to sys.path, so our own modules on the root dir can also be imported. SCRIPT_PATH = os.path.abspath(__file__) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) PARENT_PATH = os.path.join(SCRIPT_DIR, os.path.pardir) sys.path.append(PARENT_PATH) # Import own modules. import config import dashboard_helper ################################# ## Load server or mock-up data ## ################################# # Try to create a list of 100 meldingen from the data. try: df = dashboard_helper.process_recent_signals() print('Succesfully created prediction for recent signals.') except: df = pd.read_csv(os.path.join(SCRIPT_DIR, 'mockup_dataset.csv'), sep=';', skipinitialspace=True) print('Cannot generate predictions from the data. Falling back to using the mockup_dataset.csv') df_proactief = pd.read_csv(os.path.join(SCRIPT_DIR, 'mockup_dataset_proactief.csv'), sep=';', skipinitialspace=True) df_unsupervised = pd.read_csv(os.path.join(SCRIPT_DIR, 'mockup_dataset_unsupervised.csv'), sep=';', skipinitialspace=True) ######################### ## Define site visuals ## ######################### colors = {'paper': '#DDDDDD', 'background': '#F2F2F2', 'container_background': '#F9F9F9', 'text': '#1E4363', 'marker': '#1E4363', 'fraud': 'rgb(200, 50, 50)', 'no_fraud': 'rgb(150, 150, 150)', 'selected': 'rgb(75, 75, 75)', } ############################### ## Set some global variables ## ############################### # Get dictionary of columns for DataTable. SELECTED_COLUMNS = ['fraude_kans', 'woonfraude', 'adres_id', 'sdl_naam', 'categorie', 'eigenaar'] TABLE_COLUMNS = [{'name': i, 'id': i} for i in SELECTED_COLUMNS] # Define styling for the first column (fraude_kans), to reduce the decimals after comma. TABLE_COLUMNS[0]['name'] = 'Fraude kans (%)' TABLE_COLUMNS[0]['type'] = 'numeric' TABLE_COLUMNS[0]['format'] = FormatTemplate.percentage(2) ########################## ## Define the dashboard ## ########################## # external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] # app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app = dash.Dash(__name__) server = app.server app.title = 'Woonfraude Dashboard' # Defines the meldingen tab. meldingen_tab = html.Div( [ # Div containing a selection of the data based on dropdown selection. html.Div(id='intermediate_value', style={'display': 'none'}), # Divs contain a lists of points which have been selected with on-clicks on the map. html.Div(id='point_selection', style={'display': 'none'}), html.Div(id='filtered_point_selection', style={'display': 'none'}), # Row containing filters, info boxes, and map. html.Div( [ # Filters div. html.Div( [ # Create drop down filter for categories. html.P('Selecteer categorieën:', className="control_label"), dcc.Dropdown( id='categorie_dropdown', placeholder='Selecteer categorieën', options=[{'label': x, 'value': x} for x in sorted(df.categorie.unique())], multi=True, value=df.categorie.unique(), ), # Create drop down filter for city parts. html.P('Selecteer stadsdelen:', className="control_label"), dcc.Dropdown( id='stadsdeel_dropdown', placeholder='Selecteer stadsdelen', options=[{'label': x, 'value': x} for x in sorted(df.sdl_naam.unique())], multi=True, value=sorted(df.sdl_naam.unique()), ), # Show info of items selected on map (using click). html.Div( [ html.P('Geselecteerde adressen:', className="control_label"), dt.DataTable( id='filtered_point_selection_table', columns = TABLE_COLUMNS[1:-1], sort_action='native', sort_by=[{'column_id': 'fraude_kans', 'direction': 'desc'}], page_action='native', page_current=0, page_size=20, style_data_conditional=[ { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq True' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq False' }, 'backgroundColor': colors['no_fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} ge 0.5' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} lt 0.5' }, 'backgroundColor': colors['no_fraud'], }, ] ), ], ), # Link to download csv with all selected addresses. html.A( 'Download lijst geselecteerde adressen (CSV)', id='download_selected_addresses_list', download="geselecteerde_adressen.csv", href="", target="_blank", ), # Button test. html.P(''), html.Button('Test', id='button'), html.P('', id='button_n_clicks') ], id='leftCol', className="pretty_container four columns", ), # Widgets and map div. html.Div( [ # # Row with 4 statistics widgets # html.Div( # [ # # Aantal meldingen (info box). # html.Div( # [ # html.P("Aantal meldingen"), # html.H6( # id="aantal_meldingen", # className="info_text" # ) # ], # className="pretty_container" # ), # # Percentage fraude verwacht (info box). # html.Div( # [ # html.P("% Fraude verwacht"), # html.H6( # id="percentage_fraude_verwacht", # className="info_text" # ) # ], # className="pretty_container" # ), # # Aantal geselecteerde meldingen (info box). # html.Div( # [ # html.P("Aantal geselecteerde meldingen"), # html.H6( # id="aantal_geselecteerde_meldingen", # className="info_text" # ) # ], # className="pretty_container", # style={'backgroundColor': '#F7D7D7'} # ), # # Percentage fraude verwacht bij geselecteerde meldingen (info box). # html.Div( # [ # html.P("% Fraude verwacht bij geselecteerde meldingen"), # html.H6( # id="percentage_fraude_verwacht_geselecteerd", # className="info_text" # ) # ], # className="pretty_container", # style={'backgroundColor': '#F7D7D7'} # ), # ], # id="infoContainer", # className="row" # ), # Map with selectable points. html.Div( dcc.Graph( id='map', config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. ), className="pretty_container", # style={'height': 500} ), ], id="rightCol", className="eight columns" ), ], className="row", ), # Data table div. html.Div( [ # Filtered entries data table. html.Div( [ html.P('Gefilterde meldingen'), dt.DataTable( id='filtered_table', columns = TABLE_COLUMNS, sort_action='native', sort_by=[{'column_id': 'fraude_kans', 'direction': 'desc'}], # filter_action='native', # Maybe turn off? A text field to filter feels clunky.. # row_selectable='multi', # selected_rows=[], page_action='native', page_current=0, page_size=20, style_data_conditional=[ { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq True' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq False' }, 'backgroundColor': colors['no_fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} ge 0.5' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} lt 0.5' }, 'backgroundColor': colors['no_fraud'], } ] ), ], className="pretty_container eight columns", ), # Filtered entries stadsdeel split (pie chart). html.Div( [ html.P("Gefilterde meldingen - Stadsdeel split"), dcc.Graph( id="stadsdeel_split", config={'displayModeBar': False}, ) ], id="stadsdeel", className="pretty_container two columns" ), # Filtered entries categorie split (pie chart). html.Div( [ html.P("Gefilterde meldingen - Categorie split"), dcc.Graph( id="categorie_split", config={'displayModeBar': False}, ) ], id="categorie", className="pretty_container two columns" ), ], className="row" ), ], id="mainContainer", style={ "display": "flex", "flex-direction": "column" } ) # Defines the proactief tab. proactief_tab = html.Div( [ # For creating a map_proactief callback function with an empty input. html.Div(id='none_proactief',children=[],style={'display': 'none'}), # Div for containing a selection of the data based on filters. html.Div(id='intermediate_value_proactief', style={'display': 'none'}), # Row containing filters, info boxes, and map. html.Div( [ # Filters div. html.Div( [ # Create range slider for number of meldingen. html.P('Minimaal aantal meldingen op adres:', className="control_label"), dcc.RangeSlider( id='aantal_meldingen_rangeslider_proactief', min=min(df_proactief.aantal_meldingen), max=max(df_proactief.aantal_meldingen), marks={i: f"{i}" for i in range(min(df_proactief.aantal_meldingen), max(df_proactief.aantal_meldingen)+1)}, value=[min(df_proactief.aantal_meldingen), max(df_proactief.aantal_meldingen)] ), # Padding (temporary hack) html.P(' '), # Create slider for number of adults. html.P('Aantal volwassenen', className="control_label"), dcc.RangeSlider( id='aantal_volwassenen_rangeslider_proactief', min=min(df_proactief.aantal_volwassenen), max=max(df_proactief.aantal_volwassenen), marks={i: f"{i}" for i in range(min(df_proactief.aantal_volwassenen), max(df_proactief.aantal_volwassenen)+1)}, value=[min(df_proactief.aantal_volwassenen), max(df_proactief.aantal_volwassenen)] ), # Padding (temporary hack) html.P(' '), # Create m2 per person slider. html.P('Aantal m2 per persoon:', className="control_label"), dcc.RangeSlider( id='aantal_m2_per_persoon_rangeslider_proactief', min=min(df_proactief.m2_per_persoon), max=max(df_proactief.m2_per_persoon), marks={i: f"{i}" for i in range(min(df_proactief.m2_per_persoon), max(df_proactief.m2_per_persoon)+1, 3)}, value=[min(df_proactief.m2_per_persoon), max(df_proactief.m2_per_persoon)] ), # Padding (temporary hack) html.P(' '), # Create drop down filter for city parts. html.P('Selecteer stadsdelen:', className="control_label"), dcc.Dropdown( id='stadsdeel_dropdown_proactief', placeholder='Selecteer stadsdelen', options=[{'label': x, 'value': x} for x in sorted(df_proactief.sdl_naam.unique())], multi=True, value=sorted(df_proactief.sdl_naam.unique()), ), # Create hotline dropdown. html.P('Is hotline melding:', className="control_label"), dcc.Dropdown( id='hotline_dropdown_proactief', placeholder='Selecteer waarden', options=[{'label': 'Ja', 'value': 'True'}, {'label': 'Nee', 'value': 'False'}], multi=True, value=['True', 'False'] ), # Create gebruikersdoel dropdown. html.P('Selecteer gebruikersdoel:', className="control_label"), dcc.Dropdown( id='gebruikersdoel_dropdown_proactief', placeholder='Selecteer gebruikersdoel', options=[{'label': x, 'value': x} for x in sorted(df_proactief.gebruikersdoel.unique())], multi=True, value=sorted(df_proactief.gebruikersdoel.unique()), ), # Create profiel dropdown. html.P('Selecteer profiel:', className="control_label"), dcc.Dropdown( id='profiel_dropdown_proactief', placeholder='Selecteer profiel', options=[{'label': x, 'value': x} for x in sorted(df_proactief.profiel.unique())], multi=True, value=sorted(df_proactief.profiel.unique()), ), ], id='leftCol_proactief', className="pretty_container four columns", ), # Map div. html.Div( [ # Map with selectable points. html.Div( dcc.Graph( id='map_proactief', config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. ), className="pretty_container", # style={'height': 500} ), ], id="rightCol_proactief", className="eight columns" ), ], className="row", ), # Data table div. html.Div( [ # Filtered entries data table. html.Div( [ html.P('Gefilterde meldingen'), dt.DataTable( id='filtered_table_proactief', columns = TABLE_COLUMNS, sort_action='native', sort_by=[{'column_id': 'fraude_kans', 'direction': 'desc'}], # filter_action='native', # Maybe turn off? A text field to filter feels clunky.. # row_selectable='multi', # selected_rows=[], page_action='native', page_current=0, page_size=20, style_data_conditional=[ { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq True' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq False' }, 'backgroundColor': colors['no_fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} ge 0.5' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} lt 0.5' }, 'backgroundColor': colors['no_fraud'], } ] ), ], className="pretty_container ten columns", ), # Filtered entries stadsdeel split (pie chart). html.Div( [ html.P("Gefilterde meldingen - Stadsdeel split"), dcc.Graph( id="stadsdeel_split_proactief", config={'displayModeBar': False}, ) ], id="stadsdeel_proactief", className="pretty_container two columns" ), ], className="row" ), # html.Div( # dcc.Graph( # id='map_proactief', # config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. # ), # className="pretty_container", # ), ], style={ "display": "flex", "flex-direction": "column" } ) # Defines the unsupervised tab. unsupervised_tab = html.Div( [ # For creating a map_unsupervised callback function with an empty input. html.Div(id='none_unsupervised',children=[],style={'display': 'none'}), # Div for containing a selection of the data based on filters. html.Div(id='intermediate_value_unsupervised', style={'display': 'none'}), html.Div( dcc.Graph( id='map_unsupervised', config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. ), className="pretty_container", ), ], style={ "display": "flex", "flex-direction": "column" } ) # Combines the two tabs into a single app. app.layout = html.Div([ # Title html.H1("Woonfraude Dashboard", style={'textAlign': 'center'}), # Tabs for meldingen & proactieve handhaving. dcc.Tabs(id='tabs', value='meldingen_tab', children=[ dcc.Tab(label='Meldingen', value='meldingen_tab', children=[meldingen_tab]), dcc.Tab(label='Proactieve handhaving', value='proactief_tab', children=[proactief_tab]), dcc.Tab(label='Unsupervised', value='unsupervised_tab', children=[unsupervised_tab]), ]) ]) # Updates the intermediate data based on the dropdown selection. @app.callback( Output('intermediate_value', 'children'), [Input('categorie_dropdown', 'value'), Input('stadsdeel_dropdown', 'value')] ) def create_data_selection(selected_categories, selected_stadsdelen): # Create a copy of the original dataframe. df_filtered = deepcopy(df) # Filter the original dataframe by selected categories. df_filtered = df_filtered[df_filtered.categorie.isin(selected_categories)] # Filter the dataframe by selected stadsdelen. df_filtered = df_filtered[df_filtered.sdl_naam.isin(selected_stadsdelen)] return df_filtered.to_json(date_format='iso', orient='split') ''' # Updates the aantal_meldingen info box. @app.callback( Output('aantal_meldingen', 'children'), [Input('intermediate_value', 'children')] ) def count_items(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') return len(df) # Updates the percentage_fraude_verwacht info box. @app.callback( Output('percentage_fraude_verwacht', 'children'), [Input('intermediate_value', 'children')] ) def compute_fraud_percentage(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Compute what percentage of cases is expected to be fraudulent. If/else to prevent division by 0. if len(df.woonfraude) > 0: fraude_percentage = len(df.woonfraude[df.woonfraude == True]) / len(df.woonfraude) * 100 else: fraude_percentage = 0 # Return truncated value (better for printing on dashboard) return round(fraude_percentage, 1) # Updates the aantal_geselecteerde_meldingen info box. @app.callback( Output('aantal_geselecteerde_meldingen', 'children'), [Input('filtered_point_selection', 'children')] ) def count_items_selected(filtered_point_selection): # Just return the amount of filtered selected points. return len(filtered_point_selection) # Updates the percentage_fraude_verwacht_geselecteerd info box. @app.callback( Output('percentage_fraude_verwacht_geselecteerd', 'children'), [Input('intermediate_value', 'children'), Input('filtered_point_selection', 'children')] ) def compute_fraud_percentage_selected(intermediate_value, filtered_point_selection): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Reduce the dataframe using the point selection. df = df[df.adres_id.isin(filtered_point_selection)] # Compute what percentage of cases is expected to be fraudulent. If/else to prevent division by 0. if len(df.woonfraude) > 0: fraude_percentage = len(df.woonfraude[df.woonfraude == True]) / len(df.woonfraude) * 100 else: fraude_percentage = 0 # Return truncated value (better for printing on dashboard) return round(fraude_percentage, 1) ''' # Updates the map based on dropdown-selections. @app.callback( Output('map', 'figure'), [Input('intermediate_value', 'children'), Input('point_selection', 'children')], [State('map', 'figure')] ) def plot_map(intermediate_value, point_selection, map_state): # Define which input triggers the callback (map.figure or intermediate_value.children). trigger_event = dash.callback_context.triggered[0]['prop_id'] # Load the pre-filtered version of the dataframe. df_map = pd.read_json(intermediate_value, orient='split') # Select positive and negative samples for plotting. pos = df_map[df_map.woonfraude==True] neg = df_map[df_map.woonfraude==False] # Create a df of the selected points, for highlighting. selected_point_ids = [int(x) for x in point_selection] sel = df_map.loc[df_map.adres_id.isin(selected_point_ids)] # Create texts for when hovering the mouse over items. def make_hover_string(row): return f"Adres id: {row.adres_id}\ <br>Categorie: {row.categorie}\ <br>Aantal inwoners: {row.aantal_personen}\ <br>Aantal achternamen: {row.aantal_achternamen}\ <br>Eigenaar: {row.eigenaar}" pos_text = pos.apply(make_hover_string, axis=1) neg_text = neg.apply(make_hover_string, axis=1) sel_text = sel.apply(make_hover_string, axis=1) figure={ 'data': [ # Plot border for selected samples (plot first, so its behind the pos/neg samples). go.Scattermapbox( name='Geselecteerd', lat=sel['wzs_lat'], lon=sel['wzs_lon'], text=sel_text, mode='markers', marker=dict( size=17, color=colors['selected'], ), ), # Plot positive samples. go.Scattermapbox( name='Woonfraude verwacht', lat=pos['wzs_lat'], lon=pos['wzs_lon'], text=pos_text, hoverinfo='text', mode='markers', marker=dict( size=12, color=colors['fraud'], ), ), # Plot negative samples. go.Scattermapbox( name='<NAME>', lat=neg['wzs_lat'], lon=neg['wzs_lon'], text=neg_text, hoverinfo='text', mode='markers', marker=dict( size=12, color=colors['no_fraud'], ), ), ], 'layout': go.Layout( uirevision='never', autosize=True, hovermode='closest', # width=1000, height=700, margin=go.layout.Margin(l=0, r=0, b=0, t=0, pad=0), showlegend=False, # Set to False, since legend selection breaks custom point selection. legend=dict(orientation='h'), plot_bgcolor=colors['background'], paper_bgcolor=colors['paper'], mapbox=dict( accesstoken=config.mapbox_access_token, style="light", center=dict( lat=52.36, lon=4.89 ), zoom=11, ), ) } return figure # Updates the table showing all data points after dropdown-selections. @app.callback( Output('filtered_table', 'data'), [Input('intermediate_value', 'children')] ) def generate_filtered_table(intermediate_value): # Load the pre-filtered version of the dataframe. df_table = pd.read_json(intermediate_value, orient='split') # Transform True and False boolean values to strings. df_table.woonfraude = df_table.woonfraude.replace({True: 'True', False: 'False'}) # Only use a selection of the columns. df_table = df_table[SELECTED_COLUMNS] # Create a table, with all positive woonfraude examples at the top. columns = [{"name": i, "id": i} for i in df_table.columns] data = df_table.to_dict('records') return data # Enable the selection of map points using click-events. @app.callback( Output('point_selection', 'children'), [Input('map', 'clickData'), Input('intermediate_value', 'children')], [State('point_selection', 'children')] ) def update_point_selection_on_click(clickData, intermediate_value, existing_point_selection): """ Update point selection with newly selected points, or according to dropdown filters. The input "intermediate_value:children" is only used to activate a callback. """ # Define which input triggers the callback (map.clickData or intermediate_value.children). trigger_event = dash.callback_context.triggered[0]['prop_id'] # Re-use previous point selection (if it already existed). point_selection = [] if existing_point_selection != None: point_selection = existing_point_selection # Add a clicked point to the selection, or remove it when it already existed in the selection. if trigger_event == 'map.clickData': if clickData != None: point_id = re.match("Adres id: (\d+)", clickData['points'][0]['text']).group(1) if point_id in point_selection: point_selection.remove(point_id) else: point_selection.append(point_id) return point_selection # Create a filtered version of the point_selection, based on the categorie and stadsdeel filters. @app.callback( Output('filtered_point_selection', 'children'), [Input('point_selection', 'children'), Input('intermediate_value', 'children')] ) def show_selected(existing_point_selection, intermediate_value): # Re-use previous point selection (if it already existed). point_selection = [] if existing_point_selection != None: point_selection = existing_point_selection # Filter any previously selected points, if the dropdown selections rule them out. df = pd.read_json(intermediate_value, orient='split') # Load the pre-filtered version of the dataframe. point_ids_list = [str(x) for x in list(df.adres_id)] for point_id in point_selection: if point_id not in point_ids_list: point_selection.remove(point_id) return point_selection # Updates the table showing a list of the selected & filtered points. @app.callback( Output('filtered_point_selection_table', 'data'), [Input('intermediate_value', 'children'), Input('filtered_point_selection', 'children')] ) def generate_filtered_point_selection_table(intermediate_value, filtered_point_selection): # First check if any points have been selected. if filtered_point_selection == []: return [] else: # Turn list of point_ids into a list of numbers instead of strings point_selection = [int(x) for x in filtered_point_selection] # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Reduce the dataframe using the point selection. df = df[df.adres_id.isin(point_selection)] # Transform True and False boolean values to strings. df.woonfraude = df.woonfraude.replace({True: 'True', False: 'False'}) # Only use a selection of the columns. df = df[SELECTED_COLUMNS] # Create a table, with all positive woonfraude examples at the top. columns = [{"name": i, "id": i} for i in df.columns] data = df.to_dict('records') return data # TODO: CHANGE WHEN THE DOWNLOAD LINK IS UPDATED WITH NEW DATA. # NOW THIS CODE BELOW IS RAN EVERY TIME A POINT IS (DE)SELECTED, # THIS IS TERRIBLY INEFFICIENT. ACCEPTABLE FOR THE MVP, BUT SHOULD BE CHANGED. # Creates a download link for the filtered_point_selection_table data. @app.callback( Output('download_selected_addresses_list', 'href'), [Input('filtered_point_selection_table', 'data')]) def update_download_link(filtered_point_selection_table): """Updates the csv download link with the data in the filtered point selection table.""" if filtered_point_selection_table == []: point_selection = [] else: # Turn list of point_ids into a list of numbers instead of strings point_selection = filtered_point_selection_table # Convert to df, then to csv string, then return for downloading. df = pd.DataFrame(point_selection) csv_string = df.to_csv(index=False, encoding='utf-8', sep=';') csv_string = "data:text/csv;charset=utf-8," + urllib.parse.quote(csv_string) return csv_string # Test for our button output. @app.callback( Output('button_n_clicks', 'children'), [Input('button', 'n_clicks')]) def show_number_of_button_clicks(button_n_clicks): return str(button_n_clicks) # Updates the stadsdeel split PIE chart. @app.callback( Output('stadsdeel_split', 'figure'), [Input('intermediate_value', 'children')] ) def make_stadsdeel_pie_chart(intermediate_value): # Load the pre-filtered version of the dataframe. df =
pd.read_json(intermediate_value, orient='split')
pandas.read_json
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the zipline.assets package """ from contextlib import contextmanager from datetime import timedelta from functools import partial import pickle import sys from types import GetSetDescriptorType from unittest import TestCase import uuid import warnings from nose_parameterized import parameterized from numpy import full, int32, int64 import pandas as pd from pandas.util.testing import assert_frame_equal from six import PY2, viewkeys import sqlalchemy as sa from zipline.assets import ( Asset, Equity, Future, AssetDBWriter, AssetFinder, ) from zipline.assets.synthetic import ( make_commodity_future_info, make_rotating_equity_info, make_simple_equity_info, ) from six import itervalues, integer_types from toolz import valmap from zipline.assets.asset_writer import ( check_version_info, write_version_info, _futures_defaults, SQLITE_MAX_VARIABLE_NUMBER, ) from zipline.assets.asset_db_schema import ASSET_DB_VERSION from zipline.assets.asset_db_migrations import ( downgrade ) from zipline.errors import ( EquitiesNotFound, FutureContractsNotFound, MultipleSymbolsFound, MultipleValuesFoundForField, MultipleValuesFoundForSid, NoValueForSid, AssetDBVersionError, SidsNotFound, SymbolNotFound, AssetDBImpossibleDowngrade, ValueNotFoundForField, ) from zipline.testing import ( all_subindices, empty_assets_db, parameter_space, tmp_assets_db, ) from zipline.testing.predicates import assert_equal from zipline.testing.fixtures import ( WithAssetFinder, ZiplineTestCase, WithTradingCalendars, ) from zipline.utils.range import range @contextmanager def build_lookup_generic_cases(asset_finder_type): """ Generate test cases for the type of asset finder specific by asset_finder_type for test_lookup_generic. """ unique_start = pd.Timestamp('2013-01-01', tz='UTC') unique_end = pd.Timestamp('2014-01-01', tz='UTC') dupe_0_start = pd.Timestamp('2013-01-01', tz='UTC') dupe_0_end = dupe_0_start + timedelta(days=1) dupe_1_start = pd.Timestamp('2013-01-03', tz='UTC') dupe_1_end = dupe_1_start + timedelta(days=1) equities = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'duplicated', 'start_date': dupe_0_start.value, 'end_date': dupe_0_end.value, 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'duplicated', 'start_date': dupe_1_start.value, 'end_date': dupe_1_end.value, 'exchange': 'TEST', }, { 'sid': 2, 'symbol': 'unique', 'start_date': unique_start.value, 'end_date': unique_end.value, 'exchange': 'TEST', }, ], index='sid' ) fof14_sid = 10000 futures = pd.DataFrame.from_records( [ { 'sid': fof14_sid, 'symbol': 'FOF14', 'root_symbol': 'FO', 'start_date': unique_start.value, 'end_date': unique_end.value, 'exchange': 'FUT', }, ], index='sid' ) root_symbols = pd.DataFrame({ 'root_symbol': ['FO'], 'root_symbol_id': [1], 'exchange': ['CME'], }) with tmp_assets_db( equities=equities, futures=futures, root_symbols=root_symbols) \ as assets_db: finder = asset_finder_type(assets_db) dupe_0, dupe_1, unique = assets = [ finder.retrieve_asset(i) for i in range(3) ] fof14 = finder.retrieve_asset(fof14_sid) cf = finder.create_continuous_future( root_symbol=fof14.root_symbol, offset=0, roll_style='volume', ) dupe_0_start = dupe_0.start_date dupe_1_start = dupe_1.start_date yield ( ## # Scalars # Asset object (finder, assets[0], None, assets[0]), (finder, assets[1], None, assets[1]), (finder, assets[2], None, assets[2]), # int (finder, 0, None, assets[0]), (finder, 1, None, assets[1]), (finder, 2, None, assets[2]), # Duplicated symbol with resolution date (finder, 'DUPLICATED', dupe_0_start, dupe_0), (finder, 'DUPLICATED', dupe_1_start, dupe_1), # Unique symbol, with or without resolution date. (finder, 'UNIQUE', unique_start, unique), (finder, 'UNIQUE', None, unique), # Futures (finder, 'FOF14', None, fof14), # Future symbols should be unique, but including as_of date # make sure that code path is exercised. (finder, 'FOF14', unique_start, fof14), # Futures int (finder, fof14_sid, None, fof14), # Future symbols should be unique, but including as_of date # make sure that code path is exercised. (finder, fof14_sid, unique_start, fof14), # ContinuousFuture (finder, cf, None, cf), ## # Iterables # Iterables of Asset objects. (finder, assets, None, assets), (finder, iter(assets), None, assets), # Iterables of ints (finder, (0, 1), None, assets[:-1]), (finder, iter((0, 1)), None, assets[:-1]), # Iterables of symbols. (finder, ('DUPLICATED', 'UNIQUE'), dupe_0_start, [dupe_0, unique]), (finder, ('DUPLICATED', 'UNIQUE'), dupe_1_start, [dupe_1, unique]), # Mixed types (finder, ('DUPLICATED', 2, 'UNIQUE', 1, dupe_1), dupe_0_start, [dupe_0, assets[2], unique, assets[1], dupe_1]), # Futures and Equities (finder, ['FOF14', 0], None, [fof14, assets[0]]), # ContinuousFuture and Equity (finder, [cf, 0], None, [cf, assets[0]]), ) class AssetTestCase(TestCase): # Dynamically list the Asset properties we want to test. asset_attrs = [name for name, value in vars(Asset).items() if isinstance(value, GetSetDescriptorType)] # Very wow asset = Asset( 1337, symbol="DOGE", asset_name="DOGECOIN", start_date=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), end_date=pd.Timestamp('2014-06-25 11:21AM', tz='UTC'), first_traded=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), auto_close_date=pd.Timestamp('2014-06-26 11:21AM', tz='UTC'), exchange='THE MOON', ) asset3 = Asset(3, exchange="test") asset4 = Asset(4, exchange="test") asset5 = Asset(5, exchange="still testing") def test_asset_object(self): the_asset = Asset(5061, exchange="bar") self.assertEquals({5061: 'foo'}[the_asset], 'foo') self.assertEquals(the_asset, 5061) self.assertEquals(5061, the_asset) self.assertEquals(the_asset, the_asset) self.assertEquals(int(the_asset), 5061) self.assertEquals(str(the_asset), 'Asset(5061)') def test_to_and_from_dict(self): asset_from_dict = Asset.from_dict(self.asset.to_dict()) for attr in self.asset_attrs: self.assertEqual( getattr(self.asset, attr), getattr(asset_from_dict, attr), ) def test_asset_is_pickleable(self): asset_unpickled = pickle.loads(pickle.dumps(self.asset)) for attr in self.asset_attrs: self.assertEqual( getattr(self.asset, attr), getattr(asset_unpickled, attr), ) def test_asset_comparisons(self): s_23 = Asset(23, exchange="test") s_24 = Asset(24, exchange="test") self.assertEqual(s_23, s_23) self.assertEqual(s_23, 23) self.assertEqual(23, s_23) self.assertEqual(int32(23), s_23) self.assertEqual(int64(23), s_23) self.assertEqual(s_23, int32(23)) self.assertEqual(s_23, int64(23)) # Check all int types (includes long on py2): for int_type in integer_types: self.assertEqual(int_type(23), s_23) self.assertEqual(s_23, int_type(23)) self.assertNotEqual(s_23, s_24) self.assertNotEqual(s_23, 24) self.assertNotEqual(s_23, "23") self.assertNotEqual(s_23, 23.5) self.assertNotEqual(s_23, []) self.assertNotEqual(s_23, None) # Compare to a value that doesn't fit into a platform int: self.assertNotEqual(s_23, sys.maxsize + 1) self.assertLess(s_23, s_24) self.assertLess(s_23, 24) self.assertGreater(24, s_23) self.assertGreater(s_24, s_23) def test_lt(self): self.assertTrue(self.asset3 < self.asset4) self.assertFalse(self.asset4 < self.asset4) self.assertFalse(self.asset5 < self.asset4) def test_le(self): self.assertTrue(self.asset3 <= self.asset4) self.assertTrue(self.asset4 <= self.asset4) self.assertFalse(self.asset5 <= self.asset4) def test_eq(self): self.assertFalse(self.asset3 == self.asset4) self.assertTrue(self.asset4 == self.asset4) self.assertFalse(self.asset5 == self.asset4) def test_ge(self): self.assertFalse(self.asset3 >= self.asset4) self.assertTrue(self.asset4 >= self.asset4) self.assertTrue(self.asset5 >= self.asset4) def test_gt(self): self.assertFalse(self.asset3 > self.asset4) self.assertFalse(self.asset4 > self.asset4) self.assertTrue(self.asset5 > self.asset4) def test_type_mismatch(self): if sys.version_info.major < 3: self.assertIsNotNone(self.asset3 < 'a') self.assertIsNotNone('a' < self.asset3) else: with self.assertRaises(TypeError): self.asset3 < 'a' with self.assertRaises(TypeError): 'a' < self.asset3 class TestFuture(WithAssetFinder, ZiplineTestCase): @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 2468: { 'symbol': 'OMH15', 'root_symbol': 'OM', 'notice_date': pd.Timestamp('2014-01-20', tz='UTC'), 'expiration_date': pd.Timestamp('2014-02-20', tz='UTC'), 'auto_close_date': pd.Timestamp('2014-01-18', tz='UTC'), 'tick_size': .01, 'multiplier': 500.0, 'exchange': "TEST", }, 0: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC'), 'multiplier': 1.0, 'exchange': 'TEST', }, }, orient='index', ) @classmethod def init_class_fixtures(cls): super(TestFuture, cls).init_class_fixtures() cls.future = cls.asset_finder.lookup_future_symbol('OMH15') cls.future2 = cls.asset_finder.lookup_future_symbol('CLG06') def test_str(self): strd = str(self.future) self.assertEqual("Future(2468 [OMH15])", strd) def test_repr(self): reprd = repr(self.future) self.assertIn("Future", reprd) self.assertIn("2468", reprd) self.assertIn("OMH15", reprd) self.assertIn("root_symbol=%s'OM'" % ('u' if PY2 else ''), reprd) self.assertIn( "notice_date=Timestamp('2014-01-20 00:00:00+0000', tz='UTC')", reprd, ) self.assertIn( "expiration_date=Timestamp('2014-02-20 00:00:00+0000'", reprd, ) self.assertIn( "auto_close_date=Timestamp('2014-01-18 00:00:00+0000'", reprd, ) self.assertIn("tick_size=0.01", reprd) self.assertIn("multiplier=500", reprd) def test_reduce(self): assert_equal( pickle.loads(pickle.dumps(self.future)).to_dict(), self.future.to_dict(), ) def test_to_and_from_dict(self): dictd = self.future.to_dict() for field in _futures_defaults.keys(): self.assertTrue(field in dictd) from_dict = Future.from_dict(dictd) self.assertTrue(isinstance(from_dict, Future)) self.assertEqual(self.future, from_dict) def test_root_symbol(self): self.assertEqual('OM', self.future.root_symbol) def test_lookup_future_symbol(self): """ Test the lookup_future_symbol method. """ om = TestFuture.asset_finder.lookup_future_symbol('OMH15') self.assertEqual(om.sid, 2468) self.assertEqual(om.symbol, 'OMH15') self.assertEqual(om.root_symbol, 'OM') self.assertEqual(om.notice_date, pd.Timestamp('2014-01-20', tz='UTC')) self.assertEqual(om.expiration_date, pd.Timestamp('2014-02-20', tz='UTC')) self.assertEqual(om.auto_close_date, pd.Timestamp('2014-01-18', tz='UTC')) cl = TestFuture.asset_finder.lookup_future_symbol('CLG06') self.assertEqual(cl.sid, 0) self.assertEqual(cl.symbol, 'CLG06') self.assertEqual(cl.root_symbol, 'CL') self.assertEqual(cl.start_date, pd.Timestamp('2005-12-01', tz='UTC')) self.assertEqual(cl.notice_date, pd.Timestamp('2005-12-20', tz='UTC')) self.assertEqual(cl.expiration_date, pd.Timestamp('2006-01-20', tz='UTC')) with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('#&?!') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('FOOBAR') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('XXX99') class AssetFinderTestCase(WithTradingCalendars, ZiplineTestCase): asset_finder_type = AssetFinder def write_assets(self, **kwargs): self._asset_writer.write(**kwargs) def init_instance_fixtures(self): super(AssetFinderTestCase, self).init_instance_fixtures() conn = self.enter_instance_context(empty_assets_db()) self._asset_writer = AssetDBWriter(conn) self.asset_finder = self.asset_finder_type(conn) def test_blocked_lookup_symbol_query(self): # we will try to query for more variables than sqlite supports # to make sure we are properly chunking on the client side as_of = pd.Timestamp('2013-01-01', tz='UTC') # we need more sids than we can query from sqlite nsids = SQLITE_MAX_VARIABLE_NUMBER + 10 sids = range(nsids) frame = pd.DataFrame.from_records( [ { 'sid': sid, 'symbol': 'TEST.%d' % sid, 'start_date': as_of.value, 'end_date': as_of.value, 'exchange': uuid.uuid4().hex } for sid in sids ] ) self.write_assets(equities=frame) assets = self.asset_finder.retrieve_equities(sids) assert_equal(viewkeys(assets), set(sids)) def test_lookup_symbol_delimited(self): as_of = pd.Timestamp('2013-01-01', tz='UTC') frame = pd.DataFrame.from_records( [ { 'sid': i, 'symbol': 'TEST.%d' % i, 'company_name': "company%d" % i, 'start_date': as_of.value, 'end_date': as_of.value, 'exchange': uuid.uuid4().hex } for i in range(3) ] ) self.write_assets(equities=frame) finder = self.asset_finder asset_0, asset_1, asset_2 = ( finder.retrieve_asset(i) for i in range(3) ) # we do it twice to catch caching bugs for i in range(2): with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST', as_of) with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST1', as_of) # '@' is not a supported delimiter with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST@1', as_of) # Adding an unnecessary fuzzy shouldn't matter. for fuzzy_char in ['-', '/', '_', '.']: self.assertEqual( asset_1, finder.lookup_symbol('TEST%s1' % fuzzy_char, as_of) ) def test_lookup_symbol_fuzzy(self): metadata = pd.DataFrame.from_records([ {'symbol': 'PRTY_HRD', 'exchange': "TEST"}, {'symbol': 'BRKA', 'exchange': "TEST"}, {'symbol': 'BRK_A', 'exchange': "TEST"}, ]) self.write_assets(equities=metadata) finder = self.asset_finder dt = pd.Timestamp('2013-01-01', tz='UTC') # Try combos of looking up PRTYHRD with and without a time or fuzzy # Both non-fuzzys get no result with self.assertRaises(SymbolNotFound): finder.lookup_symbol('PRTYHRD', None) with self.assertRaises(SymbolNotFound): finder.lookup_symbol('PRTYHRD', dt) # Both fuzzys work self.assertEqual(0, finder.lookup_symbol('PRTYHRD', None, fuzzy=True)) self.assertEqual(0, finder.lookup_symbol('PRTYHRD', dt, fuzzy=True)) # Try combos of looking up PRTY_HRD, all returning sid 0 self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', None)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', dt)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', None, fuzzy=True)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', dt, fuzzy=True)) # Try combos of looking up BRKA, all returning sid 1 self.assertEqual(1, finder.lookup_symbol('BRKA', None)) self.assertEqual(1, finder.lookup_symbol('BRKA', dt)) self.assertEqual(1, finder.lookup_symbol('BRKA', None, fuzzy=True)) self.assertEqual(1, finder.lookup_symbol('BRKA', dt, fuzzy=True)) # Try combos of looking up BRK_A, all returning sid 2 self.assertEqual(2, finder.lookup_symbol('BRK_A', None)) self.assertEqual(2, finder.lookup_symbol('BRK_A', dt)) self.assertEqual(2, finder.lookup_symbol('BRK_A', None, fuzzy=True)) self.assertEqual(2, finder.lookup_symbol('BRK_A', dt, fuzzy=True)) def test_lookup_symbol_change_ticker(self): T = partial(pd.Timestamp, tz='utc') metadata = pd.DataFrame.from_records( [ # sid 0 { 'symbol': 'A', 'asset_name': 'Asset A', 'start_date': T('2014-01-01'), 'end_date': T('2014-01-05'), 'exchange': "TEST", }, { 'symbol': 'B', 'asset_name': 'Asset B', 'start_date': T('2014-01-06'), 'end_date': T('2014-01-10'), 'exchange': "TEST", }, # sid 1 { 'symbol': 'C', 'asset_name': 'Asset C', 'start_date': T('2014-01-01'), 'end_date': T('2014-01-05'), 'exchange': "TEST", }, { 'symbol': 'A', # claiming the unused symbol 'A' 'asset_name': 'Asset A', 'start_date': T('2014-01-06'), 'end_date': T('2014-01-10'), 'exchange': "TEST", }, ], index=[0, 0, 1, 1], ) self.write_assets(equities=metadata) finder = self.asset_finder # note: these assertions walk forward in time, starting at assertions # about ownership before the start_date and ending with assertions # after the end_date; new assertions should be inserted in the correct # locations # no one held 'A' before 01 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('A', T('2013-12-31')) # no one held 'C' before 01 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('C', T('2013-12-31')) for asof in pd.date_range('2014-01-01', '2014-01-05', tz='utc'): # from 01 through 05 sid 0 held 'A' A_result = finder.lookup_symbol('A', asof) assert_equal( A_result, finder.retrieve_asset(0), msg=str(asof), ) # The symbol and asset_name should always be the last held values assert_equal(A_result.symbol, 'B') assert_equal(A_result.asset_name, 'Asset B') # from 01 through 05 sid 1 held 'C' C_result = finder.lookup_symbol('C', asof) assert_equal( C_result, finder.retrieve_asset(1), msg=str(asof), ) # The symbol and asset_name should always be the last held values assert_equal(C_result.symbol, 'A') assert_equal(C_result.asset_name, 'Asset A') # no one held 'B' before 06 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('B', T('2014-01-05')) # no one held 'C' after 06, however, no one has claimed it yet # so it still maps to sid 1 assert_equal( finder.lookup_symbol('C', T('2014-01-07')), finder.retrieve_asset(1), ) for asof in pd.date_range('2014-01-06', '2014-01-11', tz='utc'): # from 06 through 10 sid 0 held 'B' # we test through the 11th because sid 1 is the last to hold 'B' # so it should ffill B_result = finder.lookup_symbol('B', asof) assert_equal( B_result, finder.retrieve_asset(0), msg=str(asof), ) assert_equal(B_result.symbol, 'B') assert_equal(B_result.asset_name, 'Asset B') # from 06 through 10 sid 1 held 'A' # we test through the 11th because sid 1 is the last to hold 'A' # so it should ffill A_result = finder.lookup_symbol('A', asof) assert_equal( A_result, finder.retrieve_asset(1), msg=str(asof), ) assert_equal(A_result.symbol, 'A') assert_equal(A_result.asset_name, 'Asset A') def test_lookup_symbol(self): # Incrementing by two so that start and end dates for each # generated Asset don't overlap (each Asset's end_date is the # day after its start date.) dates = pd.date_range('2013-01-01', freq='2D', periods=5, tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': i, 'symbol': 'existing', 'start_date': date.value, 'end_date': (date + timedelta(days=1)).value, 'exchange': 'NYSE', } for i, date in enumerate(dates) ] ) self.write_assets(equities=df) finder = self.asset_finder for _ in range(2): # Run checks twice to test for caching bugs. with self.assertRaises(SymbolNotFound): finder.lookup_symbol('NON_EXISTING', dates[0]) with self.assertRaises(MultipleSymbolsFound): finder.lookup_symbol('EXISTING', None) for i, date in enumerate(dates): # Verify that we correctly resolve multiple symbols using # the supplied date result = finder.lookup_symbol('EXISTING', date) self.assertEqual(result.symbol, 'EXISTING') self.assertEqual(result.sid, i) def test_fail_to_write_overlapping_data(self): df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': 'multiple', 'start_date': pd.Timestamp('2010-01-01'), 'end_date': pd.Timestamp('2012-01-01'), 'exchange': 'NYSE' }, # Same as asset 1, but with a later end date. { 'sid': 2, 'symbol': 'multiple', 'start_date': pd.Timestamp('2010-01-01'), 'end_date': pd.Timestamp('2013-01-01'), 'exchange': 'NYSE' }, # Same as asset 1, but with a later start_date { 'sid': 3, 'symbol': 'multiple', 'start_date': pd.Timestamp('2011-01-01'), 'end_date': pd.Timestamp('2012-01-01'), 'exchange': 'NYSE' }, ] ) with self.assertRaises(ValueError) as e: self.write_assets(equities=df) self.assertEqual( str(e.exception), "Ambiguous ownership for 1 symbol, multiple assets held the" " following symbols:\n" "MULTIPLE:\n" " intersections: (('2010-01-01 00:00:00', '2012-01-01 00:00:00')," " ('2011-01-01 00:00:00', '2012-01-01 00:00:00'))\n" " start_date end_date\n" " sid \n" " 1 2010-01-01 2012-01-01\n" " 2 2010-01-01 2013-01-01\n" " 3 2011-01-01 2012-01-01" ) def test_lookup_generic(self): """ Ensure that lookup_generic works with various permutations of inputs. """ with build_lookup_generic_cases(self.asset_finder_type) as cases: for finder, symbols, reference_date, expected in cases: results, missing = finder.lookup_generic(symbols, reference_date) self.assertEqual(results, expected) self.assertEqual(missing, []) def test_lookup_none_raises(self): """ If lookup_symbol is vectorized across multiple symbols, and one of them is None, want to raise a TypeError. """ with self.assertRaises(TypeError): self.asset_finder.lookup_symbol(None, pd.Timestamp('2013-01-01')) def test_lookup_mult_are_one(self): """ Ensure that multiple symbols that return the same sid are collapsed to a single returned asset. """ date = pd.Timestamp('2013-01-01', tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': symbol, 'start_date': date.value, 'end_date': (date + timedelta(days=30)).value, 'exchange': 'NYSE', } for symbol in ('FOOB', 'FOO_B') ] ) self.write_assets(equities=df) finder = self.asset_finder # If we are able to resolve this with any result, means that we did not # raise a MultipleSymbolError. result = finder.lookup_symbol('FOO/B', date + timedelta(1), fuzzy=True) self.assertEqual(result.sid, 1) def test_endless_multiple_resolves(self): """ Situation: 1. Asset 1 w/ symbol FOOB changes to FOO_B, and then is delisted. 2. Asset 2 is listed with symbol FOO_B. If someone asks for FOO_B with fuzzy matching after 2 has been listed, they should be able to correctly get 2. """ date = pd.Timestamp('2013-01-01', tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': 'FOOB', 'start_date': date.value, 'end_date': date.max.value, 'exchange': 'NYSE', }, { 'sid': 1, 'symbol': 'FOO_B', 'start_date': (date + timedelta(days=31)).value, 'end_date': (date + timedelta(days=60)).value, 'exchange': 'NYSE', }, { 'sid': 2, 'symbol': 'FOO_B', 'start_date': (date + timedelta(days=61)).value, 'end_date': date.max.value, 'exchange': 'NYSE', }, ] ) self.write_assets(equities=df) finder = self.asset_finder # If we are able to resolve this with any result, means that we did not # raise a MultipleSymbolError. result = finder.lookup_symbol( 'FOO/B', date + timedelta(days=90), fuzzy=True ) self.assertEqual(result.sid, 2) def test_lookup_generic_handle_missing(self): data = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'real', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'also_real', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, # Sid whose end date is before our query date. We should # still correctly find it. { 'sid': 2, 'symbol': 'real_but_old', 'start_date': pd.Timestamp('2002-1-1', tz='UTC'), 'end_date': pd.Timestamp('2003-1-1', tz='UTC'), 'exchange': 'TEST', }, # Sid whose start_date is **after** our query date. We should # **not** find it. { 'sid': 3, 'symbol': 'real_but_in_the_future', 'start_date': pd.Timestamp('2014-1-1', tz='UTC'), 'end_date': pd.Timestamp('2020-1-1', tz='UTC'), 'exchange': 'THE FUTURE', }, ] ) self.write_assets(equities=data) finder = self.asset_finder results, missing = finder.lookup_generic( ['REAL', 1, 'FAKE', 'REAL_BUT_OLD', 'REAL_BUT_IN_THE_FUTURE'], pd.Timestamp('2013-02-01', tz='UTC'), ) self.assertEqual(len(results), 3) self.assertEqual(results[0].symbol, 'REAL') self.assertEqual(results[0].sid, 0) self.assertEqual(results[1].symbol, 'ALSO_REAL') self.assertEqual(results[1].sid, 1) self.assertEqual(results[2].symbol, 'REAL_BUT_OLD') self.assertEqual(results[2].sid, 2) self.assertEqual(len(missing), 2) self.assertEqual(missing[0], 'FAKE') self.assertEqual(missing[1], 'REAL_BUT_IN_THE_FUTURE') def test_security_dates_warning(self): # Build an asset with an end_date eq_end = pd.Timestamp('2012-01-01', tz='UTC') equity_asset = Equity(1, symbol="TESTEQ", end_date=eq_end, exchange="TEST") # Catch all warnings with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered warnings.simplefilter("always") equity_asset.security_start_date equity_asset.security_end_date equity_asset.security_name # Verify the warning self.assertEqual(3, len(w)) for warning in w: self.assertTrue(issubclass(warning.category, DeprecationWarning)) def test_map_identifier_index_to_sids(self): # Build an empty finder and some Assets dt = pd.Timestamp('2014-01-01', tz='UTC') finder = self.asset_finder asset1 = Equity(1, symbol="AAPL", exchange="TEST") asset2 = Equity(2, symbol="GOOG", exchange="TEST") asset200 = Future(200, symbol="CLK15", exchange="TEST") asset201 = Future(201, symbol="CLM15", exchange="TEST") # Check for correct mapping and types pre_map = [asset1, asset2, asset200, asset201] post_map = finder.map_identifier_index_to_sids(pre_map, dt) self.assertListEqual([1, 2, 200, 201], post_map) for sid in post_map: self.assertIsInstance(sid, int) # Change order and check mapping again pre_map = [asset201, asset2, asset200, asset1] post_map = finder.map_identifier_index_to_sids(pre_map, dt) self.assertListEqual([201, 2, 200, 1], post_map) def test_compute_lifetimes(self): num_assets = 4 trading_day = self.trading_calendar.day first_start = pd.Timestamp('2015-04-01', tz='UTC') frame = make_rotating_equity_info( num_assets=num_assets, first_start=first_start, frequency=trading_day, periods_between_starts=3, asset_lifetime=5 ) self.write_assets(equities=frame) finder = self.asset_finder all_dates = pd.date_range( start=first_start, end=frame.end_date.max(), freq=trading_day, ) for dates in all_subindices(all_dates): expected_with_start_raw = full( shape=(len(dates), num_assets), fill_value=False, dtype=bool, ) expected_no_start_raw = full( shape=(len(dates), num_assets), fill_value=False, dtype=bool, ) for i, date in enumerate(dates): it = frame[['start_date', 'end_date']].itertuples() for j, start, end in it: # This way of doing the checks is redundant, but very # clear. if start <= date <= end: expected_with_start_raw[i, j] = True if start < date: expected_no_start_raw[i, j] = True expected_with_start = pd.DataFrame( data=expected_with_start_raw, index=dates, columns=frame.index.values, ) result = finder.lifetimes(dates, include_start_date=True) assert_frame_equal(result, expected_with_start) expected_no_start = pd.DataFrame( data=expected_no_start_raw, index=dates, columns=frame.index.values, ) result = finder.lifetimes(dates, include_start_date=False) assert_frame_equal(result, expected_no_start) def test_sids(self): # Ensure that the sids property of the AssetFinder is functioning self.write_assets(equities=make_simple_equity_info( [0, 1, 2], pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), )) self.assertEqual({0, 1, 2}, set(self.asset_finder.sids)) def test_lookup_by_supplementary_field(self): equities = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'A', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'B', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, { 'sid': 2, 'symbol': 'C', 'start_date': pd.Timestamp('2013-7-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, ] ) equity_supplementary_mappings = pd.DataFrame.from_records( [ { 'sid': 0, 'field': 'ALT_ID', 'value': '100000000', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2013-6-28', tz='UTC'), }, { 'sid': 1, 'field': 'ALT_ID', 'value': '100000001', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), }, { 'sid': 0, 'field': 'ALT_ID', 'value': '100000002', 'start_date': pd.Timestamp('2013-7-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), }, { 'sid': 2, 'field': 'ALT_ID', 'value': '100000000', 'start_date': pd.Timestamp('2013-7-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), }, ] ) self.write_assets( equities=equities, equity_supplementary_mappings=equity_supplementary_mappings, ) af = self.asset_finder # Before sid 0 has changed ALT_ID. dt = pd.Timestamp('2013-6-28', tz='UTC') asset_0 = af.lookup_by_supplementary_field('ALT_ID', '100000000', dt) self.assertEqual(asset_0.sid, 0) asset_1 = af.lookup_by_supplementary_field('ALT_ID', '100000001', dt) self.assertEqual(asset_1.sid, 1) # We don't know about this ALT_ID yet. with self.assertRaisesRegexp( ValueNotFoundForField, "Value '{}' was not found for field '{}'.".format( '100000002', 'ALT_ID', ) ): af.lookup_by_supplementary_field('ALT_ID', '100000002', dt) # After all assets have ended. dt = pd.Timestamp('2014-01-02', tz='UTC') asset_2 = af.lookup_by_supplementary_field('ALT_ID', '100000000', dt) self.assertEqual(asset_2.sid, 2) asset_1 = af.lookup_by_supplementary_field('ALT_ID', '100000001', dt) self.assertEqual(asset_1.sid, 1) asset_0 = af.lookup_by_supplementary_field('ALT_ID', '100000002', dt) self.assertEqual(asset_0.sid, 0) # At this point both sids 0 and 2 have held this value, so an # as_of_date is required. expected_in_repr = ( "Multiple occurrences of the value '{}' found for field '{}'." ).format('100000000', 'ALT_ID') with self.assertRaisesRegexp( MultipleValuesFoundForField, expected_in_repr, ): af.lookup_by_supplementary_field('ALT_ID', '100000000', None) def test_get_supplementary_field(self): equities = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'A', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'B', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, { 'sid': 2, 'symbol': 'C', 'start_date': pd.Timestamp('2013-7-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': 'TEST', }, ] ) equity_supplementary_mappings = pd.DataFrame.from_records( [ { 'sid': 0, 'field': 'ALT_ID', 'value': '100000000', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2013-6-28', tz='UTC'), }, { 'sid': 1, 'field': 'ALT_ID', 'value': '100000001', 'start_date': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date': pd.Timestamp('2014-1-1', tz='UTC'), }, { 'sid': 0, 'field': 'ALT_ID', 'value': '100000002', 'start_date':
pd.Timestamp('2013-7-1', tz='UTC')
pandas.Timestamp
from numpy.core.fromnumeric import var import pytest import pandas as pd import numpy as np from dowhy import CausalModel class TestIDIdentifier(object): def test_1(self): treatment = "T" outcome = "Y" causal_graph = "digraph{T->Y;}" columns = list(treatment) + list(outcome) df = pd.DataFrame(columns=columns) # Calculate causal effect twice: once for unit (t=1, c=0), once for specific increase (t=100, c=50) causal_model = CausalModel(df, treatment, outcome, graph=causal_graph) identified_estimand = causal_model.identify_effect(method_name="id-algorithm") # Only P(Y|T) should be present for test to succeed. identified_str = identified_estimand.__str__() gt_str = "Predictor: P(Y|T)" assert identified_str == gt_str def test_2(self): ''' Test undirected edge between treatment and outcome. ''' treatment = "T" outcome = "Y" causal_graph = "digraph{T->Y; Y->T;}" columns = list(treatment) + list(outcome) df = pd.DataFrame(columns=columns) # Calculate causal effect twice: once for unit (t=1, c=0), once for specific increase (t=100, c=50) causal_model = CausalModel(df, treatment, outcome, graph=causal_graph) # Since undirected graph, identify effect must throw an error. with pytest.raises(Exception): identified_estimand = causal_model.identify_effect(method_name="id-algorithm") def test_3(self): treatment = "T" outcome = "Y" variables = ["X1"] causal_graph = "digraph{T->X1;X1->Y;}" columns = list(treatment) + list(outcome) + list(variables) df =
pd.DataFrame(columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This enables to parameterize a desired scenario to mock a multi-partner ML project. """ import datetime import re import uuid from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd from loguru import logger from sklearn.preprocessing import LabelEncoder from . import contributivity, constants from . import dataset as dataset_module from .corruption import Corruption, NoCorruption, IMPLEMENTED_CORRUPTION, Duplication from .mpl_utils import AGGREGATORS from .multi_partner_learning import MULTI_PARTNER_LEARNING_APPROACHES from .partner import Partner from .splitter import Splitter, IMPLEMENTED_SPLITTERS class Scenario: def __init__( self, partners_count, amounts_per_partner, dataset=None, dataset_name=constants.MNIST, dataset_proportion=1, samples_split_option='random', corruption_parameters=None, init_model_from="random_initialization", multi_partner_learning_approach="fedavg", aggregation_weighting="data-volume", gradient_updates_per_pass_count=constants.DEFAULT_GRADIENT_UPDATES_PER_PASS_COUNT, minibatch_count=constants.DEFAULT_BATCH_COUNT, epoch_count=constants.DEFAULT_EPOCH_COUNT, is_early_stopping=True, contributivity_methods=None, is_quick_demo=False, save_path=None, scenario_id=1, val_set='global', test_set='global', **kwargs, ): """ :param partners_count: int, number of partners. Example: partners_count = 3 :param amounts_per_partner: [float]. Fractions of the original dataset each partner receives to mock a collaborative ML scenario where each partner provides data for the ML training. :param dataset: dataset.Dataset object. Use it if you want to use your own dataset, otherwise use dataset_name. :param dataset_name: str. 'mnist', 'cifar10', 'esc50' and 'titanic' are currently supported (default: mnist) :param dataset_proportion: float (default: 1) :param samples_split_option: Splitter object, or its string identifier (for instance 'random', or 'stratified') Define the strategy to use to split the data samples between the partners. Default, RandomSplitter. :param corruption_parameters: list of Corruption object, or its string identifier, one ofr each partner. Enable to artificially corrupt partner's data. For instance: [Permutation(proportion=0.2), 'random', 'not-corrupted'] :param init_model_from: None (default) or path :param multi_partner_learning_approach: 'fedavg' (default), 'seq-pure', 'seq-with-final-agg' or 'seqavg' Define the multi-partner learning approach :param aggregation_weighting: 'data_volume' (default), 'uniform' or 'local_score' :param gradient_updates_per_pass_count: int :param minibatch_count: int :param epoch_count: int :param is_early_stopping: boolean. Stop the training if scores on val_set reach a plateau :param contributivity_methods: A declarative list `[]` of the contributivity measurement methods to be executed. :param is_quick_demo: boolean. Useful for debugging :param save_path: path where to save the scenario outputs. By default, they are not saved! :param scenario_id: str :param **kwargs: """ # --------------------------------------------------------------------- # Initialization of the dataset defined in the config of the experiment # --------------------------------------------------------------------- # Raise Exception if unknown parameters in the config of the scenario params_known = [ "dataset", "dataset_name", "dataset_proportion", "val_set", "test_set" ] # Dataset related params_known += [ "contributivity_methods", "multi_partner_learning_approach", "aggregation_weighting", ] # federated learning related params_known += [ "partners_count", "amounts_per_partner", "corruption_parameters", "samples_split_option", "samples_split_configuration" ] # Partners related params_known += [ "gradient_updates_per_pass_count", "epoch_count", "minibatch_count", "is_early_stopping", ] # Computation related params_known += ["init_model_from"] # Model related params_known += ["is_quick_demo"] params_known += ["save_path", "scenario_name", "repeat_count"] unrecognised_parameters = [x for x in kwargs.keys() if (x not in params_known and not x.startswith('mpl_'))] if len(unrecognised_parameters) > 0: for x in unrecognised_parameters: logger.debug(f"Unrecognised parameter: {x}") raise Exception( f"Unrecognised parameters {unrecognised_parameters}, check your configuration" ) # Get and verify which dataset is configured if isinstance(dataset, dataset_module.Dataset): self.dataset = dataset else: # Reference the module corresponding to the dataset selected and initialize the Dataset object if dataset_name == constants.MNIST: # default self.dataset = dataset_module.Mnist() elif dataset_name == constants.CIFAR10: self.dataset = dataset_module.Cifar10() elif dataset_name == constants.TITANIC: self.dataset = dataset_module.Titanic() elif dataset_name == constants.ESC50: self.dataset = dataset_module.Esc50() elif dataset_name == constants.IMDB: self.dataset = dataset_module.Imdb() else: raise Exception( f"Dataset named '{dataset_name}' is not supported (yet). You can construct your own " f"dataset object, or even add it by contributing to the project !" ) logger.debug(f"Dataset selected: {self.dataset.name}") # Proportion of the dataset the computation will used self.dataset_proportion = dataset_proportion assert ( self.dataset_proportion > 0 ), "Error in the config file, dataset_proportion should be > 0" assert ( self.dataset_proportion <= 1 ), "Error in the config file, dataset_proportion should be <= 1" if self.dataset_proportion < 1: self.dataset.shorten_dataset_proportion(self.dataset_proportion) else: logger.debug("The full dataset will be used (dataset_proportion is configured to 1)") logger.debug( f"Computation use the full dataset for scenario #{scenario_id}" ) # -------------------------------------- # Definition of collaborative scenarios # -------------------------------------- # Partners mock different partners in a collaborative data science project self.partners_list = [] # List of all partners defined in the scenario self.partners_count = partners_count # Number of partners in the scenario # For configuring the respective sizes of the partners' datasets # (% of samples of the dataset for each partner, ... # ... has to sum to 1, and number of items has to equal partners_count) self.amounts_per_partner = amounts_per_partner if np.sum(self.amounts_per_partner) != 1: raise ValueError("The sum of the amount per partners you provided isn't equal to 1") if len(self.amounts_per_partner) != self.partners_count: raise AttributeError(f"The amounts_per_partner list should have a size ({len(self.amounts_per_partner)}) " f"equals to partners_count ({self.partners_count})") # To configure how validation set and test set will be organized. if test_set in ['local', 'global']: self.test_set = test_set else: raise ValueError(f'Test set can be \'local\' or \'global\' not {test_set}') if val_set in ['local', 'global']: self.val_set = val_set else: raise ValueError(f'Validation set can be \'local\' or \'global\' not {val_set}') # To configure if data samples are split between partners randomly or in a stratified way... # ... so that they cover distinct areas of the samples space if isinstance(samples_split_option, Splitter): if self.val_set != samples_split_option.val_set: logger.warning('The validation set organisation (local/global) is differently configured between the ' 'provided Splitter and Scenario') if self.test_set != samples_split_option.test_set: logger.warning('The test set organisation (local/global) is differently configured between the ' 'provided Splitter and Scenario') self.splitter = samples_split_option else: splitter_param = {'amounts_per_partner': self.amounts_per_partner, 'val_set': self.val_set, 'test_set': self.test_set, } if "samples_split_configuration" in kwargs.keys(): splitter_param.update({'configuration': kwargs["samples_split_configuration"]}) self.splitter = IMPLEMENTED_SPLITTERS[samples_split_option](**splitter_param) # To configure if the data of the partners are corrupted or not (useful for testing contributivity measures) if corruption_parameters: self.corruption_parameters = list( map(lambda x: x if isinstance(x, Corruption) else IMPLEMENTED_CORRUPTION[x](), corruption_parameters)) else: self.corruption_parameters = [NoCorruption() for _ in range(self.partners_count)] # default # --------------------------------------------------- # Configuration of the distributed learning approach # --------------------------------------------------- self.mpl = None # Multi-partner learning approach self.multi_partner_learning_approach = multi_partner_learning_approach try: self._multi_partner_learning_approach = MULTI_PARTNER_LEARNING_APPROACHES[ multi_partner_learning_approach] except KeyError: text_error = f"Multi-partner learning approach '{multi_partner_learning_approach}' is not a valid " text_error += "approach. List of supported approach : " for key in MULTI_PARTNER_LEARNING_APPROACHES.keys(): text_error += f"{key}, " raise KeyError(text_error) # Define how federated learning aggregation steps are weighted... # ... Toggle between 'uniform' (default) and 'data_volume' self.aggregation_weighting = aggregation_weighting try: self._aggregation_weighting = AGGREGATORS[aggregation_weighting] except KeyError: raise ValueError(f"aggregation approach '{aggregation_weighting}' is not a valid approach. ") # Number of epochs, mini-batches and fit_batches in ML training self.epoch_count = epoch_count assert ( self.epoch_count > 0 ), "Error: in the provided config file, epoch_count should be > 0" self.minibatch_count = minibatch_count assert ( self.minibatch_count > 0 ), "Error: in the provided config file, minibatch_count should be > 0" self.gradient_updates_per_pass_count = gradient_updates_per_pass_count assert self.gradient_updates_per_pass_count > 0, ( "Error: in the provided config file, " "gradient_updates_per_pass_count should be > 0 " ) # Early stopping stops ML training when performance increase is not significant anymore # It is used to optimize the number of epochs and the execution time self.is_early_stopping = is_early_stopping # Model used to initialise model self.init_model_from = init_model_from if init_model_from == "random_initialization": self.use_saved_weights = False else: self.use_saved_weights = True # ----------------------------------------------------------------- # Configuration of contributivity measurement contributivity_methods to be tested # ----------------------------------------------------------------- # List of contributivity measures selected and computed in the scenario self.contributivity_list = [] # Contributivity methods self.contributivity_methods = [] if contributivity_methods is not None: for method in contributivity_methods: if method in constants.CONTRIBUTIVITY_METHODS: self.contributivity_methods.append(method) else: raise Exception(f"Contributivity method '{method}' is not in contributivity_methods list.") # ------------- # Miscellaneous # ------------- # Misc. self.scenario_id = scenario_id self.repeat_count = kwargs.get('repeat_count', 1) # The quick demo parameters overwrites previously defined parameters to make the scenario faster to compute self.is_quick_demo = is_quick_demo if self.is_quick_demo and self.dataset_proportion < 1: raise Exception("Don't start a quick_demo without the full dataset") if self.is_quick_demo: # Use less data and/or less epochs to speed up the computations if len(self.dataset.x_train) > constants.TRAIN_SET_MAX_SIZE_QUICK_DEMO: index_train = np.random.choice( self.dataset.x_train.shape[0], constants.TRAIN_SET_MAX_SIZE_QUICK_DEMO, replace=False, ) index_val = np.random.choice( self.dataset.x_val.shape[0], constants.VAL_SET_MAX_SIZE_QUICK_DEMO, replace=False, ) index_test = np.random.choice( self.dataset.x_test.shape[0], constants.TEST_SET_MAX_SIZE_QUICK_DEMO, replace=False, ) self.dataset.x_train = self.dataset.x_train[index_train] self.dataset.y_train = self.dataset.y_train[index_train] self.dataset.x_val = self.dataset.x_val[index_val] self.dataset.y_val = self.dataset.y_val[index_val] self.dataset.x_test = self.dataset.x_test[index_test] self.dataset.y_test = self.dataset.y_test[index_test] self.epoch_count = 3 self.minibatch_count = 2 # ----------------- # Output parameters # ----------------- now = datetime.datetime.now() now_str = now.strftime("%Y-%m-%d_%Hh%M") self.scenario_name = kwargs.get('scenario_name', f"scenario_{self.scenario_id}_repeat_{self.repeat_count}_{now_str}_" f"{uuid.uuid4().hex[:3]}") # to distinguish identical names if re.search(r'\s', self.scenario_name): raise ValueError( f'The scenario name "{self.scenario_name}"cannot be written with space character, please use ' f'underscore or dash.') self.short_scenario_name = f"{self.partners_count}_{self.amounts_per_partner}" if save_path is not None: self.save_folder = Path(save_path) / self.scenario_name else: self.save_folder = None # ------------------------------------------------------------------- # Select in the kwargs the parameters to be transferred to sub object # ------------------------------------------------------------------- self.mpl_kwargs = {} for key, value in kwargs.items(): if key.startswith('mpl_'): self.mpl_kwargs[key.replace('mpl_', '')] = value # ----------------------- # Provision the scenario # ----------------------- self.instantiate_scenario_partners() self.split_data() self.compute_batch_sizes() self.apply_data_alteration_configuration() # ------------------------------------------------ # Print the description of the scenario configured # ------------------------------------------------ self.log_scenario_description() @property def nb_samples_used(self): if len(self.partners_list) == 0: return len(self.dataset.x_train) else: return sum([p.final_nb_samples for p in self.partners_list]) @property def final_relative_nb_samples(self): return [p.final_nb_samples / self.nb_samples_used for p in self.partners_list] def copy(self, **kwargs): params = self.__dict__.copy() for key in ['partners_list', 'mpl', '_multi_partner_learning_approach', '_aggregation_weighting', 'use_saved_weights', 'contributivity_list', 'scenario_name', 'short_scenario_name', 'save_folder', 'splitter']: del params[key] if 'is_quick_demo' in kwargs and kwargs['is_quick_demo'] != self.is_quick_demo: raise ValueError("Attribute 'is_quick_demo' cannot be modified between copies.") if self.save_folder is not None: params['save_path'] = self.save_folder.parents[0] else: params['save_path'] = None params['samples_split_option'] = self.splitter.copy() params.update(kwargs) return Scenario(**params) def log_scenario_description(self): """Log the description of the scenario configured""" # Describe scenario logger.info("Description of data scenario configured:") logger.info(f" Number of partners defined: {self.partners_count}") logger.info(f" Data distribution scenario chosen: {self.splitter}") logger.info(f" Multi-partner learning approach: {self.multi_partner_learning_approach}") logger.info(f" Weighting option: {self.aggregation_weighting}") logger.info(f" Iterations parameters: " f"{self.epoch_count} epochs > " f"{self.minibatch_count} mini-batches > " f"{self.gradient_updates_per_pass_count} gradient updates per pass") # Describe data logger.info(f"Data loaded: {self.dataset.name}") if self.is_quick_demo: logger.info(" Quick demo configuration: number of data samples and epochs " "are limited to speed up the run") logger.info( f" {len(self.dataset.x_train)} train data with {len(self.dataset.y_train)} labels" ) logger.info( f" {len(self.dataset.x_val)} val data with {len(self.dataset.y_val)} labels" ) logger.info( f" {len(self.dataset.x_test)} test data with {len(self.dataset.y_test)} labels" ) def append_contributivity(self, contributivity_method): self.contributivity_list.append(contributivity_method) def instantiate_scenario_partners(self): """Create the partners_list""" if len(self.partners_list) > 0: raise Exception('Partners have already been initialized') self.partners_list = [Partner(i, corruption=self.corruption_parameters[i]) for i in range(self.partners_count)] def split_data(self): self.splitter.split(self.partners_list, self.dataset) return 0 def plot_data_distribution(self): lb = LabelEncoder().fit([str(y) for y in self.dataset.y_train]) for i, partner in enumerate(self.partners_list): plt.subplot(self.partners_count, 1, i + 1) # TODO share y axis data_count = np.bincount(lb.transform([str(y) for y in partner.y_train])) # Fill with 0 while len(data_count) < self.dataset.num_classes: data_count = np.append(data_count, 0) plt.bar(np.arange(0, self.dataset.num_classes), data_count) plt.ylabel("partner " + str(partner.id)) plt.suptitle("Data distribution") plt.xlabel("Digits") (self.save_folder / 'graphs').mkdir(exist_ok=True) plt.savefig(self.save_folder / "graphs" / "data_distribution.png") plt.close() def compute_batch_sizes(self): # For each partner we compute the batch size in multi-partner and single-partner setups batch_size_min = 1 batch_size_max = constants.MAX_BATCH_SIZE if self.partners_count == 1: p = self.partners_list[0] batch_size = int(len(p.x_train) / self.gradient_updates_per_pass_count) p.batch_size = np.clip(batch_size, batch_size_min, batch_size_max) else: for p in self.partners_list: batch_size = int( len(p.x_train) / (self.minibatch_count * self.gradient_updates_per_pass_count) ) p.batch_size = np.clip(batch_size, batch_size_min, batch_size_max) for p in self.partners_list: logger.debug(f" Compute batch sizes, partner #{p.id}: {p.batch_size}") def apply_data_alteration_configuration(self): """perform corruption on partner if needed""" for partner in self.partners_list: if isinstance(partner.corruption, Duplication): if not partner.corruption.duplicated_partner_id: data_volume = np.array([p.data_volume for p in self.partners_list if p.id != partner.id]) ids = np.array([p.id for p in self.partners_list if p.id != partner.id]) candidates = ids[data_volume >= partner.data_volume * partner.corruption.proportion] partner.corruption.duplicated_partner_id = np.random.choice(candidates) partner.corruption.set_duplicated_partner(self.partners_list) partner.corrupt() def to_dataframe(self): df =
pd.DataFrame()
pandas.DataFrame
"""Wraps sklearn Gradient Boosting Regressor to 1) automate modeling similar to gbm library in R 2) overlay data and descriptive statistics in data visualization of partial dependencies for better inference author: <NAME> date created: 2018-06-15 """ import sklearn_gbm_ots.sklearn_gbm_extend as sklearn_gbm_extend import pandas as pd import sklearn.model_selection as skl_ms import sklearn.ensemble as skl_e import sklearn.metrics as skl_metrics import numpy as np import sklearn_gbm_ots.pandas_tools as pde import logging import sklearn_gbm_ots.file_tools as fs class GBMwrapper(): def __init__( self, df_dataset, outcome, weights_col_name=None, features_list=None, impute_NAs=True, tail_threshold=10, destination_dir='./gbm_output/', ax_limits_per_feature=None, show_plots=True, random_state=None): """Creates gbm object for future modeling. arguments: df_dataset - dataframe with all data: numeric/ categorical features, and the outcome outcome - column name with the outcome features_list - list of strings representing features columns. by default all columns will be used except the oucome impute_NAs - flag to fill NAs with median values tail_threshold - minimum number of observations per given category. Categories with smaller counts will be merged to 'Other' destination_dir - directory where output files will be saved ax_limits_per_feature - dictionary for customizing plots axes: { 'feature_name1': {'xlim': [0, 100], 'ylim': [0, 1]}, 'feature_name2': {'ylim': [0, 0.5]}, 'feature_name5': {'xlim': [-1, 1]}, } """ self.random_state = random_state self.show_plots = show_plots self.destination_dir = destination_dir fs.prepare_folder_for(self.destination_dir + 'temp.txt') self.df_dataset = df_dataset self.features_list = features_list self.outcome = outcome self.impute_NAs = impute_NAs self.tail_threshold = tail_threshold if self.features_list is not None: self.df_dataset = self.df_dataset[ self.features_list + [self.outcome]] self.drop_na_outcomes() if weights_col_name is not None: self.weights = self.df_dataset[weights_col_name] self.df_dataset = self.df_dataset.drop( [weights_col_name], axis=1) else: self.weights = pd.Series(np.ones(self.df_dataset.shape[0])) self.ax_limits_per_feature = ax_limits_per_feature self.default_params = { 'n_estimators': 4000, 'max_depth': 10, 'max_features': 4, 'min_samples_split': 20, 'min_samples_leaf': 10, 'learning_rate': 0.01, 'loss': 'ls'} self.get_categorical_features() if self.tail_threshold is not None: self.remove_long_tails() self.validate_data() self.prepare_data() def remove_long_tails(self): """Merges Categories with counts smaller than tail_threshold to 'Other'""" for col in self.categorical_features: v_counts1 = self.df_dataset[col].value_counts() removed = pde.remove_long_tail( self.df_dataset, col, self.tail_threshold, 'Other') v_counts2 = self.df_dataset[col].value_counts() if removed: logging.info('removed long tail from {}'.format(col)) logging.info('{} before: {}'.format(col, v_counts1)) logging.info('{} after: {}'.format(col, v_counts2)) def get_categorical_features(self): # Identifies categorical features in the dataset self.categorical_features = list( self.df_dataset.dtypes[self.df_dataset.dtypes == 'object'].index) logging.info('detected categorical_features: {}'.format( self.categorical_features)) def drop_na_outcomes(self): # Removes observations with unknown outcome obs_n1 = self.df_dataset.shape[0] self.df_dataset = self.df_dataset.dropna(subset = [self.outcome]) obs_n2 = self.df_dataset.shape[0] if obs_n2 < obs_n1: logging.warning('dropped {} observations without outcome'.format( obs_n2 - obs_n1)) def impute_NAs_in_col(self, col): # Imputes NAs (only with median at the moment) pde.fill_na_median(self.df_dataset, col) def validate_data(self): # Ensures data does not have NAs na_errors = [] for col in self.df_dataset.columns: if col not in self.categorical_features: na_count = sum(pd.isnull(self.df_dataset[col])) if na_count > 0: if self.impute_NAs: self.impute_NAs_in_col(col) logging.warning('imputed {} NAs in {}'.format( na_count, col)) else: na_errors.append( 'Error: column "{}" has {} NA values'.format( col, na_count)) for na_error in na_errors: print(na_error) if len(na_errors) > 0: raise NameError('Must not have NAs for non-categorical values') def prepare_data(self): """ Prepares data for model training: one-hot encoding for categorical values setting aside test dataset """ self.X = pd.get_dummies(self.df_dataset.drop([self.outcome], axis=1)) self.y = self.df_dataset[self.outcome] (self.train_X, self.test_X, self.train_y, self.test_y, self.train_weights, self.test_weights, self.df_train, self.df_test) = skl_ms.train_test_split( self.X, self.y, self.weights, self.df_dataset, random_state=self.random_state) self.gbm_tools = sklearn_gbm_extend.ToolsGBM( self.categorical_features, self.train_X, self.train_y, self.train_weights, outcome_label=self.outcome, destination_dir=self.destination_dir, show_plots=self.show_plots, random_state=self.random_state) def update_params(self, params): self.params = params if 'random_state' not in self.params: self.params['random_state'] = self.random_state def build_model(self, params=None, cv_n_splits=5): """Builds model and stores it in the object: tunes number of estimators (trees) with cross validation evaluate performance plots training curves, feature importance, partial dependences arguments: params - gbm parameters dictionary (default as specified at init) cv_n_splits - number of splits for cross-validation (default 5)""" if params is None: params = self.default_params self.update_params(params) logging.info('Cross-validation parameter optimization started.') val_scores, std_val_scores = self.gbm_tools.cv_estimate( params, n_splits=cv_n_splits) cv_n_trees, cv1se_n_trees = self.gbm_tools.cv_n_tree( val_scores, std_val_scores) vertical_lines = {} selected_n_trees = cv_n_trees if pd.notnull(cv1se_n_trees) and cv1se_n_trees != 0: selected_n_trees = cv1se_n_trees vertical_lines['selected cv min less 1 std at'] = cv1se_n_trees vertical_lines['cv min at '] = cv_n_trees else: vertical_lines['selected cv min at '] = cv_n_trees logging.info('minium cv error at {} trees'.format(cv_n_trees)) logging.info('minimum cv error within 1 std at {} trees'.format( cv1se_n_trees)) logging.info('selected n_trees: {}'.format(selected_n_trees)) logging.info('plotting all trees training curves') self.gbm = skl_e.GradientBoostingRegressor(**self.params) self.gbm_fit() self.gbm_tools.plot_gbm_training( self.gbm, self.test_X, self.test_y, cv_scores=val_scores, cv_std_scores=std_val_scores, fig_params={'figsize': (11, 11)}, vertical_lines=vertical_lines) self.update_n_trees(selected_n_trees) self.evaluate_performance(self.gbm) self.plot_output() return self.gbm def gbm_fit(self): """fits gbm model""" logging.info('gbm fitting...') self.gbm.fit( self.train_X, self.train_y, sample_weight=self.train_weights) def update_n_trees(self, new_n_trees): """updates number of estimators, then refits and reevalute performance arguments: new_n_trees - number of trees (estimators) to be set""" logging.info('updating n trees with selected {}'.format( new_n_trees)) self.gbm.n_estimators = new_n_trees self.params['n_estimators'] = new_n_trees self.gbm_fit() self.evaluate_performance(self.gbm) def plot_output(self, ax_limits=None, file_prefix='', **fig_params): """plots feature importance and partial dependencies plots arguments: ax_limits - dictionary for customizing plots axes: { 'feature_name1': {'xlim': [0, 100], 'ylim': [0, 1]}, 'feature_name2': {'ylim': [0, 0.5]}, 'feature_name5': {'xlim': [-1, 1]}} if not provided, limits are set based on data **fig_params - keyword parameters to be passed to plots, including standard pyplot.figure and: absolute_yscale - absolute_scale (starts at zero) on y axis absolute_yticks - flag to subtract mean from y axis pabels """ if ax_limits is None: ax_limits = self.ax_limits_per_feature logging.info('plotting feature importances and partial dependences') self.gbm_tools.file_prefix = file_prefix self.gbm_tools.feature_importances_plot( self.gbm, {'figsize': (11, 11)}) self.gbm_tools.partial_dependencies_plots( self.gbm, self.params, ax_limits=ax_limits, **fig_params) def evaluate_performance(self, gbm): # evaluate performance of the provided gbm model logging.info('evaluating performance') pred_test_y = gbm.predict(self.test_X) mse = skl_metrics.mean_squared_error( self.test_y, pred_test_y, sample_weight=1 / self.test_weights) vexp = skl_metrics.explained_variance_score( self.test_y, pred_test_y, sample_weight=1 / self.test_weights) print('rmse: {:.2f}, variance explained: {:.0f}%'.format( np.sqrt(mse), vexp * 100.)) predicted_label = 'predicted_{}'.format(self.outcome) self.df_test = self.df_test.copy() self.df_test[predicted_label] = pred_test_y self.df_test['diff'] = self.df_test[predicted_label]\ - self.df_test[self.outcome] self.df_test['abs diff'] = abs(self.df_test['diff']) self.df_test[[predicted_label, self.outcome, 'diff']].hist() print('{} standard deviation: {:.2f},\ prediction error std: {:.2f},\ average absolute error: {:.2f}'.format( self.outcome, np.std(self.df_test[self.outcome]), np.std(self.df_test['diff']), np.mean(self.df_test['abs diff']))) def predict_dataset(self, df): """Adds column with predictions for provided data arguments: df - dataframe of the same format as training dataframe but without the outcome""" df[self.outcome + '_predicted'] = self.gbm.predict(
pd.get_dummies(df)
pandas.get_dummies
#!/usr/bin/env python from __future__ import print_function from .tabulate import tabulate as tabulate_ import sys import pandas as pd import re import datetime def _get_version(): import ph._version return ph._version.__version__ def print_version(): print(_get_version()) # Command line parsing of (1) --abc and (2) --abc=def KWARG = re.compile("^--[a-z0-9_-]+$") KWARG_WITH_VALUE = re.compile("^--[a-z0-9_-]+=") USAGE_TEXT = """ ph is a command line tool for streaming csv data. If you have a csv file `a.csv`, you can pipe it through `ph` on the command line by using $ cat a.csv | ph columns x y | ph eval "z = x**2 - y" | ph show Use ph help [command] for help on the individual commands. A list of available commands follows. """ COMMANDS = {} DOCS = {} def _gpx(fname): try: import gpxpy except ImportError: sys.exit("ph gpx needs gpxpy, pip install ph[gpx]") def from_trackpoint(tp=None): if tp is None: return "time", "latitude", "longitude", "elevation", "distance" p = tp.point return str(p.time), p.latitude, p.longitude, p.elevation, tp.distance_from_start with open(fname, "r") as fin: gpx = gpxpy.parse(fin) data = gpx.get_points_data() columns = from_trackpoint() dfdata = [from_trackpoint(tp) for tp in data] return pd.DataFrame(dfdata, columns=columns) def _tsv(*args, **kwargs): kwargs["sep"] = "\t" return pd.read_csv(*args, **kwargs) # These are all lambdas because they lazy load, and some of these # readers are introduced in later pandas. READERS = { "csv": pd.read_csv, "clipboard": pd.read_clipboard, "fwf": pd.read_fwf, "json": pd.read_json, "html": pd.read_html, "tsv": _tsv, "gpx": _gpx, } try: READERS["excel"] = pd.read_excel READERS["xls"] = pd.read_excel READERS["odf"] = pd.read_excel except AttributeError: pass try: READERS["hdf5"] = pd.read_hdf except AttributeError: pass try: READERS["feather"] = pd.read_feather except AttributeError: pass try: READERS["parquet"] = pd.read_parquet except AttributeError: pass try: READERS["orc"] = pd.read_orc except AttributeError: pass try: READERS["msgpack"] = pd.read_msgpack except AttributeError: pass try: READERS["stata"] = pd.read_stata except AttributeError: pass try: READERS["sas"] = pd.read_sas except AttributeError: pass try: READERS["spss"] = pd.read_spss except AttributeError: pass try: READERS["pickle"] = pd.read_pickle except AttributeError: pass try: READERS["gbq"] = pd.read_gbq except AttributeError: pass try: READERS["google"] = pd.read_gbq except AttributeError: pass try: READERS["bigquery"] = pd.read_gb except AttributeError: pass WRITERS = { "csv": "to_csv", "fwf": "to_fwf", "json": "to_json", "html": "to_html", "clipboard": "to_clipboard", "xls": "to_excel", "odf": "to_excel", "hdf5": "to_hdf", "feather": "to_feather", "parquet": "to_parquet", "orc": "to_orc", "msgpack": "to_msgpack", "stata": "to_stata", "sas": "to_sas", "spss": "to_spss", "pickle": "to_pickle", "gbq": "to_gbq", "google": "to_gbq", "bigquery": "to_gbq", # extras "tsv": "to_csv", } FALSY = ("False", "false", "No", "no", "0", False, 0, "None") TRUTHY = ("True", "true", "Yes", "yes", "1", True, 1) def _assert_col(df, col, caller=None): if col not in df.columns: if caller is not None: sys.exit("ph {}: Unknown column {}".format(caller, col)) sys.exit("Unknown column {}".format(col)) def _assert_cols(df, cols, caller=None): for col in cols: _assert_col(df, col, caller=caller) def register(fn, name=None): if name is None: name = fn.__name__ COMMANDS[name] = fn DOCS[name] = fn.__doc__ return fn def registerx(name): def inner(fn): register(fn, name) return fn return inner @register def dataset(dset=None): """Load dataset as csv. Usage: ph dataset linnerud | ph describe """ try: import sklearn.datasets except ImportError: sys.exit("You need scikit-learn. Install ph[data].") REALDATA = { "olivetti_faces": sklearn.datasets.fetch_olivetti_faces, "20newsgroups": sklearn.datasets.fetch_20newsgroups, "20newsgroups_vectorized": sklearn.datasets.fetch_20newsgroups_vectorized, "lfw_people": sklearn.datasets.fetch_lfw_people, "lfw_pairs": sklearn.datasets.fetch_lfw_pairs, "covtype": sklearn.datasets.fetch_covtype, "rcv1": sklearn.datasets.fetch_rcv1, "kddcup99": sklearn.datasets.fetch_kddcup99, "california_housing": sklearn.datasets.fetch_california_housing, } TOYDATA = { "boston": sklearn.datasets.load_boston, "iris": sklearn.datasets.load_iris, "diabetes": sklearn.datasets.load_diabetes, "digits": sklearn.datasets.load_digits, "linnerud": sklearn.datasets.load_linnerud, "wine": sklearn.datasets.load_wine, "breast_cancer": sklearn.datasets.load_breast_cancer, } if dset is None: print("type,name") print("\n".join("{},{}".format("real", k) for k in REALDATA)) print("\n".join("{},{}".format("toy", k) for k in TOYDATA)) sys.exit() if dset not in TOYDATA.keys() | REALDATA.keys(): sys.exit("Unknown dataset {}. See ph help dataset.".format(dset)) if dset in TOYDATA: data = TOYDATA[dset]() else: data = REALDATA[dset]() try: df = pd.DataFrame(data.data, columns=data.feature_names) except AttributeError: df = pd.DataFrame(data.data) try: df["target"] = pd.Series(data.target) except Exception: pass pipeout(df) @register def diff(*cols, periods=1, axis=0): df = pipein() if not cols: df = df.diff(periods=periods, axis=axis) else: _assert_cols(df, cols, "diff") columns = list(cols) df[columns] = df[columns].diff(periods=periods, axis=axis) pipeout(df) @register def dropna(axis=0, how="any", thresh=None): """Remove rows (or columns) with N/A values. Argument: --axis=0 Defaults to axis=0 (columns), use --axis=1 to remove rows. Argument: --how=any Defaults to how='any', which removes columns (resp. rows) containing nan values. Use how='all' to remove columns (resp. rows) containing only nan values. Argument: --thresh=5 If --thresh=x is specified, will delete any column (resp. row) with fewer than x non-na values. Usage: cat a.csv | ph dropna cat a.csv | ph dropna --axis=1 # for row-wise cat a.csv | ph dropna --thresh=5 # keep cols with >= 5 non-na cat a.csv | ph dropna --how=all # delete only if all vals na """ try: axis = int(axis) if axis not in (0, 1): sys.exit("ph dropna --axis=0 or --axis=1, not {}".format(axis)) except ValueError: sys.exit("ph dropna --axis=0 or --axis=1, not {}".format(axis)) if thresh is not None: try: thresh = int(thresh) except ValueError: sys.exit("ph dropna --thresh=0 or --thresh=1, not {}".format(thresh)) df = pipein() try: df = df.dropna(axis=axis, how=how, thresh=thresh) except Exception as err: sys.exit(str(err)) pipeout(df) def _safe_out(output): """Prints output to standard out, catching broken pipe.""" try: print(output) except BrokenPipeError: try: sys.stdout.close() except IOError: pass try: sys.stderr.close() except IOError: pass def pipeout(df, sep=",", index=False, *args, **kwargs): csv = df.to_csv(sep=sep, index=index, *args, **kwargs) output = csv.rstrip("\n") _safe_out(output) def pipein(ftype="csv", **kwargs): skiprows = kwargs.get("skiprows") if skiprows is not None: try: skiprows = int(skiprows) if skiprows < 0: raise ValueError("Negative") except ValueError: sys.exit("skiprows must be a non-negative int, not {}".format(skiprows)) kwargs["skiprows"] = skiprows if kwargs.get("sep") == "\\t": kwargs["sep"] = "\t" try: return READERS[ftype](sys.stdin, **kwargs) except pd.errors.EmptyDataError: return pd.DataFrame() except pd.errors.ParserError as err: sys.exit(str(err)) @register def fillna(value=None, method=None, limit=None): """Fill na values with a certain value or method, at most `limit` many. Takes either a value, or a method using (e.g.) --method=ffill. Argument: value If provided, replaces all N/A values with prescribed value. Argument: --method=pad If provided, value cannot be provided. Allowed methods are backfill, bfill, pad, ffill Argument: --limit=x If provided, limits number of consecutive N/A values to fill. Usage: cat a.csv | ph fillna 999.75 cat a.csv | ph fillna -1 cat a.csv | ph fillna --method=pad cat a.csv | ph fillna --method=pad --limit=5 """ if limit is not None: try: limit = int(limit) except ValueError: sys.exit("--limit=x must be an integer, not {}".format(limit)) METHODS = ("backfill", "bfill", "pad", "ffill") if method is not None: if method not in METHODS: sys.exit("method must be one of {}, not {}".format(METHODS, method)) pipeout(pipein().fillna(method=method, limit=limit)) elif value is not None: value = __tryparse(value) pipeout(pipein().fillna(value=value, limit=limit)) else: sys.exit("'ph fillna' needs exactly one of value and method") @register def query(expr): """Using pandas queries. Usage: cat a.csv | ph query "x > 5" """ df = pipein() new_df = df.query(expr) pipeout(new_df) @register def grep(*expr, case=True, na=float("nan"), regex=True, column=None): """Grep (with regex) for content in csv file. Usage: cat a.csv | ph grep 0 cat a.csv | ph grep search_string cat a.csv | ph grep "A|B" # search hits a or b cat a.csv | ph grep "a|b" --case=False # case insensitive cat a.csv | ph grep 4 --column=x To disable regex (e.g. simple search for "." or "*" characters, use --regex=False). Search only in a specific column with --column=col. Supports regex search queries such as "0-9A-F" and "\\d" (possibly double-escaped.) """ df = pipein() if case is True or case in TRUTHY: case = True elif case in FALSY: case = False else: sys.exit("ph grep: Unknown --case={} should be True or False".format(case)) if regex is True or regex in TRUTHY: regex = True elif regex in FALSY: regex = False else: sys.exit("ph grep: Unknown --regex={} should be True or False".format(regex)) if column is not None: _assert_col(df, column, "grep") expr = " ".join(str(e) for e in expr) # force string input try: import numpy except ImportError: sys.exit("numpy needed for grep. pip install numpy") retval = df[ numpy.logical_or.reduce( [ df[col].astype(str).str.contains(expr, case=case, na=na, regex=regex) for col in (df.columns if column is None else [column]) ] ) ] pipeout(retval) @register def appendstr(col, s, newcol=None): """Special method to append a string to the end of a column. Usage: cat e.csv | ph appendstr year -01-01 | ph date year """ df = pipein() if newcol is None: newcol = col df[newcol] = df[col].astype(str) + s pipeout(df) @register def split(col, pat=" "): df = pipein() _assert_col(df, col, "split") df[[col, col + "_rhs"]] = df[col].str.split(pat=pat, n=1, expand=True) pipeout(df) @register def strip(*cols, lstrip=False, rstrip=False): """Strip (trim) a string. Usage: cat x.csv | ph strip cat x.csv | ph strip --lstrip=True cat x.csv | ph strip --rstrip=True """ df = pipein() if not cols: cols = list(df.columns) else: cols = list(cols) _assert_cols(df, cols, "strip") for c in cols: if lstrip in TRUTHY: df[c] = df[c].str.lstrip() elif rstrip in TRUTHY: df[c] = df[c].str.rstrip() else: df[c] = df[c].str.strip() pipeout(df) @register def removeprefix(col, prefix=" "): """Remove prefix of contents of a column. Usage: cat a.csv | ph removeprefix col1 .. See also @removesuffix @strip """ prefix = str(prefix) plen = len(prefix) df = pipein() _assert_col(df, col, "removeprefix") df[col] = df[col].apply( lambda s: str(s)[plen:] if str(s).startswith(prefix) else str(s) ) pipeout(df) @register def removesuffix(col, suffix=" "): """Remove suffix of contents of a column. Usage: cat a.csv | ph removesuffix col1 .. See also @removeprefix @strip """ suffix = str(suffix) plen = len(suffix) df = pipein() _assert_col(df, col, "removesuffix") df[col] = df[col].apply( lambda s: str(s)[:-plen] if str(s).endswith(suffix) else str(s) ) pipeout(df) @register def astype(type, column=None, newcolumn=None): """Cast a column to a different type. Usage: cat a.csv | ph astype double x [new_x] """ df = pipein() try: if column is None: df = df.astype(type) elif newcolumn is not None: df[newcolumn] = df[column].astype(type) else: df[column] = df[column].astype(type) except ValueError as err: sys.exit("Could not convert to {}: {}".format(type, err)) pipeout(df) @register def dtypes(t=None): """If no argument is provided, output types, otherwise filter on types. If no argument is provided, output a csv with two columns, "column" and "dtype". The "column" column contains the names of the columns in the input csv and the "dtype" column contains their respective types. If an argument is provided, all columns with the prescribed type is output. Usage: cat a.csv | ph dtypes cat a.csv | ph dtypes float64 """ if t is None: df = pipein() newdf = pd.DataFrame(pd.Series(df.columns), columns=["column"]) newdf["dtype"] = pd.Series([str(e) for e in df.dtypes]) pipeout(newdf.T, header=False) else: df = pipein().select_dtypes(t) pipeout(df) @register def pivot(columns, index=None, values=None): """Reshape csv organized by given index / column values. Suppose b.csv is foo,bar,baz,zoo one,A,1,x one,B,2,y one,C,3,z two,A,4,q two,B,5,w two,C,6,t Usage: cat b.csv | ph pivot bar --index=foo --values=baz A B C -- --- --- --- 0 1 2 3 1 4 5 6 """ pipeout(pipein().pivot(index=index, columns=columns, values=values)) @register def crosstab(column): """Perform a very simplistic crosstabulation on one column of the input csv. Usage: cat b.csv | ph crosstab foo """ newcol = "crosstab_{}".format(column) df = pd.crosstab(pipein()[column], newcol) df["id"] = list(df[newcol].index) pipeout(df) @register def groupby(*columns, how="sum", as_index=False): """Group by columns, then apply `how` function. Usage: cat a.csv | ph groupby animal # default to sum cat a.csv | ph groupby animal --how=mean cat a.csv | ph groupby animal --how=prod cat a.csv | ph groupby animal --as_index=True # removes index """ columns = list(columns) if not columns: sys.exit("Needs at least one column to group by") df = pipein() _assert_cols(df, columns, "groupby") if as_index in TRUTHY: as_index = True elif as_index in FALSY: as_index = False else: sys.exit("--as_index=True or False, not {}".format(as_index)) grouped = df.groupby(columns, as_index=as_index) try: fn = getattr(grouped, how) except AttributeError: sys.exit("Unknown --how={}, should be sum, mean, ...".format(how)) retval = fn() pipeout(retval) @register def rolling(window, *columns, how="sum", win_type=None, std=None, beta=None, tau=None): """Rolling window calculations using provided `how` function. Usage: cat a.csv | ph rolling 3 cat a.csv | ph rolling 5 --how=mean cat a.csv | ph rolling 5 colA colB --how=mean cat a.csv | ph rolling 5 --win_type=gaussian --std=7.62 """ df = pipein() orig_columns = list(df.columns) columns = list(columns) _assert_cols(df, columns, "rolling") if not columns: columns = list(df.columns) noncols = [c for c in df.columns if c not in columns] rollin = df[columns].rolling(window, win_type=win_type) nonrollin = df[noncols] try: fn = getattr(rollin, how) except AttributeError: sys.exit("Unknown --how={}, should be sum, mean, ...".format(how)) if {std, beta, tau} != {None}: retval = fn(std=std, beta=beta, tau=tau) else: retval = fn() df = pd.concat([retval, nonrollin], axis=1) for col in orig_columns: if col not in df.columns: op = "ph rolling" sys.exit( '{}: Could not perform rolling window on column "{}"'.format(op, col) ) df = df[orig_columns] pipeout(df) @register def ewm( min_periods=0, adjust=True, ignore_na=False, axis=0, com=None, span=None, halflife=None, alpha=None, how="mean", ): """Provide exponential weighted functions. A related set of functions are exponentially weighted versions of several of the above statistics. A similar interface to rolling and expanding is accessed through the ewm method to receive an EWM object. A number of expanding EW (exponentially weighted) methods are provided: * mean * var * std * corr * cov Usage: cat a.csv | ph ewm --com=0.5 --how=mean cat a.csv | ph ewm --halflife=0.5 --how=std """ if {com, span, halflife, alpha} == {None}: sys.exit("Must pass one of com, span, halflife, or alpha") df = pipein() ewm_ = df.ewm( min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis, com=com, span=span, halflife=halflife, alpha=alpha, ) try: fn = getattr(ewm_, how) except AttributeError: sys.exit("Unknown --how={}, should be mean, var, std, corr, cov..".format(how)) retval = fn() pipeout(retval) @register def expanding(min_periods=1, axis=0, how="sum", quantile=None): """Provide expanding transformations. A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time. For working with data, a number of window functions are provided for computing common window or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis. Usage: cat a.csv | ph expanding cat a.csv | ph expanding 1 --how=sum # above equivalent to this cat a.csv | ph expanding 2 cat a.csv | ph expanding 5 --how=quantile --quantile=0.25 """ df = pipein() if quantile is not None: if how != "quantile": sys.exit("Use both or none of --how=quantile and --quantile=<float>") if how == "quantile" and quantile is None: sys.exit("--how=quantile needs --quantile=<float>, e.g. --quantile=0.25") expanding_ = df.expanding(min_periods=min_periods, axis=axis) try: fn = getattr(expanding_, how) except AttributeError: sys.exit("Unknown --how={}, should be sum, mean, max, quantile..".format(how)) if how == "quantile": retval = fn(quantile) else: retval = fn() pipeout(retval) @register def monotonic(column, direction="+"): """Check if a certain column is monotonically increasing or decreasing. Usage: cat a.csv | ph monotonic x cat a.csv | ph monotonic x + # equivalent to above cat a.csv | ph monotonic x - # for decreasing """ df = pipein() if column not in df: sys.exit("Unknown column {}".format(column)) if direction not in "+-": sys.exit("direction must be either + or -") print("{}_monotonic".format(column)) if direction == "+": print(df[column].is_monotonic) else: print(df[column].is_monotonic_decreasing) @register def iplot(*args, **kwargs): """Use plotly/cufflinks for interactive plot. This option is similar to `plot` but creates an HTML file and opens a browser for an interactive plot. Usage: cat a.csv | ph iplot cat a.csv | ph iplot --kind=bar cat a.csv | ph iplot --kind=bar --barmode=stack Depends on cufflinks: pip install ph[iplot]. """ try: import cufflinks # noqa import plotly as py except ImportError: sys.exit("iplot needs cufflinks, pip install ph[iplot]") df = pipein() fig = df.iplot(*args, asFigure=True, **kwargs) py.offline.plot(fig) pipeout(df) @register def plot(*args, **kwargs): """Plot the csv file. Usage: ph plot ph plot --index=col ph plot --kind=bar ph plot --kind=scatter --x=col1 --y=col2 ph plot --style=k-- ph plot --logx=True ph plot --logy=True ph plot --loglog=True ph plot --savefig=fname.png ph plot --savefig=fname.svg ph plot --savefig=fname.svg --savefig-dpi=300 """ try: import matplotlib.pyplot as plt except ImportError: sys.exit("plot depends on matplotlib, install ph[plot]") df = pipein() index = kwargs.get("index") if index is not None: _assert_col(df, index, caller="plot") df = df.set_index(index) del kwargs["index"] for log_ in ("logx", "logy", "loglog"): if kwargs.get(log_) in TRUTHY: kwargs[log_] = True fname = kwargs.get("savefig") dpi = kwargs.get("savefig-dpi") if fname: del kwargs["savefig"] if dpi: del kwargs["savefig-dpi"] fig, ax = plt.subplots() df.plot(**kwargs, ax=ax) if index == "date": fig.autofmt_xdate() if fname: plt.tight_layout() plt.savefig(fname, dpi=dpi) else: plt.show() pipeout(df) @register def eval(expr): """Eval expr using pandas.DataFrame.eval. Example: cat a.csv | ph eval "z = x + y" """ df = pipein() pipeout(df.eval(expr)) @register def normalize(col=None): """Normalize a column or an entire dataframe. Usage: cat a.csv | ph normalize cat a.csv | ph normalize x Warning: This is probably not what you want. """ df = pipein() if col is None: df = (df - df.min()) / (df.max() - df.min()) else: df[col] = (df[col] - df[col].min()) / (df[col].max() - df[col].min()) pipeout(df) @register def date(col=None, unit=None, origin="unix", errors="raise", dayfirst=False, **kwargs): """Assemble datetime from multiple columns or from one column --unit can be D, s, us, ns (defaults to ns, ns from origin) --origin can be unix, julian, or time offset, e.g. '2000-01-01' --errors can be raise, coerce, ignore (see pandas.to_datetime) --format a strptime format string, e.g. '%Y-%m-%d %H:%M:%S' --utc=True if the input is in utc, i.e. seconds from epoch Usage: cat a.csv | ph date x cat a.csv | ph date x --unit=s --origin="1984-05-17 09:30" cat a.csv | ph date x --dayfirst=True cat a.csv | ph date # if a.csv contains year, month, date cat a.csv | ph date x --format="%Y-%m-%d" cat a.csv | ph date x --utc=True """ DATE_ERRORS = ("ignore", "raise", "coerce") if errors not in DATE_ERRORS: sys.exit("Errors must be one of {}, not {}.".format(DATE_ERRORS, errors)) dayfirst = dayfirst in TRUTHY date_parser = None if "format" in kwargs: date_parser = lambda d: [ datetime.datetime.strptime(str(e), kwargs["format"]) for e in d ] if kwargs.get("utc") in TRUTHY: date_parser = lambda d: [datetime.datetime.utcfromtimestamp(e) for e in d] df = pipein() try: if col is None: df = pd.to_datetime(df, unit=unit, origin=origin, errors=errors) else: _assert_col(df, col, "date") if date_parser is None: df[col] = pd.to_datetime( df[col], unit=unit, origin=origin, errors=errors, dayfirst=dayfirst ) else: df[col] = date_parser(df[col]) except Exception as err: sys.exit(err) pipeout(df) @register def describe(): """Run DataFrame's describe method. The result is NOT tabular data, so pipeline ends. Usage: cat a.csv | ph describe """ df = pipein() try: out = df.describe() except ValueError as err: sys.exit(str(err)) _safe_out(out) @register def info(): """Run DataFrame's info method. The result is NOT tabular data, so pipeline ends. Usage: cat a.csv | ph info """ print(pipein().info()) @register def to(ftype, fname=None, sep=None, index=False): """Export csv to given format (possibly csv). Supports csv, html, json, parquet, bigquery, tsv, etc. (see README for full list). Usage: cat a.csv | ph to html cat a.csv | ph to tsv cat a.csv | ph to csv --index=True cat a.csv | ph to csv --sep=';' cat a.csv | ph to clipboard cat a.csv | ph to json cat a.csv | ph to parquet out.parquet """ if ftype not in WRITERS: sys.exit("Unknown datatype {}.".format(ftype)) if not fname: if ftype in ("parquet", "xls", "xlsx", "ods", "pickle"): sys.exit("{} needs a path".format(ftype)) if ftype == "hdf5": sys.exit("hdf5 writer not implemented") if index not in TRUTHY + FALSY: sys.exit("Index must be True or False, not {}".format(index)) index = index in TRUTHY if ftype == "fwf": # pandas has not yet implemented to_fwf df = pipein() content = tabulate_(df.values.tolist(), list(df.columns), tablefmt="plain") if fname: with open(fname, "w") as wout: wout.write(content) else: print(content) sys.exit() if sep is not None: if ftype != "csv": sys.exit("Only csv mode supports separator") writer = WRITERS[ftype] df = pipein() fn = getattr(df, writer) kwargs = {} if ftype == "tsv": kwargs["sep"] = "\t" elif ftype == "csv" and sep is not None: kwargs["sep"] = sep if ftype == "json": index = True if fname is not None: print(fn(fname, index=index, **kwargs)) else: print(fn(index=index, **kwargs)) @registerx("from") def from_(ftype="csv", **kwargs): """Read a certain (default csv) format from standard in and stream out as csv. Usage: cat a.json | ph from json cat /etc/passwd | ph from csv --sep=':' --header=None The following pipes should be equivalent: cat a.csv cat a.csv | ph to json | ph from json cat a.tsv | ph from tsv cat a.tsv | ph from csv --sep='\t' cat a.tsv | ph from csv --sep='\t' --thousands=',' In the event that the csv data starts on the first line (i.e. no header is present), use --header=None. """ if "header" in kwargs: kwargs["header"] = __tryparse(kwargs["header"]) skiprows = kwargs.get("skiprows") if skiprows is not None: try: skiprows = int(skiprows) if skiprows < 0: raise ValueError("Negative") except ValueError: sys.exit("skiprows must be a non-negative int, not {}".format(skiprows)) kwargs["skiprows"] = skiprows if kwargs.get("sep") == "\\t": kwargs["sep"] = "\t" if ftype == "clipboard": pipeout(READERS["clipboard"](**kwargs)) return pipeout(pipein(ftype, **kwargs)) @register def cat(*fnames, axis="index"): """Concatenates all files provided. Usage: ph cat a.csv b.csv c.csv ph cat a.csv b.csv c.csv --axis=index # default ph cat a.csv b.csv c.csv --axis=columns If no arguments are provided, read from std in. """ if axis not in ("index", "columns"): sys.exit("Unknown axis command '{}'".format(axis)) if not fnames: pipeout(pipein()) else: dfs = [] for fname in fnames: df = pd.read_csv(fname) dfs.append(df) retval = pd.concat(dfs, axis=axis) pipeout(retval) @register def merge(fname1, fname2, how="inner", on=None): """ Merging two csv files. Usage: ph merge a.csv b.csv --on=ijk """ hows = ("left", "right", "outer", "inner") if how not in hows: sys.exit("Unknown merge --how={}, must be one of {}".format(how, hows)) df1 = pd.read_csv(fname1) df2 = pd.read_csv(fname2) if on is None: pipeout(pd.merge(df1, df2, how=how)) else: pipeout(pd.merge(df1, df2, how=how, on=on)) @register def tab(): """Equivalent to `ph to tsv`. Usage: cat a.csv | ph tab """ pipeout(pipein(), sep="\t") @register def tabulate(*args, **kwargs): """Tabulate the output for pretty-printing. Usage: cat a.csv | ph tabulate --headers --noindex --format=grid Takes arguments * --headers * --noindex * --format=[grid, latex, pretty, ...]. For a full list of format styles confer the README. This function uses the tabulate project available as a standalone package from PyPI. Using `tabulate` in a pipeline usually means that the `ph` pipeline ends. This is because of `tabulate`'s focus on user readability over machine readability. """ headers = tuple() fmt = kwargs.get("format") index = True if "--noindex" in args: index = False if "--headers" in args: headers = "keys" df = pipein() out = tabulate_(df, tablefmt=fmt, headers=headers, showindex=index) _safe_out(out) @register def show(noindex=False): """Similar to ph tabulate --headers [--noindex]. Usage: cat a.csv | ph show cat a.csv | ph show --noindex """ if noindex: tabulate("--headers", "--noindex") else: tabulate("--headers") def _print_commands(cmds): num_cols = 72 // max(len(cmd) for cmd in cmds) while (len(cmds) % num_cols) != 0: cmds.append("") df = pd.DataFrame(pd.Series(cmds).values.reshape(num_cols, -1)) print(tabulate_(df.transpose(), showindex=False)) @registerx("help") def help_(*args, **kwargs): """Writes help (docstring) about the different commands.""" if not args: print("Usage: ph command arguments") print(USAGE_TEXT) _print_commands(sorted(COMMANDS.keys())) sys.exit(0) cmd = args[0] ds = None if cmd in DOCS: ds = DOCS[cmd] else: try: fn = getattr(pd.DataFrame, cmd) ds = getattr(fn, "__doc__") except AttributeError: pass if ds is None: sys.exit("Unknown command {}".format(cmd)) print("Usage: ph {}".format(cmd)) print(" {}".format(ds.strip())) def slugify_name(name): name_ = name try: name = float(name_) except ValueError: pass if isinstance(name_, (int, str)): try: name = int(name_) except ValueError: pass if isinstance(name, (int, float)): name = str(name) + "_" if not name: return "unnamed" if name == "_": return "_" lead_under = name[0] == "_" trail_under = name[-1] == "_" name = name.strip().lower() unwanted = set(c for c in name if not c.isalnum()) for u in unwanted: name = name.replace(u, "_").strip() while "__" in name: name = name.replace("__", "_").strip() name = name.strip("_") if lead_under: name = "_" + name if trail_under: name = name + "_" return name @register def slugify(): """Slugify the column headers. Usage: cat a.csv | ph slugify Removes all non-alphanumeric characters aside from the underscore. Is useful in scenarios where you have possibly many columns with very ugly names. Can be a good preprocessor to @rename: Usage: cat a.csv | ph slugify | ph rename less_bad_name good_name """ df = pipein() df.columns = [slugify_name(name) for name in df.columns] pipeout(df) @register def raw(fname=None): """Do your best to read this comma-separated input.""" import csv if fname is None: d = csv.reader(sys.stdin) df =
pd.DataFrame(d)
pandas.DataFrame
import logging pvl_logger = logging.getLogger('pvlib') import datetime import numpy as np import numpy.testing as npt import pandas as pd from nose.tools import raises, assert_almost_equals from nose.plugins.skip import SkipTest from pandas.util.testing import assert_frame_equal from pvlib.location import Location from pvlib import solarposition # setup times and locations to be tested. times = pd.date_range(start=datetime.datetime(2014,6,24), end=datetime.datetime(2014,6,26), freq='15Min') tus = Location(32.2, -111, 'US/Arizona', 700) # no DST issues possible golden_mst = Location(39.742476, -105.1786, 'MST', 1830.14) # no DST issues possible golden = Location(39.742476, -105.1786, 'America/Denver', 1830.14) # DST issues possible times_localized = times.tz_localize(tus.tz) # the physical tests are run at the same time as the NREL SPA test. # pyephem reproduces the NREL result to 2 decimal places. # this doesn't mean that one code is better than the other. def test_spa_physical(): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D') try: ephem_data = solarposition.spa_c(times, golden_mst, pressure=82000, temperature=11).ix[0] except ImportError: raise SkipTest assert_almost_equals(39.872046, ephem_data['elevation'], 6) assert_almost_equals(50.111622, ephem_data['apparent_zenith'], 6) assert_almost_equals(194.340241, ephem_data['azimuth'], 6) assert_almost_equals(39.888378, ephem_data['apparent_elevation'], 6) def test_spa_physical_dst(): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D') try: ephem_data = solarposition.spa_c(times, golden, pressure=82000, temperature=11).ix[0] except ImportError: raise SkipTest assert_almost_equals(39.872046, ephem_data['elevation'], 6) assert_almost_equals(50.111622, ephem_data['apparent_zenith'], 6) assert_almost_equals(194.340241, ephem_data['azimuth'], 6) assert_almost_equals(39.888378, ephem_data['apparent_elevation'], 6) def test_spa_localization(): try: assert_frame_equal(solarposition.spa_c(times, tus), solarposition.spa_c(times_localized, tus)) except ImportError: raise SkipTest def test_spa_python_numpy_physical(): times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D') ephem_data = solarposition.spa_python(times, golden_mst, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy').ix[0] assert_almost_equals(39.872046, ephem_data['elevation'], 6) assert_almost_equals(50.111622, ephem_data['apparent_zenith'], 6) assert_almost_equals(194.340241, ephem_data['azimuth'], 6) assert_almost_equals(39.888378, ephem_data['apparent_elevation'], 6) def test_spa_python_numpy_physical_dst(): times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D') ephem_data = solarposition.spa_python(times, golden, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy').ix[0] assert_almost_equals(50.111622, ephem_data['apparent_zenith'], 6) assert_almost_equals(194.340241, ephem_data['azimuth'], 6) assert_almost_equals(39.888378, ephem_data['apparent_elevation'], 6) def test_spa_python_numba_physical(): try: import numba except ImportError: raise SkipTest vers = numba.__version__.split('.') if int(vers[0] + vers[1]) < 17: raise SkipTest times = pd.date_range(datetime.datetime(2003,10,17,12,30,30), periods=1, freq='D') ephem_data = solarposition.spa_python(times, golden_mst, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numba', numthreads=1).ix[0] assert_almost_equals(39.872046, ephem_data['elevation'], 6) assert_almost_equals(50.111622, ephem_data['apparent_zenith'], 6) assert_almost_equals(194.340241, ephem_data['azimuth'], 6) assert_almost_equals(39.888378, ephem_data['apparent_elevation'], 6) def test_spa_python_numba_physical_dst(): try: import numba except ImportError: raise SkipTest vers = numba.__version__.split('.') if int(vers[0] + vers[1]) < 17: raise SkipTest times = pd.date_range(datetime.datetime(2003,10,17,13,30,30), periods=1, freq='D') ephem_data = solarposition.spa_python(times, golden, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numba', numthreads=1).ix[0] assert_almost_equals(50.111622, ephem_data['apparent_zenith'], 6) assert_almost_equals(194.340241, ephem_data['azimuth'], 6) assert_almost_equals(39.888378, ephem_data['apparent_elevation'], 6) def test_spa_python_localization(): assert_frame_equal(solarposition.spa_python(times, tus), solarposition.spa_python(times_localized, tus)) def test_get_sun_rise_set_transit(): south = Location(-35.0, 0.0, tz='UTC') times = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 0), datetime.datetime(2004, 12, 4, 0)] ).tz_localize('UTC') sunrise = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 7, 8, 15, 471676), datetime.datetime(2004, 12, 4, 4, 38, 57, 27416)] ).tz_localize('UTC').tolist() sunset = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 17, 1, 4, 479889), datetime.datetime(2004, 12, 4, 19, 2, 2, 499704)] ).tz_localize('UTC').tolist() result = solarposition.get_sun_rise_set_transit(times, south, delta_t=64.0) frame = pd.DataFrame({'sunrise':sunrise, 'sunset':sunset}, index=times) del result['transit'] assert_frame_equal(frame, result) # tests from USNO # Golden golden = Location(39.0, -105.0, tz='MST') times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2), datetime.datetime(2015, 8, 2),] ).tz_localize('MST') sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 7, 19, 2, 225169), datetime.datetime(2015, 8, 2, 5, 1, 26, 963145) ]).tz_localize('MST').tolist() sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 16, 49, 10, 13145), datetime.datetime(2015, 8, 2, 19, 11, 31, 816401) ]).tz_localize('MST').tolist() result = solarposition.get_sun_rise_set_transit(times, golden, delta_t=64.0) frame = pd.DataFrame({'sunrise':sunrise, 'sunset':sunset}, index=times) del result['transit']
assert_frame_equal(frame, result)
pandas.util.testing.assert_frame_equal
### Load Necessary Libraries from bs4 import BeautifulSoup as bs import pandas as pd import requests ### Loading page content page=requests.get('https://www.speedtest.net/global-index#mobile') cont=page.content print(page.status_code) soupobj=bs(cont,'html.parser') #print(soupobj.prettify()) #printing out soup object ### Data sorting #adding all country names in empty list-empli for further data frame countr=soupobj.find_all(class_='country') empli=[] for li in countr: empli.append(li.get_text()) #print(empli) #adding all internet speed rankings in empty list-empli2 for further data frame empli2=[] speed=soupobj.find_all(class_='speed') for s in speed: empli2.append(s.get_text()) #print(empli2) ### Removing Duplicates #removing starting and ending '\n' duplicates from every item of empli. list3 = [x.replace('\n', '') for x in empli] #print(list3) #making datfm-DataFrame datfm=pd.DataFrame({'Countries':list3, 'Speed in Mbps':empli2}) #Converting dataframe into csv datfm.to_csv('Sub.csv',index=False) ### Data cleaning newcsv=pd.read_csv('Sub.csv') newcsv Mobiletest=newcsv[1:139] #csv for Mobile-conducted speedtest's across globe Broadbandtest=newcsv[140:]#csv for Broadband-conducted speedtest's across globe Mobiletest Broadbandtest Mobiletest.to_csv('Mobiletest.csv',index=False) Broadbandtest.to_csv('Broadbandtest.csv',index=False) c1=pd.read_csv('Mobiletest.csv') c2=
pd.read_csv('Broadbandtest.csv')
pandas.read_csv
from tensorflow.python.keras import Sequential from pandas_datareader import data import pandas as pd from Common.StockMarketIndex.AbstractStockMarketIndex import AbstractStockMarketIndex from Common.StockMarketIndex.Yahoo.SnP500Index import SnP500Index from Common.StockMarketIndex.Yahoo.VixIndex import VixIndex from Common.StockOptions.Yahoo.YahooStockOption import YahooStockOption stock = 'TSLA' yahooStockOption: YahooStockOption = YahooStockOption(stock) total_size: int = len(yahooStockOption.DataFrame) train_size: int = round(0.85 * total_size) test_size: int = round(0.1 * total_size) print(yahooStockOption.DataFrame.describe(include='all')) print(total_size) print(train_size) print(test_size) sAnP500: AbstractStockMarketIndex = SnP500Index('yahoo', "^GSPC", yahooStockOption.TimeSpan) vixIndex: AbstractStockMarketIndex = VixIndex('yahoo', "^VIX", yahooStockOption.TimeSpan) from pandas import DataFrame import numpy as np import matplotlib.pyplot as plt import datetime as dt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM scaler = MinMaxScaler(feature_range=(0, 1)) prediction_days: int = 60 future_days: int = 1 scaled_data: np.ndarray = scaler.fit_transform(yahooStockOption.DataFrame['Adj Close'].values.reshape(-1, 1)) x_train_list: list = [] y_train_list: list = [] print(type(x_train_list)) for x in range(prediction_days, total_size): x_train_list.append(scaled_data[x - prediction_days: x, 0]) y_train_list.append(scaled_data[x, 0]) x_train, y_train = np.array(x_train_list), np.array(y_train_list) print(type(x_train)) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) print(type(x_train)) model: Sequential = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=50)) model.add(Dropout(0.2)) model.add(Dense(units=future_days)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, epochs=25, batch_size=32) # data unknown to model test_start = dt.datetime(2021, 1, 1) test_end = dt.datetime.now() test_data = data.DataReader(stock, 'yahoo', test_start, test_end) actual_prices = test_data['Adj Close'].values total_dataset =
pd.concat((yahooStockOption.DataFrame['Adj Close'], test_data['Adj Close']), axis=0)
pandas.concat
# Send same show commands to all devices # Read devices from an Excel file import pandas as pd from netmiko import ConnectHandler # Read Excel file excel_file = pd.read_excel( io="Voice-Gateways-Info.xlsx", sheet_name=0, engine="openpyxl" ) # Converts Excel file to data frame df =
pd.DataFrame(excel_file)
pandas.DataFrame
from Tools import * from Agent import * import time import csv import graphicDisplayGlobalVarAndFunctions as gvf import commonVar as common import pandas as pd import parameters as par import numpy as np import warnings warnings.filterwarnings("ignore") # to eliminate an annoying warning at time 1 in time series plot import warnings warnings.filterwarnings("ignore", module="matplotlib") def do1b(address): if common.cycle == 1: # setting Figure for the net if not common.IPython or common.graphicStatus == "PythonViaTerminal": # the or is about ipython running in a terminal f=gvf.plt.figure(num=2) mngr1 = gvf.plt.get_current_fig_manager() # NB, after figure() mngr1.window.wm_geometry("+650+0") mngr1.set_window_title("Links Entrepreneurs - Workers") # having the map of the agent agL = [] for ag in address.modelSwarm.agentList: agL.append(ag.number) agL.sort() # print "\noActions before drawGraph agents", agL # print "oActions before drawGraph nodes", common.g.nodes() # basic action to visualize the networkX output gvf.openClearNetworkXdisplay() gvf.drawGraph() def do2a(address, cycle): self = address # if necessary # ask each agent, without parameters print("Time = ", cycle, "ask all agents to report position") askEachAgentInCollection( address.modelSwarm.getAgentList(), Agent.reportPosition) def do2b(address, cycle): self = address # if necessary # ask a single agent, without parameters print("Time = ", cycle, "ask first agent to report position") if address.modelSwarm.getAgentList() != []: askAgent(address.modelSwarm.getAgentList()[0], Agent.reportPosition) def otherSubSteps(subStep, address): if subStep == "pause": input("Hit enter key to continue") return True elif subStep == "collectStructuralData": collectStructuralData(address.modelSwarm.agentList, common.cycle) return True elif subStep == "collectTimeSeries": collectTimeSeries(address.modelSwarm.agentList, common.cycle) return True elif subStep == "visualizePlot": visualizePlot() return True elif subStep == "prune": common.prune = True newValue = input(("Prune links with weight < %d\n" + "Enter to confirm " + "or introduce a new level: ") % common.pruneThreshold) if newValue != "": common.pruneThreshold = int(newValue) return True # this subStep performs only partially the "end" item; the execution # will continue in ObserverSwarm.py elif subStep == "end": if not common.IPython or common.graphicStatus == "PythonViaTerminal": # the or is about ipython running in a terminal # += and ; as first character because a first part # of the string toBeExecuted is already defined in # commonVar.py common.toBeExecuted += ";gvf.plt.figure(2);gvf.plt.close()" else: return False # collect Structural Data def collectStructuralData(aL, t): # creating the dataframe try: common.str_df except BaseException: common.str_df =
pd.DataFrame(columns=['entrepreneurs', 'workers'])
pandas.DataFrame
#!/usr/bin/env python3 import unittest import numpy as np import numpy.testing as nptest import pandas as pd import pandas.testing as pdtest from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from datafold.dynfold.transform import ( TSCApplyLambdas, TSCFeaturePreprocess, TSCFiniteDifference, TSCIdentity, TSCPolynomialFeatures, TSCPrincipalComponent, TSCRadialBasis, TSCTakensEmbedding, TSCTransformerMixin, ) from datafold.pcfold.kernels import * from datafold.pcfold.timeseries.collection import TSCDataFrame, TSCException def _all_tsc_transformers(): # only finds the ones that are importated (DMAP e.g. is not here) print(TSCTransformerMixin.__subclasses__()) class TestTSCTransform(unittest.TestCase): def _setUp_simple_df(self): idx = pd.MultiIndex.from_arrays( [[0, 0, 1, 1, 15, 15, 45, 45, 45], [0, 1, 0, 1, 0, 1, 17, 18, 19]] ) col = ["A", "B"] self.simple_df = pd.DataFrame(np.random.rand(9, 2), index=idx, columns=col) def _setUp_takens_df(self): idx = pd.MultiIndex.from_arrays( [[0, 0, 1, 1, 15, 15, 45, 45, 45], [0, 1, 0, 1, 0, 1, 17, 18, 19]] ) col = ["A", "B"] # Requires non-random values self.takens_df_short = pd.DataFrame( np.arange(18).reshape([9, 2]), index=idx, columns=col ) n_samples_timeseries = 100 idx = pd.MultiIndex.from_product( [np.array([0, 1]), np.arange(n_samples_timeseries)] ) self.takens_df_long = pd.DataFrame( np.random.rand(n_samples_timeseries * 2, 2), index=idx, columns=col ) def setUp(self) -> None: self._setUp_simple_df() self._setUp_takens_df() def test_is_valid_sklearn_estimator(self): from sklearn.preprocessing import MinMaxScaler from sklearn.utils.estimator_checks import check_estimator TEST_ESTIMATORS = ( TSCIdentity(), TSCPrincipalComponent(), TSCFeaturePreprocess(sklearn_transformer=MinMaxScaler()), TSCFeaturePreprocess(sklearn_transformer=StandardScaler()), TSCPolynomialFeatures(), ) for test_estimator in TEST_ESTIMATORS: for estimator, check in check_estimator(test_estimator, generate_only=True): try: check(estimator) except Exception as e: print(estimator) print(check) raise e def test_identity0(self): tsc = TSCDataFrame(self.simple_df) _id = TSCIdentity() pdtest.assert_frame_equal(_id.fit_transform(tsc), tsc) pdtest.assert_frame_equal(_id.inverse_transform(tsc), tsc) def test_identity1(self): tsc = TSCDataFrame(self.simple_df) _id = TSCIdentity(include_const=True) tsc_plus_const = tsc.copy(deep=True) tsc_plus_const["const"] = 1 pdtest.assert_frame_equal(_id.fit_transform(tsc.copy()), tsc_plus_const) pdtest.assert_frame_equal(_id.inverse_transform(tsc_plus_const), tsc) def test_identity2(self): data = np.random.rand(5, 5) data_wo_const = TSCIdentity(include_const=False).fit_transform(data) data_plus_const = TSCIdentity(include_const=True).fit_transform(data) nptest.assert_equal(data, data_wo_const) nptest.assert_equal(data_plus_const, np.column_stack([data, np.ones(5)])) def test_identity3(self): data = TSCDataFrame(self.simple_df) data_wo_const = TSCIdentity( include_const=False, rename_features=True ).fit_transform(data) data_with_const = TSCIdentity( include_const=True, rename_features=True ).fit_transform(data) data = data.add_suffix("_id") pdtest.assert_index_equal(data.columns, data_wo_const.columns) data["const"] = 1 pdtest.assert_index_equal(data.columns, data_with_const.columns) def test_scale_min_max(self): tsc_df = TSCDataFrame(self.simple_df) scale = TSCFeaturePreprocess.from_name("min-max") scaled_tsc = scale.fit_transform(tsc_df) # sanity check: nptest.assert_allclose(scaled_tsc.min().to_numpy(), np.zeros(2), atol=1e-16) nptest.assert_allclose(scaled_tsc.max().to_numpy(), np.ones(2), atol=1e-16) # Undoing normalization must give original TSCDataFrame back pdtest.assert_frame_equal(tsc_df, scale.inverse_transform(scaled_tsc)) def test_scale_standard(self): tsc_df = TSCDataFrame(self.simple_df) scale = TSCFeaturePreprocess.from_name("standard") scaled_tsc = scale.fit_transform(tsc_df) nptest.assert_array_equal( scaled_tsc.to_numpy(), StandardScaler(with_mean=True, with_std=True).fit_transform( tsc_df.to_numpy() ), ) # Undoing normalization must give original TSCDataFrame back pdtest.assert_frame_equal(tsc_df, scale.inverse_transform(scaled_tsc)) def test_sklearn_scaler(self): tsc_df = TSCDataFrame(self.simple_df) from sklearn.preprocessing import ( MaxAbsScaler, PowerTransformer, QuantileTransformer, RobustScaler, ) # each tuple has the class and a dictionary with the init-options scaler = [ (MaxAbsScaler, dict()), (PowerTransformer, dict(method="yeo-johnson")), (PowerTransformer, dict(method="box-cox")), ( QuantileTransformer, dict(n_quantiles=tsc_df.shape[0], output_distribution="uniform"), ), ( QuantileTransformer, dict(n_quantiles=tsc_df.shape[0], output_distribution="normal"), ), (RobustScaler, dict()), ] for cls, kwargs in scaler: scale = TSCFeaturePreprocess(sklearn_transformer=cls(**kwargs)) tsc_transformed = scale.fit_transform(tsc_df) # Check the underlying array equals: nptest.assert_array_equal( cls(**kwargs).fit_transform(tsc_df.to_numpy()), tsc_transformed.to_numpy(), ) # check inverse transform is equal the original TSCDataFrame: pdtest.assert_frame_equal(tsc_df, scale.inverse_transform(tsc_transformed)) def test_polynomial_feature_transform01(self): from sklearn.preprocessing import PolynomialFeatures tsc = TSCDataFrame(self.simple_df) for degree in [2, 3, 4]: for include_bias in [True, False]: actual = TSCPolynomialFeatures( degree=degree, include_bias=include_bias, include_first_order=True ).fit_transform(tsc) expected = PolynomialFeatures( degree=degree, include_bias=include_bias ).fit_transform(tsc.to_numpy()) nptest.assert_array_equal(actual.to_numpy(), expected) def test_polynomial_feature_transform02(self): tsc = TSCDataFrame(self.simple_df) for include_first_order in [True, False]: poly = TSCPolynomialFeatures( degree=2, include_bias=True, include_first_order=include_first_order ).fit(tsc) actual = poly.transform(tsc) expected = TSCPolynomialFeatures( degree=2, include_bias=True, include_first_order=False ).fit_transform(tsc) pdtest.assert_frame_equal(actual, expected) def test_polynomial_feature_transform03(self): tsc = TSCDataFrame(self.simple_df) actual = TSCPolynomialFeatures( degree=2, include_bias=True, include_first_order=False ).fit_transform(tsc) pdtest.assert_index_equal( actual.columns, pd.Index(["1", "A^2", "A B", "B^2"], name="feature"), ) actual = TSCPolynomialFeatures( degree=2, include_bias=False, include_first_order=False ).fit_transform(tsc) pdtest.assert_index_equal( actual.columns, pd.Index(["A^2", "A B", "B^2"], name="feature"), ) def test_apply_lambda_transform01(self): # use lambda identity function tsc = TSCDataFrame(self.simple_df) lambda_transform = TSCApplyLambdas(lambdas=[lambda x: x]).fit(tsc) actual = lambda_transform.transform(tsc) expected = tsc expected.columns = pd.Index( ["A_lambda0", "B_lambda0"], name=TSCDataFrame.tsc_feature_col_name ) pdtest.assert_frame_equal(actual, expected) def test_apply_lambda_transform02(self): # use numpy function tsc = TSCDataFrame(self.simple_df) lambda_transform = TSCApplyLambdas(lambdas=[np.square]).fit(tsc) actual = lambda_transform.transform(tsc) expected = tsc.apply(np.square, axis=0, raw=True) expected.columns = pd.Index( ["A_lambda0", "B_lambda0"], name=TSCDataFrame.tsc_feature_col_name ) pdtest.assert_frame_equal(actual, expected) def test_apply_lambda_transform03(self): # use numpy function tsc = TSCDataFrame(self.simple_df) lambda_transform = TSCApplyLambdas(lambdas=[lambda x: x, np.square]).fit(tsc) actual = lambda_transform.transform(tsc) identity = tsc identity.columns = pd.Index( ["A_lambda0", "B_lambda0"], name=TSCDataFrame.tsc_feature_col_name ) squared = tsc.apply(np.square, axis=0, raw=True) squared.columns = pd.Index( ["A_lambda1", "B_lambda1"], name=TSCDataFrame.tsc_feature_col_name ) expected = pd.concat([identity, squared], axis=1) pdtest.assert_frame_equal(actual, expected) def test_pca_transform(self): tsc = TSCDataFrame(self.simple_df) pca = TSCPrincipalComponent(n_components=1).fit(tsc) data = pca.transform(tsc) self.assertIsInstance(data, TSCDataFrame) pca_sklearn = PCA(n_components=1).fit(tsc.to_numpy()) data_sklearn = pca_sklearn.transform(tsc) nptest.assert_allclose(data, data_sklearn, atol=1e-15) nptest.assert_array_equal( pca.inverse_transform(data).to_numpy(), pca_sklearn.inverse_transform(data_sklearn), ) def test_takens_embedding0(self): simple_df = self.takens_df_short.drop("B", axis=1) tsc_df = TSCDataFrame(simple_df) takens = TSCTakensEmbedding( delays=1, lag=0, frequency=1, ) actual = takens.fit_transform(tsc_df) self.assertIsInstance(actual, TSCDataFrame) # First test actual_numerics = actual.to_numpy() # only compare the numeric values expected = np.array( [ [2.0, 0.0], [6.0, 4.0], [10.0, 8.0], [14.0, 12.0], [16.0, 14.0], ] ) nptest.assert_equal(actual_numerics, expected) # Second test actual_inverse = takens.inverse_transform(actual) pdtest.assert_frame_equal(tsc_df.drop([0, 17], level=1), actual_inverse) def test_takens_embedding1(self): # test kappa = 1 tsc_df = TSCDataFrame.from_single_timeseries( pd.DataFrame( np.column_stack([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]), columns=["A", "B"], dtype=float, ) ) takens = TSCTakensEmbedding(lag=0, delays=5, frequency=1, kappa=1) # embedd to a single instance actual = takens.fit_transform(tsc_df) self.assertIsInstance(actual, TSCDataFrame) self.assertTrue(actual.has_degenerate()) self.assertEqual(actual.n_timeseries, 1) # First test actual_numerics = actual.to_numpy() # only compare the numeric values expected = np.array([[5, 4, 3, 2, 1, 0]], dtype=float) * np.exp( -1.0 * np.array([0, 1, 2, 3, 4, 5]) ) expected = np.repeat(expected, 2, axis=1) nptest.assert_equal(actual_numerics, expected) # Second test actual_inverse = takens.inverse_transform(actual) expected = tsc_df.final_states(1) pdtest.assert_frame_equal(actual_inverse, expected) def test_takens_delay_indices(self): tsc_short = TSCDataFrame(self.takens_df_short) # better check for errors tsc_long = TSCDataFrame(self.takens_df_long) nptest.assert_array_equal( TSCTakensEmbedding(delays=1, lag=0, frequency=1) .fit(tsc_short) .delay_indices_, np.array([1]), ) nptest.assert_array_equal( TSCTakensEmbedding(delays=2, lag=0, frequency=1) .fit(tsc_long) .delay_indices_, np.array([1, 2]), ) with self.assertRaises(TSCException): # Data too short TSCTakensEmbedding(delays=5, lag=0, frequency=1).fit(tsc_short) nptest.assert_array_equal( TSCTakensEmbedding(delays=1, lag=1, frequency=1) .fit(tsc_long) .delay_indices_, np.array([2]), ) nptest.assert_array_equal( TSCTakensEmbedding(delays=5, lag=1, frequency=1) .fit(tsc_long) .delay_indices_, np.array([2, 3, 4, 5, 6]), ) nptest.assert_array_equal( TSCTakensEmbedding(delays=2, lag=2, frequency=2) .fit(tsc_long) .delay_indices_, np.array([3, 5]), ) nptest.assert_array_equal( TSCTakensEmbedding(delays=4, lag=2, frequency=2) .fit(tsc_long) .delay_indices_, np.array([3, 5, 7, 9]), ) with self.assertRaises(ValueError): TSCTakensEmbedding(delays=1, lag=0, frequency=2).fit(tsc_short) def test_rbf_1d(self): func = lambda x: np.exp(x * np.cos(3 * np.pi * x)) - 1 x_vals = np.linspace(0, 1, 100) y_vals = func(x_vals) df = pd.DataFrame(y_vals, index=x_vals, columns=["qoi"]) tsc = TSCDataFrame.from_single_timeseries(df) rbf = TSCRadialBasis(kernel=MultiquadricKernel()) rbf_coeff = rbf.fit_transform(tsc) rbf_coeff_inverse = rbf.inverse_transform(rbf_coeff) pdtest.assert_frame_equal(tsc, rbf_coeff_inverse, check_exact=False) def test_rbf_2d(self): func = lambda x: np.exp(x * np.cos(3 * np.pi * x)) - 1 x_vals = np.linspace(0, 1, 15) y_vals = func(x_vals) df = pd.DataFrame(np.column_stack([x_vals, y_vals]), columns=["qoi1", "qoi2"]) tsc = TSCDataFrame.from_single_timeseries(df) rbf = TSCRadialBasis(kernel=MultiquadricKernel(epsilon=1.0)) rbf_coeff = rbf.fit_transform(tsc) rbf_coeff_inverse = rbf.inverse_transform(rbf_coeff) pdtest.assert_frame_equal(tsc, rbf_coeff_inverse, check_exact=False) def test_rbf_centers(self): func = lambda x: np.exp(x * np.cos(3 * np.pi * x)) - 1 x_vals = np.linspace(0, 1, 15) y_vals = func(x_vals) df = pd.DataFrame(np.column_stack([x_vals, y_vals]), columns=["qoi1", "qoi2"]) tsc = TSCDataFrame.from_single_timeseries(df) # Use centers at another location than the data. These can be selected in a # optimization routine (such as kmean), or randomly put into the phase space. x_vals_centers = np.linspace(0, 1, 10) y_vals_centers = func(x_vals_centers) centers = np.column_stack([x_vals_centers, y_vals_centers]) centers = pd.DataFrame(centers, columns=tsc.columns) rbf = TSCRadialBasis(kernel=MultiquadricKernel(epsilon=1.0)) rbf = rbf.fit(centers) rbf_coeff = rbf.transform(tsc) rbf_coeff_inverse = rbf.inverse_transform(rbf_coeff) pdtest.assert_index_equal(tsc.index, rbf_coeff_inverse.index)
pdtest.assert_index_equal(tsc.columns, rbf_coeff_inverse.columns)
pandas.testing.assert_index_equal
import pandas as pd import numpy as np import pytest from kgextension.endpoints import DBpedia from kgextension.schema_matching import ( relational_matching, label_schema_matching, value_overlap_matching, string_similarity_matching ) class TestRelationalMatching: def test1_default(self): path_input = "test/data/schema_matching/default_matches_cities_input.csv" df =
pd.read_csv(path_input)
pandas.read_csv
# imports import io import math import os from pathlib import Path import matplotlib.pyplot as plt import pandas as pd import xgboost as xgb from sklearn.metrics import accuracy_score # Simple_markings folder. Holds the "events", e.g. 3PM, 2PM, PASS, FOUL, etc... # Returns a dictionary containing all the players, with a key indicating whether # they are on the home or away team. # input: The game_info object we read from one of the csv files def get_players(frames_dataframe, home, away): """ # Return a list of unique players for a given team (home or away) def get_unique_players(frames_dataframe, places): players = [] # Looks through each distance column (hp1, hp2, ap4, etc...), and gets a list # of unique players in that column. # Looking through all columns for a team gives us all players on the team. for distance in places: for i in frames_dataframe[distance].unique().tolist(): if not(math.isnan(i)): players.append(i) return players """ # print(home) # print(away) players = dict() for p_id in frames_dataframe.player_id: players[p_id] = { "team": home if frames_dataframe.loc[frames_dataframe.player_id == p_id, "team"].iloc[0] == "home" else away } return players """ home_player_ids = get_unique_players(frames_dataframe, ['hp1', 'hp2', 'hp3', 'hp4', 'hp5']) away_player_ids = get_unique_players(frames_dataframe, ['ap1', 'ap2', 'ap3', 'ap4', 'ap5']) # Initialize the player dictionary. # Main key is player id. Holds all information on each player. players = {player_id: dict() for player_id in (home_player_ids + away_player_ids)} for player_id, data in players.items(): if player_id in home_player_ids: data["team"] = "home" else: data["team"] = "away" return players """ def get_player_info(players, players_dataframe, attribute): for player_id, data in players.items(): players[player_id][attribute] = players_dataframe.loc[ players_dataframe.ids_id == player_id, attribute ].iloc[0] def get_event_info(players, game_markings_dataframe, event): for player_id, data in players.items(): players[player_id][event] = len( game_markings_dataframe.loc[ (game_markings_dataframe.player_id == player_id) & (game_markings_dataframe.event == event) ] ) # Uses the game/player information gathered above to get the number of points made # by each team during actual gameplay. Since there is no information about free # throws made from foul plays, we cannot actually determine the final score or # which team won. def get_scoreboard(game_df, home, away): home_score = 0 away_score = 0 for i in range(len(game_df["2PM"])): if game_df.iloc[i]["team"] == home: home_score += game_df["2PM"].iloc[i] * 2 if game_df.iloc[i]["team"] == away: away_score += game_df["2PM"].iloc[i] * 2 for i in range(len(game_df["3PM"])): if game_df.iloc[i]["team"] == home: home_score += game_df["3PM"].iloc[i] * 3 if game_df.iloc[i]["team"] == away: away_score += game_df["3PM"].iloc[i] * 3 return home_score, away_score def get_game_names(game_file_names): game_names = [] for game_file_name in game_file_names: game_file_name_arr = str(game_file_name).split("/") game_names.append(game_file_name_arr[-1]) return game_names def squash(game_dataframe, home, away, home_score, away_score): game = dict() game["home"] = home game["home_points"] = home_score game["away"] = away game["away_points"] = away_score # dataframe_dict = game_dataframe.to_dict("index")) team_stats = {key: dict() for key in ["home", "away"]} for player_id, player_stats in game_dataframe.to_dict("index").items(): if player_stats["team"] == home: if player_stats["pos_name"] not in team_stats["home"]: team_stats["home"][player_stats["pos_name"]] = dict() team_stats["home"][player_stats["pos_name"]]["count"] = 0 team_stats["home"][player_stats["pos_name"]]["2PM"] = 0 team_stats["home"][player_stats["pos_name"]]["2PX"] = 0 team_stats["home"][player_stats["pos_name"]]["3PM"] = 0 team_stats["home"][player_stats["pos_name"]]["3PX"] = 0 team_stats["home"][player_stats["pos_name"]]["PASS"] = 0 team_stats["home"][player_stats["pos_name"]]["POSS"] = 0 team_stats["home"][player_stats["pos_name"]]["TO"] = 0 team_stats["home"][player_stats["pos_name"]]["count"] += 1 team_stats["home"][player_stats["pos_name"]]["2PM"] += player_stats["2PM"] team_stats["home"][player_stats["pos_name"]]["2PX"] += player_stats["2PX"] team_stats["home"][player_stats["pos_name"]]["3PM"] += player_stats["3PM"] team_stats["home"][player_stats["pos_name"]]["3PX"] += player_stats["3PX"] team_stats["home"][player_stats["pos_name"]]["PASS"] += player_stats["PASS"] team_stats["home"][player_stats["pos_name"]]["POSS"] += player_stats["POSS"] team_stats["home"][player_stats["pos_name"]]["TO"] += player_stats["TO"] else: if player_stats["pos_name"] not in team_stats["away"]: team_stats["away"][player_stats["pos_name"]] = dict() team_stats["away"][player_stats["pos_name"]]["count"] = 0 team_stats["away"][player_stats["pos_name"]]["2PM"] = 0 team_stats["away"][player_stats["pos_name"]]["2PX"] = 0 team_stats["away"][player_stats["pos_name"]]["3PM"] = 0 team_stats["away"][player_stats["pos_name"]]["3PX"] = 0 team_stats["away"][player_stats["pos_name"]]["PASS"] = 0 team_stats["away"][player_stats["pos_name"]]["POSS"] = 0 team_stats["away"][player_stats["pos_name"]]["TO"] = 0 team_stats["away"][player_stats["pos_name"]]["count"] += 1 team_stats["away"][player_stats["pos_name"]]["2PM"] += player_stats["2PM"] team_stats["away"][player_stats["pos_name"]]["2PX"] += player_stats["2PX"] team_stats["away"][player_stats["pos_name"]]["3PM"] += player_stats["3PM"] team_stats["away"][player_stats["pos_name"]]["3PX"] += player_stats["3PX"] team_stats["away"][player_stats["pos_name"]]["PASS"] += player_stats["PASS"] team_stats["away"][player_stats["pos_name"]]["POSS"] += player_stats["POSS"] team_stats["away"][player_stats["pos_name"]]["TO"] += player_stats["TO"] for team, team_info in team_stats.items(): for position, position_stats in team_info.items(): position_stats["2PM"] /= position_stats["count"] position_stats["2PX"] /= position_stats["count"] position_stats["3PM"] /= position_stats["count"] position_stats["3PX"] /= position_stats["count"] position_stats["PASS"] /= position_stats["count"] position_stats["POSS"] /= position_stats["count"] position_stats["TO"] /= position_stats["count"] del position_stats["count"] for team, team_info in team_stats.items(): for position, position_stats in team_info.items(): for stat in list(position_stats): game[team + "_" + position + "_" + stat] = position_stats[stat] return game def create_dataset(): players_dataframe = pd.read_csv("meta/players.csv") games_dataframe = pd.read_csv("meta/games.csv") teams_dataframe = pd.read_csv("meta/teams.csv") file_names = get_game_names(list((Path.cwd() / "simple-markings").glob("*.csv"))) game_info = dict() for file_name in file_names: if os.path.isfile("simple-frames/" + file_name): file_name_array = file_name.split("-") away, home = file_name_array[-2], file_name_array[-1][:3] frames_dataframe = pd.read_csv("simple-frames/" + file_name) game_markings_dataframe = pd.read_csv("simple-markings/" + file_name) players = get_players(frames_dataframe, home, away) get_player_info(players, players_dataframe, "pos_name") get_event_info(players, game_markings_dataframe, "PASS") get_event_info(players, game_markings_dataframe, "2PM") get_event_info(players, game_markings_dataframe, "2PX") get_event_info(players, game_markings_dataframe, "3PM") get_event_info(players, game_markings_dataframe, "3PX") get_event_info(players, game_markings_dataframe, "POSS") get_event_info(players, game_markings_dataframe, "TO") game_dataframe = pd.DataFrame(players).transpose() home_score, away_score = get_scoreboard(game_dataframe, home, away) game_info[file_name] = squash( game_dataframe, home, away, home_score, away_score ) game_info_dataframe = pd.DataFrame(game_info).transpose() print(game_info_dataframe) game_info_dataframe.to_csv( "all_game_info.csv", sep=",", encoding="utf-8", index_label="game_name" ) def learn(): def calculate_loss(submission_dict): for game_index, game_stats in submission_dict.items(): total_predicted_points = ( game_stats["home_points_predicted"] + game_stats["away_points_predicted"] ) total_actual_points = ( game_stats["home_points_actual"] - game_stats["away_points_actual"] ) # game_stats["percent_accuracy"] = (total_actual_points - loss) / total_actual_points * 100 game_stats["loss"] = abs(total_predicted_points - total_actual_points) atts_to_exclude = ["home", "away", "game_name"] full_df = pd.read_csv("all_game_info.csv") # grab the entire csv for ( col ) in ( full_df.columns.values ): # we exclude all of the point making ones because that is too easy if "PM" in col: atts_to_exclude.append(col) train_df = full_df.sample( frac=0.8, random_state=200 ) # split into training and testing test_df = full_df.drop(train_df.index) x_test = test_df.drop(["away_points", "home_points"] + atts_to_exclude, axis=1) x_train = train_df.drop(["away_points", "home_points"] + atts_to_exclude, axis=1) y_train_h = train_df["home_points"] y_train_a = train_df["away_points"] classifier_h = xgb.XGBClassifier(n_estimators=300, n_jobs=4, silent=1, eta=0.1) classifier_a = xgb.XGBClassifier(n_estimators=300, n_jobs=4, silent=1, eta=0.1) classifier_h.fit(x_train, y_train_h) classifier_a.fit(x_train, y_train_a) pred_h = classifier_h.predict(x_test) pred_a = classifier_a.predict(x_test) submission = pd.DataFrame( { "game_name": test_df.game_name, "home_points_predicted": pred_h, "away_points_predicted": pred_a, "home_points_actual": test_df.home_points, "away_points_actual": test_df.away_points, } ) submission_dict = submission.to_dict("index") # print(submission_dict) calculate_loss(submission_dict) submission =
pd.DataFrame(submission_dict)
pandas.DataFrame
import pandas as pd def list_platform_metadata_s4(): s4_dict = { 'COSPAR': '1998-017A', 'NORAD': 25260, 'full_name': 'Satellite Pour l’Observation de la Terre', 'instruments': {'Végétation', 'HRVIR', 'DORIS'}, 'constellation': 'SPOT', 'launch': '1998-03-24', 'orbit': 'sso', 'equatorial_crossing_time': '10:30'} return s4_dict def list_central_wavelength_s4(): """ create dataframe with metadata about SPOT4 Returns ------- df : datafram metadata and general multispectral information about the MSI instrument that is onboard SPOT4, having the following collumns: * wavelength : central wavelength of the band * bandwidth : extent of the spectral sensativity * bandid : number for identification in the meta data * resolution : spatial resolution of a pixel * name : general name of the band, if applicable Example ------- make a selection by name: >>> boi = ['red', 'green', 'blue', 'near infrared'] >>> s4_df = list_central_wavelength_s2() >>> s4_df = s4_df[s4_df['name'].isin(boi)] >>> s4_df wavelength bandwidth resolution name bandid B02 492 66 10 blue 1 B03 560 36 10 green 2 B04 665 31 10 red 3 B08 833 106 10 near infrared 7 """ wavelength = {"B01": 545, "B02": 640, "B03": 740, "B04": 1665, } bandwidth = {"B01": 90, "B02": 70, "B03": 100, "B04": 170, } bandid = {"B01": 0, "B02": 1, "B03": 2, "B04": 3, } resolution = {"B01": 20, "B02": 20, "B03": 20, "B04": 20, } name = {"B01": 'green', "B02" : 'red', "B03" : 'near infrared', "B04" : 'shortwave infrared', } d = { "wavelength": pd.Series(wavelength), "bandwidth": pd.Series(bandwidth), "resolution": pd.Series(resolution), "name": pd.Series(name), "bandid": pd.Series(bandid) } df =
pd.DataFrame(d)
pandas.DataFrame
__author__ = 'lucabasa' __version__ = '1.0' __status__ = 'development' import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold, RandomizedSearchCV import lightgbm as lgb import xgboost as xgb from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor def lightgbm_train(train, test, target, kfolds): param = {'num_leaves': 111, 'min_data_in_leaf': 150, 'objective': 'regression', 'max_depth': 9, 'learning_rate': 0.005, "boosting": "gbdt", "feature_fraction": 0.7522, "bagging_freq": 1, "bagging_fraction": 0.7083 , "bagging_seed": 11, "metric": 'rmse', "lambda_l1": 0.2634, "random_seed": 133, "verbosity": -1} ''' param = {'num_leaves': 50, 'min_data_in_leaf': 11, 'objective': 'regression', 'max_depth': 5, 'learning_rate': 0.005, "boosting": "gbdt", "feature_fraction": 0.8791, "bagging_freq": 1, "bagging_fraction": 0.9238 , "bagging_seed": 11, "metric": 'rmse', "lambda_l1": 4.8679, "random_seed": 133, "verbosity": -1} ''' oof = np.zeros(len(train)) predictions = np.zeros(len(test)) feature_importance_df = pd.DataFrame() comm_cols = list(set(train.columns).intersection(test.columns)) for fold_, (trn_idx, val_idx) in enumerate(kfolds.split(train.values, target.values)): print("fold n°{}".format(fold_)) trn_data = lgb.Dataset(train.iloc[trn_idx][comm_cols], label=target.iloc[trn_idx] ) val_data = lgb.Dataset(train.iloc[val_idx][comm_cols], label=target.iloc[val_idx] ) num_round = 10000 clf = lgb.train(param, trn_data, num_round, valid_sets = [trn_data, val_data], verbose_eval=500, early_stopping_rounds = 300) oof[val_idx] = clf.predict(train.iloc[val_idx][comm_cols], num_iteration=clf.best_iteration) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = comm_cols fold_importance_df["importance"] = clf.feature_importance() fold_importance_df["fold"] = fold_ + 1 feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0) predictions += clf.predict(test[comm_cols], num_iteration=clf.best_iteration) / kfolds.n_splits print("CV score: {:<8.5f}".format(mean_squared_error(oof, target)**0.5)) return predictions, mean_squared_error(oof, target)**0.5, feature_importance_df, oof def xgb_train(train, test, target, kfolds): oof = np.zeros(len(train)) predictions = np.zeros(len(test)) feature_importance_df = pd.DataFrame() comm_cols = list(set(train.columns).intersection(test.columns)) for fold_, (trn_idx, val_idx) in enumerate(kfolds.split(train.values, target.values)): print("fold n°{}".format(fold_)) trn_data = train.iloc[trn_idx][comm_cols] val_data = train.iloc[val_idx][comm_cols] trn_target = target.iloc[trn_idx] val_target = target.iloc[val_idx] clf = xgb.XGBRegressor(n_estimators=10000, learning_rate=0.05, max_depth=6, n_jobs=6, subsample=0.99, random_state=408, gamma=0.0217, reg_alpha=0.9411, colsample_bytree=0.3055).fit(trn_data, trn_target, eval_set=[(val_data, val_target)], eval_metric='rmse', early_stopping_rounds=200, verbose=500) oof[val_idx] = clf.predict(train.iloc[val_idx][comm_cols], ntree_limit=clf.best_iteration) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = comm_cols fold_importance_df["importance"] = clf.feature_importances_ fold_importance_df["fold"] = fold_ + 1 feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0) predictions += clf.predict(test[comm_cols], ntree_limit=clf.best_iteration) / kfolds.n_splits print("CV score: {:<8.5f}".format(mean_squared_error(oof, target)**0.5)) return predictions, mean_squared_error(oof, target)**0.5, feature_importance_df, oof def rf_train(train, test, target, kfolds): oof = np.zeros(len(train)) predictions = np.zeros(len(test)) feature_importance_df = pd.DataFrame() comm_cols = list(set(train.columns).intersection(test.columns)) ''' grid_param = {'max_depth': np.arange(3,30), 'min_samples_split': np.arange(2, 50), 'min_samples_leaf': np.arange(1,40), 'max_features': ['sqrt', 'log2', None]} print('Optimizing parameters') grid = RandomizedSearchCV(RandomForestRegressor(n_estimators=300, n_jobs=4, random_state=345), param_distributions=grid_param, n_iter=20, cv=kfolds, random_state=654, n_jobs=-1, scoring='neg_mean_squared_error', verbose=3) grid.fit(train[comm_cols], target) best_forest = grid.best_estimator_ print(grid.best_params_) print(round( (-grid.best_score_ )**0.5 ,3)) ''' best_forest = RandomForestRegressor(n_estimators=1000, n_jobs=-1, random_state=32, max_depth=20, max_features='sqrt') for fold_, (trn_idx, val_idx) in enumerate(kfolds.split(train.values, target.values)): print("fold n°{}".format(fold_)) trn_data = train.iloc[trn_idx][comm_cols] val_data = train.iloc[val_idx][comm_cols] trn_target = target.iloc[trn_idx] val_target = target.iloc[val_idx] clf = best_forest.fit(trn_data, trn_target) oof[val_idx] = clf.predict(train.iloc[val_idx][comm_cols]) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = comm_cols fold_importance_df["importance"] = clf.feature_importances_ fold_importance_df["fold"] = fold_ + 1 feature_importance_df =
pd.concat([feature_importance_df, fold_importance_df], axis=0)
pandas.concat
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from bagging import Bagging from sklearn import svm from sklearn import preprocessing import random from keras.utils import to_categorical from opts import DLOption from dbn_tf import DBN from nn_tf import NN from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns from imblearn.over_sampling import SMOTE from fsvm import fsvmClass def RepetitionRandomSampling(data, number, rate): # 有放回采样,number为抽样的个数 sample = [] for i in range(int(rate * number)): sample.append(data[random.randint(0, len(data) - 1)]) return sample def Voting(data): # 投票法 term = np.transpose(data) # 转置 result = list() # 存储结果 for target in term: one = list(target).count(1) zero = list(target).count(0) if one > zero: result.append(1) else: result.append(0) return result #下采样 def lowSampling(df, percent=3/3): data1 = df[df[0] == 1] # 将多数 data0 = df[df[0] == 0] # 将少数类别的样本放在data0 index = np.random.randint( len(data1), size=int(percent * (len(df) - len(data1)))) # 随机给定下采样取出样本的序号 lower_data1 = data1.iloc[list(index)] # 下采样 return(
pd.concat([lower_data1, data0])
pandas.concat
''' The analysis module Handles the analyses of the info and data space for experiment evaluation and design. ''' from slm_lab.agent import AGENT_DATA_NAMES from slm_lab.env import ENV_DATA_NAMES from slm_lab.lib import logger, util, viz import numpy as np import os import pandas as pd import pydash as ps import shutil DATA_AGG_FNS = { 't': 'sum', 'reward': 'sum', 'loss': 'mean', 'explore_var': 'mean', } FITNESS_COLS = ['strength', 'speed', 'stability', 'consistency'] # TODO improve to make it work with any reward mean FITNESS_STD = util.read('slm_lab/spec/_fitness_std.json') NOISE_WINDOW = 0.05 MA_WINDOW = 100 logger = logger.get_logger(__name__) ''' Fitness analysis ''' def calc_strength(aeb_df, rand_epi_reward, std_epi_reward): ''' For each episode, use the total rewards to calculate the strength as strength_epi = (reward_epi - reward_rand) / (reward_std - reward_rand) **Properties:** - random agent has strength 0, standard agent has strength 1. - if an agent achieve x2 rewards, the strength is ~x2, and so on. - strength of learning agent always tends toward positive regardless of the sign of rewards (some environments use negative rewards) - scale of strength is always standard at 1 and its multiplies, regardless of the scale of actual rewards. Strength stays invariant even as reward gets rescaled. This allows for standard comparison between agents on the same problem using an intuitive measurement of strength. With proper scaling by a difficulty factor, we can compare across problems of different difficulties. ''' # use lower clip 0 for noise in reward to dip slighty below rand return (aeb_df['reward'] - rand_epi_reward).clip(0.) / (std_epi_reward - rand_epi_reward) def calc_stable_idx(aeb_df, min_strength_ma): '''Calculate the index (epi) when strength first becomes stable (using moving mean and working backward)''' above_std_strength_sr = (aeb_df['strength_ma'] >= min_strength_ma) if above_std_strength_sr.any(): # if it achieved stable (ma) min_strength_ma at some point, the index when std_strength_ra_idx = above_std_strength_sr.idxmax() stable_idx = std_strength_ra_idx - (MA_WINDOW - 1) else: stable_idx = np.nan return stable_idx def calc_std_strength_timestep(aeb_df): ''' Calculate the timestep needed to achieve stable (within NOISE_WINDOW) std_strength. For agent failing to achieve std_strength 1, it is meaningless to measure speed or give false interpolation, so set as inf (never). ''' std_strength = 1. stable_idx = calc_stable_idx(aeb_df, min_strength_ma=std_strength - NOISE_WINDOW) if np.isnan(stable_idx): std_strength_timestep = np.inf else: std_strength_timestep = aeb_df.loc[stable_idx, 'total_t'] / std_strength return std_strength_timestep def calc_speed(aeb_df, std_timestep): ''' For each session, measure the moving average for strength with interval = 100 episodes. Next, measure the total timesteps up to the first episode that first surpasses standard strength, allowing for noise of 0.05. Finally, calculate speed as speed = timestep_std / timestep_solved **Properties:** - random agent has speed 0, standard agent has speed 1. - if an agent takes x2 timesteps to exceed standard strength, we can say it is 2x slower. - the speed of learning agent always tends toward positive regardless of the shape of the rewards curve - the scale of speed is always standard at 1 and its multiplies, regardless of the absolute timesteps. For agent failing to achieve standard strength 1, it is meaningless to measure speed or give false interpolation, so the speed is 0. This allows an intuitive measurement of learning speed and the standard comparison between agents on the same problem. ''' agent_timestep = calc_std_strength_timestep(aeb_df) speed = std_timestep / agent_timestep return speed def is_noisy_mono_inc(sr): '''Check if sr is monotonically increasing, (given NOISE_WINDOW = 5%) within noise = 5% * std_strength = 0.05 * 1''' zero_noise = -NOISE_WINDOW mono_inc_sr = np.diff(sr) >= zero_noise # restore sr to same length mono_inc_sr = np.insert(mono_inc_sr, 0, np.nan) return mono_inc_sr def calc_stability(aeb_df): ''' Find a baseline = - 0. + noise for very weak solution - max(strength_ma_epi) - noise for partial solution weak solution - 1. - noise for solution achieving standard strength and beyond So we get: - weak_baseline = 0. + noise - strong_baseline = min(max(strength_ma_epi), 1.) - noise - baseline = max(weak_baseline, strong_baseline) Let epi_baseline be the episode where baseline is first attained. Consider the episodes starting from epi_baseline, let #epi_+ be the number of episodes, and #epi_>= the number of episodes where strength_ma_epi is monotonically increasing. Calculate stability as stability = #epi_>= / #epi_+ **Properties:** - stable agent has value 1, unstable agent < 1, and non-solution = 0. - allows for drops strength MA of 5% to account for noise, which is invariant to the scale of rewards - if strength is monotonically increasing (with 5% noise), then it is stable - sharp gain in strength is considered stable - monotonically increasing implies strength can keep growing and as long as it does not fall much, it is considered stable ''' weak_baseline = 0. + NOISE_WINDOW strong_baseline = min(aeb_df['strength_ma'].max(), 1.) - NOISE_WINDOW baseline = max(weak_baseline, strong_baseline) stable_idx = calc_stable_idx(aeb_df, min_strength_ma=baseline) if np.isnan(stable_idx): stability = 0. else: stable_df = aeb_df.loc[stable_idx:, 'strength_mono_inc'] stability = stable_df.sum() / len(stable_df) return stability def calc_consistency(aeb_fitness_df): ''' Calculate the consistency of trial by the fitness_vectors of its sessions: consistency = ratio of non-outlier vectors **Properties:** - outliers are calculated using MAD modified z-score - if all the fitness vectors are zero or all strength are zero, consistency = 0 - works for all sorts of session fitness vectors, with the standard scale When an agent fails to achieve standard strength, it is meaningless to measure consistency or give false interpolation, so consistency is 0. ''' fitness_vecs = aeb_fitness_df.values if ~np.any(fitness_vecs) or ~np.any(aeb_fitness_df['strength']): # no consistency if vectors all 0 consistency = 0. elif len(fitness_vecs) == 2: # if only has 2 vectors, check norm_diff diff_norm = np.linalg.norm(np.diff(fitness_vecs, axis=0)) / np.linalg.norm(np.ones(len(fitness_vecs[0]))) consistency = diff_norm <= NOISE_WINDOW else: is_outlier_arr = util.is_outlier(fitness_vecs) consistency = (~is_outlier_arr).sum() / len(is_outlier_arr) return consistency def calc_epi_reward_ma(aeb_df): '''Calculates the episode reward moving average with the MA_WINDOW''' rewards = aeb_df['reward'] aeb_df['reward_ma'] = rewards.rolling(window=MA_WINDOW, min_periods=0, center=False).mean() return aeb_df def calc_fitness(fitness_vec): ''' Takes a vector of qualifying standardized dimensions of fitness and compute the normalized length as fitness L2 norm because it diminishes lower values but amplifies higher values for comparison. ''' if isinstance(fitness_vec, pd.Series): fitness_vec = fitness_vec.values elif isinstance(fitness_vec, pd.DataFrame): fitness_vec = fitness_vec.iloc[0].values std_fitness_vector = np.ones(len(fitness_vec)) fitness = np.linalg.norm(fitness_vec) / np.linalg.norm(std_fitness_vector) return fitness def calc_aeb_fitness_sr(aeb_df, env_name): '''Top level method to calculate fitness vector for AEB level data (strength, speed, stability)''' no_fitness_sr = pd.Series({ 'strength': 0., 'speed': 0., 'stability': 0.}) if len(aeb_df) < MA_WINDOW: logger.warn(f'Run more than {MA_WINDOW} episodes to compute proper fitness') return no_fitness_sr std = FITNESS_STD.get(env_name) if std is None: std = FITNESS_STD.get('template') logger.warn(f'The fitness standard for env {env_name} is not built yet. Contact author. Using a template standard for now.') aeb_df['total_t'] = aeb_df['t'].cumsum() aeb_df['strength'] = calc_strength(aeb_df, std['rand_epi_reward'], std['std_epi_reward']) aeb_df['strength_ma'] = aeb_df['strength'].rolling(MA_WINDOW).mean() aeb_df['strength_mono_inc'] = is_noisy_mono_inc(aeb_df['strength']).astype(int) strength = aeb_df['strength_ma'].max() speed = calc_speed(aeb_df, std['std_timestep']) stability = calc_stability(aeb_df) aeb_fitness_sr = pd.Series({ 'strength': strength, 'speed': speed, 'stability': stability}) return aeb_fitness_sr ''' Analysis interface methods ''' def save_spec(spec, info_space, unit='experiment'): '''Save spec to proper path. Called at Experiment or Trial init.''' prepath = util.get_prepath(spec, info_space, unit) util.write(spec, f'{prepath}_spec.json') def calc_mean_fitness(fitness_df): '''Method to calculated mean over all bodies for a fitness_df''' return fitness_df.mean(axis=1, level=3) def get_session_data(session): ''' Gather data from session: MDP, Agent, Env data, hashed by aeb; then aggregate. @returns {dict, dict} session_mdp_data, session_data ''' session_data = {} for aeb, body in util.ndenumerate_nonan(session.aeb_space.body_space.data): session_data[aeb] = body.df.copy() return session_data def calc_session_fitness_df(session, session_data): '''Calculate the session fitness df''' session_fitness_data = {} for aeb in session_data: aeb_df = session_data[aeb] aeb_df = calc_epi_reward_ma(aeb_df) util.downcast_float32(aeb_df) body = session.aeb_space.body_space.data[aeb] aeb_fitness_sr = calc_aeb_fitness_sr(aeb_df, body.env.name) aeb_fitness_df = pd.DataFrame([aeb_fitness_sr], index=[session.index]) aeb_fitness_df = aeb_fitness_df.reindex(FITNESS_COLS[:3], axis=1) session_fitness_data[aeb] = aeb_fitness_df # form multi_index df, then take mean across all bodies session_fitness_df = pd.concat(session_fitness_data, axis=1) mean_fitness_df = calc_mean_fitness(session_fitness_df) session_fitness = calc_fitness(mean_fitness_df) logger.info(f'Session mean fitness: {session_fitness}\n{mean_fitness_df}') return session_fitness_df def calc_trial_fitness_df(trial): ''' Calculate the trial fitness df by aggregating from the collected session_data_dict (session_fitness_df's). Adds a consistency dimension to fitness vector. ''' trial_fitness_data = {} try: all_session_fitness_df = pd.concat(list(trial.session_data_dict.values())) except ValueError as e: logger.exception('Sessions failed, no data to analyze. Check stack trace above') for aeb in util.get_df_aeb_list(all_session_fitness_df): aeb_fitness_df = all_session_fitness_df.loc[:, aeb] aeb_fitness_sr = aeb_fitness_df.mean() consistency = calc_consistency(aeb_fitness_df) aeb_fitness_sr = aeb_fitness_sr.append(pd.Series({'consistency': consistency})) aeb_fitness_df = pd.DataFrame([aeb_fitness_sr], index=[trial.index]) aeb_fitness_df = aeb_fitness_df.reindex(FITNESS_COLS, axis=1) trial_fitness_data[aeb] = aeb_fitness_df # form multi_index df, then take mean across all bodies trial_fitness_df = pd.concat(trial_fitness_data, axis=1) mean_fitness_df = calc_mean_fitness(trial_fitness_df) trial_fitness_df = mean_fitness_df trial_fitness = calc_fitness(mean_fitness_df) logger.info(f'Trial mean fitness: {trial_fitness}\n{mean_fitness_df}') return trial_fitness_df def is_unfit(fitness_df): '''Check if a fitness_df is unfit. Used to determine of trial should stop running more sessions''' # TODO improve to make it work with any reward mean mean_fitness_df = calc_mean_fitness(fitness_df) return mean_fitness_df['strength'].iloc[0] < NOISE_WINDOW def plot_session(session_spec, info_space, session_data): '''Plot the session graph, 2 panes: reward, loss & explore_var. Each aeb_df gets its own color''' graph_x = session_spec['meta'].get('graph_x', 'epi') aeb_count = len(session_data) palette = viz.get_palette(aeb_count) fig = viz.tools.make_subplots(rows=3, cols=1, shared_xaxes=True) for idx, (a, e, b) in enumerate(session_data): aeb_str = f'{a}{e}{b}' aeb_df = session_data[(a, e, b)] aeb_df.fillna(0, inplace=True) # for saving plot, cant have nan fig_1 = viz.plot_line(aeb_df, 'reward', graph_x, legend_name=aeb_str, draw=False, trace_kwargs={'legendgroup': aeb_str, 'line': {'color': palette[idx]}}) fig.append_trace(fig_1.data[0], 1, 1) fig_2 = viz.plot_line(aeb_df, ['loss'], graph_x, y2_col=['explore_var'], trace_kwargs={'legendgroup': aeb_str, 'showlegend': False, 'line': {'color': palette[idx]}}, draw=False) fig.append_trace(fig_2.data[0], 2, 1) fig.append_trace(fig_2.data[1], 3, 1) fig.layout['xaxis1'].update(title=graph_x, zerolinewidth=1) fig.layout['yaxis1'].update(fig_1.layout['yaxis']) fig.layout['yaxis1'].update(domain=[0.55, 1]) fig.layout['yaxis2'].update(fig_2.layout['yaxis']) fig.layout['yaxis2'].update(showgrid=False, domain=[0, 0.45]) fig.layout['yaxis3'].update(fig_2.layout['yaxis2']) fig.layout['yaxis3'].update(overlaying='y2', anchor='x2') fig.layout.update(ps.pick(fig_1.layout, ['legend'])) fig.layout.update(title=f'session graph: {session_spec["name"]} t{info_space.get("trial")} s{info_space.get("session")}', width=500, height=600) viz.plot(fig) return fig def gather_aeb_rewards_df(aeb, session_datas): '''Gather rewards from each session for a body into a df''' aeb_session_rewards = {} for s, session_data in session_datas.items(): aeb_df = session_data[aeb] aeb_reward_sr = aeb_df['reward'] aeb_session_rewards[s] = aeb_reward_sr aeb_rewards_df = pd.DataFrame(aeb_session_rewards) return aeb_rewards_df def build_aeb_reward_fig(aeb_rewards_df, aeb_str, color): '''Build the aeb_reward envelope figure''' # TODO need enable total_t for trial graph, and line up signals at the common total_t mean_sr = aeb_rewards_df.mean(axis=1) std_sr = aeb_rewards_df.std(axis=1).fillna(0) max_sr = mean_sr + std_sr min_sr = mean_sr - std_sr x = aeb_rewards_df.index.tolist() max_y = max_sr.tolist() min_y = min_sr.tolist() envelope_trace = viz.go.Scatter( x=x + x[::-1], y=max_y + min_y[::-1], fill='tozerox', fillcolor=viz.lower_opacity(color, 0.2), line=dict(color='transparent'), showlegend=False, legendgroup=aeb_str, ) df =
pd.DataFrame({'epi': x, 'mean_reward': mean_sr})
pandas.DataFrame
import logging import os from typing import List, Dict, Optional import numpy as np import pandas as pd import shap from sklearn.cluster import KMeans from d3m import container, utils from d3m.metadata import base as metadata_base, hyperparams, params from d3m.primitive_interfaces import base from d3m.primitive_interfaces.base import CallResult from d3m.primitive_interfaces.supervised_learning import PrimitiveBase from distil.modeling.forest import ForestCV from distil.modeling.metrics import classification_metrics, regression_metrics from distil.utils import CYTHON_DEP import version __all__ = ("EnsembleForest",) logger = logging.getLogger(__name__) class Hyperparams(hyperparams.Hyperparams): metric = hyperparams.Enumeration[str]( values=classification_metrics + regression_metrics, default="f1Macro", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The D3M scoring metric to use during the fit phase. This can be any of the regression, classification or " + "clustering metrics.", ) shap_max_dataset_size = hyperparams.Hyperparameter[int]( default=1500, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The maximum dataset size on which to apply SHAP interpretation to each sample individually. Otherwise, this number of samples will be" + "drawn from the data distribution after clustering (to approximate the distribution) and interpretation will only be applied to these" + "samples", ) n_estimators = hyperparams.UniformInt( lower=1, upper=2048, default=32, description="The number of trees in the forest.", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter", "https://metadata.datadrivendiscovery.org/types/ResourcesUseParameter", ], ) min_samples_leaf = hyperparams.UniformInt( lower=1, upper=31, default=2, description="Minimum number of samples to split leaf", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter", "https://metadata.datadrivendiscovery.org/types/ResourcesUseParameter", ], ) class_weight = hyperparams.Enumeration[str]( values=["None", "balanced", "balanced_subsample"], default="None", description="todo", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter" ], ) estimator = hyperparams.Enumeration[str]( values=["ExtraTrees", "RandomForest"], default="ExtraTrees", description="todo", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter" ], ) grid_search = hyperparams.Hyperparameter[bool]( default=False, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Runs an internal grid search to fit the primitive, ignoring caller supplied values for " + "n_estimators, min_samples_leaf, class_weight, estimator", ) small_dataset_threshold = hyperparams.Hyperparameter[int]( default=2000, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="If grid_search is true, controls the application of the 'small_dataset_fits' and 'large_dataset_fits' " + "parameters - if the input dataset has fewer rows than the threshold value, 'small_dateset_fits' will be used when fitting. " + "Otherwise, 'num_large_fits' is used.", ) small_dataset_fits = hyperparams.Hyperparameter[int]( default=5, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="If grid_search is true, the number of random forests to fit when using small datasets.", ) large_dataset_fits = hyperparams.Hyperparameter[int]( default=1, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="If grid_search is true, the number of random forests to fit when using large datasets.", ) compute_confidences = hyperparams.Hyperparameter[bool]( default=False, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Compute confidence values. Only valid when the task is classification.", ) n_jobs = hyperparams.Hyperparameter[int]( default=64, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The value of the n_jobs parameter for the joblib library", ) pos_label = hyperparams.Hyperparameter[Optional[str]]( default=None, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Name of the positive label in the binary case. If none is provided, second column is assumed to be positive", ) class Params(params.Params): model: ForestCV target_cols: List[str] label_map: Dict[int, str] needs_fit: bool binary: bool input_hash: pd.Series class EnsembleForestPrimitive( PrimitiveBase[container.DataFrame, container.DataFrame, Params, Hyperparams] ): """ Generates an ensemble of random forests, with the number of internal models created controlled by the size of the input dataframe. It accepts a dataframe as input, and returns a dataframe consisting of prediction values only as output. Columns with string structural types are ignored. """ metadata = metadata_base.PrimitiveMetadata( { "id": "e0ad06ce-b484-46b0-a478-c567e1ea7e02", "version": version.__version__, "name": "EnsembleForest", "python_path": "d3m.primitives.learner.random_forest.DistilEnsembleForest", "source": { "name": "Distil", "contact": "mailto:<EMAIL>", "uris": [ "https://github.com/uncharted-distil/distil-primitives/blob/main/distil/primitives/ensemble_forest.py", "https://github.com/uncharted-distil/distil-primitives", ], }, "installation": [ CYTHON_DEP, { "type": metadata_base.PrimitiveInstallationType.PIP, "package_uri": "git+https://github.com/uncharted-distil/distil-primitives.git@{git_commit}#egg=distil-primitives".format( git_commit=utils.current_git_commit(os.path.dirname(__file__)), ), }, ], "algorithm_types": [ metadata_base.PrimitiveAlgorithmType.RANDOM_FOREST, ], "primitive_family": metadata_base.PrimitiveFamily.LEARNER, }, ) def __init__(self, *, hyperparams: Hyperparams, random_seed: int = 0) -> None: super().__init__(hyperparams=hyperparams, random_seed=random_seed) # hack to get around typing constraints. if self.hyperparams["class_weight"] == "None": class_weight = None else: class_weight = self.hyperparams["class_weight"] grid_search = self.hyperparams["grid_search"] if grid_search is True: current_hyperparams = None else: current_hyperparams = { "estimator": self.hyperparams["estimator"], "n_estimators": self.hyperparams[ "n_estimators" ], # [32, 64, 128, 256, 512, 1024, 2048], "min_samples_leaf": self.hyperparams[ "min_samples_leaf" ], # '[1, 2, 4, 8, 16, 32], } if self.hyperparams["metric"] in classification_metrics: current_hyperparams.update({"class_weight": class_weight}) else: # regression current_hyperparams.update({"bootstrap": True}) self._model = ForestCV( self.hyperparams["metric"], random_seed=self.random_seed, hyperparams=current_hyperparams, grid_search=grid_search, n_jobs=self.hyperparams["n_jobs"], ) self._needs_fit = True self._label_map: Dict[int, str] = {} self._target_cols: List[str] = [] self._binary = False def _get_component_columns( self, output_df: container.DataFrame, source_col_index: int ) -> List[int]: # Component columns are all column which have as source the referenced # column index. This includes the aforementioned column index. component_cols = [source_col_index] # get the column name col_name = output_df.metadata.query( (metadata_base.ALL_ELEMENTS, source_col_index) )["name"] # get all columns which have this column as source for c in range(0, len(output_df.columns)): src = output_df.metadata.query((metadata_base.ALL_ELEMENTS, c)) if "source_column" in src and src["source_column"] == col_name: component_cols.append(c) return component_cols def set_training_data( self, *, inputs: container.DataFrame, outputs: container.DataFrame ) -> None: # At this point anything that needed to be imputed should have been, so we'll # clear out any remaining NaN values as a last measure. # if we are doing classification the outputs need to be integer classes. # label map is used to covert these back on produce. col = outputs.columns[0] if self._model.mode == "classification": factor = pd.factorize(outputs[col]) outputs = pd.DataFrame(factor[0], columns=[col]) self._label_map = {k: v for k, v in enumerate(factor[1])} self._target_cols = list(outputs.columns) # remove nans from outputs, apply changes to inputs as well to ensure alignment self._input_hash = pd.util.hash_pandas_object(inputs) self._outputs = outputs[ outputs[col] != "" ].dropna() # not in place because we don't want to modify passed input self._binary = self._outputs.iloc[:, 0].nunique(dropna=True) <= 2 row_diff = outputs.shape[0] - self._outputs.shape[0] if row_diff != 0: logger.warn(f"Removed {row_diff} rows due to NaN values in target data.") self._inputs = inputs.loc[self._outputs.index, :] else: self._inputs = inputs # same in other direction inputs_rows = self._inputs.shape[0] inputs_cols = self._inputs.shape[1] self._inputs = self._inputs.select_dtypes(include="number") col_diff = inputs_cols - self._inputs.shape[1] if col_diff != 0: logger.warn(f"Removed {col_diff} unencoded columns from training data.") self._inputs = ( self._inputs.dropna() ) # not in place because because selection above doesn't create a copy row_diff = inputs_rows - self._inputs.shape[0] if row_diff != 0: logger.warn(f"Removed {row_diff} rows due to NaN values in training data.") self._outputs = self._outputs.loc[self._inputs.index, :] self._model.num_fits = ( self.hyperparams["large_dataset_fits"] if self._inputs.shape[0] > self.hyperparams["small_dataset_threshold"] else self.hyperparams["small_dataset_fits"] ) self._needs_fit = True def fit(self, *, timeout: float = None, iterations: int = None) -> CallResult[None]: logger.debug(f"Fitting {__name__}") if self._needs_fit: self._model.fit(self._inputs.values, self._outputs.values) self._needs_fit = False return CallResult(None) def produce( self, *, inputs: container.DataFrame, timeout: float = None, iterations: int = None, ) -> CallResult[container.DataFrame]: logger.debug(f"Producing {__name__}") # force a fit it hasn't yet been done if self._needs_fit: self.fit() # drop any non-numeric columns # drop all non-numeric columns num_cols = inputs.shape[1] inputs = inputs.select_dtypes(include="number") col_diff = num_cols - inputs.shape[1] if col_diff > 0: logger.warn(f"Removed {col_diff} unencoded columns from produce data.") # create dataframe to hold the result result = self._model.predict(inputs.values) if len(self._target_cols) > 1: result_df = container.DataFrame() for i, c in enumerate(self._target_cols): col = container.DataFrame({c: result[:, i]}) result_df = pd.concat([result_df, col], axis=1) for c in range(result_df.shape[1]): result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, c), "http://schema.org/Float" ) else: result_df = container.DataFrame( {self._target_cols[0]: result}, generate_metadata=True ) # if we mapped values earlier map them back. if len(self._label_map) > 0: # TODO label map will not work if there are multiple output columns. result_df[self._target_cols[0]] = result_df[self._target_cols[0]].map( self._label_map ) # mark the semantic types on the dataframe for i, _ in enumerate(result_df.columns): result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, i), "https://metadata.datadrivendiscovery.org/types/PredictedTarget", ) if ( self._model.mode == "classification" and self.hyperparams["compute_confidences"] ): confidence = self._model.predict_proba(inputs.values) if self._binary: pos_column = ( 0 if self.hyperparams["pos_label"] == self._label_map[0] else 1 ) result_df.insert( result_df.shape[1], "confidence", confidence[:, pos_column] ) result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "http://schema.org/Float", ) else: # add confidence scores as some metrics require them. confidence = pd.Series(confidence.tolist(), name="confidence") result_df = pd.concat([result_df, confidence], axis=1) confidences = [ item for sublist in result_df["confidence"].values.tolist() for item in sublist ] labels = np.array(list(self._label_map.values()) * len(result_df)) index = [ item for sublist in [ [i] * len(np.unique(labels)) for i in result_df.index ] for item in sublist ] result_df_temp = container.DataFrame() result_df_temp["Class"] = labels result_df_temp["confidence"] = confidences result_df_temp.metadata = result_df.metadata result_df_temp["index_temp"] = index result_df_temp = result_df_temp.set_index("index_temp") result_df = result_df_temp result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "https://metadata.datadrivendiscovery.org/types/FloatVector", ) result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "https://metadata.datadrivendiscovery.org/types/Score", ) result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "https://metadata.datadrivendiscovery.org/types/PredictedTarget", ) logger.debug(f"\n{result_df}") return base.CallResult(result_df) def produce_feature_importances( self, *, inputs: container.DataFrame, timeout: float = None, iterations: int = None, ) -> CallResult[container.DataFrame]: logger.debug(f"Producing {__name__} feature weights") # force a fit it hasn't yet been done if self._needs_fit: self.fit() # extract the feature weights output = container.DataFrame( self._model.feature_importances().reshape((1, len(inputs.columns))), generate_metadata=True, ) output.columns = inputs.columns for i in range(len(inputs.columns)): output.metadata = output.metadata.update_column( i, {"name": output.columns[i]} ) # map component columns back to their source - this would cover things like # a one hot encoding column, that is derived from some original source column source_col_importances: Dict[str, float] = {} for col_idx in range(0, len(output.columns)): col_dict = dict( inputs.metadata.query((metadata_base.ALL_ELEMENTS, col_idx)) ) # if a column points back to a source column, add that columns importance to the # total for that source column if "source_column" in col_dict: source_col = col_dict["source_column"] if source_col not in source_col_importances: source_col_importances[source_col] = 0.0 source_col_importances[source_col] += output.iloc[:, col_idx] for source_col, importance in source_col_importances.items(): # add the source columns and their importances to the returned data output_col_length = len(output.columns) output.insert(output_col_length, source_col, importance, True) output.metadata = output.metadata.update_column( output_col_length, {"name": source_col} ) return CallResult(output) def produce_shap_values( self, *, inputs: container.DataFrame, timeout: float = None, iterations: int = None, ) -> CallResult[container.DataFrame]: if self._needs_fit: self.fit() # don't want to produce SHAP predictions on train set because too computationally intensive check_rows = min(self._input_hash.shape[0], inputs.shape[0]) if ( pd.util.hash_pandas_object(inputs.head(check_rows)) == self._input_hash.head(check_rows) ).all(): logger.info( "Not producing SHAP interpretations on train set because of computational considerations" ) return CallResult(container.DataFrame([])) # drop any non-numeric columns num_cols = inputs.shape[1] inputs = inputs.select_dtypes(include="number") col_diff = num_cols - inputs.shape[1] if col_diff > 0: logger.warn(f"Removed {col_diff} unencoded columns.") explainer = shap.TreeExplainer(self._model._models[0].model) max_size = self.hyperparams["shap_max_dataset_size"] if inputs.shape[0] > max_size: logger.warning( f"There are more than {max_size} rows in dataset, sub-sampling ~{max_size} approximately representative rows " + "on which to produce interpretations" ) df = self._shap_sub_sample(inputs) shap_values = explainer.shap_values(df) else: shap_values = explainer.shap_values(pd.DataFrame(inputs)) if self._model.mode == "classification": logger.info( f"Returning interpretability values offset from most frequent class in dataset" ) shap_values = shap_values[np.argmax(explainer.expected_value)] output_df = container.DataFrame(shap_values, generate_metadata=True) for i, col in enumerate(inputs.columns): output_df.metadata = output_df.metadata.update_column(i, {"name": col}) component_cols: Dict[str, List[int]] = {} for c in range(0, len(output_df.columns)): col_dict = dict(inputs.metadata.query((metadata_base.ALL_ELEMENTS, c))) if "source_column" in col_dict: src = col_dict["source_column"] if src not in component_cols: component_cols[src] = [] component_cols[src].append(c) # build the source column values and add them to the output for s, cc in component_cols.items(): src_col = output_df.iloc[:, cc].apply(lambda x: sum(x), axis=1) src_col_index = len(output_df.columns) output_df.insert(src_col_index, s, src_col) output_df.metadata = output_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, src_col_index), "https://metadata.datadrivendiscovery.org/types/Attribute", ) df_dict = dict(output_df.metadata.query((metadata_base.ALL_ELEMENTS,))) df_dict_1 = dict(output_df.metadata.query((metadata_base.ALL_ELEMENTS,))) df_dict["dimension"] = df_dict_1 df_dict_1["name"] = "columns" df_dict_1["semantic_types"] = ( "https://metadata.datadrivendiscovery.org/types/TabularColumn", ) df_dict_1["length"] = len(output_df.columns) output_df.metadata = output_df.metadata.update( (metadata_base.ALL_ELEMENTS,), df_dict ) return CallResult(output_df) def _shap_sub_sample(self, inputs: container.DataFrame): df = pd.DataFrame(inputs) df["cluster_assignment"] = ( KMeans(random_state=self.random_seed).fit_predict(df).astype(int) ) n_classes = df["cluster_assignment"].unique() # deal with cases in which the predictions are all one class if len(n_classes) == 1: return df.sample(self.hyperparams["shap_max_dataset_size"]).drop( columns=["cluster_assignment"] ) else: proportion = round( self.hyperparams["shap_max_dataset_size"] / len(n_classes) ) dfs = [] for i in n_classes: # dealing with classes that have less than or equal to their proportional representation if df[df["cluster_assignment"] == i].shape[0] <= proportion: dfs.append(df[df["cluster_assignment"] == i]) else: dfs.append( df[df["cluster_assignment"] == i].sample( proportion, random_state=self.random_seed ) ) sub_sample_df =
pd.concat(dfs)
pandas.concat
import numpy as np import pytest from pandas import DataFrame, Series, concat, isna, notna import pandas._testing as tm import pandas.tseries.offsets as offsets @pytest.mark.parametrize( "compare_func, roll_func, kwargs", [ [np.mean, "mean", {}], [np.nansum, "sum", {}], [lambda x: np.isfinite(x).astype(float).sum(), "count", {}], [np.median, "median", {}], [np.min, "min", {}], [np.max, "max", {}], [lambda x: np.std(x, ddof=1), "std", {}], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}], [lambda x: np.var(x, ddof=1), "var", {}], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}], ], ) def test_series(series, compare_func, roll_func, kwargs): result = getattr(series.rolling(50), roll_func)(**kwargs) assert isinstance(result, Series) tm.assert_almost_equal(result.iloc[-1], compare_func(series[-50:])) @pytest.mark.parametrize( "compare_func, roll_func, kwargs", [ [np.mean, "mean", {}], [np.nansum, "sum", {}], [lambda x: np.isfinite(x).astype(float).sum(), "count", {}], [np.median, "median", {}], [np.min, "min", {}], [np.max, "max", {}], [lambda x: np.std(x, ddof=1), "std", {}], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}], [lambda x: np.var(x, ddof=1), "var", {}], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}], ], ) def test_frame(raw, frame, compare_func, roll_func, kwargs): result = getattr(frame.rolling(50), roll_func)(**kwargs) assert isinstance(result, DataFrame) tm.assert_series_equal( result.iloc[-1, :], frame.iloc[-50:, :].apply(compare_func, axis=0, raw=raw), check_names=False, ) @pytest.mark.parametrize( "compare_func, roll_func, kwargs, minp", [ [np.mean, "mean", {}, 10], [np.nansum, "sum", {}, 10], [lambda x: np.isfinite(x).astype(float).sum(), "count", {}, 0], [np.median, "median", {}, 10], [np.min, "min", {}, 10], [np.max, "max", {}, 10], [lambda x: np.std(x, ddof=1), "std", {}, 10], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}, 10], [lambda x: np.var(x, ddof=1), "var", {}, 10], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}, 10], ], ) def test_time_rule_series(series, compare_func, roll_func, kwargs, minp): win = 25 ser = series[::2].resample("B").mean() series_result = getattr(ser.rolling(window=win, min_periods=minp), roll_func)( **kwargs ) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = series[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], compare_func(trunc_series)) @pytest.mark.parametrize( "compare_func, roll_func, kwargs, minp", [ [np.mean, "mean", {}, 10], [np.nansum, "sum", {}, 10], [lambda x: np.isfinite(x).astype(float).sum(), "count", {}, 0], [np.median, "median", {}, 10], [np.min, "min", {}, 10], [np.max, "max", {}, 10], [lambda x: np.std(x, ddof=1), "std", {}, 10], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}, 10], [lambda x: np.var(x, ddof=1), "var", {}, 10], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}, 10], ], ) def test_time_rule_frame(raw, frame, compare_func, roll_func, kwargs, minp): win = 25 frm = frame[::2].resample("B").mean() frame_result = getattr(frm.rolling(window=win, min_periods=minp), roll_func)( **kwargs ) last_date = frame_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_frame = frame[::2].truncate(prev_date, last_date) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(compare_func, raw=raw), check_names=False, ) @pytest.mark.parametrize( "compare_func, roll_func, kwargs", [ [np.mean, "mean", {}], [np.nansum, "sum", {}], [np.median, "median", {}], [np.min, "min", {}], [np.max, "max", {}], [lambda x: np.std(x, ddof=1), "std", {}], [lambda x: np.std(x, ddof=0), "std", {"ddof": 0}], [lambda x: np.var(x, ddof=1), "var", {}], [lambda x: np.var(x, ddof=0), "var", {"ddof": 0}], ], ) def test_nans(compare_func, roll_func, kwargs): obj = Series(np.random.randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN result = getattr(obj.rolling(50, min_periods=30), roll_func)(**kwargs) tm.assert_almost_equal(result.iloc[-1], compare_func(obj[10:-10])) # min_periods is working correctly result = getattr(obj.rolling(20, min_periods=15), roll_func)(**kwargs) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(np.random.randn(20)) result = getattr(obj2.rolling(10, min_periods=5), roll_func)(**kwargs) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if roll_func != "sum": result0 = getattr(obj.rolling(20, min_periods=0), roll_func)(**kwargs) result1 = getattr(obj.rolling(20, min_periods=1), roll_func)(**kwargs) tm.assert_almost_equal(result0, result1) def test_nans_count(): obj = Series(np.random.randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN result = obj.rolling(50, min_periods=30).count() tm.assert_almost_equal( result.iloc[-1], np.isfinite(obj[10:-10]).astype(float).sum() ) @pytest.mark.parametrize( "roll_func, kwargs", [ ["mean", {}], ["sum", {}], ["median", {}], ["min", {}], ["max", {}], ["std", {}], ["std", {"ddof": 0}], ["var", {}], ["var", {"ddof": 0}], ], ) @pytest.mark.parametrize("minp", [0, 99, 100]) def test_min_periods(series, minp, roll_func, kwargs): result = getattr(series.rolling(len(series) + 1, min_periods=minp), roll_func)( **kwargs ) expected = getattr(series.rolling(len(series), min_periods=minp), roll_func)( **kwargs ) nan_mask =
isna(result)
pandas.isna
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np import pytest import pandas import modin.pandas as pd from modin.pandas.utils import from_pandas from .utils import df_equals pd.DEFAULT_NPARTITIONS = 4 def generate_dfs(): df = pandas.DataFrame( { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } ) df2 = pandas.DataFrame( { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col6": [12, 13, 14, 15], "col7": [0, 0, 0, 0], } ) return df, df2 def generate_none_dfs(): df = pandas.DataFrame( { "col1": [0, 1, 2, 3], "col2": [4, 5, None, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [None, None, None, None], } ) df2 = pandas.DataFrame( { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col6": [12, 13, 14, 15], "col7": [0, 0, 0, 0], } ) return df, df2 def test_df_concat(): df, df2 = generate_dfs() df_equals(pd.concat([df, df2]), pandas.concat([df, df2])) def test_ray_concat(): df, df2 = generate_dfs() modin_df, modin_df2 = from_pandas(df), from_pandas(df2) df_equals(pd.concat([modin_df, modin_df2]), pandas.concat([df, df2])) def test_ray_concat_with_series(): df, df2 = generate_dfs() modin_df, modin_df2 = from_pandas(df), from_pandas(df2) pandas_series = pandas.Series([1, 2, 3, 4], name="new_col") df_equals( pd.concat([modin_df, modin_df2, pandas_series], axis=0), pandas.concat([df, df2, pandas_series], axis=0), ) df_equals( pd.concat([modin_df, modin_df2, pandas_series], axis=1), pandas.concat([df, df2, pandas_series], axis=1), ) def test_ray_concat_on_index(): df, df2 = generate_dfs() modin_df, modin_df2 = from_pandas(df), from_pandas(df2) df_equals( pd.concat([modin_df, modin_df2], axis="index"), pandas.concat([df, df2], axis="index"), ) df_equals( pd.concat([modin_df, modin_df2], axis="rows"), pandas.concat([df, df2], axis="rows"), ) df_equals( pd.concat([modin_df, modin_df2], axis=0), pandas.concat([df, df2], axis=0) ) def test_ray_concat_on_column(): df, df2 = generate_dfs() modin_df, modin_df2 = from_pandas(df), from_pandas(df2) df_equals( pd.concat([modin_df, modin_df2], axis=1), pandas.concat([df, df2], axis=1) ) df_equals( pd.concat([modin_df, modin_df2], axis="columns"),
pandas.concat([df, df2], axis="columns")
pandas.concat
## # Many of my features are taken from or inspired by public kernels. The # following is a probably incomplete list of these kernels: # - https://www.kaggle.com/ggeo79/j-coupling-lightbgm-gpu-dihedral-angle for # the idea to use dihedral angles on 3J couplings. # - https://www.kaggle.com/titericz/giba-r-data-table-simple-features-1-17-lb # mostly for distance features. # - https://www.kaggle.com/kmat2019/effective-feature provides the idea to # compute cosine angles between scalar coupling atoms and their nearest # neighbors. # - https://www.kaggle.com/seriousran/just-speed-up-calculate-distance-from-benchmark # for an efficient distance calculation between scalar coupling atoms. # # Running this script will give some warnings related to the # 'explicit valance..' rdkit error. The problem is dicussed here # https://www.kaggle.com/c/champs-scalar-coupling/discussion/94274#latest-572435 # I hadn't gotten around to implementing the proper solutions discussed there. import gc import numpy as np import pandas as pd from itertools import combinations from glob import glob import deepchem as dc from rdkit.Chem import rdmolops, ChemicalFeatures from xyz2mol import read_xyz_file, xyz2mol from utils import print_progress import constants as C #mol_feat_columns = ['ave_bond_length', 'std_bond_length', 'ave_atom_weight'] xyz_filepath_list = os.listdir(C.RAW_DATA_PATH + 'structures') xyz_filepath_list.sort() ## Functions to create the RDKit mol objects def mol_from_xyz(filepath, add_hs=True, compute_dist_centre=False): """Wrapper function for calling xyz2mol function.""" charged_fragments = True # alternatively radicals are made # quick is faster for large systems but requires networkx # if you don't want to install networkx set quick=False and # uncomment 'import networkx as nx' at the top of the file quick = True atomicNumList, charge, xyz_coordinates = read_xyz_file(filepath) mol, dMat = xyz2mol(atomicNumList, charge, xyz_coordinates, charged_fragments, quick, check_chiral_stereo=False) return mol, np.array(xyz_coordinates), dMat def get_molecules(): """ Constructs rdkit mol objects derrived from the .xyz files. Also returns: - mol ids (unique numerical ids) - set of molecule level features - arrays of xyz coordinates - euclidean distance matrices - graph distance matrices. All objects are returned in dictionaries with 'mol_name' as keys. """ mols, mol_ids, mol_feats = {}, {}, {} xyzs, dist_matrices, graph_dist_matrices = {}, {}, {} print('Create molecules and distance matrices.') for i in range(C.N_MOLS): print_progress(i, C.N_MOLS) filepath = xyz_filepath_list[i] mol_name = filepath.split('/')[-1][:-4] mol, xyz, dist_matrix = mol_from_xyz(filepath) mols[mol_name] = mol xyzs[mol_name] = xyz dist_matrices[mol_name] = dist_matrix mol_ids[mol_name] = i # make padded graph distance matrix dataframes n_atoms = len(xyz) graph_dist_matrix = pd.DataFrame(np.pad( rdmolops.GetDistanceMatrix(mol), [(0, 0), (0, C.MAX_N_ATOMS - n_atoms)], 'constant' )) graph_dist_matrix['molecule_id'] = n_atoms * [i] graph_dist_matrices[mol_name] = graph_dist_matrix # compute molecule level features adj_matrix = rdmolops.GetAdjacencyMatrix(mol) atomic_num_list, _, _ = read_xyz_file(filepath) dists = dist_matrix.ravel()[np.tril(adj_matrix).ravel()==1] mol_feats[mol_name] = pd.Series( [np.mean(dists), np.std(dists), np.mean(atomic_num_list)], index=mol_feat_columns ) return mols, mol_ids, mol_feats, xyzs, dist_matrices, graph_dist_matrices ## Functions to create features at the scalar coupling level. def map_atom_info(df, atom_idx, struct_df): """Adds xyz-coordinates of atom_{atom_idx} to 'df'.""" df = pd.merge(df, struct_df, how = 'left', left_on = ['molecule_name', f'atom_index_{atom_idx}'], right_on = ['molecule_name', 'atom_index']) df = df.drop('atom_index', axis=1) df = df.rename(columns={'atom': f'atom_{atom_idx}', 'x': f'x_{atom_idx}', 'y': f'y_{atom_idx}', 'z': f'z_{atom_idx}'}) return df def add_dist(df, struct_df): """Adds euclidean distance between scalar coupling atoms to 'df'.""" df = map_atom_info(df, 0, struct_df) df = map_atom_info(df, 1, struct_df) p_0 = df[['x_0', 'y_0', 'z_0']].values p_1 = df[['x_1', 'y_1', 'z_1']].values df['dist'] = np.linalg.norm(p_0 - p_1, axis=1) df.drop(columns=['x_0', 'y_0', 'z_0', 'x_1', 'y_1', 'z_1'], inplace=True) return df def transform_per_atom_group(df, a_idx, col='dist', trans='mean'): """Apply transformation 'trans' on feature in 'col' to scalar coupling constants grouped at the atom level.""" return df.groupby( ['molecule_name', f'atom_index_{a_idx}'])[col].transform(trans) def inv_dist_per_atom(df, a_idx, d_col='dist', power=3): """Compute sum of inverse distances of scalar coupling constants grouped at the atom level.""" trans = lambda x: 1 / sum(x ** -power) return transform_per_atom_group(df, a_idx, d_col, trans=trans) def inv_dist_harmonic_mean(df, postfix=''): """Compute the harmonic mean of inverse distances of atom_0 and atom_1.""" c0, c1 = 'inv_dist0' + postfix, 'inv_dist1' + postfix return (df[c0] * df[c1]) / (df[c0] + df[c1]) def add_atom_counts(df, struct_df): """Add atom counts (total and per type) to 'df'.""" pd.options.mode.chained_assignment = None atoms_per_mol_df = struct_df.groupby(['molecule_name', 'atom']).count() atoms_per_mol_map = atoms_per_mol_df['atom_index'].unstack().fillna(0) atoms_per_mol_map = atoms_per_mol_map.astype(int).to_dict() df['num_atoms'] = 0 for a in atoms_per_mol_map: df[f'num_{a}_atoms'] = df['molecule_name'].map(atoms_per_mol_map[a]) df['num_atoms'] += df[f'num_{a}_atoms'] return df # source: https://stackoverflow.com/questions/20305272/dihedral-torsion-angle-from-four-points-in-cartesian-coordinates-in-python def dihedral(p): """Praxeolitic formula: 1 sqrt, 1 cross product""" p0 = p[0] p1 = p[1] p2 = p[2] p3 = p[3] b0 = -1.0*(p1 - p0) b1 = p2 - p1 b2 = p3 - p2 # normalize b1 so that it does not influence magnitude of vector # rejections that come next b1 /= np.linalg.norm(b1) # vector rejections v = b0 - np.dot(b0, b1)*b1 w = b2 - np.dot(b2, b1)*b1 # angle between v and w in a plane is the torsion angle # v and w may not be normalized but that's fine since tan is y/x x = np.dot(v, w) y = np.dot(np.cross(b1, v), w) return np.arctan2(y, x) def cosine_angle(p): p0, p1, p2 = p[0], p[1], p[2] v1, v2 = p0 - p1, p2 - p1 return np.dot(v1, v2) / np.sqrt(np.dot(v1, v1) * np.dot(v2, v2)) def add_sc_angle_features(df, xyzs, dist_matrices): """ Adds the following angle features to 'df': - diangle: for 3J couplings - cos_angle: for 2J couplings, angle between sc atom 0, atom in between sc atoms and sc atom 1 - cos_angle0: for all coupling types, cos angle between sc atoms and atom closest to atom 0 (except for 1J coupling) - cos_angle1: for all coupling types, cos angle between sc atoms and atom closest to atom 1 """ df['diangle'] = 0.0 df['cos_angle'] = 0.0 df['cos_angle0'] = 0.0 df['cos_angle1'] = 0.0 diangles, cos_angles, cos_angles0, cos_angles1 = {}, {}, {}, {} print('Add scalar coupling angle based features.') n = len(df) for i, (idx, row) in enumerate(df.iterrows()): print_progress(i, n, 500000) mol_name = row['molecule_name'] mol, xyz = mols[mol_name], xyzs[mol_name] dist_matrix = dist_matrices[mol_name] adj_matrix = rdmolops.GetAdjacencyMatrix(mol) idx0, idx1 = row['atom_index_0'], row['atom_index_1'] atom_ids = rdmolops.GetShortestPath(mol, idx0, idx1) if len(atom_ids)==4: diangles[idx] = dihedral(xyz[atom_ids,:]) elif len(atom_ids)==3: cos_angles[idx] = cosine_angle(xyz[atom_ids,:]) if row['type'] not in [0, 2]: neighbors0 = np.where(adj_matrix[idx0]==1)[0] if len(neighbors0) > 0: idx0_closest = neighbors0[ dist_matrix[idx0][neighbors0].argmin()] cos_angles0[idx] = cosine_angle( xyz[[idx0_closest, idx0, idx1],:]) neighbors1 = np.setdiff1d(np.where(adj_matrix[idx1]==1)[0], [idx0]) if len(neighbors1) > 0: idx1_closest = neighbors1[ dist_matrix[idx1][neighbors1].argmin()] cos_angles1[idx] = cosine_angle( xyz[[idx0, idx1, idx1_closest],:]) df['diangle'] = pd.Series(diangles).abs() df['cos_angle'] = pd.Series(cos_angles) df['cos_angle0'] =
pd.Series(cos_angles0)
pandas.Series
"""tests.core.archive.test_archive.py Copyright Keithley Instruments, LLC. Licensed under MIT (https://github.com/tektronix/syphon/blob/master/LICENSE) """ import os from typing import List, Optional, Tuple import pytest from _pytest.capture import CaptureFixture from _pytest.fixtures import FixtureRequest from _pytest.monkeypatch import MonkeyPatch from pandas import DataFrame, concat, read_csv from pandas.testing import assert_frame_equal from py._path.local import LocalPath from sortedcontainers import SortedDict, SortedList import syphon import syphon.hash import syphon.schema from syphon.core.archive.filemap import MappingBehavior from syphon.core.check import DEFAULT_FILE as DEFAULT_HASH_FILE from ... import get_data_path, rand_string from ...assert_utils import assert_captured_outerr from ...types import PathType @pytest.fixture( params=[ ("iris.csv", SortedDict({"0": "Name"})), ("iris_plus.csv", SortedDict({"0": "Species", "1": "PetalColor"})), ( "auto-mpg.csv", SortedDict({"0": "model year", "1": "cylinders", "2": "origin"}), ), ] ) def archive_params(request: FixtureRequest) -> Tuple[str, SortedDict]: return request.param @pytest.fixture( params=[ ( "iris-part-1-of-6", "iris-part-1-of-6-combined.csv", SortedDict({"0": "Species", "1": "PetalColor"}), ), ( "iris-part-2-of-6", "iris-part-2-of-6-combined.csv", SortedDict({"0": "Species", "1": "PetalColor"}), ), ( "iris-part-3-of-6", "iris-part-3-of-6-combined.csv", SortedDict({"0": "Species", "1": "PetalColor"}), ), ( "iris-part-4-of-6", "iris-part-4-of-6-combined.csv", SortedDict({"0": "Species", "1": "PetalColor"}), ), ( "iris-part-5-of-6", "iris-part-5-of-6-combined.csv", SortedDict({"0": "Species", "1": "PetalColor"}), ), ( "iris-part-6-of-6", "iris-part-6-of-6-combined.csv", SortedDict({"0": "Species", "1": "PetalColor"}), ), ] ) def archive_meta_params(request: FixtureRequest) -> Tuple[str, str, SortedDict]: return request.param @pytest.fixture(params=[PathType.ABSOLUTE, PathType.RELATIVE]) def styled_cache_file(request: FixtureRequest, cache_file: LocalPath) -> str: """Breaks if any test in this file changes the current working directory!""" if request.param == PathType.ABSOLUTE: return str(cache_file) elif request.param == PathType.RELATIVE: return os.path.relpath(cache_file, os.getcwd()) else: raise TypeError(f"Unsupported PathType '{request.param}'") @pytest.fixture(params=[PathType.ABSOLUTE, PathType.RELATIVE]) def styled_hash_file( request: FixtureRequest, hash_file: Optional[LocalPath] ) -> Optional[str]: """Breaks if any test in this file changes the current working directory!""" if hash_file is None: return None if request.param == PathType.ABSOLUTE: return str(hash_file) elif request.param == PathType.RELATIVE: return os.path.relpath(hash_file, os.getcwd()) else: raise TypeError(f"Unsupported PathType '{request.param}'") def _get_expected_paths( path: str, schema: SortedDict, subset: DataFrame, filename: str, data: SortedList = SortedList(), ) -> SortedList: path_list = data.copy() this_schema = schema.copy() try: _, header = this_schema.popitem(index=0) except KeyError: path_list.add(os.path.join(path, filename)) return path_list if header not in subset.columns: return path_list for value in subset.get(header).drop_duplicates().values: new_subset = subset.loc[subset.get(header) == value] value = value.lower().replace(" ", "_") if value[-1] == ".": value = value[:-1] path_list = _get_expected_paths( os.path.join(path, value), this_schema, new_subset, filename, data=path_list ) return path_list class TestArchive(object): class ArchiveCacheAndHashPassthruChecker(object): """Asserts that the cache and hash file paths are not edited before being sent to the `build` subcommand. """ def __init__( self, monkeypatch: MonkeyPatch, cache_file: str, hash_file: Optional[str], ): from syphon.core.build import build self._syphon_build = build self._monkeypatch: MonkeyPatch = monkeypatch self.cache_file: str = cache_file self.hash_file: Optional[str] = hash_file def __call__(self, *args, **kwargs) -> bool: with self._monkeypatch.context() as m: m.setattr(syphon.core.build, "build", value=self._build_shim) return syphon.archive(*args, **kwargs) def _build_shim(self, *args, **kwargs) -> bool: """Everything is converted to str or None so test cases don't have to worry about using LocalPath. """ # XXX: If the syphon.build argument order changes, # then we need to access a different index! assert ( str(args[0]) == self.cache_file ), f"Cache filepath edited from '{self.cache_file}' to '{args[0]}'" # XXX: If the name of the argument changes, # then we need to access a different key! assert "hash_filepath" in kwargs actual_hash_file = ( None if kwargs["hash_filepath"] is None else str(kwargs["hash_filepath"]) ) assert ( actual_hash_file == self.hash_file ), f"Hash filepath edited from '{self.hash_file}' to '{actual_hash_file}'" return self._syphon_build(*args, **kwargs) @pytest.fixture(scope="function") def archive_fixture( self, monkeypatch: MonkeyPatch, styled_cache_file: str, styled_hash_file: Optional[str], ) -> "TestArchive.ArchiveCacheAndHashPassthruChecker": return TestArchive.ArchiveCacheAndHashPassthruChecker( monkeypatch, styled_cache_file, styled_hash_file ) def test_empty_datafile( self, capsys: CaptureFixture, archive_dir: LocalPath, verbose: bool ): datafile = os.path.join(get_data_path(), "empty.csv") assert not syphon.archive(archive_dir, [datafile], verbose=verbose) assert_captured_outerr(capsys.readouterr(), verbose, False) assert not os.path.exists(os.path.join(os.path.dirname(datafile), "#lock")) def test_increment_one_to_many_with_metadata_with_schema( self, capsys: CaptureFixture, archive_dir: LocalPath, archive_fixture: "TestArchive.ArchiveCacheAndHashPassthruChecker", schema_file: Optional[LocalPath], verbose: bool, ): # List of (expected frame filename, data filename, metadata filename) tuples targets: List[Tuple[str, str, List[str]]] = [ ( "iris-part-1-of-6-combined.csv", "iris-part-1-of-6.csv", [ "iris-part-1-of-6-meta-part-1-of-2.meta", "iris-part-1-of-6-meta-part-2-of-2.meta", ], ), ( "iris-part-1-2.csv", "iris-part-2-of-6.csv", [ "iris-part-2-of-6-meta-part-1-of-2.meta", "iris-part-2-of-6-meta-part-2-of-2.meta", ], ), ( "iris-part-1-2-3.csv", "iris-part-3-of-6.csv", [ "iris-part-3-of-6-meta-part-1-of-2.meta", "iris-part-3-of-6-meta-part-2-of-2.meta", ], ), ( "iris-part-1-2-3-4.csv", "iris-part-4-of-6.csv", [ "iris-part-4-of-6-meta-part-1-of-2.meta", "iris-part-4-of-6-meta-part-2-of-2.meta", ], ), ( "iris-part-1-2-3-4-5.csv", "iris-part-5-of-6.csv", [ "iris-part-5-of-6-meta-part-1-of-2.meta", "iris-part-5-of-6-meta-part-2-of-2.meta", ], ), ( "iris_plus.csv", "iris-part-6-of-6.csv", [ "iris-part-6-of-6-meta-part-1-of-2.meta", "iris-part-6-of-6-meta-part-2-of-2.meta", ], ), ] expected_hashfile = ( LocalPath(archive_fixture.cache_file).dirpath(DEFAULT_HASH_FILE) if archive_fixture.hash_file is None else archive_fixture.hash_file ) assert not os.path.exists(expected_hashfile) assert not os.path.exists(archive_fixture.cache_file) assert len(archive_dir.listdir()) == 0 expected_schemafile = ( archive_dir.join(syphon.schema.DEFAULT_FILE) if schema_file is None else schema_file ) assert not os.path.exists(expected_schemafile) syphon.init( SortedDict({"0": "PetalColor", "1": "Species"}), expected_schemafile ) assert os.path.exists(expected_schemafile) for expected_frame_filename, data_filename, metadata_filenames in targets: assert archive_fixture( archive_dir, [os.path.join(get_data_path(), data_filename)], meta_files=[ os.path.join(get_data_path(), m) for m in metadata_filenames ], filemap_behavior=MappingBehavior.ONE_TO_MANY, schema_filepath=schema_file, cache_filepath=archive_fixture.cache_file, hash_filepath=archive_fixture.hash_file, verbose=verbose, ) assert_captured_outerr(capsys.readouterr(), verbose, False) expected_frame = DataFrame( read_csv( os.path.join(get_data_path(), expected_frame_filename), dtype=str, index_col="Index", ) ) expected_frame.sort_index(inplace=True) actual_frame = DataFrame( read_csv(str(archive_fixture.cache_file), dtype=str, index_col="Index") ) actual_frame = actual_frame.reindex(columns=expected_frame.columns) actual_frame.sort_index(inplace=True) assert_captured_outerr(capsys.readouterr(), False, False) assert_frame_equal(expected_frame, actual_frame) assert os.path.exists(expected_hashfile) assert syphon.check( archive_fixture.cache_file, hash_filepath=expected_hashfile, verbose=verbose, ) def test_increment_with_metadata_with_schema( self, capsys: CaptureFixture, archive_dir: LocalPath, archive_fixture: "TestArchive.ArchiveCacheAndHashPassthruChecker", schema_file: Optional[LocalPath], verbose: bool, ): # List of (expected frame filename, data filename, metadata filename) tuples targets: List[Tuple[str, str, str]] = [ ( "iris-part-1-of-6-combined.csv", "iris-part-1-of-6.csv", "iris-part-1-of-6.meta", ), ("iris-part-1-2.csv", "iris-part-2-of-6.csv", "iris-part-2-of-6.meta"), ("iris-part-1-2-3.csv", "iris-part-3-of-6.csv", "iris-part-3-of-6.meta"), ("iris-part-1-2-3-4.csv", "iris-part-4-of-6.csv", "iris-part-4-of-6.meta"), ( "iris-part-1-2-3-4-5.csv", "iris-part-5-of-6.csv", "iris-part-5-of-6.meta", ), ("iris_plus.csv", "iris-part-6-of-6.csv", "iris-part-6-of-6.meta"), ] expected_hashfile = ( LocalPath(archive_fixture.cache_file).dirpath(DEFAULT_HASH_FILE) if archive_fixture.hash_file is None else archive_fixture.hash_file ) assert not os.path.exists(expected_hashfile) assert not os.path.exists(archive_fixture.cache_file) assert len(archive_dir.listdir()) == 0 expected_schemafile = ( archive_dir.join(syphon.schema.DEFAULT_FILE) if schema_file is None else schema_file ) assert not os.path.exists(expected_schemafile) syphon.init( SortedDict({"0": "PetalColor", "1": "Species"}), expected_schemafile ) assert os.path.exists(expected_schemafile) for expected_frame_filename, data_filename, metadata_filename in targets: assert archive_fixture( archive_dir, [os.path.join(get_data_path(), data_filename)], meta_files=[os.path.join(get_data_path(), metadata_filename)], schema_filepath=schema_file, cache_filepath=archive_fixture.cache_file, hash_filepath=archive_fixture.hash_file, verbose=verbose, ) assert_captured_outerr(capsys.readouterr(), verbose, False) expected_frame = DataFrame( read_csv( os.path.join(get_data_path(), expected_frame_filename), dtype=str, index_col="Index", ) ) expected_frame.sort_index(inplace=True) actual_frame = DataFrame( read_csv(str(archive_fixture.cache_file), dtype=str, index_col="Index") ) actual_frame.sort_index(inplace=True) assert_captured_outerr(capsys.readouterr(), False, False) assert_frame_equal(expected_frame, actual_frame) assert os.path.exists(expected_hashfile) assert syphon.check( archive_fixture.cache_file, hash_filepath=expected_hashfile, verbose=verbose, ) def test_increment_with_metadata_without_schema( self, capsys: CaptureFixture, archive_dir: LocalPath, archive_fixture: "TestArchive.ArchiveCacheAndHashPassthruChecker", verbose: bool, ): # List of (expected frame filename, data filename, metadata filename) tuples targets: List[Tuple[str, str, str]] = [ ( "iris-part-1-of-6-combined.csv", "iris-part-1-of-6.csv", "iris-part-1-of-6.meta", ), ("iris-part-1-2.csv", "iris-part-2-of-6.csv", "iris-part-2-of-6.meta"), ("iris-part-1-2-3.csv", "iris-part-3-of-6.csv", "iris-part-3-of-6.meta"), ("iris-part-1-2-3-4.csv", "iris-part-4-of-6.csv", "iris-part-4-of-6.meta"), ( "iris-part-1-2-3-4-5.csv", "iris-part-5-of-6.csv", "iris-part-5-of-6.meta", ), ("iris_plus.csv", "iris-part-6-of-6.csv", "iris-part-6-of-6.meta"), ] expected_hashfile = ( LocalPath(archive_fixture.cache_file).dirpath(DEFAULT_HASH_FILE) if archive_fixture.hash_file is None else archive_fixture.hash_file ) assert not os.path.exists(expected_hashfile) assert not os.path.exists(archive_fixture.cache_file) assert len(archive_dir.listdir()) == 0 for expected_frame_filename, data_filename, metadata_filename in targets: assert archive_fixture( archive_dir, [os.path.join(get_data_path(), data_filename)], meta_files=[os.path.join(get_data_path(), metadata_filename)], cache_filepath=archive_fixture.cache_file, hash_filepath=archive_fixture.hash_file, verbose=verbose, ) assert_captured_outerr(capsys.readouterr(), verbose, False) expected_frame = DataFrame( read_csv( os.path.join(get_data_path(), expected_frame_filename), dtype=str, index_col="Index", ) ) expected_frame.sort_index(inplace=True) actual_frame = DataFrame( read_csv(str(archive_fixture.cache_file), dtype=str, index_col="Index") ) actual_frame.sort_index(inplace=True) assert_captured_outerr(capsys.readouterr(), False, False) assert_frame_equal(expected_frame, actual_frame) assert os.path.exists(expected_hashfile) assert syphon.check( archive_fixture.cache_file, hash_filepath=expected_hashfile, verbose=verbose, ) def test_increment_without_metadata_with_schema( self, capsys: CaptureFixture, archive_dir: LocalPath, archive_fixture: "TestArchive.ArchiveCacheAndHashPassthruChecker", schema_file: Optional[LocalPath], verbose: bool, ): # List of (expected frame filename, data filename) tuples targets: List[Tuple[str, str]] = [ ("iris-part-1-of-6-combined.csv", "iris-part-1-of-6-combined.csv"), ("iris-part-1-2.csv", "iris-part-2-of-6-combined.csv"), ("iris-part-1-2-3.csv", "iris-part-3-of-6-combined.csv"), ("iris-part-1-2-3-4.csv", "iris-part-4-of-6-combined.csv"), ("iris-part-1-2-3-4-5.csv", "iris-part-5-of-6-combined.csv"), ("iris_plus.csv", "iris-part-6-of-6-combined.csv"), ] expected_hashfile = ( LocalPath(archive_fixture.cache_file).dirpath(DEFAULT_HASH_FILE) if archive_fixture.hash_file is None else archive_fixture.hash_file ) assert not os.path.exists(expected_hashfile) assert not os.path.exists(archive_fixture.cache_file) assert len(archive_dir.listdir()) == 0 expected_schemafile = ( archive_dir.join(syphon.schema.DEFAULT_FILE) if schema_file is None else schema_file ) assert not os.path.exists(expected_schemafile) syphon.init( SortedDict({"0": "PetalColor", "1": "Species"}), expected_schemafile ) assert os.path.exists(expected_schemafile) for expected_frame_filename, data_filename in targets: assert archive_fixture( archive_dir, [os.path.join(get_data_path(), data_filename)], schema_filepath=schema_file, cache_filepath=archive_fixture.cache_file, hash_filepath=archive_fixture.hash_file, verbose=verbose, ) assert_captured_outerr(capsys.readouterr(), verbose, False) expected_frame = DataFrame( read_csv( os.path.join(get_data_path(), expected_frame_filename), dtype=str, index_col="Index", ) ) expected_frame.sort_index(inplace=True) actual_frame = DataFrame( read_csv(str(archive_fixture.cache_file), dtype=str, index_col="Index") ) actual_frame.sort_index(inplace=True) assert_captured_outerr(capsys.readouterr(), False, False) assert_frame_equal(expected_frame, actual_frame) assert os.path.exists(expected_hashfile) assert syphon.check( archive_fixture.cache_file, hash_filepath=expected_hashfile, verbose=verbose, ) def test_increment_without_metadata_without_schema( self, capsys: CaptureFixture, archive_dir: LocalPath, archive_fixture: "TestArchive.ArchiveCacheAndHashPassthruChecker", schema_file: Optional[LocalPath], verbose: bool, ): # List of (expected frame filename, data filename) tuples targets: List[Tuple[str, str]] = [ ("iris-part-1-of-6-combined.csv", "iris-part-1-of-6.csv"), ("iris-part-1-2.csv", "iris-part-2-of-6.csv"), ("iris-part-1-2-3.csv", "iris-part-3-of-6.csv"), ("iris-part-1-2-3-4.csv", "iris-part-4-of-6.csv"), ("iris-part-1-2-3-4-5.csv", "iris-part-5-of-6.csv"), ("iris_plus.csv", "iris-part-6-of-6.csv"), ] expected_hashfile = ( LocalPath(archive_fixture.cache_file).dirpath(DEFAULT_HASH_FILE) if archive_fixture.hash_file is None else archive_fixture.hash_file ) assert not os.path.exists(expected_hashfile) assert not os.path.exists(archive_fixture.cache_file) assert len(archive_dir.listdir()) == 0 for expected_frame_filename, data_filename in targets: assert archive_fixture( archive_dir, [os.path.join(get_data_path(), data_filename)], cache_filepath=archive_fixture.cache_file, hash_filepath=archive_fixture.hash_file, verbose=verbose, ) assert_captured_outerr(capsys.readouterr(), verbose, False) expected_frame = DataFrame( read_csv( os.path.join(get_data_path(), expected_frame_filename), dtype=str, index_col="Index", ) ) del expected_frame["Species"] del expected_frame["PetalColor"] expected_frame.sort_index(inplace=True) actual_frame = DataFrame( read_csv(str(archive_fixture.cache_file), dtype=str, index_col="Index") ) actual_frame.sort_index(inplace=True) assert_captured_outerr(capsys.readouterr(), False, False) assert_frame_equal(expected_frame, actual_frame) assert os.path.exists(expected_hashfile) assert syphon.check( archive_fixture.cache_file, hash_filepath=expected_hashfile, verbose=verbose, ) def test_no_datafiles( self, capsys: CaptureFixture, archive_dir: LocalPath, verbose: bool ): assert not syphon.archive(archive_dir, [], verbose=verbose) assert_captured_outerr(capsys.readouterr(), verbose, False) def test_without_metadata_with_schema( self, capsys: CaptureFixture, archive_params: Tuple[str, SortedDict], archive_dir: LocalPath, overwrite: bool, verbose: bool, ): filename: str schema: SortedDict filename, schema = archive_params datafile = os.path.join(get_data_path(), filename) schemafile = os.path.join(archive_dir, syphon.schema.DEFAULT_FILE) syphon.init(schema, schemafile) expected_df = DataFrame(read_csv(datafile, dtype=str)) expected_df.sort_values(list(expected_df.columns), inplace=True) expected_df.reset_index(drop=True, inplace=True) expected_paths: SortedList = _get_expected_paths( archive_dir, schema, expected_df, filename ) if overwrite: for e in expected_paths: os.makedirs(os.path.dirname(e), exist_ok=True) with open(e, mode="w") as fd: fd.write(rand_string()) assert syphon.archive( archive_dir, [datafile], schema_filepath=schemafile, overwrite=overwrite, verbose=verbose, ) assert not os.path.exists(os.path.join(os.path.dirname(datafile), "#lock")) actual_frame = DataFrame() actual_paths = SortedList() for root, _, files in os.walk(archive_dir): for f in files: if ".csv" in f: filepath: str = os.path.join(root, f) actual_paths.add(filepath) actual_frame = concat( [actual_frame, DataFrame(read_csv(filepath, dtype=str))] ) actual_frame.sort_values(list(actual_frame.columns), inplace=True) actual_frame.reset_index(drop=True, inplace=True) assert expected_paths == actual_paths assert_frame_equal(expected_df, actual_frame) assert_captured_outerr(capsys.readouterr(), verbose, False) def test_without_metadata_without_schema( self, capsys: CaptureFixture, archive_params: Tuple[str, SortedDict], archive_dir: LocalPath, overwrite: bool, verbose: bool, ): filename: str filename, _ = archive_params datafile = os.path.join(get_data_path(), filename) expected_df = DataFrame(read_csv(datafile, dtype=str)) expected_df.sort_values(list(expected_df.columns), inplace=True) expected_df.reset_index(drop=True, inplace=True) expected_paths = SortedList([os.path.join(archive_dir, filename)]) if overwrite: for e in expected_paths: path: LocalPath = archive_dir.new() path.mkdir(os.path.basename(os.path.dirname(e))) with open(e, mode="w") as fd: fd.write(rand_string()) assert syphon.archive( archive_dir, [datafile], overwrite=overwrite, verbose=verbose ) assert not os.path.exists(os.path.join(os.path.dirname(datafile), "#lock")) actual_frame = DataFrame() actual_paths = SortedList() for root, _, files in os.walk(archive_dir): for f in files: if ".csv" in f: filepath: str = os.path.join(root, f) actual_paths.add(filepath) actual_frame = concat( [actual_frame, DataFrame(read_csv(filepath, dtype=str))] ) actual_frame.sort_values(list(actual_frame.columns), inplace=True) actual_frame.reset_index(drop=True, inplace=True) assert expected_paths == actual_paths assert_frame_equal(expected_df, actual_frame) assert_captured_outerr(capsys.readouterr(), verbose, False) def test_with_metadata_with_schema( self, capsys: CaptureFixture, archive_meta_params: Tuple[str, str, SortedDict], archive_dir: LocalPath, overwrite: bool, verbose: bool, ): filename: str expectedfilename: str schema: SortedDict filename, expectedfilename, schema = archive_meta_params datafile = os.path.join(get_data_path(), filename + ".csv") metafile = os.path.join(get_data_path(), filename + ".meta") schemafile = os.path.join(archive_dir, syphon.schema.DEFAULT_FILE) syphon.init(schema, schemafile) expected_df = DataFrame( # Read our dedicated *-combined.csv file instead of the import target. read_csv(os.path.join(get_data_path(), expectedfilename), dtype=str) ) expected_df.sort_values(list(expected_df.columns), inplace=True) expected_df.reset_index(drop=True, inplace=True) expected_paths: SortedList = _get_expected_paths( archive_dir, schema, expected_df, filename + ".csv" ) if overwrite: for e in expected_paths: os.makedirs(os.path.dirname(e), exist_ok=True) with open(e, mode="w") as fd: fd.write(rand_string()) assert syphon.archive( archive_dir, [datafile], meta_files=[metafile], schema_filepath=schemafile, overwrite=overwrite, verbose=verbose, ) assert not os.path.exists(os.path.join(os.path.dirname(datafile), "#lock")) actual_df = DataFrame() actual_paths = SortedList() for root, _, files in os.walk(archive_dir): for f in files: if ".csv" in f: filepath: str = os.path.join(root, f) actual_paths.add(filepath) actual_df = concat( [actual_df, DataFrame(read_csv(filepath, dtype=str))] ) actual_df.sort_values(list(actual_df.columns), inplace=True) actual_df.reset_index(drop=True, inplace=True) assert expected_paths == actual_paths assert_frame_equal(expected_df, actual_df) def test_with_metadata_without_schema( self, capsys: CaptureFixture, archive_meta_params: Tuple[str, str, SortedDict], archive_dir: LocalPath, overwrite: bool, verbose: bool, ): filename: str expectedfilename: str filename, expectedfilename, _ = archive_meta_params datafile = os.path.join(get_data_path(), filename + ".csv") metafile = os.path.join(get_data_path(), filename + ".meta") expected_df = DataFrame( # Read our dedicated *-combined.csv file instead of the import target. read_csv(os.path.join(get_data_path(), expectedfilename), dtype=str) ) expected_df.sort_values(list(expected_df.columns), inplace=True) expected_df.reset_index(drop=True, inplace=True) expected_paths: SortedList = _get_expected_paths( archive_dir, SortedDict(), expected_df, filename + ".csv" ) if overwrite: for e in expected_paths: os.makedirs(os.path.dirname(e), exist_ok=True) with open(e, mode="w") as fd: fd.write(rand_string()) assert syphon.archive( archive_dir, [datafile], meta_files=[metafile], overwrite=overwrite, verbose=verbose, ) assert not os.path.exists(os.path.join(os.path.dirname(datafile), "#lock")) actual_df = DataFrame() actual_paths = SortedList() for root, _, files in os.walk(archive_dir): for f in files: if ".csv" in f: filepath: str = os.path.join(root, f) actual_paths.add(filepath) actual_df = concat( [actual_df, DataFrame(
read_csv(filepath, dtype=str)
pandas.read_csv
''' IVMS checker program ''' import datetime import pandas as pd import numpy as np IVMS_file = 'D:\\OneDrive\\Work\\PDO\\IVMS\\Daily Trip Report - IVMS.xls' vehicle_file = 'D:\\OneDrive\\Work\\PDO\\IVMS\\Lekhwair Vehicles Demob Plan V3.xlsx' vehicle_ivms_file = 'D:\\OneDrive\\Work\\PDO\\IVMS\\Lekhwair Vehicles - IVMS.xlsx' class IVMS: def __init__(self): self.ivms_df = pd.read_excel(IVMS_file, header=4) # fill in dates where there is no date and replace the columns date_col = self.ivms_df['Date'].to_list() date_hold = pd.NaT for i, _date in enumerate(date_col): if
pd.isna([_date])
pandas.isna
from abc import abstractmethod from analizer.abstract.expression import Expression from analizer.abstract import expression from enum import Enum from storage.storageManager import jsonMode from analizer.typechecker.Metadata import Struct from analizer.typechecker import Checker import pandas as pd from analizer.symbol.symbol import Symbol from analizer.symbol.environment import Environment from analizer.reports import Nodo from analizer.reports import AST ast = AST.AST() root = None class SELECT_MODE(Enum): ALL = 1 PARAMS = 2 # carga de datos Struct.load() # variable encargada de almacenar la base de datos a utilizar dbtemp = "" # listas encargadas de almacenar los errores semanticos sintaxPostgreSQL = list() semanticErrors = list() class Instruction: """ Esta clase representa una instruccion """ def __init__(self, row, column) -> None: self.row = row self.column = column @abstractmethod def execute(self, environment): """ Metodo que servira para ejecutar las expresiones """ class SelectOnlyParams(Instruction): def __init__(self, params, row, column): Instruction.__init__(self, row, column) self.params = params def execute(self, environment): value = [p.execute(environment).value for p in self.params] labels = [p.temp for p in self.params] return labels, value class SelectParams(Instruction): def __init__(self, params, row, column): Instruction.__init__(self, row, column) self.params = params def execute(self, environment): pass class Select(Instruction): def __init__(self, params, fromcl, wherecl, row, column): Instruction.__init__(self, row, column) self.params = params self.wherecl = wherecl self.fromcl = fromcl def execute(self, environment): newEnv = Environment(environment, dbtemp) self.fromcl.execute(newEnv) if self.params: params = [] for p in self.params: if isinstance(p, expression.TableAll): result = p.execute(newEnv) for r in result: params.append(r) else: params.append(p) labels = [p.temp for p in params] value = [p.execute(newEnv).value for p in params] else: value = [newEnv.dataFrame[p] for p in newEnv.dataFrame] labels = [p for p in newEnv.dataFrame] for i in range(len(labels)): newEnv.dataFrame[labels[i]] = value[i] if self.wherecl == None: return newEnv.dataFrame.filter(labels) wh = self.wherecl.execute(newEnv) w2 = wh.filter(labels) # Si la clausula WHERE devuelve un dataframe vacio if w2.empty: return None return [w2, environment.types] class FromClause(Instruction): """ Clase encargada de la clausa FROM para la obtencion de datos """ def __init__(self, tables, aliases, row, column): Instruction.__init__(self, row, column) self.tables = tables self.aliases = aliases def crossJoin(self, tables): if len(tables) <= 1: return tables[0] for t in tables: t["____tempCol"] = 1 new_df = tables[0] i = 1 while i < len(tables): new_df = pd.merge(new_df, tables[i], on=["____tempCol"]) i += 1 new_df = new_df.drop("____tempCol", axis=1) return new_df def execute(self, environment): tempDf = None for i in range(len(self.tables)): exec = self.tables[i].execute(environment) data = exec[0] types = exec[1] if isinstance(self.tables[i], Select): newNames = {} subqAlias = self.aliases[i] for (columnName, columnData) in data.iteritems(): colSplit = columnName.split(".") if len(colSplit) >= 2: newNames[columnName] = subqAlias + "." + colSplit[1] types[subqAlias + "." + colSplit[1]] = columnName else: newNames[columnName] = subqAlias + "." + colSplit[0] types[subqAlias + "." + colSplit[0]] = columnName data.rename(columns=newNames, inplace=True) environment.addVar(subqAlias, subqAlias, "TABLE", self.row, self.column) else: sym = Symbol( self.tables[i].name, None, self.tables[i].row, self.tables[i].column, ) environment.addSymbol(self.tables[i].name, sym) if self.aliases[i]: environment.addSymbol(self.aliases[i], sym) if i == 0: tempDf = data else: tempDf = self.crossJoin([tempDf, data]) environment.dataFrame = tempDf environment.types.update(types) return class TableID(Expression): """ Esta clase representa un objeto abstracto para el manejo de las tablas """ type_ = None def __init__(self, name, row, column): Expression.__init__(self, row, column) self.name = name def execute(self, environment): result = jsonMode.extractTable(dbtemp, self.name) if result == None: sintaxPostgreSQL.insert( len(sintaxPostgreSQL), "Error: 42P01: la relacion " + dbtemp + "." + str(self.name) + " no existe", ) return "FATAL ERROR TABLE ID" # Almacena una lista con con el nombre y tipo de cada columna lst = Struct.extractColumns(dbtemp, self.name) columns = [l.name for l in lst] newColumns = [self.name + "." + col for col in columns] df =
pd.DataFrame(result, columns=newColumns)
pandas.DataFrame
import argparse from bs4 import BeautifulSoup import multiprocessing as mp from multiprocessing.pool import ThreadPool import os import pandas as pd import pathlib import requests import subprocess from tqdm.auto import tqdm from utils import load_config ''' load config and secrets ''' # config = load_config(path='../', config_file='config.yaml')['kowalski'] config = load_config(config_file='config.yaml')['kowalski'] def collect_urls(rc): bu = os.path.join(base_url, f'rc{rc:02d}') response = requests.get(bu, auth=(config['ztf_depot']['username'], config['ztf_depot']['password'])) html = response.text # link_list = [] soup = BeautifulSoup(html, 'html.parser') links = soup.findAll('a') for link in links: txt = link.getText() if 'fr' in txt: bu_fr = os.path.join(bu, txt) response_fr = requests.get( bu_fr, auth=(config['ztf_depot']['username'], config['ztf_depot']['password']) ) html_fr = response_fr.text soup_fr = BeautifulSoup(html_fr, 'html.parser') links_fr = soup_fr.findAll('a') for link_fr in links_fr: txt_fr = link_fr.getText() if txt_fr.endswith('.pytable'): # print('\t', txt_fr) urls.append({'rc': rc, 'name': txt_fr, 'url': os.path.join(bu_fr, txt_fr)}) # fixme: # break def fetch_url(urlrc, source='ipac'): url, _rc = urlrc p = os.path.join(str(path), str(_rc), os.path.basename(url)) if not os.path.exists(p): if source == 'ipac': subprocess.run(['wget', f"--http-user={config['ztf_depot']['username']}", f"--http-passwd={config['ztf_depot']['password']}", '-q', '--timeout=600', '--waitretry=10', '--tries=5', '-O', p, url]) elif source == 'supernova': _url = url.replace('https://', '/media/Data2/Matchfiles/') subprocess.run(['scp', f'<EMAIL>:{_url}', path]) # time.sleep(0.5) def gunzip(f): subprocess.run(['gunzip', f]) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--tag', type=str, default='20200401', help='matchfile release time tag') args = parser.parse_args() t_tag = args.tag path_base = pathlib.Path('./') # path_base = pathlib.Path('/_tmp/') path = path_base / f'ztf_matchfiles_{t_tag}/' if not path.exists(): path.mkdir(exist_ok=True, parents=True) for rc in range(0, 64): path_rc = path / str(rc) if not path_rc.exists(): path_rc.mkdir(exist_ok=True, parents=True) path_urls = path_base / f'ztf_matchfiles_{t_tag}.csv' # n_rc = 1 n_rc = 64 if not path_urls.exists(): base_url = 'https://ztfweb.ipac.caltech.edu/ztf/ops/srcmatch/' # store urls urls = [] print('Collecting urls of matchfiles to download:') # collect urls of matchfiles to download with ThreadPool(processes=20) as pool: list(tqdm(pool.imap(collect_urls, range(0, n_rc)), total=n_rc)) df_mf =
pd.DataFrame.from_records(urls)
pandas.DataFrame.from_records
#!/usr/bin/env python # Copyright (C) 2019 <NAME> import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import pearsonr from dtrace.DTracePlot import DTracePlot class Preliminary(DTracePlot): HIST_KDE_KWS = dict(cumulative=False, cut=0) @classmethod def _pairplot_fix_labels(cls, g, pca, by): for i, ax in enumerate(g.axes): vexp = pca[by]["vex"]["PC{}".format(i + 1)] ax[0].set_ylabel("PC{} ({:.1f}%)".format(i + 1, vexp * 100)) for i, ax in enumerate(g.axes[2]): vexp = pca[by]["vex"]["PC{}".format(i + 1)] ax.set_xlabel("PC{} ({:.1f}%)".format(i + 1, vexp * 100)) @classmethod def pairplot_pca_by_rows(cls, pca, hue="VERSION"): df = pca["row"]["pcs"].reset_index() pal = None if hue is None else dict(GDSC1=cls.PAL_DTRACE[2], GDSC2=cls.PAL_DTRACE[0]) color = cls.PAL_DTRACE[2] if hue is None else None g = sns.PairGrid( df, vars=["PC1", "PC2", "PC3"], despine=False, size=1.5, hue=hue, palette=pal, ) g = g.map_diag(plt.hist, color=color, linewidth=0, alpha=0.5) g = g.map_offdiag( plt.scatter, s=8, edgecolor="white", lw=0.1, alpha=0.8, color=color ) if hue is not None: g = g.add_legend() cls._pairplot_fix_labels(g, pca, by="row") @classmethod def pairplot_pca_by_columns(cls, pca, hue=None, hue_vars=None): df = pca["column"]["pcs"] if hue_vars is not None: df =
pd.concat([df, hue_vars], axis=1, sort=False)
pandas.concat
from lib.timecards import Timecards from datetime import date, timedelta import pandas as pd import pdb class MonthTimecards: def __init__(self, year, month): self.sundays = [sunday for sunday in self.get_sundays_in_month(year, month)] def get_timecards_in_month(self): """ get the timecards in the month from the sundays array""" week_cards =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from multiprocessing import Pool import tqdm import sys import gzip as gz from tango.prepare import init_sqlite_taxdb def translate_taxids_to_names(res_df, reportranks, name_dict): """ Takes a pandas dataframe with ranks as columns and contigs as rows and taxids as values and translates taxids to names column by column using a taxid->name dictionary Parameters ---------- res_df: pandas.DataFrame Results with taxids reportranks: list List of taxonomic ranks to report results for name_dict: dictionary Dictionary mapping taxids -> names Returns ------- res: pandas.DataFrame Dataframe with names instead of taxids """ res = {} for rank in reportranks: res[rank] = [name_dict[taxid] for taxid in res_df.loc[:,rank]] res = pd.DataFrame(res) res.index = res_df.index res = res.loc[:, reportranks] return res def get_thresholds(df, top=10): """ Here bit-score thresholds are calculated per query an returned in a dictionary. The pandas DataFrame is first sorted by bitscore (high to low), then grouped by query, then for the first entry per query the top% of the best hit is calculated and converted to dictionary. Parameters ---------- df: pandas.DataFrame DataFrame of diamond results top: int Percentage range of top bitscore Returns ------- thresholds: dict Dictionary with queries as keys and bitscore thresholds as values """ thresholds = (df.sort_values("bitscore", ascending=False).groupby(level=0).first().bitscore * ( (100 - top)) / 100).to_dict() return thresholds def get_rank_thresholds(ranks, thresholds): """ Constructs dictionary of rank-specific thresholds Parameters ---------- ranks: list Taxonomic ranks to assign thresholds: list Thresholds for taxonomic ranks Returns ------- Dictionary of thresholds """ t_len, r_len = len(thresholds), len(ranks) if t_len != r_len: sys.exit("ERROR: Number of taxonomic ranks ({}) and number of thresholds ({}) differ\n".format(r_len, t_len)) return dict(zip(ranks, thresholds)) def add_names(x, taxid, ncbi_taxa): """ This function translates taxonomy ids to names. It operates per-row in the lineage dataframe. Parameters ---------- x: pandas.DataFrame DataFrame of one taxid and its taxonomic ranks taxid: int Taxid being evaluated ncbi_taxa: ete3.ncbi_taxonomy.ncbiquery.NCBITaxa The ete3 sqlite database connection Returns ------- The original DataFrame merged with the taxa names """ # Get a names dictionary for all taxids in the row names = ncbi_taxa.get_taxid_translator(list(x.loc[taxid].values) + [taxid]) n = {} # Iterate ranks for rank in list(x.columns): # Get taxid for the current rank t = x.loc[taxid, rank] # If taxid is negative it means that there is no classified taxonomy at this rank # Instead we get the last known name in the hierarchy. We can then use the negative values to translate into # the name with the "Unclassified." prefix. # If the name is 'root' we just use 'Unclassified' if t < 0: known_name = names[-t] if known_name == "root": name = "Unclassified" else: name = known_name # If taxid is positive we just use the name from the dictionary else: name = names[t] # Add name to a dictionary with keys in the form of {rank}.name n["{}.name".format(rank)] = name name_df = pd.DataFrame(n, index=[taxid]) return pd.merge(x, name_df, left_index=True, right_index=True) def propagate_lower(x, taxid, ranks): """ Shift known ranks down through the taxonomic hierarchy. Parameters ---------- x: pandas.DataFrame DataFrame of one taxid and its taxonomic ranks taxid: int Taxid being evaluated ranks: list Ranks used for assigning Returns ------- pandas.DataFrame updated with missing ranks Some proteins in the database may map to a taxonomic rank above the lowest taxonomic rank that we are trying to assign. For instance, if we use the ranks 'superkingdom phylum genus species' and a protein maps to a taxid at rank phylum then we want to add the taxonomic information at the genus and species levels. This is done here by adding the negative taxid of the lowest known rank to the lower ranks. Example: In the Uniref90 database the entry 'E1GVX1' maps to taxonomy id 838 (rank: genus, name: Prevotella). When creating the lineage for taxid 838 we add '-838' to rank species. """ rev_ranks = [ranks[x] for x in list(range(len(ranks) - 1, -1, -1))] missing = {} known = taxid for rank in rev_ranks[0:]: if rank not in x.columns: missing[rank] = -known else: known = x.loc[taxid, rank] return pd.merge(x, pd.DataFrame(missing, index=[taxid]), left_index=True, right_index=True) def get_lca(r, assignranks, reportranks): """ Assign lowest common ancestor from a set of taxids. Parameters ---------- r: pandas.DataFrame Results for a single query, extracted from the main diamond results file assignranks: list Taxonomic ranks to assign taxonomy for reportranks: list Taxonomic ranks to report taxonomy for Returns ------- a tuple of dictionaries with ranks as keys and taxa names/ids as values This function takes a query-slice of the diamond results after filtering by score (and rank-threshold if tango mode is 'rank_lca' or 'rank_vote'). It then iterates through each rank in reverse order checks how many unique taxids are found at that rank. If there's only one taxid """ query = r.index.unique()[0] # Reverse ranks for iterating rev_ranks = [assignranks[x] for x in list(range(len(assignranks) - 1, -1, -1))] # Iterate through the assignranks for rank in rev_ranks: higher_ranks = reportranks[0:reportranks.index(rank) + 1] higher_rank_names = ["{}.name".format(x) for x in higher_ranks] # Count number of taxa at rank c = r.groupby(rank).count() # If there's only one taxa then we have found the LCA if len(c) == 1: if len(r) == 1: lca_taxids = r.loc[query, higher_ranks].values else: lca_taxids = r.loc[query, higher_ranks].values[0] return dict(zip(higher_ranks, lca_taxids)) return {} def parse_with_rank_thresholds(r, assignranks, reportranks, rank_thresholds, mode, vote_threshold): """Assigns taxonomy using rank_specific thresholds The ranks used to assign taxonomy are iterated in reverse (e.g. species, genus, phylum), at each rank results are filtered by the corresponding rank threshold, if no hits remain after filtering the next rank is evaluated, Then, if mode=='rank_lca', for remaining hits, a lowest common ancestor is calculated from all remaining taxids. However, if mode=='rank_vote', taxids are counted among the remaining hits and all results matching taxids that occur more than vote_threshold are used to determine the lowest common ancestor. If a taxonomy can be assigned at a rank, it is returned directly. If no taxonomy can be assigned at any of the ranks, empty results are returned. Parameters ---------- r: pandas.DataFrame Dataframe slice for a query assignranks: list Taxonomic ranks used to assign taxonomy reportranks: list Taxonomic ranks at which taxonomy is reported rank_thresholds: dict Dictionary of rank_specific thresholds mode: str 'rank_lca' or 'rank_vote' vote_threshold: float Cutoff used to filter out common taxids Returns ------- tuple Dictionaries with taxonomy names and taxonomy ids at each rank """ # Start from lowest rank rev_ranks = [assignranks[x] for x in list(range(len(assignranks) - 1, -1, -1))] for rank in rev_ranks: # Make sure that LCA is not set below current rank allowed_ranks = assignranks[0:assignranks.index(rank) + 1] # Get rank threshold threshold = rank_thresholds[rank] # Filter results by rank threshold try: _r = r.loc[r.pident >= threshold] except KeyError: continue if len(_r) == 0: continue lca_taxids = {} # After filtering, either calculate lca from all filtered taxids if mode == "rank_lca": lca_taxids = get_lca(_r, allowed_ranks, reportranks) # Or at each rank, get most common taxid elif mode == "rank_vote": vote = get_rank_vote(_r, rank, vote_threshold) if len(vote) > 0: lca_taxids = get_lca(vote, allowed_ranks, reportranks) if len(lca_taxids.keys()) > 0: return lca_taxids return {} def get_rank_vote(r, rank, vote_threshold=0.5): """ Filter results based on fraction of taxa Parameters ---------- r: pandas.DataFrame Results for a single query, after filtering with bitscore and rank-specific thresholds rank: str Current rank being investigated vote_threshold: float Required fraction of hits from a single taxa in order to keep taxa Returns ------- Filtered dataframe only containing taxa that meet vote_threshold Here taxa are counted among all hits remaining for a query after filtering using bitscore and rank-specific thresholds. Taxa are counted at a certain rank and counts are normalized. Hits belonging to taxa above vote_threshold are kept while others are filtered out. """ # Create dataframe for unique taxids filtered at this rank threshold taxid_counts = pd.DataFrame(dict.fromkeys(r.staxids.unique(), 1), index=["count"]).T # Add taxid for rank being investigated rank_df = r.groupby("staxids").first().reset_index()[[rank, "staxids"]].set_index("staxids") rank_df = pd.merge(taxid_counts, rank_df, left_index=True, right_index=True) # Sum counts for current rank rank_sum = rank_df.groupby(rank).sum() rank_norm = rank_sum.div(rank_sum.sum()) rank_norm = rank_norm.sort_values("count", ascending=False) votes = rank_norm.loc[rank_norm["count"] > vote_threshold] if len(votes) > 0: return r.loc[r[rank].isin(votes.index)] return [] def propagate_taxids(res, ranks): """ Transfer taxonomy ids to unassigned ranks based on best known taxonomy Example: {'species': -1, 'family': -171549, 'genus': -171549, 'order': 171549, 'phylum': 976, 'class': 200643, 'superkingdom': 2} should become {'species': -171549, 'family': -171549, 'genus': -171549, 'order': 171549, 'phylum': 976, 'class': 200643, 'superkingdom': 2} Parameters ---------- res: dict Dictionary of ranks and taxonomy ids ranks: list Ranks to assign taxonomy to Returns ------- res: dict Dictionary with updated taxonomy ids """ known = -1 for rank in ranks: # If not -1 (Unclassified) at rank, store assignment as known if res[rank] != -1: known = res[rank] continue # If -1 at rank (Unclassified), add the taxid with the '-' prefix if res[rank] == -1: res[rank] = -abs(known) return res def series2df(df): """Converts pandas series to pandas dataframe""" if str(type(df)) == "<class 'pandas.core.series.Series'>": df = pd.DataFrame(df).T return df def read_taxidmap(f, ids): """ Reads the protein to taxid map file and stores mappings Parameters ---------- f: str Input file with protein_id->taxid map ids: list Protein ids to store taxids for Returns ------- Dictionary of protein ids to taxid and all unique taxids """ taxidmap = dict.fromkeys(ids, -1) open_function = open if ".gz" in f: open_function = gz.open with open_function(f, 'rt') as fhin: for line in tqdm.tqdm(fhin, desc="Reading idmap {}".format(f), ncols=100, unit=" lines"): items = (line.rstrip()).rsplit() # If file has only two columns, assume taxid in second if len(items) == 2: protid, taxid = items # Otherwise, assume format is same as NCBI protein mapping else: protid, taxid = items[0], items[2] # Add map to dictionary # We initialize the dictionary with -1 so we make an attempt to add the taxid + 1 # If the protid is not in the dictionary we skip it try: taxidmap[protid] += int(taxid) + 1 except KeyError: continue except ValueError: continue return pd.DataFrame(taxidmap, index=["staxids"]).T, list(set(taxidmap.values())) def read_df(infile, top=10, e=0.001, input_format="tango", taxidmap=None): """ Reads the blast results from file and returns a dictionary with query->results. Note that the input is assumed to be sorted by bitscore for each query. The first entry for a query is used to set the score threshold for storing hits for that query. So if a query has a bitscore of 100 and --top 10 is specified then we only store subsequent hits that have a bitscore of at least (100-0.1*100) = 90. Tango-formatted output contains two additional compared to the standard blast format 6: query1 subject1 93.6 47 3 0 146 6 79 125 8.5e-16 91.3 314295 query1 subject2 100.0 44 0 0 137 6 484 527 2.5e-15 89.7 9347 query2 subject3 53.5 241 84 2 645 7 15 255 1.3e-53 216.9 864142 where the last column is the taxid of the subject. Otherwise the output may have the typical blast format 6 output. Parameters ---------- infile: str Arguments from argument parser top: int Keep results within top% of best bitscore e: float Maximum allowed e-value to keep a hit. input_format: str Blast format. 'tango' if taxid for each subject is present in blast results, otherwise 'blast' taxidmap: str File mapping each subject id to a taxid Returns ------- tuple The function returns a tuple with dictionary of query->results and unique taxonomy ids (if tango format) or unique subject ids """ open_function = open if ".gz" in infile: open_function = gz.open r = {} taxids = [] queries = {} with open_function(infile, 'rt') as fhin: for line in tqdm.tqdm(fhin, desc="Reading {}".format(infile), ncols=100, unit=" lines"): items = line.rstrip().rsplit() query, subject, pident, evalue, score = items[0], items[1], float(items[2]), \ float(items[10]), float(items[11]) try: min_score = queries[query]['min_score'] except KeyError: min_score = score * ((100 - top) / 100) queries[query] = {'min_score': min_score} if score < min_score or evalue > e: continue if input_format == "tango" and len(items) > 12: taxid = items[12] taxids.append(taxid) # TODO: Is there a way to skip storing the same taxid from a worse hit for the same query elif input_format == "blast" and len(items) == 12: taxid = "" if not taxidmap: sys.exit( "ERROR: Standard blast input detected with no protein -> taxid file specified (--taxidmap).") else: continue # Add results for query to dictionary try: r[query] += [[subject, pident, evalue, score, int(taxid)]] except KeyError: r[query] = [[subject, pident, evalue, score, int(taxid)]] # If this is blast format then we return all subject ids found if input_format == "blast": ids = list(set([r[key][i][0] for key in list(r.keys()) for i in range(0, len(r[key]))])) return r, ids # If this is tango format then return all taxids found return r, list(set(taxids)) def process_lineages(items): """ Looks up lineage information from taxids. The lineage object is a list of taxonomic ids corresponding to the full lineage of a single taxid. """ taxid, ranks, taxdir, dbname, lineage = items # Read the taxonomy db ncbi_taxa = init_sqlite_taxdb(taxdir, dbname) # Get ranks for each taxid in the lineage lineage_ranks = ncbi_taxa.get_rank(lineage) x = pd.DataFrame(lineage_ranks, index=["rank"]).T x = x.loc[x["rank"].isin(ranks)].reset_index().T x.columns = x.loc["rank"] x.drop("rank", inplace=True) x.index = [taxid] # Add taxids for lower ranks in the hierarchy x = propagate_lower(x, taxid, ranks) # Add names for taxids x = add_names(x, taxid, ncbi_taxa) return x def make_name_dict(df, ranks): """ Creates a dictionary of taxids to taxonomy names, including Unclassified ranks Parameters ---------- df: pandas.DataFrame Lineage dataframe ranks: list Ranks to store names information for Returns ------- name_dict: dict Name dictionary mapping taxonomy ids to names """ name_dict = {} for rank in ranks: name_dict.update(dict(zip(df[rank].values, df["{}.name".format(rank)].values))) name_dict.update(dict(zip(-abs(df[rank]), "Unclassified." + df["{}.name".format(rank)]))) name_dict[-1] = "Unclassified" return name_dict def make_lineage_df(taxids, taxdir, dbname, ranks, cpus=1): """ Creates a lineage dataframe with full taxonomic information for a list of taxids. Example: taxid species phylum genus genus.name phylum.name species.name 859655 305 1224 48736 Ralstonia Proteobacteria Ralstonia solanacearum 387344 1580 1239 1578 Lactobacillus Firmicutes Lactobacillus brevis 358681 1393 1239 55080 Brevibacillus Firmicutes Brevibacillus brevis Parameters ---------- taxids: list List of taxonomic ids to obtain information for taxdir: str Path to directory holding taxonomic info dbname: str Name of ete3 sqlite database within taxdir ranks: list Ranks to store information for cpus: int Number of cpus to use Returns ------- lineage_df: pandas.DataFrame Data Frame with full taxonomic info """ # Read the taxonomy db ncbi_taxa = init_sqlite_taxdb(taxdir, dbname) lineages = ncbi_taxa.get_lineage_translator(taxids) # Store potential missing taxids and warn user missing_taxids = set([int(x) for x in taxids]).difference(lineages.keys()) # Get possible translations for taxids that have been changed _, translate_dict = ncbi_taxa._translate_merged(list(set(taxids).difference(lineages.keys()))) rename = {y: x for x, y in translate_dict.items()} # Update lineages with missing taxids lineages.update(ncbi_taxa.get_lineage_translator(translate_dict.values())) items = [[taxid, ranks, taxdir, dbname, lineages[taxid]] for taxid in list(lineages.keys())] with Pool(processes=cpus) as pool: res = list( tqdm.tqdm(pool.imap(process_lineages, items), desc="Making lineages", total=len(items), unit=" taxids", ncols=100)) lineage_df = pd.concat(res, sort=False) lineage_df.rename(index=rename, inplace=True) lineage_df.rename(index=lambda x: int(x), inplace=True) for rank in ranks: lineage_df[rank] = pd.to_numeric(lineage_df[rank]) name_dict = make_name_dict(lineage_df, ranks) if len(missing_taxids) > 0: sys.stderr.write("#WARNING: Missing taxids found:\n") sys.stderr.write("#{}\n".format(",".join([str(x) for x in missing_taxids]))) sys.stderr.write("#To fix this, you can try to update the taxonomy database using\n") sys.stderr.write("#tango download taxonomy --force\n") return lineage_df.loc[:,lineage_df.dtypes==int], name_dict def process_queries(args): """Receives a query and its results and assigns taxonomy""" res_taxids = {} min_rank_threshold = 0 query, res, rank_thresholds, top, reportranks, assignranks, mode, vote_threshold, lineage_df, taxidmap = args if len(rank_thresholds) > 0 and "rank" in mode: min_rank_threshold = min([x for x in rank_thresholds.values()]) columns = ['sseqid', 'pident', 'evalue', 'bitscore'] if len(res[0]) == 5: columns += ['staxids'] # Create pandas dataframe for slice res_df = pd.DataFrame(res, columns=columns, index=[query] * len(res)) # Add taxidmap if not present in results if "staxids" not in res_df.columns: res_df = pd.merge(res_df, taxidmap, left_on="sseqid", right_index=True, how="left") # Calculate bit score threshold for slice thresholds = get_thresholds(res_df, top=top) # Set index res_df.index.name = "qseqid" # Merge with lineage df res_df = pd.merge(res_df, lineage_df, left_on="staxids", right_index=True, how="left") # Remove potential nan rows created if the blast results have taxids that are missing from lineage_df res_df = res_df.loc[res_df[reportranks[0]] == res_df[reportranks[0]]] # Initialize dictionary res_taxids[query] = dict.fromkeys(reportranks, -1) # Handle queries that return pandas Series res_df = res_df.loc[res_df.bitscore >= thresholds[query]] res_df = series2df(res_df) lca_taxids = {} # Parse with rank thresholds or by just filtering by bitscore if "rank" in mode: if len(res_df.loc[res_df.pident >= min_rank_threshold]) > 0: lca_taxids = parse_with_rank_thresholds(res_df, assignranks, reportranks, rank_thresholds, mode, vote_threshold) else: lca_taxids = get_lca(res_df, assignranks, reportranks) # Update results with lca_taxids res_taxids[query].update(lca_taxids) res_taxids[query] = propagate_taxids(res_taxids[query], reportranks) return res_taxids[query], query def write_blobout(f, res_taxids, queries, ranks): """ Writes output in a format for use with blobtools Parameters ---------- f: str Outputfile res_taxids: list List of results for queries queries: list List of queries ranks: list Ranks to write results for """ rev_ranks = [ranks[x] for x in list(range(len(ranks) - 1, -1, -1))] with open(f, 'w') as fhout: for i, query in enumerate(queries): d = res_taxids[i] for rank in rev_ranks: if rank in d.keys(): taxid = d[rank] if taxid != -1: fhout.write("{query}\t{taxid}\t1\tref\n".format(query=query, taxid=abs(taxid))) break def stage_queries(res, lineage_df, input_format="tango", rank_thresholds=[45, 60, 85], top=10, mode="rank_lca", vote_threshold=0.5, assignranks=["phylum", "genus", "species"], reportranks=["superkingdom", "phylum", "class", "order", "family", "genus", "species"], taxidmap=None): """ Parameters ---------- res: dict Dictionary with queries as keys and a list of hits as values lineage_df: pandas.DataFrame Data frame of taxids and taxonomic information input_format: str 'tango' or 'blast' rank_thresholds: list List of thresholds for ranks top: int Only evaluate results within <top> percent bitscore of best scoring hit mode: str 'rank_lca' or 'rank_vote' for rank thresholds usage or 'score' to just filter by bitscore vote_threshold: float Cutoff used to filter out common taxids assignranks: list Ranks used to assign taxonomy reportranks: list Ranks to report taxonomy for (inferred from assignranks) taxidmap: dict Dictionary with subject ids as keys and taxids as values Returns ------- items: list List of items to send to multiprocessing """ items = [] total_queries = len(res) for q in tqdm.tqdm(sorted(res.keys()), total=total_queries, unit=" queries", ncols=100, desc="Staging queries"): # If the diamond output does not have standard tango format we do some work to add this information. item = [q, res[q], rank_thresholds, top, reportranks, assignranks, mode, vote_threshold] if input_format == "blast": # Get all subject ids s = list(set([res[q][i][0] for i in range(0, len(res[q]))]).intersection(lineage_df.index)) # Get all taxids for this query q_taxids = taxidmap.loc[s, "staxids"].unique() item += [lineage_df.loc[q_taxids], taxidmap.loc[s]] # If diamond output has taxonomy id then directly create the list of results to # feed into the multiprocessing pool else: # Get all taxids for query q_taxids = list(set([res[q][i][-1] for i in range(0, len(res[q]))]).intersection(lineage_df.index)) item += [lineage_df.loc[q_taxids], None] items.append(item) return items def parse_hits(diamond_results, outfile, taxidout=False, blobout=False, top=10, evalue=0.001, input_format="tango", taxidmap=False, mode="rank_lca", vote_threshold=0.5, assignranks=["phylum", "genus", "species"], reportranks=["superkingdom", "phylum", "class", "order", "family", "genus", "species"], rank_thresholds=[45, 60, 85], taxdir="./taxonomy/", sqlitedb="taxonomy.sqlite", chunksize=1, cpus=1): """ This is the main function to handle diamond result files and assign taxonomy to queries. The function performs the following steps: 1. Checks rank-specific thresholds 2. Reads the diamond results file 3. If required, maps subject ids to taxonomy ids 4. Creates a dataframe of all unique taxonomy ids found for subjects and their taxa names for each rank 5. Stages queries for multiprocessing 6. Processes each query and returns it with assigned taxonomy 7. Writes output to file Parameters ---------- diamond_results: str Diamond results file outfile: str File to write results to taxidout: str If True, write results with taxonomic ids instead of names to file blobout: str If True, write output in blobtools format top: int Evaluate hits within this bitscore percent range of the best scoring hit evalue: float Filter hits with evalue larger than this input_format: str 'tango' or 'blast' depending on whether the diamond results has subject taxids in the last column or not taxidmap: str Path to a file mapping subject ids to taxids (needed if input_format != 'tango') mode: str How to assign taxonomy: 'rank_lca' and 'rank_vote' use rank specific thresholds, 'score' only filters by bitscore vote_threshold: float When using 'rank_vote' to assign taxonomy, this is the fraction of hits that must have the same taxid to assign a taxonomy at a rank assignranks: list Ranks used to assign taxonomy reportranks: list Ranks to report taxonomy for rank_thresholds: list Percent identity thresholds for assigning taxonomy taxdir: str Path to directory holding taxonomic information files sqlitedb: str Name of ete3 sqlite database within taxdir chunksize: int The size of chunks for the iterable being submitted to the process pool cpus: int The number of worker processes to use args: Input arguments from __main__.py Returns ------- Return code 0 if function finished without issue """ # Set up rank thresholds if "rank" in mode: rank_thresholds = get_rank_thresholds(assignranks, rank_thresholds) # Read diamond results res, ids = read_df(diamond_results, top, evalue, input_format, taxidmap) # Read protein -> taxidmap file if specified taxidmap = pd.DataFrame() if input_format == "blast": taxidmap, taxids = read_taxidmap(taxidmap, ids) else: taxids = ids # Create lineage dataframe lineage_df, name_dict = make_lineage_df(taxids, taxdir, sqlitedb, reportranks, cpus) # Set up multiprocessing pool items = stage_queries(res, lineage_df, input_format, rank_thresholds, top, mode, vote_threshold, assignranks, reportranks, taxidmap) total_queries = len(res) with Pool(processes=cpus) as pool: assign_res = list(tqdm.tqdm(pool.imap(process_queries, items, chunksize=chunksize), desc="Parsing queries", total=total_queries, unit=" queries", ncols=100)) # res_tax is the taxonomy table with taxids res_tax = [item[0] for item in assign_res] # queries is a list of queries queries = [item[1] for item in assign_res] # Create dataframe from taxonomy results res_df = pd.DataFrame(res_tax, index=queries)[reportranks] res_df.index.name = "query" # Writes blobtools-compatible output if blobout: sys.stderr.write("Writing blobtools file to {}\n".format(blobout)) write_blobout(blobout, res_df, queries, reportranks) # Write table with taxonomy ids instead of taxon names if taxidout: sys.stderr.write("Writing results with taxids to {}\n".format(taxidout)) res_df.to_csv(taxidout, sep="\t") # Write main output sys.stderr.write("Translating taxids to names\n") res_names_df = translate_taxids_to_names(res_df, reportranks, name_dict) sys.stderr.write("Writing main output to {}\n".format(outfile)) res_names_df.to_csv(outfile, sep="\t") # Summary stats unc = [len(res_names_df.loc[res_names_df.loc[:, rank].str.contains("Unclassified")]) for rank in reportranks] tot = [len(res_names_df)] * len(reportranks) cl = 100 - np.divide(unc, tot) * 100 cl = ["{}%".format(str(np.round(x, 1))) for x in cl] summary =
pd.DataFrame(cl, index=reportranks)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from kneed import KneeLocator from scipy import stats from pyod.models.cblof import CBLOF from pyod.models.feature_bagging import FeatureBagging from pyod.models.hbos import HBOS from pyod.models.iforest import IForest from pyod.models.knn import KNN from pyod.models.lof import LOF import warnings warnings.filterwarnings("ignore") class BadCustomerDetection(): def _init_(self): pass ############################################## #Calculate within-cluster sum of square (wss)# ############################################## def k_finder(self, cluster_scaled, plot = False, S = 0, curve='convex', direction='decreasing'): clusters_range = [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] sse = self.calculate_WSS(cluster_scaled, clusters_range, plot = plot) kneedle = KneeLocator(clusters_range, sse, S, curve, direction) return kneedle.elbow def calculate_WSS(self, points, clusters_range, plot = False): sse = [] for k in clusters_range: kmeans = KMeans(n_clusters = k).fit(points) centroids = kmeans.cluster_centers_ pred_clusters = kmeans.predict(points) curr_sse = 0 # calculate square of Euclidean distance of each point from its cluster center and add to current WSS for i in range(len(points)): curr_center = centroids[pred_clusters[i]] curr_sse += (points[i, 0] - curr_center[0]) ** 2 + (points[i, 1] - curr_center[1]) ** 2 sse.append(curr_sse) if(plot == True): plt.figure() plt.plot(clusters_range,sse, marker='o') return sse #################################### #Detect Outliers or a group of data# #################################### #It's multivariate outlier detection, can choose method among 'CBLOF','FB','HBOS','IF','KNN' or 'Voting' #which will run apply all the models and output the results based on the voting of all the model results def outlier_detector(self, clustered_data, outliers_fraction = 0.05, method = 'Voting',cluster_number = 3): random_state = np.random.RandomState(42) outliers_df = pd.DataFrame() classifiers = { #Cluster-based Local Outlier Factor 'CBLOF':CBLOF(contamination=outliers_fraction,check_estimator=False, random_state=random_state), #Feature Bagging 'FB':FeatureBagging(LOF(n_neighbors=35),contamination=outliers_fraction,check_estimator=False,random_state=random_state), #Histogram-base Outlier Detection 'HBOS': HBOS(contamination=outliers_fraction), #Isolation Forest 'IF': IForest(contamination=outliers_fraction,random_state=random_state), #K Nearest Neighbors 'KNN': KNN(contamination=outliers_fraction) } detectors_list = [] for k in range(cluster_number): curr_cluster = clustered_data[clustered_data['Cluster'] == k] X_train = curr_cluster.drop(['consumer_id','Cluster'], axis = 1) for i, (clf_name, clf) in enumerate(classifiers.items()): clf_pred = clf_name+'_Decision' clf.fit(X_train) if(method == 'Voting'): if(clf_name == 'KNN'):#just save KNN for inference detectors_list.append(clf) elif(method !='Voting'): if(clf_name == method): detectors_list.append(clf) # predict raw anomaly score scores_pred = clf.decision_function(X_train) scores_pred_df = pd.DataFrame(list(scores_pred), columns =[clf_name], index = curr_cluster.index.copy()) curr_cluster = pd.concat([curr_cluster, scores_pred_df], axis=1) outliers_pred = clf.predict(X_train) outliers_pred_df = pd.DataFrame(list(outliers_pred), columns =[clf_pred], index = curr_cluster.index. copy()) curr_cluster = pd.concat([curr_cluster, outliers_pred_df], axis=1) outliers_df = outliers_df.append(curr_cluster) if(method == 'Voting'): outliers_df['Voting'] = outliers_df.filter(regex='Decision').sum(axis = 1) outliers_df['bad_customer'] = 0 outliers_df.loc[(outliers_df.Voting > len(classifiers)/2), 'bad_customer'] = 1 else: decision = method + '_Decision' outliers_df['bad_customer'] = outliers_df[decision] return outliers_df, detectors_list ############################################### #bad customer detector based on the Clustering# ############################################### #plot_wss = True will plot the WSS-K Plot # S, curve and direction are parameters for finding the eblbow(the best K) #The sensitivity parameter S allows us to adjust how aggressive we want Kneedle to be when detecting knees. Smaller values #for S detect knees quicker, while larger values are more conservative. Put simply, S is a measure of how many “flat” #points we #expect to see in the unmodified data curve before declaring a knee. def bad_customer_detector(self, df, log_transformation = True, elbow_finder = False, n_cluster = 3, outliers_fraction = 0.05, method = 'Voting', plot_wss = False, S = 0, curve='convex', direction='decreasing'): ##if elbow = False, need to provide n_cluster if(log_transformation == True): cluster_log = np.log(df.drop(['consumer_id'], axis = 1)) else: cluster_log = df.drop(['consumer_id'], axis = 1) scaler = StandardScaler() cluster_scaled = scaler.fit_transform(cluster_log) ##Start to test cluster numbers if(elbow_finder == True): K_elbow = self.k_finder(cluster_scaled, plot_wss, S, curve, direction) if K_elbow is None: print('Need to provide a number') else: cluster_number = kneedle.elbow else: cluster_number = n_cluster #clustering starts from here kmeans_sel = KMeans(n_clusters=cluster_number, random_state=42).fit(cluster_scaled) labels =
pd.DataFrame(kmeans_sel.labels_)
pandas.DataFrame
''' Created on Jul 16, 2019 @author: vincentiusmartin ''' import pandas as pd from sitesfinder.imads import iMADS from sitesfinder.imadsmodel import iMADSModel from sitesfinder.plotcombiner import PlotCombiner from sitesfinder.pbmescore import PBMEscore from sitesfinder.sequence import Sequence from sitesfinder.prediction.basepred import BasePrediction import pickle from cooperative import coopfilter def main(): curdir = "/Users/vincentiusmartin/Research/chip2gcPBM/" analysis_path = curdir + "result/ets1_HepG2/analysis_result/" with open(analysis_path + "sitefiles_list.txt", 'r') as f: sitelist = [line.strip() for line in f.readlines()] slist = "/Users/vincentiusmartin/Research/chip2gcPBM/chip2probe/../result/ets1_A549/analysis_result/sites_within_d3_span50.tsv" seqdf =
pd.read_csv(slist, sep='\t')
pandas.read_csv
import pkg_resources import pandas as pd from unittest.mock import sentinel import osmo_jupyter.dataset.parse as module def test_parses_ysi_csv_correctly(tmpdir): test_ysi_classic_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_ysi_classic.csv" ) formatted_ysi_data = module.parse_ysi_proodo_file(test_ysi_classic_file_path) expected_ysi_data = pd.DataFrame( [ { "timestamp": pd.to_datetime("2019-01-01 00:00:00"), "YSI barometric pressure (mmHg)": 750, "YSI DO (% sat)": 19, "YSI temperature (C)": 24.7, "YSI unit ID": "unit ID", } ] ).set_index("timestamp") pd.testing.assert_frame_equal(formatted_ysi_data, expected_ysi_data) def test_parses_ysi_kordss_correctly(tmpdir): test_ysi_kordss_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_ysi_kordss.csv" ) formatted_ysi_data = module.parse_ysi_prosolo_file(test_ysi_kordss_file_path) expected_ysi_data = pd.DataFrame( [ { "timestamp": pd.to_datetime("2019-01-01 00:00:00"), "YSI barometric pressure (mmHg)": 750, "YSI DO (% sat)": 60, "YSI DO (mg/L)": 6, "YSI temperature (C)": 24.7, } ] ).set_index("timestamp") pd.testing.assert_frame_equal(formatted_ysi_data, expected_ysi_data) def test_parses_picolog_csv_correctly(): test_picolog_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_picolog.csv" ) formatted_picolog_data = module.parse_picolog_file(test_picolog_file_path) expected_picolog_data = pd.DataFrame( [ { "timestamp": pd.to_datetime("2019-01-01 00:00:00"), "PicoLog temperature (C)": 39, "PicoLog barometric pressure (mmHg)": 750, }, { "timestamp": pd.to_datetime("2019-01-01 00:00:02"), "PicoLog temperature (C)": 40, "PicoLog barometric pressure (mmHg)": 750, }, { "timestamp": pd.to_datetime("2019-01-01 00:00:04"), "PicoLog temperature (C)": 40, "PicoLog barometric pressure (mmHg)": 750, }, ] ).set_index("timestamp") pd.testing.assert_frame_equal(formatted_picolog_data, expected_picolog_data) def test_parses_calibration_log_correctly(): test_calibration_log_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_calibration_log.csv" ) formatted_calibration_log_data = module.parse_calibration_log_file( test_calibration_log_file_path ) # Nothing is supposed to be renamed or dropped, just datetime formatting expected_calibration_log_index = pd.DatetimeIndex( [ pd.to_datetime("2019-01-01 00:00:00"), pd.to_datetime("2019-01-01 00:00:01"), pd.to_datetime("2019-01-01 00:00:03"), pd.to_datetime("2019-01-01 00:00:04"), ], name="timestamp", ) pd.testing.assert_index_equal( formatted_calibration_log_data.index, expected_calibration_log_index ) class TestParseDataCollectionLog: def test_parses_data_collection_log_correctly(self): test_log_file_path = pkg_resources.resource_filename( "osmo_jupyter", "test_fixtures/test_data_collection_log.xlsx" ) actual_data_collection_log = module.parse_data_collection_log( test_log_file_path ) expected_data_collection_log = pd.DataFrame( [ { "experiment_names": [ "2019-07-26--19-34-38-Pi2E32-3000_images_attempt_1" ], "drive_directory": "2019-07-26 Collect 3000 images (attempt 1)", "pond": "calibration", "cosmobot_id": "A", "cartridge_id": "C00003", "start_date": pd.to_datetime("2019-07-26 19:12"), "end_date": pd.to_datetime("2019-07-28 13:55"), }, { "experiment_names": [ "2019-08-26--23-34-10-PiE5FB-scum_tank_shakedown" ], "drive_directory": "2019-08-26 Scum Tank Shakedown", "pond": "scum tank 1", "cosmobot_id": "B", "cartridge_id": "C00005", "start_date": pd.to_datetime("2019-08-26 23:35"), "end_date": pd.to_datetime("2019-08-27 08:15"), }, ] ) pd.testing.assert_frame_equal( actual_data_collection_log, expected_data_collection_log ) def test_get_attempt_summary_gets_multiple_buckets(self): test_attempt_data = pd.Series( { "S3 Bucket(s)": "1\n2\n3", "Drive Directory": "Experiment", "Cosmobot ID": "Z", "Cartridge": "C1", "Start Date/Time": pd.to_datetime("2019"), "End Date/Time": pd.to_datetime("2020"), } ) actual_attempt_summary = module._get_attempt_summary(test_attempt_data) expected_attempt_summary = pd.Series( { "experiment_names": ["1", "2", "3"], "drive_directory": "Experiment", "pond": "calibration", "cosmobot_id": "Z", "cartridge_id": "C1", "start_date": pd.to_datetime("2019"), "end_date": pd.to_datetime("2020"), } ) pd.testing.assert_series_equal(actual_attempt_summary, expected_attempt_summary) def test_interpolates_calibration_log_data_correctly(mocker): mock_calibration_log_data = pd.DataFrame( { "timestamp": [ pd.to_datetime("2019-01-01 00:00:00"), pd.to_datetime("2019-01-01 00:00:02"), ], "YSI DO (mmHg)": [50, 30], "setpoint temperature (C)": [29.00000001, 30.0000003], "setpoint O2 fraction": [0.100000001, 0.3], "extraneous column": ["is", "dropped"], } ).set_index("timestamp") mocker.patch.object( module, "parse_calibration_log_file", return_value=mock_calibration_log_data ) transformed_log_data = module.process_calibration_log_file(sentinel.log_file_name) expected_log_data = pd.DataFrame( { "timestamp": [ pd.to_datetime("2019-01-01 00:00:00"), pd.to_datetime("2019-01-01 00:00:01"), pd.to_datetime("2019-01-01 00:00:02"), ], "YSI DO (mmHg)": [50, 40, 30], "setpoint temperature (C)": [29, 29.5, 30], "setpoint O2 fraction": [0.1, 0.2, 0.3], }, dtype="float64", ).set_index("timestamp") pd.testing.assert_frame_equal( transformed_log_data, expected_log_data, check_less_precise=6 ) def test_setpoint_ids_assigned_correctly(): mock_iamge_data = pd.DataFrame( { "timestamp": [ # Each > than 5 minute jump should increment setpoint ID pd.to_datetime("2019-01-01 00:00:00"), pd.to_datetime("2019-01-01 00:05:00"), # Don't increment pd.to_datetime("2019-01-01 00:10:01"), # Increment pd.to_datetime("2019-01-01 00:16:00"), # Increment ], "image": [ sentinel.image1, sentinel.image2, sentinel.image3, sentinel.image4, ], } ).set_index("timestamp") setpoint_ids = module.generate_time_based_setpoint_ids(mock_iamge_data) expected_setpoint_ids = pd.Series([0, 0, 1, 2], index=mock_iamge_data.index).rename( "timestamp" ) pd.testing.assert_series_equal(setpoint_ids, expected_setpoint_ids) def test_prepare_ysi_data(): # After the parse_* functions that two types of ysi data look mostly the same # so just test the common functionality here. # Only difference is ProSolo also includes mg/L values. mock_ysi_data = pd.DataFrame( { "timestamp": [ pd.to_datetime("2019-01-01 00:00:00"),
pd.to_datetime("2019-01-01 00:00:02")
pandas.to_datetime
# -*- coding: utf-8 -*- import unittest import pandas from pipesnake.pipe import SeriesPipe from pipesnake.transformers.imputer import KnnImputer from pipesnake.transformers.imputer import ReplaceImputer from pipesnake.transformers.selector import ColumnSelector class TestImputer(unittest.TestCase): def test_replace_imputer(self): from _data import x_nan from _data import y_nan pipe = SeriesPipe(transformers=[ ColumnSelector(x_cols=['x_1', 'x_2', 'x_3', 'x_4'], y_cols=['y_1', 'y_2']), ReplaceImputer(x_cols='all', y_cols='all'), ]) x_new, y_new = pipe.fit_transform(x_nan, y_nan) self.assertEqual(pandas.isnull(x_new).any().any(), False, 'NaN values has been found in x_new') self.assertEqual(
pandas.isnull(y_new)
pandas.isnull
#GiG import numpy as np import pandas as pd from pathlib import Path from deep_blocker import DeepBlocker from tuple_embedding_models import AutoEncoderTupleEmbedding, CTTTupleEmbedding, HybridTupleEmbedding, SIFEmbedding from vector_pairing_models import ExactTopKVectorPairing import blocking_utils from configurations import * import pickle def ctt_train_score_with_pred(folder_root, golden_set,left_table_fname, right_table_fname, cols_to_block, tuple_embedding_model, vector_pairing_model): """ Inputs table names, model type, ground truth labels. Outputs evaluation statistics with binary classifier, mainly for CTT """ folder_root = Path(folder_root) left_table_name_csv = left_table_fname+'.csv' right_table_name_csv = right_table_fname+'.csv' left_df = pd.read_csv(folder_root / left_table_name_csv) right_df = pd.read_csv(folder_root / right_table_name_csv) db = DeepBlocker(tuple_embedding_model, vector_pairing_model) candidate_set_df,predictions = db.driver(left_df, right_df, cols_to_block,True) predictions =
pd.DataFrame(predictions,columns=['ltable_id','rtable_id','value'])
pandas.DataFrame
# Arithmetic Operators num1 = 10 num2 = 20 print(num1 + num2) print(num1 - num2) print(num1 * num2) print(num1 / num2) print("END") print() # RELATIONAL OPERATIONS print(num1 < num2) print(num1 > num2) print(num1 == num2) print(num1 != num2) print("END") print() # LOGICAL OPERATIONS log1 = True log2 = False print("END") print() # & print(log1 & log2) print(log2 & log1) print(log2 & log2) print(log1 & log1) print("END") print() # | print(log1 | log2) print(log2 | log1) print(log2 | log2) print(log1 | log1) print("END") print() # stings my_string = "My name is Jhon" print(my_string[0]) my_string = "My name is Jhon" print(my_string[-1]) print("END") print() print(len(my_string)) print(my_string.lower()) print(my_string.upper()) print(my_string.replace('Jhon', 'Tom')) print(my_string.count('is')) print("END") print() # stings fruit = "I like apples, mangoes, bananas" print(fruit) print(fruit.split(' ')) print("END") print() # lists l1 = [1, "a", True] print(l1) print(type(l1)) print("END") print() # lists l1 = [1, 'a', 2, 'b', 3, 'c'] print(l1) print(type(l1)) print(l1[2:5]) print("END") print() # lists l1 = ["apples", "mangoes", "bananas"] print(l1) l1[0] = "Fruit" print(l1) l1.append("Sparta") print(l1) l1.pop() print(l1) l1.reverse() print(l1) l1.insert(1, "Sparta") print(l1) l1.sort() print(l1) print("END") print() # lists l1 = [1, 2, 3] l2 = ["a", "b", "c"] print(l1 + l2) print("END") print() l1 = [1, "a", True] print(l1 * 3) print("END") print() # Tuple tup1 = (1, "Sparta", True) print(tup1) print(type(tup1)) tup2 = (1, "a", True, 2, "b", False) print(tup2) # to find the length of the tuple print(len(tup2)) # to add or multiply or do both at the same time print(tup1 + tup2) print() print(tup1 * 3) print() print(tup1 * 3 + tup2) print() # to find out the maximum and minimum values of a tuple tup1 = (1, 2, 3, 4, 5, 6) print(min(tup1)) print(max(tup1)) print("END") print() # Dictionary Fruits = {"Mango": 10, "Apple": 20, "Litchi": 30, "Blueberry": 40} print(Fruits) print(type(Fruits)) # separating keys and values print(Fruits.keys()) print(Fruits.values()) print() # adding or changing an existing element Fruits["Banana"] = 50 print(Fruits) Fruits["Apple"] = 60 print(Fruits) print() # adding two dictionaries fruit1 = {"Mango": 100, "Apple": 200} fruit2 = {"Litchi": 300, "Blueberry": 400} fruit1.update(fruit2) print(fruit1) # removing an element from a dictionary fruit1.pop("Blueberry") print(fruit1) print() # Set operations s1 = {1, "a", True, 2, "b", False} print(s1) # to add one single element s1.add("Hello") print(s1) # to add multiple elements s1.update([10, 20, 30]) print(s1) print() # to remove elements s1.remove(False) print(s1) print() # for union of two sets t1 = {1, 2, 3} t2 = {4, 5, 6} print(t1.union(t2)) j1 = {1, 2, 3, 4, 5} j2 = {5, 6, 7, 1, 3} print(j1.intersection(j2)) print() # If statement a = 10 b = 20 if a > b: print("a is greater than b") else: print("b is greater than a") print() # elif a = 10 b = 20 c = 30 if (a > b) & (a > c): print("a is the greatest") if (b > a) & (b > c): print("b is the greatest") if (c > a) & (c > b): print("c is the greatest") print() # tuple with if tup1 = (1, 2, 3, 4, 5) if "a" in tup1: print("a is present in tup1") else: print("a is not present in tup1") print() # if with lists l1 = ["a", "b", "c"] if l1[0] == "a": l1[0] = "z" print(l1) print() # if with dictionary d1 = {"k1": 10, "k2": 20, "k3": 30} if d1["k1"] == 10: d1["k1"] = d1["k1"] + 100 print(d1) # looping statements (simple for loop) fruits = ["apple", "mango", "banana"] for i in fruits: print(i) print() # nested for loop color = ["blue", "black", "green", "yellow"] item = ["book", "pencil", "ball", "chair"] for i in color: for j in item: print(i, j) print() # Printing 1-10 while using loop i = 1 while i <= 10: print(i) i = i + 1 print() # printing 2-table with while loop i = 1 n = 2 while i <= 10: print(n, " * ", i, " = ", n * i) i = i + 1 print() # class class Phone: def make_call(self): print("Making phone call") def play_game(self): print("Playing game") p1 = Phone() p1.make_call() print() p1.play_game() print() # adding parameters to the class class Phone: def set_color(self, color): self.color = color def set_cost(self, cost): self.cost = cost def show_color(self): return self.color def show_cost(self): return self.cost def make_call(self): print("Making phone call") def play_game(self): print("Playing game") p1 = Phone() p1.set_color("blue") p1.set_cost(999) print(p1.show_color()) print(p1.show_cost()) print() # class with a constructor class Employee: def __init__(self, name, age, salary, gender): self.name = name self.age = age self.salary = salary self.gender = gender def employee_details(self): print("Name of the employee is ", self.name) print("Age of the employee is ", self.age) print("Salary of the employee is ", self.salary) print("Gender of the employee is ", self.gender) # constructor example e1 = Employee('Sam', 32, 85000, 'Male') print(e1.employee_details()) # Inheritance (PARENT CLASS) class Vehicle: def __init__(self, mileage, cost): self.mileage = mileage self.cost = cost def show_details(self): print("I am a Vehicle ") print("Mileage of the Vehicle is ", self.mileage) print("Cost of the Vehicle is ", self.cost) v1 = Vehicle(500, 500) print(v1.show_details()) # Inheritance (CHILD CLASS class Car(Vehicle): def show_car(self): print("I am a car") c1 = Car(200, 1200) print(c1.show_details()) print(c1.show_car()) # Inheritance (SUPER Class) class Car(Vehicle): def __init__(self, mileage, cost, tyres, hp): super().__init__(mileage, cost) self.tyres = tyres self.hp = hp def show_car_details(self): print("I am a Car ") print("Number of tyres are ", self.tyres) print("Value of horse power is ", self.hp) c1 = Car(20, 12000, 4, 300) print(c1.show_details()) print(c1.show_car_details()) print() # inheritance (MULTIPLE) class Parent1(): def assign_string_one(self, str1): self.str1 = str1 def show_string_one(self): return self.str1 class Parent2(): def assign_string_two(self, str2): self.str2 = str2 def show_string_two(self): return self.str2 class Derived(Parent1, Parent2): def assign_string_three(self, str3): self.str3 = str3 def show_string_three(self): return self.str3 d1 = Derived() d1.assign_string_one("one") d1.assign_string_two("Two") d1.assign_string_three("Three") print(d1.show_string_one()) print(d1.show_string_two()) print(d1.show_string_three()) print() # inheritance (MULTI lvl) class Parent(): def assign_name(self, name): self.name = name def show_name(self): return self.name class Child(Parent): def assign_age(self, age): self.age = age def show_age(self): return self.age class GrandChild(Child): def assign_gender(self, gender): self.gender = gender def show_gender(self): return self.name gc = GrandChild() gc.assign_name("Bob") gc.assign_age("52") gc.assign_gender("Male") print(gc.show_name()) print(gc.show_age()) print(gc.show_gender()) print() # NumPy (SINGLE DIMENSIONAL ARRAY) import numpy as np n1 = np.array([10, 20, 30, 40]) print(n1) print() print(type(n1)) print() import numpy as np n2 = np.array([[10, 20, 30, 40], [40, 30, 20, 10]]) print(n2) print() # numpy with zeros import numpy as np n1 = np.zeros((1, 2)) print(n1) print() import numpy as np n1 = np.zeros((5, 5)) print(n1) print() # NumPy with same number import numpy as np n1 = np.full((2, 2), 10) print(n1) print() # NumPy with arrange import numpy as np n1 = np.arange(10, 20) print(n1) print() import numpy as np n1 = np.arange(10, 50, 5) print(n1) print() # NumPy with random numbers import numpy as np n1 = np.random.randint(1, 100, 5) print(n1) print() # NumPy with shapes import numpy as np n1 = np.array([[1, 2, 3], [4, 5, 6]]) print(n1.shape) print() n1.shape = (3, 2) print(n1) print() # Joining NumPy import numpy as np n1 = np.array([10, 20, 30]) n2 = np.array([40, 50, 60]) print(np.vstack((n1, n2))) print() print(np.hstack((n1, n2))) print() print(np.column_stack((n1, n2))) print() import numpy as np n1 = np.array([10, 20, 30, 40, 50]) n2 = np.array([40, 50, 60, 70, 80]) print(np.intersect1d(n1, n2)) print() print(np.setdiff1d(n1, n2)) print() print(np.setdiff1d(n2, n1)) print() # addition in NumPy (BASIC) import numpy as np n1 = np.array([10, 20, 30]) n1 = n1 + 1 print(n1) print() import numpy as np n1 = np.array([10, 20, 30]) n1 = n1 - 1 print(n1) print() import numpy as np n1 = np.array([10, 20, 30]) n1 = n1 * 2 print(n1) print() import numpy as np n1 = np.array([10, 20, 30]) n1 = n1 / 2 print(n1) print() # MEAN import numpy as np n1 = np.array([10, 20, 30, 40, 50, 60]) print(np.mean(n1)) print() # median import numpy as np n1 = np.array([11, 44, 5, 96, 67, 85]) print(np.median(n1)) print() # standard deviation import numpy as np n1 = np.array([1, 5, 3, 100, 4, 48]) print(np.std(n1)) print() # NumPy Matrix import numpy as np n1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(n1) print() print(n1[0]) print() print(n1[1]) print() print(n1[:, 1]) print() print(n1[:, 2]) print() # numpy matrix transpose n1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(n1) print() print(n1.transpose()) print() # numpy matrix multiplication n1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(n1) print() n2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]]) print(n2) print(n1.dot(n2)) print() print(n2.dot(n1)) print() # NumPy Save & Load import numpy as np n1 = np.array([10, 20, 30, 40, 50, 60]) np.save('my_numpy', n1) n2 = np.load('my_numpy.npy') print(n2) print() # Python Pandas one dimensional labels import pandas as pd s1 = pd.Series([1, 2, 3, 4, 5]) print(s1) print() print(type(s1)) print() # changing index import pandas as pd s1 = pd.Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"]) print(s1) print() # series objects from dictionary import pandas as pd s1 = pd.Series({'a': 10, 'b': 20, 'c': 30}) print(s1) print() # changing index import pandas as pd print(pd.Series(s1, index=['b', 'c', 'd', 'a'])) print() # extracting individual elements s1 = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9]) print(s1[3]) print() print(s1[:4]) print() print(s1[-3:]) print() # adding scalar value to the series elements print(s1 + 5) print() # adding two series elements s1 = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9]) s2 = pd.Series([10, 20, 30, 40, 50, 60, 70, 80, 90]) print(s1 + s2) print() # Pandas data frame import pandas as pd df = pd.DataFrame({"Name": ['Bob', 'Sam', 'Anne'], "Marks": [76, 25, 92]}) print(df) print() print(type(df)) # data frame in-build function iris =
pd.read_csv('Book1.csv')
pandas.read_csv
"""A module to help perform analyses on various observatioanl studies. This module was implemented following studies of M249, Book 1. Dependencies: - **scipy** - **statsmodels** - **pandas** - **numpy** """ from __future__ import annotations as _annotations import math as _math from scipy import stats as _st from statsmodels.stats import contingency_tables as _tables import pandas as _pd import numpy as _np def riskratio(obs: _np.ndarray, alpha: float = 0.05) -> _pd.DataFrame: """Return the point and (1-alpha)% confidence interval estimates for the relative risk. Args: alpha: Significance level for the confidence interval. Returns: Point and (1-alpha)% confidence interval estimates for\ the relative risk. """ z: float = _st.norm().ppf(1-alpha/2) a = obs[0, 1] n1: int = _np.sum(obs[0]) df = _pd.DataFrame(index=["riskratio", "stderr", "lower", "upper"]) # add the reference category results df["Exposed1 (-)"] = [1.0, 0.0, "NA", "NA"] # gather results from array for i in range(1, obs.shape[0]): # get exposure results c = obs[i, 1] n2: int = _np.sum(obs[i]) # calculate the risk ratio rr: float = (c/n2) / (a/n1) stderr: float = _math.sqrt((1/a - 1/n1) + (1/c - 1/n2)) ci: tuple[float, float] = ( rr * _math.exp(-z * stderr), rr * _math.exp(z * stderr) ) # append to df df[f"Exposed{i+1} (+)"] = [rr, stderr, ci[0], ci[1]] return df.T def oddsratio(obs: _np.ndarray, alpha: float = 0.05) -> _pd.DataFrame: """Return the point and (1-alpha)% confidence interval estimates for the odds ratio. Args: alpha: Significance level for the confidence interval. Returns: Point and (1-alpha)% confidence interval estimates for\ the odds ratio. """ # gather results z: float = _st.norm().ppf(1-alpha/2) a: float = obs[0, 0] b: float = obs[0, 1] df = _pd.DataFrame(index=["oddsratio", "stderr", "lower", "upper"]) # add the reference category results df["Exposed1 (-)"] = [1.0, 0.0, "NA", "NA"] # gather results from array for i in range(1, obs.shape[0]): # get exposure results c: float = obs[i, 0] d: float = obs[i, 1] # calculate the odds ratio or_: float = (a * d) / (b * c) stderr: float = _math.sqrt(1/a + 1/b + 1/c + 1/d) ci: tuple[float, float] =( or_ * _math.exp(-z * stderr), or_ * _math.exp(z * stderr) ) # append to df df[f"Exposed{i+1} (+)"] = [or_, stderr, ci[0], ci[1]] return df.T def expectedfreq(obs: _np.ndarray) -> _np.ndarray: """Return the expected frequencies from a contingency table under the hypothesis of no association. Returns: Expected frequencies. """ return _st.contingency.expected_freq(obs) def chisqcontribs(obs: _np.ndarray) -> _np.ndarray: """Return the chi-squared contributions for each observation used in a chi-squared test of no association. Returns: chi-squared contributions. """ exp = expectedfreq(obs) contribs = _np.divide(_np.square(obs-exp), exp) return contribs def chisqtest( obs: _np.ndarray) -> _pd.DataFrame: """Return the results of a chi-squared test of no association. Returns: Results of a chi-squared test of no association. """ res = _st.chi2_contingency(obs, correction=False) df = _pd.DataFrame(index=["chisq", "pval", "df"]) df["result"] = [res[0], res[1], res[2]] return df.T def aggregate(obs) -> _np.ndarray: """Return an aggregated array. """ agg: _np.ndarray = _np.empty((2, 2)) for table in obs: agg += table return agg def adjusted_oddsratio(obs: _np.ndarray, alpha: float = 0.05) -> _pd.DataFrame: """Return the point and (1-alpha)% confidence interval estimates for the adjusted odds ratio. It uses the Mantel-Haenszel odds ratio. Args: alpha: Significance level for the confidence interval. Returns: Point and (1-alpha)% confidence interval estimates for\ the adjusted odds ratio. """ strattable = _tables.StratifiedTable(obs.tolist()) est = strattable.oddsratio_pooled stderr = strattable.logodds_pooled_se ci = strattable.oddsratio_pooled_confint(alpha) """ elif isinstance(table, OneToOneMatched): est = table.table[0][1] /table.table[1][0] se = (1/table.table[0][1] + 1/table.table[1][0]) ** 0.5 zscore = _st.norm.ppf(1-alpha/2) ci = (est * _exp(-zscore * se), est * _exp(zscore * se)) else: "Not defined for table type." """ df = _pd.DataFrame(index=["oddsratio", "stderr", "lower", "upper"]) df["result"] = [est, stderr, ci[0], ci[1]] return df.T def crude_oddsratio(obs: _np.ndarray, alpha: float = 0.05) -> _pd.DataFrame: """Return the point and (1-alpha)% confidence interval estimates for the crude odds ratio. Args: alpha: Significance level for the confidence interval. Returns: Point and (1-alpha)% confidence interval estimates for\ the crude odds ratio. """ return oddsratio(aggregate(obs), alpha) def test_equalodds(obs: _np.ndarray) -> _pd.DataFrame: """Return the results test of the null hypothesis that the odds ratio is the same in all _k_ strata. This is the Tarone test. Args: adjust: If true, use the Tarone adjustment to achieve the chi^2\ asymptotic distribution. Returns: test statistic and the p-value. """ strattable = _tables.StratifiedTable(obs.tolist()) res = strattable.test_equal_odds(True) df =
_pd.DataFrame(index=["chisq", "pval"])
pandas.DataFrame
import pandas as pd import numpy as np import nltk from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from nltk.tokenize import RegexpTokenizer ##### Read data for 5 sample positions ########### req_ids = ["e3625ad", "39ee3f", "45de815" ,"40a2c38", "63146c6"] # read raw text data for embeddings job_text = pd.read_csv("data/cleaned_job.csv", index_col=0) resume_text = pd.read_csv("data/cleaned_resume.csv", index_col=0) # read structured job_features = pd.read_csv("Resume-Parser-JOBS/data/output/job_description_summary.csv") resume_features = pd.read_csv("data/resumes_5jobs.csv") # keep only the relevant positions and candidates job_text = job_text[job_text["Req ID"].isin(req_ids)] resume_text = resume_text[resume_text["Req ID"].isin(req_ids)] job_features = job_features[job_features.ReqID.isin(req_ids)] resume_features = resume_features[resume_features.ReqID.isin(req_ids)] ##### one hot encode the structured features ##### ### for jobs ### # drop unused columns drop_cols = ['GPA', 'courses', 'hobbies', 'email' , 'phone','Education', 'Extracurriculars' ,'Language', 'Work', 'Summaries', 'Skill' , 'Member', 'Writing', 'Researching' , 'Honor', 'Activity'] job_features.drop(drop_cols, inplace=True, axis=1) df = job_features hot = df[['ReqID']] #honor_societies df.honor_societies.fillna('', inplace=True) hot['HonorSociety'] = df.honor_societies.apply(lambda x: 1 if len(x) > 2 else 0) #latin_honors df.latin_honors.fillna('', inplace=True) hot['LatinHonors'] = df.latin_honors.apply(lambda x: 1 if len(x) > 2 else 0) #scholarships_awards df.scholarships_awards.fillna('', inplace=True) hot['ScholarshipsAward'] = df.scholarships_awards.apply(lambda x: 1 if len(x) > 2 else 0) #schools df.community_college.fillna('', inplace=True) hot['CommCollege'] = df.community_college.apply(lambda x: 1 if len(x) > 2 else 0) df.other_universities.fillna('', inplace=True) hot['OtherUni'] = df.other_universities.apply(lambda x: 1 if len(x) > 2 else 0) df.top_100_universities.fillna('', inplace=True) hot['Top100Uni'] = df.top_100_universities.apply(lambda x: 1 if len(x) > 2 else 0) df.top_10_universities.fillna('', inplace=True) hot['Top10Uni'] = df.top_10_universities.apply(lambda x: 1 if len(x) > 2 else 0) #degrees df.associate_education_level.fillna('', inplace=True) hot['Associates'] = df.associate_education_level.apply(lambda x: 1 if len(x) > 2 else 0) df.bachelor_education_level.fillna('', inplace=True) hot['Bachelors'] = df.bachelor_education_level.apply(lambda x: 1 if len(x) > 2 else 0) df.master_education_level.fillna('', inplace=True) hot['Masters'] = df.master_education_level.apply(lambda x: 1 if len(x) > 2 else 0) df.doctor_education_level.fillna('', inplace=True) hot['Doctors'] = df.doctor_education_level.apply(lambda x: 1 if len(x) > 2 else 0) #companies df.company_foodbev.fillna('', inplace=True) hot['FoodBev'] = df.company_foodbev.apply(lambda x: 1 if len(x) > 2 else 0) df.company_consumer.fillna('', inplace=True) hot['Consumer'] = df.company_consumer.apply(lambda x: 1 if len(x) > 2 else 0) df.company_energychem.fillna('', inplace=True) hot['EnergyChem'] = df.company_energychem.apply(lambda x: 1 if len(x) > 2 else 0) df.company_fin.fillna('', inplace=True) hot['Fin'] = df.company_fin.apply(lambda x: 1 if len(x) > 2 else 0) df.company_health.fillna('', inplace=True) hot['HealthMed'] = df.company_health.apply(lambda x: 1 if len(x) > 2 else 0) df.company_industrial.fillna('', inplace=True) hot['Industrial'] = df.company_industrial.apply(lambda x: 1 if len(x) > 2 else 0) df.company_tech.fillna('', inplace=True) hot['Tech'] = df.company_tech.apply(lambda x: 1 if len(x) > 2 else 0) df.company_services.fillna('', inplace=True) hot['Services'] = df.company_services.apply(lambda x: 1 if len(x) > 2 else 0) df.company_other.fillna('', inplace=True) hot['OtherCo'] = df.company_other.apply(lambda x: 1 if len(x) > 2 else 0) # ONE HOT ENCODING - EXPLODING COLUMNS import yaml with open('Resume-Parser-master-new/confs/config.yaml', 'r') as stream: yaml_file = yaml.safe_load(stream) #certifications df.certifications.fillna('', inplace=True) for item in yaml_file['case_agnostic_whole_resume']['certifications']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.certifications.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #soft_skills df.soft_skills.fillna('', inplace=True) for item in yaml_file['case_agnostic_whole_resume']['soft_skills']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.soft_skills.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #major_minor df.major_minor.fillna('', inplace=True) for item in yaml_file['case_agnostic_education']['major_minor']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.major_minor.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #languages df.languages.fillna('', inplace=True) for item in yaml_file['case_agnostic_languages']['languages']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.languages.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #technical_skills df.technical_skills.fillna('', inplace=True) for item in yaml_file['case_agnostic_skill']['technical_skills']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.technical_skills.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) job_dummies = hot ### for resumes ### # drop unused columns drop_cols = ['GPA', 'courses', 'hobbies', 'email', 'phone' ,'Education', 'Extracurriculars','Language', 'Work' , 'Summaries', 'Skill', 'Member', 'Writing', 'Researching' , 'Honor', 'Activity'] resume_features.drop(drop_cols, inplace=True, axis=1) df = resume_features #ONE HOT ENCODING hot = df[['ReqID', 'CanID']] #honor_societies df.honor_societies.fillna('', inplace=True) hot['HonorSociety'] = df.honor_societies.apply(lambda x: 1 if len(x) > 2 else 0) #latin_honors df.latin_honors.fillna('', inplace=True) hot['LatinHonors'] = df.latin_honors.apply(lambda x: 1 if len(x) > 2 else 0) #scholarships_awards df.scholarships_awards.fillna('', inplace=True) hot['ScholarshipsAward'] = df.scholarships_awards.apply(lambda x: 1 if len(x) > 2 else 0) #schools df.community_college.fillna('', inplace=True) hot['CommCollege'] = df.community_college.apply(lambda x: 1 if len(x) > 2 else 0) df.other_universities.fillna('', inplace=True) hot['OtherUni'] = df.other_universities.apply(lambda x: 1 if len(x) > 2 else 0) df.top_100_universities.fillna('', inplace=True) hot['Top100Uni'] = df.top_100_universities.apply(lambda x: 1 if len(x) > 2 else 0) df.top_10_universities.fillna('', inplace=True) hot['Top10Uni'] = df.top_10_universities.apply(lambda x: 1 if len(x) > 2 else 0) #degrees df.associate_education_level.fillna('', inplace=True) hot['Associates'] = df.associate_education_level.apply(lambda x: 1 if len(x) > 2 else 0) df.bachelor_education_level.fillna('', inplace=True) hot['Bachelors'] = df.bachelor_education_level.apply(lambda x: 1 if len(x) > 2 else 0) df.master_education_level.fillna('', inplace=True) hot['Masters'] = df.master_education_level.apply(lambda x: 1 if len(x) > 2 else 0) df.doctor_education_level.fillna('', inplace=True) hot['Doctors'] = df.doctor_education_level.apply(lambda x: 1 if len(x) > 2 else 0) #companies df.company_foodbev.fillna('', inplace=True) hot['FoodBev'] = df.company_foodbev.apply(lambda x: 1 if len(x) > 2 else 0) df.company_consumer.fillna('', inplace=True) hot['Consumer'] = df.company_consumer.apply(lambda x: 1 if len(x) > 2 else 0) df.company_energychem.fillna('', inplace=True) hot['EnergyChem'] = df.company_energychem.apply(lambda x: 1 if len(x) > 2 else 0) df.company_fin.fillna('', inplace=True) hot['Fin'] = df.company_fin.apply(lambda x: 1 if len(x) > 2 else 0) df.company_health.fillna('', inplace=True) hot['HealthMed'] = df.company_health.apply(lambda x: 1 if len(x) > 2 else 0) df.company_industrial.fillna('', inplace=True) hot['Industrial'] = df.company_industrial.apply(lambda x: 1 if len(x) > 2 else 0) df.company_tech.fillna('', inplace=True) hot['Tech'] = df.company_tech.apply(lambda x: 1 if len(x) > 2 else 0) df.company_services.fillna('', inplace=True) hot['Services'] = df.company_services.apply(lambda x: 1 if len(x) > 2 else 0) df.company_other.fillna('', inplace=True) hot['OtherCo'] = df.company_other.apply(lambda x: 1 if len(x) > 2 else 0) #ONE HOT ENCODING - EXPLODING COLUMNS with open('Resume-Parser-master-new/confs/config.yaml', 'r') as stream: yaml_file = yaml.safe_load(stream) #certifications df.certifications.fillna('', inplace=True) for item in yaml_file['case_agnostic_whole_resume']['certifications']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.certifications.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #soft_skills df.soft_skills.fillna('', inplace=True) for item in yaml_file['case_agnostic_whole_resume']['soft_skills']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.soft_skills.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #major_minor df.major_minor.fillna('', inplace=True) for item in yaml_file['case_agnostic_education']['major_minor']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.major_minor.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #languages df.languages.fillna('', inplace=True) for item in yaml_file['case_agnostic_languages']['languages']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.languages.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) #technical_skills df.technical_skills.fillna('', inplace=True) for item in yaml_file['case_agnostic_skill']['technical_skills']: if type(item) == list: search_term = item[0].replace('\\x20','').replace(' ','') col_name = item[1].replace('\\x20','').replace(' ','') else: search_term = item.replace('\\x20','').replace(' ','') col_name = search_term hot[col_name] = df.technical_skills.apply(lambda x: 1 if x.find(search_term) >= 0 else 0) empty_cols = [] for i in hot.columns[2:]: if sum(hot[i]) == 0: empty_cols.append(i) resume_dummies = hot ##### text embedding(Count)######### ### a function to repeat the process def GenerateCountEmbedding(req_id, job_text_df, resume_text_df): pos_jd_text = job_text[job_text["Req ID"]==req_id] pos_resume_text = resume_text[resume_text["Req ID"]==req_id] pos_jd_text.rename(columns = {'Req ID':'ID', 'Job Description':'text'}, inplace=True) pos_jd_text.ID = req_id pos_jd_text = pos_jd_text[['ID', 'text']] pos_resume_text.rename(columns = {'Candidate ID':'ID', 'Resume Text':'text'}, inplace=True) pos_resume_text = pos_resume_text[['ID', 'text']] #append to same df df = pos_jd_text.append(pos_resume_text) df.set_index('ID', inplace=True) # join words and vectorize tokenizer = RegexpTokenizer(r'\w+') df['text'] = df['text'].apply(lambda x: tokenizer.tokenize(x)) df['text'] = df['text'].apply(lambda x: ' '.join(x)) count = CountVectorizer() pos_embedding = count.fit_transform(df['text']) pos_embedding = pd.DataFrame(pos_embedding.toarray()) pos_embedding.insert(loc=0, column="ID", value=df.index) return pos_embedding ### for position e3625ad pos1_embedding = GenerateCountEmbedding("e3625ad", job_text , resume_text) ### for position "39ee3f" pos2_embedding = GenerateCountEmbedding("39ee3f", job_text , resume_text) ### for position "45de815" pos3_embedding = GenerateCountEmbedding("45de815", job_text , resume_text) ### for position "40a2c38" pos4_embedding = GenerateCountEmbedding("40a2c38", job_text , resume_text) ### for position "63146c6" pos5_embedding = GenerateCountEmbedding("63146c6", job_text , resume_text) ##### embeddings TFIDF ##### def GenerateTfidfEmbedding(req_id, job_text_df, resume_text_df): pos_jd_text = job_text[job_text["Req ID"]==req_id] pos_resume_text = resume_text[resume_text["Req ID"]==req_id] pos_jd_text.rename(columns = {'Req ID':'ID', 'Job Description':'text'}, inplace=True) pos_jd_text.ID = req_id pos_jd_text = pos_jd_text[['ID', 'text']] pos_resume_text.rename(columns = {'Candidate ID':'ID', 'Resume Text':'text'}, inplace=True) pos_resume_text = pos_resume_text[['ID', 'text']] #append to same df df = pos_jd_text.append(pos_resume_text) df.set_index('ID', inplace=True) # join words and vectorize tokenizer = RegexpTokenizer(r'\w+') df['text'] = df['text'].apply(lambda x: tokenizer.tokenize(x)) df['text'] = df['text'].apply(lambda x: ' '.join(x)) tfidf = TfidfVectorizer() tfidf_embedding = tfidf.fit_transform(df['text']) tfidf_embedding = pd.DataFrame(tfidf_embedding.toarray()) tfidf_embedding.insert(loc=0, column="ID", value=df.index) return tfidf_embedding ### for position "e3625ad" pos1_tfidf = GenerateTfidfEmbedding("e3625ad", job_text , resume_text) ### for position "39ee3f" pos2_tfidf = GenerateTfidfEmbedding("39ee3f", job_text , resume_text) ### for position "45de815" pos3_tfidf = GenerateTfidfEmbedding("45de815", job_text , resume_text) ### for position "40a2c38" pos4_tfidf = GenerateTfidfEmbedding("40a2c38", job_text , resume_text) ### for position "63146c6" pos5_tfidf = GenerateTfidfEmbedding("63146c6", job_text , resume_text) ##### combining embedding with dummies ######## # list(set(list(resume_dummies.columns))-set(list(job_dummies.columns))) #rename their index column resume_dummies.rename(columns = {'CanID':'ID'}, inplace=True) resume_dummies.drop(["ReqID"], inplace=True, axis=1) job_dummies.rename(columns = {'ReqID':'ID'}, inplace=True) all_dummies = pd.concat([resume_dummies, job_dummies]) ### Combine with Count embedding ### pos1_full_count = pd.DataFrame(pos1_embedding).merge(all_dummies , how="left" , on="ID") pos1_full_count.drop_duplicates(subset="ID", inplace=True) pos1_full_count = pos1_full_count.fillna(value=0) pos2_full_count = pd.DataFrame(pos2_embedding).merge(all_dummies , how="left" , on="ID") pos2_full_count.drop_duplicates(subset="ID", inplace=True) pos2_full_count = pos2_full_count.fillna(value=0) pos3_full_count = pd.DataFrame(pos3_embedding).merge(all_dummies , how="left" , on="ID") pos3_full_count.drop_duplicates(subset="ID", inplace=True) pos3_full_count = pos3_full_count.fillna(value=0) pos4_full_count = pd.DataFrame(pos4_embedding).merge(all_dummies , how="left" , on="ID") pos4_full_count.drop_duplicates(subset="ID", inplace=True) pos4_full_count = pos4_full_count.fillna(value=0) pos5_full_count = pd.DataFrame(pos5_embedding).merge(all_dummies , how="left" , on="ID") pos5_full_count.drop_duplicates(subset="ID", inplace=True) pos5_full_count = pos5_full_count.fillna(value=0) ### Combine with TFIDF embedding ### pos1_full_tfidf = pos1_tfidf.merge(all_dummies , how="left" , on="ID") pos1_full_tfidf.drop_duplicates(subset="ID", inplace=True) pos1_full_tfidf = pos1_full_tfidf.fillna(value=0) pos2_full_tfidf = pos2_tfidf.merge(all_dummies , how="left" , on="ID") pos2_full_tfidf.drop_duplicates(subset="ID", inplace=True) pos2_full_tfidf = pos2_full_tfidf.fillna(value=0) pos3_full_tfidf = pos3_tfidf.merge(all_dummies , how="left" , on="ID") pos3_full_tfidf.drop_duplicates(subset="ID", inplace=True) pos3_full_tfidf = pos3_full_tfidf.fillna(value=0) pos4_full_tfidf = pos4_tfidf.merge(all_dummies , how="left" , on="ID") pos4_full_tfidf.drop_duplicates(subset="ID", inplace=True) pos4_full_tfidf = pos4_full_tfidf.fillna(value=0) pos5_full_tfidf = pos5_tfidf.merge(all_dummies , how="left" , on="ID") pos5_full_tfidf.drop_duplicates(subset="ID", inplace=True) pos5_full_tfidf = pos5_full_tfidf.fillna(value=0) ##### Run Cos Sim and rank the candidates ##### # define function for returning recommended resume ID's based on Job Description def RecommendTopTen(jobID, full_df): recommended_candidates = [] indices =
pd.Series(full_df["ID"])
pandas.Series
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected =
tm.makeTimeDataFrame(100064, "S")
pandas.util.testing.makeTimeDataFrame
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if not _np_version_under1p7 or isinstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.isin(_DATELIKE_DTYPES).any()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if any([ isinstance(v,Timestamp) for v in values ]) else False return Series(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.tools.merge import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if isinstance(res, Series): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.append(group) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index concatenated = concat(applied, join_axes=[concat_index], axis=self.axis, verify_integrity=False) concatenated.sort_index(inplace=True) return concatenated def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed DataFrame on each group and return a DataFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) """ # try to do a fast transform via merge if possible try: obj = self._obj_with_exclusions if isinstance(func, compat.string_types): result = getattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = getattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remap index based on the grouper # and broadcast it if ((not isinstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or len(result.index) != len(obj.index)): results = obj.values.copy() for (name, group), (i, row) in zip(self, result.iterrows()): indexer = self._get_index(name) results[indexer] = np.tile(row.values,len(indexer)).reshape(len(indexer),-1) return DataFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can merge the result in # GH 7383 names = result.columns result = obj.merge(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if isinstance(func, compat.string_types): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we get the same results if res.shape == res_fast.shape: res_r = res.values.ravel() res_fast_r = res_fast.values.ravel() mask =
notnull(res_r)
pandas.core.common.notnull
#importing libraries import numpy as np import pandas as pd import math import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats from sklearn import preprocessing from sklearn.preprocessing import LabelEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics #loading dataset dataset = pd.read_csv('Crimes_2001_to_2022.csv',low_memory=False) dataset.head(10) # dataset.dtypes # droping the features that are not usefull dataset=dataset.drop(columns=['ID','Case Number','Description','Updated On','Block']) #for checking the shape of dataset # X.shape print('Columns in dataset: ', dataset.columns) #Checking the shape of dataset print('Displaying the shape of dataset',dataset.shape) # droping the null value enteries drop null dataset.dropna(inplace=True) # Displaying DataSet print('Displaying DataSet after removing null values',dataset) # Before removing Null values 1048575 # After removing Null value 1015247 # Total Null values removed 33328 # ignore latitude and logitude outside of the chicago dataset=dataset[(dataset["Latitude"] < 45) & (dataset["Latitude"] > 40) & (dataset["Longitude"] < -85) & (dataset["Longitude"] > -90)] # Displaying DataSet print('Displaying DataSet',dataset) # listing the crimes category wise with their counts types=dataset['Primary Type'].value_counts().sort_values(ascending=False) # Displaying types print('Displaying types',types) # crime types according to their counts in dataframe # 15 classes # major_crimes=['THEFT','BATTERY','CRIMINAL DAMAGE','ASSAULT','OTHER OFFENSE','DECEPTIVE PRACTICE','NARCOTICS', # 'BURGLARY','MOTOR VEHICLE THEFT','ROBBERY','CRIMINAL TRESPASS','WEAPONS VIOLATION','OFFENSE INVOLVING CHILDREN', # 'PUBLIC PEACE VIOLATION','CRIM SEXUAL ASSAULT'] # 8 classes # storing major crime types according to their counts in dataframe # major_crimes=['THEFT','BATTERY','CRIMINAL DAMAGE','ASSAULT','OTHER OFFENSE','DECEPTIVE PRACTICE','NARCOTICS','BURGLARY'] # major crime time #---> Storing Major Crimes major_crimes=['THEFT','BATTERY','CRIMINAL DAMAGE','ASSAULT'] # Displaying major_crimes crime_df = dataset.loc[dataset['Primary Type'] .isin(major_crimes)] print('Displaying major_crimes',crime_df) # since we dont have different crimes in early years so we drop data of these years data = crime_df.pivot_table(index='Year', columns='Primary Type', aggfunc='count') print(data) # selecting the dataset which starts from 2015 crime_df=crime_df[crime_df['Year']>=2015] # Displaying major_crimes from 2015 print('Displaying major_crimes from 2015',crime_df) temp=crime_df.copy() temp # getting the half of our data set for random data selection nrows= temp.shape[0] portion=math.floor(nrows/3) # Displaying this portion size print('Displaying this portion size',portion) # First half of the data first=temp.iloc[0:portion,:] # Displaying the first half shape print('Displaying the first half shape',first.shape) # Second half of the data nextp=portion+portion+1 scnd=temp.iloc[(portion+1):nextp,:] # Displaying the second half shape print('Displaying the second half shape',scnd.shape) #Third half of the data finalp=nextp+portion+1 third=temp.iloc[(nextp+1):finalp,:] # Displaying the third half shape print('Displaying the third half shape',third.shape) # picking random 80k enteries from the first half index=np.random.choice(portion,replace=False,size = 80000) df_frst=first.iloc[index] # displaying the first patch shape print('Displaying the first patch shape',df_frst.shape) # Drawing the boxplot to check outlying values sns.set_theme(style="whitegrid") ax = sns.boxplot(x=df_frst["Ward"]) # picking random 80k enteries from the second half index=np.random.choice(portion,replace=False,size = 80000) df_scnd=scnd.iloc[index] # displaying the second patch print('Displaying the second patch',df_scnd) # picking random 80k enteries from the third half index=np.random.choice(portion,replace=False,size = 80000) df_third=third.iloc[index] # displaying the third patch print('Displaying the third patch',df_third) # combined all three dataframe temp_df =
pd.concat([df_frst,df_scnd],ignore_index=True)
pandas.concat
import numpy as np import pandas as pd import io import urllib.request import requests import camelot from beis_indicators import project_dir def download_data(): travel_to_work_2016 = 'https://www.ons.gov.uk/file?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/adhocs/007252averagehometoworktraveltimeages16andoverocttodec2016/2017update.xls' travel_to_work_2017 = 'https://www.ons.gov.uk/file?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/adhocs/006022averagehometoworktraveltimeages16plusocttodec2015/2018updateod17data.xls' travel_to_work_2018 = 'https://www.ons.gov.uk/file?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/adhocs/010202averagehometoworktraveltimeage16yearsandoverukoctobertodecember2018/averagehometoworktraveltimes16plusod18.xls' resp_16 = requests.get(travel_to_work_2016) resp_17 = requests.get(travel_to_work_2017) resp_18 = requests.get(travel_to_work_2018) output_16 = open(f'{project_dir}/data/raw/travel/travel_to_work_2016.xls', 'wb') output_17 = open(f'{project_dir}/data/raw/travel/travel_to_work_2017.xls', 'wb') output_18 = open(f'{project_dir}/data/raw/travel/travel_to_work_2018.xls', 'wb') output_16.write(resp_16.content) output_17.write(resp_17.content) output_18.write(resp_18.content) output_16.close() output_17.close() output_18.close() def load_updated_codes(): file = "https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/populationandmigration/migrationwithintheuk/methodologies/interalmigrationmethodology/internalmigrationmethodology2016.pdf" tables = camelot.read_pdf(file, pages = "15-end") changes_1 = pd.concat([tables[0].df,tables[1].df]).iloc[1:] changes_1[0] = changes_1[0].apply(lambda x: x.replace('\n', '')) changes_1[1] = changes_1[1].apply(lambda x: x.replace('\n', '')) changes_1[2] = changes_1[2].apply(lambda x: x.replace('\n', '')) changes_1[3] = changes_1[3].apply(lambda x: x.replace('\n', '')) changes_2 = pd.concat([tables[2].df,tables[3].df]).drop([0,0]) changes_2[0] = changes_2[0].apply(lambda x: x.replace('\n', '')) changes_2[1] = changes_2[1].apply(lambda x: x.replace('\n', '')) changes_2[2] = changes_2[2].apply(lambda x: x.replace('\n', '')) convert_dict = dict(zip(changes_1[2], changes_1[3])) return convert_dict.update(dict(zip(changes_2[1], changes_2[2]))) def get_travel_work_data(): download_data() xl_16 = pd.ExcelFile(f'{project_dir}/data/raw/travel/travel_to_work_2016.xls') xl_17 = pd.ExcelFile(f'{project_dir}/data/raw/travel/travel_to_work_2017.xls') xl_18 = pd.ExcelFile(f'{project_dir}/data/raw/travel/travel_to_work_2018.xls') df_16 = xl_16.parse('OD16').drop('Office For National Statistics', axis=1) df_17 = xl_17.parse('OD17').drop('Office For National Statistics', axis=1) df_18 = xl_18.parse('OD18').drop('Office For National Statistics', axis=1) df_16.columns = ['UALADGB UA / LAD of residence', 'Mean'] df_17.columns = ['UALADGB UA / LAD of residence', 'Mean'] df_18.columns = ['UALADGB UA / LAD of residence', 'Mean'] df_16 = df_16[9:419].reset_index(drop=True) df_17 = df_17[9:419].reset_index(drop=True) df_18 = df_18[9:419].reset_index(drop=True) # print(df_16.head()) df_16['Code'] = df_16['UALADGB UA / LAD of residence'].apply(lambda x: x.strip().split(" ",1)[0]) df_16['LAD'] = df_16['UALADGB UA / LAD of residence'].apply(lambda x: x.strip().split(" ",1)[1]) df_17['Code'] = df_17['UALADGB UA / LAD of residence'].apply(lambda x: x.strip().split(" ",1)[0]) df_17['LAD'] = df_17['UALADGB UA / LAD of residence'].apply(lambda x: x.strip().split(" ",1)[1]) df_18['Code'] = df_18['UALADGB UA / LAD of residence'].apply(lambda x: x.strip().split(" ",1)[0]) df_18['LAD'] = df_18['UALADGB UA / LAD of residence'].apply(lambda x: x.strip().split(" ",1)[1]) del df_16['UALADGB UA / LAD of residence'] del df_17['UALADGB UA / LAD of residence'] del df_18['UALADGB UA / LAD of residence'] df_16['Code'] = df_16['Code'].apply(lambda x: ('00'+ x) if len(x) <= 2 else x) df_17['Code'] = df_17['Code'].apply(lambda x: ('00'+ x) if len(x) <= 2 else x) df_18['Code'] = df_18['Code'].apply(lambda x: ('00'+ x) if len(x) <= 2 else x) equivs =
pd.read_csv(f'{project_dir}/data/aux/equivalents_regions.csv',encoding='cp1252')
pandas.read_csv
from helper import * import pandas as pd import os import glob import re import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import numpy as np from sklearn.decomposition import PCA from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.metrics import mean_squared_error import warnings warnings.filterwarnings("ignore") def test_feat(cond, df, cols, p, df_u): unseen = '' if cond =='unseen': unseen = 'unseen' # col is feauture comb # p is for loss or latency # 1: loss # 2 : latency #print(df.columns) X = df[cols] X2 = df_u[cols] if p == 1: y = df.loss y2 = df_u.loss if p == 2: y = df.latency y2 = df_u.latency # randomly split into train and test sets, test set is 80% of data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=1) if unseen == 'unseen': X_test = X2 y_test = y2 clf = DecisionTreeRegressor() clf = clf.fit(X_train,y_train) y_pred = clf.predict(X_test) acc1 = mean_squared_error(y_test, y_pred) clf2 = RandomForestRegressor(n_estimators=10) clf2 = clf2.fit(X_train,y_train) y_pred2 = clf2.predict(X_test) acc2= mean_squared_error(y_test, y_pred2) #print("Random Forest Accuracy:", acc2, '\n') clf3 = ExtraTreesRegressor(n_estimators=10) clf3 = clf3.fit(X_train,y_train) y_pred3 = clf3.predict(X_test) acc3= mean_squared_error(y_test, y_pred3) #print("Extra Trees Accuracy:", acc3, '\n') pca = PCA() X_transformed = pca.fit_transform(X_train) cl = DecisionTreeRegressor() cl.fit(X_transformed, y_train) newdata_transformed = pca.transform(X_test) y_pred4 = cl.predict(newdata_transformed) acc4 = mean_squared_error(y_test, y_pred4) #print("PCA Accuracy:", acc4, '\n') return [acc1, acc2, acc3, acc4 ] def getAllCombinations( cond_): lst = ['total_bytes','max_bytes','proto', "1->2Bytes",'2->1Bytes' ,'1->2Pkts','2->1Pkts','total_pkts','number_ms', 'pkt_ratio','time_spread', 'pkt sum','longest_seq' ,'total_pkt_sizes'] lst1 = ["max_bytes", "longest_seq", "total_bytes"] lst2 = ["total_pkts", "number_ms", "byte_ratio"] if cond_ == 1: lst = lst1 if cond_ == 2: lst = lst2 uniq_objs = set(lst) combinations = [] for obj in uniq_objs: for i in range(0,len(combinations)): combinations.append(combinations[i].union([obj])) combinations.append(set([obj])) print("all combinations generated") return combinations def test_mse(cond, all_comb1, all_comb2): unseen = '' if cond =='unseen': unseen = 'unseen' filedir_unseen = os.path.join(os.getcwd(), "outputs", unseen + "combined_t_latency.csv") df_unseen =
pd.read_csv(filedir_unseen)
pandas.read_csv
"""Utilities for solving geodesic equation """ import itertools import typing from collections import namedtuple import numpy import pandas import sympy from scipy import integrate from pystein import metric, curvature, utilities class Solution: def __init__(self, soln: typing.List[sympy.Eq], vec_funcs: typing.List[sympy.Function], param: sympy.Symbol, curve: typing.List[sympy.Expr], g: metric.Metric, eqns: typing.List[sympy.Eq]): self.soln = soln self._vec_funcs = vec_funcs self._param = param self._curve = curve self._metric = g self.eqns = eqns def vec(self, val: sympy.Expr): cs = self._metric.coord_system.base_symbols() param_sub = {self._param: val} subs = [(c, func.subs(param_sub)) for c, func in zip(cs, self._curve)] subs += [(self._param, val)] return [self.soln[n].args[1].subs(subs) for n in range(len(self.soln))] def path_coord_func(coord, param): return sympy.Function(coord.name)(param) def vec_coord_func(coord, param): return sympy.Function('v^{{{}}}'.format(coord.name))(param) def parallel_transport_equation(mu: int, curve: typing.List[sympy.Function], param: sympy.Symbol, g: metric.Metric): base_symbols = g.coord_system.base_symbols() curve_subs = dict(zip(base_symbols, curve)) N = len(base_symbols) vec_coord_func_map = {s: vec_coord_func(s, param) for s in base_symbols} v_mu = vec_coord_func_map[base_symbols[mu]] lhs = sympy.diff(v_mu, param) for sig in range(N): x_sig = curve[sig] dx_sig_d_param = sympy.diff(x_sig, param) for rho in range(N): v_rho = vec_coord_func_map[base_symbols[rho]] c_sig_rho = curvature.christoffel_symbol_component(mu, sig, rho, metric=g) c_sig_rho = c_sig_rho.doit().subs(curve_subs) lhs += c_sig_rho * dx_sig_d_param * v_rho return lhs def parallel_transport_soln(param: sympy.Symbol, curve: typing.List[sympy.Expr], g: metric.Metric): bs = g.coord_system.base_symbols() # Vector v0 = sympy.Function('v^{{{}}}'.format(bs[0].name)) v1 = sympy.Function('v^{{{}}}'.format(bs[1].name)) lhs_0 = utilities.full_simplify(parallel_transport_equation(0, curve, param, g).doit()) lhs_1 = utilities.full_simplify(parallel_transport_equation(1, curve, param, g).doit()) eqns = [ sympy.Eq(lhs_0, 0), sympy.Eq(lhs_1, 0), ] funcs = [v0(param), v1(param)] # Initial Conditions ics = {v0(0): v0(0), v1(0): v1(0)} soln = sympy.dsolve(eqns, funcs, ics=ics) return Solution(soln, [v0, v1], param, curve, g, eqns) def geodesic_equation(mu: int, param, metric: metric.Metric): base_symbols = metric.coord_system.base_symbols() coord_func_map = {s: path_coord_func(s, param) for s in base_symbols} x_mu = coord_func_map[base_symbols[mu]] lhs = sympy.diff(sympy.diff(x_mu, param)) for rho, sig in itertools.product(range(len(base_symbols)), range(len(base_symbols))): x_rho = coord_func_map[base_symbols[rho]] x_sig = coord_func_map[base_symbols[rho]] c = curvature.christoffel_symbol_component(mu, rho, sig, metric=metric).subs(coord_func_map) lhs += c * sympy.diff(x_rho, param) * sympy.diff(x_sig, param) return lhs def numerical_geodesic(g: metric.Metric, init, ts): coords = g.coord_system.base_symbols() N = len(coords) param = sympy.symbols('lambda') lhss = [utilities.full_simplify(geodesic_equation(mu, param, metric=g)) for mu in range(N)] funcs = [sympy.Function(c.name)(param) for c in coords] sub_map = [(sympy.diff(sympy.diff(func, param), param), sympy.symbols('{}2'.format(func.name))) for func in funcs] + \ [(sympy.diff(func, param), sympy.symbols('{}1'.format(func.name))) for func in funcs] + \ [(func, sympy.symbols('{}0'.format(func.name))) for func in funcs] coord2_eqns = [sympy.solve(lhs.subs(sub_map), sympy.symbols('{}2'.format(func.name)))[0] for lhs, func in zip(lhss, funcs)] state_symbols = list(sympy.symbols(['{}0'.format(c.name) for c in coords])) + list(sympy.symbols(['{}1'.format(c.name) for c in coords])) dcoord1s = [sympy.lambdify(state_symbols, eqn) for eqn in coord2_eqns] def integrand(state, param): return [s for s in state[N:]] + [s(*state) for s in dcoord1s] res = integrate.odeint(integrand, init, ts) df = pandas.DataFrame(res[:, :N], columns=[c.name for c in coords]) return df def numerical_sampler(g: metric.Metric, ls: numpy.ndarray, init_point: tuple, tangent_scale: float = 1, num_angles: int = 12): dfs = [] for theta_0 in numpy.arange(0.0, 2 * numpy.pi, numpy.pi / num_angles): _df = numerical_geodesic(g, tuple(list(init_point) + [tangent_scale * numpy.cos(theta_0), tangent_scale * numpy.sin(theta_0)]), ls) _df = _df.assign(theta_0=theta_0) dfs.append(_df) return
pandas.concat(dfs, axis=0)
pandas.concat
import pandas as pd import numpy as np import pdb import sys import os ####################################### # creates validation table in CSV format # # this script assumes download of lake_surface_temp_preds.csv from # the data release (https://www.sciencebase.gov/catalog/item/60341c3ed34eb12031172aa6) # ########################################################## #load data df = pd.read_csv("lake_surface_temp_preds.csv") vals = df['wtemp_ERA5'].values[:] df['wtemp_ERA5'] = vals[:]+3.47 df['wtemp_ERA5b'] = vals[:] pdb.set_trace() site_ids = np.unique(df['site_id'].values) meta = pd.read_csv("../../metadata/lake_metadata.csv") meta = meta[meta['num_obs']>0] #calculate error per site # err_per_site_ea = [np.abs((df[df['site_id']==i_d]['wtemp_EALSTM']-df[df['site_id']==i_d]['wtemp_obs'])).mean()for i_d in site_ids] err_per_site_ea = [np.sqrt(((df[df['site_id']==i_d]['wtemp_EALSTM']-df[df['site_id']==i_d]['wtemp_obs'])**2).mean())for i_d in site_ids] err_per_site_LM = [np.sqrt(np.nanmean((df[df['site_id']==i_d]['wtemp_LM']-df[df['site_id']==i_d]['wtemp_obs'])**2)) for i_d in site_ids] err_per_site_e5 = [np.sqrt(((df[df['site_id']==i_d]['wtemp_ERA5']-df[df['site_id']==i_d]['wtemp_obs'])**2).mean())for i_d in site_ids] err_per_site_e5b = [np.sqrt(((df[df['site_id']==i_d]['wtemp_ERA5b']-3.46-df[df['site_id']==i_d]['wtemp_obs'])**2).mean())for i_d in site_ids] err_per_site =
pd.DataFrame()
pandas.DataFrame
import traceback from pathlib import Path from operator import itemgetter import shlex import os import sys import time import cv2 import numpy as np import subprocess import requests import json import pydicom from pydicom.dataset import Dataset import pytesseract from PIL import Image, ImageDraw, ImageFont import pandas as pd import socket from multiprocessing import Process, Queue import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.image import MIMEImage from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, DateTime from sqlalchemy.orm import sessionmaker from sqlalchemy.sql import exists from datetime import datetime from datetime import timedelta, date from kombu import Connection, Exchange, Queue, Producer from kombu.pools import connections import uuid import threading import math import slidingwindow as sw import mxnet as mx import gluoncv as gcv from mxnet import gluon, nd, image, autograd from mxnet.gluon.data.vision import transforms from gluoncv import utils from gluoncv.model_zoo import get_model from gluoncv.utils import viz from matplotlib import pyplot as plt import redis NODE_LIST = [] NODE_LIST.append('localhost') ### uncomment and edit following parts if clustering is needed #NODE_LIST.append('172.16.31.10') #NODE_LIST.append('172.16.58.3') #NODE_LIST.append('172.16.31.10') HOST_IP_ADDRESS = '172.16.31.10' WEB_PORT = 5002 TEXT_MODEL = './frozen_east_text_detection.pb' ANATOMY_MODEL = './anatomy_classification.params' MARKER_MODEL = './marker_detection.params' DICOM_DIR = '/app_cache/dicom' SMTP_RELAY_SERVER = 'YOUR_SMTP_RELAY_SERVER_IP' EMAIL_RECIPIENT_LIST = ['<EMAIL>', '<EMAIL>'] # redis_client_list = [] # local_redis = None # for item in NODE_LIST: # redisClient = redis.StrictRedis(host=item, port=6379, db=0) # redis_client_list.append(redisClient) # if item == 'localhost': # local_redis = redisClient Base = declarative_base() class False_Annotation(Base): __tablename__ = 'false_annotation' Id = Column(Integer, autoincrement=True, primary_key=True) Record_Date_Time = Column(DateTime, nullable=False,default=datetime.now) Msg_ID = Column(String) Accession_Number = Column(String) Patient_Name = Column(String) Exam_Room = Column(String) SOP_Instance_UID = Column(String) Problem_Detail = Column(String) User_Reply = Column(String) class Received_Image(Base): __tablename__ = "received_image" Id = Column(Integer, primary_key=True) Record_Date_Time = Column(DateTime, nullable=False,default=datetime.now) Station_Name = Column(String) Accession_Number = Column(String) SOP_Instance_UID = Column(String) Study_Description = Column(String) Flip = Column(String) Anatomy_Detected = Column(String) Digital_Marker_Used = Column(String) Physical_Marker_Used = Column(String) Remarks = Column(String) class Program_Error(Base): __tablename__ = 'program_error' Id = Column(Integer, autoincrement=True, primary_key=True) Record_Date_Time = Column(DateTime, nullable=False,default=datetime.now) Error_Detail = Column(String) class Order_Detail(Base): __tablename__ = 'order_detail' Id = Column(Integer, autoincrement=True, primary_key=True) Record_Date_Time = Column(DateTime, nullable=False,default=datetime.now) Accession_Number = Column(String) Region = Column(String) Laterality = Column(String) Radiologist_Name = Column(String) Urgency = Column(String) Order_Control = Column(String) Order_Number = Column(String) Order_Status = Column(String) Exam_Room = Column(String) engine = create_engine('postgresql://rad:rad@localhost:5432/rad_db') #engine = create_engine('sqlite:////home/rad/app/DR_Warnings/server/web_server/warning_web_server/web_server.db') Base.metadata.create_all(bind=engine) Session = sessionmaker(bind=engine) session = Session() class DicomImageAnalyzer: def __init__(self): self.img = None text_detection_model = TEXT_MODEL anatomy_classification_model = ANATOMY_MODEL marker_detection_model = MARKER_MODEL dir_path = Path(__file__).parent.absolute() self.UpperExtrimityList = ['HAND','WRIST','FOREARM','ELBOW','HUMERUS','SHOULDER','FINGER'] self.LowerExtrimityList = ['FOOT','ANKLE','LEG','LEG','FEMUR','TOES','KNEE','HIP','CALCANEUM'] self.TrunkList = ['CHEST', 'ABDOMEN'] template_folder = str(dir_path) + '/marker_templates/' list_marker = [] for subdir, dirs, files in os.walk(template_folder): for f in files: manufacturer_name = subdir.replace(template_folder, '') marker_name = os.path.splitext(f)[0] template_img = cv2.imread(os.path.join(subdir,f), cv2.IMREAD_GRAYSCALE) temp_h, temp_w = template_img.shape[:2] dict_template = {'manufacturer_name':manufacturer_name,'name': manufacturer_name + '_' + marker_name, 'width': temp_w, 'image': template_img} list_marker.append(dict_template) self.marker = sorted(list_marker, key=itemgetter('width'), reverse=True) print('Starting DicomImageAnalyzer') # Load text detection network with opencv self.text_detection_net = cv2.dnn.readNet(text_detection_model) # load anatomy classification network with gluoncv anatomy_classes_df =
pd.read_csv('anatomy_classes.csv')
pandas.read_csv
# -*- coding: utf-8 -*- # # Copyright (c) 2018 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). """ Created on Thu Aug 30 15:30:28 2018 @author: """ import os import codecs import datetime try: import pandas as pd except: pass from .. import mappinglib as mapping class CodeList(dict): def __init__(self, file_path=False): if not file_path: file_path = os.path.dirname(os.path.abspath(__file__)) + '/ices_codelist.txt' self.file_path = file_path self.df =
pd.read_csv(file_path, sep='\t', encoding='cp1252', dtype=str)
pandas.read_csv
import sys import os import datetime import time import math from functions import * from PyQt5 import QtCore, QtGui, QtWidgets, uic from PyQt5.QtWidgets import QInputDialog, QLineEdit, QFileDialog, QGridLayout from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSignal #from PyQt5 import QtCore, QtGui, QtWidgets, uic #from PyQt5.QtGui import QFileDialog import pandas import pandasql import sqlite3 from sqlite3 import Error import sqlparse import math import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import ( NavigationToolbar2QT as NavigationToolbar ) class Window(QtWidgets.QWidget): def __init__(self): super().__init__() self.dlg = None self.init_ui() self.dataBase = None self.dataBaseRef = None self.dataBaseTar = None self.dynamicDataBase = None self.dynamicTargetDatabase = None self.dynamicReferenceDatabase = None self.preview = None self.recommendations = None self.dimensions = None self.measures = None self.conn1 = None self.conn2 = None self.conn3 = None self.dynaConn = None self.dynaConnTarget = None self.dynaConnReference = None self.cur1 = None self.cur2 = None self.cur3 = None self.dynaCursor = None self.dynaConnTargetCursor = None self.dynaConnReferenceCursor = None self.allViews = None self.toolBar = None self.fileName = None self.query = None self.houseId = None self.threadClass1 = None self.threadRunning = False self.targetDatabaseCondition = None self.currentVisualIndex = 0 self.maxIndex = None self.runAtLeastOnce = False self.dlg.myConsole.setFontPointSize(8) self.dlg.myConsole.setText(self.dlg.myConsole.toPlainText() + "\n") def init_ui(self): """Import the QtDesigner file and assign functions to each of the UI's buttons. """ self.dlg = uic.loadUi("interface.ui") self.dlg.show() self.dlg.browseForFileButton.clicked.connect(self.browse_for_file) self.dlg.importDataButton.clicked.connect(self.import_file) self.dlg.previewDataButton.clicked.connect(self.preview_file) self.dlg.assignAsDimensionButton.clicked.connect(self.assign_as_dimension) self.dlg.assignAsMeasureButton.clicked.connect(self.assign_as_measure) self.dlg.removeDimensionAssignmentButton.clicked.connect(self.remove_dimension_assignment) self.dlg.removeMeasureAssignmentButton.clicked.connect(self.remove_measure_assignment) self.dlg.executeRefQueryButton.clicked.connect(self.execute_ref_query) self.dlg.previewRefQueryButton.clicked.connect(self.preview_target_query) self.dlg.previewReferenceDatabaseButton.clicked.connect(self.preview_reference_query) self.dlg.generateVisualizationsButton.clicked.connect(self.outputToPane) self.dlg.connectToHouseButton.clicked.connect(self.connectToHouse) self.dlg.closeDynamicConnectionButton.clicked.connect(self.closeDynamicConnection) self.dlg.previousVisualButton.clicked.connect(self.previousVisual) self.dlg.nextVisualButton.clicked.connect(self.nextVisual) self.dlg.previewDynamicDataButton.clicked.connect(self.preview_dynamic_data) def browse_for_file(self): """Open a windows File-Dialog to allow the user to simultaneously define the filepath and the filename """ if self.threadRunning : self.addLineToConsole("Please close the dynamic connection before attempting to analyse static data") return fileName = QtWidgets.QFileDialog.getOpenFileName(self, 'OpenFile') self.dlg.fileLocation.setText(fileName[0]) self.fileName = os.path.basename(self.dlg.fileLocation.text()) def create_connection(self, db_file): """Set objects for conn1 (Connection 1) and cur1 (Connection 1's cursor) Args: db_file: the data file being connected to. """ try: self.conn1 = sqlite3.connect(db_file) #Set Connection 1 self.cur1 = self.conn1.cursor() #Set Cursor 1 except Error as e: print(e) def create_connection2(self, db_file): """Set objects for conn2 (Connection 2) and cur2 (Connection 2's cursor) Two connections are needed because two subsets of the data file are being compared. Args: db_file: the data file being connected to. """ try: self.conn2 = sqlite3.connect(db_file) #Set Connection 2 self.cur2 = self.conn2.cursor() #Set Cursor 2 except Error as e: print(e) def create_connection3(self, db_file): """Set objects for conn2 (Connection 2) and cur2 (Connection 2's cursor) Two connections are needed because two subsets of the data file are being compared. Args: db_file: the data file being connected to. """ try: self.conn3 = sqlite3.connect(db_file) #Set Connection 2 self.cur3 = self.conn3.cursor() #Set Cursor 2 except Error as e: print(e) def create_dynamic_connection(self, db_file): """Set objects for dynaConn (dynamic connection) and dynaCursor (Dynamic connection's cursor) This set creates a connection to the current dynamic data source. Args: db_file: the dynamic data file being connected to. """ try: self.dynaConn = sqlite3.connect(db_file) #Set Dynamic Connection self.dynaCursor = self.dynaConn.cursor() #Set Dyanamic Cursor except Error as e: print(e) #TODO print errors out to a make shift terminal def create_dynamic_target_connection(self, db_file): try: self.dynaConnTarget = sqlite3.connect(db_file) #Set Dynamic Connection self.dynaConnTargetCursor = self.dynaConnTarget.cursor() #Set Dyanamic Cursor except Error as e: print(e) #TODO print errors out to a make shift terminal def create_dynamic_reference_connection(self, db_file): try: self.dynaConnReference = sqlite3.connect(db_file) #Set Dynamic Connection self.dynaConnReferenceCursor = self.dynaConnReference.cursor() #Set Dyanamic Cursor except Error as e: print(e) #TODO print errors out to a make shift terminal def import_file(self): """Import csv, Retrieve column names, create the connection, convert database to SQL. """ filePath = self.dlg.fileLocation.text() #Select the file path directly from the textbox if not filePath : return #Check if not null if self.threadRunning : return self.dataBase = pandas.read_csv(filePath, encoding = "ISO-8859-1") #Create the pandas dataframe using .read_csv self.dlg.columnsListWidget.addItems(self.dataBase.columns) #Add the column names to the columnsListWidget self.create_connection('databases/dataBase.db') #Create the connection to dataBase.db self.dataBase.to_sql("dataBase", self.conn1, if_exists='replace', index=False) #Convert to SQL database def preview_file(self): """Load the database into a temporary widget to let the user 'preview' their data and ensure its correctness. Exit function if they haven't defined a filepath. """ if self.dataBase is None : return if self.threadRunning : return model = PandasModel(self.dataBase.head(100)) #Create a model of the database, only show the top 100 rows. self.preview = QtWidgets.QWidget() #Create the 'preview' widget ui = TableView() #Create a TableView for the UI ui.setupUi(self.preview, model) #Load the model into the created widget self.preview.show() #Show the widget self.preview.setWindowTitle("SELECT TOP 100 FROM " + self.fileName) def assign_as_dimension(self): """Take the currently selected item in columnsListWidget and assign it to a dimension. """ if self.dlg.columnsListWidget.currentItem() != None: self.dlg.dimensionsListWidget.addItem(self.dlg.columnsListWidget.currentItem().text()) #Add to dimensions self.dlg.columnsListWidget.takeItem(self.dlg.columnsListWidget.currentRow()) #Remove from columns def assign_as_measure(self): """Take the currently selected item in columnsListWidget and assign it to be a measure. """ if self.dlg.columnsListWidget.currentItem() != None: self.dlg.measuresListWidget.addItem(self.dlg.columnsListWidget.currentItem().text()) #Add to measures self.dlg.columnsListWidget.takeItem(self.dlg.columnsListWidget.currentRow()) #Remove from columns def remove_dimension_assignment(self): """Remove the currently selected dimension and re-add it to the columnsListWidget. """ if self.dlg.dimensionsListWidget.currentItem() != None: self.dlg.columnsListWidget.addItem(self.dlg.dimensionsListWidget.currentItem().text()) #Add to columns. self.dlg.dimensionsListWidget.takeItem(self.dlg.dimensionsListWidget.currentRow()) #Remove from dimensions. def remove_measure_assignment(self): """Remove the currently selected measure and re-add it to the columnsListWidget. """ if self.dlg.measuresListWidget.currentItem() != None: self.dlg.columnsListWidget.addItem(self.dlg.measuresListWidget.currentItem().text()) #Add to columns. self.dlg.measuresListWidget.takeItem(self.dlg.measuresListWidget.currentRow()) #Remove from measures. def execute_ref_query(self): """Method executes the user-defined query as an SQL query against the imported database. This new database will be Connection 2. TODO Need to add error checking to this so it doesn't brick when the query is bogus """ query = self.dlg.refQueryInput.toPlainText() #Get the query from the textbox self.queryText = query self.targetDatabaseCondition = str(str( sqlparse.parse(self.dlg.refQueryInput.toPlainText())[0][8]).split("WHERE")[1]).strip() if not self.threadRunning : if self.conn1 is None : return self.addLineToConsole("Creating target database... ") self.dataBaseTar = pandas.read_sql_query(query, self.conn1) #Read query using pandas method self.create_connection2('databases/dataBaseTar.db') #Create Connected 2 self.dataBaseTar.to_sql("dataBaseTar", self.conn2, if_exists='replace', index=False) #Make database SQL self.addRepeatingLineToConsole("Creating target database...Complete.") if self.dlg.complementDataSetCheckbox.isChecked() : print("was, is this fireing?") self.addLineToConsole("Creating reference database... ") #The user wants the reference database to be the compliment of the target database, reverse the query complimentQuery = self.get_compliment_query() print(complimentQuery) self.dataBaseRef = pandas.read_sql_query(complimentQuery, self.conn1) self.dataBaseRef.to_csv(r'C:\Users\<NAME>\Desktop\ENGG4801\ENGG4801_RyanPhelan\databases\refd.csv') self.create_connection3('databases/dataBaseRef.db') self.dataBaseRef.to_sql("dataBaseRef", self.conn3, if_exists='replace', index = False) self.addRepeatingLineToConsole("Creating reference database...Complete.") else : if self.dynaConn is None : return # The dynamic thread is currently running, execute on the current house's database self.addLineToConsole("Creating target database... ") self.dynamicTargetDatabase = pandas.read_sql_query(query, self.dynaConn) self.create_dynamic_target_connection('databases/id' + str(self.houseId) + 'Target.db') self.dynamicTargetDatabase.to_sql("id" + str(self.houseId) + "Target", self.dynaConnTarget, if_exists='replace', index = False) self.addRepeatingLineToConsole("Creating target database...Complete.") if self.dlg.complementDataSetCheckbox.isChecked() : self.addLineToConsole("Creating reference database... ") #The user wants the reference database to be the compliment of the target database, reverse the query complimentQuery = self.get_compliment_query() print(complimentQuery) self.dynamicReferenceDatabase = pandas.read_sql_query(complimentQuery, self.dynaConn) self.create_dynamic_reference_connection('databases/id' + str(self.houseId) + 'Reference.db') self.dynamicReferenceDatabase.to_sql("id" + str(self.houseId) + "Reference", self.dynaConnReference, if_exists='replace', index = False) self.addRepeatingLineToConsole("Creating reference database...Complete.") def get_compliment_query(self): queryString = self.dlg.refQueryInput.toPlainText() if queryString.find("WHERE") == -1 : self.addLineToConsole("No 'WHERE' clause detected in query. Please try again.") return parsedQuery = sqlparse.parse(queryString) statement = parsedQuery[0] columnsWanted = str(statement[2]) tableName = str(statement[6]) whereClause = str(statement[8]) clause = whereClause.split("WHERE")[1] sqliteValidOperators = ["==", "=", "!=", "<>", ">", "<", ">=", "<=", "!<", "!>"] columnIdentifier = "" clauseOperator = "" valueComparingTo = "" for operator in sqliteValidOperators: if clause.find(operator) == -1: continue else : columnIdentifier = clause.split(operator)[0] clauseOperator = operator valueComparingTo = clause.split(operator)[1] complimentQuery = ("SELECT " + columnsWanted + " FROM " + tableName + " WHERE " + columnIdentifier + " NOT IN " + "( SELECT " + columnIdentifier.strip() + " FROM " + tableName + " WHERE " + columnIdentifier + " " + clauseOperator + " " + valueComparingTo + ")") self.targetDatabaseCondition = str(whereClause.split("WHERE")[1].strip()) return complimentQuery def preview_target_query(self): """Load target into a temporary widget and'preview' the data in a pop-up widget. Exit function if the database isn't defined. """ if not self.threadRunning : if self.dataBaseTar is None : return model = PandasModel(self.dataBaseTar.head(100)) #Create a model of the database, only get TOP 100 rows self.preview = QtWidgets.QWidget() #Create a TableView for the UI ui = TableView() #Create the 'preview' widget ui.setupUi(self.preview, model) #Load the model into the created widget self.preview.show() #Show the widget self.preview.setWindowTitle("SELECT TOP 100 FROM Target DataSet") else : if self.dynamicTargetDatabase is None : return model = PandasModel(self.dynamicTargetDatabase.head(100)) #Create a model of the database, top 100 rows self.preview = QtWidgets.QWidget() #Create a TableView for the UI ui = TableView() #Create the 'preview' widget ui.setupUi(self.preview, model) #Load the model into the created widget self.preview.show() #Show the widget self.preview.setWindowTitle("SELECT TOP 100 FROM Target DataSet") def preview_reference_query(self): """Load reference into a temporary widget and'preview' the data in a pop-up widget. Exit function if the database isn't defined. """ if not self.threadRunning : if self.dataBaseRef is None : return model = PandasModel(self.dataBaseRef.head(100)) #Create a model of the database, top 100 rows self.preview = QtWidgets.QWidget() #Create a TableView for the UI ui = TableView() #Create the 'preview' widget ui.setupUi(self.preview, model) #Load the model into the created widget self.preview.show() #Show the widget self.preview.setWindowTitle("SELECT TOP 100 FROM Reference DataSet") return else : if self.dynamicReferenceDatabase is None : return model = PandasModel(self.dynamicReferenceDatabase.head(100)) #Create a model of the database, top 100 rows self.preview = QtWidgets.QWidget() #Create a TableView for the UI ui = TableView() #Create the 'preview' widget ui.setupUi(self.preview, model) #Load the model into the created widget self.preview.show() #Show the widget self.preview.setWindowTitle("SELECT TOP 100 FROM Reference DataSet") def preview_dynamic_data(self): if not self.threadRunning : return else : previewMeterData = pandas.read_sql("SELECT * FROM (SELECT * FROM id" + str(self.houseId) + " ORDER BY TimeStamp DESC LIMIT 100) ORDER BY TimeStamp", con=self.dynaConn) model = PandasModel(previewMeterData.head(100)) #Create a model of the database, top 100 rows self.preview = QtWidgets.QWidget() #Create a TableView for the UI ui = TableView() #Create the 'preview' widget ui.setupUi(self.preview, model) #Load the model into the created widget self.preview.show() #Show the widget self.preview.setWindowTitle("SELECT BOTTOM 100 ROWS FROM Dynamic DataSet") def get_aggregate_functions(self): """Helper method to convert all selected aggregate function buttons into a list of strings. Returns: A list of strings, each string represents an SQL aggregate function. """ functions = [] # If selected, add the NAME of the button to the list if self.dlg.avgButton.isChecked() : functions.append(self.dlg.avgButton.text()) #AVG if self.dlg.countButton.isChecked() : functions.append(self.dlg.countButton.text()) #COUNT if self.dlg.minButton.isChecked() : functions.append(self.dlg.minButton.text()) #MIN if self.dlg.maxButton.isChecked() : functions.append(self.dlg.maxButton.text()) #MAX if self.dlg.sumButton.isChecked() : functions.append(self.dlg.sumButton.text()) #SUM return functions def calculate_utility(self, combinedDataFrame): total = 0 targetMinimum = abs(combinedDataFrame[combinedDataFrame.columns[1]].min()) if targetMinimum >= 0 : targetMinimum = 0 targetValues = [x + targetMinimum for x in combinedDataFrame[combinedDataFrame.columns[1]].values] targetSum = sum(targetValues) referenceMinimum = abs(combinedDataFrame[combinedDataFrame.columns[2]].min()) if referenceMinimum >= 0 : referenceMinimum = 0 referenceValues = [x + referenceMinimum for x in combinedDataFrame[combinedDataFrame.columns[2]].values] referenceSum = sum(referenceValues) #Loop through and calculate the difference of the two scores squared for target, reference in zip(targetValues, referenceValues): targetNormalized = target / targetSum referenceNormalized = reference / referenceSum total = total + (targetNormalized - referenceNormalized)**2 return math.sqrt(total) def getKey(self, item): return item[1] def calculate_all_utilities(self, queriesTuple): print("Starting : calculate_all_utilities") self.addLineToConsole("Calculating visualization utilities...Count = " + str(len(queriesTuple))) #The return list that will have a list of tuples containing the dataframe and its calculated utility self.allViews = [] index = 0 for queryTar,queryRef in queriesTuple: print(queryTar + '\n' +queryRef) #The subset query will be the first query in the tuple. Execute on conn2 if not self.threadRunning : targetDataframe = pandas.read_sql(queryTar, con=self.conn2) newColName1 = targetDataframe.columns[1] + " tar" targetDataframe.columns = [targetDataframe.columns[0], newColName1] if self.dlg.complementDataSetCheckbox.isChecked() : referenceDataFrame =
pandas.read_sql(queryRef, con=self.conn3)
pandas.read_sql
import json import logging import os from itertools import compress import numpy as np import pandas as pd import tensorflow as tf from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, roc_auc_score, ) from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalMaxPool1D from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing import sequence from tensorflow.keras.preprocessing.text import Tokenizer from tags_classifier_library.settings import ( EMBEDDING_DIM, MAX_NB_WORDS, MAX_SEQUENCE_LENGTH, PROBABILITY_THRESHOLD, ) logger = logging.getLogger(__name__) def report_metric_per_model(actual, predict, average_type="binary"): precisions = precision_score(actual, predict, average=average_type) recalls = recall_score(actual, predict, average=average_type) f1 = f1_score(actual, predict, average=average_type) accuracy = accuracy_score(actual, predict) auc = roc_auc_score(actual, predict) logger.info(f"Precision = {precisions}") logger.info(f"Recall = {recalls}") logger.info(f"f1 = {f1}") logger.info(f"Accuracy = {accuracy}") logger.info(f"AUC = {auc}") return precisions, recalls, f1, accuracy, auc def report_metrics_for_all(tag_size, tag_precisions, tag_recalls, tag_f1, tag_accuracy, tag_auc): size_df = pd.DataFrame.from_dict(tag_size, orient="index") size_df = size_df.rename(columns={0: "size"}) size_df = size_df[["size"]] precisions_df = pd.DataFrame.from_dict(tag_precisions, orient="index") precisions_df = precisions_df.rename(columns={0: "precisions"}) recalls_df = pd.DataFrame.from_dict(tag_recalls, orient="index") recalls_df = recalls_df.rename(columns={0: "recalls"}) f1_df = pd.DataFrame.from_dict(tag_f1, orient="index") f1_df = f1_df.rename(columns={0: "f1"}) accuracy_df = pd.DataFrame.from_dict(tag_accuracy, orient="index") accuracy_df = accuracy_df.rename(columns={0: "accuracy"}) auc_df =
pd.DataFrame.from_dict(tag_auc, orient="index")
pandas.DataFrame.from_dict
# This file is intended to provide some "reference information" in a useful form for python. # The names of each run in a family (as defined in the families described in the simulation releases) # are provided in a dictionary; their most-likely most-relevant comparison run is included as well. # The file also provides some additional dictionaries, which may group together given families that # touch on very related points; an example is the 'intranight' family, which includes some simulations # looking at exposure time within a visit as well as whether to add a third visit - all of these relate # to the survey strategy within a night. # Each grouping or family only includes runs from a single release, that can use a single comparison run. # Data / dictionaries containing the family information include: # family - comment - nicknames - family_baseline - family_version # Much of the text in this file is intended to be used in jupyter notebooks and thus is markdown. import numpy as np import pandas as pd from IPython.display import display_markdown import matplotlib.pyplot as plt ### METRICS FOR SHORT DISPLAY tablemetrics = ['fOArea fO All visits HealpixSlicer', 'Effective Area (deg) ExgalM5_with_cuts i band non-DD year 10 HealpixSlicer', # 'Nstars_no_crowding y HealpixSlicer', 'Nvisits All', 'fONv MedianNvis fO All visits HealpixSlicer', 'Median NVisits u band HealpixSlicer', 'Median NVisits g band HealpixSlicer', 'Median NVisits r band HealpixSlicer', 'Median NVisits i band HealpixSlicer', 'Median NVisits z band HealpixSlicer', 'Median NVisits y band HealpixSlicer', ] tablenames = ['Area with >825 visits/pointing', 'Unextincted area i>25.9', # 'Nstars y band (no crowding)', 'Nvisits total', 'Median Nvisits over best 18k', 'Median Nvis u band', 'Median Nvis g band', 'Median Nvis r band', 'Median Nvis i band', 'Median Nvis z band', 'Median Nvis y band'] class FamilyInfo(): """A class to hold some high-level documentation of the available simulation runs. (making this a class rather than just a file just makes it a little clearer to use in a notebook). """ def __init__(self): """Where we set all the run information.""" # Currently relevant runs from these releases will be included below self.sim_versions = ['1.5', '1.6', '1.7'] # Overall baseline runs in each release. self.baselines_versions = {'1.5': 'baseline_v1.5_10yrs', # 1x30s visits '1.6': 'baseline_nexp2_v1.6_10yrs', # 2x15s visits '1.7': 'baseline_nexp2_v1.7_10yrs' # 2x15s visits } # The simulations included in the survey strategy grouping self.family = {} # An overall comment about the grouping self.comment = {} # Potentially useful nicknames or overwhelmingly brief descriptors -- USE THESE SPARINGLY # By using the nickname instead of the full name, you lose traceability for which run is really which. self.nicknames = {} # What is the most-useful comparison run for this grouping self.family_baseline = {} # The release number for this grouping self.family_version = {} # Release notes for each of the 1.5, 1.6 and 1.7 families: # https://community.lsst.org/t/fbs-1-5-release-may-update-bonus-fbs-1-5-release/ # https://community.lsst.org/t/fbs-1-6-release-august-2020/ # https://community.lsst.org/t/survey-simulations-v1-7-release-january-2021/ # baselines -- this particular 'family' needs to be used differently than the rest. key = 'version_baselines' c = f"**{key}** = Comparison baselines across each release. The major differences across 1.5, 1.6 to " \ f"1.7 is whether we decide the default baseline for the release is 2x15s or 1x30s; however, " \ f"in each release we have created both a 2x15s and a 1x30s baseline -- so any subtle " \ f"changes due to updates in the telescope model or scheduler code can be evaluated by " \ f"looking at the same baseline versions. The trickier part of evaluating these at the " \ f"same time is that the results are likely contained in different dataframes in python " \ f"(if the big_1.5.csv, big_1.6.csv and big_1.7.csv files were used)." self.comment[key] = c self.family[key] = ['baseline_2snaps_v1.5_10yrs', 'baseline_v1.5_10yrs', 'baseline_nexp2_v1.6_10yrs', 'baseline_nexp1_v1.6_10yrs', 'baseline_nexp2_v1.7_10yrs', 'baseline_nexp1_v1.7_10yrs'] self.nicknames[key] = ['Baseline 2x15s v1.5', 'Baseline 1x30s v1.5', 'Baseline 2x15s v1.6', 'Baseline 1x30s v1.6', 'Baseline 2x15 v1.7', 'Baseline 1x30s v1.7'] self.family_baseline[key] = 'baseline_nexp1_v1.7_10yrs' self.family_version[key] = 'All' ### visit_time key = 'visit_time' c = f"**{key}** = simulations bearing on the length of the individual visits. " \ "This demonstrates the impact of 1x30s vs. 2x15s visits (9% more visits). " \ "The variable exposure run allows the exposure time per visit to vary " \ "between 20-100 seconds to attempt to hold the single image visit depth roughly constant, " \ "but results in slightly fewer visits overall (although more visits per pointing within the WFD)." self.comment[key] = c self.family[key] = ['baseline_v1.5_10yrs', 'baseline_2snaps_v1.5_10yrs', 'var_expt_v1.5_10yrs'] self.nicknames[key] = ['1x30s', '2x15s', '1xVariable'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ### u_long key = 'u_long' c = f"**{key}** = simulations bearing on the length of the u-band exposure time. " \ f"These simulations swap a single exposure per visit of variable length for each visit in *u* " \ f"band. The number of *u* band visits is left unchanged, resulting in a shift of visits from " \ f"other filters to compensate for the increase in time. (Note the DDF visits were left " \ f"unchanged at 2x15s each)." \ f"<br>\n" \ "There is an additional u_long simulation in v1.5 called `u60_v1.5_10yrs`; " \ "the u60 v1.5 simulation uses 2x30s u band visits but cuts the number of visits in half " \ "rather than maintaining the number of u-band visits as the family below does. " \ "Halving u visits was a no-go for transient science (shown in the TDE metric), and so is " \ "dropped here. " self.comment[key] = c self.family[key] = ['baseline_nexp2_v1.7_10yrs', 'u_long_ms_30_v1.7_10yrs', 'u_long_ms_40_v1.7_10yrs', 'u_long_ms_50_v1.7_10yrs', 'u_long_ms_60_v1.7_10yrs'] self.nicknames[key] = ['u 2x15s', 'u 1x30s', 'u 1x40s', 'u 1x50s', 'u 1x60s'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' ## intranight key = 'intranight' c = f"**{key}** = simulations bearing on the distribution of visits within a night. " \ "Snaps per visit (2x15s vs 1x30s) is included for completeness, but the other " \ "simulations include variations on whether visits are in the same or mixed filters, " \ "and the effect of devoting a fraction of time to obtaining an additional (third) visit " \ "per night. " \ "<br>\n" \ "In the `third_obs` simulations, we add a third visit per night to augment the pairs of " \ "visits, by adding a *g*, *r*, *i* or *z* visit at the end of the night in the WFD. The " \ "amount of the night dedicated to obtaining this third visit at the end of the night varies " \ "across the family, from 15 minutes to 120 minutes (corresponding to covering approximately " \ "one blob to about five, or half of the night's pairs receiving a third visit). We find " \ "the third visit decreases the amount of sky imaged in each night and has an accompanying " \ "negative impact on metrics which prefer more sky area within a given time (such as solar " \ "system discovery and slower transient metrics, such as SNIa) -- the amount of this " \ "impact varies from negligible to noticeable depending on how much time is allocated " \ "to the third visit." self.comment[key] = c self.family[key] = ['baseline_2snaps_v1.5_10yrs', 'baseline_v1.5_10yrs', 'baseline_samefilt_v1.5_10yrs', 'third_obs_pt15v1.5_10yrs', 'third_obs_pt30v1.5_10yrs', 'third_obs_pt45v1.5_10yrs', 'third_obs_pt60v1.5_10yrs', 'third_obs_pt90v1.5_10yrs', 'third_obs_pt120v1.5_10yrs'] self.nicknames[key] = ['2x15s visits mixed filters', '1x30s visits mixed filters', '1x30s visits same filter', 'third visits for 15 min', 'third visits for 30 min', 'third visits for 45 min', 'third visits for 60 min', 'third visits for 90 min', 'third visits for 120 min'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ## pair_times key = 'pair_times' c = f"**{key}** = these simulations explore the impact of varying the time between pairs of visits " \ f"in a night. Varying the pair time changes the overall number of filter changes per night, " \ f"so longer pair times result in more visits overall in the survey. Longer pair times are more " \ f"vulnerable to interruption however, resulting in a lower fraction of visits occuring in pairs. " \ f"This family is related to the intranight family, but is from v1.7 so must be considered " \ f"separately. The standard baseline attempts pairs at 22 minutes." self.comment[key] = c self.family[key] = ['pair_times_11_v1.7_10yrs', 'pair_times_22_v1.7_10yrs', 'pair_times_33_v1.7_10yrs', 'pair_times_44_v1.7_10yrs', 'pair_times_55_v1.7_10yrs', 'baseline_nexp2_v1.7_10yrs'] self.nicknames[key] = ['11 minute pairs', '22 minute pairs (baseline)', '33 minute pairs', '44 minute pairs', '55 minute pairs', 'Baseline'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' ## twilight pairs key = 'twilight_pairs' c = f"**{key}** = explore the effect of programming twilight observing in pairs, rather than " \ f"single visits. The baseline chooses visits during twilight (-18 to -12 degrees solar " \ f"altitude) one at a time using a greedy algorithm. This family programs visits during " \ f"twilight in pairs, similarly to the remainder of the night but with a shorter return " \ f"interval of 15 minutes. In some simulations, visits during morning twilight are " \ f"preferentially chosen to be areas of the sky already observed earlier in the night. " \ f"Depending on the simulation, pairs are taken in the same filter (r+r, i+i, z+z, or y+y), " \ f"or mixed filters (r+i, i+z, z+y or y+y)." self.comment[key] = c self.family[key] = ['baseline_nexp2_v1.7_10yrs', 'twi_pairs_v1.7_10yrs', 'twi_pairs_mixed_v1.7_10yrs', 'twi_pairs_repeat_v1.7_10yrs', 'twi_pairs_mixed_repeat_v1.7_10yrs', ] self.nicknames[key] = ['Baseline (greedy)', 'Twi pairs same filter', 'Twi pairs mixed filters', 'Twi pairs same filter, repeat area', 'Twi pairs mixed filters, repeat area'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' ## wfddepth key = 'wfd_depth' c = f"**{key}** = evaluates the impact of scaling the fraction of survey time devoted to WFD (and thus " \ f"the number of visits per pointing in the WFD) up or down. For metrics which respond simply " \ f"to number of visits, this is a useful family to demonstrate that effect. Metrics which " \ f"require coverage outside the WFD but are still sensitive to number of visits will show more " \ f"complicated behavior as coverage in the NES and GP is reduced or increased. When the DDF " \ f"fields are present, they are allocated 5% of the available survey time." \ f"<br>\n " \ f"From these simulations we determined that between 1.65 and 1.7M visits are required to " \ f"cover 18K square degrees of the standard WFD to a minimum number of visits of 825 per " \ f"pointing; some of the range in that required number of visits comes from over and under " \ f"subscription in some parts of the sky, which leads to unevenness in coverage. " self.comment[key] = c self.family[key] = ['baseline_v1.5_10yrs', 'wfd_depth_scale0.65_noddf_v1.5_10yrs', 'wfd_depth_scale0.70_noddf_v1.5_10yrs', 'wfd_depth_scale0.75_noddf_v1.5_10yrs', 'wfd_depth_scale0.80_noddf_v1.5_10yrs', 'wfd_depth_scale0.85_noddf_v1.5_10yrs', 'wfd_depth_scale0.90_noddf_v1.5_10yrs', 'wfd_depth_scale0.95_noddf_v1.5_10yrs', 'wfd_depth_scale0.99_noddf_v1.5_10yrs', 'wfd_depth_scale0.65_v1.5_10yrs', 'wfd_depth_scale0.70_v1.5_10yrs', 'wfd_depth_scale0.75_v1.5_10yrs', 'wfd_depth_scale0.80_v1.5_10yrs', 'wfd_depth_scale0.85_v1.5_10yrs', 'wfd_depth_scale0.90_v1.5_10yrs', 'wfd_depth_scale0.95_v1.5_10yrs', 'wfd_depth_scale0.99_v1.5_10yrs' ] self.nicknames[key] = ['Baseline', '65% no DDF', '70% no DDF', '75% noDDF', '80% no DDF', '85% no DDF', '90% no DDF', '95% noDDF', '99% no DDF', '65%', '70%', '75%', '80%', '85%', '90%', '95%', '99%'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ## filter_dist key = 'filter_dist' c = f"**{key}** = evaluate the impact of changing the balance of visits between filters. " \ "Note that this family uses a simplified footprint that is a simple stripe of Declination " \ "corresponding to the traditional WFD declination limits but no NES or SCP and continuing " \ "WFD over the GP. Generally we find transients and variable stars metrics favor bluer " \ "distributions of filters while solar system and galaxy metrics prefer redder " \ "distributions of filters (particularly *i* band). <br> " \ " ** the comparison run for this family is NOT the baseline, but rather one of the filter_dist " \ "family, to avoid differences due to the footprint change. " self.comment[key] = c self.family[key] = ['filterdist_indx1_v1.5_10yrs', 'filterdist_indx2_v1.5_10yrs', 'filterdist_indx4_v1.5_10yrs', 'filterdist_indx3_v1.5_10yrs', 'filterdist_indx6_v1.5_10yrs', 'filterdist_indx5_v1.5_10yrs', 'filterdist_indx7_v1.5_10yrs', 'filterdist_indx8_v1.5_10yrs', ] self.nicknames[key] = ['Uniform', 'Baseline-like', 'u heavy', 'g heavy', 'i heavy', 'z and y heavy', 'Bluer', 'Redder'] self.family_baseline[key] = 'filterdist_indx2_v1.5_10yrs' self.family_version[key] = '1.5' ### footprint (stage 1) key = 'footprint' c = f"**{key}** = an initial large set of simulations exploring widely different options for the " \ "overall survey footprint. The fraction of time devoted to the WFD will necessarily vary " \ "among these simulations; this is one of the parameters suitable for later fine-tuning. " \ "All runs in this family use 1x30s visits. Some of these footprints contain a traditional " \ "WFD footprint, while others contain a shifted/extended N/S footprint that sometimes includes " \ "a dust extinction limit around the galactic plane and sometimes a simple galactic latitude " \ "cutoff; the bulges family is included because without significant galactic bulge coverage " \ "metrics related to MW populations fell significantly, yet the time requirement to cover all " \ "of the relevant areas together must be considered." self.comment[key] = c self.family[key] = ['filterdist_indx2_v1.5_10yrs', 'baseline_v1.5_10yrs', 'footprint_standard_goalsv1.5_10yrs', 'footprint_bluer_footprintv1.5_10yrs', 'footprint_no_gp_northv1.5_10yrs', 'footprint_gp_smoothv1.5_10yrs', 'footprint_add_mag_cloudsv1.5_10yrs', 'footprint_big_sky_dustv1.5_10yrs', 'footprint_big_skyv1.5_10yrs', 'footprint_big_sky_nouiyv1.5_10yrs', 'footprint_big_wfdv1.5_10yrs', 'footprint_newAv1.5_10yrs', 'footprint_newBv1.5_10yrs', 'bulges_bs_v1.5_10yrs', 'bulges_cadence_bs_v1.5_10yrs', 'bulges_bulge_wfd_v1.5_10yrs', 'bulges_cadence_bulge_wfd_v1.5_10yrs', 'bulges_i_heavy_v1.5_10yrs', 'bulges_cadence_i_heavy_v1.5_10yrs', ] self.nicknames[key] = ['no nes', 'standard baseline', 'standard baseline again', 'bluer filters', 'no GP N extension', 'GP at WFD level', 'add MagClouds', 'big sky, dust-no GP', 'big sky - no GP', 'big sky - no GP, no uiy', 'big WFD', 'big sky + GP1 + NES', 'big sky + GP2 + NES', 'big sky + GP bulge', 'big sky + GP bulge cadenced', 'big sky + GP bulge @ WFD', 'big sky + GP bulge @WFD cadenced', 'big sky + GP i heavy', 'big sky + GP i heavy cadenced'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ## footprint_tune key = 'footprint_tune' c = f"**{key}** = a further exploration of the survey footprint, exploring options " \ "for improving the basic setup used in v1.6 in the 'combo_dust' simulation. " \ "We feel combo_dust had a lot of promise, as it improved metrics for a wide range " \ "of science without impacting metrics (currently avaialable in MAF) dramatically. " \ "However, combo_dust had some issues, especially in terms of contingency available in " \ "the WFD area (in case of exceptionally bad weather, it could fail SRD, and " \ "as it was only one run, it did not offer variations to attempt to improve MWLV or TVS " \ "science, for example). This footprint_tune family offers additional variations on " \ "the combo_dust (shifted WFD with dust-extinction-limits) simulation. Generally the WFD here " \ "is a dust-extinction limited footprint, but with variable N/S limits. We vary the coverage on " \ "the remaining sky. " \ "Because this is a v1.7 run, it cannot be compared directly with the footprint family above. " \ "(they use 2x15s visits, not 1x30s). " self.comment[key] = c self.family[key] = ['baseline_nexp2_v1.7_10yrs', 'footprint_0_v1.710yrs', 'footprint_1_v1.710yrs', 'footprint_2_v1.710yrs', 'footprint_3_v1.710yrs', 'footprint_4_v1.710yrs', 'footprint_5_v1.710yrs', 'footprint_6_v1.710yrs', 'footprint_7_v1.710yrs', 'footprint_8_v1.710yrs'] self.nicknames[key] = ['Traditional footprint', 'WFD -70.2<dec<7.8 + north ring', # 0 'WFD -70.2<dec<7.8', # 1 'WFD -67.4<dec<8', # 2 'WFD -67.4<dec8 + 20deg bridge', # 3 'WFD -62.5<dec<3.6 +33deg bridge', # 4 'WFD -67.4<dec<8 + 20deg bridge (like 3)', # 5 'WFD -67.4<dec<8 + 20deg bridge (south)', # 6 'WFD -70.2<dec<7.8 no ecliptic in galaxy', # 7 'WFD -70.2<dec<7.8 no galactic', # 8 ] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' ### filter_cadence key = 'filter_cadence' c = f"**{key}** = investigate the impact of reducing the gaps between g band visits over the month, " \ f"(essentially down-weighting the lunar cycle by adding a requirement that fields receive " \ f"visits in g band filter throughout each month). In order to avoid 'long gaps' in g band " \ f"coverage, additional fill-in visits in g are requested in each night; there is a limit to " \ f"the number of fill-in visits in each night allowed, and these fill-in visits can be " \ f"requested as contiguous blobs or non-contiguous pointings. The goal is to improve transient " \ f"discovery for longer timescale transients which require bluer filter coverage (like SN)." self.comment[key] = c self.family[key] = ['baseline_nexp2_v1.7_10yrs', 'cadence_drive_gl30v1.7_10yrs', 'cadence_drive_gl30_gcbv1.7_10yrs', 'cadence_drive_gl100v1.7_10yrs', 'cadence_drive_gl100_gcbv1.7_10yrs', 'cadence_drive_gl200v1.7_10yrs', 'cadence_drive_gl200_gcbv1.7_10yrs', ] self.nicknames[key] = ['Baseline', 'Add g, limit 30/night, non-contiguous', 'Add g, limit 30/night, contiguous', 'Add g, limit 100/night, non-contiguous', 'Add g, limit 100/night, contiguous', 'Add g, limit 200/night, non-contiguous', 'Add g, limit 200/night, contiguous'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' key = 'alt_rolling' c = f"**{key}** = a family of simulations that add alt-sched like nightly variations between " \ f"the northern and southern portions of the sky. For some members of the family, a 2-band " \ f"rolling cadence is also included (if 'roll' in the simulation name). Note that ALL of " \ f"these footprints are a shifted WFD - extended N/S and using dust extinction to delineate " \ f"the galactic plane. Few visits are placed into the GP or the NES or SCP. <br>" \ f"The baseline for this run is tricky to pick; the standard baseline is a very different " \ f"footprint, yet all runs in this family either add rolling OR add the alt-sched N/S " \ f"modulation. For purposes of identifying the effects of the alt-sched algorithm, the run " \ f"without alt-sched is chosen as the baseline.<br>" self.comment[key] = c self.family[key] = ['alt_dust_v1.5_10yrs', 'alt_roll_mod2_dust_sdf_0.20_v1.5_10yrs', 'roll_mod2_dust_sdf_0.20_v1.5_10yrs'] self.nicknames[key] = ['Alt-sched modulation, no rolling', 'Alt-sched modulation, plus rolling', 'Standard sched, plus rolling'] self.family_baseline[key] = 'roll_mod2_dust_sdf_0.20_v1.5_10yrs' self.family_version[key] = '1.5' ## rolling key = 'rolling' c = f"**{key}** = Add a rolling cadence, where some parts of the sky receive a higher number " \ f"of visits during an 'on' season, followed by a lower number of visits during an 'off' " \ f"season. During the first year and half, and the last year and half (or so), the sky is " \ f"covered uniformly as normal. This 'intro' and 'outro' allows for better proper motion " \ f"coverage, and is 1.5 years instead of 1 to allow the entire sky to receive even coverage " \ f"during that period. This leaves 6 years for 'rolling'; simulations either split the sky " \ f"into 2 or 3 declination-based regions which are covered either every other season or " \ f"every third season. Each of the active regions is actually composed of 2 sub-section in " \ f"the North and South, to spread follow-up requirements over the sky. Some simulations add " \ f"an every-other nightly modulation between this northern and southern sub-section; some " \ f"do not although this may happen to some extent due to 'blob' coverage." self.comment[key] = c self.family[key] = ['baseline_nexp2_v1.7_10yrs', 'rolling_nm_scale0.2_nslice2_v1.7_10yrs', 'rolling_nm_scale0.4_nslice2_v1.7_10yrs', 'rolling_nm_scale0.6_nslice2_v1.7_10yrs', 'rolling_nm_scale0.8_nslice2_v1.7_10yrs', 'rolling_nm_scale0.9_nslice2_v1.7_10yrs', 'rolling_nm_scale1.0_nslice2_v1.7_10yrs', 'rolling_nm_scale0.2_nslice3_v1.7_10yrs', 'rolling_nm_scale0.4_nslice3_v1.7_10yrs', 'rolling_nm_scale0.6_nslice3_v1.7_10yrs', 'rolling_nm_scale0.8_nslice3_v1.7_10yrs', 'rolling_nm_scale0.9_nslice3_v1.7_10yrs', 'rolling_nm_scale1.0_nslice3_v1.7_10yrs', 'rolling_scale0.2_nslice2_v1.7_10yrs', 'rolling_scale0.4_nslice2_v1.7_10yrs', 'rolling_scale0.6_nslice2_v1.7_10yrs', 'rolling_scale0.8_nslice2_v1.7_10yrs', 'rolling_scale0.9_nslice2_v1.7_10yrs', 'rolling_scale1.0_nslice2_v1.7_10yrs', 'rolling_scale0.2_nslice3_v1.7_10yrs', 'rolling_scale0.4_nslice3_v1.7_10yrs', 'rolling_scale0.6_nslice3_v1.7_10yrs', 'rolling_scale0.8_nslice3_v1.7_10yrs', 'rolling_scale0.9_nslice3_v1.7_10yrs', 'rolling_scale1.0_nslice3_v1.7_10yrs'] self.nicknames[key] = ['Baseline', 'No Modulation, 0.2 strength, 2 band', 'No Modulation, 0.4 strength, 2 band', 'No Modulation, 0.6 strength, 2 band', 'No Modulation, 0.8 strength, 2 band', 'No Modulation, 0.9 strength, 2 band', 'No Modulation, 1.0 strength, 2 band', 'No Modulation, 0.2 strength, 3 band', 'No Modulation, 0.4 strength, 3 band', 'No Modulation, 0.6 strength, 3 band', 'No Modulation, 0.8 strength, 3 band', 'No Modulation, 0.9 strength, 3 band', 'No Modulation, 1.0 strength, 3 band', '0.2 strength, 2 band', '0.4 strength, 2 band', '0.6 strength, 2 band', '0.8 strength, 2 band', '0.9 strength, 2 band', '1.0 strength, 2 band', '0.2 strength, 3 band', '0.4 strength, 3 band', '0.6 strength, 3 band', '0.8 strength, 3 band', '0.9 strength, 3 band', '1.0 strength, 3 band'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' # MINISURVEYS ## twilight_neo key = 'twilight_neo' c = f"**{key}** = explore the impact of adding a twilight NEO survey, operating on various " \ f"timescales and thus requiring varying fraction of survey time. These twilight NEO surveys " \ f"replace the set initially released in v1.5, improving the twilight NEO mini-survey " \ f"performance for NEOs by restricting visits to low solar " \ f"elongations. Twilight NEO visits are 1 second long, in r,i, and z filters." self.comment[key] = c self.family[key] = ['twi_neo_pattern1_v1.7_10yrs', 'twi_neo_pattern2_v1.7_10yrs', 'twi_neo_pattern3_v1.7_10yrs', 'twi_neo_pattern4_v1.7_10yrs', 'twi_neo_pattern5_v1.7_10yrs', 'twi_neo_pattern6_v1.7_10yrs', 'twi_neo_pattern7_v1.7_10yrs', 'baseline_nexp2_v1.7_10yrs'] self.nicknames[key] = ['On every night', 'On every other night', 'On every third night', 'On every fourth night', 'On for 4 nights, off for 4 nights', 'On for 3 nights, off for 4 nights', 'On for 2 nights, off for 4 nights', 'Baseline (none)'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' ## shortexp key = 'shortexp' c = f"**{key}** = explore the impact of adding 2 or 5 short exposures of 1 or 5 seconds each year " \ f"(in all 6 filters). The number of visits in the entire survey increases -- but some will " \ f"be too short to be useful for some science -- the amount of time used for the mini-survey " \ f"varies in each of these examples, from 0.5% to 5%." self.comment[key] = c self.family[key] = ['short_exp_2ns_1expt_v1.5_10yrs', 'short_exp_2ns_5expt_v1.5_10yrs', 'short_exp_5ns_1expt_v1.5_10yrs', 'short_exp_5ns_5expt_v1.5_10yrs', 'baseline_v1.5_10yrs'] self.nicknames[key] = ['2/yr x 1s', '2/yr x 5s', '5/yr x 1s', '5/yr x 5s', 'Baseline (none)'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ## dcr key = 'dcr' c = f"**{key}** = explore the impact of adding 1 or 2 high-airmass visits in various bandpasses " \ f"each year, for the purpose of better-measuring differential chromatic refraction (helping " \ f"with AGN redshifts and the creation of difference image templates). " self.comment[key] = c self.family[key] = ['dcr_nham1_ug_v1.5_10yrs', 'dcr_nham1_ugr_v1.5_10yrs', 'dcr_nham1_ugri_v1.5_10yrs', 'dcr_nham2_ug_v1.5_10yrs', 'dcr_nham2_ugr_v1.5_10yrs', 'dcr_nham2_ugri_v1.5_10yrs', 'baseline_v1.5_10yrs'] self.nicknames[key] = ['1/yr in ug', '1/yr in ugr', '1/yr in ugri', '2/yr in ug', '2/yr in ugr', '2/yr in ugri', 'Baseline (none)'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ## good_seeing key = 'good_seeing' c = f"**{key}** = explore the effect of prioritizing achieving at least 1 'good seeing' image " \ f"in the specified bandpasses in each year. These simulations do improve the seeing " \ f"distributions in the targeted bands, compared to baseline -- this improvement is most " \ f"visible when comparing the achieved IQ against the standard baseline, within a given year. " self.comment[key] = c self.family[key] = ['goodseeing_i_v1.5_10yrs', 'goodseeing_gi_v1.5_10yrs', 'goodseeing_gz_v1.5_10yrs', 'goodseeing_gri_v1.5_10yrs', 'goodseeing_griz_v1.5_10yrs', 'baseline_v1.5_10yrs', ] self.nicknames[key] = ['good i band', 'good gi bands', 'good gz bands', 'good gri bands', 'good griz bands', 'baseline - none'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ## spiders key = 'spiders' c = f"**{key}** = This example simulation explores rotating the camera so that diffraction " \ f"spikes are aligned with the X/Y directions of the CCD, to reduce artifacts in " \ f"difference imaging." self.comment[key] = c self.family[key] = ['spiders_v1.5_10yrs', 'baseline_v1.5_10yrs'] self.nicknames[key] = ['Spiders Aligned', 'Random orientation'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ### DDF families # ddf sequences key = 'ddf' c = f"**{key}** = Vary the sequences for DDF fields. The amount of time per DDF field varies " \ f"between some of these simulations." self.comment[key] = c self.family[key] = ['agnddf_v1.5_10yrs', 'descddf_v1.5_10yrs', 'daily_ddf_v1.5_10yrs', 'baseline_v1.5_10yrs'] self.nicknames[key] = ['AGN sequences', 'DESC sequences', 'Daily sequences', 'Baseline'] self.family_baseline[key] = 'baseline_v1.5_10yrs' self.family_version[key] = '1.5' ### DDF dithers key = 'ddf_dithers' c = f"**{key}** = Vary the translational dither offsets in the DDFs, from 0 to 2.0 degrees. " \ f"Smaller dithers will help the overall depth and uniformity, but larger dithers may be " \ f"needed for calibration." self.comment[key] = c self.family[key] = ['ddf_dither0.00_v1.7_10yrs', 'ddf_dither0.05_v1.7_10yrs', 'ddf_dither0.10_v1.7_10yrs', 'ddf_dither0.30_v1.7_10yrs', 'ddf_dither0.70_v1.7_10yrs', 'ddf_dither1.00_v1.7_10yrs', 'ddf_dither1.50_v1.7_10yrs', 'ddf_dither2.00_v1.7_10yrs', 'baseline_nexp2_v1.7_10yrs'] self.nicknames[key] = ['0 dither', '0.05 deg dither', '0.10 deg dither', '0.30 deg dither', '0.70 deg dither', '1.00 deg dither', '1.50 deg dither', '2.00 deg dither', 'Baseline (0.70 deg)'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' key = 'euclid_dithers' c = f"**{key}** = vary the translational dither offsets to fill in the Euclid DDF footprint, as the " \ f"Euclid field is a double pointing for Rubin. These simulation vary the spatial dither both " \ f"towards the second pointing and perpendicular to the second pointing. The perpendicular " \ f"dithering is relatively small (and symmetric 'up' and 'down'). The dithering along the " \ f"footprint ('direct') is larger and non-symmetric, with a smaller dither 'away' from the " \ f"second pointing and a larger dither 'toward' the second pointing. (offsets are in degrees)." self.comment[key] = c self.family[key] = ['euclid_dither1_v1.7_10yrs', 'euclid_dither2_v1.7_10yrs', 'euclid_dither3_v1.7_10yrs', 'euclid_dither4_v1.7_10yrs', 'euclid_dither5_v1.7_10yrs', 'baseline_nexp2_v1.7_10yrs'] self.nicknames[key] = ['Direct -0.25/+1.0, Perp +/-0.25 (deg)', 'Direct -0.1/+1.0, Perp +/-0.25 (deg)', 'Direct -0.25/+1.0, Perp +/-0.10 (deg)', 'Direct -0.25/+1.5, Perp +/-0.25 (deg)', 'Direct -0.25/+0.75, Perp +/-0.25 (deg', 'Baseline (random)'] self.family_baseline[key] = 'baseline_nexp2_v1.7_10yrs' self.family_version[key] = '1.7' ## V1.6 potential schedulers (v16) key = 'potential_schedulers' c = f"**{key}** = A series of simulations where we vary *multiple* survey strategies at once, " \ "trying to combine the survey strategies that seemed useful to us (at the time anyway) to " \ "reach a particular science goal. These simulations are like cross-sections of the families, " \ "using bits and pieces to try to reach goals, rather than explore the impact of the various " \ "survey strategy changes individually. Each simulation is repeated for 2x15s visits and " \ "for 1x30s visits. " \ "<br>\n" \ "The point here is to illustrate the effect of combinations of survey strategy variations; " \ "some are successful and sometimes we may meet technical goals but not science goals. For " \ "further details on each simulation, Section 5 in the cadence report for the " \ "SCOC (https://pstn-051.lsst.io/) is recommended. " self.comment[key] = c self.family[key] = ['barebones_nexp2_v1.6_10yrs', 'barebones_v1.6_10yrs', 'baseline_nexp2_scaleddown_v1.6_10yrs', 'baseline_nexp2_v1.6_10yrs', 'baseline_nexp1_v1.6_10yrs', 'combo_dust_nexp2_v1.6_10yrs', 'combo_dust_v1.6_10yrs', 'ddf_heavy_nexp2_v1.6_10yrs', 'ddf_heavy_v1.6_10yrs', 'dm_heavy_nexp2_v1.6_10yrs', 'dm_heavy_v1.6_10yrs', 'mw_heavy_nexp2_v1.6_10yrs', 'mw_heavy_v1.6_10yrs', 'rolling_exgal_mod2_dust_sdf_0.80_nexp2_v1.6_10yrs', 'rolling_exgal_mod2_dust_sdf_0.80_v1.6_10yrs', 'ss_heavy_nexp2_v1.6_10yrs', 'ss_heavy_v1.6_10yrs'] self.nicknames[key] = ['WFD only 2x15s', 'WFD only 1x30s', 'Baseline 2x15s adjusted WFD fraction', 'Baseline 2x15s', 'Baseline 1x30s', 'Combo dust 2x15s', 'Combo dust 1x30s', 'DDF 13.4 % 2x15s', 'DDF 13.4% 1x30s', 'DM heavy 2x15s', 'DM heavy 1x30s', 'Bulge/MC @ WFD 2x15s', 'Bulge/MC @ WFD 1x30s', 'Shifted rolling WFD 2x15s', 'Shifted rolling WFD 1x30s', 'Twilight pairs + NEO 2x15s', 'Twilight pairs + NEO 1x30s'] self.family_baseline[key] = 'baseline_nexp1_v1.6_10yrs' self.family_version[key] = '1.6' """ ## filtercadence key = 'even_filters' c = f"**{key}** = choose to observe in bluer bandpasses even when the moon is full. This was the first " \ f"round of simulations to investigate this effect - see also the 'cadence_drive' family. " self.family[key] = ['even_filters_alt_g_v1.6_10yrs', 'even_filters_altv1.6_10yrs', 'even_filters_g_v1.6_10yrs', 'even_filtersv1.6_10yrs', 'baseline_nexp1_v1.6_10yrs' ] self.nicknames[key] = self.family[key] self.family_baseline[key] = 'baseline_nexp1_v1.6_10yrs' self.family_version[key] = '1.5' self.comment['greedy'] = 'greedy = look at the impact of changing the `greedy` visits during twilight to exclude the ecliptic. This should push all ecliptic visits into pairs. This did not make a significant difference, and now we have simulations that actually program pairs during twilight. ' self.family['greedy'] = ['greedy_footprint_v1.5_10yrs', 'baseline_v1.5_10yrs'] self.nicknames['greedy'] = ['greedy', 'baseline'] self.family_baseline['greedy'] = 'baseline_v1.5_10yrs' self.family_version['greedy'] = '1.5' self.comment['u60'] = 'u60 = simulation extending u band visits to 60s but not doubling the number of visits. This was pretty disastrous for transients. Replaced by u_long.' self.family['u60'] = ['u60_v1.5_10yrs', 'baseline_v1.5_10yrs'] self.nicknames['u60'] = ['u60 fewer visits', 'baseline'] self.family_baseline['u60'] = 'baseline_v1.5_10yrs' self.family_version['u60'] = '1.5' """ def read_summary_csv(self, csv_file='all_summaries_2021_02_08.csv'): """Read the summary stat csv file from disk. This file can be downloaded from: https://epyc.astro.washington.edu/~lynnej/opsim_downloads/all_summaries_2021_02_08.csv """ # Read in the CSV file containing the summary stat information ( self.summaries = pd.read_csv(csv_file, index_col=0) def list_of_families(self): """Print a list of the simulation groups under consideration, as of this time. """ # The families total = 0 displaystring = '' family_list = [] for k in self.family: if k == 'version_baselines': continue family_list.append(k) displaystring+= f"**{k}**, with {len(self.family[k])} simulations.<br>" total += len(self.family[k]) display_markdown(displaystring, raw=True) print(f'For {total} simulations in all.') return family_list def family_info(self, f, normalized=False): """Print some summary information about the family and return a high-level set of metrics.""" d =
pd.DataFrame(self.summaries[tablemetrics].loc[self.family[f]])
pandas.DataFrame
import plotly.graph_objects as go import plotly.express as px import pandas as pd from collections import Counter, OrderedDict def plot_active_users(df): dic = df.to_dict() k = list(dic.keys()) v = list(dic.values()) out_df = pd.DataFrame({'Пользователь': k, 'Число сообщений': v}).head(7) fig = px.bar(out_df, x='Пользователь', y='Число сообщений') return fig def plot_active_hours(df): hours_dict = { '00':0, '01':0, '02':0, '03':0, '04':0, '05':0, '06':0, '07':0, '08':0, '09':0, '10':0, '11':0, '12':0, '13':0, '14':0, '15':0, '16':0, '17':0, '18':0, '19':0, '20':0, '21':0, '22':0, '23':0 } hours = Counter(df.to_dict()) hours.update(hours_dict) k = list(hours.keys()) v = list(hours.values()) out_df = pd.DataFrame({'Время': k, 'Число сообщений': v}).sort_values(by=['Время']) fig = px.area(out_df, x='Время', y='Число сообщений') fig.update_xaxes(showgrid=False) fig.update_yaxes(showgrid=False) return fig def plot_active_month_year(df): monthes = { '01':'Январь', '02':'Февраль', '03':'Март', '04':'Апрель', '05':'Май', '06':'Июнь', '07':'Июль', '08':'Август', '09':'Сентябрь', '10':'Октябрь', '11':'Ноябрь', '12':'Декабрь' } dates = df['date'].values new_dates = [] for date in dates: splitted = date.split('.') month = monthes[splitted[1]] year = splitted[2] new_dates.append(f'{month}/{year}') dates_counter = Counter(new_dates) k = list(dates_counter.keys()) v = list(dates_counter.values()) out_df =
pd.DataFrame({'Дата': k, 'Число сообщений': v})
pandas.DataFrame
""" A warehouse for constant values required to initilize the PUDL Database. This constants module stores and organizes a bunch of constant values which are used throughout PUDL to populate static lists within the data packages or for data cleaning purposes. """ import pandas as pd import sqlalchemy as sa ###################################################################### # Constants used within the init.py module. ###################################################################### prime_movers = [ 'steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine' ] """list: A list of the types of prime movers""" rto_iso = { 'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'MISO': 'Midcontinent ISO', 'ISO-NE': 'ISO New England', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool' } """dict: A dictionary containing ISO/RTO abbreviations (keys) and names (values) """ us_states = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } """dict: A dictionary containing US state abbreviations (keys) and names (values) """ canada_prov_terr = { 'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NS': 'Nova Scotia', 'NL': 'Newfoundland and Labrador', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory', } """dict: A dictionary containing Canadian provinces' and territories' abbreviations (keys) and names (values) """ cems_states = {k: v for k, v in us_states.items() if v not in {'Alaska', 'American Samoa', 'Guam', 'Hawaii', 'Northern Mariana Islands', 'National', 'Puerto Rico', 'Virgin Islands'} } """dict: A dictionary containing US state abbreviations (keys) and names (values) that are present in the CEMS dataset """ # This is imperfect for states that have split timezones. See: # https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory # For states that are split, I went with where there seem to be more people # List of timezones in pytz.common_timezones # Canada: https://en.wikipedia.org/wiki/Time_in_Canada#IANA_time_zone_database state_tz_approx = { "AK": "US/Alaska", # Alaska; Not in CEMS "AL": "US/Central", # Alabama "AR": "US/Central", # Arkansas "AS": "Pacific/Pago_Pago", # American Samoa; Not in CEMS "AZ": "US/Arizona", # Arizona "CA": "US/Pacific", # California "CO": "US/Mountain", # Colorado "CT": "US/Eastern", # Connecticut "DC": "US/Eastern", # District of Columbia "DE": "US/Eastern", # Delaware "FL": "US/Eastern", # Florida (split state) "GA": "US/Eastern", # Georgia "GU": "Pacific/Guam", # Guam; Not in CEMS "HI": "US/Hawaii", # Hawaii; Not in CEMS "IA": "US/Central", # Iowa "ID": "US/Mountain", # Idaho (split state) "IL": "US/Central", # Illinois "IN": "US/Eastern", # Indiana (split state) "KS": "US/Central", # Kansas (split state) "KY": "US/Eastern", # Kentucky (split state) "LA": "US/Central", # Louisiana "MA": "US/Eastern", # Massachusetts "MD": "US/Eastern", # Maryland "ME": "US/Eastern", # Maine "MI": "America/Detroit", # Michigan (split state) "MN": "US/Central", # Minnesota "MO": "US/Central", # Missouri "MP": "Pacific/Saipan", # Northern Mariana Islands; Not in CEMS "MS": "US/Central", # Mississippi "MT": "US/Mountain", # Montana "NC": "US/Eastern", # North Carolina "ND": "US/Central", # North Dakota (split state) "NE": "US/Central", # Nebraska (split state) "NH": "US/Eastern", # New Hampshire "NJ": "US/Eastern", # New Jersey "NM": "US/Mountain", # New Mexico "NV": "US/Pacific", # Nevada "NY": "US/Eastern", # New York "OH": "US/Eastern", # Ohio "OK": "US/Central", # Oklahoma "OR": "US/Pacific", # Oregon (split state) "PA": "US/Eastern", # Pennsylvania "PR": "America/Puerto_Rico", # Puerto Rico; Not in CEMS "RI": "US/Eastern", # Rhode Island "SC": "US/Eastern", # South Carolina "SD": "US/Central", # South Dakota (split state) "TN": "US/Central", # Tennessee "TX": "US/Central", # Texas "UT": "US/Mountain", # Utah "VA": "US/Eastern", # Virginia "VI": "America/Puerto_Rico", # Virgin Islands; Not in CEMS "VT": "US/Eastern", # Vermont "WA": "US/Pacific", # Washington "WI": "US/Central", # Wisconsin "WV": "US/Eastern", # West Virginia "WY": "US/Mountain", # Wyoming # Canada (none of these are in CEMS) "AB": "America/Edmonton", # Alberta "BC": "America/Vancouver", # British Columbia (split province) "MB": "America/Winnipeg", # Manitoba "NB": "America/Moncton", # New Brunswick "NS": "America/Halifax", # Nova Scotia "NL": "America/St_Johns", # Newfoundland and Labrador (split province) "NT": "America/Yellowknife", # Northwest Territories (split province) "NU": "America/Iqaluit", # Nunavut (split province) "ON": "America/Toronto", # Ontario (split province) "PE": "America/Halifax", # Prince Edwards Island "QC": "America/Montreal", # Quebec (split province) "SK": "America/Regina", # Saskatchewan (split province) "YT": "America/Whitehorse", # Yukon Territory } """dict: A dictionary containing US and Canadian state/territory abbreviations (keys) and timezones (values) """ ferc1_power_purchase_type = { 'RQ': 'requirement', 'LF': 'long_firm', 'IF': 'intermediate_firm', 'SF': 'short_firm', 'LU': 'long_unit', 'IU': 'intermediate_unit', 'EX': 'electricity_exchange', 'OS': 'other_service', 'AD': 'adjustment' } """dict: A dictionary of abbreviations (keys) and types (values) for power purchase agreements from FERC Form 1. """ # Dictionary mapping DBF files (w/o .DBF file extension) to DB table names ferc1_dbf2tbl = { 'F1_1': 'f1_respondent_id', 'F1_2': 'f1_acb_epda', 'F1_3': 'f1_accumdepr_prvsn', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_5': 'f1_adit_190_detail', 'F1_6': 'f1_adit_190_notes', 'F1_7': 'f1_adit_amrt_prop', 'F1_8': 'f1_adit_other', 'F1_9': 'f1_adit_other_prop', 'F1_10': 'f1_allowances', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_20': 'f1_csscslc_pcsircs', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_33': 'f1_gnrt_plant', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_40': 'f1_mtrl_spply', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_43': 'f1_note_fin_stmnt', # 37% of DB 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', # 52% of DB 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_106_2009': 'f1_106_2009', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security' # 'F1_PINS': 'f1_pins', # private data, not publicized. # 'F1_FREEZE': 'f1_freeze', # private data, not publicized } """dict: A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension) (keys) to database table names (values). """ ferc1_huge_tables = { 'f1_footnote_tbl', 'f1_footnote_data', 'f1_note_fin_stmnt', } """set: A set containing large FERC Form 1 tables. """ # Invert the map above so we can go either way as needed ferc1_tbl2dbf = {v: k for k, v in ferc1_dbf2tbl.items()} """dict: A dictionary mapping database table names (keys) to FERC Form 1 DBF files(w / o .DBF file extension) (values). """ # This dictionary maps the strings which are used to denote field types in the # DBF objects to the corresponding generic SQLAlchemy Column types: # These definitions come from a combination of the dbfread example program # dbf2sqlite and this DBF file format documentation page: # http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm # Un-mapped types left as 'XXX' which should obviously make an error... dbf_typemap = { 'C': sa.String, 'D': sa.Date, 'F': sa.Float, 'I': sa.Integer, 'L': sa.Boolean, 'M': sa.Text, # 10 digit .DBT block number, stored as a string... 'N': sa.Float, 'T': sa.DateTime, '0': sa.Integer, # based on dbf2sqlite mapping 'B': 'XXX', # .DBT block number, binary string '@': 'XXX', # Timestamp... Date = Julian Day, Time is in milliseconds? '+': 'XXX', # Autoincrement (e.g. for IDs) 'O': 'XXX', # Double, 8 bytes 'G': 'XXX', # OLE 10 digit/byte number of a .DBT block, stored as string } """dict: A dictionary mapping field types in the DBF objects (keys) to the corresponding generic SQLAlchemy Column types. """ # This is the set of tables which have been successfully integrated into PUDL: ferc1_pudl_tables = ( 'fuel_ferc1', # Plant-level data, linked to plants_steam_ferc1 'plants_steam_ferc1', # Plant-level data 'plants_small_ferc1', # Plant-level data 'plants_hydro_ferc1', # Plant-level data 'plants_pumped_storage_ferc1', # Plant-level data 'purchased_power_ferc1', # Inter-utility electricity transactions 'plant_in_service_ferc1', # Row-mapped plant accounting data. # 'accumulated_depreciation_ferc1' # Requires row-mapping to be useful. ) """tuple: A tuple containing the FERC Form 1 tables that can be successfully integrated into PUDL. """ table_map_ferc1_pudl = { 'fuel_ferc1': 'f1_fuel', 'plants_steam_ferc1': 'f1_steam', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'purchased_power_ferc1': 'f1_purchased_pwr', # 'accumulated_depreciation_ferc1': 'f1_accumdepr_prvsn' } """dict: A dictionary mapping PUDL table names (keys) to the corresponding FERC Form 1 DBF table names. """ # This is the list of EIA923 tables that can be successfully pulled into PUDL eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923') """tuple: A tuple containing the EIA923 tables that can be successfully integrated into PUDL. """ epaipm_pudl_tables = ( 'transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm', ) """tuple: A tuple containing the EPA IPM tables that can be successfully integrated into PUDL. """ # List of entity tables entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm', ] """list: A list of PUDL entity tables. """ xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps' """string: The location of the xlsx maps within the PUDL package data.""" ############################################################################## # EIA 923 Spreadsheet Metadata ############################################################################## ############################################################################## # EIA 860 Spreadsheet Metadata ############################################################################## # This is the list of EIA860 tables that can be successfully pulled into PUDL eia860_pudl_tables = ( 'boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860' ) """tuple: A tuple enumerating EIA 860 tables for which PUDL's ETL works.""" # The set of FERC Form 1 tables that have the same composite primary keys: [ # respondent_id, report_year, report_prd, row_number, spplmnt_num ]. # TODO: THIS ONLY PERTAINS TO 2015 AND MAY NEED TO BE ADJUSTED BY YEAR... ferc1_data_tables = ( 'f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev') """tuple: A tuple containing the FERC Form 1 tables that have the same composite primary keys: [respondent_id, report_year, report_prd, row_number, spplmnt_num]. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 pages 204-207, Electric Plant in Service. # Descriptions from: https://www.law.cornell.edu/cfr/text/18/part-101 ferc_electric_plant_accounts = pd.DataFrame.from_records([ # 1. Intangible Plant (2, '301', 'Intangible: Organization'), (3, '302', 'Intangible: Franchises and consents'), (4, '303', 'Intangible: Miscellaneous intangible plant'), (5, 'subtotal_intangible', 'Subtotal: Intangible Plant'), # 2. Production Plant # A. steam production (8, '310', 'Steam production: Land and land rights'), (9, '311', 'Steam production: Structures and improvements'), (10, '312', 'Steam production: Boiler plant equipment'), (11, '313', 'Steam production: Engines and engine-driven generators'), (12, '314', 'Steam production: Turbogenerator units'), (13, '315', 'Steam production: Accessory electric equipment'), (14, '316', 'Steam production: Miscellaneous power plant equipment'), (15, '317', 'Steam production: Asset retirement costs for steam production\ plant'), (16, 'subtotal_steam_production', 'Subtotal: Steam Production Plant'), # B. nuclear production (18, '320', 'Nuclear production: Land and land rights (Major only)'), (19, '321', 'Nuclear production: Structures and improvements (Major\ only)'), (20, '322', 'Nuclear production: Reactor plant equipment (Major only)'), (21, '323', 'Nuclear production: Turbogenerator units (Major only)'), (22, '324', 'Nuclear production: Accessory electric equipment (Major\ only)'), (23, '325', 'Nuclear production: Miscellaneous power plant equipment\ (Major only)'), (24, '326', 'Nuclear production: Asset retirement costs for nuclear\ production plant (Major only)'), (25, 'subtotal_nuclear_produciton', 'Subtotal: Nuclear Production Plant'), # C. hydraulic production (27, '330', 'Hydraulic production: Land and land rights'), (28, '331', 'Hydraulic production: Structures and improvements'), (29, '332', 'Hydraulic production: Reservoirs, dams, and waterways'), (30, '333', 'Hydraulic production: Water wheels, turbines and generators'), (31, '334', 'Hydraulic production: Accessory electric equipment'), (32, '335', 'Hydraulic production: Miscellaneous power plant equipment'), (33, '336', 'Hydraulic production: Roads, railroads and bridges'), (34, '337', 'Hydraulic production: Asset retirement costs for hydraulic\ production plant'), (35, 'subtotal_hydraulic_production', 'Subtotal: Hydraulic Production\ Plant'), # D. other production (37, '340', 'Other production: Land and land rights'), (38, '341', 'Other production: Structures and improvements'), (39, '342', 'Other production: Fuel holders, producers, and accessories'), (40, '343', 'Other production: Prime movers'), (41, '344', 'Other production: Generators'), (42, '345', 'Other production: Accessory electric equipment'), (43, '346', 'Other production: Miscellaneous power plant equipment'), (44, '347', 'Other production: Asset retirement costs for other production\ plant'), (None, '348', 'Other production: Energy Storage Equipment'), (45, 'subtotal_other_production', 'Subtotal: Other Production Plant'), (46, 'subtotal_production', 'Subtotal: Production Plant'), # 3. Transmission Plant, (48, '350', 'Transmission: Land and land rights'), (None, '351', 'Transmission: Energy Storage Equipment'), (49, '352', 'Transmission: Structures and improvements'), (50, '353', 'Transmission: Station equipment'), (51, '354', 'Transmission: Towers and fixtures'), (52, '355', 'Transmission: Poles and fixtures'), (53, '356', 'Transmission: Overhead conductors and devices'), (54, '357', 'Transmission: Underground conduit'), (55, '358', 'Transmission: Underground conductors and devices'), (56, '359', 'Transmission: Roads and trails'), (57, '359.1', 'Transmission: Asset retirement costs for transmission\ plant'), (58, 'subtotal_transmission', 'Subtotal: Transmission Plant'), # 4. Distribution Plant (60, '360', 'Distribution: Land and land rights'), (61, '361', 'Distribution: Structures and improvements'), (62, '362', 'Distribution: Station equipment'), (63, '363', 'Distribution: Storage battery equipment'), (64, '364', 'Distribution: Poles, towers and fixtures'), (65, '365', 'Distribution: Overhead conductors and devices'), (66, '366', 'Distribution: Underground conduit'), (67, '367', 'Distribution: Underground conductors and devices'), (68, '368', 'Distribution: Line transformers'), (69, '369', 'Distribution: Services'), (70, '370', 'Distribution: Meters'), (71, '371', 'Distribution: Installations on customers\' premises'), (72, '372', 'Distribution: Leased property on customers\' premises'), (73, '373', 'Distribution: Street lighting and signal systems'), (74, '374', 'Distribution: Asset retirement costs for distribution plant'), (75, 'subtotal_distribution', 'Subtotal: Distribution Plant'), # 5. Regional Transmission and Market Operation Plant (77, '380', 'Regional transmission: Land and land rights'), (78, '381', 'Regional transmission: Structures and improvements'), (79, '382', 'Regional transmission: Computer hardware'), (80, '383', 'Regional transmission: Computer software'), (81, '384', 'Regional transmission: Communication Equipment'), (82, '385', 'Regional transmission: Miscellaneous Regional Transmission\ and Market Operation Plant'), (83, '386', 'Regional transmission: Asset Retirement Costs for Regional\ Transmission and Market Operation\ Plant'), (84, 'subtotal_regional_transmission', 'Subtotal: Transmission and Market\ Operation Plant'), (None, '387', 'Regional transmission: [Reserved]'), # 6. General Plant (86, '389', 'General: Land and land rights'), (87, '390', 'General: Structures and improvements'), (88, '391', 'General: Office furniture and equipment'), (89, '392', 'General: Transportation equipment'), (90, '393', 'General: Stores equipment'), (91, '394', 'General: Tools, shop and garage equipment'), (92, '395', 'General: Laboratory equipment'), (93, '396', 'General: Power operated equipment'), (94, '397', 'General: Communication equipment'), (95, '398', 'General: Miscellaneous equipment'), (96, 'subtotal_general', 'Subtotal: General Plant'), (97, '399', 'General: Other tangible property'), (98, '399.1', 'General: Asset retirement costs for general plant'), (99, 'total_general', 'TOTAL General Plant'), (100, '101_and_106', 'Electric plant in service (Major only)'), (101, '102_purchased', 'Electric plant purchased'), (102, '102_sold', 'Electric plant sold'), (103, '103', 'Experimental plant unclassified'), (104, 'total_electric_plant', 'TOTAL Electric Plant in Service')], columns=['row_number', 'ferc_account_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 pages 204 - 207, Electric Plant in Service. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 page 219, ACCUMULATED PROVISION FOR DEPRECIATION # OF ELECTRIC UTILITY PLANT (Account 108). ferc_accumulated_depreciation = pd.DataFrame.from_records([ # Section A. Balances and Changes During Year (1, 'balance_beginning_of_year', 'Balance Beginning of Year'), (3, 'depreciation_expense', '(403) Depreciation Expense'), (4, 'depreciation_expense_asset_retirement', \ '(403.1) Depreciation Expense for Asset Retirement Costs'), (5, 'expense_electric_plant_leased_to_others', \ '(413) Exp. of Elec. Plt. Leas. to Others'), (6, 'transportation_expenses_clearing',\ 'Transportation Expenses-Clearing'), (7, 'other_clearing_accounts', 'Other Clearing Accounts'), (8, 'other_accounts_specified',\ 'Other Accounts (Specify, details in footnote):'), # blank: might also be other charges like line 17. (9, 'other_charges', 'Other Charges:'), (10, 'total_depreciation_provision_for_year',\ 'TOTAL Deprec. Prov for Year (Enter Total of lines 3 thru 9)'), (11, 'net_charges_for_plant_retired', 'Net Charges for Plant Retired:'), (12, 'book_cost_of_plant_retired', 'Book Cost of Plant Retired'), (13, 'cost_of_removal', 'Cost of Removal'), (14, 'salvage_credit', 'Salvage (Credit)'), (15, 'total_net_charges_for_plant_retired',\ 'TOTAL Net Chrgs. for Plant Ret. (Enter Total of lines 12 thru 14)'), (16, 'other_debit_or_credit_items',\ 'Other Debit or Cr. Items (Describe, details in footnote):'), # blank: can be "Other Charges", e.g. in 2012 for PSCo. (17, 'other_charges_2', 'Other Charges 2'), (18, 'book_cost_or_asset_retirement_costs_retired',\ 'Book Cost or Asset Retirement Costs Retired'), (19, 'balance_end_of_year', \ 'Balance End of Year (Enter Totals of lines 1, 10, 15, 16, and 18)'), # Section B. Balances at End of Year According to Functional Classification (20, 'steam_production_end_of_year', 'Steam Production'), (21, 'nuclear_production_end_of_year', 'Nuclear Production'), (22, 'hydraulic_production_end_of_year',\ 'Hydraulic Production-Conventional'), (23, 'pumped_storage_end_of_year', 'Hydraulic Production-Pumped Storage'), (24, 'other_production', 'Other Production'), (25, 'transmission', 'Transmission'), (26, 'distribution', 'Distribution'), (27, 'regional_transmission_and_market_operation', 'Regional Transmission and Market Operation'), (28, 'general', 'General'), (29, 'total', 'TOTAL (Enter Total of lines 20 thru 28)')], columns=['row_number', 'line_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 page 219, Accumulated Provision for Depreciation of electric utility plant(Account 108). """ ###################################################################### # Constants from EIA From 923 used within init.py module ###################################################################### # From Page 7 of EIA Form 923, Census Region a US state is located in census_region = { 'NEW': 'New England', 'MAT': 'Middle Atlantic', 'SAT': 'South Atlantic', 'ESC': 'East South Central', 'WSC': 'West South Central', 'ENC': 'East North Central', 'WNC': 'West North Central', 'MTN': 'Mountain', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', } """dict: A dictionary mapping Census Region abbreviations (keys) to Census Region names (values). """ # From Page 7 of EIA Form923 # Static list of NERC (North American Electric Reliability Corporation) # regions, used for where plant is located nerc_region = { 'NPCC': 'Northeast Power Coordinating Council', 'ASCC': 'Alaska Systems Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'SERC': 'SERC Reliability Corporation', 'RFC': 'Reliability First Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'FRCC': 'Florida Reliability Coordinating Council', 'WECC': 'Western Electricity Coordinating Council' } """dict: A dictionary mapping NERC Region abbreviations (keys) to NERC Region names (values). """ # From Page 7 of EIA Form 923 EIA’s internal consolidated NAICS sectors. # For internal purposes, EIA consolidates NAICS categories into seven groups. sector_eia = { # traditional regulated electric utilities '1': 'Electric Utility', # Independent power producers which are not cogenerators '2': 'NAICS-22 Non-Cogen', # Independent power producers which are cogenerators, but whose # primary business purpose is the sale of electricity to the public '3': 'NAICS-22 Cogen', # Commercial non-cogeneration facilities that produce electric power, # are connected to the gird, and can sell power to the public '4': 'Commercial NAICS Non-Cogen', # Commercial cogeneration facilities that produce electric power, are # connected to the grid, and can sell power to the public '5': 'Commercial NAICS Cogen', # Industrial non-cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '6': 'Industrial NAICS Non-Cogen', # Industrial cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '7': 'Industrial NAICS Cogen' } """dict: A dictionary mapping EIA numeric codes (keys) to EIA’s internal consolidated NAICS sectors (values). """ # EIA 923: EIA Type of prime mover: prime_movers_eia923 = { 'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CC': 'Combined-Cycle, Total Unit', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'OT': 'Other', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'PV': 'Photovoltaic', 'WT': 'Wind Turbine, Onshore', 'WS': 'Wind Turbine, Offshore' } """dict: A dictionary mapping EIA 923 prime mover codes (keys) and prime mover names / descriptions (values). """ # EIA 923: The fuel code reported to EIA.Two or three letter alphanumeric: fuel_type_eia923 = { 'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.' } """dict: A dictionary mapping EIA 923 fuel type codes (keys) and fuel type names / descriptions (values). """ # Fuel type strings for EIA 923 generator fuel table fuel_type_eia923_gen_fuel_coal_strings = [ 'ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: The list of EIA 923 Generation Fuel strings associated with coal fuel. """ fuel_type_eia923_gen_fuel_oil_strings = [ 'dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: The list of EIA 923 Generation Fuel strings associated with oil fuel. """ fuel_type_eia923_gen_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: The list of EIA 923 Generation Fuel strings associated with gas fuel. """ fuel_type_eia923_gen_fuel_solar_strings = ['sun', ] """list: The list of EIA 923 Generation Fuel strings associated with solar power. """ fuel_type_eia923_gen_fuel_wind_strings = ['wnd', ] """list: The list of EIA 923 Generation Fuel strings associated with wind power. """ fuel_type_eia923_gen_fuel_hydro_strings = ['wat', ] """list: The list of EIA 923 Generation Fuel strings associated with hydro power. """ fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc', ] """list: The list of EIA 923 Generation Fuel strings associated with nuclear power. """ fuel_type_eia923_gen_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'] """list: The list of EIA 923 Generation Fuel strings associated with solid waste fuel. """ fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh', ] """list: The list of EIA 923 Generation Fuel strings associated with geothermal power. """ fuel_type_eia923_gen_fuel_simple_map = { 'coal': fuel_type_eia923_gen_fuel_coal_strings, 'oil': fuel_type_eia923_gen_fuel_oil_strings, 'gas': fuel_type_eia923_gen_fuel_gas_strings, 'solar': fuel_type_eia923_gen_fuel_solar_strings, 'wind': fuel_type_eia923_gen_fuel_wind_strings, 'hydro': fuel_type_eia923_gen_fuel_hydro_strings, 'nuclear': fuel_type_eia923_gen_fuel_nuclear_strings, 'waste': fuel_type_eia923_gen_fuel_waste_strings, 'other': fuel_type_eia923_gen_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # Fuel type strings for EIA 923 boiler fuel table fuel_type_eia923_boiler_fuel_coal_strings = [ 'ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type coal. """ fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type oil. """ fuel_type_eia923_boiler_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type gas. """ fuel_type_eia923_boiler_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type waste. """ fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type other. """ fuel_type_eia923_boiler_fuel_simple_map = { 'coal': fuel_type_eia923_boiler_fuel_coal_strings, 'oil': fuel_type_eia923_boiler_fuel_oil_strings, 'gas': fuel_type_eia923_boiler_fuel_gas_strings, 'waste': fuel_type_eia923_boiler_fuel_waste_strings, 'other': fuel_type_eia923_boiler_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # PUDL consolidation of EIA923 AER fuel type strings into same categories as # 'energy_source_eia923' plus additional renewable and nuclear categories. # These classifications are not currently used, as the EIA fuel type and energy # source designations provide more detailed information. aer_coal_strings = ['col', 'woc', 'pc'] """list: A list of EIA 923 AER fuel type strings associated with coal. """ aer_gas_strings = ['mlg', 'ng', 'oog'] """list: A list of EIA 923 AER fuel type strings associated with gas. """ aer_oil_strings = ['dfo', 'rfo', 'woo'] """list: A list of EIA 923 AER fuel type strings associated with oil. """ aer_solar_strings = ['sun'] """list: A list of EIA 923 AER fuel type strings associated with solar power. """ aer_wind_strings = ['wnd'] """list: A list of EIA 923 AER fuel type strings associated with wind power. """ aer_hydro_strings = ['hps', 'hyc'] """list: A list of EIA 923 AER fuel type strings associated with hydro power. """ aer_nuclear_strings = ['nuc'] """list: A list of EIA 923 AER fuel type strings associated with nuclear power. """ aer_waste_strings = ['www'] """list: A list of EIA 923 AER fuel type strings associated with waste. """ aer_other_strings = ['geo', 'orw', 'oth'] """list: A list of EIA 923 AER fuel type strings associated with other fuel. """ aer_fuel_type_strings = { 'coal': aer_coal_strings, 'gas': aer_gas_strings, 'oil': aer_oil_strings, 'solar': aer_solar_strings, 'wind': aer_wind_strings, 'hydro': aer_hydro_strings, 'nuclear': aer_nuclear_strings, 'waste': aer_waste_strings, 'other': aer_other_strings } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923: A partial aggregation of the reported fuel type codes into # larger categories used by EIA in, for example, # the Annual Energy Review (AER).Two or three letter alphanumeric. # See the Fuel Code table (Table 5), below: fuel_type_aer_eia923 = { 'SUN': 'Solar PV and thermal', 'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste' } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'] """list: A list of strings from EIA 860 associated with fuel type coal. """ fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'] """list: A list of strings from EIA 860 associated with fuel type oil. """ fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'] """list: A list of strings from EIA 860 associated with fuel type gas. """ fuel_type_eia860_solar_strings = ['sun', 'solar'] """list: A list of strings from EIA 860 associated with solar power. """ fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt'] """list: A list of strings from EIA 860 associated with wind power. """ fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro'] """list: A list of strings from EIA 860 associated with hydro power. """ fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear'] """list: A list of strings from EIA 860 associated with nuclear power. """ fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'] """list: A list of strings from EIA 860 associated with fuel type waste. """ fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'] """list: A list of strings from EIA 860 associated with fuel type other. """ fuel_type_eia860_simple_map = { 'coal': fuel_type_eia860_coal_strings, 'oil': fuel_type_eia860_oil_strings, 'gas': fuel_type_eia860_gas_strings, 'solar': fuel_type_eia860_solar_strings, 'wind': fuel_type_eia860_wind_strings, 'hydro': fuel_type_eia860_hydro_strings, 'nuclear': fuel_type_eia860_nuclear_strings, 'waste': fuel_type_eia860_waste_strings, 'other': fuel_type_eia860_other_strings, } """dict: A dictionary mapping EIA 860 fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923/860: Lumping of energy source categories. energy_source_eia_simple_map = { 'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'solar': ['SUN'], 'wind': ['WND'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'] } """dict: A dictionary mapping EIA fuel types (keys) to fuel codes (values). """ fuel_group_eia923_simple_map = { 'coal': ['coal', 'petroleum coke'], 'oil': ['petroleum'], 'gas': ['natural gas', 'other gas'] } """dict: A dictionary mapping EIA 923 simple fuel types("oil", "coal", "gas") (keys) to fuel types (values). """ # EIA 923: The type of physical units fuel consumption is reported in. # All consumption is reported in either short tons for solids, # thousands of cubic feet for gases, and barrels for liquids. fuel_units_eia923 = { 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)', 'barrels': 'Barrels (for liquids)' } """dict: A dictionary mapping EIA 923 fuel units (keys) to fuel unit descriptions (values). """ # EIA 923: Designates the purchase type under which receipts occurred # in the reporting month. One or two character alphanumeric: contract_type_eia923 = { 'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'N': 'New Contract - see NC code. This abbreviation existed only in 2008 before being replaced by NC.', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)' } """dict: A dictionary mapping EIA 923 contract codes (keys) to contract descriptions (values) for each month in the Fuel Receipts and Costs table. """ # EIA 923: The fuel code associated with the fuel receipt. # Defined on Page 7 of EIA Form 923 # Two or three character alphanumeric: energy_source_eia923 = { 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BM': 'Biomass', 'BIT': 'Bituminous Coal', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'OG': 'Other Gas', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.', } """dict: A dictionary mapping fuel codes (keys) to fuel descriptions (values) for each fuel receipt from the EIA 923 Fuel Receipts and Costs table. """ # EIA 923 Fuel Group, from Page 7 EIA Form 923 # Groups fossil fuel energy sources into fuel groups that are located in the # Electric Power Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke. fuel_group_eia923 = ( 'coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas' ) """tuple: A tuple containing EIA 923 fuel groups. """ # EIA 923: Type of Coal Mine as defined on Page 7 of EIA Form 923 coalmine_type_eia923 = { 'P': 'Preparation Plant', 'S': 'Surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground', 'SU': 'Both an underground and surface mine with most coal extracted from surface', } """dict: A dictionary mapping EIA 923 coal mine type codes (keys) to descriptions (values). """ # EIA 923: State abbreviation related to coal mine location. # Country abbreviations are also used in this category, but they are # non-standard because of collisions with US state names. Instead of using # the provided non-standard names, we convert to ISO-3166-1 three letter # country codes https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 coalmine_country_eia923 = { 'AU': 'AUS', # Australia 'CL': 'COL', # Colombia 'CN': 'CAN', # Canada 'IS': 'IDN', # Indonesia 'PL': 'POL', # Poland 'RS': 'RUS', # Russia 'UK': 'GBR', # United Kingdom of Great Britain 'VZ': 'VEN', # Venezuela 'OT': 'other_country', 'IM': 'unknown' } """dict: A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three letter country codes (values). """ # EIA 923: Mode for the longest / second longest distance. transport_modes_eia923 = { 'RR': 'Rail: Shipments of fuel moved to consumers by rail \ (private or public/commercial). Included is coal hauled to or \ away from a railroad siding by truck if the truck did not use public\ roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. \ Not included are shipments to Great Lakes coal loading docks, \ tidewater piers, or coastal ports.', 'GL': 'Great Lakes: Shipments of coal moved to consumers via \ the Great Lakes. These shipments are moved via the Great Lakes \ coal loading docks, which are identified by name and location as \ follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; \ NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; \ Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; \ KCBX Terminals Inc., Chicago, Illinois; \ Superior Midwest Energy Terminal, Superior, Wisconsin', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to \ Tidewater Piers and Coastal Ports for further shipments to consumers \ via coastal water or ocean. The Tidewater Piers and Coastal Ports \ are identified by name and location as follows: Dominion Terminal \ Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, \ Alabama; IC Railmarine Terminal, Convent, Louisiana; \ International Marine Terminals, Myrtle Grove, Louisiana; \ Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; \ Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, \ Inc., Los Angeles, California; Levin-Richmond Terminal Corp., \ Richmond, California; Baltimore Terminal, Baltimore, Maryland; \ Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; \ Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, \ Newport News, Virginia; Electro-Coal Transport Corp., Davant, \ Louisiana', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers \ by tramway or conveyor.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers \ by slurry pipeline.', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline' } """dict: A dictionary mapping primary and secondary transportation mode codes (keys) to descriptions (values). """ # we need to include all of the columns which we want to keep for either the # entity or annual tables. The order here matters. We need to harvest the plant # location before harvesting the location of the utilites for example. entities = { 'plants': [ # base cols ['plant_id_eia'], # static cols ['balancing_authority_code_eia', 'balancing_authority_name_eia', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'service_area', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], # annual cols ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'datum', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'nerc_region', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], # need type fixing {}, ], 'generators': [ # base cols ['plant_id_eia', 'generator_id'], # static cols ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], # annual cols ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'owned_by_non_utility', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'summer_capacity_estimate', 'winter_capacity_estimate', 'minimum_load_mw', 'distributed_generation', 'technology_description', 'reactive_power_output_mvar', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'energy_source_1_transport_1', 'energy_source_1_transport_2', 'energy_source_1_transport_3', 'energy_source_2_transport_1', 'energy_source_2_transport_2', 'energy_source_2_transport_3', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia', 'data_source'], # need type fixing {} ], # utilities must come after plants. plant location needs to be # removed before the utility locations are compiled 'utilities': [ # base cols ['utility_id_eia'], # static cols ['utility_name_eia'], # annual cols ['street_address', 'city', 'state', 'zip_code', 'entity_type', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', 'attention_line', 'address_2', 'zip_code_4', 'contact_firstname', 'contact_lastname', 'contact_title', 'contact_firstname_2', 'contact_lastname_2', 'contact_title_2', 'phone_extension_1', 'phone_extension_2', 'phone_number_1', 'phone_number_2'], # need type fixing {'utility_id_eia': 'int64', }, ], 'boilers': [ # base cols ['plant_id_eia', 'boiler_id'], # static cols ['prime_mover_code'], # annual cols [], # need type fixing {}, ] } """dict: A dictionary containing table name strings (keys) and lists of columns to keep for those tables (values). """ epacems_tables = ("hourly_emissions_epacems") """tuple: A tuple containing tables of EPA CEMS data to pull into PUDL. """ files_dict_epaipm = { 'transmission_single_epaipm': '*table_3-21*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', } """dict: A dictionary of EPA IPM tables and strings that files of those tables contain. """ epaipm_url_ext = { 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', 'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', } """dict: A dictionary of EPA IPM tables and associated URLs extensions for downloading that table's data. """ epaipm_region_names = [ 'ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK', ] """list: A list of EPA IPM region names.""" epaipm_region_aggregations = { 'PJM': [ 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC' ], 'NYISO': [ 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K' ], 'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': [ 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS' ], 'SPP': [ 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE' ], 'WECC_NW': [ 'WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY' ] } """ dict: A dictionary containing EPA IPM regions (keys) and lists of their associated abbreviations (values). """ epaipm_rename_dict = { 'transmission_single_epaipm': { 'From': 'region_from', 'To': 'region_to', 'Capacity TTC (MW)': 'firm_ttc_mw', 'Energy TTC (MW)': 'nonfirm_ttc_mw', 'Transmission Tariff (2016 mills/kWh)': 'tariff_mills_kwh', }, 'load_curves_epaipm': { 'day': 'day_of_year', 'region': 'region_id_epaipm', }, 'plant_region_map_epaipm': { 'ORIS Plant Code': 'plant_id_eia', 'Region Name': 'region', }, } glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn') """ dict: A dictionary of dictionaries containing EPA IPM tables (keys) and items for each table to be renamed along with the replacement name (values). """ data_sources = ( 'eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', 'ferc714', # 'pudl' ) """tuple: A tuple containing the data sources we are able to pull into PUDL.""" # All the years for which we ought to be able to download these data sources data_years = { 'eia860': tuple(range(2001, 2020)), 'eia861': tuple(range(1990, 2020)), 'eia923': tuple(range(2001, 2020)), 'epacems': tuple(range(1995, 2021)), 'epaipm': (None, ), 'ferc1': tuple(range(1994, 2020)), 'ferc714': (None, ), } """ dict: A dictionary of data sources (keys) and tuples containing the years that we expect to be able to download for each data source (values). """ # The full set of years we currently expect to be able to ingest, per source: working_partitions = { 'eia860': { 'years': tuple(range(2004, 2020)) }, 'eia860m': { 'year_month': '2020-11' }, 'eia861': { 'years': tuple(range(2001, 2020)) }, 'eia923': { 'years': tuple(range(2001, 2020)) }, 'epacems': { 'years': tuple(range(1995, 2021)), 'states': tuple(cems_states.keys())}, 'ferc1': { 'years': tuple(range(1994, 2020)) }, 'ferc714': {}, } """ dict: A dictionary of data sources (keys) and dictionaries (values) of names of partition type (sub-key) and paritions (sub-value) containing the paritions such as tuples of years for each data source that are able to be ingested into PUDL. """ pudl_tables = { 'eia860': eia860_pudl_tables, 'eia861': ( "service_territory_eia861", "balancing_authority_eia861", "sales_eia861", "advanced_metering_infrastructure_eia861", "demand_response_eia861", "demand_side_management_eia861", "distributed_generation_eia861", "distribution_systems_eia861", "dynamic_pricing_eia861", "energy_efficiency_eia861", "green_pricing_eia861", "mergers_eia861", "net_metering_eia861", "non_net_metering_eia861", "operational_data_eia861", "reliability_eia861", "utility_data_eia861", ), 'eia923': eia923_pudl_tables, 'epacems': epacems_tables, 'epaipm': epaipm_pudl_tables, 'ferc1': ferc1_pudl_tables, 'ferc714': ( "respondent_id_ferc714", "id_certification_ferc714", "gen_plants_ba_ferc714", "demand_monthly_ba_ferc714", "net_energy_load_ba_ferc714", "adjacency_ba_ferc714", "interchange_ba_ferc714", "lambda_hourly_ba_ferc714", "lambda_description_ferc714", "description_pa_ferc714", "demand_forecast_pa_ferc714", "demand_hourly_pa_ferc714", ), 'glue': glue_pudl_tables, } """ dict: A dictionary containing data sources (keys) and the list of associated tables from that datasource that can be pulled into PUDL (values). """ base_data_urls = { 'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'pudl': 'https://catalyst.coop/pudl/' } """ dict: A dictionary containing data sources (keys) and their base data URLs (values). """ need_fix_inting = { 'plants_steam_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_hydro_ferc1': ('construction_year', 'installation_year',), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa',), } """ dict: A dictionary containing tables (keys) and column names (values) containing integer - type columns whose null values need fixing. """ contributors = { "catalyst-cooperative": { "title": "Catalyst Cooperative", "path": "https://catalyst.coop/", "role": "publisher", "email": "<EMAIL>", "organization": "Catalyst Cooperative", }, "zane-selvans": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://amateurearthling.org/", "role": "wrangler", "organization": "Catalyst Cooperative" }, "christina-gosnell": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "steven-winter": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "alana-wilson": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "karl-dunkle-werner": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://karldw.org/", "role": "contributor", "organization": "UC Berkeley", }, 'greg-schivley': { "title": "<NAME>", "role": "contributor", }, } """ dict: A dictionary of dictionaries containing organization names (keys) and their attributes (values). """ data_source_info = { "eia860": { "title": "EIA Form 860", "path": "https://www.eia.gov/electricity/data/eia860/", }, "eia861": { "title": "EIA Form 861", "path": "https://www.eia.gov/electricity/data/eia861/", }, "eia923": { "title": "EIA Form 923", "path": "https://www.eia.gov/electricity/data/eia923/", }, "eiawater": { "title": "EIA Water Use for Power", "path": "https://www.eia.gov/electricity/data/water/", }, "epacems": { "title": "EPA Air Markets Program Data", "path": "https://ampd.epa.gov/ampd/", }, "epaipm": { "title": "EPA Integrated Planning Model", "path": "https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6", }, "ferc1": { "title": "FERC Form 1", "path": "https://www.ferc.gov/docs-filing/forms/form-1/data.asp", }, "ferc714": { "title": "FERC Form 714", "path": "https://www.ferc.gov/docs-filing/forms/form-714/data.asp", }, "ferceqr": { "title": "FERC Electric Quarterly Report", "path": "https://www.ferc.gov/docs-filing/eqr.asp", }, "msha": { "title": "Mining Safety and Health Administration", "path": "https://www.msha.gov/mine-data-retrieval-system", }, "phmsa": { "title": "Pipelines and Hazardous Materials Safety Administration", "path": "https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview", }, "pudl": { "title": "The Public Utility Data Liberation Project (PUDL)", "path": "https://catalyst.coop/pudl/", "email": "<EMAIL>", }, } """ dict: A dictionary of dictionaries containing datasources (keys) and associated attributes (values) """ contributors_by_source = { "pudl": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", "karl-dunkle-werner", ], "eia923": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", ], "eia860": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "ferc1": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "epacems": [ "catalyst-cooperative", "karl-dunkle-werner", "zane-selvans", ], "epaipm": [ "greg-schivley", ], } """ dict: A dictionary of data sources (keys) and lists of contributors (values). """ licenses = { "cc-by-4.0": { "name": "CC-BY-4.0", "title": "Creative Commons Attribution 4.0", "path": "https://creativecommons.org/licenses/by/4.0/" }, "us-govt": { "name": "other-pd", "title": "U.S. Government Work", "path": "http://www.usa.gov/publicdomain/label/1.0/", } } """ dict: A dictionary of dictionaries containing license types and their attributes. """ output_formats = [ 'sqlite', 'parquet', 'datapkg', ] """list: A list of types of PUDL output formats.""" keywords_by_data_source = { 'pudl': [ 'us', 'electricity', ], 'eia860': [ 'electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration' ], 'eia923': [ 'fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content' ], 'epacems': [ 'epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourly' 'environmental protection agency', 'ampd', 'air markets program data', ], 'ferc1': [ 'electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity' ], 'ferc714': [ 'electricity', 'electric', 'utility', 'planning area', 'form 714', 'balancing authority', 'demand', 'system lambda', 'ferc', 'federal energy regulatory commission', "hourly", "generation", "interchange", "forecast", "load", "adjacency", "plants", ], 'epaipm': [ 'epaipm', 'integrated planning', ] } """dict: A dictionary of datasets (keys) and keywords (values). """ ENTITY_TYPE_DICT = { 'M': 'Municipal', 'C': 'Cooperative', 'R': 'Retail Power Marketer', 'I': 'Investor Owned', 'P': 'Political Subdivision', 'T': 'Transmission', 'S': 'State', 'W': 'Wholesale Power Marketer', 'F': 'Federal', 'A': 'Municipal Mktg Authority', 'G': 'Community Choice Aggregator', 'D': 'Nonutility DSM Administrator', 'B': 'Behind the Meter', 'Q': 'Independent Power Producer', 'IND': 'Industrial', 'COM': 'Commercial', 'PR': 'Private', # Added by AES for OD table (Arbitrary moniker) 'PO': 'Power Marketer', # Added by AES for OD table 'U': 'Unknown', # Added by AES for OD table 'O': 'Other' # Added by AES for OD table } # Confirm these designations -- educated guess based on the form instructions MOMENTARY_INTERRUPTION_DEF = { # Added by AES for R table 'L': 'Less than 1 minute', 'F': 'Less than or equal to 5 minutes', 'O': 'Other', } # https://www.eia.gov/electricity/data/eia411/#tabs_NERC-3 RECOGNIZED_NERC_REGIONS = [ 'BASN', # ASSESSMENT AREA Basin (WECC) 'CALN', # ASSESSMENT AREA California (WECC) 'CALS', # ASSESSMENT AREA California (WECC) 'DSW', # ASSESSMENT AREA Desert Southwest (WECC) 'ASCC', # Alaska 'ISONE', # ISO New England (NPCC) 'ERCOT', # lumped under TRE in 2017 Form instructions 'NORW', # ASSESSMENT AREA Northwest (WECC) 'NYISO', # ISO (NPCC) 'PJM', # RTO 'ROCK', # ASSESSMENT AREA Rockies (WECC) 'ECAR', # OLD RE Now part of RFC and SERC 'FRCC', # included in 2017 Form instructions, recently joined with SERC 'HICC', # Hawaii 'MAAC', # OLD RE Now part of RFC 'MAIN', # OLD RE Now part of SERC, RFC, MRO 'MAPP', # OLD/NEW RE Became part of MRO, resurfaced in 2010 'MRO', # RE included in 2017 Form instructions 'NPCC', # RE included in 2017 Form instructions 'RFC', # RE included in 2017 Form instructions 'SERC', # RE included in 2017 Form instructions 'SPP', # RE included in 2017 Form instructions 'TRE', # RE included in 2017 Form instructions (included ERCOT) 'WECC', # RE included in 2017 Form instructions 'WSCC', # OLD RE pre-2002 version of WECC 'MISO', # ISO unclear whether technically a regional entity, but lots of entries 'ECAR_MAAC', 'MAPP_WECC', 'RFC_SERC', 'SPP_WECC', 'MRO_WECC', 'ERCOT_SPP', 'SPP_TRE', 'ERCOT_TRE', 'MISO_TRE', 'VI', # Virgin Islands 'GU', # Guam 'PR', # Puerto Rico 'AS', # American Samoa 'UNK', ] CUSTOMER_CLASSES = [ "commercial", "industrial", "direct_connection", "other", "residential", "total", "transportation" ] TECH_CLASSES = [ 'backup', # WHERE Is this used? because removed from DG table b/c not a real component 'chp_cogen', 'combustion_turbine', 'fuel_cell', 'hydro', 'internal_combustion', 'other', 'pv', 'steam', 'storage_pv', 'all_storage', # need 'all' as prefix so as not to confuse with other storage category 'total', 'virtual_pv', 'wind', ] REVENUE_CLASSES = [ 'retail_sales', 'unbundled', 'delivery_customers', 'sales_for_resale', 'credits_or_adjustments', 'other', 'transmission', 'total', ] RELIABILITY_STANDARDS = [ 'ieee_standard', 'other_standard' ] FUEL_CLASSES = [ 'gas', 'oil', 'other', 'renewable', 'water', 'wind', 'wood', ] RTO_CLASSES = [ 'caiso', 'ercot', 'pjm', 'nyiso', 'spp', 'miso', 'isone', 'other' ] ESTIMATED_OR_ACTUAL = {'E': 'estimated', 'A': 'actual'} TRANSIT_TYPE_DICT = { 'CV': 'conveyer', 'PL': 'pipeline', 'RR': 'railroad', 'TK': 'truck', 'WA': 'water', 'UN': 'unknown', } """dict: A dictionary of datasets (keys) and keywords (values). """ column_dtypes = { "ferc1": { # Obviously this is not yet a complete list... "construction_year": pd.Int64Dtype(), "installation_year": pd.Int64Dtype(), "plant_id_ferc1": pd.Int64Dtype(), "plant_id_pudl": pd.Int64Dtype(), "report_date": "datetime64[ns]", "report_year": pd.Int64Dtype(), "utility_id_ferc1": pd.Int64Dtype(), "utility_id_pudl": pd.Int64Dtype(), }, "ferc714": { # INCOMPLETE "demand_mwh": float, "demand_annual_mwh": float, "eia_code": pd.Int64Dtype(), "peak_demand_summer_mw": float, "peak_demand_winter_mw": float, "report_date": "datetime64[ns]", "respondent_id_ferc714": pd.Int64Dtype(), "respondent_name_ferc714": pd.StringDtype(), "respondent_type": pd.CategoricalDtype(categories=[ "utility", "balancing_authority", ]), "timezone": pd.CategoricalDtype(categories=[ "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "Pacific/Honolulu"]), "utc_datetime": "datetime64[ns]", }, "epacems": { 'state': pd.StringDtype(), 'plant_id_eia': pd.Int64Dtype(), # Nullable Integer 'unitid': pd.StringDtype(), 'operating_datetime_utc': "datetime64[ns]", 'operating_time_hours': float, 'gross_load_mw': float, 'steam_load_1000_lbs': float, 'so2_mass_lbs': float, 'so2_mass_measurement_code': pd.StringDtype(), 'nox_rate_lbs_mmbtu': float, 'nox_rate_measurement_code': pd.StringDtype(), 'nox_mass_lbs': float, 'nox_mass_measurement_code': pd.StringDtype(), 'co2_mass_tons': float, 'co2_mass_measurement_code': pd.StringDtype(), 'heat_content_mmbtu': float, 'facility_id': pd.Int64Dtype(), # Nullable Integer 'unit_id_epa': pd.Int64Dtype(), # Nullable Integer }, "eia": { 'actual_peak_demand_savings_mw': float, # Added by AES for DR table 'address_2': pd.StringDtype(), # Added by AES for 860 utilities table 'advanced_metering_infrastructure': pd.Int64Dtype(), # Added by AES for AMI table # Added by AES for UD misc table 'alternative_fuel_vehicle_2_activity': pd.BooleanDtype(), 'alternative_fuel_vehicle_activity': pd.BooleanDtype(), 'annual_indirect_program_cost': float, 'annual_total_cost': float, 'ash_content_pct': float, 'ash_impoundment': pd.BooleanDtype(), 'ash_impoundment_lined': pd.BooleanDtype(), # TODO: convert this field to more descriptive words 'ash_impoundment_status': pd.StringDtype(), 'associated_combined_heat_power': pd.BooleanDtype(), 'attention_line': pd.StringDtype(), 'automated_meter_reading': pd.Int64Dtype(), # Added by AES for AMI table 'backup_capacity_mw': float, # Added by AES for NNM & DG misc table 'balancing_authority_code_eia': pd.CategoricalDtype(), 'balancing_authority_id_eia': pd.Int64Dtype(), 'balancing_authority_name_eia': pd.StringDtype(), 'bga_source': pd.StringDtype(), 'boiler_id': pd.StringDtype(), 'bunded_activity': pd.BooleanDtype(), 'business_model': pd.CategoricalDtype(categories=[ "retail", "energy_services"]), 'buy_distribution_activity': pd.BooleanDtype(), 'buying_transmission_activity': pd.BooleanDtype(), 'bypass_heat_recovery': pd.BooleanDtype(), 'caidi_w_major_event_days_minus_loss_of_service_minutes': float, 'caidi_w_major_event_dats_minutes': float, 'caidi_wo_major_event_days_minutes': float, 'capacity_mw': float, 'carbon_capture': pd.BooleanDtype(), 'chlorine_content_ppm': float, 'circuits_with_voltage_optimization': pd.Int64Dtype(), 'city': pd.StringDtype(), 'cofire_fuels': pd.BooleanDtype(), 'consumed_by_facility_mwh': float, 'consumed_by_respondent_without_charge_mwh': float, 'contact_firstname': pd.StringDtype(), 'contact_firstname_2': pd.StringDtype(), 'contact_lastname': pd.StringDtype(), 'contact_lastname_2': pd.StringDtype(), 'contact_title': pd.StringDtype(), 'contact_title_2': pd.StringDtype(), 'contract_expiration_date': 'datetime64[ns]', 'contract_type_code': pd.StringDtype(), 'county': pd.StringDtype(), 'county_id_fips': pd.StringDtype(), # Must preserve leading zeroes 'credits_or_adjustments': float, 'critical_peak_pricing': pd.BooleanDtype(), 'critical_peak_rebate': pd.BooleanDtype(), 'current_planned_operating_date': 'datetime64[ns]', 'customers': float, 'customer_class': pd.CategoricalDtype(categories=CUSTOMER_CLASSES), 'customer_incentives_cost': float, 'customer_incentives_incremental_cost': float, 'customer_incentives_incremental_life_cycle_cost': float, 'customer_other_costs_incremental_life_cycle_cost': float, 'daily_digital_access_customers': pd.Int64Dtype(), 'data_observed': pd.BooleanDtype(), 'datum': pd.StringDtype(), 'deliver_power_transgrid': pd.BooleanDtype(), 'delivery_customers': float, 'direct_load_control_customers': pd.Int64Dtype(), 'distributed_generation': pd.BooleanDtype(), 'distributed_generation_owned_capacity_mw': float, 'distribution_activity': pd.BooleanDtype(), 'distribution_circuits': pd.Int64Dtype(), 'duct_burners': pd.BooleanDtype(), 'energy_displaced_mwh': float, 'energy_efficiency_annual_cost': float, 'energy_efficiency_annual_actual_peak_reduction_mw': float, 'energy_efficiency_annual_effects_mwh': float, 'energy_efficiency_annual_incentive_payment': float, 'energy_efficiency_incremental_actual_peak_reduction_mw': float, 'energy_efficiency_incremental_effects_mwh': float, 'energy_savings_estimates_independently_verified': pd.BooleanDtype(), 'energy_savings_independently_verified': pd.BooleanDtype(), 'energy_savings_mwh': float, 'energy_served_ami_mwh': float, 'energy_source_1_transport_1': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_1_transport_2': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_1_transport_3': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_1': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_2': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_3': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_code': pd.StringDtype(), 'energy_source_code_1': pd.StringDtype(), 'energy_source_code_2': pd.StringDtype(), 'energy_source_code_3': pd.StringDtype(), 'energy_source_code_4': pd.StringDtype(), 'energy_source_code_5': pd.StringDtype(), 'energy_source_code_6': pd.StringDtype(), 'energy_storage': pd.BooleanDtype(), 'entity_type': pd.CategoricalDtype(categories=ENTITY_TYPE_DICT.values()), 'estimated_or_actual_capacity_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'estimated_or_actual_fuel_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'estimated_or_actual_tech_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'exchange_energy_delivered_mwh': float, 'exchange_energy_recieved_mwh': float, 'ferc_cogen_docket_no': pd.StringDtype(), 'ferc_cogen_status': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator_docket_no':
pd.StringDtype()
pandas.StringDtype
#!/usr/bin/env python #-*- coding:utf-8 -*- import numpy as np import pandas as pd import scipy.ndimage import skimage.morphology import sklearn.mixture class HDoG_CPU(object): def __init__(self, width=2560, height=2160, depth=None, sigma_xy=(4.0, 6.0), sigma_z=(1.8,2.7), radius_small=(24,3), radius_large=(100,5), min_intensity=1000, gamma=1.0): self.width = width self.height = height self.depth = depth if type(sigma_xy) in [float,int]: self.sigma_xy = (sigma_xy, sigma_xy*1.5) else: self.sigma_xy = sigma_xy if type(sigma_z) in [float,int]: self.sigma_z = (sigma_z, sigma_z*1.5) else: self.sigma_z = sigma_z if not radius_small: self.radius_small_xy = int(self.sigma_xy[1]*4) self.radius_small_z = int(self.sigma_z[1]*2) else: self.radius_small_xy = radius_small[0] self.radius_small_z = radius_small[1] self.size_small = (self.radius_small_z*2+1, self.radius_small_xy*2+1, self.radius_small_xy*2+1) if not radius_large: self.radius_large_xy = int(self.sigma_xy[1]*30) self.radius_large_xy = int(self.sigma_z[1]*10) else: self.radius_large_xy = radius_large[0] self.radius_large_z = radius_large[1] self.size_large = (self.radius_large_z*2+1, self.radius_large_xy*2+1, self.radius_large_xy*2+1) self.min_intensity = min_intensity self.gamma = gamma self.normalizer = (self.sigma_xy[0]**(gamma*2)) * (self.sigma_z[0]**gamma) def load_images(self, list_images, dtype=np.uint16): imgs = [] for path in list_images: img = np.fromfile(path, dtype=dtype).reshape(self.height, self.width) imgs.append(img) imgs = np.array(imgs) self.depth = imgs.shape[0] return imgs def Normalize(self, src_img): dilation_l_img = scipy.ndimage.filters.uniform_filter( scipy.ndimage.morphology.grey_dilation(src_img, size=self.size_large, mode="nearest").astype(np.float32), size=self.size_large, mode="constant", cval=0) erosion_l_img = scipy.ndimage.filters.uniform_filter( scipy.ndimage.morphology.grey_erosion(src_img, size=self.size_large, mode="nearest").astype(np.float32), size=self.size_large, mode="constant", cval=0) intensity = src_img.astype(np.float32) norm_img = (intensity >= self.min_intensity) * intensity / (dilation_l_img - erosion_l_img) return norm_img def DoGFilter(self, src_img): temp1 = scipy.ndimage.filters.gaussian_filter( src_img.astype(np.float32), sigma=(self.sigma_z[0],self.sigma_xy[0],self.sigma_xy[0]), truncate=2.0, mode="constant", cval=0) temp2 = scipy.ndimage.filters.gaussian_filter( src_img.astype(np.float32), sigma=(self.sigma_z[1],self.sigma_xy[1],self.sigma_xy[1]), truncate=2.0, mode="constant", cval=0) dog_img = (temp1 - temp2) * self.normalizer return dog_img def HessianPDFilter(self, dog_img): Hz,Hy,Hx = np.gradient(dog_img) Hzz,Hyz,Hxz = np.gradient(Hz) Hyz,Hyy,Hxy = np.gradient(Hy) Hxz,Hxy,Hxx = np.gradient(Hx) det_img = Hxx*Hyy*Hzz + 2*Hxy*Hyz*Hxz - Hxx*Hyz*Hyz - Hyy*Hxz*Hxz - Hzz*Hxy*Hxy pd_img = np.bitwise_and(np.bitwise_and(Hxx < 0, Hxx*Hyy-Hxy*Hxy > 0), det_img < 0) hessian_img = np.array([Hxx,Hxy,Hxz,Hyy,Hyz,Hzz]) return pd_img, hessian_img def ScaleResponse(self, scale_img, pd_img): response = np.sum(scale_img*pd_img) / np.sum(pd_img) return response def CCL(self, pd_img): labels_img = skimage.morphology.label(pd_img) return labels_img def RegionalFeatures(self, norm_img, hessian_img, labels_img): on_region = np.nonzero(labels_img) labels_list = labels_img[on_region] num_labels = np.max(labels_list) # max intensity max_normalized = scipy.ndimage.maximum(norm_img, labels=labels_img, index=range(1, num_labels+1)) # region size ns = np.ones(len(labels_list)) region_size = np.bincount(labels_list-1, weights=ns) # Regional Hessian Eigenvalues HT = np.empty((6, num_labels)) for i in range(6): HT[i] = np.bincount(labels_list-1, weights=hessian_img[i][on_region]) HT_mat = np.array([ [HT[0],HT[1],HT[2]], [HT[1],HT[3],HT[4]], [HT[2],HT[4],HT[5]] ]).T eigenvals = np.linalg.eigvalsh(HT_mat) l1,l2,l3 = eigenvals[:,0],eigenvals[:,1], eigenvals[:,2] blobness = l3*l3 / (l1*l2) #l3/np.sqrt(l1*l2) structureness = l1*l1 + l2*l2 + l3*l3 #np.sqrt() # following code is needed if the label is not relabeled as 1,2,3,... #label_values = np.array(sorted(np.unique(labels))) # including background(0) #mp = np.arange(0,np.max(label_values)+1) #mp[label_values] = np.arange(label_values.shape[0]) #labels_new = mp[labels] zgrid,ygrid,xgrid = np.mgrid[0:self.depth, 0:self.height, 0:self.width] centroid_x = np.bincount(labels_img.flatten(), weights=xgrid.flatten())[1:] / region_size#np.bincount(labels_img.flatten())[1:] centroid_y = np.bincount(labels_img.flatten(), weights=ygrid.flatten())[1:] / region_size#np.bincount(labels_img.flatten())[1:] centroid_z = np.bincount(labels_img.flatten(), weights=zgrid.flatten())[1:] / region_size#np.bincount(labels_img.flatten())[1:] df = pd.DataFrame({ "index": pd.Series(np.arange(num_labels)), "intensity": pd.Series(max_normalized), "size":
pd.Series(region_size)
pandas.Series
import glob import datetime import os import pandas as pd import numpy as np import re from tkinter import filedialog from tkinter import * from tkinter import ttk from tkinter import messagebox # pyinstaller --onefile --noconsole --icon GetCSV.ico Arca_GetCSVConverter_2-0-0.py #for MMW 18-6 spreadsheets probCol = False #infer desktop desktopPath = os.path.expanduser("~/Desktop/") filelist=[''] probRecords = [] probColls = [] #filename = r'arms_modsonly_May9.csv' col_names = ["IslandoraContentModel","BCRDHSimpleObjectPID",'imageLink','filename','directory','childKey','title', 'alternativeTitle', 'creator1', 'creator2','creator3'] col_names += ['corporateCreator1','corporateCreator2','contributor1','contributor2','corporateContributor1','publisher_original','publisher_location'] col_names += ['dateCreated','description','extent','topicalSubject1','topicalSubject2','topicalSubject3','topicalSubject4','topicalSubject5'] col_names += ['geographicSubject1','coordinates','personalSubject1','personalSubject2','corporateSubject1','corporateSubject2', 'dateIssued_start'] col_names += ['dateIssued_end','dateRange', 'frequency','genre','genreAuthority','type','internetMediaType','language1','language2','notes'] col_names += ['accessIdentifier','localIdentifier','ISBN','classification','URI'] col_names += ['source','rights','creativeCommons_URI','rightsStatement_URI','relatedItem_title','relatedItem_PID','recordCreationDate','recordOrigin'] pattern1 = r'^[A-Z][a-z]{2}-\d{2}$' #%b-%Y date (e.g. Jun-17) pattern2 = r'^\d{2}-\d{2}-[1-2]\d{3}$' contentModels = { r"info:fedora/islandora:sp_large_image_cmodel": "Large Image", r"info:fedora/islandora:sp_basic_image": "Basic Image", r"info:fedora/islandora:bookCModel": "Book", r"info:fedora/islandora:newspaperIssueCModel":"Newspaper - issue", r"info:fedora/islandora:newspaperPageCModel":"Newspaper", r"info:fedora/islandora:sp_PDF":"PDF", r"info:fedora/islandora:sp-audioCModel":"Audio", r"info:fedora/islandora:sp_videoCModel":"Video", r"info:fedora/islandora:sp_compoundCModel":"Compound", r"info:fedora/ir:citationCModel":"Citation" } def browse_button(): # Allow user to select a directory and store it in global var # called folder_path1 lbl1['text'] = "" csvname = filedialog.askopenfilename(initialdir = desktopPath,title = "Select file",filetypes = (("csv files","*.csv"),("all files","*.*"))) if ".csv" not in csvname: lbl1['text'] = "**Please choose a file with a .csv extension!" else: filelist[0] = csvname lbl1['text'] = csvname def splitMultiHdgs(hdgs): if pd.notna(hdgs): hdgs = hdgs.replace("\\,",";") hdgs = hdgs.split(",") newhdgs = [] for hdg in hdgs: newhdg = hdg.replace(";", ",") newhdgs.append(newhdg) return newhdgs else: return None def getMultiVals(item, string, df, pd): hdgs = df.filter(like=string).columns for hdg in hdgs: vals = df.at[item.Index,hdg] if pd.notna(vals): vals = splitMultiHdgs(vals) return vals return None def convert_date(dt_str, letter_date): """ Converts an invalid formatted date into a proper date for ARCA Mods Correct format: Y-m-d Fixes: Incorrect format: m-d-Y Incorrect format (letter date): m-d e.g. Jun-17 :param dt_str: the date string :param letter_date: whether the string is a letter date. Letter date is something like Jun-17 :return: the correctly formatted date """ if letter_date: rev_date = datetime.datetime.strptime(dt_str, '%b-%y').strftime('%Y-%m') # convert date to yymm string format rev_date_pts = rev_date.split("-") year_num = int(rev_date_pts[0]) if year_num > 1999: year_num = year_num - 100 year_str = str(year_num) rev_date_pts[0] = year_str revised = "-".join(rev_date_pts) else: revised = datetime.datetime.strptime(dt_str, '%d-%m-%Y').strftime( '%Y-%m-%d') # convert date to YY-mm string format return revised def sortValues(lst): for item in lst: if pd.isna(item): lst.remove(item) lst = set(lst) lst = list(lst) return lst def dropNullCols(df): nullcols = [] for col in df.columns: notNull = df[col].notna().sum() if notNull < 1: nullcols.append(col) return nullcols def convert(): probCol = False df2 = pd.DataFrame(columns = col_names) df2.append(
pd.Series()
pandas.Series
import gzip import pandas as pd import numpy as np import matplotlib.pyplot as plt import json # from sklearn.model_selection import train_test_split from collections import Counter import csv import tensorflow as tf import os.path # from os import listdir from tensorflow import keras import os import re import spacy import time import math import xml.etree.ElementTree as ET import codecs from collections import defaultdict def pause(): int(input("enter a num to cont...")) def clean(path, dataset=None): filename = 'reviews_clean.json' with open(filename, 'w') as f: for line in open(path): if dataset == 'meta': line = line.replace('\\r', ' ') elif dataset == 'amazon': line = line.replace('\000','') f.write(line) return filename def parse(path): # g = gzip.open(path, 'rb') g = open(path, 'r') for l in g: # yield eval(l) yield json.loads(l) # deal with null def getDF(path): i = 0 df = {} for d in parse(path): df[i] = d i += 1 return pd.DataFrame.from_dict(df, orient='index') def get_child(child, df, nlp, f): if isinstance(child, float): f.write('\n') return for c in child.split(): if c in df.keys(): line = str(df[c]['clean_text']) doc = nlp(line) for sent in doc.sents: f.write(str(sent).rstrip()) f.write('\n') df[c]['visited'] = True return get_child(df[c]['children_ids'], df, nlp, f) def read_tsv(input_file): with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t") lines = [] for line in reader: lines.append(line) return lines def train_test_split(counts, pct_train=0.7, pct_dev=0.2, pct_test=0.1): total = sum([v for _, v in counts.items()]) n_train = int(total * pct_train) n_dev = int(total * pct_dev) # n_test = int(total * pct_test) train = [] dev = [] test = [] current_train = 0 current_dev = 0 for k, v in counts.items(): if current_train + v <= n_train: train.append(k) current_train += v elif current_dev + v <= n_dev: dev.append(k) current_dev += v else: test.append(k) return train, dev, test def over_sample(df, col_name): labels, values = zip(*Counter(df[col_name].values).items()) seed = int(np.max(values) / np.min(values)) oversample = df.loc[df[col_name] == labels[values.index(np.min(values))]] for i in range(seed - 1): df = df.append(oversample) # shuffle df = df.sample(frac=1) return df def read_meta(argv=None): review_clean = clean('/home/ydu/BERT/DATA/metacritic/reviews.json', 'meta') df = getDF(review_clean) df = df[['title','text','score']] df.score = df.score.astype(int) df['senti'] = -1 df['senti'][df.score >= 7] = 1 df['senti'][df.score <= 4] = 0 df = df.loc[df['senti'] != -1] df = df.drop(columns=['score']) counts = dict(Counter(df.title.values)) train_labels, dev_labels, test_labels = train_test_split(counts) # oversample in training train = df.loc[df['title'].isin(train_labels)] train = over_sample(train, 'senti') # oversample in dev dev = df.loc[df['title'].isin(dev_labels)] dev = over_sample(dev, 'senti') test = df.loc[df['title'].isin(test_labels)] train = train.drop(columns=['title']) dev = dev.drop(columns=['title']) test = test.drop(columns=['title']) df = df.drop(columns=['title']) train.to_csv('/home/ydu/BERT/DATA/metacritic/train.tsv', index=False, sep='\t') dev.to_csv('/home/ydu/BERT/DATA/metacritic/dev.tsv', index=False, sep='\t') test.to_csv('/home/ydu/BERT/DATA/metacritic/test.tsv', index=False, sep='\t') df.to_csv('/home/ydu/BERT/DATA/metacritic/all.tsv', index=False, sep='\t') def read_reddit(argv=None): df = pd.read_csv('/home/ydu/BERT/DATA/reddit/posts_with_ids.csv') df = df.dropna(subset=['text']) df['clean_text'] = df['text'].apply(lambda x: ' '.join(x.split())) df['visited'] = False df.set_index('post_id', inplace=True) df = df.drop(columns=['text']) df = df.to_dict(orient='index') nlp = spacy.load('en_core_web_sm') start_time = time.time() f = open('pretrain_data/txt/pretrain_texttree.txt', 'w') for k, _ in df.items(): if not df[k]['visited']: doc = nlp(str(df[k]['clean_text'])) for sent in doc.sents: f.write(str(sent).rstrip()) f.write('\n') df[k]['visited'] = True get_child(df[k]['children_ids'], df, nlp, f) f.close() print("--- %s sec ---" % (time.time() - start_time)) def read_amazon(argv=None): review_clean = clean('/home/ydu/BERT/DATA/amazon/aggressive_dedup_video_games.json', 'amazon') df = getDF(review_clean) df = df[['asin','reviewText','overall']] df.overall = df.overall.astype(int) df['senti'] = -1 df['senti'][df.overall <= 2] = 0 df['senti'][df.overall >= 4] = 1 df = df.loc[df['senti'] != -1] df = df.drop(columns=['overall']) df = df.rename(columns={"reviewText": "text"}) counts = dict(Counter(df.asin.values)) train_labels, dev_labels, test_labels = train_test_split(counts) # oversample in training train = df.loc[df['asin'].isin(train_labels)] train = over_sample(train, 'senti') # oversample in dev dev = df.loc[df['asin'].isin(dev_labels)] dev = over_sample(dev, 'senti') test = df.loc[df['asin'].isin(test_labels)] train = train.drop(columns=['asin']) dev = dev.drop(columns=['asin']) test = test.drop(columns=['asin']) df = df.drop(columns=['asin']) train.to_csv('/home/ydu/BERT/DATA/amazon/train.tsv', index=False, sep='\t') dev.to_csv('/home/ydu/BERT/DATA/amazon/dev.tsv', index=False, sep='\t') test.to_csv('/home/ydu/BERT/DATA/amazon/test.tsv', index=False, sep='\t') df.to_csv('/home/ydu/BERT/DATA/amazon/all.tsv', index=False, sep='\t') # Load all files from a directory in a DataFrame. def load_directory_data(directory): data = {} data["text"] = [] for file_path in os.listdir(directory): with tf.gfile.GFile(os.path.join(directory, file_path), "r") as f: data["text"].append(f.read()) return
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
import streamlit as st import plotly_express as px import pandas as pd from plotnine import * from plotly.tools import mpl_to_plotly as ggplotly import numpy as np import math import scipy.stats as ss from scipy.stats import * def app(): # add a select widget to the side bar st.sidebar.subheader("Discrete Probaility") prob_choice = st.sidebar.radio("",["Discrete Probability","Binomial Probability","Geometric Probability","Poisson Probability"]) st.markdown('Discrete Probability') if prob_choice == "Discrete Probability": top = st.columns((1,1,2)) bottom = st.columns((1,1)) with top[0]: #st.subheader("Discrete Probaility") gs_URL = st.session_state.gs_URL googleSheetId = gs_URL.split("spreadsheets/d/")[1].split("/edit")[0] worksheetName = st.text_input("Sheet Name:","Discrete") URL = f'https://docs.google.com/spreadsheets/d/{googleSheetId}/gviz/tq?tqx=out:csv&sheet={worksheetName}' if st.button('Refresh'): df = pd.read_csv(URL) df = df.dropna(axis=1, how="all") df = pd.read_csv(URL) df = df.dropna(axis=1, how="all") with bottom[0]: st.dataframe(df) global numeric_columns global non_numeric_columns try: numeric_columns = list(df.select_dtypes(['float', 'int']).columns) non_numeric_columns = list(df.select_dtypes(['object']).columns) except Exception as e: print(e) st.write("Please upload file to the application.") with top[1]: x_axis = st.selectbox('X-Axis', options=numeric_columns, index=0) prob = st.selectbox('Probabilities', options=numeric_columns, index = 1) cat = 0 if len(non_numeric_columns) >= 1: cat = 1 #cv = st.selectbox("Group", options=list(df[non_numeric_columns[0]].unique())) if cat == 0: x = df[x_axis] p_x = df[prob] m = sum(x*p_x) sd = math.sqrt(sum((x-m)**2*p_x)) data = pd.DataFrame({"Mean":m,"Std Dev":sd},index = [0]) with top[2]: dph = ggplot(df) + geom_bar(aes(x=df[df.columns[0]],weight=df[df.columns[1]]),color="darkblue", fill="lightblue") st.pyplot(ggplot.draw(dph)) with bottom[1]: st.write(data) if cat != 0: with bottom[1]: data = pd.DataFrame(columns = ['Type','Mean','Standard Deviation']) drow = 0 for type in list(df[non_numeric_columns[0]].unique()): df1 = df[df[non_numeric_columns[0]]==type] x = df1[x_axis] p_x = df1[prob] data.loc[drow,'Type'] = type m = sum(x*p_x) data.loc[drow,'Mean'] = m data.loc[drow,'Standard Deviation'] = math.sqrt(sum((x-m)**2*p_x)) drow = +1 st.dataframe(data) with top[2]: dph = ggplot(df) + geom_bar(aes(x=df[x_axis],weight=df[prob],fill=non_numeric_columns[0],color=non_numeric_columns[0]),position= "identity", alpha = .4) st.pyplot(ggplot.draw(dph)) if prob_choice == "Binomial Probability": top = st.columns(2) with top[0]: st.subheader("Binomial Probability") bip, bit, bih = st.text_input("Hit Probability:",.2),st.text_input("Tries:",8),st.text_input("Hits:",0) bit = int(bit) bip = float(bip) biah = np.r_[0:bit+1] cdf = binom.cdf(biah,bit,bip) pmf = binom.pmf(biah,bit,bip) biah = pd.DataFrame(biah) cdf = pd.DataFrame(cdf) pmf = pd.DataFrame(pmf) bm,bv = binom.stats(bit,bip) bdf = pd.concat([biah,pmf,cdf],axis=1) bdf.columns = ["Hits","PDF","CDF"] with top[1]: st.write(bdf) data = pd.DataFrame({"Mean":bm,"Std Dev":math.sqrt(bv)},index = [0]) st.write(data) with top[0]: bph = ggplot(bdf) + geom_bar(aes(x=bdf["Hits"],weight=bdf["PDF"]),color="darkblue", fill="lightblue") st.pyplot(ggplot.draw(bph)) if prob_choice == "Geometric Probability": again = st.columns(2) with again[0]: st.subheader("Geometric Probability") gip, gih = st.text_input("Hit Probability:",.2,key ="1"),st.text_input("Tries:",4,key="2") gip = float(gip) gih = int(gih) giah = np.r_[0:gih+6] cdf = geom.cdf(giah,gip) pmf = geom.pmf(giah,gip) giah = pd.DataFrame(giah) cdf = pd.DataFrame(cdf) pmf = pd.DataFrame(pmf) gm,gv = geom.stats(gip) gdf =
pd.concat([giah,pmf,cdf],axis=1)
pandas.concat
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 231, pd.Timestamp("2015-01-20")), (40, 240.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 250.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 150.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 130 * 1 / 10, cls.window_test_start_date), (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-09"), ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-12"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 5, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 0.7, cls.window_test_start_date), (20, 121 * 0.7, pd.Timestamp("2015-01-07")), (30, 230 * 11, cls.window_test_start_date), (40, 240, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 5 * 6, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 120 * 0.7 * 0.8, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-07")), (30, 230 * 11 * 12, cls.window_test_start_date), (30, 231, pd.Timestamp("2015-01-20")), (40, 240 * 13, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-21"), ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-22"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 310 * 0.3, pd.Timestamp("2015-01-09")), (10, 311 * 0.3, pd.Timestamp("2015-01-15")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (10, 310 * 0.3, pd.Timestamp("2015-01-09")), (10, 311 * 0.3, pd.Timestamp("2015-01-15")), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220 * 5 / 3, cls.window_test_start_date), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), (50, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-09"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 1 / 4, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 5 / 3, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-12"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-13", "2015-01-14") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedMultipleEstimateColumns(WithEstimates): """ ZiplineTestCase mixin for having multiple estimate columns that are split-adjusted to make sure that adjustments are applied correctly. Attributes ---------- test_start_date : pd.Timestamp The start date of the test. test_end_date : pd.Timestamp The start date of the test. split_adjusted_asof : pd.Timestamp The split-adjusted-asof-date of the data used in the test, to be used to create all loaders of test classes that subclass this mixin. Methods ------- make_expected_timelines_1q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range for each column. Only for 1 quarter out. make_expected_timelines_2q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range. For 2 quarters out, so only for the column that is requested to be loaded with 2 quarters out. Tests ----- test_adjustments_with_multiple_adjusted_columns Tests that if you have multiple columns, we still split-adjust correctly. test_multiple_datasets_different_num_announcements Tests that if you have multiple datasets that ask for a different number of quarters out, and each asks for a different estimates column, we still split-adjust correctly. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") test_start_date = pd.Timestamp("2015-01-06", tz="utc") test_end_date = pd.Timestamp("2015-01-12", tz="utc") split_adjusted_asof = pd.Timestamp("2015-01-08") @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): sid_0_events = pd.DataFrame( { # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp("2015-01-05"), pd.Timestamp("2015-01-05")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), ], "estimate1": [1100.0, 1200.0], "estimate2": [2100.0, 2200.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # This is just an extra sid to make sure that we apply adjustments # correctly for multiple columns when we have multiple sids. sid_1_events = pd.DataFrame( { # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp("2015-01-05"), pd.Timestamp("2015-01-05")], EVENT_DATE_FIELD_NAME: [
pd.Timestamp("2015-01-08")
pandas.Timestamp
#!/usr/bin/env python3 import json import math import sys import glob import argparse import os from collections import namedtuple, defaultdict import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.lines import Line2D from matplotlib.ticker import MaxNLocator import pandas RunConfig = namedtuple("RunConfig", "scheduler fec") RunInfo = namedtuple("RunInfo", "count total durations interrupted_segments interrupt_times bitrates segment_bitrates segment_download_times segment_filenames initial_buffering") PALETTE_5 = sns.color_palette("muted") PALETTE_9 = sns.color_palette("muted") PALETTE_9[4:9] = PALETTE_9[:5] class FIGSIZE(): BOX_M = (5, 5) WIDE_M = (12, 5) WIDE_L = (15, 8) def get_mean(l): return sum(l) / len(l) def get_stddev(l): mean = get_mean(l) return math.sqrt(sum([(x - mean)**2 for x in l]) / (len(l) - 1)) def get_median(l): return sorted(l)[len(l) // 2] def get_z_score(x, mean, stddev): return abs((x - mean) / stddev) def z_filter(l, cutoff = 2.5): mean = get_mean(l) stddev = get_stddev(l) return list(filter(lambda x: get_z_score(x, mean, stddev) < cutoff, l)) def fixname(name): name = name[:3].replace("IOD", "R-IOD") + name[3:] name = name.replace("XOR4-1", "XOR 4") name = name.replace("XOR16-1", "XOR 16") return name.replace("LL", "LowRTT") def get_population_stats(p): return ", ".join([ f"mean: {round(get_mean(p), 2)}", f"median: {round(get_median(p), 2)}", f"stddev: {round(get_stddev(p), 2)}", f"min: {round(min(p), 2)}", f"max: {round(max(p), 2)}", f"sum: {round(sum(p), 2)}", ]) def read_log(filename, slow_start_duration = 15): with open(filename, 'rb') as fo: log = json.load(fo) conf = RunConfig(log['scheduler'], log['fecConfig']) total = 0.0 start_time = log['playback_info']['start_time'] initial_buffering = float(log['playback_info']['initial_buffering_duration']) count = 0 durations = [] interrupted_segments = [] interrupt_times = [] for event in log['playback_info']['interruptions']['events']: seg_no = event['segment_number'] start = event['timeframe'][0] end = event['timeframe'][1] duration = end - start if start < start_time + slow_start_duration: # ignore first few seconds of stream continue # some interruptions are really short, ignore? if duration < 1e-4: continue # some, on the other hand, are unrealistically long. this points # towards a crash in the server and can be ignored if duration > 10: continue count += 1 durations.append(duration) total += duration interrupted_segments.append(seg_no) interrupt_times.append({ "start": start - start_time, "end": end - start_time, "duration": duration, }) segment_filenames = [x[0] for x in log['segment_info']] segment_bitrates = [int(x[1]) for x in log['segment_info']] segment_download_times = [float(x[3]) for x in log['segment_info']] bitrates = set(segment_bitrates) return conf, RunInfo(count, total, durations, interrupted_segments, interrupt_times, bitrates, segment_bitrates, segment_download_times, segment_filenames, initial_buffering) def print_stats(allInfos): for conf, infos in allInfos.items(): print(f"=== {conf.scheduler}, {conf.fec} ===") print("> population size") print(f" {len(infos)}") print("> count") counts = [x.count for x in infos] print(f" {get_population_stats(counts)}") print("> total") totals = [x.total for x in infos] print(f" {get_population_stats(totals)}") print("> bitrates") bitrates = [] for info in infos: bitrates += info.segment_bitrates print(f" {get_population_stats(bitrates)}") print("> bitrate switching (up)") bitrate_up = [] for info in infos: count = 0 for prev, current in zip(info.segment_bitrates[:-1], info.segment_bitrates[1:]): if prev < current: count += 1 bitrate_up.append(count) print(f" {get_population_stats(bitrate_up)}") print("> bitrate switching (down)") bitrate_down = [] for info in infos: count = 0 for prev, current in zip(info.segment_bitrates[:-1], info.segment_bitrates[1:]): if prev > current: count += 1 bitrate_down.append(count) print(f" {get_population_stats(bitrate_down)}") def visualize_boxplot(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = z_filter([x.count for x in infos]) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.set(ylim=(0, None)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.savefig("vis-boxplot." + FORMAT) def visualize_boxplot_split(allInfos): data_a = {} data_b = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data_a[key] = [] data_b[key] = [] for info in infos: count_a = 0 count_b = 0 for interrupt_time in info.interrupt_times: if interrupt_time["start"] < 100: count_a+=1 else: count_b+=1 data_a[key].append(count_a) data_b[key].append(count_b) # fill missing recordings with NaNs maxlen_a = max([len(data_a[k]) for k in data_a.keys()]) maxlen_b = max([len(data_b[k]) for k in data_b.keys()]) for k, v in data_a.items(): data_a[k] = v + [float('nan')] * (maxlen_a - (len(v))) for k, v in data_b.items(): data_b[k] = v + [float('nan')] * (maxlen_b - (len(v))) # draw A plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_a) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.set(ylim=(0, None)) plt.savefig("vis-boxplot-split-a." + FORMAT) # draw B plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_b) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.set(ylim=(0, None)) plt.savefig("vis-boxplot-split-b." + FORMAT) def visualize_distplot_interrupts(allInfos): plt.figure(figsize=(6,5)) sns.set(style="whitegrid", palette=PALETTE_9) data = { "config": [], "interrupted_segments": [], } configs = set() segments_count = 0 for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) configs.add(key) for info in infos: data["config"].extend([key]*len(info.interrupted_segments)) data["interrupted_segments"].extend(info.interrupted_segments) segments_count = max(segments_count, len(info.segment_bitrates)) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = plt.gca() pal = sns.cubehelix_palette(10, rot=-.25, light=.7) g = sns.FacetGrid(df, row="config", hue="config", aspect=10, height=1, palette=pal) g.map(sns.kdeplot, "interrupted_segments", clip_on=False, shade=True, alpha=1, lw=1.5, bw=.2, clip=(0, segments_count)) ##g.map(plt.axhline, y=0, lw=2, clip_on=False) # Set the subplots to overlap #g.fig.subplots_adjust(hspace=-.25) #g.set_titles("") g.set(yticks=[], xlabel='Segments') g.despine(bottom=True, left=True, right=True) plt.savefig("vis-dist-interrupts." + FORMAT) def visualize_distplot_interrupts_cumulative(allInfos): plt.figure(figsize=(10,6)) sns.set(style="ticks", palette=PALETTE_5) data = {} configs = set() for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) configs.add(key) data[key] = [x.count for x in infos] # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) kwargs = {"cumulative": True} patches = [] for i, config in enumerate(configs): ax = sns.distplot(data[config], hist=False, kde_kws=kwargs) patches.append(mpatches.Patch( color=sns.color_palette()[i], label=config )) ax.set(xlabel='# Interruptions', ylabel='') plt.legend(handles=patches) plt.savefig("vis-dist-amount-cumulative." + FORMAT) def visualize_boxplot_accumulated(allInfos, split=False): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [x.total for x in infos] # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='Accumulated Interruption Duration (s)') ax.set(ylim=(0, None)) plt.savefig("vis-boxplot2." + FORMAT) def visualize_boxplot_mean(allInfos, split=False): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette="pastel") data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [] for x in infos: data[key] += x.durations data[key] = z_filter(data[key]) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df, showfliers=False) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='Interruption Duration (s)') ax.set(ylim=(0, None)) plt.savefig("vis-boxplot3." + FORMAT) def visualize_boxplot_mean_split(allInfos, split=False): data_a = {} data_b = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data_a[key] = [] data_b[key] = [] for info in infos: durations_a = [] durations_b = [] for interrupt_time in info.interrupt_times: if interrupt_time["start"] < 100: durations_a.append(interrupt_time["duration"]) else: durations_b.append(interrupt_time["duration"]) data_a[key].extend(durations_a) data_b[key].extend(durations_b) # fill missing recordings with NaNs maxlen_a = max([len(data_a[k]) for k in data_a.keys()]) maxlen_b = max([len(data_b[k]) for k in data_b.keys()]) for k, v in data_a.items(): data_a[k] = v + [float('nan')] * (maxlen_a - (len(v))) for k, v in data_b.items(): data_b[k] = v + [float('nan')] * (maxlen_b - (len(v))) # draw A plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_a) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.savefig("vis-boxplot3-split-a." + FORMAT) # draw B plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_b) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.savefig("vis-boxplot3-split-b." + FORMAT) def visualize_distplot_duration(allInfos): plt.figure(figsize=(10,10)) sns.set(style="ticks", palette="pastel") data = { "config": [], "duration": [], } configs = set() for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) configs.add(key) for info in infos: for duration in info.durations: data["config"].append(key) data["duration"].append(duration) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = plt.gca() pal = sns.cubehelix_palette(10, rot=-.25, light=.7) g = sns.FacetGrid(df, row="config", hue="config", aspect=10, height=2, palette=pal) g.map(sns.kdeplot, "duration", clip_on=False, shade=True, alpha=1, lw=1.5, bw=.2, clip=(0, 0.2)) g.map(sns.kdeplot, "duration", clip_on=False, color="w", lw=2, bw=.2, clip=(0, 0.2)) g.map(plt.axhline, y=0, lw=2, clip_on=False) # Set the subplots to overlap #g.fig.subplots_adjust(hspace=-.25) g.despine(bottom=True, left=True) ax.set(xlabel='', ylabel='Interruption Duration (s)') ax.set(ylim=(0, None)) plt.savefig("vis-dist-duration." + FORMAT) def visualize_boxplot_initial_buffering(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [] for x in infos: data[key].append(x.initial_buffering) data[key] = z_filter(data[key]) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='Initial Buffering Delay (s)') plt.savefig("vis-boxplot4." + FORMAT) def visualize_boxplot_segments_until_highest_bitrate(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="ticks", palette="pastel") data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [] for x in infos: segments = 0 for bitrate in x.segment_bitrates: if bitrate < 10000000: segments += 1 else: break data[key].append(segments) df = pandas.DataFrame.from_dict(data) ax = sns.violinplot(palette=PALETTE_9, data=df, cut=0) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Segments until highest bitrate') plt.savefig("vis-boxplot5." + FORMAT) def visualize_timeseries(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="ticks", palette="pastel") data = { "segment": [], "accumulated": [], "config": [], } max_segment_number = 0 for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) run_max_seg_no = 0 for info in infos: if len(info.interrupted_segments) > 0 and max(info.interrupted_segments) > run_max_seg_no: run_max_seg_no = max(info.interrupted_segments) if run_max_seg_no > max_segment_number: max_segment_number = run_max_seg_no for run in infos: accum = 0 for segment in range(run_max_seg_no + 1): if segment in run.interrupted_segments: accum += 1 data["segment"].append(segment) data["accumulated"].append(accum) data["config"].append(key) df = pandas.DataFrame.from_dict(data) ax = sns.lineplot(data=df, x="segment", y="accumulated", hue="config") ax.set(xlabel='Segment Number', ylabel='Accumulated Interruptions') #plt.yticks(range(1, max_interruptions + 1)) plt.savefig("vis-interrupt-distribution." + FORMAT) def visualize_timeseries_duration(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="ticks", palette="pastel") data = { "segment": [], "accumulated": [], "config": [], } max_segment_number = 0 for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) run_max_seg_no = 0 for info in infos: if len(info.interrupted_segments) > 0 and max(info.interrupted_segments) > run_max_seg_no: run_max_seg_no = max(info.interrupted_segments) if run_max_seg_no > max_segment_number: max_segment_number = run_max_seg_no for run in infos: accum = 0 durations = run.durations for segment in range(run_max_seg_no + 1): if segment in run.interrupted_segments: accum += durations[0] durations.pop(0) data["segment"].append(segment) data["accumulated"].append(accum) data["config"].append(key) df =
pandas.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """Untitled0.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1uPsIhY5eetnUG-xeLtHmKvq5K0mIr6wW """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import keras import tensorflow as tf dataset = pd.read_csv('Churn_Modelling.csv') X = dataset.iloc[:, 3:13] y = dataset.iloc[:, 13] geography = pd.get_dummies(X['Geography'],drop_first=True) gender =
pd.get_dummies(X['Gender'],drop_first=True)
pandas.get_dummies
from ast import literal_eval import numpy as np import pandas as pd import scipy from pandas import DataFrame from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfTransformer from sklearn.neighbors import BallTree, KDTree, NearestNeighbors from sklearn.preprocessing import MultiLabelBinarizer, Normalizer from tqdm import tqdm def parse_json(filename_python_json: str, read_max: int = -1) -> DataFrame: """Parses json file into a DataFrame Args: filename_python_json (str): Path to json file read_max (int, optional): Max amount of lines to read from json file. Defaults to -1. Returns: DataFrame: DataFrame from parsed json """ with open(filename_python_json, "r", encoding="utf-8") as f: # parse json parse_data = [] # tqdm is for showing progress bar, always good when processing large amounts of data for line in tqdm(f): # load python nested datastructure parsed_result = literal_eval(line) parse_data.append(parsed_result) if read_max != -1 and len(parse_data) > read_max: print(f"Break reading after {read_max} records") break print(f"Reading {len(parse_data)} rows.") # create dataframe df = DataFrame.from_dict(parse_data) return df # TODO: use seed for SVD class ContentBasedRec(object): def __init__(self, items_path: str, sparse: bool = True, distance_metric='minkowski', dim_red=None, tfidf='default', use_feedback=True, normalize=False) -> None: """Content based recommender Args: items_path (str): Path to json file containing the items sparse (bool, optional): If recommender uses a sparse representation. Defaults to True. distance_metric (str, optional): Which distance metric to use. Defaults to 'minkowski'. dim_red ([type], optional): Which dimensionality reduction to use. Defaults to None. tfidf (str, optional): Which tf-idf method to use. Defaults to 'default'. use_feedback (bool, optional): Consider positive/negative reviews. Defaults to True. """ super().__init__() self.sparse = sparse self.dim_red = dim_red self.use_feedback = use_feedback self.normalize = normalize self.items = self._generate_item_features(parse_json(items_path)) self.recommendations = None self.normalizer = Normalizer(copy=False) # Select tf-idf method to use self.tfidf = None if tfidf == 'default': self.tfidf = TfidfTransformer(smooth_idf=False, sublinear_tf=False) elif tfidf == 'smooth': self.tfidf = TfidfTransformer(smooth_idf=True, sublinear_tf=False) elif tfidf == 'sublinear': self.tfidf = TfidfTransformer(smooth_idf=False, sublinear_tf=True) elif tfidf == 'smooth_sublinear': self.tfidf = TfidfTransformer(smooth_idf=True, sublinear_tf=True) # Select algorithm to use for neighbour computation algorithm = 'auto' if distance_metric in BallTree.valid_metrics: algorithm = 'ball_tree' elif distance_metric in KDTree.valid_metrics: algorithm = 'kd_tree' self.method = NearestNeighbors(n_neighbors=10, algorithm=algorithm, metric=distance_metric) def _generate_item_features(self, items: DataFrame) -> DataFrame: """Generates feature vector of items and appends to returned DataFrame Args: items (DataFrame): dataframe containing the items Returns: DataFrame: dataframe with feature vector appended """ items.drop(["publisher", "app_name", "title", "url", "release_date", "discount_price", "reviews_url", "price", "early_access", "developer", "sentiment", "metascore", "specs"], axis=1, inplace=True) items.dropna(subset=["id"], inplace=True) items = items.reset_index(drop=True) # Combine genres, tags and specs into one column items["genres"] = items["genres"].fillna("").apply(set) items["tags"] = items["tags"].fillna("").apply(set) items["tags"] = items.apply(lambda x: list( set.union(x["genres"], x["tags"])), axis=1) items = items.drop(["genres"], axis=1) # Compute one-hot encoded vector of tags mlb = MultiLabelBinarizer(sparse_output=self.sparse) if self.sparse: items = items.join(DataFrame.sparse.from_spmatrix(mlb.fit_transform(items.pop( "tags")), index=items.index, columns=["tag_" + c for c in mlb.classes_])) else: items = items.join(DataFrame(mlb.fit_transform(items.pop( "tags")), index=items.index, columns=["tag_" + c for c in mlb.classes_])) return items def generate_recommendations(self, data_path: str, amount=10, read_max=None) -> None: """Generate recommendations based on user review data Args: data_path (str): User review data amount (int, optional): Amount of times to recommend. Defaults to 10. read_max (int, optional): Max amount of users to read. Defaults to None. """ items = self.items df = parse_json(data_path) if read_max is None else parse_json(data_path, read_max=read_max) df.drop(df[~df["reviews"].astype(bool)].index,inplace=True) # filter out empty reviews # Process reviews df = df.explode("reviews", ignore_index=True) df = pd.concat([df.drop(["reviews", "user_url"], axis=1), pd.json_normalize(df.reviews)], axis=1).drop(["funny", "helpful", "posted", "last_edited", "review"], axis=1) df = df.groupby("user_id").agg(list).reset_index() # Drop id so only feature vector is left if self.sparse: X = scipy.sparse.csr_matrix(items.drop(["id"], axis=1).values) else: X = np.array(items.drop(["id"], axis=1).values) if self.tfidf: # Use tf-idf X = self.tfidf.fit_transform(X) if self.dim_red: # Use dimensionality reduction X = self.dim_red.fit_transform(X) if self.normalize: X = self.normalizer.fit_transform(X) # Combine transformed feature vector back into items if self.sparse: items = pd.concat([items["id"], DataFrame.sparse.from_spmatrix(X)], axis=1) else: items = pd.concat([items["id"],
DataFrame(X)
pandas.DataFrame
import pandas as pd import instances.dinamizators.dinamizators as din import math def simplest_test(): ''' Test if the dinamizators are running ''' df = ( pd.read_pickle('./instances/analysis/df_requests.zip') .reset_index() ) din.dinamize_as_berbeglia(df.pickup_location_x_coord, df.pickup_location_y_coord, df.delivery_location_x_coord, df.delivery_location_y_coord, df.pickup_upper_tw, df.delivery_upper_tw, df.pickup_service_time, 0.5, 60) din.dinamize_as_pureza_laporte(df.depot_location_x, df.depot_location_y, df.pickup_location_x_coord, df.pickup_location_y_coord, df.pickup_lower_tw, df.pickup_upper_tw, 0) din.dinamize_as_pankratz(df.depot_location_x, df.depot_location_y, df.pickup_location_x_coord, df.pickup_location_y_coord, df.delivery_location_x_coord, df.delivery_location_y_coord, df.pickup_upper_tw, df.delivery_upper_tw, df.pickup_service_time, 0.5) din.dinamize_as_fabri_recht(df.pickup_location_x_coord, df.pickup_location_y_coord, df.delivery_location_x_coord, df.delivery_location_y_coord, df.pickup_lower_tw, df.delivery_upper_tw) def test_calculate_travel_time(): pickup_location_x_coord = -1 pickup_location_y_coord = -1 delivery_location_x_coord = 1 delivery_location_y_coord = 1 expected_travel_time = math.ceil(math.sqrt(2) + math.sqrt(2)) calculated_travel_time = ( din.calculate_travel_time( pickup_location_x_coord, pickup_location_y_coord, delivery_location_x_coord, delivery_location_y_coord) ) assert (expected_travel_time == calculated_travel_time) def test_series_elementwise_max(): x = pd.Series([1, 2, 3]) y = pd.Series([3, 2, 1]) expected_max = pd.Series([3, 2, 3]) calculated_max = din.elementwise_max(x, y) assert (expected_max == calculated_max).all() def test_dataframe_elementwise_max(): x = pd.DataFrame([[1, 2, 3], [3, 2, 1]]) y =
pd.DataFrame([[3, 2, 1], [1, 2, 3]])
pandas.DataFrame
import os, os.path, sys if 'OORB_DATA' not in os.environ: os.environ['OORB_DATA'] = '/Users/mjuric/projects/lsst_ssp/oorb-lynne/data' extra_paths = [ '/Users/mjuric/projects/lsst_ssp/oorb-lynne/python', ] for _p in extra_paths: if not os.path.isdir(_p): print(f"{_p} not present. Skipping.") continue if _p not in sys.path: sys.path += [ _p ] print(f"Added {_p}") from . import api, utils from pyoorb import pyoorb from astropy.time import Time from astropy.coordinates import SkyCoord import numpy as np import pandas as pd __all__ = ["Orbits", "Propagator"] timeScales = dict( UTC=1, UT1=2, TT=3, TAI=4 ) elemType = dict( CAR=1, COM=2, KEP=3, DEL=4, EQX=5 ) inv_timeScales = dict(zip(timeScales.values(), timeScales.keys())) inv_elemType = dict(zip(elemType.values(), elemType.keys())) def _to_pyoorb_representation(df): """Convert orbital elements into the numpy fortran-format array OpenOrb requires. The OpenOrb element format is a single array with elemenets: 0 : orbitId (cannot be a string) 1-6 : orbital elements, using radians for angles 7 : element 'type' code (1 = CAR, 2 = COM, 3 = KEP, 4 = DELauny, 5 = EQX (equinoctial)) 8 : epoch 9 : timescale for epoch (1 = UTC, 2 = UT1, 3 = TT, 4 = TAI : always assumes TT) 10 : magHv 11 : g Sets self.oorbElem, the orbit parameters in an array formatted for OpenOrb. """ oorbElem = np.empty( (len(df), 12), dtype=np.double, order='F') oorbElem[:, 0] = np.arange(len(df)) if 'objId' in df: id = df['objId'].values else: id = np.arange(len(df)) # Add the appropriate element and epoch types: # Convert other elements INCLUDING converting inclination, node, argperi to RADIANS if 'meanAnomaly' in df: oorbElem[:, 1] = df['a'] oorbElem[:, 2] = df['e'] oorbElem[:, 3] = np.radians(df['inc']) oorbElem[:, 4] = np.radians(df['Omega']) oorbElem[:, 5] = np.radians(df['argPeri']) oorbElem[:, 6] = np.radians(df['meanAnomaly']) oorbElem[:, 7] = elemType['KEP'] elif 'argPeri' in df: oorbElem[:, 1] = df['q'] oorbElem[:, 2] = df['e'] oorbElem[:, 3] = np.radians(df['inc']) oorbElem[:, 4] = np.radians(df['Omega']) oorbElem[:, 5] = np.radians(df['argPeri']) oorbElem[:, 6] = df['tPeri'] oorbElem[:, 7] = elemType['COM'] elif 'x' in df: oorbElem[:, 1] = df['x'] oorbElem[:, 2] = df['y'] oorbElem[:, 3] = df['z'] oorbElem[:, 4] = df['xdot'] oorbElem[:, 5] = df['ydot'] oorbElem[:, 6] = df['zdot'] oorbElem[:, 7] = elemType['CAR'] else: raise ValueError(f'Unsupported element type %s: should be one of KEP, COM or CAR.' % elem_type) oorbElem[:,8] = df['epoch'] oorbElem[:,9] = timeScales['TT'] if 'H' in df or 'G' in df: oorbElem[:,10] = df['H'] oorbElem[:,11] = df['G'] else: oorbElem[:,10] = '0' oorbElem[:,11] = 0.15 return id, oorbElem def _from_pyoorb_representation(id, oorbElem, element_type): et = elemType[element_type] # if oorbElem are not of the right element type, convert if np.any(oorbElem[:, 7] != et): _init_pyoorb() oorbElem, err = pyoorb.oorb_element_transformation(in_orbits=oorbElem, in_element_type=et) if err != 0: raise RuntimeError('Oorb returned error code %s' % (err)) # convert timescales, if not in TT epoch = oorbElem[:, 8] if np.any(oorbElem[:, 9] != timeScales['TT']): if np.any(oorbElem[:, 9] != oorbElem[0, 9]): # this should never happen if only manipulating the states through the public interface raise ValueError('Unsupported: mixed timescales in internal pyoorb array') scale = inv_timeScales[oorbElem[0, 9]] epoch = Time(epoch, format='mjd', scale=scale.lower()).tt # convert to dataframe df =
pd.DataFrame({'objId': id})
pandas.DataFrame
# -*- coding: utf-8 -*- import click import logging from pathlib import Path # from dotenv import find_dotenv, load_dotenv import requests from bs4 import BeautifulSoup import numpy as np import pandas as pd import datetime import yfinance as yf from pandas_datareader import data as pdr from flask import current_app from stk_predictor.extensions import db @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') def get_ticker_from_yahoo(ticker, start_date, end_date): yf.pdr_override() try: new_trading_df = pdr.get_data_yahoo( ticker, start_date, end_date, interval='1d') new_trading_df = new_trading_df.drop( ['Open', 'High', 'Low', 'Adj Close'], axis=1) new_trading_df = new_trading_df.dropna('index') new_trading_df = new_trading_df.reset_index() new_trading_df.columns = ['trading_date', 'intraday_close', 'intraday_volumes'] his_trading_df = pd.read_sql('aapl', db.engine, index_col='id') df = pd.concat([his_trading_df, new_trading_df] ).drop_duplicates('trading_date') df = df.sort_values(by='trading_date') df = df.reset_index(drop=True) if len(df) > 0: df.to_sql("aapl", db.engine, if_exists='replace', index_label='id') return df else: # t = pd.read_sql('aapl', db.engine, index_col='id') return None except Exception as ex: raise RuntimeError( "Catch Excetion when retrieve data from Yahoo...", ex) return None def get_news_from_finviz(ticker): """Request news headline from finviz, according to company ticker's name Parameters ----------- ticker: str the stock ticker name Return ---------- df : pd.DataFrame return the latest 2 days news healines. """ current_app.logger.info("Job >> Enter Finviz news scrape step...") base_url = 'https://finviz.com/quote.ashx?t={}'.format(ticker) headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/50.0.2661.102 Safari/537.36' } parsed_news = [] try: res = requests.get(base_url, headers=headers) if res.status_code == 200: texts = res.text soup = BeautifulSoup(texts) news_tables = soup.find(id="news-table") for x in news_tables.findAll('tr'): text = x.a.get_text() date_scrape = x.td.text.split() if len(date_scrape) == 1: time = date_scrape[0] else: date = date_scrape[0] time = date_scrape[1] parsed_news.append([date, time, text]) # filter the recent day news df = pd.DataFrame(parsed_news, columns=['date', 'time', 'texts']) df['date'] = pd.to_datetime(df.date).dt.date one_day_period = (datetime.datetime.today() - datetime.timedelta(days=1)).date() df_sub = df[df.date >= one_day_period] return df_sub else: raise RuntimeError("HTTP response Error {}".format( res.status_code)) from None except Exception as ex: current_app.logger.info("Exception in scrape Finviz.", ex) raise RuntimeError("Exception in scrape Finviz.") from ex def prepare_trading_dataset(df): """Prepare the trading data set. Time series analysis incoporate previous data for future prediction, We need to retrieve historical data to generate features. Parameters ----------- df: DataFrame the stock ticker trading data, including trading-date, close-price, volumes window: int, default = 400 feature engineer windows size. Using at most 400 trading days to construct features. Return ---------- array_lstm : np.array return the array with 3 dimensions shape -> [samples, 1, features] """ if len(df) == 0: raise RuntimeError( "Encounter Error in >>make_dataset.prepare_trading_dataset<<... \ Did not catch any news.") from None else: df['log_ret_1d'] = np.log(df['intraday_close'] / df['intraday_close'].shift(1)) df['log_ret_1w'] = pd.Series(df['log_ret_1d']).rolling(window=5).sum() df['log_ret_2w'] = pd.Series(df['log_ret_1d']).rolling(window=10).sum() df['log_ret_3w'] = pd.Series(df['log_ret_1d']).rolling(window=15).sum() df['log_ret_4w'] = pd.Series(df['log_ret_1d']).rolling(window=20).sum() df['log_ret_8w'] = pd.Series(df['log_ret_1d']).rolling(window=40).sum() df['log_ret_12w'] = pd.Series(df['log_ret_1d']).rolling(window=60).sum() df['log_ret_16w'] = pd.Series(df['log_ret_1d']).rolling(window=80).sum() df['log_ret_20w'] = pd.Series(df['log_ret_1d']).rolling(window=100).sum() df['log_ret_24w'] = pd.Series(df['log_ret_1d']).rolling(window=120).sum() df['log_ret_28w'] =
pd.Series(df['log_ret_1d'])
pandas.Series
import os from datetime import date from dask.dataframe import DataFrame as DaskDataFrame from numpy import nan, ndarray from numpy.testing import assert_allclose, assert_array_equal from pandas import DataFrame, Series, Timedelta, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from pymove import ( DaskMoveDataFrame, MoveDataFrame, PandasDiscreteMoveDataFrame, PandasMoveDataFrame, read_csv, ) from pymove.core.grid import Grid from pymove.utils.constants import ( DATE, DATETIME, DAY, DIST_PREV_TO_NEXT, DIST_TO_PREV, HOUR, HOUR_SIN, LATITUDE, LOCAL_LABEL, LONGITUDE, PERIOD, SITUATION, SPEED_PREV_TO_NEXT, TID, TIME_PREV_TO_NEXT, TRAJ_ID, TYPE_DASK, TYPE_PANDAS, UID, WEEK_END, ) list_data = [ [39.984094, 116.319236, '2008-10-23 05:53:05', 1], [39.984198, 116.319322, '2008-10-23 05:53:06', 1], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], ] str_data_default = """ lat,lon,datetime,id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_different = """ latitude,longitude,time,traj_id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_missing = """ 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ def _default_move_df(): return MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) def _default_pandas_df(): return DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[0, 1, 2, 3], ) def test_move_data_frame_from_list(): move_df = _default_move_df() assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_file(tmpdir): d = tmpdir.mkdir('core') file_default_columns = d.join('test_read_default.csv') file_default_columns.write(str_data_default) filename_default = os.path.join( file_default_columns.dirname, file_default_columns.basename ) move_df = read_csv(filename_default) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) file_different_columns = d.join('test_read_different.csv') file_different_columns.write(str_data_different) filename_diferent = os.path.join( file_different_columns.dirname, file_different_columns.basename ) move_df = read_csv( filename_diferent, latitude='latitude', longitude='longitude', datetime='time', traj_id='traj_id', ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) file_missing_columns = d.join('test_read_missing.csv') file_missing_columns.write(str_data_missing) filename_missing = os.path.join( file_missing_columns.dirname, file_missing_columns.basename ) move_df = read_csv( filename_missing, names=[LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_dict(): dict_data = { LATITUDE: [39.984198, 39.984224, 39.984094], LONGITUDE: [116.319402, 116.319322, 116.319402], DATETIME: [ '2008-10-23 05:53:11', '2008-10-23 05:53:06', '2008-10-23 05:53:06', ], } move_df = MoveDataFrame( data=dict_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_data_frame(): df = _default_pandas_df() move_df = MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_attribute_error_from_data_frame(): df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['laterr', 'lon', 'datetime', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lonerr', 'datetime', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetimerr', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass def test_lat(): move_df = _default_move_df() lat = move_df.lat srs = Series( data=[39.984094, 39.984198, 39.984224, 39.984224], index=[0, 1, 2, 3], dtype='float64', name='lat', ) assert_series_equal(lat, srs) def test_lon(): move_df = _default_move_df() lon = move_df.lon srs = Series( data=[116.319236, 116.319322, 116.319402, 116.319402], index=[0, 1, 2, 3], dtype='float64', name='lon', ) assert_series_equal(lon, srs) def test_datetime(): move_df = _default_move_df() datetime = move_df.datetime srs = Series( data=[ '2008-10-23 05:53:05', '2008-10-23 05:53:06', '2008-10-23 05:53:11', '2008-10-23 05:53:11', ], index=[0, 1, 2, 3], dtype='datetime64[ns]', name='datetime', ) assert_series_equal(datetime, srs) def test_loc(): move_df = _default_move_df() assert move_df.loc[0, TRAJ_ID] == 1 loc_ = move_df.loc[move_df[LONGITUDE] > 116.319321] expected = DataFrame( data=[ [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[1, 2, 3], ) assert_frame_equal(loc_, expected) def test_iloc(): move_df = _default_move_df() expected = Series( data=[39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], index=['lat', 'lon', 'datetime', 'id'], dtype='object', name=0, ) assert_series_equal(move_df.iloc[0], expected) def test_at(): move_df = _default_move_df() assert move_df.at[0, TRAJ_ID] == 1 def test_values(): move_df = _default_move_df() expected = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ] assert_array_equal(move_df.values, expected) def test_columns(): move_df = _default_move_df() assert_array_equal( move_df.columns, [LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ) def test_index(): move_df = _default_move_df() assert_array_equal(move_df.index, [0, 1, 2, 3]) def test_dtypes(): move_df = _default_move_df() expected = Series( data=['float64', 'float64', '<M8[ns]', 'int64'], index=['lat', 'lon', 'datetime', 'id'], dtype='object', name=None, ) assert_series_equal(move_df.dtypes, expected) def test_shape(): move_df = _default_move_df() assert move_df.shape == (4, 4) def test_len(): move_df = _default_move_df() assert move_df.len() == 4 def test_unique(): move_df = _default_move_df() assert_array_equal(move_df['id'].unique(), [1, 2]) def test_head(): move_df = _default_move_df() expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], ], columns=['lat', 'lon', 'datetime', 'id'], index=[0, 1], ) assert_frame_equal(move_df.head(2), expected) def test_tail(): move_df = _default_move_df() expected = DataFrame( data=[ [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[2, 3], ) assert_frame_equal(move_df.tail(2), expected) def test_number_users(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert move_df.get_users_number() == 1 move_df[UID] = [1, 1, 2, 3] assert move_df.get_users_number() == 3 def test_to_numpy(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert isinstance(move_df.to_numpy(), ndarray) def test_to_dict(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert isinstance(move_df.to_dict(), dict) def test_to_grid(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) g = move_df.to_grid(8) assert isinstance(move_df.to_grid(8), Grid) def test_to_data_frame(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert isinstance(move_df.to_data_frame(), DataFrame) def test_to_discrete_move_df(): move_df = PandasDiscreteMoveDataFrame( data={DATETIME: ['2020-01-01 01:08:29', '2020-01-05 01:13:24', '2020-01-06 02:21:53', '2020-01-06 03:34:48', '2020-01-08 05:55:41'], LATITUDE: [3.754245, 3.150849, 3.754249, 3.165933, 3.920178], LONGITUDE: [38.3456743, 38.6913486, 38.3456743, 38.2715962, 38.5161605], TRAJ_ID: ['pwe-5089', 'xjt-1579', 'tre-1890', 'xjt-1579', 'pwe-5089'], LOCAL_LABEL: [1, 4, 2, 16, 32]}, ) assert isinstance( move_df.to_dicrete_move_df(), PandasDiscreteMoveDataFrame ) def test_describe(): move_df = _default_move_df() expected = DataFrame( data=[ [4.0, 4.0, 4.0], [39.984185, 116.31934049999998, 1.5], [6.189237971348586e-05, 7.921910543639078e-05, 0.5773502691896257], [39.984094, 116.319236, 1.0], [39.984172, 116.3193005, 1.0], [39.984211, 116.319362, 1.5], [39.984224, 116.319402, 2.0], [39.984224, 116.319402, 2.0], ], columns=['lat', 'lon', 'id'], index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], ) assert_frame_equal(move_df.describe(), expected) def test_memory_usage(): move_df = _default_move_df() expected = Series( data=[128, 32, 32, 32, 32], index=['Index', 'lat', 'lon', 'datetime', 'id'], dtype='int64', name=None, ) assert_series_equal(move_df.memory_usage(), expected) def test_copy(): move_df = _default_move_df() cp = move_df.copy() assert_frame_equal(move_df, cp) cp.at[0, TRAJ_ID] = 0 assert move_df.loc[0, TRAJ_ID] == 1 assert move_df.loc[0, TRAJ_ID] != cp.loc[0, TRAJ_ID] def test_generate_tid_based_on_id_datetime(): move_df = _default_move_df() new_move_df = move_df.generate_tid_based_on_id_datetime(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, '12008102305', ], [ 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, '12008102305', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, '22008102305', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, '22008102305', ], ], columns=['lat', 'lon', 'datetime', 'id', 'tid'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert TID not in move_df move_df.generate_tid_based_on_id_datetime() assert_frame_equal(move_df, expected) def test_generate_date_features(): move_df = _default_move_df() new_move_df = move_df.generate_date_features(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, date(2008, 10, 23), ], [ 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, date(2008, 10, 23), ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, date(2008, 10, 23), ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, date(2008, 10, 23), ], ], columns=['lat', 'lon', 'datetime', 'id', 'date'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert DATE not in move_df move_df.generate_date_features() assert_frame_equal(move_df, expected) def test_generate_hour_features(): move_df = _default_move_df() new_move_df = move_df.generate_hour_features(inplace=False) expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 5], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, 5], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 5], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 5], ], columns=['lat', 'lon', 'datetime', 'id', 'hour'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert HOUR not in move_df move_df.generate_hour_features() assert_frame_equal(move_df, expected) def test_generate_day_of_the_week_features(): move_df = _default_move_df() new_move_df = move_df.generate_day_of_the_week_features(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 'Thursday', ], [ 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, 'Thursday', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 'Thursday', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 'Thursday', ], ], columns=['lat', 'lon', 'datetime', 'id', 'day'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert DAY not in move_df move_df.generate_day_of_the_week_features() assert_frame_equal(move_df, expected) def test_generate_weekend_features(): move_df = _default_move_df() new_move_df = move_df.generate_weekend_features(inplace=False) expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 0], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, 0], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 0], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 0], ], columns=['lat', 'lon', 'datetime', 'id', 'weekend'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert WEEK_END not in move_df move_df.generate_weekend_features() assert_frame_equal(move_df, expected) def test_generate_time_of_day_features(): move_df = _default_move_df() new_move_df = move_df.generate_time_of_day_features(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 'Early morning', ], [ 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, 'Early morning', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 'Early morning', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 'Early morning', ], ], columns=['lat', 'lon', 'datetime', 'id', 'period'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert PERIOD not in move_df move_df.generate_time_of_day_features() assert_frame_equal(move_df, expected) def test_generate_datetime_in_format_cyclical(): move_df = _default_move_df() new_move_df = move_df.generate_datetime_in_format_cyclical(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 0.9790840876823229, 0.20345601305263375, ], [ 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, 0.9790840876823229, 0.20345601305263375, ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 0.9790840876823229, 0.20345601305263375, ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, 0.9790840876823229, 0.20345601305263375, ], ], columns=['lat', 'lon', 'datetime', 'id', 'hour_sin', 'hour_cos'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert HOUR_SIN not in move_df move_df.generate_datetime_in_format_cyclical() assert_frame_equal(move_df, expected) def test_generate_dist_time_speed_features(): move_df = _default_move_df() new_move_df = move_df.generate_dist_time_speed_features(inplace=False) expected = DataFrame( data=[ [ 1, 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), nan, nan, nan, ], [ 1, 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 13.690153134343689, 1.0, 13.690153134343689, ], [ 2, 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), nan, nan, nan, ], [ 2, 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 0.0, 0.0, nan, ], ], columns=[ 'id', 'lat', 'lon', 'datetime', 'dist_to_prev', 'time_to_prev', 'speed_to_prev', ], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert DIST_TO_PREV not in move_df move_df.generate_dist_time_speed_features()
assert_frame_equal(move_df, expected)
pandas.testing.assert_frame_equal
# License: Apache-2.0 from gators.feature_generation_str import StringContains from pandas.testing import assert_frame_equal import pytest import numpy as np import pandas as pd import databricks.koalas as ks ks.set_option('compute.default_index_type', 'distributed-sequence') @pytest.fixture def data(): X = pd.DataFrame(np.zeros((3, 3)), columns=list('qwe')) X['a'] = ['0', '1Q', '1QQ'] X['s'] = ['0', 'W2', 'W2W'] X['d'] = ['0', 'Q', ''] obj = StringContains( columns=list('asd'), contains_vec=['1', '2', '0']).fit(X) columns_expected = [ 'q', 'w', 'e', 'a', 's', 'd', 'a__contains_1', 's__contains_2', 'd__contains_0'] X_expected = pd.DataFrame( [[0.0, 0.0, 0.0, '0', '0', '0', 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, '1Q', 'W2', 'Q', 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, '1QQ', 'W2W', '', 1.0, 1.0, 0.0]], columns=columns_expected) return obj, X, X_expected @pytest.fixture def data_ks(): X = ks.DataFrame(np.zeros((3, 3)), columns=list('qwe')) X['a'] = ['0', '1Q', '1QQ'] X['s'] = ['0', 'W2', 'W2W'] X['d'] = ['0', 'Q', ''] obj = StringContains( columns=list('asd'), contains_vec=['1', '2', '0']).fit(X) columns_expected = [ 'q', 'w', 'e', 'a', 's', 'd', 'a__contains_1', 's__contains_2', 'd__contains_0'] X_expected = pd.DataFrame( [[0.0, 0.0, 0.0, '0', '0', '0', 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, '1Q', 'W2', 'Q', 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, '1QQ', 'W2W', '', 1.0, 1.0, 0.0]], columns=columns_expected) return obj, X, X_expected @pytest.fixture def data_with_names(): X = pd.DataFrame(np.zeros((3, 3)), columns=list('qwe')) X['a'] = ['0', '1Q', '1QQ'] X['s'] = ['0', 'W2', 'W2W'] X['d'] = ['0', 'Q', ''] obj = StringContains( columns=list('asd'), contains_vec=['1', '2', '0'], column_names=['a_with_1', 's_with_2', 'd_with_0']).fit(X) columns_expected = [ 'q', 'w', 'e', 'a', 's', 'd', 'a_with_1', 's_with_2', 'd_with_0'] X_expected = pd.DataFrame( [[0.0, 0.0, 0.0, '0', '0', '0', 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, '1Q', 'W2', 'Q', 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, '1QQ', 'W2W', '', 1.0, 1.0, 0.0]], columns=columns_expected) return obj, X, X_expected @pytest.fixture def data_with_names_ks(): X = ks.DataFrame(np.zeros((3, 3)), columns=list('qwe')) X['a'] = ['0', '1Q', '1QQ'] X['s'] = ['0', 'W2', 'W2W'] X['d'] = ['0', 'Q', ''] obj = StringContains( columns=list('asd'), contains_vec=['1', '2', '0'], column_names=['a_with_1', 's_with_2', 'd_with_0']).fit(X) columns_expected = [ 'q', 'w', 'e', 'a', 's', 'd', 'a_with_1', 's_with_2', 'd_with_0'] X_expected = pd.DataFrame( [[0.0, 0.0, 0.0, '0', '0', '0', 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, '1Q', 'W2', 'Q', 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, '1QQ', 'W2W', '', 1.0, 1.0, 0.0]], columns=columns_expected) return obj, X, X_expected def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X)
assert_frame_equal(X_new, X_expected)
pandas.testing.assert_frame_equal
"""Tasks to process Alpha Diversity results.""" from pandas import DataFrame from app.extensions import celery from app.display_modules.utils import persist_result_helper from .models import AncestryResult @celery.task() def ancestry_reducer(samples): """Wrap collated samples as actual Result type.""" framed_samples =
DataFrame(samples)
pandas.DataFrame
# general utilities used throughout the project import numpy as np import pandas as pd import requests import const # convert time string to season def to_season(time): datetime = pd.to_datetime(time) return (datetime.month % 12 + 3) // 3 if datetime is not np.nan else np.nan # normalize values of data-frame to [0, 1] def normalize(data_frame, multiplier): return multiplier * (data_frame - data_frame.min()) / (data_frame.max() - data_frame.min()) # convert float[s] to pretty def pretty(value, decimal): if isinstance(value, list): return [("%0." + str(decimal) + "f") % y for y in value] else: return ("%0." + str(decimal) + "f") % value def fill(series: pd.Series, max_interval=0, inplace=False): """ Replace NaN values with average of nearest non NaN neighbors :param max_interval: id number of consecutive NaN values > max_interval, they are not filled :param series: :param inplace: :return: """ filled = series if inplace else series.copy() region = [-1, -1] # temporary interval of NaN values last_item = len(filled) - 1 lbound = filled.index[0] # index bounds of the series ubound = filled.index[last_item] for index, value in filled.iteritems(): # Keep track of current interval of NaN values if np.isnan(value): if region[0] == -1: region[0] = index region[1] = index # Replace NaN values with their boundary average # when a NaN interval is started, and is ending with a non-NaN value or end of list if region[0] != -1 and (not np.isnan(value) or index == ubound): # do not fill NaN intervals wider than max_interval if max_interval <= 0 or region[1] - region[0] + 1 <= max_interval: start = region[0] - lbound # offset index to 0 end = region[1] - lbound # offset index to 0 first_value = filled.values[start - 1] if region[0] > lbound else np.nan last_value = filled.values[end + 1] if region[1] < ubound else np.nan # Duplicate one boundary to another if one does not exist # this happens when a series starts or ends with a NaN first_value = last_value if np.isnan(first_value) else first_value last_value = first_value if np.isnan(last_value) else last_value # Set NaN interval by monotonically moving from first boundary value to last d = end - start + 1 for i in range(0, d): filled.values[start + i] = ((d - i) * first_value + i * last_value) / d # Reset NaN interval indicators region[0] = region[1] = -1 return filled def SMAPE(forecast: pd.Series, actual: pd.Series): """ SMAPE error for predicted array compared to array of real values :param forecast: :param actual: :return: """ if forecast.size != actual.size: raise ValueError("length forecast {%s} <> {%s} actual" % (forecast.size, actual.size)) diff = np.abs(np.subtract(forecast, actual)) avg = (np.abs(actual) + np.abs(forecast)) / 2 count = np.sum(~np.isnan(actual)) return (1 / count) * np.nansum(diff / avg) def drop_columns(df: pd.DataFrame, end_with): """ Drop all columns that their name ends with end_with :param df: :param end_with: :return: """ df = df[df.columns.drop(list(df.filter(regex=end_with)))] return df def merge_columns(df: pd.DataFrame, main: str, auxiliary: str): """ Merge two columns with same prefix into one column without suffix For example: merge name_x and name_y into name :param df: :param main: suffix of main columns to be kept :param auxiliary: suffix of auxiliary columns to fill na values of corresponding main columns :return: """ mains = set([name.split(main)[0] for name in list(df.filter(regex=main))]) auxiliaries = set([name.split(auxiliary)[0] for name in list(df.filter(regex=auxiliary))]) shared = list(mains.intersection(auxiliaries)) # columns shared in main and auxiliary only_aux = list(auxiliaries.difference(mains)) # Fill nan values of main columns with auxiliary columns main_columns = [name + main for name in shared] aux_columns = [name + auxiliary for name in shared] df = fillna(df, target=main_columns, source=aux_columns) # Re-suffix auxiliary columns having no duplicate in main columns # to keep exclusively auxiliary ones in final results df = df.rename(columns={name + auxiliary: name + main for name in only_aux}) # Drop auxiliary columns df = drop_columns(df=df, end_with=auxiliary) # Remove suffix from main columns df = df.rename(columns={col: col.split(main)[0] for col in df.columns}) return df def fillna(df: pd.DataFrame, target, source): """ Fill some columns with another columns in a dataframe :param df: :param target: array of column names :param source: array of column names :return: pd.DataFrame """ for index, target in enumerate(target): df[target].fillna(df[source[index]], inplace=True) return df def write(df: pd.DataFrame, address): """ Write CSV data efficiently :param df: :param address: :return: """ df.to_csv(address, sep=';', index=False, float_format='%.1f' , date_format=const.T_FORMAT, chunksize=100000) def shift(l: list): l.append(l.pop(0)) def nan_gap(values: list): """ Average index interval created by sequential nan values :param values: :return: """ last_index = len(values) - 1 first_nan = -1 last_nan = -1 gap_sum = 0 gap_count = 0 for index, value in enumerate(values): if pd.isnull(value): if first_nan == -1: first_nan = index last_nan = index if first_nan != -1 and (not
pd.isnull(value)
pandas.isnull
import itertools import numpy as np import pytest import pandas as pd from pandas.core.internals import ExtensionBlock from .base import BaseExtensionTests class BaseReshapingTests(BaseExtensionTests): """Tests for reshaping and concatenation.""" @pytest.mark.parametrize('in_frame', [True, False]) def test_concat(self, data, in_frame): wrapped = pd.Series(data) if in_frame: wrapped = pd.DataFrame(wrapped) result = pd.concat([wrapped, wrapped], ignore_index=True) assert len(result) == len(data) * 2 if in_frame: dtype = result.dtypes[0] else: dtype = result.dtype assert dtype == data.dtype assert isinstance(result._data.blocks[0], ExtensionBlock) @pytest.mark.parametrize('in_frame', [True, False]) def test_concat_all_na_block(self, data_missing, in_frame): valid_block = pd.Series(data_missing.take([1, 1]), index=[0, 1]) na_block = pd.Series(data_missing.take([0, 0]), index=[2, 3]) if in_frame: valid_block = pd.DataFrame({"a": valid_block}) na_block = pd.DataFrame({"a": na_block}) result = pd.concat([valid_block, na_block]) if in_frame: expected = pd.DataFrame({"a": data_missing.take([1, 1, 0, 0])}) self.assert_frame_equal(result, expected) else: expected = pd.Series(data_missing.take([1, 1, 0, 0])) self.assert_series_equal(result, expected) def test_concat_mixed_dtypes(self, data): # https://github.com/pandas-dev/pandas/issues/20762 df1 = pd.DataFrame({'A': data[:3]}) df2 = pd.DataFrame({"A": [1, 2, 3]}) df3 = pd.DataFrame({"A": ['a', 'b', 'c']}).astype('category') dfs = [df1, df2, df3] # dataframes result = pd.concat(dfs) expected = pd.concat([x.astype(object) for x in dfs]) self.assert_frame_equal(result, expected) # series result = pd.concat([x['A'] for x in dfs]) expected = pd.concat([x['A'].astype(object) for x in dfs]) self.assert_series_equal(result, expected) # simple test for just EA and one other result = pd.concat([df1, df2]) expected = pd.concat([df1.astype('object'), df2.astype('object')]) self.assert_frame_equal(result, expected) result = pd.concat([df1['A'], df2['A']]) expected = pd.concat([df1['A'].astype('object'), df2['A'].astype('object')]) self.assert_series_equal(result, expected) def test_concat_columns(self, data, na_value): df1 = pd.DataFrame({'A': data[:3]}) df2 = pd.DataFrame({'B': [1, 2, 3]}) expected = pd.DataFrame({'A': data[:3], 'B': [1, 2, 3]}) result = pd.concat([df1, df2], axis=1) self.assert_frame_equal(result, expected) result = pd.concat([df1['A'], df2['B']], axis=1) self.assert_frame_equal(result, expected) # non-aligned df2 = pd.DataFrame({'B': [1, 2, 3]}, index=[1, 2, 3]) expected = pd.DataFrame({ 'A': data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype), 'B': [np.nan, 1, 2, 3]}) result = pd.concat([df1, df2], axis=1) self.assert_frame_equal(result, expected) result = pd.concat([df1['A'], df2['B']], axis=1) self.assert_frame_equal(result, expected) def test_align(self, data, na_value): a = data[:3] b = data[2:5] r1, r2 = pd.Series(a).align(pd.Series(b, index=[1, 2, 3])) # Assumes that the ctor can take a list of scalars of the type e1 = pd.Series(data._from_sequence(list(a) + [na_value], dtype=data.dtype)) e2 = pd.Series(data._from_sequence([na_value] + list(b), dtype=data.dtype)) self.assert_series_equal(r1, e1) self.assert_series_equal(r2, e2) def test_align_frame(self, data, na_value): a = data[:3] b = data[2:5] r1, r2 = pd.DataFrame({'A': a}).align(
pd.DataFrame({'A': b}, index=[1, 2, 3])
pandas.DataFrame
import xml.etree.ElementTree as ET from pathlib import Path import pandas as pd from .utils import remove_duplicate_indices, resample_data NAMESPACES = { "default": "http://www.topografix.com/GPX/1/1", "gpxtpx": "http://www.garmin.com/xmlschemas/TrackPointExtension/v1", "gpxx": "http://www.garmin.com/xmlschemas/GpxExtensions/v3", "xsi": "http://www.w3.org/2001/XMLSchema-instance", } def xml_find_value_or_none(element, match, namespaces=None): e = element.find(match, namespaces=namespaces) if e is None: return e else: return e.text def read_gpx(fpath, resample: bool = False, interpolate: bool = False) -> pd.DataFrame: """This method loads a GPX file into a Pandas DataFrame. Columns names are translated to sweat terminology (e.g. "heart_rate" > "heartrate"). Args: fpath: str, file-like or Path object resample: whether or not the data frame needs to be resampled to 1Hz interpolate: whether or not missing data in the data frame needs to be interpolated Returns: A pandas data frame with all the data. """ tree = ET.parse(Path(fpath)) root = tree.getroot() trk = root.find("default:trk", NAMESPACES) trkseg = trk.find("default:trkseg", NAMESPACES) records = [] for trackpoint in trkseg.findall("default:trkpt", NAMESPACES): latitude = trackpoint.attrib.get("lat", None) longitude = trackpoint.attrib.get("lon", None) elevation = xml_find_value_or_none(trackpoint, "default:ele", NAMESPACES) datetime = xml_find_value_or_none(trackpoint, "default:time", NAMESPACES) extensions = trackpoint.find("default:extensions", NAMESPACES) power = xml_find_value_or_none(extensions, "default:power", NAMESPACES) trackpoint_extension = extensions.find("gpxtpx:TrackPointExtension", NAMESPACES) temperature = xml_find_value_or_none( trackpoint_extension, "gpxtpx:atemp", NAMESPACES ) heartrate = xml_find_value_or_none( trackpoint_extension, "gpxtpx:hr", NAMESPACES ) cadence = xml_find_value_or_none(trackpoint_extension, "gpxtpx:cad", NAMESPACES) records.append( dict( latitude=pd.to_numeric(latitude), longitude=pd.to_numeric(longitude), elevation=pd.to_numeric(elevation), datetime=datetime, power=pd.to_numeric(power), temperature=
pd.to_numeric(temperature)
pandas.to_numeric
import numpy as np import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, ) from .pandas_vb_common import tm try: from pandas.tseries.offsets import ( Hour, Nano, ) except ImportError: # For compatibility with older versions from pandas.core.datetools import ( Hour, Nano, ) class FromDicts: def setup(self): N, K = 5000, 50 self.index = tm.makeStringIndex(N) self.columns = tm.makeStringIndex(K) frame = DataFrame(np.random.randn(N, K), index=self.index, columns=self.columns) self.data = frame.to_dict() self.dict_list = frame.to_dict(orient="records") self.data2 = {i: {j: float(j) for j in range(100)} for i in range(2000)} # arrays which we wont consolidate self.dict_of_categoricals = {i: Categorical(np.arange(N)) for i in range(K)} def time_list_of_dict(self): DataFrame(self.dict_list) def time_nested_dict(self): DataFrame(self.data) def time_nested_dict_index(self): DataFrame(self.data, index=self.index) def time_nested_dict_columns(self): DataFrame(self.data, columns=self.columns) def time_nested_dict_index_columns(self): DataFrame(self.data, index=self.index, columns=self.columns) def time_nested_dict_int64(self): # nested dict, integer indexes, regression described in #621 DataFrame(self.data2) def time_dict_of_categoricals(self): # dict of arrays that we wont consolidate DataFrame(self.dict_of_categoricals) class FromSeries: def setup(self): mi = MultiIndex.from_product([range(100), range(100)]) self.s = Series(np.random.randn(10000), index=mi) def time_mi_series(self): DataFrame(self.s) class FromDictwithTimestamp: params = [Nano(1), Hour(1)] param_names = ["offset"] def setup(self, offset): N = 10**3 idx = date_range(Timestamp("1/1/1900"), freq=offset, periods=N) df = DataFrame(np.random.randn(N, 10), index=idx) self.d = df.to_dict() def time_dict_with_timestamp_offsets(self, offset): DataFrame(self.d) class FromRecords: params = [None, 1000] param_names = ["nrows"] # Generators get exhausted on use, so run setup before every call number = 1 repeat = (3, 250, 10) def setup(self, nrows): N = 100000 self.gen = ((x, (x * 20), (x * 100)) for x in range(N)) def time_frame_from_records_generator(self, nrows): # issue-6700 self.df = DataFrame.from_records(self.gen, nrows=nrows) class FromNDArray: def setup(self): N = 100000 self.data = np.random.randn(N) def time_frame_from_ndarray(self): self.df =
DataFrame(self.data)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt from data import games #import games from data.py # Select Attendance # The games DataFrame contains the attendance for each game. An attendance row looks like this: # type multi2 multi3 ... year # info attendance 45342 ... 1946 # We need to select all of these rows, so below the import statements select these rows using loc[] with the conditions: # games['type'] == 'info' # games['multi2'] == 'attendance' # Select only the year, and multi3 columns. # loc[] returns the new selection as a DataFrame. Call this new DataFrame attendance. attendance = games.loc[(games['type'] == 'info') & (games['multi2'] == 'attendance'), ['year', 'multi3']] # Column Labels # The attendance DataFrame only has two columns now. Change the labels of these columns to year and attendance with the columns property. attendance.columns = ['year', 'attendance'] # Convert to Numeric # Select all rows and just the attendance column of the attendance DataFrame with the loc[] function. # Hint: dataframe.loc[:, 'column'] # Assign to this selection the result of calling pd.to_numeric(). # As an argument to the pd.to_numeric() function call, pass in the same loc[] selection as above. # Hint: selection = pd.to_numeric(selection) attendance.loc[:, 'attendance'] =
pd.to_numeric(attendance.loc[:, 'attendance'])
pandas.to_numeric
from __future__ import division, print_function from builtins import object, zip import pandas as pd import xarray as xr from dask.diagnostics import ProgressBar from numpy import array from past.utils import old_div # This file is to deal with CAMx code - try to make it general for CAMx 4.7.1 --> 5.1 ProgressBar().register() class CAMx(object): def __init__(self): self.objtype = 'CAMX' self.coarse = array( ['NA', 'PSO4', 'PNO3', 'PNH4', 'PH2O', 'PCL', 'PEC', 'FPRM', 'FCRS', 'CPRM', 'CCRS', 'SOA1', 'SOA2', 'SOA3', 'SOA4']) self.fine = array( ['NA', 'PSO4', 'PNO3', 'PNH4', 'PH2O', 'PCL', 'PEC', 'FPRM', 'FCRS', 'SOA1', 'SOA2', 'SOA3', 'SOA4']) self.noy_gas = array( ['NO', 'NO2', 'NO3', 'N2O5', 'HONO', 'HNO3', 'PAN', 'PANX', 'PNA', 'NTR', 'CRON', 'CRN2', 'CRNO', 'CRPX', 'OPAN']) self.poc = array(['SOA1', 'SOA2', 'SOA3', 'SOA4']) self.dset = None self.grid = None # gridcro2d obj self.fname = None self.metcrofnames = None self.aerofnames = None self.dates = None self.keys = None self.indexdates = None self.metindex = None self.latitude = None self.longitude = None self.map = None def get_dates(self): print('Reading CAMx dates...') print(self.dset) tflag1 = array(self.dset['TFLAG'][:, 0], dtype='|S7') tflag2 = array(old_div(self.dset['TFLAG'][:, 1], 10000), dtype='|S6') date = pd.to_datetime([i + j.zfill(2) for i, j in zip(tflag1, tflag2)], format='%Y%j%H') indexdates = pd.Series(date).drop_duplicates(keep='last').index.values self.dset = self.dset.isel(time=indexdates) self.dset['time'] = date[indexdates] def open_camx(self, file): from glob import glob from numpy import sort dropset = ['layer', 'longitude_bounds', 'latitude_bounds', 'x', 'y', 'level', 'lambert_conformal_conic'] nameset = {'COL': 'x', 'ROW': 'y', 'TSTEP': 'time', 'LAY': 'z'} if type(file) == str: fname = sort(array(glob(file))) else: fname = sort(array(file)) if fname.shape[0] >= 1: if self.dset is None: self.dset = xr.open_mfdataset( fname.tolist(), concat_dim='TSTEP', engine='pnc').drop(dropset).rename(nameset).squeeze() self.load_conus_basemap(res='l') self.get_dates() else: dset = xr.open_mfdataset(fname.tolist(), concat_dim='TSTEP', engine='pnc').drop(dropset).rename(nameset).squeeze() self.dset = xr.merge([self.dset, dset]) else: print('Files not found') self.keys = list(self.dset.keys()) def check_z(self, varname): if
pd.Series(self.dset[varname].dims)
pandas.Series
import re from inspect import isclass import numpy as np import pandas as pd import pytest from mock import patch import woodwork as ww from woodwork.accessor_utils import ( _is_dask_dataframe, _is_dask_series, _is_koalas_dataframe, _is_koalas_series, init_series, ) from woodwork.exceptions import ( ColumnNotPresentError, IndexTagRemovedWarning, ParametersIgnoredWarning, TypeConversionError, TypingInfoMismatchWarning, WoodworkNotInitError, ) from woodwork.logical_types import ( URL, Address, Age, AgeFractional, AgeNullable, Boolean, BooleanNullable, Categorical, CountryCode, Datetime, Double, EmailAddress, Filepath, Integer, IntegerNullable, IPAddress, LatLong, NaturalLanguage, Ordinal, PersonFullName, PhoneNumber, PostalCode, SubRegionCode, Unknown, ) from woodwork.table_accessor import ( WoodworkTableAccessor, _check_index, _check_logical_types, _check_partial_schema, _check_time_index, _check_unique_column_names, _check_use_standard_tags, _infer_missing_logical_types, ) from woodwork.table_schema import TableSchema from woodwork.tests.testing_utils import ( is_property, is_public_method, to_pandas, validate_subset_schema, ) from woodwork.tests.testing_utils.table_utils import assert_schema_equal from woodwork.utils import import_or_none dd = import_or_none("dask.dataframe") ks = import_or_none("databricks.koalas") def test_check_index_errors(sample_df): error_message = "Specified index column `foo` not found in dataframe" with pytest.raises(ColumnNotPresentError, match=error_message): _check_index(dataframe=sample_df, index="foo") if isinstance(sample_df, pd.DataFrame): # Does not check for index uniqueness with Dask error_message = "Index column must be unique" with pytest.raises(LookupError, match=error_message): _check_index(sample_df, index="age") def test_check_logical_types_errors(sample_df): error_message = "logical_types must be a dictionary" with pytest.raises(TypeError, match=error_message): _check_logical_types(sample_df, logical_types="type") bad_logical_types_keys = { "full_name": None, "age": None, "birthday": None, "occupation": None, } error_message = re.escape( "logical_types contains columns that are not present in dataframe: ['birthday', 'occupation']" ) with pytest.raises(ColumnNotPresentError, match=error_message): _check_logical_types(sample_df, bad_logical_types_keys) def test_check_time_index_errors(sample_df): error_message = "Specified time index column `foo` not found in dataframe" with pytest.raises(ColumnNotPresentError, match=error_message): _check_time_index(dataframe=sample_df, time_index="foo") def test_check_unique_column_names_errors(sample_df): if _is_koalas_dataframe(sample_df): pytest.skip("Koalas enforces unique column names") duplicate_cols_df = sample_df.copy() if _is_dask_dataframe(sample_df): duplicate_cols_df = dd.concat( [duplicate_cols_df, duplicate_cols_df["age"]], axis=1 ) else: duplicate_cols_df.insert(0, "age", [18, 21, 65, 43], allow_duplicates=True) with pytest.raises( IndexError, match="Dataframe cannot contain duplicate columns names" ): _check_unique_column_names(duplicate_cols_df) def test_check_use_standard_tags_errors(): error_message = "use_standard_tags must be a dictionary or a boolean" with pytest.raises(TypeError, match=error_message): _check_use_standard_tags(1) def test_accessor_init(sample_df): assert sample_df.ww.schema is None sample_df.ww.init() assert isinstance(sample_df.ww.schema, TableSchema) def test_accessor_schema_property(sample_df): sample_df.ww.init() assert sample_df.ww._schema is not sample_df.ww.schema assert sample_df.ww._schema == sample_df.ww.schema def test_set_accessor_name(sample_df): df = sample_df.copy() error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): df.ww.name with pytest.raises(WoodworkNotInitError, match=error): df.ww.name = "name" df.ww.init() assert df.ww.name is None df.ww.name = "name" assert df.ww.schema.name == "name" assert df.ww.name == "name" def test_rename_init_with_name(sample_df): df = sample_df.copy() df.ww.init(name="name") assert df.ww.name == "name" df.ww.name = "new_name" assert df.ww.schema.name == "new_name" assert df.ww.name == "new_name" def test_name_error_on_init(sample_df): err_msg = "Table name must be a string" with pytest.raises(TypeError, match=err_msg): sample_df.ww.init(name=123) def test_name_error_on_update(sample_df): sample_df.ww.init() err_msg = "Table name must be a string" with pytest.raises(TypeError, match=err_msg): sample_df.ww.name = 123 def test_name_persists_after_drop(sample_df): df = sample_df.copy() df.ww.init() df.ww.name = "name" assert df.ww.name == "name" dropped_df = df.ww.drop(["id"]) assert dropped_df.ww.name == "name" assert dropped_df.ww.schema.name == "name" def test_set_accessor_metadata(sample_df): df = sample_df.copy() error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): df.ww.metadata with pytest.raises(WoodworkNotInitError, match=error): df.ww.metadata = {"new": "metadata"} df.ww.init() assert df.ww.metadata == {} df.ww.metadata = {"new": "metadata"} assert df.ww.schema.metadata == {"new": "metadata"} assert df.ww.metadata == {"new": "metadata"} def test_set_metadata_after_init_with_metadata(sample_df): df = sample_df.copy() df.ww.init(table_metadata={"new": "metadata"}) assert df.ww.metadata == {"new": "metadata"} df.ww.metadata = {"new": "new_metadata"} assert df.ww.schema.metadata == {"new": "new_metadata"} assert df.ww.metadata == {"new": "new_metadata"} def test_metadata_persists_after_drop(sample_df): df = sample_df.copy() df.ww.init() df.ww.metadata = {"new": "metadata"} assert df.ww.metadata == {"new": "metadata"} dropped_df = df.ww.drop(["id"]) assert dropped_df.ww.metadata == {"new": "metadata"} assert dropped_df.ww.schema.metadata == {"new": "metadata"} def test_metadata_error_on_init(sample_df): err_msg = "Table metadata must be a dictionary." with pytest.raises(TypeError, match=err_msg): sample_df.ww.init(table_metadata=123) def test_metadata_error_on_update(sample_df): sample_df.ww.init() err_msg = "Table metadata must be a dictionary." with pytest.raises(TypeError, match=err_msg): sample_df.ww.metadata = 123 def test_accessor_physical_types_property(sample_df): sample_df.ww.init(logical_types={"age": "Categorical"}) assert isinstance(sample_df.ww.physical_types, dict) assert set(sample_df.ww.physical_types.keys()) == set(sample_df.columns) for k, v in sample_df.ww.physical_types.items(): logical_type = sample_df.ww.columns[k].logical_type if _is_koalas_dataframe(sample_df) and logical_type.backup_dtype is not None: assert v == logical_type.backup_dtype else: assert v == logical_type.primary_dtype def test_accessor_separation_of_params(sample_df): # mix up order of acccessor and schema params schema_df = sample_df.copy() schema_df.ww.init( name="test_name", index="id", semantic_tags={"id": "test_tag"}, time_index="signup_date", ) assert schema_df.ww.semantic_tags["id"] == {"index", "test_tag"} assert schema_df.ww.index == "id" assert schema_df.ww.time_index == "signup_date" assert schema_df.ww.name == "test_name" def test_init_with_full_schema(sample_df): schema_df = sample_df.copy() schema_df.ww.init(name="test_schema", semantic_tags={"id": "test_tag"}, index="id") schema = schema_df.ww._schema head_df = schema_df.head(2) assert head_df.ww.schema is None head_df.ww.init_with_full_schema(schema=schema) assert head_df.ww._schema is schema assert head_df.ww.name == "test_schema" assert head_df.ww.semantic_tags["id"] == {"index", "test_tag"} iloc_df = schema_df.loc[[2, 3]] assert iloc_df.ww.schema is None iloc_df.ww.init_with_full_schema(schema=schema) assert iloc_df.ww._schema is schema assert iloc_df.ww.name == "test_schema" assert iloc_df.ww.semantic_tags["id"] == {"index", "test_tag"} # Extra parameters do not take effect assert isinstance(iloc_df.ww.logical_types["id"], Integer) def test_accessor_init_errors_methods(sample_df): methods_to_exclude = ["init", "init_with_full_schema", "init_with_partial_schema"] public_methods = [ method for method in dir(sample_df.ww) if is_public_method(WoodworkTableAccessor, method) ] public_methods = [ method for method in public_methods if method not in methods_to_exclude ] method_args_dict = { "add_semantic_tags": [{"id": "new_tag"}], "describe": None, "pop": ["id"], "describe": None, "describe_dict": None, "drop": ["id"], "get_valid_mi_columns": None, "mutual_information": None, "mutual_information_dict": None, "remove_semantic_tags": [{"id": "new_tag"}], "rename": [{"id": "new_id"}], "reset_semantic_tags": None, "select": [["Double"]], "set_index": ["id"], "set_time_index": ["signup_date"], "set_types": [{"id": "Integer"}], "to_disk": ["dir"], "to_dictionary": None, "value_counts": None, "infer_temporal_frequencies": None, } error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) for method in public_methods: func = getattr(sample_df.ww, method) method_args = method_args_dict[method] with pytest.raises(WoodworkNotInitError, match=error): if method_args: func(*method_args) else: func() def test_accessor_init_errors_properties(sample_df): props_to_exclude = ["iloc", "loc", "schema", "_dataframe"] props = [ prop for prop in dir(sample_df.ww) if is_property(WoodworkTableAccessor, prop) and prop not in props_to_exclude ] error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) for prop in props: with pytest.raises(WoodworkNotInitError, match=error): getattr(sample_df.ww, prop) def test_init_accessor_with_schema_errors(sample_df): schema_df = sample_df.copy() schema_df.ww.init() schema = schema_df.ww.schema iloc_df = schema_df.iloc[:, :-1] assert iloc_df.ww.schema is None error = "Provided schema must be a Woodwork.TableSchema object." with pytest.raises(TypeError, match=error): iloc_df.ww.init_with_full_schema(schema=int) error = ( "Woodwork typing information is not valid for this DataFrame: " "The following columns in the typing information were missing from the DataFrame: {'ip_address'}" ) with pytest.raises(ValueError, match=error): iloc_df.ww.init_with_full_schema(schema=schema) def test_accessor_with_schema_parameter_warning(sample_df): schema_df = sample_df.copy() schema_df.ww.init(name="test_schema", semantic_tags={"id": "test_tag"}, index="id") schema = schema_df.ww.schema head_df = schema_df.head(2) warning = ( "A schema was provided and the following parameters were ignored: index, " "time_index, logical_types, already_sorted, semantic_tags, use_standard_tags" ) with pytest.warns(ParametersIgnoredWarning, match=warning): head_df.ww.init_with_full_schema( index="ignored_id", time_index="ignored_time_index", logical_types={"ignored": "ltypes"}, already_sorted=True, semantic_tags={"ignored_id": "ignored_test_tag"}, use_standard_tags={"id": True, "age": False}, schema=schema, ) assert head_df.ww.name == "test_schema" assert head_df.ww.semantic_tags["id"] == {"index", "test_tag"} def test_accessor_getattr(sample_df): schema_df = sample_df.copy() # We can access attributes on the Accessor class before the schema is initialized assert schema_df.ww.schema is None error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): schema_df.ww.index schema_df.ww.init() assert schema_df.ww.name is None assert schema_df.ww.index is None assert schema_df.ww.time_index is None assert set(schema_df.ww.columns.keys()) == set(sample_df.columns) error = re.escape("Woodwork has no attribute 'not_present'") with pytest.raises(AttributeError, match=error): sample_df.ww.init() sample_df.ww.not_present def test_getitem(sample_df): df = sample_df df.ww.init( time_index="signup_date", index="id", name="df_name", logical_types={"age": "Double"}, semantic_tags={"age": {"custom_tag"}}, ) assert list(df.columns) == list(df.ww.schema.columns) subset = ["id", "signup_date"] df_subset = df.ww[subset] pd.testing.assert_frame_equal(to_pandas(df[subset]), to_pandas(df_subset)) assert subset == list(df_subset.ww._schema.columns) assert df_subset.ww.index == "id" assert df_subset.ww.time_index == "signup_date" subset = ["age", "email"] df_subset = df.ww[subset] pd.testing.assert_frame_equal(to_pandas(df[subset]), to_pandas(df_subset)) assert subset == list(df_subset.ww._schema.columns) assert df_subset.ww.index is None assert df_subset.ww.time_index is None assert isinstance(df_subset.ww.logical_types["age"], Double) assert df_subset.ww.semantic_tags["age"] == {"custom_tag", "numeric"} subset = df.ww[[]] assert len(subset.ww.columns) == 0 assert subset.ww.index is None assert subset.ww.time_index is None series = df.ww["age"] pd.testing.assert_series_equal(to_pandas(series), to_pandas(df["age"])) assert isinstance(series.ww.logical_type, Double) assert series.ww.semantic_tags == {"custom_tag", "numeric"} series = df.ww["id"] pd.testing.assert_series_equal(to_pandas(series), to_pandas(df["id"])) assert isinstance(series.ww.logical_type, Integer) assert series.ww.semantic_tags == {"index"} def test_getitem_init_error(sample_df): error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): sample_df.ww["age"] def test_getitem_invalid_input(sample_df): df = sample_df df.ww.init() error_msg = r"Column\(s\) '\[1, 2\]' not found in DataFrame" with pytest.raises(ColumnNotPresentError, match=error_msg): df.ww[["email", 2, 1]] error_msg = "Column with name 'invalid_column' not found in DataFrame" with pytest.raises(ColumnNotPresentError, match=error_msg): df.ww["invalid_column"] def test_accessor_equality(sample_df): # Confirm equality with same schema and same data schema_df = sample_df.copy() schema_df.ww.init() copy_df = schema_df.ww.copy() assert schema_df.ww == copy_df.ww # Confirm not equal with different schema but same data copy_df.ww.set_time_index("signup_date") assert schema_df.ww != copy_df.ww # Confirm not equal with same schema but different data - only pandas loc_df = schema_df.ww.loc[:2, :] if isinstance(sample_df, pd.DataFrame): assert schema_df.ww != loc_df else: assert schema_df.ww == loc_df def test_accessor_shallow_equality(sample_df): metadata_table = sample_df.copy() metadata_table.ww.init(table_metadata={"user": "user0"}) diff_metadata_table = sample_df.copy() diff_metadata_table.ww.init(table_metadata={"user": "user2"}) assert diff_metadata_table.ww.__eq__(metadata_table, deep=False) assert not diff_metadata_table.ww.__eq__(metadata_table, deep=True) schema = metadata_table.ww.schema diff_data_table = metadata_table.ww.loc[:2, :] same_data_table = metadata_table.ww.copy() assert diff_data_table.ww.schema.__eq__(schema, deep=True) assert same_data_table.ww.schema.__eq__(schema, deep=True) assert same_data_table.ww.__eq__(metadata_table.ww, deep=False) assert same_data_table.ww.__eq__(metadata_table.ww, deep=True) assert diff_data_table.ww.__eq__(metadata_table.ww, deep=False) if isinstance(sample_df, pd.DataFrame): assert not diff_data_table.ww.__eq__(metadata_table.ww, deep=True) def test_accessor_init_with_valid_string_time_index(time_index_df): time_index_df.ww.init(name="schema", index="id", time_index="times") assert time_index_df.ww.name == "schema" assert time_index_df.ww.index == "id" assert time_index_df.ww.time_index == "times" assert isinstance( time_index_df.ww.columns[time_index_df.ww.time_index].logical_type, Datetime ) def test_accessor_init_with_numeric_datetime_time_index(time_index_df): schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints", logical_types={"ints": Datetime}) error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init( name="schema", time_index="strs", logical_types={"strs": Datetime} ) assert schema_df.ww.time_index == "ints" assert schema_df["ints"].dtype == "datetime64[ns]" def test_accessor_with_numeric_time_index(time_index_df): # Set a numeric time index on init schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints") date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Integer) assert date_col.semantic_tags == {"time_index", "numeric"} # Specify logical type for time index on init schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints", logical_types={"ints": "Double"}) date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"time_index", "numeric"} schema_df = time_index_df.copy() schema_df.ww.init(time_index="strs", logical_types={"strs": "Double"}) date_col = schema_df.ww.columns["strs"] assert schema_df.ww.time_index == "strs" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"time_index", "numeric"} error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init(time_index="ints", logical_types={"ints": "Categorical"}) error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init(time_index="letters", logical_types={"strs": "Integer"}) # Set numeric time index after init schema_df = time_index_df.copy() schema_df.ww.init(logical_types={"ints": "Double"}) assert schema_df.ww.time_index is None schema_df.ww.set_time_index("ints") date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"numeric", "time_index"} def test_numeric_time_index_dtypes(numeric_time_index_df): numeric_time_index_df.ww.init(time_index="ints") assert numeric_time_index_df.ww.time_index == "ints" assert isinstance(numeric_time_index_df.ww.logical_types["ints"], Integer) assert numeric_time_index_df.ww.semantic_tags["ints"] == {"time_index", "numeric"} numeric_time_index_df.ww.set_time_index("floats") assert numeric_time_index_df.ww.time_index == "floats" assert isinstance(numeric_time_index_df.ww.logical_types["floats"], Double) assert numeric_time_index_df.ww.semantic_tags["floats"] == {"time_index", "numeric"} numeric_time_index_df.ww.set_time_index("with_null") assert numeric_time_index_df.ww.time_index == "with_null" assert isinstance( numeric_time_index_df.ww.logical_types["with_null"], IntegerNullable ) assert numeric_time_index_df.ww.semantic_tags["with_null"] == { "time_index", "numeric", } def test_accessor_init_with_invalid_string_time_index(sample_df): error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): sample_df.ww.init(name="schema", time_index="full_name") def test_accessor_init_with_string_logical_types(sample_df): logical_types = {"full_name": "natural_language", "age": "Double"} schema_df = sample_df.copy() schema_df.ww.init(name="schema", logical_types=logical_types) assert isinstance(schema_df.ww.columns["full_name"].logical_type, NaturalLanguage) assert isinstance(schema_df.ww.columns["age"].logical_type, Double) logical_types = { "full_name": "NaturalLanguage", "age": "IntegerNullable", "signup_date": "Datetime", } schema_df = sample_df.copy() schema_df.ww.init( name="schema", logical_types=logical_types, time_index="signup_date" ) assert isinstance(schema_df.ww.columns["full_name"].logical_type, NaturalLanguage) assert isinstance(schema_df.ww.columns["age"].logical_type, IntegerNullable) assert schema_df.ww.time_index == "signup_date" def test_int_dtype_inference_on_init(): df = pd.DataFrame( { "ints_no_nans": pd.Series([1, 2]), "ints_nan": pd.Series([1, np.nan]), "ints_NA": pd.Series([1, pd.NA]), "ints_NA_specified": pd.Series([1, pd.NA], dtype="Int64"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["ints_no_nans"].dtype == "int64" assert df["ints_nan"].dtype == "float64" assert df["ints_NA"].dtype == "category" assert df["ints_NA_specified"].dtype == "Int64" def test_bool_dtype_inference_on_init(): df = pd.DataFrame( { "bools_no_nans": pd.Series([True, False]), "bool_nan": pd.Series([True, np.nan]), "bool_NA": pd.Series([True, pd.NA]), "bool_NA_specified":
pd.Series([True, pd.NA], dtype="boolean")
pandas.Series
import math import warnings from typing import List, Tuple, Union import numpy as np import pandas as pd from scipy.stats import kurtosis, skew from sklearn.cluster import KMeans pi = math.pi pd.options.display.max_columns = 500 warnings.filterwarnings("ignore") def range_func(x: List[Union[int, float]]) -> float: max_val = np.max(x) min_val = np.min(x) range_val = max_val - min_val return range_val def iqr_func2(x: List[Union[int, float]]) -> float: q3, q1 = np.percentile(x, [20, 80]) iqr = q3 - q1 return iqr def iqr_func3(x: List[Union[int, float]]) -> float: q3, q1 = np.percentile(x, [40, 60]) iqr = q3 - q1 return iqr def iqr_func4(x: List[Union[int, float]]) -> float: q3, q1 = np.percentile(x, [15, 95]) iqr = q3 - q1 return iqr def premad(x: List[Union[int, float]]) -> float: return np.median(np.absolute(x - np.median(x, axis=0)), axis=0) def preskew(x: List[Union[int, float]]) -> float: return skew(x) def prekurt(x: List[Union[int, float]]) -> float: return kurtosis(x, fisher=True) def load_dataset(path: str) -> Tuple[pd.DataFrame, pd.DataFrame]: path = "../input/ai-hackaton/" train = pd.read_csv(path + "train_features.csv") test =
pd.read_csv(path + "test_features.csv")
pandas.read_csv
"""Provides utilities to import the account *.csv files in the folder `csv`. The csv files have to match a certain naming pattern in order to map them to different importers. See `_read_account_csvs()`.""" import pathlib import re from typing import Iterable import numpy as np import pandas as pd import wealth.config import wealth.importers.dkb_giro import wealth.importers.dkb_visa import wealth.importers.n26_mastercard import wealth.importers.sparkasse_giro from wealth.importers.common import transfer_columns from wealth.util.transaction_type import TransactionType def _create_transaction_type(row: pd.Series) -> TransactionType: """Create a TransactionType object from a dataframe row.""" if row["transaction_type"]: return row["transaction_type"] accounts = wealth.config.get("accounts", {}) ibans = [accounts[acc].get("iban", 0) for acc in accounts.keys()] if row["iban"] in ibans: return TransactionType.from_amount(row["amount"], is_internal=True) return TransactionType.from_amount(row["amount"], is_internal=False) def _add_transaction_type_column(df: pd.DataFrame) -> pd.DataFrame: """Populate a column named transaction_type with values of type TransactionType to the given data frame and return the same DataFrame.""" df["transaction_type"] = df.apply(_create_transaction_type, axis=1) return df def _yield_files_with_suffix( directory: pathlib.Path, suffix: str ) -> Iterable[pathlib.Path]: """Yield all files with the given suffix in the given folder.""" suffix_lower = suffix.lower() for file in directory.iterdir(): if file.suffix.lower() == suffix_lower and file.is_file(): yield file def _create_offset_df(account_name: str, df: pd.DataFrame) -> pd.DataFrame: """Create a dataframe holding the account's configured initial offset.""" accounts = wealth.config.get("accounts", {}) return pd.DataFrame( { "account": account_name, "account_type": df["account_type"].iloc[0], "amount": accounts.get(account_name, {}).get("offset", 0), "date": df["date"].min(), "description": "<initial offset>", }, index=[0], ) def _delay_incomes(df: pd.DataFrame) -> pd.DataFrame: """Guarantee that incomese virtually happen after all expenses at any given day.""" df.loc[df["amount"] > 0, "date"] = df["date"] +
pd.DateOffset(hours=1)
pandas.DateOffset
from typing import Optional from dataclasses import dataclass import pandas as pd from poker.base import unique_values, native_mean, running_mean, running_std, running_median, running_percentile from poker.document_filter_class import DocumentFilter pd.set_option('use_inf_as_na', True) def _ts_concat(dic: dict, index_lst: list) -> pd.DataFrame: """Concat a dict of dicts or pd.DataFrames""" lst_df = [] for key, val in dic.items(): if type(val) != pd.DataFrame: val = pd.DataFrame(val, index=index_lst) val.columns = [key + ' ' + col if col != '' else key for col in val.columns] else: val.columns = [key] lst_df.append(val) final_df = pd.concat(lst_df, axis=1).reset_index() return final_df def _ts_hand(data: pd.DataFrame) -> pd.DataFrame: """Build Hand related data""" pos_dic = {'Pre Flop': 0.25, 'Post Flop': 0.50, 'Post Turn': 0.75, 'Post River': 1.0} # Game Id g_i_df = pd.DataFrame(data.groupby('Start Time')['Game Id'].last()) g_i_df.columns = [''] # Time in Hand t_h_df = pd.DataFrame(data.groupby('Start Time')['Seconds into Hand'].last()) t_h_df.columns = [''] # Last Position last_position = data.groupby('Start Time')['Position'].last().tolist() l_p_df = pd.DataFrame([pos_dic[item] for item in last_position], index=t_h_df.index, columns=['']) # Win r_w_p = data.groupby('Start Time')['Win'].last().tolist() r_w_p = [1 if item is True else 0 for item in r_w_p] r_w_p_df = pd.DataFrame(running_mean(data=r_w_p, num=5), index=t_h_df.index, columns=['']) ind_lst = data.groupby('Start Time').last().index.tolist() lst_dic = {'Seconds per Hand': t_h_df, 'Last Position in Hand': l_p_df, 'Rolling Win Percent': r_w_p_df, 'Game Id': g_i_df} return _ts_concat(dic=lst_dic, index_lst=ind_lst) def _ts_position(data: pd.DataFrame) -> pd.DataFrame: """Build position related data""" temp_df = data[(data['Class'] == 'Calls') | (data['Class'] == 'Raises') | (data['Class'] == 'Checks')] p_bet = {'Pre Flop': [], 'Post Flop': [], 'Post Turn': [], 'Post River': []} t_p_bet = {'Pre Flop': 0, 'Post Flop': 0, 'Post Turn': 0, 'Post River': 0} prev_ind, len_temp_df, game_id_lst = temp_df['Start Time'].iloc[0], len(temp_df), [] for ind, row in temp_df.iterrows(): if row['Start Time'] != prev_ind: prev_ind = row['Start Time'] game_id_lst.append(row['Game Id']) for key, val in t_p_bet.items(): p_bet[key].append(val) t_p_bet = {'Pre Flop': 0, 'Post Flop': 0, 'Post Turn': 0, 'Post River': 0} t_p_bet[row['Position']] += row['Bet Amount'] if ind == len_temp_df: game_id_lst.append(row['Game Id']) for key, val in t_p_bet.items(): p_bet[key].append(val) ind_lst = unique_values(data=temp_df['Start Time'].tolist()) lst_dic = {'Position Bet': p_bet, 'Game Id': {'': game_id_lst}} return _ts_concat(dic=lst_dic, index_lst=ind_lst) def _ts_class_counts_seconds(data: pd.DataFrame) -> pd.DataFrame: """Build class, counts, and seconds data""" # Bet, Count, and Time Per Position temp_df = data[(data['Class'] == 'Calls') | (data['Class'] == 'Raises') | (data['Class'] == 'Checks')] pos_lst = ['Pre Flop', 'Post Flop', 'Post Turn', 'Post River'] class_lst, short_class_lst = ['Checks', 'Calls', 'Raises'], ['Calls', 'Raises'] c_count = {item1 + ' ' + item: [] for item in class_lst for item1 in pos_lst} c_seconds = {item1 + ' ' + item: [] for item in class_lst for item1 in pos_lst} c_bet = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} c_bet_per_pot = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} c_bet_per_chips = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} t_c_count = {item1 + ' ' + item: 0 for item in class_lst for item1 in pos_lst} t_c_seconds = {item1 + ' ' + item: None for item in class_lst for item1 in pos_lst} t_c_bet = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_pot = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_chips = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} prev_ind, len_temp_df, game_id_lst = temp_df['Start Time'].iloc[0], len(temp_df), [] for ind, row in temp_df.iterrows(): if row['Start Time'] != prev_ind: prev_ind = row['Start Time'] game_id_lst.append(row['Game Id']) for item in class_lst: for item1 in pos_lst: c_count[item1 + ' ' + item].append(t_c_count[item1 + ' ' + item]) c_seconds[item1 + ' ' + item].append(t_c_seconds[item1 + ' ' + item]) if item != 'Checks': c_bet[item1 + ' ' + item].append(t_c_bet[item1 + ' ' + item]) c_bet_per_pot[item1 + ' ' + item].append(t_c_bet_per_pot[item1 + ' ' + item]) c_bet_per_chips[item1 + ' ' + item].append(t_c_bet_per_chips[item1 + ' ' + item]) t_c_count = {item1 + ' ' + item: 0 for item in class_lst for item1 in pos_lst} t_c_seconds = {item1 + ' ' + item: None for item in class_lst for item1 in pos_lst} t_c_bet = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_pot = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_chips = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_pos, t_bet, t_class, t_second = row['Position'], row['Bet Amount'], row['Class'], row['Seconds'] t_key = t_pos + ' ' + t_class t_c_count[t_key] += 1 if t_c_seconds[t_key] is not None: t_c_seconds[t_key] = native_mean(data=[t_c_seconds[t_key]] + [t_second]) else: t_c_seconds[t_key] = t_second if t_class != 'Checks': if t_c_bet[t_key] is not None: t_c_bet[t_key] = native_mean(data=[t_c_bet[t_key]] + [t_bet]) else: t_c_bet[t_key] = t_bet bet_pot_per = t_bet / (row['Pot Size'] - t_bet) if t_c_bet_per_pot[t_key] is not None: t_c_bet_per_pot[t_key] = native_mean(data=[t_c_bet_per_pot[t_key]] + [bet_pot_per]) else: t_c_bet_per_pot[t_key] = bet_pot_per bet_chip_per = t_bet / (row['Player Current Chips'] + t_bet) if t_c_bet_per_chips[t_key] is not None: t_c_bet_per_chips[t_key] = native_mean(data=[t_c_bet_per_chips[t_key]] + [bet_chip_per]) else: t_c_bet_per_chips[t_key] = bet_chip_per if ind == len_temp_df: game_id_lst.append(row['Game Id']) for item in class_lst: for item1 in pos_lst: c_count[item1 + ' ' + item].append(t_c_count[item1 + ' ' + item]) c_seconds[item1 + ' ' + item].append(t_c_seconds[item1 + ' ' + item]) if item != 'Checks': c_bet[item1 + ' ' + item].append(t_c_bet[item1 + ' ' + item]) c_bet_per_pot[item1 + ' ' + item].append(t_c_bet_per_pot[item1 + ' ' + item]) c_bet_per_chips[item1 + ' ' + item].append(t_c_bet_per_chips[item1 + ' ' + item]) ind_lst = unique_values(data=temp_df['Start Time'].tolist()) lst_dic = {'Class Count': c_count, 'Class Seconds': c_seconds, 'Class Bet': c_bet, 'Class Bet Percent of Pot': c_bet_per_pot, 'Class Bet Percent of Chips': c_bet_per_chips, 'Game Id': {'': game_id_lst}} return _ts_concat(dic=lst_dic, index_lst=ind_lst) @dataclass class TSanalysis: """ Calculate Time Series stats for a player. :param data: Input DocumentFilter. :type data: DocumentFilter :param upper_q: Upper Quantile percent, default is 0.841. *Optional* :type upper_q: float :param lower_q: Lower Quantile percent, default is 0.159. *Optional* :type lower_q: float :param window: Rolling window, default is 5. *Optional* :type window: int :example: >>> from poker.time_series_class import TSanalysis >>> docu_filter = DocumentFilter(data=poker, player_index_lst=['DZy-22KNBS']) >>> TSanalysis(data=docu_filter) :note: This class expects a DocumentFilter with only one player_index used. """ def __init__(self, data: DocumentFilter, upper_q: Optional[float] = 0.841, lower_q: Optional[float] = 0.159, window: Optional[int] = 5): self._docu_filter = data self._window = window self._upper_q = upper_q self._lower_q = lower_q self._df = data.df hand_df = _ts_hand(data=self._df) self._hand = hand_df.copy() position_df = _ts_position(data=self._df) self._position = position_df.copy() class_df = _ts_class_counts_seconds(data=self._df) self._class = class_df.copy() hand_cols, hand_ind = hand_df.columns, hand_df.index self._hand_mean = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_std = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_median = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_upper_q = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_lower_q = pd.DataFrame(columns=hand_cols, index=hand_ind) for col in hand_cols: if col not in ['Game Id', 'index', 'Start Time']: self._hand_mean[col] = running_mean(data=hand_df[col], num=self._window) self._hand_std[col] = running_std(data=hand_df[col], num=self._window) self._hand_median[col] = running_median(data=hand_df[col], num=self._window) self._hand_upper_q[col] = running_percentile(data=hand_df[col], num=self._window, q=upper_q) self._hand_lower_q[col] = running_percentile(data=hand_df[col], num=self._window, q=lower_q) pos_cols, pos_ind = position_df.columns, position_df.index self._position_mean = pd.DataFrame(columns=pos_cols, index=pos_ind) self._position_std = pd.DataFrame(columns=pos_cols, index=pos_ind) self._position_median = pd.DataFrame(columns=pos_cols, index=pos_ind) self._position_upper_q = pd.DataFrame(columns=pos_cols, index=pos_ind) self._position_lower_q = pd.DataFrame(columns=pos_cols, index=pos_ind) for col in pos_cols: if col not in ['Game Id', 'index', 'Start Time']: self._position_mean[col] = running_mean(data=position_df[col], num=self._window) self._position_std[col] = running_std(data=position_df[col], num=self._window) self._position_median[col] = running_median(data=position_df[col], num=self._window) self._position_upper_q[col] = running_percentile(data=position_df[col], num=self._window, q=upper_q) self._position_lower_q[col] = running_percentile(data=position_df[col], num=self._window, q=lower_q) class_cols, class_ind = class_df.columns, class_df.index self._class_mean = pd.DataFrame(columns=class_cols, index=class_ind) self._class_std = pd.DataFrame(columns=class_cols, index=class_ind) self._class_median = pd.DataFrame(columns=class_cols, index=class_ind) self._class_upper_q =
pd.DataFrame(columns=class_cols, index=class_ind)
pandas.DataFrame
from sales_analysis.data_pipeline import BASEPATH from sales_analysis.data_pipeline._pipeline import SalesPipeline import pytest import os import pandas as pd # -------------------------------------------------------------------------- # Fixtures @pytest.fixture def pipeline(): FILEPATH = os.path.join(BASEPATH, "data") DATA_FILES = [f for f in os.listdir(FILEPATH) if f.endswith('.csv')] DATA = {f : pd.read_csv(os.path.join(FILEPATH, f)) for f in DATA_FILES} return SalesPipeline(**DATA) # -------------------------------------------------------------------------- # Data data = {'customers': {pd.Timestamp('2019-08-01 00:00:00'): 9, pd.Timestamp('2019-08-02 00:00:00'): 10, pd.Timestamp('2019-08-03 00:00:00'): 10, pd.Timestamp('2019-08-04 00:00:00'): 10, pd.Timestamp('2019-08-05 00:00:00'): 9, pd.Timestamp('2019-08-06 00:00:00'): 9, pd.Timestamp('2019-08-07 00:00:00'): 10, pd.Timestamp('2019-08-08 00:00:00'): 8, pd.Timestamp('2019-08-09 00:00:00'): 5, pd.Timestamp('2019-08-10 00:00:00'): 5, pd.Timestamp('2019-08-11 00:00:00'): 10, pd.Timestamp('2019-08-12 00:00:00'): 10, pd.Timestamp('2019-08-13 00:00:00'): 6, pd.Timestamp('2019-08-14 00:00:00'): 7, pd.Timestamp('2019-08-15 00:00:00'): 10, pd.Timestamp('2019-08-16 00:00:00'): 8, pd.Timestamp('2019-08-17 00:00:00'): 7, pd.Timestamp('2019-08-18 00:00:00'): 9, pd.Timestamp('2019-08-19 00:00:00'): 5, pd.Timestamp('2019-08-20 00:00:00'): 5}, 'total_discount_amount': {pd.Timestamp('2019-08-01 00:00:00'): 15152814.736907512, pd.Timestamp('2019-08-02 00:00:00'): 20061245.64408109, pd.Timestamp('2019-08-03 00:00:00'): 26441693.751396574, pd.Timestamp('2019-08-04 00:00:00'): 25783015.567048658, pd.Timestamp('2019-08-05 00:00:00'): 16649773.993076814, pd.Timestamp('2019-08-06 00:00:00'): 24744027.428384878, pd.Timestamp('2019-08-07 00:00:00'): 21641181.771564845, pd.Timestamp('2019-08-08 00:00:00'): 27012160.85245146, pd.Timestamp('2019-08-09 00:00:00'): 13806814.237002019, pd.Timestamp('2019-08-10 00:00:00'): 9722459.599448118, pd.Timestamp('2019-08-11 00:00:00'): 20450260.26194652, pd.Timestamp('2019-08-12 00:00:00'): 22125711.151501, pd.Timestamp('2019-08-13 00:00:00'): 11444206.200090334, pd.Timestamp('2019-08-14 00:00:00'): 17677326.65707852, pd.Timestamp('2019-08-15 00:00:00'): 26968819.12338184, pd.Timestamp('2019-08-16 00:00:00'): 22592246.991756547, pd.Timestamp('2019-08-17 00:00:00'): 15997597.519811645, pd.Timestamp('2019-08-18 00:00:00'): 17731498.506244037, pd.Timestamp('2019-08-19 00:00:00'): 22127822.876592986, pd.Timestamp('2019-08-20 00:00:00'): 5550506.789972418}, 'items': {pd.Timestamp('2019-08-01 00:00:00'): 2895, pd.Timestamp('2019-08-02 00:00:00'): 3082, pd.Timestamp('2019-08-03 00:00:00'): 3559, pd.Timestamp('2019-08-04 00:00:00'): 3582, pd.Timestamp('2019-08-05 00:00:00'): 2768, pd.Timestamp('2019-08-06 00:00:00'): 3431, pd.Timestamp('2019-08-07 00:00:00'): 2767, pd.Timestamp('2019-08-08 00:00:00'): 2643, pd.Timestamp('2019-08-09 00:00:00'): 1506, pd.Timestamp('2019-08-10 00:00:00'): 1443, pd.Timestamp('2019-08-11 00:00:00'): 2466, pd.Timestamp('2019-08-12 00:00:00'): 3482, pd.Timestamp('2019-08-13 00:00:00'): 1940, pd.Timestamp('2019-08-14 00:00:00'): 1921, pd.Timestamp('2019-08-15 00:00:00'): 3479, pd.Timestamp('2019-08-16 00:00:00'): 3053, pd.Timestamp('2019-08-17 00:00:00'): 2519, pd.Timestamp('2019-08-18 00:00:00'): 2865, pd.Timestamp('2019-08-19 00:00:00'): 1735, pd.Timestamp('2019-08-20 00:00:00'): 1250}, 'order_total_avg': {pd.Timestamp('2019-08-01 00:00:00'): 1182286.0960463749, pd.Timestamp('2019-08-02 00:00:00'): 1341449.559055637, pd.Timestamp('2019-08-03 00:00:00'): 1270616.0372525519, pd.Timestamp('2019-08-04 00:00:00'): 1069011.1516039693, pd.Timestamp('2019-08-05 00:00:00'): 1355304.7342628485, pd.Timestamp('2019-08-06 00:00:00'): 1283968.435650978, pd.Timestamp('2019-08-07 00:00:00'): 1319110.4787216866, pd.Timestamp('2019-08-08 00:00:00'): 1027231.5196824896, pd.Timestamp('2019-08-09 00:00:00'): 1201471.0717715647, pd.Timestamp('2019-08-10 00:00:00'): 1314611.2300065856, pd.Timestamp('2019-08-11 00:00:00'): 1186152.4565363638, pd.Timestamp('2019-08-12 00:00:00'): 1155226.4552911327, pd.Timestamp('2019-08-13 00:00:00'): 1346981.8930212667, pd.Timestamp('2019-08-14 00:00:00'): 1019646.0386455443,
pd.Timestamp('2019-08-15 00:00:00')
pandas.Timestamp
# -*- coding: utf-8 -*- """main.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1_KzpxPsl8B2T4hE_Z2liSu1xzHxbA5KE """ import pandas as pd import numpy as np import seaborn as sns from datetime import datetime import matplotlib.pyplot as plt # ============================================================================= # from datetime import datetime # import folium # from folium import plugins # from folium.plugins import MarkerCluster # ============================================================================= sns.set_style('darkgrid') df = pd.read_csv('US_WeatherEvents_2016-2019.csv') df.head() df.describe() df.info() df.isnull().sum() print(df.Type.unique()) print(df.Severity.unique()) print(len(df.AirportCode.unique())) print(df.TimeZone.unique()) print(len(df.County.unique())) print(len(df.State.unique())) # print(df.EventId.unique()) ## Plot these for better visualization weather_type_df = df['Type'].value_counts(ascending=True) ## Some formatting to make it look nicer fig=plt.figure(figsize=(18, 16)) plt.title("Frequency of Weathers") plt.xlabel("Frequency of Weather") plt.ylabel("Type of Weather") ax = weather_type_df.plot(kind='barh') ax.get_xaxis().set_major_formatter(plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x)))) df["StartTime(UTC)"] =
pd.to_datetime(df["StartTime(UTC)"], format="%Y-%m-%d %H:%M:%S")
pandas.to_datetime