prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import matplotlib as mat import numpy as np import pandas as pd from matplotlib.axes._base import _process_plot_format from pandas.core.dtypes.inference import is_list_like from pandas.io.formats.printing import pprint_thing from pyspark.pandas.plot import ( TopNPlotBase, SampledPlotBase, HistogramPlotBase, BoxPlotBase, unsupported_function, KdePlotBase, ) if LooseVersion(pd.__version__) < LooseVersion("0.25"): from pandas.plotting._core import ( _all_kinds, BarPlot as PandasBarPlot, BoxPlot as PandasBoxPlot, HistPlot as PandasHistPlot, MPLPlot as PandasMPLPlot, PiePlot as PandasPiePlot, AreaPlot as PandasAreaPlot, LinePlot as PandasLinePlot, BarhPlot as PandasBarhPlot, ScatterPlot as PandasScatterPlot, KdePlot as PandasKdePlot, ) else: from pandas.plotting._matplotlib import ( BarPlot as PandasBarPlot, BoxPlot as PandasBoxPlot, HistPlot as PandasHistPlot, PiePlot as PandasPiePlot, AreaPlot as PandasAreaPlot, LinePlot as PandasLinePlot, BarhPlot as PandasBarhPlot, ScatterPlot as PandasScatterPlot, KdePlot as PandasKdePlot, ) from pandas.plotting._core import PlotAccessor from pandas.plotting._matplotlib.core import MPLPlot as PandasMPLPlot _all_kinds = PlotAccessor._all_kinds class PandasOnSparkBarPlot(PandasBarPlot, TopNPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_top_n(data), **kwargs) def _plot(self, ax, x, y, w, start=0, log=False, **kwds): self.set_result_text(ax) return ax.bar(x, y, w, bottom=start, log=log, **kwds) class PandasOnSparkBoxPlot(PandasBoxPlot, BoxPlotBase): def boxplot( self, ax, bxpstats, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=None, # manage_xticks is for compatibility of matplotlib < 3.1.0. # Remove this when minimum version is 3.0.0 manage_xticks=None, autorange=False, zorder=None, precision=None, ): def update_dict(dictionary, rc_name, properties): """Loads properties in the dictionary from rc file if not already in the dictionary""" rc_str = "boxplot.{0}.{1}" if dictionary is None: dictionary = dict() for prop_dict in properties: dictionary.setdefault(prop_dict, mat.rcParams[rc_str.format(rc_name, prop_dict)]) return dictionary # Common property dictionaries loading from rc flier_props = [ "color", "marker", "markerfacecolor", "markeredgecolor", "markersize", "linestyle", "linewidth", ] default_props = ["color", "linewidth", "linestyle"] boxprops = update_dict(boxprops, "boxprops", default_props) whiskerprops = update_dict(whiskerprops, "whiskerprops", default_props) capprops = update_dict(capprops, "capprops", default_props) medianprops = update_dict(medianprops, "medianprops", default_props) meanprops = update_dict(meanprops, "meanprops", default_props) flierprops = update_dict(flierprops, "flierprops", flier_props) if patch_artist: boxprops["linestyle"] = "solid" boxprops["edgecolor"] = boxprops.pop("color") # if non-default sym value, put it into the flier dictionary # the logic for providing the default symbol ('b+') now lives # in bxp in the initial value of final_flierprops # handle all of the `sym` related logic here so we only have to pass # on the flierprops dict. if sym is not None: # no-flier case, which should really be done with # 'showfliers=False' but none-the-less deal with it to keep back # compatibility if sym == "": # blow away existing dict and make one for invisible markers flierprops = dict(linestyle="none", marker="", color="none") # turn the fliers off just to be safe showfliers = False # now process the symbol string else: # process the symbol string # discarded linestyle _, marker, color = _process_plot_format(sym) # if we have a marker, use it if marker is not None: flierprops["marker"] = marker # if we have a color, use it if color is not None: # assume that if color is passed in the user want # filled symbol, if the users want more control use # flierprops flierprops["color"] = color flierprops["markerfacecolor"] = color flierprops["markeredgecolor"] = color # replace medians if necessary: if usermedians is not None: if len(np.ravel(usermedians)) != len(bxpstats) or np.shape(usermedians)[0] != len( bxpstats ): raise ValueError("usermedians length not compatible with x") else: # reassign medians as necessary for stats, med in zip(bxpstats, usermedians): if med is not None: stats["med"] = med if conf_intervals is not None: if np.shape(conf_intervals)[0] != len(bxpstats): err_mess = "conf_intervals length not compatible with x" raise ValueError(err_mess) else: for stats, ci in zip(bxpstats, conf_intervals): if ci is not None: if len(ci) != 2: raise ValueError("each confidence interval must " "have two values") else: if ci[0] is not None: stats["cilo"] = ci[0] if ci[1] is not None: stats["cihi"] = ci[1] should_manage_ticks = True if manage_xticks is not None: should_manage_ticks = manage_xticks if manage_ticks is not None: should_manage_ticks = manage_ticks if LooseVersion(mat.__version__) < LooseVersion("3.1.0"): extra_args = {"manage_xticks": should_manage_ticks} else: extra_args = {"manage_ticks": should_manage_ticks} artists = ax.bxp( bxpstats, positions=positions, widths=widths, vert=vert, patch_artist=patch_artist, shownotches=notch, showmeans=showmeans, showcaps=showcaps, showbox=showbox, boxprops=boxprops, flierprops=flierprops, medianprops=medianprops, meanprops=meanprops, meanline=meanline, showfliers=showfliers, capprops=capprops, whiskerprops=whiskerprops, zorder=zorder, **extra_args, ) return artists def _plot(self, ax, bxpstats, column_num=None, return_type="axes", **kwds): bp = self.boxplot(ax, bxpstats, **kwds) if return_type == "dict": return bp, bp elif return_type == "both": return self.BP(ax=ax, lines=bp), bp else: return ax, bp def _compute_plot_data(self): colname = self.data.name spark_column_name = self.data._internal.spark_column_name_for(self.data._column_label) data = self.data # Updates all props with the rc defaults from matplotlib self.kwds.update(PandasOnSparkBoxPlot.rc_defaults(**self.kwds)) # Gets some important kwds showfliers = self.kwds.get("showfliers", False) whis = self.kwds.get("whis", 1.5) labels = self.kwds.get("labels", [colname]) # This one is pandas-on-Spark specific to control precision for approx_percentile precision = self.kwds.get("precision", 0.01) # # Computes mean, median, Q1 and Q3 with approx_percentile and precision col_stats, col_fences = BoxPlotBase.compute_stats(data, spark_column_name, whis, precision) # # Creates a column to flag rows as outliers or not outliers = BoxPlotBase.outliers(data, spark_column_name, *col_fences) # # Computes min and max values of non-outliers - the whiskers whiskers = BoxPlotBase.calc_whiskers(spark_column_name, outliers) if showfliers: fliers = BoxPlotBase.get_fliers(spark_column_name, outliers, whiskers[0]) else: fliers = [] # Builds bxpstats dict stats = [] item = { "mean": col_stats["mean"], "med": col_stats["med"], "q1": col_stats["q1"], "q3": col_stats["q3"], "whislo": whiskers[0], "whishi": whiskers[1], "fliers": fliers, "label": labels[0], } stats.append(item) self.data = {labels[0]: stats} def _make_plot(self): bxpstats = list(self.data.values())[0] ax = self._get_ax(0) kwds = self.kwds.copy() for stats in bxpstats: if len(stats["fliers"]) > 1000: stats["fliers"] = stats["fliers"][:1000] ax.text( 1, 1, "showing top 1,000 fliers only", size=6, ha="right", va="bottom", transform=ax.transAxes, ) ret, bp = self._plot(ax, bxpstats, column_num=0, return_type=self.return_type, **kwds) self.maybe_color_bp(bp) self._return_obj = ret labels = [l for l, _ in self.data.items()] labels = [pprint_thing(l) for l in labels] if not self.use_index: labels = [pprint_thing(key) for key in range(len(labels))] self._set_ticklabels(ax, labels) @staticmethod def rc_defaults( notch=None, vert=None, whis=None, patch_artist=None, bootstrap=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, **kwargs ): # Missing arguments default to rcParams. if whis is None: whis = mat.rcParams["boxplot.whiskers"] if bootstrap is None: bootstrap = mat.rcParams["boxplot.bootstrap"] if notch is None: notch = mat.rcParams["boxplot.notch"] if vert is None: vert = mat.rcParams["boxplot.vertical"] if patch_artist is None: patch_artist = mat.rcParams["boxplot.patchartist"] if meanline is None: meanline = mat.rcParams["boxplot.meanline"] if showmeans is None: showmeans = mat.rcParams["boxplot.showmeans"] if showcaps is None: showcaps = mat.rcParams["boxplot.showcaps"] if showbox is None: showbox = mat.rcParams["boxplot.showbox"] if showfliers is None: showfliers = mat.rcParams["boxplot.showfliers"] return dict( whis=whis, bootstrap=bootstrap, notch=notch, vert=vert, patch_artist=patch_artist, meanline=meanline, showmeans=showmeans, showcaps=showcaps, showbox=showbox, showfliers=showfliers, ) class PandasOnSparkHistPlot(PandasHistPlot, HistogramPlotBase): def _args_adjust(self): if is_list_like(self.bottom): self.bottom = np.array(self.bottom) def _compute_plot_data(self): self.data, self.bins = HistogramPlotBase.prepare_hist_data(self.data, self.bins) def _make_plot(self): # TODO: this logic is similar with KdePlot. Might have to deduplicate it. # 'num_colors' requires to calculate `shape` which has to count all. # Use 1 for now to save the computation. colors = self._get_colors(num_colors=1) stacking_id = self._get_stacking_id() output_series = HistogramPlotBase.compute_hist(self.data, self.bins) for (i, label), y in zip(enumerate(self.data._internal.column_labels), output_series): ax = self._get_ax(i) kwds = self.kwds.copy() label = pprint_thing(label if len(label) > 1 else label[0]) kwds["label"] = label style, kwds = self._apply_style_colors(colors, kwds, i, label) if style is not None: kwds["style"] = style kwds = self._make_plot_keywords(kwds, y) artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds) self._add_legend_handle(artists[0], label, index=i) @classmethod def _plot(cls, ax, y, style=None, bins=None, bottom=0, column_num=0, stacking_id=None, **kwds): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(bins) - 1) base = np.zeros(len(bins) - 1) bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"]) # Since the counts were computed already, we use them as weights and just generate # one entry for each bin n, bins, patches = ax.hist(bins[:-1], bins=bins, bottom=bottom, weights=y, **kwds) cls._update_stacker(ax, stacking_id, n) return patches class PandasOnSparkPiePlot(PandasPiePlot, TopNPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_top_n(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkAreaPlot(PandasAreaPlot, SampledPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_sampled(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkLinePlot(PandasLinePlot, SampledPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_sampled(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkBarhPlot(PandasBarhPlot, TopNPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_top_n(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkScatterPlot(PandasScatterPlot, TopNPlotBase): def __init__(self, data, x, y, **kwargs): super().__init__(self.get_top_n(data), x, y, **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkKdePlot(PandasKdePlot, KdePlotBase): def _compute_plot_data(self): self.data = KdePlotBase.prepare_kde_data(self.data) def _make_plot(self): # 'num_colors' requires to calculate `shape` which has to count all. # Use 1 for now to save the computation. colors = self._get_colors(num_colors=1) stacking_id = self._get_stacking_id() sdf = self.data._internal.spark_frame for i, label in enumerate(self.data._internal.column_labels): # 'y' is a Spark DataFrame that selects one column. y = sdf.select(self.data._internal.spark_column_for(label)) ax = self._get_ax(i) kwds = self.kwds.copy() label = pprint_thing(label if len(label) > 1 else label[0]) kwds["label"] = label style, kwds = self._apply_style_colors(colors, kwds, i, label) if style is not None: kwds["style"] = style kwds = self._make_plot_keywords(kwds, y) artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds) self._add_legend_handle(artists[0], label, index=i) def _get_ind(self, y): return KdePlotBase.get_ind(y, self.ind) @classmethod def _plot( cls, ax, y, style=None, bw_method=None, ind=None, column_num=None, stacking_id=None, **kwds ): y = KdePlotBase.compute_kde(y, bw_method=bw_method, ind=ind) lines =
PandasMPLPlot._plot(ax, ind, y, style=style, **kwds)
pandas.plotting._matplotlib.core.MPLPlot._plot
import pandas as pd import numpy as np import unittest from dstools.preprocessing.OneHotEncoder import OneHotEncoder class TestOneHotEncoder(unittest.TestCase): def compare_DataFrame(self, df_transformed, df_transformed_correct): """ helper function to compare the values of the transformed DataFrame with the values of a correctly transformed DataFrame """ #same number of columns self.assertEqual(len(df_transformed.columns), len(df_transformed_correct.columns)) #check for every column in correct DataFrame, that all items are equal for column in df_transformed_correct.columns: #compare every element for x, y in zip(df_transformed[column], df_transformed_correct[column]): #if both values are np.NaN, the assertion fails, although they are equal if np.isnan(x)==True and np.isnan(y)==True: pass else: self.assertEqual(x, y) def test_only_non_numeric(self): """ only columns containing non numerical values should be encoded """ df =
pd.DataFrame({'x1':[1,2], 'x2':['a','b']})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Created by <NAME> import unittest import pandas as pd import pandas.testing as pdtest from allfreqs import AlleleFreqs from allfreqs.classes import Reference, MultiAlignment from allfreqs.tests.constants import ( REAL_ALG_X_FASTA, REAL_ALG_X_NOREF_FASTA, REAL_RSRS_FASTA, REAL_ALG_L6_FASTA, REAL_ALG_L6_NOREF_FASTA, SAMPLE_MULTIALG_FASTA, SAMPLE_MULTIALG_NOREF_FASTA, SAMPLE_REF_FASTA, SAMPLE_MULTIALG_CSV, SAMPLE_MULTIALG_NOREF_CSV, SAMPLE_REF_CSV, sample_sequences_df, SAMPLE_SEQUENCES_DICT, sample_sequences_freqs, sample_sequences_freqs_amb, SAMPLE_FREQUENCIES, SAMPLE_FREQUENCIES_AMB, REAL_ALG_X_DF, REAL_X_FREQUENCIES, REAL_ALG_L6_DF, REAL_L6_FREQUENCIES, TEST_CSV ) class TestBasic(unittest.TestCase): def setUp(self) -> None: ref = Reference("AAG-CTNGGGCATTTCAGGGTGAGCCCGGGCAATACAGGG-TAT") alg = MultiAlignment(SAMPLE_SEQUENCES_DICT) self.af = AlleleFreqs(multialg=alg, reference=ref) self.af_amb = AlleleFreqs(multialg=alg, reference=ref, ambiguous=True) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_frequencies_ambiguous(self): # Given/When exp_freqs = sample_sequences_freqs_amb() # Then pdtest.assert_frame_equal(self.af_amb.frequencies, exp_freqs) def test__get_frequencies(self): # Given test_freq = pd.Series({'A': 0.2, 'C': 0.2, 'G': 0.1, 'T': 0.3, '-': 0.1, 'N': 0.1}) exp_freq = {'A': 0.2, 'C': 0.2, 'G': 0.1, 'T': 0.3, 'gap': 0.1, 'oth': 0.1} # When result = self.af._get_frequencies(test_freq) # Then self._dict_almost_equal(result, exp_freq) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) def test_to_csv_ambiguous(self): # Given/When self.af_amb.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES_AMB) # Then pdtest.assert_frame_equal(result, expected) @staticmethod def _dict_almost_equal(expected: dict, result: dict, acc=10**-8) -> bool: """Compare to dictionaries and ensure that all their values are the same, accounting for some fluctuation up to the given accuracy value. Args: expected: expected dictionary result: resulting dictionary acc: accuracy to use [default: 10**-8] """ if expected.keys() == result.keys(): for key in expected.keys(): if abs(expected[key] - result[key]) < acc: continue return True return False # From Fasta class TestFromFasta(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=SAMPLE_MULTIALG_FASTA) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestFromFastaNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=SAMPLE_MULTIALG_NOREF_FASTA, reference=SAMPLE_REF_FASTA) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) # From Csv class TestFromCsv(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_csv(sequences=SAMPLE_MULTIALG_CSV) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestFromCsvNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_csv(sequences=SAMPLE_MULTIALG_NOREF_CSV, reference=SAMPLE_REF_CSV) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) # Real Datasets class TestRealDatasetsX(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=REAL_ALG_X_FASTA) def test_df(self): # Given/When exp_df =
pd.read_csv(REAL_ALG_X_DF, index_col=0)
pandas.read_csv
import pandas as pd import numpy as np from matplotlib import pylab from textwrap import fill from . import univariate def cross_table(variables, category1, category2, data, use_names=True): """ Gives a cross table of category1 and category2 Args: variables: Variables class category1: name of category category2: name of category data: structured data in pandas Data Frame use_names: return object used variable names instead of ids """ # if category in ["country", "region", "district", "clinic"]: # return data[category].value_counts() if category1 not in variables.groups: raise KeyError("Category1 does not exists") if category2 not in variables.groups: raise KeyError("Category1 does not exists") ids1 = sorted(variables.groups[category1]) ids2 = sorted(variables.groups[category2]) if use_names: columns = [variables.name(i) for i in ids1] else: columns = ids1 results = pd.DataFrame(columns=columns) for number, i2 in enumerate(ids2): if use_names: name = variables.name(i2) else: name = i2 if i2 in data.columns: row = [] for i1 in ids1: if i1 in data.columns: row.append(data[data[i1] == 1][i2].sum()) else: row.append(0) results.loc[name] = row else: results.loc[name] = [0 for _ in ids1] return results.fillna(0) def incidence_rate_by_category(data, category, variables, populations=None, var_id=None, name=None, exclude=[]): """ Calculate the incidence rates for all the groups in cateogory based on var_id Args: data: data frame with data category: name of cateogory variables: Variables object populations: list of populations to use, same length as number of variables in category var_id: variable_id name: name of variable """ ret = pd.DataFrame(columns=["incidence_rate", "ci_lower", "ci_upper"]) for group in variables.groups[category]: if group not in exclude: group_data = data[data[group] == 1] if populations: name = variables.name(group) if name in populations: population = populations[name] elif group in populations: population = populations[group] else: print(name, group) raise KeyError("Populations needs to include either variable id or name") incidence_rate = univariate.incidence_rate(group_data, population=population, var_id=var_id, name=name, variables=variables) else: incidence_rate = univariate.incidence_rate(group_data, var_id=var_id, name=name, variables=variables) ret.loc[variables.name(group)] = [incidence_rate[0], incidence_rate[0]-incidence_rate[1][0], incidence_rate[1][1]-incidence_rate[0]] return ret def incidence_rate_by_location(data, level, locations, variables, populations=None, var_id=None, name=None, exclude=[]): """ Calculate the incidence rates for all the groups in cateogory based on var_id Args: data: data frame with data category: name of cateogory variables: Variables object populations: list of populations to use, same length as number of variables in category var_id: variable_id name: name of variable """ ret = pd.DataFrame(columns=["incidence_rate", "ci_lower", "ci_upper"]) for loc in locations.get_level(level): if loc not in exclude: group_data = data[data[level] == int(loc)] add = False if populations: name = locations.name(loc) if name in populations: population = populations[name] elif loc in populations: population = populations[loc] else: print(populations) print(name, loc) raise KeyError("Populations needs to include either variable id or name") if population != 0: add = True incidence_rate = univariate.incidence_rate(group_data, population=population, var_id=var_id, name=name, variables=variables) else: add = True incidence_rate = univariate.incidence_rate(group_data, var_id=var_id, name=name, variables=variables) if add: ret.loc[locations.name(loc)] = [incidence_rate[0], incidence_rate[0]-incidence_rate[1][0], incidence_rate[1][1]-incidence_rate[0]] return ret def plot_incidence_rate(incidence_rates, mult_factor=1, sort=False): """ Plot a bar chart of incidece rates with error bars Args: incidence_rates: data frame with incidence rates """ incidence_rates = incidence_rates.copy() if sort: incidence_rates.sort_index(inplace=True) error = np.array(incidence_rates[["ci_lower", "ci_upper"]]) * mult_factor incidence_rates["incidence_rate"] = incidence_rates["incidence_rate"] * mult_factor incidence_rates["incidence_rate"].plot(kind="bar",yerr=error.transpose()) def plot_odds_ratios(odds_ratios, rot=0): """ Plot a bar chart of incidece rates with error bars Args: incidence_rates: data frame with incidence rates """ upper_errors = odds_ratios["ci_upper"] - odds_ratios["odds_ratio"] lower_errors = odds_ratios["odds_ratio"] - odds_ratios["ci_lower"] errors = np.array([upper_errors, lower_errors]) odds_ratios["odds_ratio"].plot(kind="bar",yerr=errors, rot=rot) ax = pylab.axis() pylab.plot([ax[0], ax[1]], [1, 1], color="black", alpha=0.4) def plot_many_incidence_rates(rate_list, rot=0, mult_factor=1): """ Plot a dictionary of different incidence rates in one plot Args: rate_list: ["name", incidence_rate_object] """ keys = [r[0] for r in rate_list] data = rate_list[0][1].copy() del data["incidence_rate"] del data["ci_lower"] del data["ci_upper"] errors = np.zeros((2, 2, len(rate_list))) for i, k in enumerate(keys): data[fill(k, 20)] = rate_list[i][1]["incidence_rate"] * mult_factor errors[:, 0, i] = rate_list[i][1]["ci_upper"] * mult_factor errors[:, 1, i] = rate_list[i][1]["ci_lower"] * mult_factor data.transpose().plot(kind="bar", yerr=errors, rot=rot) def odds_ratio_many(data, diseases, group, population=None, variables=None): """ Calculate the incidence rates for all the groups in cateogory based on var_id Args: data: data frame with data diseases: list of disease group: (gr_1, gr_2) population: poulation dict """ ret_data =
pd.DataFrame(columns=["odds_ratio", "ci_lower", "ci_upper"])
pandas.DataFrame
from configparser import ConfigParser import os import cv2 import numpy as np import pandas as pd import warnings import glob def roiByDefinition(inifile): global ix, iy global topLeftStatus global overlay global topLeftX, topLeftY, bottomRightX, bottomRightY global ix, iy global centerStatus global overlay global currCircleRadius global centerX, centerY, radius global centroids, toRemoveShapeName, removeStatus, toRemoveShape global recWidth, recHeight, firstLoop config = ConfigParser() configFile = str(inifile) warnings.filterwarnings('ignore',category=pd.io.pytables.PerformanceWarning) pd.options.mode.chained_assignment = None config.read(configFile) vidInfPath = config.get('General settings', 'project_path') videofilesFolder = os.path.join(vidInfPath, "videos") logFolderPath = os.path.join(vidInfPath, 'logs') vidInfPath = os.path.join(logFolderPath, 'video_info.csv') vidinfDf = pd.read_csv(vidInfPath) rectangularDf = pd.DataFrame(columns=['Video', "Shape_type", "Name", "width", "height", "topLeftX", "topLeftY"]) circleDf =
pd.DataFrame(columns=['Video', "Shape_type", "Name", "centerX", "centerY", "radius"])
pandas.DataFrame
import os if not os.path.exists("temp"): os.mkdir("temp") def add_pi_obj_func_test(): import os import pyemu pst = os.path.join("utils","dewater_pest.pst") pst = pyemu.optimization.add_pi_obj_func(pst,out_pst_name=os.path.join("temp","dewater_pest.piobj.pst")) print(pst.prior_information.loc["pi_obj_func","equation"]) #pst._update_control_section() assert pst.control_data.nprior == 1 def fac2real_test(): import os import numpy as np import pyemu # pp_file = os.path.join("utils","points1.dat") # factors_file = os.path.join("utils","factors1.dat") # pyemu.utils.gw_utils.fac2real(pp_file,factors_file, # out_file=os.path.join("utils","test.ref")) pp_file = os.path.join("utils", "points2.dat") factors_file = os.path.join("utils", "factors2.dat") pyemu.geostats.fac2real(pp_file, factors_file, out_file=os.path.join("temp", "test.ref")) arr1 = np.loadtxt(os.path.join("utils","fac2real_points2.ref")) arr2 = np.loadtxt(os.path.join("temp","test.ref")) #print(np.nansum(np.abs(arr1-arr2))) #print(np.nanmax(np.abs(arr1-arr2))) nmax = np.nanmax(np.abs(arr1-arr2)) assert nmax < 0.01 # import matplotlib.pyplot as plt # diff = (arr1-arr2)/arr1 * 100.0 # diff[np.isnan(arr1)] = np.nan # p = plt.imshow(diff,interpolation='n') # plt.colorbar(p) # plt.show() def vario_test(): import numpy as np import pyemu contribution = 0.1 a = 2.0 for const in [pyemu.utils.geostats.ExpVario,pyemu.utils.geostats.GauVario, pyemu.utils.geostats.SphVario]: v = const(contribution,a) h = v._h_function(np.array([0.0])) assert h == contribution h = v._h_function(np.array([a*1000])) assert h == 0.0 v2 = const(contribution,a,anisotropy=2.0,bearing=90.0) print(v2._h_function(np.array([a]))) def aniso_test(): import pyemu contribution = 0.1 a = 2.0 for const in [pyemu.utils.geostats.ExpVario,pyemu.utils.geostats.GauVario, pyemu.utils.geostats.SphVario]: v = const(contribution,a) v2 = const(contribution,a,anisotropy=2.0,bearing=90.0) v3 = const(contribution,a,anisotropy=2.0,bearing=0.0) pt0 = (0,0) pt1 = (1,0) assert v.covariance(pt0,pt1) == v2.covariance(pt0,pt1) pt0 = (0,0) pt1 = (0,1) assert v.covariance(pt0,pt1) == v3.covariance(pt0,pt1) def geostruct_test(): import pyemu v1 = pyemu.utils.geostats.ExpVario(0.1,2.0) v2 = pyemu.utils.geostats.GauVario(0.1,2.0) v3 = pyemu.utils.geostats.SphVario(0.1,2.0) g = pyemu.utils.geostats.GeoStruct(0.2,[v1,v2,v3]) pt0 = (0,0) pt1 = (0,0) print(g.covariance(pt0,pt1)) assert g.covariance(pt0,pt1) == 0.5 pt0 = (0,0) pt1 = (1.0e+10,0) assert g.covariance(pt0,pt1) == 0.2 def struct_file_test(): import os import pyemu structs = pyemu.utils.geostats.read_struct_file( os.path.join("utils","struct.dat")) #print(structs[0]) pt0 = (0,0) pt1 = (0,0) for s in structs: assert s.covariance(pt0,pt1) == s.nugget + \ s.variograms[0].contribution with open(os.path.join("utils","struct_out.dat"),'w') as f: for s in structs: s.to_struct_file(f) structs1 = pyemu.utils.geostats.read_struct_file( os.path.join("utils","struct_out.dat")) for s in structs1: assert s.covariance(pt0,pt1) == s.nugget + \ s.variograms[0].contribution def covariance_matrix_test(): import os import pandas as pd import pyemu pts = pd.read_csv(os.path.join("utils","points1.dat"),delim_whitespace=True, header=None,names=["name","x","y"],usecols=[0,1,2]) struct = pyemu.utils.geostats.read_struct_file( os.path.join("utils","struct.dat"))[0] struct.variograms[0].covariance_matrix(pts.x,pts.y,names=pts.name) print(struct.covariance_matrix(pts.x,pts.y,names=pts.name).x) def setup_ppcov_simple(): import os import platform exe_file = os.path.join("utils","ppcov.exe") print(platform.platform()) if not os.path.exists(exe_file) or not platform.platform().lower().startswith("win"): print("can't run ppcov setup") return pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_test.dat") args1 = [pts_file,'0.0',str_file,"struct1",os.path.join("utils","ppcov.struct1.out"),'',''] args2 = [pts_file,'0.0',str_file,"struct2",os.path.join("utils","ppcov.struct2.out"),'',''] args3 = [pts_file,'0.0',str_file,"struct3",os.path.join("utils","ppcov.struct3.out"),'',''] for args in [args1,args2,args3]: in_file = os.path.join("utils","ppcov.in") with open(in_file,'w') as f: f.write('\n'.join(args)) os.system(exe_file + '<' + in_file) def ppcov_simple_test(): import os import numpy as np import pandas as pd import pyemu pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_test.dat") mat1_file = os.path.join("utils","ppcov.struct1.out") mat2_file = os.path.join("utils","ppcov.struct2.out") mat3_file = os.path.join("utils","ppcov.struct3.out") ppc_mat1 = pyemu.Cov.from_ascii(mat1_file) ppc_mat2 = pyemu.Cov.from_ascii(mat2_file) ppc_mat3 = pyemu.Cov.from_ascii(mat3_file) pts = pd.read_csv(pts_file,header=None,names=["name","x","y"],usecols=[0,1,2], delim_whitespace=True) struct1,struct2,struct3 = pyemu.utils.geostats.read_struct_file(str_file) print(struct1) print(struct2) print(struct3) for mat,struct in zip([ppc_mat1,ppc_mat2,ppc_mat3],[struct1,struct2,struct3]): str_mat = struct.covariance_matrix(x=pts.x,y=pts.y,names=pts.name) print(str_mat.row_names) delt = mat.x - str_mat.x assert np.abs(delt).max() < 1.0e-7 def setup_ppcov_complex(): import os import platform exe_file = os.path.join("utils","ppcov.exe") print(platform.platform()) if not os.path.exists(exe_file) or not platform.platform().lower().startswith("win"): print("can't run ppcov setup") return pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_complex.dat") args1 = [pts_file,'0.0',str_file,"struct1",os.path.join("utils","ppcov.complex.struct1.out"),'',''] args2 = [pts_file,'0.0',str_file,"struct2",os.path.join("utils","ppcov.complex.struct2.out"),'',''] for args in [args1,args2]: in_file = os.path.join("utils","ppcov.in") with open(in_file,'w') as f: f.write('\n'.join(args)) os.system(exe_file + '<' + in_file) def ppcov_complex_test(): import os import numpy as np import pandas as pd import pyemu pts_file = os.path.join("utils","points1_test.dat") str_file = os.path.join("utils","struct_complex.dat") mat1_file = os.path.join("utils","ppcov.complex.struct1.out") mat2_file = os.path.join("utils","ppcov.complex.struct2.out") ppc_mat1 = pyemu.Cov.from_ascii(mat1_file) ppc_mat2 = pyemu.Cov.from_ascii(mat2_file) pts = pd.read_csv(pts_file,header=None,names=["name","x","y"],usecols=[0,1,2], delim_whitespace=True) struct1,struct2 = pyemu.utils.geostats.read_struct_file(str_file) print(struct1) print(struct2) for mat,struct in zip([ppc_mat1,ppc_mat2],[struct1,struct2]): str_mat = struct.covariance_matrix(x=pts.x,y=pts.y,names=pts.name) delt = mat.x - str_mat.x print(mat.x[:,0]) print(str_mat.x[:,0]) print(np.abs(delt).max()) assert np.abs(delt).max() < 1.0e-7 #break def pp_to_tpl_test(): import os import pyemu pp_file = os.path.join("utils","points1.dat") pp_df = pyemu.pp_utils.pilot_points_to_tpl(pp_file,name_prefix="test_") print(pp_df.columns) def tpl_to_dataframe_test(): import os import pyemu pp_file = os.path.join("utils","points1.dat") pp_df = pyemu.pp_utils.pilot_points_to_tpl(pp_file,name_prefix="test_") df_tpl = pyemu.pp_utils.pp_tpl_to_dataframe(pp_file+".tpl") assert df_tpl.shape[0] == pp_df.shape[0] # def to_mps_test(): # import os # import pyemu # jco_file = os.path.join("utils","dewater_pest.jcb") # jco = pyemu.Jco.from_binary(jco_file) # #print(jco.x) # pst = pyemu.Pst(jco_file.replace(".jcb",".pst")) # #print(pst.nnz_obs_names) # oc_dict = {oc:"l" for oc in pst.nnz_obs_names} # obj_func = {name:1.0 for name in pst.par_names} # # #pyemu.optimization.to_mps(jco=jco_file) # #pyemu.optimization.to_mps(jco=jco_file,obs_constraint_sense=oc_dict) # #pyemu.optimization.to_mps(jco=jco_file,obj_func="h00_00") # decision_var_names = pst.parameter_data.loc[pst.parameter_data.pargp=="q","parnme"].tolist() # pyemu.optimization.to_mps(jco=jco_file,obj_func=obj_func,decision_var_names=decision_var_names, # risk=0.975) def setup_pp_test(): import os import pyemu try: import flopy except: return model_ws = os.path.join("..","examples","Freyberg","extra_crispy") ml = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,check=False) pp_dir = os.path.join("utils") #ml.export(os.path.join("temp","test_unrot_grid.shp")) sr = pyemu.helpers.SpatialReference().from_namfile( os.path.join(ml.model_ws, ml.namefile), delc=ml.dis.delc, delr=ml.dis.delr) sr.rotation = 0. par_info_unrot = pyemu.pp_utils.setup_pilotpoints_grid(sr=sr, prefix_dict={0: "hk1",1:"hk2"}, every_n_cell=2, pp_dir=pp_dir, tpl_dir=pp_dir, shapename=os.path.join("temp", "test_unrot.shp"), ) #print(par_info_unrot.parnme.value_counts()) gs = pyemu.geostats.GeoStruct(variograms=pyemu.geostats.ExpVario(a=1000,contribution=1.0)) ok = pyemu.geostats.OrdinaryKrige(gs,par_info_unrot) ok.calc_factors_grid(sr) sr2 = pyemu.helpers.SpatialReference.from_gridspec( os.path.join(ml.model_ws, "test.spc"), lenuni=2) par_info_drot = pyemu.pp_utils.setup_pilotpoints_grid(sr=sr2, prefix_dict={0: ["hk1_", "sy1_", "rch_"]}, every_n_cell=2, pp_dir=pp_dir, tpl_dir=pp_dir, shapename=os.path.join("temp", "test_unrot.shp"), ) ok = pyemu.geostats.OrdinaryKrige(gs, par_info_unrot) ok.calc_factors_grid(sr2) par_info_mrot = pyemu.pp_utils.setup_pilotpoints_grid(ml,prefix_dict={0:["hk1_","sy1_","rch_"]}, every_n_cell=2,pp_dir=pp_dir,tpl_dir=pp_dir, shapename=os.path.join("temp","test_unrot.shp")) ok = pyemu.geostats.OrdinaryKrige(gs, par_info_unrot) ok.calc_factors_grid(ml.sr) sr.rotation = 15 #ml.export(os.path.join("temp","test_rot_grid.shp")) #pyemu.gw_utils.setup_pilotpoints_grid(ml) par_info_rot = pyemu.pp_utils.setup_pilotpoints_grid(sr=sr,every_n_cell=2, pp_dir=pp_dir, tpl_dir=pp_dir, shapename=os.path.join("temp", "test_rot.shp")) ok = pyemu.geostats.OrdinaryKrige(gs, par_info_unrot) ok.calc_factors_grid(sr) print(par_info_unrot.x) print(par_info_drot.x) print(par_info_mrot.x) print(par_info_rot.x) def read_hob_test(): import os import pyemu hob_file = os.path.join("utils","HOB.txt") df = pyemu.gw_utils.modflow_hob_to_instruction_file(hob_file) print(df.obsnme) def read_pval_test(): import os import pyemu pval_file = os.path.join("utils", "meras_trEnhance.pval") pyemu.gw_utils.modflow_pval_to_template_file(pval_file) def pp_to_shapefile_test(): import os import pyemu try: import shapefile except: print("no pyshp") return pp_file = os.path.join("utils","points1.dat") shp_file = os.path.join("temp","points1.dat.shp") pyemu.pp_utils.write_pp_shapfile(pp_file) def write_tpl_test(): import os import pyemu tpl_file = os.path.join("utils","test_write.tpl") in_file = os.path.join("temp","tpl_test.dat") par_vals = {"q{0}".format(i+1):12345678.90123456 for i in range(7)} pyemu.pst_utils.write_to_template(par_vals,tpl_file,in_file) def read_pestpp_runstorage_file_test(): import os import pyemu rnj_file = os.path.join("utils","freyberg.rnj") #rnj_file = os.path.join("..", "..", "verification", "10par_xsec", "master_opt1","pest.rnj") p1,o1 = pyemu.helpers.read_pestpp_runstorage(rnj_file) p2,o2 = pyemu.helpers.read_pestpp_runstorage(rnj_file,9) diff = p1 - p2 diff.sort_values("parval1",inplace=True) def smp_to_ins_test(): import os import pyemu smp = os.path.join("utils","TWDB_wells.smp") ins = os.path.join('temp',"test.ins") try: pyemu.pst_utils.smp_to_ins(smp,ins) except: pass else: raise Exception("should have failed") pyemu.smp_utils.smp_to_ins(smp,ins,True) def master_and_workers(): import shutil import pyemu worker_dir = os.path.join("..","verification","10par_xsec","template_mac") master_dir = os.path.join("temp","master") if not os.path.exists(master_dir): os.mkdir(master_dir) assert os.path.exists(worker_dir) pyemu.helpers.start_workers(worker_dir,"pestpp","pest.pst",1, worker_root="temp",master_dir=master_dir) #now try it from within the master dir base_cwd = os.getcwd() os.chdir(master_dir) pyemu.helpers.start_workers(os.path.join("..","..",worker_dir), "pestpp","pest.pst",3, master_dir='.') os.chdir(base_cwd) def first_order_pearson_regul_test(): import os from pyemu import Schur from pyemu.utils.helpers import first_order_pearson_tikhonov,zero_order_tikhonov w_dir = "la" sc = Schur(jco=os.path.join(w_dir,"pest.jcb")) pt = sc.posterior_parameter zero_order_tikhonov(sc.pst) first_order_pearson_tikhonov(sc.pst,pt,reset=False) print(sc.pst.prior_information) sc.pst.rectify_pi() assert sc.pst.control_data.pestmode == "regularization" sc.pst.write(os.path.join('temp','test.pst')) def zero_order_regul_test(): import os import pyemu pst = pyemu.Pst(os.path.join("pst","inctest.pst")) pyemu.helpers.zero_order_tikhonov(pst) print(pst.prior_information) assert pst.control_data.pestmode == "regularization" pst.write(os.path.join('temp','test.pst')) pyemu.helpers.zero_order_tikhonov(pst,reset=False) assert pst.prior_information.shape[0] == pst.npar_adj * 2 def kl_test(): import os import numpy as np import pandas as pd import pyemu import matplotlib.pyplot as plt try: import flopy except: print("flopy not imported...") return model_ws = os.path.join("..","verification","Freyberg","extra_crispy") ml = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,check=False) str_file = os.path.join("..","verification","Freyberg","structure.dat") arr_tru = np.loadtxt(os.path.join("..","verification", "Freyberg","extra_crispy", "hk.truth.ref")) + 20 basis_file = os.path.join("utils","basis.jco") tpl_file = os.path.join("utils","test.tpl") factors_file = os.path.join("temp","factors.dat") num_eig = 100 prefixes = ["hk1"] df = pyemu.utils.helpers.kl_setup(num_eig=num_eig, sr=ml.sr, struct=str_file, factors_file=factors_file, basis_file=basis_file, prefixes=prefixes,islog=False) basis = pyemu.Matrix.from_binary(basis_file) basis = basis[:,:num_eig] arr_tru = np.atleast_2d(arr_tru.flatten()).transpose() proj = np.dot(basis.T.x,arr_tru)[:num_eig] #proj.autoalign = False back = np.dot(basis.x, proj) back = back.reshape(ml.nrow,ml.ncol) df.parval1 = proj arr = pyemu.geostats.fac2real(df,factors_file,out_file=None) fig = plt.figure(figsize=(10, 10)) ax1, ax2 = plt.subplot(121),plt.subplot(122) mn,mx = arr_tru.min(),arr_tru.max() print(arr.max(), arr.min()) print(back.max(),back.min()) diff = np.abs(back - arr) print(diff.max()) assert diff.max() < 1.0e-5 def ok_test(): import os import pandas as pd import pyemu str_file = os.path.join("utils","struct_test.dat") pts_data = pd.DataFrame({"x":[1.0,2.0,3.0],"y":[0.,0.,0.],"name":["p1","p2","p3"]}) gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) interp_points = pts_data.copy() kf = ok.calc_factors(interp_points.x,interp_points.y) #for ptname in pts_data.name: for i in kf.index: assert len(kf.loc[i,"inames"])== 1 assert kf.loc[i,"ifacts"][0] == 1.0 assert sum(kf.loc[i,"ifacts"]) == 1.0 print(kf) def ok_grid_test(): try: import flopy except: return import numpy as np import pandas as pd import pyemu nrow,ncol = 10,5 delr = np.ones((ncol)) * 1.0/float(ncol) delc = np.ones((nrow)) * 1.0/float(nrow) num_pts = 0 ptx = np.random.random(num_pts) pty = np.random.random(num_pts) ptname = ["p{0}".format(i) for i in range(num_pts)] pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) pts_data.index = pts_data.name pts_data = pts_data.loc[:,["x","y","name"]] sr = flopy.utils.SpatialReference(delr=delr,delc=delc) pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] str_file = os.path.join("utils","struct_test.dat") gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) kf = ok.calc_factors_grid(sr,verbose=False,var_filename=os.path.join("temp","test_var.ref"),minpts_interp=1) ok.to_grid_factors_file(os.path.join("temp","test.fac")) def ok_grid_zone_test(): try: import flopy except: return import numpy as np import pandas as pd import pyemu nrow,ncol = 10,5 delr = np.ones((ncol)) * 1.0/float(ncol) delc = np.ones((nrow)) * 1.0/float(nrow) num_pts = 0 ptx = np.random.random(num_pts) pty = np.random.random(num_pts) ptname = ["p{0}".format(i) for i in range(num_pts)] pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) pts_data.index = pts_data.name pts_data = pts_data.loc[:,["x","y","name"]] sr = flopy.utils.SpatialReference(delr=delr,delc=delc) pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] pts_data.loc[:,"zone"] = 1 pts_data.zone.iloc[1] = 2 print(pts_data.zone.unique()) str_file = os.path.join("utils","struct_test.dat") gs = pyemu.utils.geostats.read_struct_file(str_file)[0] ok = pyemu.utils.geostats.OrdinaryKrige(gs,pts_data) zone_array = np.ones((nrow,ncol)) zone_array[0,0] = 2 kf = ok.calc_factors_grid(sr,verbose=False, var_filename=os.path.join("temp","test_var.ref"), minpts_interp=1,zone_array=zone_array) ok.to_grid_factors_file(os.path.join("temp","test.fac")) def ppk2fac_verf_test(): import os import numpy as np import pyemu try: import flopy except: return ws = os.path.join("..","verification","Freyberg") gspc_file = os.path.join(ws,"grid.spc") pp_file = os.path.join(ws,"pp_00_pp.dat") str_file = os.path.join(ws,"structure.complex.dat") ppk2fac_facfile = os.path.join(ws,"ppk2fac_fac.dat") pyemu_facfile = os.path.join("temp","pyemu_facfile.dat") sr = flopy.utils.SpatialReference.from_gridspec(gspc_file) ok = pyemu.utils.OrdinaryKrige(str_file,pp_file) ok.calc_factors_grid(sr,maxpts_interp=10) ok.to_grid_factors_file(pyemu_facfile) zone_arr = np.loadtxt(os.path.join(ws,"extra_crispy","ref","ibound.ref")) pyemu_arr = pyemu.utils.fac2real(pp_file,pyemu_facfile,out_file=None) ppk2fac_arr = pyemu.utils.fac2real(pp_file,ppk2fac_facfile,out_file=None) pyemu_arr[zone_arr == 0] = np.NaN pyemu_arr[zone_arr == -1] = np.NaN ppk2fac_arr[zone_arr == 0] = np.NaN ppk2fac_arr[zone_arr == -1] = np.NaN diff = np.abs(pyemu_arr - ppk2fac_arr) print(diff) assert np.nansum(diff) < 1.0e-6,np.nansum(diff) # def opt_obs_worth(): # import os # import pyemu # wdir = os.path.join("utils") # os.chdir(wdir) # pst = pyemu.Pst(os.path.join("supply2_pest.fosm.pst")) # zero_weight_names = [n for n,w in zip(pst.observation_data.obsnme,pst.observation_data.weight) if w == 0.0] # #print(zero_weight_names) # #for attr in ["base_jacobian","hotstart_resfile"]: # # pst.pestpp_options[attr] = os.path.join(wdir,pst.pestpp_options[attr]) # #pst.template_files = [os.path.join(wdir,f) for f in pst.template_files] # #pst.instruction_files = [os.path.join(wdir,f) for f in pst.instruction_files] # #print(pst.template_files) # df = pyemu.optimization.get_added_obs_importance(pst,obslist_dict={"zeros":zero_weight_names}) # os.chdir("..") # print(df) def mflist_budget_test(): import pyemu import os import pandas as pd try: import flopy except: print("no flopy...") return model_ws = os.path.join("..","examples","Freyberg_transient") ml = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,check=False,load_only=[]) list_filename = os.path.join(model_ws,"freyberg.list") assert os.path.exists(list_filename) df = pyemu.gw_utils.setup_mflist_budget_obs(list_filename,start_datetime=ml.start_datetime) print(df) times = df.loc[df.index.str.startswith('vol_wells')].index.str.split( '_', expand=True).get_level_values(2)[::100] times = pd.to_datetime(times, yearfirst=True) df = pyemu.gw_utils.setup_mflist_budget_obs( list_filename, start_datetime=ml.start_datetime, specify_times=times) flx, vol = pyemu.gw_utils.apply_mflist_budget_obs( list_filename, 'flux.dat', 'vol.dat', start_datetime=ml.start_datetime, times='budget_times.config' ) assert (flx.index == vol.index).all() assert (flx.index == times).all() def mtlist_budget_test(): import pyemu import pandas as pd import os try: import flopy except: print("no flopy...") return list_filename = os.path.join("utils","mt3d.list") assert os.path.exists(list_filename) frun_line,ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename,start_datetime='1-1-1970') assert len(ins_files) == 2 frun_line,ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename,start_datetime='1-1-1970', gw_prefix='') assert len(ins_files) == 2 frun_line, ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename, start_datetime=None) assert len(ins_files) == 2 list_filename = os.path.join("utils", "mt3d_imm_sor.lst") assert os.path.exists(list_filename) frun_line, ins_files, df = pyemu.gw_utils.setup_mtlist_budget_obs( list_filename, start_datetime='1-1-1970') def geostat_prior_builder_test(): import os import numpy as np import pyemu pst_file = os.path.join("pst","pest.pst") pst = pyemu.Pst(pst_file) # print(pst.parameter_data) tpl_file = os.path.join("utils", "pp_locs.tpl") str_file = os.path.join("utils", "structure.dat") cov = pyemu.helpers.geostatistical_prior_builder(pst_file,{str_file:tpl_file}) d1 = np.diag(cov.x) df = pyemu.pp_utils.pp_tpl_to_dataframe(tpl_file) df.loc[:,"zone"] = np.arange(df.shape[0]) gs = pyemu.geostats.read_struct_file(str_file) cov = pyemu.helpers.geostatistical_prior_builder(pst_file,{gs:df}, sigma_range=4) nnz = np.count_nonzero(cov.x) assert nnz == pst.npar_adj d2 = np.diag(cov.x) assert np.array_equiv(d1, d2) pst.parameter_data.loc[pst.par_names[1:10], "partrans"] = "tied" pst.parameter_data.loc[pst.par_names[1:10], "partied"] = pst.par_names[0] cov = pyemu.helpers.geostatistical_prior_builder(pst, {gs: df}, sigma_range=4) nnz = np.count_nonzero(cov.x) assert nnz == pst.npar_adj ttpl_file = os.path.join("temp", "temp.dat.tpl") with open(ttpl_file, 'w') as f: f.write("ptf ~\n ~ temp1 ~\n") pst.add_parameters(ttpl_file, ttpl_file.replace(".tpl", "")) pst.parameter_data.loc["temp1", "parubnd"] = 1.1 pst.parameter_data.loc["temp1", "parlbnd"] = 0.9 cov = pyemu.helpers.geostatistical_prior_builder(pst, {str_file: tpl_file}) assert cov.shape[0] == pst.npar_adj def geostat_draws_test(): import os import numpy as np import pyemu pst_file = os.path.join("pst","pest.pst") pst = pyemu.Pst(pst_file) print(pst.parameter_data) tpl_file = os.path.join("utils", "pp_locs.tpl") str_file = os.path.join("utils", "structure.dat") pe = pyemu.helpers.geostatistical_draws(pst_file,{str_file:tpl_file}) assert (pe.shape == pe.dropna().shape) pst.parameter_data.loc[pst.par_names[1:10], "partrans"] = "tied" pst.parameter_data.loc[pst.par_names[1:10], "partied"] = pst.par_names[0] pe = pyemu.helpers.geostatistical_draws(pst, {str_file: tpl_file}) assert (pe.shape == pe.dropna().shape) df = pyemu.pp_utils.pp_tpl_to_dataframe(tpl_file) df.loc[:,"zone"] = np.arange(df.shape[0]) gs = pyemu.geostats.read_struct_file(str_file) pe = pyemu.helpers.geostatistical_draws(pst_file,{gs:df}, sigma_range=4) ttpl_file = os.path.join("temp", "temp.dat.tpl") with open(ttpl_file, 'w') as f: f.write("ptf ~\n ~ temp1 ~\n") pst.add_parameters(ttpl_file, ttpl_file.replace(".tpl", "")) pst.parameter_data.loc["temp1", "parubnd"] = 1.1 pst.parameter_data.loc["temp1", "parlbnd"] = 0.9 pst.parameter_data.loc[pst.par_names[1:10],"partrans"] = "tied" pst.parameter_data.loc[pst.par_names[1:10], "partied"] = pst.par_names[0] pe = pyemu.helpers.geostatistical_draws(pst, {str_file: tpl_file}) assert (pe.shape == pe.dropna().shape) # def linearuniversal_krige_test(): # try: # import flopy # except: # return # # import numpy as np # import pandas as pd # import pyemu # nrow,ncol = 10,5 # delr = np.ones((ncol)) * 1.0/float(ncol) # delc = np.ones((nrow)) * 1.0/float(nrow) # # num_pts = 0 # ptx = np.random.random(num_pts) # pty = np.random.random(num_pts) # ptname = ["p{0}".format(i) for i in range(num_pts)] # pts_data = pd.DataFrame({"x":ptx,"y":pty,"name":ptname}) # pts_data.index = pts_data.name # pts_data = pts_data.loc[:,["x","y","name"]] # # # sr = flopy.utils.SpatialReference(delr=delr,delc=delc) # pts_data.loc["i0j0", :] = [sr.xcentergrid[0,0],sr.ycentergrid[0,0],"i0j0"] # pts_data.loc["imxjmx", :] = [sr.xcentergrid[-1, -1], sr.ycentergrid[-1, -1], "imxjmx"] # pts_data.loc["i0j0","value"] = 1.0 # pts_data.loc["imxjmx","value"] = 0.0 # # str_file = os.path.join("utils","struct_test.dat") # gs = pyemu.utils.geostats.read_struct_file(str_file)[0] # luk = pyemu.utils.geostats.LinearUniversalKrige(gs,pts_data) # df = luk.estimate_grid(sr,verbose=True, # var_filename=os.path.join("utils","test_var.ref"), # minpts_interp=1) def gslib_2_dataframe_test(): import os import pyemu gslib_file = os.path.join("utils","ch91pt.shp.gslib") df = pyemu.geostats.gslib_2_dataframe(gslib_file) print(df) def sgems_to_geostruct_test(): import os import pyemu xml_file = os.path.join("utils", "ch00") gs = pyemu.geostats.read_sgems_variogram_xml(xml_file) def load_sgems_expvar_test(): import os import numpy as np #import matplotlib.pyplot as plt import pyemu dfs = pyemu.geostats.load_sgems_exp_var(os.path.join("utils","ch00_expvar")) xmn,xmx = 1.0e+10,-1.0e+10 for d,df in dfs.items(): xmn = min(xmn,df.x.min()) xmx = max(xmx,df.x.max()) xml_file = os.path.join("utils", "ch00") gs = pyemu.geostats.read_sgems_variogram_xml(xml_file) v = gs.variograms[0] #ax = gs.plot(ls="--") #plt.show() #x = np.linspace(xmn,xmx,100) #y = v.inv_h(x) # #plt.plot(x,y) #plt.show() def read_hydmod_test(): import os import numpy as np import pandas as pd import pyemu try: import flopy except: return df, outfile = pyemu.gw_utils.modflow_read_hydmod_file(os.path.join('utils','freyberg.hyd.bin'), os.path.join('temp','freyberg.hyd.bin.dat')) df = pd.read_csv(os.path.join('temp', 'freyberg.hyd.bin.dat'), delim_whitespace=True) dftrue = pd.read_csv(os.path.join('utils', 'freyberg.hyd.bin.dat.true'), delim_whitespace=True) assert np.allclose(df.obsval.values, dftrue.obsval.values) def make_hydmod_insfile_test(): import os import shutil import pyemu try: import flopy except: return shutil.copy2(os.path.join('utils','freyberg.hyd.bin'),os.path.join('temp','freyberg.hyd.bin')) pyemu.gw_utils.modflow_hydmod_to_instruction_file(os.path.join('temp','freyberg.hyd.bin')) #assert open(os.path.join('utils','freyberg.hyd.bin.dat.ins'),'r').read() == open('freyberg.hyd.dat.ins', 'r').read() assert os.path.exists(os.path.join('temp','freyberg.hyd.bin.dat.ins')) def plot_summary_test(): import os import pandas as pd import pyemu try: import matplotlib.pyplot as plt except: return par_df = pd.read_csv(os.path.join("utils","freyberg_pp.par.usum.csv"), index_col=0) idx = list(par_df.index.map(lambda x: x.startswith("HK"))) par_df = par_df.loc[idx,:] ax = pyemu.plot_utils.plot_summary_distributions(par_df,label_post=True) plt.savefig(os.path.join("temp","hk_par.png")) plt.close() df = os.path.join("utils","freyberg_pp.pred.usum.csv") figs,axes = pyemu.plot_utils.plot_summary_distributions(df,subplots=True) #plt.show() for i,fig in enumerate(figs): plt.figure(fig.number) plt.savefig(os.path.join("temp","test_pred_{0}.png".format(i))) plt.close(fig) df = os.path.join("utils","freyberg_pp.par.usum.csv") figs, axes = pyemu.plot_utils.plot_summary_distributions(df,subplots=True) for i,fig in enumerate(figs): plt.figure(fig.number) plt.savefig(os.path.join("temp","test_par_{0}.png".format(i))) plt.close(fig) def hds_timeseries_test(): import os import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu model_ws =os.path.join("..","examples","Freyberg_transient") org_hds_file = os.path.join(model_ws, "freyberg.hds") hds_file = os.path.join("temp", "freyberg.hds") org_cbc_file = org_hds_file.replace(".hds",".cbc") cbc_file = hds_file.replace(".hds", ".cbc") shutil.copy2(org_hds_file, hds_file) shutil.copy2(org_cbc_file, cbc_file) m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=model_ws, check=False) kij_dict = {"test1": [0, 0, 0], "test2": (1, 1, 1), "test": (0, 10, 14)} pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True) # m.change_model_ws("temp",reset_external=True) # m.write_input() # pyemu.os_utils.run("mfnwt freyberg.nam",cwd="temp") cmd, df1 = pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, include_path=True, prefix="stor", text="storage", fill=0.0) cmd,df2 = pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, model=m, include_path=True, prefix="stor", text="storage",fill=0.0) print(df1) d = np.abs(df1.obsval.values - df2.obsval.values) print(d.max()) assert d.max() == 0.0,d try: pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, model=m, include_path=True, prefix="consthead", text="constant head") except: pass else: raise Exception("should have failed") try: pyemu.gw_utils.setup_hds_timeseries(cbc_file, kij_dict, model=m, include_path=True, prefix="consthead", text="JUNK") except: pass else: raise Exception("should have failed") pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True,prefix="hds") m = flopy.modflow.Modflow.load("freyberg.nam",model_ws=model_ws,load_only=[],check=False) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict,model=m,include_path=True) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True,prefix="hds") org_hds_file = os.path.join("utils", "MT3D001.UCN") hds_file = os.path.join("temp", "MT3D001.UCN") shutil.copy2(org_hds_file, hds_file) kij_dict = {"test1": [0, 0, 0], "test2": (1, 1, 1)} pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, include_path=True, prefix="hds") m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=model_ws, load_only=[], check=False) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True) pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True, prefix="hds") # df1 = pd.read_csv(out_file, delim_whitespace=True) # pyemu.gw_utils.apply_hds_obs(hds_file) # df2 = pd.read_csv(out_file, delim_whitespace=True) # diff = df1.obsval - df2.obsval def grid_obs_test(): import os import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu m_ws = os.path.join("..", "examples", "freyberg_sfr_update") org_hds_file = os.path.join("..","examples","Freyberg_Truth","freyberg.hds") org_multlay_hds_file = os.path.join(m_ws, "freyberg.hds") # 3 layer version org_ucn_file = os.path.join(m_ws, "MT3D001.UCN") # mt example hds_file = os.path.join("temp","freyberg.hds") multlay_hds_file = os.path.join("temp", "freyberg_3lay.hds") ucn_file = os.path.join("temp", "MT3D001.UCN") out_file = hds_file+".dat" multlay_out_file = multlay_hds_file+".dat" ucn_out_file = ucn_file+".dat" shutil.copy2(org_hds_file,hds_file) shutil.copy2(org_multlay_hds_file, multlay_hds_file) shutil.copy2(org_ucn_file, ucn_file) pyemu.gw_utils.setup_hds_obs(hds_file) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert abs(diff.max()) < 1.0e-6, abs(diff.max()) pyemu.gw_utils.setup_hds_obs(multlay_hds_file) df1 = pd.read_csv(multlay_out_file,delim_whitespace=True) assert len(df1) == 3*len(df2), "{} != 3*{}".format(len(df1), len(df2)) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval,df2.obsval), abs(diff.max()) pyemu.gw_utils.setup_hds_obs(hds_file,skip=-999) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert diff.max() < 1.0e-6 pyemu.gw_utils.setup_hds_obs(ucn_file, skip=1.e30, prefix='ucn') df1 = pd.read_csv(ucn_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(ucn_file) df2 = pd.read_csv(ucn_out_file, delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) # skip = lambda x : x < -888.0 skip = lambda x: x if x > -888.0 else np.NaN pyemu.gw_utils.setup_hds_obs(hds_file,skip=skip) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert diff.max() < 1.0e-6 kperk_pairs = (0,0) pyemu.gw_utils.setup_hds_obs(hds_file,kperk_pairs=kperk_pairs, skip=skip) df1 = pd.read_csv(out_file,delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(hds_file) df2 = pd.read_csv(out_file,delim_whitespace=True) diff = df1.obsval - df2.obsval assert diff.max() < 1.0e-6 kperk_pairs = [(0, 0), (0, 1), (0, 2)] pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skip) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == 3*len(df2), "{} != 3*{}".format(len(df1), len(df2)) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) kperk_pairs = [(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)] pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skip) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == 2 * len(df2), "{} != 2*{}".format(len(df1), len(df2)) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=m_ws, load_only=["BAS6"],forgive=False,verbose=True) kperk_pairs = [(0, 0), (0, 1), (0, 2)] skipmask = m.bas6.ibound.array pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skipmask) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == len(df2) == np.abs(skipmask).sum(), \ "array skip failing, expecting {0} obs but returned {1}".format(np.abs(skipmask).sum(), len(df1)) diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) kperk_pairs = [(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)] skipmask = m.bas6.ibound.array[0] pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skipmask) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == len(df2) == 2 * m.nlay * np.abs(skipmask).sum(), "array skip failing" diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) kperk_pairs = [(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)] skipmask = m.bas6.ibound.array pyemu.gw_utils.setup_hds_obs(multlay_hds_file, kperk_pairs=kperk_pairs, skip=skipmask) df1 = pd.read_csv(multlay_out_file, delim_whitespace=True) pyemu.gw_utils.apply_hds_obs(multlay_hds_file) df2 = pd.read_csv(multlay_out_file, delim_whitespace=True) assert len(df1) == len(df2) == 2 * np.abs(skipmask).sum(), "array skip failing" diff = df1.obsval - df2.obsval assert np.allclose(df1.obsval, df2.obsval), abs(diff.max()) def postprocess_inactive_conc_test(): import os import shutil import numpy as np import pandas as pd try: import flopy except: return import pyemu bd = os.getcwd() model_ws = os.path.join("..", "examples", "Freyberg_transient") org_hds_file = os.path.join("utils", "MT3D001.UCN") hds_file = os.path.join("temp", "MT3D001.UCN") shutil.copy2(org_hds_file, hds_file) kij_dict = {"test1": [0, 0, 0], "test2": (1, 1, 1), "inact": [0, 81, 35]} m = flopy.modflow.Modflow.load("freyberg.nam", model_ws=model_ws, load_only=[], check=False) frun_line, df = pyemu.gw_utils.setup_hds_timeseries(hds_file, kij_dict, model=m, include_path=True, prefix="hds", postprocess_inact=1E30) os.chdir("temp") df0 = pd.read_csv("{0}_timeseries.processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T df1 = pd.read_csv("{0}_timeseries.post_processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T eval(frun_line) df2 = pd.read_csv("{0}_timeseries.processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T df3 = pd.read_csv("{0}_timeseries.post_processed".format(os.path.split(hds_file)[-1]), delim_whitespace=True).T assert np.allclose(df0, df2) assert np.allclose(df2.test1, df3.test1) assert np.allclose(df2.test2, df3.test2) assert np.allclose(df3, df1) os.chdir(bd) def gw_sft_ins_test(): import os import pyemu sft_outfile = os.path.join("utils","test_sft.out") #pyemu.gw_utils.setup_sft_obs(sft_outfile) #pyemu.gw_utils.setup_sft_obs(sft_outfile,start_datetime="1-1-1970") df = pyemu.gw_utils.setup_sft_obs(sft_outfile, start_datetime="1-1-1970",times=[10950.00]) #print(df) def sfr_helper_test(): import os import shutil import pandas as pd import pyemu import flopy #setup the process m = flopy.modflow.Modflow.load("supply2.nam",model_ws="utils",check=False,verbose=True,forgive=False,load_only=["dis","sfr"]) sd = m.sfr.segment_data[0].copy() sd["flow"] = 1.0 sd["pptsw"] = 1.0 m.sfr.segment_data = {k:sd.copy() for k in range(m.nper)} df_sfr = pyemu.gw_utils.setup_sfr_seg_parameters( m, include_temporal_pars=['hcond1', 'flow']) print(df_sfr) os.chdir("utils") # change the name of the sfr file that will be created pars = {} with open("sfr_seg_pars.config") as f: for line in f: line = line.strip().split() pars[line[0]] = line[1] pars["sfr_filename"] = "test.sfr" with open("sfr_seg_pars.config", 'w') as f: for k, v in pars.items(): f.write("{0} {1}\n".format(k, v)) # change some hcond1 values df = pd.read_csv("sfr_seg_temporal_pars.dat", delim_whitespace=False, index_col=0) df.loc[:, "flow"] = 10.0 df.to_csv("sfr_seg_temporal_pars.dat", sep=',') sd1 = pyemu.gw_utils.apply_sfr_seg_parameters().segment_data m1 = flopy.modflow.Modflow.load("supply2.nam", load_only=["sfr"], check=False) os.chdir("..") for kper,sd in m1.sfr.segment_data.items(): #print(sd["flow"],sd1[kper]["flow"]) for i1,i2 in zip(sd["flow"],sd1[kper]["flow"]): assert i1 * 10 == i2,"{0},{1}".format(i1,i2) df_sfr = pyemu.gw_utils.setup_sfr_seg_parameters("supply2.nam", model_ws="utils", include_temporal_pars=True) os.chdir("utils") # change the name of the sfr file that will be created pars = {} with open("sfr_seg_pars.config") as f: for line in f: line = line.strip().split() pars[line[0]] = line[1] pars["sfr_filename"] = "test.sfr" with open("sfr_seg_pars.config", 'w') as f: for k, v in pars.items(): f.write("{0} {1}\n".format(k, v)) # change some hcond1 values df = pd.read_csv("sfr_seg_pars.dat", delim_whitespace=False,index_col=0) df.loc[:, "hcond1"] = 1.0 df.to_csv("sfr_seg_pars.dat", sep=',') # make sure the hcond1 mult worked... sd1 = pyemu.gw_utils.apply_sfr_seg_parameters().segment_data[0] m1 = flopy.modflow.Modflow.load("supply2.nam", load_only=["sfr"], check=False) sd2 = m1.sfr.segment_data[0] sd1 = pd.DataFrame.from_records(sd1) sd2 = pd.DataFrame.from_records(sd2) # print(sd1.hcond1) # print(sd2.hcond2) assert sd1.hcond1.sum() == sd2.hcond1.sum() # change some hcond1 values df =
pd.read_csv("sfr_seg_pars.dat",delim_whitespace=False,index_col=0)
pandas.read_csv
""" visdex: Summary heatmap Shows a simple correlation heatmap between numerical fields in the loaded and filtered data file """ import itertools import logging import numpy as np import pandas as pd import scipy.stats as stats from sklearn.cluster import AgglomerativeClustering from dash.dependencies import Input, Output, State from dash import html, dcc import plotly.graph_objects as go from visdex.cache import cache from visdex.common import vstack from visdex.timing import timing, start_timer, log_timing, print_timings LOG = logging.getLogger(__name__) def get_layout(app): @app.callback( [Output("heatmap-dropdown", "options"), Output("heatmap-dropdown", "value")], [Input("df-filtered-loaded-div", "children")], prevent_initial_call=True, ) @timing def update_heatmap_dropdown(df_loaded): LOG.info(f"update_heatmap_dropdown {df_loaded}") dff = cache.load("filtered") options = [ {"label": col, "value": col} for col in dff.columns if dff[col].dtype in [np.int64, np.float64] ] return options, [ col for col in dff.columns if dff[col].dtype in [np.int64, np.float64] ] def flattened(df): """ Convert a DF into a Series, where the MultiIndex of each element is a combination of the index/col from the original DF """ # The series contains only half of the matrix, so filter by the order of the two # level labels. s = pd.Series( index=pd.MultiIndex.from_tuples( filter( lambda x: df.index.get_loc(x[0]) < df.index.get_loc(x[1]), list(itertools.product(df.index, df.columns)), ), names=["first", "second"], ), name="value", ) for (a, b) in s.index: s[a, b] = df[b][a] return s def reorder_df(df, order): """ Change the row and column order of df to that given in order """ return df.reindex(order)[order] def recalculate_corr_etc(selected_columns, dff, corr_dff, pval_dff, logs_dff): start_timer("recalculate_corr_etc") # Work out which columns/rows are needed anew, and which are already populated # TODO: note that if we load in a new file with some of the same column names, # then this old correlation data may be used erroneously. existing_cols = corr_dff.columns overlap = list(set(selected_columns).intersection(set(existing_cols))) LOG.debug(f"these are needed and already available: {overlap}") required_new = list(set(selected_columns).difference(set(existing_cols))) LOG.debug(f"these are needed and not already available: {required_new}") ######## # Create initial existing vs existing DF ######## # If there is overlap, then create brand new empty dataframes. # Otherwise, update the existing dataframes. if len(overlap) == 0: LOG.debug(f"create new") corr = pd.DataFrame() pvalues = pd.DataFrame() logs = pd.DataFrame() else: # Copy across existing data rather than recalculating (so in this operation # we drop the unneeded elements) # Then create nan elements in corr, p-values and logs matrices for those values # which will be calculated. corr = corr_dff.loc[overlap, overlap] pvalues = pval_dff.loc[overlap, overlap] logs = logs_dff.loc[overlap, overlap] log_timing("recalculate_corr_etc", "update_summary_heatmap-init-corr") # Populate missing elements in correlation matrix and p-values matrix using # stats.pearsonr # Firstly, convert the dff columns needed to numpy (far faster # than doing it each iteration) start_timer("inner") np_overlap = dff[overlap].to_numpy() np_req = dff[required_new].to_numpy() log_timing("inner", "update_summary_heatmap-numpy") # This is negligible ######## # Create new vs existing NumPy arrays, fill with calculated data. Then convert to # DFs, and append those to existing vs existing DF, to create all vs existing DFs ######## new_against_existing_corr = np.full( shape=[len(overlap), len(required_new)], fill_value=np.nan ) new_against_existing_pval = np.full( shape=[len(overlap), len(required_new)], fill_value=np.nan ) new_against_existing_logs = np.full( shape=[len(overlap), len(required_new)], fill_value=np.nan ) log_timing("inner", "update_summary_heatmap-nae_init") for v2 in range(len(required_new)): for v1 in range(len(overlap)): # Mask out any pairs that contain nans (this is done pairwise rather than # using .dropna on the full dataframe) mask = ~np.isnan(np_overlap[:, v1]) & ~np.isnan(np_req[:, v2]) c, p = stats.pearsonr(np_overlap[mask, v1], np_req[mask, v2]) new_against_existing_corr[v1, v2] = c new_against_existing_pval[v1, v2] = p new_against_existing_logs[v1, v2] = -np.log10(p) log_timing("inner", "update_summary_heatmap-nae_calc") new_against_existing_corr_df = pd.DataFrame( data=new_against_existing_corr, columns=required_new, index=overlap ) corr[required_new] = new_against_existing_corr_df # LOG.debug(f'corr {corr}') new_against_existing_pval_df = pd.DataFrame( data=new_against_existing_pval, columns=required_new, index=overlap ) pvalues[required_new] = new_against_existing_pval_df # As new_against_existing_logs doesn't need to be transposed (the transpose is # nans instead), don't use an intermediate DF. logs[required_new] = pd.DataFrame( data=new_against_existing_logs, columns=required_new, index=overlap ) log_timing("inner", "update_summary_heatmap-nae_copy") ######## # Create existing vs new DFs by transpose (apart from logs, whose transpose is nans) ######## existing_against_new_corr = new_against_existing_corr_df.transpose() existing_against_new_pval = new_against_existing_pval_df.transpose() existing_against_new_logs = pd.DataFrame( data=np.nan, columns=overlap, index=required_new ) log_timing("inner", "update_summary_heatmap-nae_transpose") # ####### Create new vs new NumPy arrays, fill with calculated data. Then convert # to DFs, and append those to existing vs new DF, to create all vs new DFs ####### new_against_new_corr = np.full( shape=[len(required_new), len(required_new)], fill_value=np.nan ) new_against_new_pval = np.full( shape=[len(required_new), len(required_new)], fill_value=np.nan ) new_against_new_logs = np.full( shape=[len(required_new), len(required_new)], fill_value=np.nan ) log_timing("inner", "update_summary_heatmap-nan_init") for (v2_idx, v2) in enumerate(required_new): for (v1_idx, v1) in enumerate(required_new): if np.isnan(new_against_new_corr[v1_idx, v2_idx]): # Mask out any pairs that contain nans (this is done pairwise rather # than using .dropna on the full dataframe) mask = ~np.isnan(np_req[:, v1_idx]) & ~np.isnan(np_req[:, v2_idx]) c, p = stats.pearsonr(np_req[mask, v1_idx], np_req[mask, v2_idx]) new_against_new_corr[v1_idx, v2_idx] = c new_against_new_corr[v2_idx, v1_idx] = c new_against_new_pval[v1_idx, v2_idx] = p new_against_new_pval[v2_idx, v1_idx] = p if v1 != v2: if required_new.index(v1) < required_new.index(v2): new_against_new_logs[v1_idx, v2_idx] = -np.log10(p) else: new_against_new_logs[v2_idx, v1_idx] = -np.log10(p) log_timing("inner", "update_summary_heatmap-nan_calc") existing_against_new_corr[required_new] = pd.DataFrame( data=new_against_new_corr, columns=required_new, index=required_new ) existing_against_new_pval[required_new] = pd.DataFrame( data=new_against_new_pval, columns=required_new, index=required_new ) existing_against_new_logs[required_new] = pd.DataFrame( data=new_against_new_logs, columns=required_new, index=required_new ) log_timing("inner", "update_summary_heatmap-nan_copy") ######## # Append all vs new DFs to all vs existing DFs to give all vs all DFs. ######## corr = corr.append(existing_against_new_corr) pvalues = pvalues.append(existing_against_new_pval) logs = logs.append(existing_against_new_logs) log_timing("inner", "update_summary_heatmap-ean_append", restart=False) log_timing("recalculate_corr_etc", "update_summary_heatmap-corr", restart=False) return corr, pvalues, logs @app.callback( [ Output("heatmap", "figure"), Output("corr-loaded-div", "children"), Output("pval-loaded-div", "children"), ], [Input("heatmap-dropdown", "value"), Input("heatmap-clustering-input", "value")], [State("df-loaded-div", "children")], prevent_initial_call=True, ) @timing def update_summary_heatmap(dropdown_values, clusters, df_loaded): LOG.info(f"update_summary_heatmap {dropdown_values} {clusters}") # Guard against the first argument being an empty list, as happens at first # invocation, or df_loaded being False if df_loaded is False or len(dropdown_values) <= 1: fig = go.Figure() return fig, False, False # Load main dataframe dff = cache.load("filtered") # Guard against the dataframe being empty if dff.size == 0: fig = go.Figure() return fig, False, False # Load data from previous calculation corr_dff = cache.load("corr") pval_dff = cache.load("pval") logs_dff = cache.load("logs") # The columns we want to have calculated selected_columns = list(dropdown_values) LOG.debug(f"selected_columns {selected_columns}") corr, pvalues, logs = recalculate_corr_etc( selected_columns, dff, corr_dff, pval_dff, logs_dff ) start_timer("update_summary_heatmap") corr.fillna(0, inplace=True) try: cluster = AgglomerativeClustering( n_clusters=min(clusters, len(selected_columns)), affinity="euclidean", linkage="ward", ) cluster.fit_predict(corr) clx = cluster.labels_ except ValueError: clx = [0] * len(selected_columns) log_timing("update_summary_heatmap", "update_summary_heatmap-cluster") # Save cluster number of each column to a DF and then to feather. cluster_df =
pd.DataFrame(data=clx, index=corr.index, columns=["column_names"])
pandas.DataFrame
import torch import torch.nn as nn from torch.nn import functional as F import math from torch.utils.data import Dataset import os import pandas as pd import pdb import numpy as np import math import pickle import random from sklearn.utils import shuffle class FinalTCGAPCAWG(Dataset): def __init__(self, dataset_name = None, data_dir=None, mode='training', curr_fold=1, block_size=5000, load=False, addtriplettoken=False, addpostoken=False, addgestoken=False, addrt=False, nummut = 0, frac = 0, crossdata=False, crossdatadir=None, pcawg2tgca_class=False, tcga2pcawg_class=False, mutratio = '1-0-0-0-0-0', adddatadir = None): self.dataset_name = dataset_name self.data_dir=data_dir self.mode=mode self.curr_fold=int(curr_fold) self.block_size=block_size self.load=load self.addtriplettoken=addtriplettoken self.addpostoken=addpostoken self.addrt=addrt self.nummut = nummut self.frac = frac self.addgestoken = addgestoken self.crossdata= crossdata self.crossdatadir = crossdatadir self.adddatadir = adddatadir self.pcawg2tgca_class=pcawg2tgca_class self.tcga2pcawg_class=tcga2pcawg_class self.NiSi = False self.SNV = False self.indel = False self.SVMEI = False self.Normal = False if self.nummut > 0 : self.block_size = self.nummut if self.dataset_name == 'finalpcawg': self.training_fold = pd.read_csv('./notebookpcawg/pcawg_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/pcawg_valfold' + str(self.curr_fold) + '.csv',index_col=0) elif self.dataset_name == 'finaltcga': self.training_fold = pd.read_csv('./notebookpcawg/tcga_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/tcga_valfold' + str(self.curr_fold) + '.csv',index_col=0) elif self.dataset_name == 'westcga': self.training_fold = pd.read_csv('./notebookpcawg/tcgawes_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/tcgawes_valfold' + str(self.curr_fold) + '.csv',index_col=0) elif self.dataset_name == 'wgspcawg': self.training_fold = pd.read_csv('./notebookpcawg/pcawgwgs_trainfold' + str(self.curr_fold) + '.csv',index_col=0) self.validation_fold = pd.read_csv('./notebookpcawg/pcawgwgs_valfold' + str(self.curr_fold) + '.csv',index_col=0) if self.adddatadir is not None: adddata = pd.DataFrame(columns=self.validation_fold.columns) adddata.columns = self.validation_fold.columns folder = os.listdir(self.adddatadir) for i in folder: samples = os.listdir(self.adddatadir + i ) for j in samples: if j[0:3] == 'new': counter = pd.read_csv(self.adddatadir + i + '/count_new_' + j[4:],index_col=0) listall = [i,j[4:]] + counter['0'].values.tolist() + [1] pds = pd.DataFrame(listall) pds = pds.T pds.columns=self.validation_fold.columns adddata = adddata.append(pds) adddata = adddata.reset_index(drop=True) self.adddata = adddata #self.validation_fold = self.validation_fold.append(self.adddata) self.validation_fold = self.adddata self.data_dir = self.adddatadir self.load_classinfo() self.vocab_mutation = pd.read_csv('./notebookpcawg/dictMutation.csv',index_col=0) self.allSNV_index = 0 self.mutratio = mutratio.split('-') self.mutratio = [float(i) for i in self.mutratio] if self.mutratio[0]>0: self.NiSi = True if self.mutratio[1]>0: self.SNV = True if self.mutratio[2]>0: self.indel = True if self.mutratio[3]>0: self.SVMEI = True if self.mutratio[4]>0: self.Normal = True if self.NiSi: vocabsize = len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='NiSi']) if self.SNV: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='SNV']) if self.indel: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='indel']) if self.SVMEI: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ'].isin(['MEI','SV'])]) if self.Normal: vocabsize = vocabsize + len(self.vocab_mutation.loc[self.vocab_mutation['typ']=='Normal']) self.vocab_size = vocabsize + 1 #print(self.vocab_size) #pdb.set_trace() self.pd_position_vocab = pd.read_csv('./notebookpcawg/dictChpos.csv',index_col=0) self.pd_ges_vocab = pd.read_csv('./notebookpcawg/dictGES.csv',index_col=0) self.position_size = len(self.pd_position_vocab) + 1 self.ges_size = len(self.pd_ges_vocab) + 1 self.rt_size = 1 self.midstring = '.' + self.dataset_name + str(mutratio) + str(int(self.addtriplettoken)) + str(int(self.addpostoken)) + str(int(self.addgestoken)) + str(int(self.addrt)) + '/' if self.mode == 'validation': if self.crossdata: os.makedirs(self.crossdatadir + self.midstring, exist_ok=True) self.data_dir = self.crossdatadir #pdb.set_trace() else: os.makedirs(self.data_dir + self.midstring, exist_ok=True) def load_classinfo(self): if self.dataset_name == 'finalpcawg': num_class = os.listdir(self.data_dir) name_class = [i for i in num_class if len(i.split('.'))==1] name_class = sorted(name_class) n_samples = [] for idx,nm_class in enumerate(name_class): samples = os.listdir(self.data_dir+nm_class) samples = [x for x in samples if x[:10]=='count_new_'] n_samples.append(len(samples)) data = list(zip(name_class, np.arange(len(name_class)),n_samples)) self.pd_class_info = pd.DataFrame(data,columns=['class_name','class_index','n_samples']) else: num_class = os.listdir(self.data_dir) name_class = [i for i in num_class if len(i.split('.'))==1] name_class = sorted(name_class) n_samples = [] for idx,nm_class in enumerate(name_class): samples = os.listdir(self.data_dir+nm_class) samples = [x for x in samples if x[:10]=='count_new_'] n_samples.append(len(samples)) data = list(zip(name_class, np.arange(len(name_class)),n_samples)) self.pd_class_info = pd.DataFrame(data,columns=['class_name','class_index','n_samples']) if self.crossdata: self.crossdatadir = self.data_dir num_class = os.listdir(self.crossdatadir) name_class = [i for i in num_class if len(i.split('.'))==1] name_class = sorted(name_class) n_samples = [] for idx,nm_class in enumerate(name_class): samples = os.listdir(self.crossdatadir+nm_class) samples = [x for x in samples if x[:10]=='count_new_'] n_samples.append(len(samples)) data = list(zip(name_class, np.arange(len(name_class)),n_samples)) self.pd_class_infoto = pd.DataFrame(data,columns=['class_name','class_index','n_samples']) self.pd_class_crossdata = pd.read_csv('./extfile/crossdata.csv',index_col =0) #pdb.set_trace() def get_data(self,idx): if self.mode=='training': instances=self.training_fold.iloc[idx] elif self.mode=='validation': instances=self.validation_fold.iloc[idx] elif self.mode == 'testing': instances=self.test_data.iloc[idx] #if self.prioritize: # instances=self.training_fold.loc[self.training_fold['samples']=='f8593ac0-9480-22a0-e040-11ac0d48697a.csv'] # instances=instances.iloc[0] target_name = instances['nm_class'] #if self.crossdata: # target_name = self.pd_class_crossdata.loc[self.pd_class_crossdata['tcga_class']==target_name]['class_name'].to_list()[0] samples = instances[1] avail_count = np.asarray(self.mutratio) * self.block_size row_count = instances[['NiSi','SNV','indel','SVMEI','Normal']].to_numpy() diff = avail_count - row_count pos = diff>0 avail_count1 = row_count * pos diff = row_count > avail_count avail_count2 = avail_count * diff avail_count3 = avail_count1 + avail_count2 shadowavail_count3 = avail_count3 shadowavail_count3[0] = row_count[0] if sum(shadowavail_count3) > self.block_size: diff = self.block_size - sum(avail_count3) shadowavail_count3[0] = diff + avail_count3[0] avail_count2 = shadowavail_count3.astype(int) if avail_count2[0]<0: secondmax = avail_count2[np.argmax(avail_count2)] avail_count2 = avail_count2 * 0.7 avail_count = avail_count2 diff = avail_count - row_count pos = diff>0 avail_count1 = row_count * pos diff = row_count > avail_count avail_count2 = avail_count * diff avail_count3 = avail_count1 + avail_count2 shadowavail_count3 = avail_count3 shadowavail_count3[0] = row_count[0] if sum(shadowavail_count3) > self.block_size: diff = self.block_size - sum(avail_count3) shadowavail_count3[0] = diff + avail_count3[0] avail_count2 = shadowavail_count3.astype(int) avail_count = avail_count2 def grab(pd_input,grabcol): return pd_input[grabcol] def allgrab(grabcol): if self.NiSi: #pdb.set_trace() pd_nisi = pd.read_csv(self.data_dir + target_name + '/' + 'NiSi_new_' + samples,index_col=0) pd_nisi = pd_nisi.sample(n = avail_count[0], replace = False) pd_nisi = grab(pd_nisi,grabcol) if self.SNV: pd_SNV = pd.read_csv(self.data_dir + target_name + '/' + 'SNV_new_' + samples,index_col=0) pd_SNV = pd_SNV.sample(n = avail_count[1], replace = False) pd_SNV = grab(pd_SNV,grabcol) pd_nisi = pd_nisi.append(pd_SNV) if self.indel: pd_indel = pd.read_csv(self.data_dir + target_name + '/' + 'indel_new_' + samples,index_col=0) pd_indel = pd_indel.sample(n = avail_count[2], replace = False) pd_indel = grab(pd_indel,grabcol) pd_nisi = pd_nisi.append(pd_indel) if self.SVMEI: pd_meisv = pd.read_csv(self.data_dir + target_name + '/' + 'MEISV_new_' + samples,index_col=0) pd_meisv = pd_meisv.sample(n = avail_count[3], replace = False) pd_meisv = grab(pd_meisv,grabcol) pd_nisi = pd_nisi.append(pd_meisv) if self.Normal: pd_normal = pd.read_csv(self.data_dir + target_name + '/' + 'Normal_new_' + samples,index_col=0) pd_normal = pd_normal.sample(n = avail_count[4], replace = False) pd_normal = grab(pd_normal,grabcol) pd_nisi = pd_nisi.append(pd_normal) pd_nisi = pd_nisi.fillna(0) return pd_nisi if self.addtriplettoken: if self.mode=='training' : pd_nisi = allgrab(['triplettoken']) else: filename = self.data_dir + self.midstring + 'val_' + samples if os.path.isfile(filename): try: pd_nisi = pd.read_csv(filename,index_col=0) except: pd_nisi = allgrab(['triplettoken']) pd_nisi = pd_nisi.dropna() pd_nisi.to_csv(filename) else: pd_nisi = allgrab(['triplettoken']) pd_nisi.to_csv(filename) #pdb.set_trace() if self.addpostoken: if self.mode=='training' : pd_nisi = allgrab(['triplettoken','postoken']) else: #pdb.set_trace() filename = self.data_dir + self.midstring + 'val_' + samples if os.path.isfile(filename): try: pd_nisi = pd.read_csv(filename,index_col=0) except: pd_nisi = allgrab(['triplettoken','postoken']) pdb.set_trace() pd_nisi.to_csv(filename) else: pd_nisi = allgrab(['triplettoken','postoken']) pd_nisi.to_csv(filename) #pdb.set_trace() if self.addgestoken: if self.mode=='training' : pd_nisi = allgrab(['triplettoken','postoken','gestoken']) else: filename = self.data_dir + self.midstring + 'val_' + samples if os.path.isfile(filename): try: pd_nisi = pd.read_csv(filename,index_col=0) except: pd_nisi = allgrab(['triplettoken','postoken','gestoken']) pd_nisi.to_csv(filename) else: pd_nisi = allgrab(['triplettoken','postoken','gestoken']) pd_nisi.to_csv(filename) if self.addrt: if self.mode=='training' : pd_nisi = allgrab(['triplettoken','postoken','gestoken','rt']) else: filename = self.data_dir + self.midstring + 'val_' + samples if os.path.isfile(filename): try: pd_nisi =
pd.read_csv(filename,index_col=0)
pandas.read_csv
import sys, os sys.path.append('yolov3_detector') from yolov3_custom_helper import yolo_detector from darknet import Darknet sys.path.append('pytorch-YOLOv4') from tool.darknet2pytorch import Darknet as DarknetYolov4 import argparse import cv2,time import numpy as np from tool.plateprocessing import find_coordinates, plate_to_string, padder, get_color from tool.utils import alphanumeric_segemntor,plot_boxes_cv2 from tool.torch_utils import * import time from utility_codes.tsv_converter import ConverterTSV use_cuda = True #################### PLATE #################### cfg_v4 = 'pytorch-YOLOv4/cfg/yolo-obj.cfg' weight_v4 = 'weights/plate.weights' m = DarknetYolov4(cfg_v4) m.load_weights(weight_v4) num_classes = m.num_classes class_names = ['plate'] print('Loading weights from %s... Done!' % (weight_v4)) if use_cuda: m.cuda() # m_alpha.cuda() # yolo_vehicle.cuda() vehicle_save_filename = 'tsv_files/plate_tester.tsv' vehicle_writer = ConverterTSV(vehicle_save_filename,file_type='vehicle') image_dir = 'SIH_hackathon/Detection_Day3/Day3' image_files = os.listdir(image_dir) image_files.sort() OUTPUT_SIZE = (1280, 720) for img_name in image_files: frame = cv2.imread(os.path.join(image_dir, img_name)) h, w = frame.shape[0:2] sized = cv2.resize(frame, (m.width, m.height)) sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB) confidence = 0.2 boxes = do_detect(m, sized, confidence , 0.6, use_cuda) result_img, cls_conf_plate, coordinates_all, labels = plot_boxes_cv2(frame, boxes[0],classes_to_detect=class_names,fontScale=0.5,thick=2, savename=False, class_names=class_names) cls_conf_plate = float(cls_conf_plate) for i,co in enumerate(coordinates_all): print(co) data = [img_name, co, labels[i]] vehicle_writer.put_vehicle(img_name, co, 'plate') # vehicle_writer.put_vehicle(img_loc, c, 'plate') cv2.imshow('Image', result_img) if cv2.waitKey(1) & 0xff == ord('q'): break # cv2.waitKey(0) cv2.destroyAllWindows() import pandas as pd def merge_and_save(fp1, fp2, outfile_path): tsv_file1 =
pd.read_csv(fp1, sep='\t', header=0)
pandas.read_csv
import inspect import os import datetime from collections import OrderedDict import numpy as np from numpy import nan, array import pandas as pd import pytest from pandas.util.testing import assert_series_equal, assert_frame_equal from numpy.testing import assert_allclose from pvlib import tmy from pvlib import pvsystem from pvlib import clearsky from pvlib import irradiance from pvlib import atmosphere from pvlib import solarposition from pvlib.location import Location from conftest import needs_numpy_1_10, requires_scipy latitude = 32.2 longitude = -111 tus = Location(latitude, longitude, 'US/Arizona', 700, 'Tucson') times = pd.date_range(start=datetime.datetime(2014,1,1), end=datetime.datetime(2014,1,2), freq='1Min') ephem_data = solarposition.get_solarposition(times, latitude=latitude, longitude=longitude, method='nrel_numpy') am = atmosphere.relativeairmass(ephem_data.apparent_zenith) irrad_data = clearsky.ineichen(ephem_data['apparent_zenith'], am, linke_turbidity=3) aoi = irradiance.aoi(0, 0, ephem_data['apparent_zenith'], ephem_data['azimuth']) meta = {'latitude': 37.8, 'longitude': -122.3, 'altitude': 10, 'Name': 'Oakland', 'State': 'CA', 'TZ': -8} pvlib_abspath = os.path.dirname(os.path.abspath(inspect.getfile(tmy))) tmy3_testfile = os.path.join(pvlib_abspath, 'data', '703165TY.csv') tmy2_testfile = os.path.join(pvlib_abspath, 'data', '12839.tm2') tmy3_data, tmy3_metadata = tmy.readtmy3(tmy3_testfile) tmy2_data, tmy2_metadata = tmy.readtmy2(tmy2_testfile) def test_systemdef_tmy3(): expected = {'tz': -9.0, 'albedo': 0.1, 'altitude': 7.0, 'latitude': 55.317, 'longitude': -160.517, 'name': '"SAND POINT"', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 0} assert expected == pvsystem.systemdef(tmy3_metadata, 0, 0, .1, 5, 5) def test_systemdef_tmy2(): expected = {'tz': -5, 'albedo': 0.1, 'altitude': 2.0, 'latitude': 25.8, 'longitude': -80.26666666666667, 'name': 'MIAMI', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 0} assert expected == pvsystem.systemdef(tmy2_metadata, 0, 0, .1, 5, 5) def test_systemdef_dict(): expected = {'tz': -8, ## Note that TZ is float, but Location sets tz as string 'albedo': 0.1, 'altitude': 10, 'latitude': 37.8, 'longitude': -122.3, 'name': 'Oakland', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 5} assert expected == pvsystem.systemdef(meta, 5, 0, .1, 5, 5) @needs_numpy_1_10 def test_ashraeiam(): thetas = np.linspace(-90, 90, 9) iam = pvsystem.ashraeiam(thetas, .05) expected = np.array([ nan, 0.9193437 , 0.97928932, 0.99588039, 1. , 0.99588039, 0.97928932, 0.9193437 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_PVSystem_ashraeiam(): module_parameters = pd.Series({'b': 0.05}) system = pvsystem.PVSystem(module_parameters=module_parameters) thetas = np.linspace(-90, 90, 9) iam = system.ashraeiam(thetas) expected = np.array([ nan, 0.9193437 , 0.97928932, 0.99588039, 1. , 0.99588039, 0.97928932, 0.9193437 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_physicaliam(): thetas = np.linspace(-90, 90, 9) iam = pvsystem.physicaliam(thetas, 1.526, 0.002, 4) expected = np.array([ nan, 0.8893998 , 0.98797788, 0.99926198, nan, 0.99926198, 0.98797788, 0.8893998 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_PVSystem_physicaliam(): module_parameters = pd.Series({'K': 4, 'L': 0.002, 'n': 1.526}) system = pvsystem.PVSystem(module_parameters=module_parameters) thetas = np.linspace(-90, 90, 9) iam = system.physicaliam(thetas) expected = np.array([ nan, 0.8893998 , 0.98797788, 0.99926198, nan, 0.99926198, 0.98797788, 0.8893998 , nan]) assert_allclose(iam, expected, equal_nan=True) # if this completes successfully we'll be able to do more tests below. @pytest.fixture(scope="session") def sam_data(): data = {} data['cecmod'] = pvsystem.retrieve_sam('cecmod') data['sandiamod'] = pvsystem.retrieve_sam('sandiamod') data['cecinverter'] = pvsystem.retrieve_sam('cecinverter') return data @pytest.fixture(scope="session") def sapm_module_params(sam_data): modules = sam_data['sandiamod'] module = 'Canadian_Solar_CS5P_220M___2009_' module_parameters = modules[module] return module_parameters @pytest.fixture(scope="session") def cec_module_params(sam_data): modules = sam_data['cecmod'] module = 'Example_Module' module_parameters = modules[module] return module_parameters def test_sapm(sapm_module_params): times = pd.DatetimeIndex(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1, 0.5, 1.1, np.nan, 1], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params) expected = pd.DataFrame(np.array( [[ -5.0608322 , -4.65037767, nan, nan, nan, -4.91119927, -4.15367716], [ 2.545575 , 2.28773882, 56.86182059, 47.21121608, 108.00693168, 2.48357383, 1.71782772], [ 5.65584763, 5.01709903, 54.1943277 , 42.51861718, 213.32011294, 5.52987899, 3.48660728], [ nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=times) assert_frame_equal(out, expected, check_less_precise=4) out = pvsystem.sapm(1, 25, sapm_module_params) expected = OrderedDict() expected['i_sc'] = 5.09115 expected['i_mp'] = 4.5462909092579995 expected['v_oc'] = 59.260800000000003 expected['v_mp'] = 48.315600000000003 expected['p_mp'] = 219.65677305534581 expected['i_x'] = 4.9759899999999995 expected['i_xx'] = 3.1880204359100004 for k, v in expected.items(): assert_allclose(out[k], v, atol=1e-4) # just make sure it works with a dict input pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params.to_dict()) def test_PVSystem_sapm(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times =
pd.DatetimeIndex(start='2015-01-01', periods=5, freq='12H')
pandas.DatetimeIndex
import warnings from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import tree import pandas as pd import numpy as np import matplotlib.pyplot as plt import pydotplus import graphviz import os if __name__ == "__main__": warnings.filterwarnings(action='ignore') pd.set_option('display.max_rows', None) # Edit (10/19) cleaned_3.csv contains only responses from the core section # columns. os.listdir(os.getcwd()) data =
pd.read_csv("BRFSS_core_cleaned.csv", decimal=',')
pandas.read_csv
from bs4 import BeautifulSoup import pandas as pd from pprint import pprint import re import demjson from utils import Apps class DetailPage: def __init__(self, app, page_source): self.df_change_log =
pd.DataFrame()
pandas.DataFrame
from kfp.components import InputPath, OutputPath from kfp.v2.dsl import (Artifact, Dataset, Input, Model, Output, Metrics, ClassificationMetrics) def get_full_tech_indi( # tech_indi_dataset01_path: InputPath('DataFrame'), # tech_indi_dataset02_path: InputPath('DataFrame'), # tech_indi_dataset03_path: InputPath('DataFrame'), # tech_indi_dataset04_path: InputPath('DataFrame'), # tech_indi_dataset05_path: InputPath('DataFrame'), # full_tech_indi_dataset_path: OutputPath('DataFrame') tech_indi_dataset01: Input[Dataset], tech_indi_dataset02: Input[Dataset], tech_indi_dataset03: Input[Dataset], tech_indi_dataset04: Input[Dataset], tech_indi_dataset05: Input[Dataset], tech_indi_dataset06: Input[Dataset], tech_indi_dataset07: Input[Dataset], tech_indi_dataset08: Input[Dataset], tech_indi_dataset09: Input[Dataset], tech_indi_dataset10: Input[Dataset], tech_indi_dataset11: Input[Dataset], full_tech_indi_dataset: Output[Dataset] ): import pandas as pd df_01 = pd.read_pickle(tech_indi_dataset01.path) df_02 = pd.read_pickle(tech_indi_dataset02.path) df_03 = pd.read_pickle(tech_indi_dataset03.path) df_04 = pd.read_pickle(tech_indi_dataset04.path) df_05 = pd.read_pickle(tech_indi_dataset05.path) df_06 = pd.read_pickle(tech_indi_dataset06.path) df_07 =
pd.read_pickle(tech_indi_dataset07.path)
pandas.read_pickle
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] papermill={"duration": 0.024011, "end_time": "2021-02-02T22:30:31.951734", "exception": false, "start_time": "2021-02-02T22:30:31.927723", "status": "completed"} tags=[] # # QA queries on new CDR_deid COPE Survey # # Quality checks performed on a new CDR_deid dataset using QA queries # + papermill={"duration": 0.709639, "end_time": "2021-02-02T22:30:32.661373", "exception": false, "start_time": "2021-02-02T22:30:31.951734", "status": "completed"} tags=[] import urllib import pandas as pd pd.options.display.max_rows = 120 # + papermill={"duration": 0.023643, "end_time": "2021-02-02T22:30:31.880820", "exception": false, "start_time": "2021-02-02T22:30:31.857177", "status": "completed"} tags=["parameters"] # Parameters project_id = "" com_cdr = "" deid_cdr = "" deid_sandbox="" # deid_base_cdr="" # - # df will have a summary in the end df = pd.DataFrame(columns = ['query', 'result']) # + [markdown] papermill={"duration": 0.02327, "end_time": "2021-02-02T22:30:32.708257", "exception": false, "start_time": "2021-02-02T22:30:32.684987", "status": "completed"} tags=[] # # 1 Verify that the COPE Survey Data identified to be suppressed as de-identification action in OBSERVATION table have been removed from the de-id dataset. # # see spread sheet COPE - All Surveys Privacy Rules for details # # https://docs.google.com/spreadsheets/d/1UuUVcRdlp2HkBaVdROFsM4ZX_bfffg6ZoEbqj94MlXU/edit#gid=0 # # Related tickets [DC-892] [DC-1752] # # [DC-1752] Refactor analysis 1 so that it provides the observation_source_concept_id, concept_code, concept_name, vocabulary_id, row count per cope survey concept (example query below). Reword the title text to read: Verify that the COPE Survey concepts identified to be suppressed as de-identification action have been removed. # # [DC-1784] 1310144, 1310145, 1310148, 715725, 715724 # # The following concepts should be suppressed # # 715711, 1333327, 1333326, 1333014, 1333118, 1332742,1333324 ,1333012 ,1333234, # # 903632,702686,715714, 715724, 715725, 715726, 1310054, 1310058, 1310066, 1310146, 1310147, 1333234, 1310065, # # 596884, 596885, 596886, 596887, 596888, 596889, 1310137,1333016,1310148,1310145,1310144 # + query = f''' SELECT observation_source_concept_id, concept_name,concept_code,vocabulary_id,observation_concept_id,COUNT(1) AS n_row_not_pass FROM `{project_id}.{deid_cdr}.observation` ob JOIN `{project_id}.{deid_cdr}.concept` c ON ob.observation_source_concept_id=c.concept_id WHERE observation_source_concept_id IN (715711, 1333327, 1333326, 1333014, 1333118, 1332742,1333324 ,1333012 ,1333234, 903632,702686,715714, 715724, 715725, 715726, 1310054, 1310058, 1310066, 1310146, 1310147, 1333234, 1310065, 596884, 596885, 596886, 596887, 596888, 596889, 1310137,1333016,1310148,1310145,1310144) OR observation_concept_id IN (715711, 1333327, 1333326, 1333014, 1333118, 1332742,1333324 ,1333012 ,1333234, 903632,702686,715714, 715724, 715725, 715726, 1310054, 1310058, 1310066, 1310146, 1310147, 1333234, 1310065, 596884, 596885, 596886, 596887, 596888, 596889, 1310137,1333016,1310148,1310145,1310144) GROUP BY 1,2,3,4,5 ORDER BY n_row_not_pass DESC ''' df1=pd.read_gbq(query, dialect='standard') if df1['n_row_not_pass'].sum()==0: df = df.append({'query' : 'Query1 No COPE in deid_observation table', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query1 No COPE in deid_observation table' , 'result' : ''}, ignore_index = True) df1 # + [markdown] papermill={"duration": 0.023633, "end_time": "2021-02-02T22:30:36.860798", "exception": false, "start_time": "2021-02-02T22:30:36.837165", "status": "completed"} tags=[] # # 2 Verify if a survey version is provided for the COPE survey. # # [DC-1040] # # expected results: all the person_id and the questionnaire_response_id has a survey_version_concept_id # original sql missed something. # # these should be generalized 2100000002,2100000003,2100000004 # - query = f''' WITH df1 as ( SELECT distinct survey_version_concept_id FROM `{project_id}.{deid_cdr}.concept` c1 LEFT JOIN `{project_id}.{deid_cdr}.concept_relationship` cr ON cr.concept_id_2 = c1.concept_id JOIN `{project_id}.{deid_cdr}.observation` ob on ob.observation_concept_id=c1.concept_id LEFT JOIN `{project_id}.{deid_cdr}.observation_ext` ext USING(observation_id) WHERE cr.concept_id_1 IN (1333174,1333343,1333207,1333310,1332811,1332812,1332715,1332813,1333101,1332814,1332815,1332816,1332817,1332818) AND cr.relationship_id = "PPI parent code of" ) SELECT COUNT (*) AS n_row_not_pass FROM df1 WHERE survey_version_concept_id=0 or survey_version_concept_id IS NULL ''' df1=pd.read_gbq(query, dialect='standard') if df1.loc[0].sum()==0: df = df.append({'query' : 'Query2 survey version provided', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query2 survey version provided', 'result' : ''}, ignore_index = True) df1 # + # new cdr query = f''' SELECT distinct survey_version_concept_id FROM `{project_id}.{deid_cdr}.observation` d JOIN `{project_id}.{deid_cdr}.observation_ext` e ON e.observation_id = d.observation_id ''' df1=pd.read_gbq(query, dialect='standard') df1.style.format("{:.0f}") # + [markdown] papermill={"duration": 0.023649, "end_time": "2021-02-02T22:30:39.115495", "exception": false, "start_time": "2021-02-02T22:30:39.091846", "status": "completed"} tags=[] # # 3 Verify that all structured concepts related to COVID are NOT suppressed in EHR tables # # DC-891 # # 756055,4100065,37311061,439676,37311060,45763724 # # update, Remove analyses 3, 4, and 5 as suppression of COVID concepts is no longer part of RT privacy requirements,[DC-1752] # + query = f''' SELECT measurement_concept_id, concept_name,concept_code,vocabulary_id,COUNT(1) AS n_row_not_pass FROM `{project_id}.{deid_cdr}.measurement` ob JOIN `{project_id}.{deid_cdr}.concept` c ON ob.measurement_concept_id=c.concept_id WHERE measurement_concept_id=756055 GROUP BY 1,2,3,4 ORDER BY n_row_not_pass DESC ''' df1=
pd.read_gbq(query, dialect='standard')
pandas.read_gbq
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Mar 11 12:08:22 2017 @author: yazar """ import numpy as np import pandas as pd from scipy import linalg from sklearn import preprocessing from matplotlib import pyplot as plt from scipy import optimize def sigmoid(x): return 1 / (1 + np.exp(-x)) def _RSS(theta, X, y): # number of training examples m = len(y) theta = theta.reshape(-1, 1) y = y.reshape(-1, 1) prediction = np.dot(X, theta) mean_error = prediction - y return 1/(2*m) * np.sum(np.power(mean_error, 2)) def _logisticCostFunc(theta, X, y): """ compute cost for logistic regression Parameters: ----------- theta : ndarray, shape (n_features,) Regression coefficients X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values Returns ------- cost : float cost evaluation using logistic cost function """ # number of training examples m = len(y) y = y.reshape(-1, 1) theta = theta.reshape(-1, 1) J = 1/m * (np.dot(-y.T, np.log(sigmoid(np.dot(X, theta)))) - np.dot((1-y).T, np.log(1 - sigmoid(np.dot(X, theta))))) return np.asscalar(J) def compute_gradient(theta, X, y): """ Compute gradient. This will be passed to minimization functions Parameters: ----------- theta : ndarray, shape (n_features,) Regression coefficients X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values Returns ------- gradient : ndarray, shape (n_features,) """ m = len(y) y = y.reshape(-1, 1) theta = theta.reshape(-1, 1) grad = 1/m * np.dot(X.T, sigmoid(np.dot(X, theta)) - y) return grad.ravel() def compute_cost(theta, X, y, method='RSS'): """ Compute cost to be used in gradient descent Parameters: ----------- X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values theta : ndarray, shape (n_features,) Regression coefficients method : cost calculation method, default to 'RSS' Only RSS is supported for now Returns ------- cost : float """ print("cost method is {0}".format(method)) if method == 'RSS': return _RSS(theta, X, y) elif method == 'logistic': return _logisticCostFunc(theta, X, y) else: raise ValueError("only 'RSS' and 'Logistic' methods are supported.") def normalEqn(X, y): """ Computes the closed-form solution to linear regression using the normal equations. Parameters: ----------- X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values Returns ------- theta : {array-like}, shape (n_features,) """ theta = np.dot(np.dot(linalg.inv(np.dot(X.T, X)), X.T), y) return theta def gradient_descent(X, y, theta, learning_rate, num_iters, cost_func='RSS', ): """ Performs gradient descent to learn theta theta = gradient_descent(x, y, theta, alpha, num_iters) updates theta by taking num_iters gradient steps with learning rate alpha Parameters: ----------- X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values theta : ndarray, shape (n_features,) Regression coefficients learning_rate : float Controls the speed of convergence, a.k.a alpha cost_func : cost calculation method, default to 'RSS' Only RSS is supported for now num_iters : int Number of iterations Returns ------- calculated theta : ndarray, shape (n_features,) Regression coefficients that minimize the cost function cost : ndarray, shape (num_iters,) Cost calculated for each iteration """ print("running gradient descent algorithm...") # Initialize some useful values m = len(y) # number of training examples cost = np.zeros((num_iters,)) y = y.reshape(-1, 1) for i in range(num_iters): # Perform a single gradient step on the parameter vector prediction = np.dot(X, theta) # m size vector mean_error = prediction - y # m size vector theta = theta - learning_rate/m * np.dot(X.T, mean_error) # Save the cost J in every iteration cost[i] = compute_cost(X, y, theta) return theta, cost def plotData(X, y, ax1=None): train_y = pd.DataFrame(y, columns=['y']) train = pd.concat((
pd.DataFrame(X)
pandas.DataFrame
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if PY2 and isinstance(left, string_types): # left needs to be printable in native text type in python2 left = left.encode('utf-8') if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) if PY2 and isinstance(right, string_types): # right needs to be printable in native text type in python2 right = right.encode('utf-8') msg = """{obj} are different {message} [left]: {left} [right]: {right}""".format(obj=obj, message=message, left=left, right=right) if diff is not None: msg += "\n[diff]: {diff}".format(diff=diff) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj='numpy array'): """ Checks that 'np.ndarray' is equivalent Parameters ---------- left : np.ndarray or iterable right : np.ndarray or iterable strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype: bool, default True check dtype if both a and b are np.ndarray err_msg : str, default None If provided, used as assertion message check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, 'base', None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == 'same': if left_base is not right_base: msg = "{left!r} is not {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) elif check_same == 'copy': if left_base is right_base: msg = "{left!r} is {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail(obj, '{obj} shapes are different' .format(obj=obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal('dtype', left, right, obj=obj) return True def assert_extension_array_equal(left, right, check_dtype=True, check_less_precise=False, check_exact=False): """Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), 'left is not an ExtensionArray' assert isinstance(right, ExtensionArray), 'right is not an ExtensionArray' if check_dtype: assert_attr_equal('dtype', left, right, obj='ExtensionArray') left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj='ExtensionArray NA mask') left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj='ExtensionArray') else: _testing.assert_almost_equal(left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj='ExtensionArray') # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = '{len}, {left}'.format(len=len(left), left=left.index) msg2 = '{len}, {right}'.format(len=len(right), right=right.index) raise_assert_detail(obj, 'Series length are different', msg1, msg2) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if (is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical): pass else: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype, obj='{obj}'.format(obj=obj),) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if (is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right)): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ('[datetimelike_compat=True] {left} is not equal to ' '{right}.').format(left=left.values, right=right.values) raise AssertionError(msg) else: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif (is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not is_categorical_dtype(right)): return assert_extension_array_equal(left.array, right.array) else: _testing.assert_almost_equal(left.get_values(), right.get_values(), check_less_precise=check_less_precise, check_dtype=check_dtype, obj='{obj}'.format(obj=obj)) # metadata comparison if check_names: assert_attr_equal('name', left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) # This could be refactored to use the NDFrame.equals method def assert_frame_equal(left, right, check_dtype=True, check_index_type='equiv', check_column_type='equiv', check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj='DataFrame'): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool / string {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical, i.e. * left.index.names == right.index.names * left.columns.names == right.columns.names by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas.util.testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): AssertionError: Attributes are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: # ToDo: There are some tests using rhs is SparseDataFrame # lhs is DataFrame. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail(obj, 'DataFrame shape mismatch', '{shape!r}'.format(shape=left.shape), '{shape!r}'.format(shape=right.shape)) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) # column comparison assert_index_equal(left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.columns'.format(obj=obj)) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal(lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj='DataFrame.blocks') # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj='DataFrame.iloc[:, {idx}]'.format(idx=i)) def assert_panel_equal(left, right, check_dtype=True, check_panel_type=False, check_less_precise=False, check_names=False, by_blocks=False, obj='Panel'): """Check that left and right Panels are equal. Parameters ---------- left : Panel (or nd) right : Panel (or nd) check_dtype : bool, default True Whether to check the Panel dtype is identical. check_panel_type : bool, default False Whether to check the Panel class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_names : bool, default True Whether to check the Index names attribute. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. obj : str, default 'Panel' Specify the object name being compared, internally used to show the appropriate assertion message. """ if check_panel_type: assert_class_equal(left, right, obj=obj) for axis in left._AXIS_ORDERS: left_ind = getattr(left, axis) right_ind = getattr(right, axis) assert_index_equal(left_ind, right_ind, check_names=check_names) if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks array_equivalent(lblocks[dtype].values, rblocks[dtype].values) else: # can potentially be slow for i, item in enumerate(left._get_axis(0)): msg = "non-matching item (right) '{item}'".format(item=item) assert item in right, msg litem = left.iloc[i] ritem = right.iloc[i] assert_frame_equal(litem, ritem, check_less_precise=check_less_precise, check_names=check_names) for i, item in enumerate(right._get_axis(0)): msg = "non-matching item (left) '{item}'".format(item=item) assert item in left, msg def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left : Index, Series, DataFrame, ExtensionArray, or np.ndarray right : Index, Series, DataFrame, ExtensionArray, or np.ndarray **kwargs """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right, check_dtype=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False): """Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray check_dtype : bool, default True Whether to check the data dtype is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. """ _check_isinstance(left, right, pd.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values, check_dtype=check_dtype) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) if not check_kind: left_index = left.sp_index.to_block_index() right_index = right.sp_index.to_block_index() else: left_index = left.sp_index right_index = right.sp_index if consolidate_block_indices and left.kind == 'block': # we'll probably remove this hack... left_index = left_index.to_int_index().to_block_index() right_index = right_index.to_int_index().to_block_index() if not left_index.equals(right_index): raise_assert_detail('SparseArray.index', 'index are not equal', left_index, right_index) else: # Just ensure a pass if check_fill_value: assert_attr_equal('fill_value', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(left.values, right.values, check_dtype=check_dtype) def assert_sp_series_equal(left, right, check_dtype=True, exact_indices=True, check_series_type=True, check_names=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseSeries'): """Check that the left and right SparseSeries are equal. Parameters ---------- left : SparseSeries right : SparseSeries check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True check_series_type : bool, default True Whether to check the SparseSeries class is identical. check_names : bool, default True Whether to check the SparseSeries name attribute. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseSeries' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseSeries) if check_series_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_sp_array_equal(left.values, right.values, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices) if check_names: assert_attr_equal('name', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(np.asarray(left.values), np.asarray(right.values)) def assert_sp_frame_equal(left, right, check_dtype=True, exact_indices=True, check_frame_type=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseDataFrame'): """Check that the left and right SparseDataFrame are equal. Parameters ---------- left : SparseDataFrame right : SparseDataFrame check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True SparseSeries SparseIndex objects must be exactly the same, otherwise just compare dense representations. check_frame_type : bool, default True Whether to check the SparseDataFrame class is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseDataFrame' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseDataFrame) if check_frame_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_index_equal(left.columns, right.columns, obj='{obj}.columns'.format(obj=obj)) if check_fill_value: assert_attr_equal('default_fill_value', left, right, obj=obj) for col, series in compat.iteritems(left): assert (col in right) # trade-off? if exact_indices: assert_sp_series_equal( series, right[col], check_dtype=check_dtype, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices ) else: assert_series_equal(series.to_dense(), right[col].to_dense(), check_dtype=check_dtype) # do I care? # assert(left.default_kind == right.default_kind) for col in right: assert (col in left) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, "Did not contain item: '{key!r}'".format(key=k) def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ("Expected object {obj1!r} and object {obj2!r} to be " "different objects, but they were the same object." ).format(obj1=type(elem1), obj2=type(elem2)) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] def getArangeMat(): return np.arange(N * K).reshape((N, K)) # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex(np.random.choice(x, k), name=name, **kwargs) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(lrange(k), name=name) def makeUIntIndex(k=10, name=None): return Index([2**63 + i for i in lrange(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq='B', name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq='D', name=None, **kwargs): return pd.timedelta_range(start='1 day', periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = PeriodIndex(start=dt, periods=k, freq='B', name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product( (('foo', 'bar'), (1, 2)), names=names, **kwargs) def all_index_generator(k=10): """Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """Generator which can be iterated over to get instances of all the classes which represent time-seires. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeObjectSeries(name=None): dateIndex = makeDateIndex(N) dateIndex = Index(dateIndex, dtype=object) index = makeStringIndex(N) return Series(dateIndex, index=index, name=name) def getSeriesData(): index = makeStringIndex(N) return {c: Series(randn(N), index=index) for c in getCols(K)} def makeTimeSeries(nper=None, freq='B', name=None): if nper is None: nper = N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq='B'): return {c: makeTimeSeries(nper, freq) for c in getCols(K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(K)} # make frame def makeTimeDataFrame(nper=None, freq='B'): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(['a', 'b', 'c', 'd', 'e']) data = { 'A': [0., 1., 2., 3., 4.], 'B': [0., 1., 0., 1., 0.], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': bdate_range('1/1/2009', periods=5) } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makePanel(nper=None): with warnings.catch_warnings(record=True): warnings.filterwarnings("ignore", "\\nPanel", FutureWarning) cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]] data = {c: makeTimeDataFrame(nper) for c in cols} return Panel.fromDict(data) def makePeriodPanel(nper=None): with warnings.catch_warnings(record=True): warnings.filterwarnings("ignore", "\\nPanel", FutureWarning) cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]] data = {c: makePeriodFrame(nper) for c in cols} return Panel.fromDict(data) def makeCustomIndex(nentries, nlevels, prefix='#', names=False, ndupe_l=None, idx_type=None): """Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert (is_sequence(ndupe_l) and len(ndupe_l) <= nlevels) assert (names is None or names is False or names is True or len(names) is nlevels) assert idx_type is None or (idx_type in ('i', 'f', 's', 'u', 'dt', 'p', 'td') and nlevels == 1) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singelton case uniform if isinstance(names, compat.string_types) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict(i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError('"{idx_type}" is not a legal value for `idx_type`, ' 'use "i"/"f"/"s"/"u"/"dt/"p"/"td".' .format(idx_type=idx_type)) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return lmap(int, numeric_tuple) # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = '{prefix}_l{i}_g{j}'.format(prefix=prefix, i=i, j=j) cnt[label] = ndupe_l[i] # cute Counter trick result = list(sorted(cnt.elements(), key=keyfunc))[:nentries] tuples.append(result) tuples = lzip(*tuples) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index =
Index(tuples[0], name=names[0])
pandas.Index
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import sys import traceback from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains import time import pandas as pd import scrape_common as sc def load_with_selenium(url): options = Options() options.headless = True driver = webdriver.Firefox(options=options) driver.get(url) wait = WebDriverWait(driver, 10) wait.until(EC.presence_of_element_located((By.CLASS_NAME, "columnHeaders"))) wait.until(EC.presence_of_element_located((By.XPATH, "//input[contains(@class, 'date-slicer-input')]"))) # select the complete date range by setting 2020-02-24 as start date begin = driver.find_element(By.XPATH, "//input[contains(@class, 'date-slicer-input')]") begin.click() begin.send_keys(Keys.CONTROL + "a") begin.send_keys(Keys.DELETE) begin.clear() begin.send_keys("2/24/2020") # 2020-02-24 is the date of the earliest data from JU begin.send_keys(Keys.ENTER) driver.find_element(By.XPATH, "//div[contains(@class, 'slicer-header')]").click() time.sleep(5) return driver def scrape_page_part(html): table = BeautifulSoup(html, 'html.parser') headers = [" ".join(cell.stripped_strings) for cell in table.find(class_='columnHeaders').find_all('div', class_='pivotTableCellWrap')] assert len(headers) == 6, f"Number of headers changed: {len(headers)} != 6" assert headers[0] == 'Date', f"Header changed to {headers[0]}" assert headers[1] == 'Nouveaux cas', f"Header changed to {headers[1]}" assert headers[2] == 'Cumul des cas confirmés', f"Header changed to {headers[2]}" assert headers[3] == 'Cas actuellement hospitalisés', f"Header changed to {headers[3]}" assert headers[4] == 'Cas actuellement en soins intensifs', f"Header changed to {headers[4]}" assert headers[5] == 'Nouveaux décès', f"Header changed to {headers[5]}" columns = table.find(class_='bodyCells').find('div', recursive=False).find('div', recursive=False).findChildren('div', recursive=False) assert len(columns) == 6, f"Number of columns changed: {len(columns)} != 6" cols = {} for i, col in enumerate(columns): values = [] for cell in col.find_all('div'): values.append(" ".join(cell.stripped_strings).strip()) cols[headers[i]] = values rows =
pd.DataFrame.from_dict(cols)
pandas.DataFrame.from_dict
''' Naming Conventions for Features: c_ = categorical i_ = categoricals as indexes n_ = numerical b_ = binary d_ = date ''' from . import series, dataframe,\ dataframe_engineer, dataframe_format_convert import pandas as pd from . import misc def _extend_df(name, function): df =
pd.DataFrame({})
pandas.DataFrame
import requests import pandas as pd import holoviews as hv # Instead of using hv.extension, grab a bokeh renderer renderer = hv.renderer('bokeh') data = requests.get("https://squash-api.lsst.codes/measurements").json() meas_df =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
import copy import re from textwrap import dedent import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, ) import pandas._testing as tm jinja2 = pytest.importorskip("jinja2") from pandas.io.formats.style import ( # isort:skip Styler, ) from pandas.io.formats.style_render import ( _get_level_lengths, _get_trimming_maximums, maybe_convert_css_to_tuples, non_reducing_slice, ) @pytest.fixture def mi_df(): return DataFrame( [[1, 2], [3, 4]], index=MultiIndex.from_product([["i0"], ["i1_a", "i1_b"]]), columns=MultiIndex.from_product([["c0"], ["c1_a", "c1_b"]]), dtype=int, ) @pytest.fixture def mi_styler(mi_df): return Styler(mi_df, uuid_len=0) @pytest.fixture def mi_styler_comp(mi_styler): # comprehensively add features to mi_styler mi_styler = mi_styler._copy(deepcopy=True) mi_styler.css = {**mi_styler.css, **{"row": "ROW", "col": "COL"}} mi_styler.uuid_len = 5 mi_styler.uuid = "abcde" mi_styler.set_caption("capt") mi_styler.set_table_styles([{"selector": "a", "props": "a:v;"}]) mi_styler.hide(axis="columns") mi_styler.hide([("c0", "c1_a")], axis="columns", names=True) mi_styler.hide(axis="index") mi_styler.hide([("i0", "i1_a")], axis="index", names=True) mi_styler.set_table_attributes('class="box"') mi_styler.format(na_rep="MISSING", precision=3) mi_styler.format_index(precision=2, axis=0) mi_styler.format_index(precision=4, axis=1) mi_styler.highlight_max(axis=None) mi_styler.applymap_index(lambda x: "color: white;", axis=0) mi_styler.applymap_index(lambda x: "color: black;", axis=1) mi_styler.set_td_classes( DataFrame( [["a", "b"], ["a", "c"]], index=mi_styler.index, columns=mi_styler.columns ) ) mi_styler.set_tooltips( DataFrame( [["a2", "b2"], ["a2", "c2"]], index=mi_styler.index, columns=mi_styler.columns, ) ) return mi_styler @pytest.mark.parametrize( "sparse_columns, exp_cols", [ ( True, [ {"is_visible": True, "attributes": 'colspan="2"', "value": "c0"}, {"is_visible": False, "attributes": "", "value": "c0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "c0"}, {"is_visible": True, "attributes": "", "value": "c0"}, ], ), ], ) def test_mi_styler_sparsify_columns(mi_styler, sparse_columns, exp_cols): exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"} exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"} ctx = mi_styler._translate(True, sparse_columns) assert exp_cols[0].items() <= ctx["head"][0][2].items() assert exp_cols[1].items() <= ctx["head"][0][3].items() assert exp_l1_c0.items() <= ctx["head"][1][2].items() assert exp_l1_c1.items() <= ctx["head"][1][3].items() @pytest.mark.parametrize( "sparse_index, exp_rows", [ ( True, [ {"is_visible": True, "attributes": 'rowspan="2"', "value": "i0"}, {"is_visible": False, "attributes": "", "value": "i0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "i0"}, {"is_visible": True, "attributes": "", "value": "i0"}, ], ), ], ) def test_mi_styler_sparsify_index(mi_styler, sparse_index, exp_rows): exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"} exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"} ctx = mi_styler._translate(sparse_index, True) assert exp_rows[0].items() <= ctx["body"][0][0].items() assert exp_rows[1].items() <= ctx["body"][1][0].items() assert exp_l1_r0.items() <= ctx["body"][0][1].items() assert exp_l1_r1.items() <= ctx["body"][1][1].items() def test_mi_styler_sparsify_options(mi_styler): with pd.option_context("styler.sparse.index", False): html1 = mi_styler.to_html() with pd.option_context("styler.sparse.index", True): html2 = mi_styler.to_html() assert html1 != html2 with pd.option_context("styler.sparse.columns", False): html1 = mi_styler.to_html() with pd.option_context("styler.sparse.columns", True): html2 = mi_styler.to_html() assert html1 != html2 @pytest.mark.parametrize( "rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn", [ (100, 100, 100, None, None, 12, 6), # reduce to (12, 6) < 100 elements (1000, 3, 750, None, None, 250, 3), # dynamically reduce rows to 250, keep cols (4, 1000, 500, None, None, 4, 125), # dynamically reduce cols to 125, keep rows (1000, 3, 750, 10, None, 10, 3), # overwrite above dynamics with max_row (4, 1000, 500, None, 5, 4, 5), # overwrite above dynamics with max_col (100, 100, 700, 50, 50, 25, 25), # rows cols below given maxes so < 700 elmts ], ) def test_trimming_maximum(rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn): rn, cn = _get_trimming_maximums( rn, cn, max_els, max_rows, max_cols, scaling_factor=0.5 ) assert (rn, cn) == (exp_rn, exp_cn) @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_rows", 3), ], ) def test_render_trimming_rows(option, val): # test auto and specific trimming of rows df = DataFrame(np.arange(120).reshape(60, 2)) with pd.option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 3 # index + 2 data cols assert len(ctx["body"]) == 4 # 3 data rows + trimming row assert len(ctx["body"][0]) == 3 # index + 2 data cols @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_columns", 2), ], ) def test_render_trimming_cols(option, val): # test auto and specific trimming of cols df = DataFrame(np.arange(30).reshape(3, 10)) with pd.option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 4 # index + 2 data cols + trimming col assert len(ctx["body"]) == 3 # 3 data rows assert len(ctx["body"][0]) == 4 # index + 2 data cols + trimming col def test_render_trimming_mi(): midx = MultiIndex.from_product([[1, 2], [1, 2, 3]]) df = DataFrame(np.arange(36).reshape(6, 6), columns=midx, index=midx) with pd.option_context("styler.render.max_elements", 4): ctx = df.style._translate(True, True) assert len(ctx["body"][0]) == 5 # 2 indexes + 2 data cols + trimming row assert {"attributes": 'rowspan="2"'}.items() <= ctx["body"][0][0].items() assert {"class": "data row0 col_trim"}.items() <= ctx["body"][0][4].items() assert {"class": "data row_trim col_trim"}.items() <= ctx["body"][2][4].items() assert len(ctx["body"]) == 3 # 2 data rows + trimming row assert len(ctx["head"][0]) == 5 # 2 indexes + 2 column headers + trimming col assert {"attributes": 'colspan="2"'}.items() <= ctx["head"][0][2].items() def test_render_empty_mi(): # GH 43305 df = DataFrame(index=MultiIndex.from_product([["A"], [0, 1]], names=[None, "one"])) expected = dedent( """\ > <thead> <tr> <th class="index_name level0" >&nbsp;</th> <th class="index_name level1" >one</th> </tr> </thead> """ ) assert expected in df.style.to_html() @pytest.mark.parametrize("comprehensive", [True, False]) @pytest.mark.parametrize("render", [True, False]) @pytest.mark.parametrize("deepcopy", [True, False]) def test_copy(comprehensive, render, deepcopy, mi_styler, mi_styler_comp): styler = mi_styler_comp if comprehensive else mi_styler styler.uuid_len = 5 s2 = copy.deepcopy(styler) if deepcopy else copy.copy(styler) # make copy and check assert s2 is not styler if render: styler.to_html() excl = [ "na_rep", # deprecated "precision", # deprecated "cellstyle_map", # render time vars.. "cellstyle_map_columns", "cellstyle_map_index", "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] if not deepcopy: # check memory locations are equal for all included attributes for attr in [a for a in styler.__dict__ if (not callable(a) and a not in excl)]: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: # check memory locations are different for nested or mutable vars shallow = [ "data", "columns", "index", "uuid_len", "uuid", "caption", "cell_ids", "hide_index_", "hide_columns_", "hide_index_names", "hide_column_names", "table_attributes", ] for attr in shallow: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) for attr in [ a for a in styler.__dict__ if (not callable(a) and a not in excl and a not in shallow) ]: if getattr(s2, attr) is None: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: assert id(getattr(s2, attr)) != id(getattr(styler, attr)) def test_clear(mi_styler_comp): # NOTE: if this test fails for new features then 'mi_styler_comp' should be updated # to ensure proper testing of the 'copy', 'clear', 'export' methods with new feature # GH 40675 styler = mi_styler_comp styler._compute() # execute applied methods clean_copy = Styler(styler.data, uuid=styler.uuid) excl = [ "data", "index", "columns", "uuid", "uuid_len", # uuid is set to be the same on styler and clean_copy "cell_ids", "cellstyle_map", # execution time only "cellstyle_map_columns", # execution time only "cellstyle_map_index", # execution time only "precision", # deprecated "na_rep", # deprecated "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] # tests vars are not same vals on obj and clean copy before clear (except for excl) for attr in [a for a in styler.__dict__ if not (callable(a) or a in excl)]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert not (all(res) if (hasattr(res, "__iter__") and len(res) > 0) else res) # test vars have same vales on obj and clean copy after clearing styler.clear() for attr in [a for a in styler.__dict__ if not (callable(a))]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert all(res) if hasattr(res, "__iter__") else res def test_export(mi_styler_comp, mi_styler): exp_attrs = [ "_todo", "hide_index_", "hide_index_names", "hide_columns_", "hide_column_names", "table_attributes", "table_styles", "css", ] for attr in exp_attrs: check = getattr(mi_styler, attr) == getattr(mi_styler_comp, attr) assert not ( all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check ) export = mi_styler_comp.export() used = mi_styler.use(export) for attr in exp_attrs: check = getattr(used, attr) == getattr(mi_styler_comp, attr) assert all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check used.to_html() def test_hide_raises(mi_styler): msg = "`subset` and `level` cannot be passed simultaneously" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", subset="something", level="something else") msg = "`level` must be of type `int`, `str` or list of such" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", level={"bad": 1, "type": 2}) @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) def test_hide_index_level(mi_styler, level): mi_styler.index.names, mi_styler.columns.names = ["zero", "one"], ["zero", "one"] ctx = mi_styler.hide(axis="index", level=level)._translate(False, True) assert len(ctx["head"][0]) == 3 assert len(ctx["head"][1]) == 3 assert len(ctx["head"][2]) == 4 assert ctx["head"][2][0]["is_visible"] assert not ctx["head"][2][1]["is_visible"] assert ctx["body"][0][0]["is_visible"] assert not ctx["body"][0][1]["is_visible"] assert ctx["body"][1][0]["is_visible"] assert not ctx["body"][1][1]["is_visible"] @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) @pytest.mark.parametrize("names", [True, False]) def test_hide_columns_level(mi_styler, level, names): mi_styler.columns.names = ["zero", "one"] if names: mi_styler.index.names = ["zero", "one"] ctx = mi_styler.hide(axis="columns", level=level)._translate(True, False) assert len(ctx["head"]) == (2 if names else 1) @pytest.mark.parametrize("method", ["applymap", "apply"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header(method, axis): # GH 41893 df = DataFrame({"A": [0, 0], "B": [1, 1]}, index=["C", "D"]) func = { "apply": lambda s: ["attr: val" if ("A" in v or "C" in v) else "" for v in s], "applymap": lambda v: "attr: val" if ("A" in v or "C" in v) else "", } # test execution added to todo result = getattr(df.style, f"{method}_index")(func[method], axis=axis) assert len(result._todo) == 1 assert len(getattr(result, f"ctx_{axis}")) == 0 # test ctx object on compute result._compute() expected = { (0, 0): [("attr", "val")], } assert getattr(result, f"ctx_{axis}") == expected @pytest.mark.parametrize("method", ["apply", "applymap"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header_mi(mi_styler, method, axis): # GH 41893 func = { "apply": lambda s: ["attr: val;" if "b" in v else "" for v in s], "applymap": lambda v: "attr: val" if "b" in v else "", } result = getattr(mi_styler, f"{method}_index")(func[method], axis=axis)._compute() expected = {(1, 1): [("attr", "val")]} assert getattr(result, f"ctx_{axis}") == expected def test_apply_map_header_raises(mi_styler): # GH 41893 with pytest.raises(ValueError, match="No axis named bad for object type DataFrame"): mi_styler.applymap_index(lambda v: "attr: val;", axis="bad")._compute() class TestStyler: def setup_method(self, method): np.random.seed(24) self.s = DataFrame({"A": np.random.permutation(range(6))}) self.df = DataFrame({"A": [0, 1], "B": np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo="bar"): return pd.Series(f"color: {foo}", index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = DataFrame({"A": ["color: red", "color: blue"]}) self.dataframes = [ self.df, DataFrame( {"f": [1.0, 2.0], "o": ["a", "b"], "c": pd.Categorical(["a", "b"])} ), ] self.blank_value = "&nbsp;" def test_init_non_pandas(self): msg = "``data`` must be a Series or DataFrame" with pytest.raises(TypeError, match=msg): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) assert result.data.ndim == 2 def test_repr_html_ok(self): self.styler._repr_html_() def test_repr_html_mathjax(self): # gh-19824 / 41395 assert "tex2jax_ignore" not in self.styler._repr_html_() with pd.option_context("styler.html.mathjax", False): assert "tex2jax_ignore" in self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): [("color", "red")], (1, 0): [("color", "blue")]} assert self.styler.ctx == expected def test_update_ctx_flatten_multi_and_trailing_semi(self): attrs = DataFrame({"A": ["color: red; foo: bar", "color:blue ; foo: baz;"]}) self.styler._update_ctx(attrs) expected = { (0, 0): [("color", "red"), ("foo", "bar")], (1, 0): [("color", "blue"), ("foo", "baz")], } assert self.styler.ctx == expected def test_render(self): df = DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_multiple_render(self): # GH 39396 s = Styler(self.df, uuid_len=0).applymap(lambda x: "color: red;", subset=["A"]) s.to_html() # do 2 renders to ensure css styles not duplicated assert ( '<style type="text/css">\n#T__row0_col0, #T__row1_col0 {\n' " color: red;\n}\n</style>" in s.to_html() ) def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.to_html() # An index but no columns DataFrame(columns=["a"]).style.to_html() # A column but no index DataFrame(index=["a"]).style.to_html() # No IndexError raised? def test_render_double(self): df = DataFrame({"A": [0, 1]}) style = lambda x: pd.Series( ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name ) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_set_properties(self): df = DataFrame({"A": [0, 1]}) result = df.style.set_properties(color="white", size="10px")._compute().ctx # order is deterministic v = [("color", "white"), ("size", "10px")] expected = {(0, 0): v, (1, 0): v} assert result.keys() == expected.keys() for v1, v2 in zip(result.values(), expected.values()): assert sorted(v1) == sorted(v2) def test_set_properties_subset(self): df = DataFrame({"A": [0, 1]}) result = ( df.style.set_properties(subset=pd.IndexSlice[0, "A"], color="white") ._compute() .ctx ) expected = {(0, 0): [("color", "white")]} assert result == expected def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.style._translate(True, True) assert len(result["head"]) == 1 expected = { "class": "blank level0", "type": "th", "value": self.blank_value, "is_visible": True, "display_value": self.blank_value, } assert expected.items() <= result["head"][0][0].items() def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index("A").style._translate(True, True) expected = { "class": "index_name level0", "type": "th", "value": "A", "is_visible": True, "display_value": "A", } assert expected.items() <= result["head"][1][0].items() def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index(["A", "B"]).style._translate(True, True) expected = [ { "class": "index_name level0", "type": "th", "value": "A", "is_visible": True, "display_value": "A", }, { "class": "index_name level1", "type": "th", "value": "B", "is_visible": True, "display_value": "B", }, { "class": "blank col0", "type": "th", "value": self.blank_value, "is_visible": True, "display_value": self.blank_value, }, ] assert result["head"][1] == expected def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = DataFrame({0: [1, 2, 3]}) df.style._translate(True, True) def test_apply_axis(self): df = DataFrame({"A": [0, 0], "B": [1, 1]}) f = lambda x: [f"val: {x.max()}" for v in x] result = df.style.apply(f, axis=1) assert len(result._todo) == 1 assert len(result.ctx) == 0 result._compute() expected = { (0, 0): [("val", "1")], (0, 1): [("val", "1")], (1, 0): [("val", "1")], (1, 1): [("val", "1")], } assert result.ctx == expected result = df.style.apply(f, axis=0) expected = { (0, 0): [("val", "0")], (0, 1): [("val", "1")], (1, 0): [("val", "0")], (1, 1): [("val", "1")], } result._compute() assert result.ctx == expected result = df.style.apply(f) # default result._compute() assert result.ctx == expected @pytest.mark.parametrize("axis", [0, 1]) def test_apply_series_return(self, axis): # GH 42014 df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) # test Series return where len(Series) < df.index or df.columns but labels OK func = lambda s: pd.Series(["color: red;"], index=["Y"]) result = df.style.apply(func, axis=axis)._compute().ctx assert result[(1, 1)] == [("color", "red")] assert result[(1 - axis, axis)] == [("color", "red")] # test Series return where labels align but different order func = lambda s: pd.Series(["color: red;", "color: blue;"], index=["Y", "X"]) result = df.style.apply(func, axis=axis)._compute().ctx assert result[(0, 0)] == [("color", "blue")] assert result[(1, 1)] == [("color", "red")] assert result[(1 - axis, axis)] == [("color", "red")] assert result[(axis, 1 - axis)] == [("color", "blue")] @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("columns", [False, True]) def test_apply_dataframe_return(self, index, columns): # GH 42014 df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) idxs = ["X", "Y"] if index else ["Y"] cols = ["X", "Y"] if columns else ["Y"] df_styles = DataFrame("color: red;", index=idxs, columns=cols) result = df.style.apply(lambda x: df_styles, axis=None)._compute().ctx assert result[(1, 1)] == [("color", "red")] # (Y,Y) styles always present assert (result[(0, 1)] == [("color", "red")]) is index # (X,Y) only if index assert (result[(1, 0)] == [("color", "red")]) is columns # (Y,X) only if cols assert (result[(0, 0)] == [("color", "red")]) is (index and columns) # (X,X) @pytest.mark.parametrize( "slice_", [ pd.IndexSlice[:], pd.IndexSlice[:, ["A"]], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ["A"]], pd.IndexSlice[:2, ["A", "B"]], ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_apply_subset(self, slice_, axis): result = ( self.df.style.apply(self.h, axis=axis, subset=slice_, foo="baz") ._compute() .ctx ) expected = { (r, c): [("color", "baz")] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns } assert result == expected @pytest.mark.parametrize( "slice_", [ pd.IndexSlice[:], pd.IndexSlice[:, ["A"]], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ["A"]], pd.IndexSlice[:2, ["A", "B"]], ], ) def test_applymap_subset(self, slice_): result = ( self.df.style.applymap(lambda x: "color:baz;", subset=slice_)._compute().ctx ) expected = { (r, c): [("color", "baz")] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns } assert result == expected @pytest.mark.parametrize( "slice_", [ pd.IndexSlice[:, pd.IndexSlice["x", "A"]], pd.IndexSlice[:, pd.IndexSlice[:, "A"]], pd.IndexSlice[:, pd.IndexSlice[:, ["A", "C"]]], # missing col element pd.IndexSlice[pd.IndexSlice["a", 1], :], pd.IndexSlice[pd.IndexSlice[:, 1], :], pd.IndexSlice[pd.IndexSlice[:, [1, 3]], :], # missing row element pd.IndexSlice[:, ("x", "A")], pd.IndexSlice[("a", 1), :], ], ) def test_applymap_subset_multiindex(self, slice_): # GH 19861 # edited for GH 33562 warn = None msg = "indexing on a MultiIndex with a nested sequence of labels" if ( isinstance(slice_[-1], tuple) and isinstance(slice_[-1][-1], list) and "C" in slice_[-1][-1] ): warn = FutureWarning elif ( isinstance(slice_[0], tuple) and isinstance(slice_[0][1], list) and 3 in slice_[0][1] ): warn = FutureWarning idx = MultiIndex.from_product([["a", "b"], [1, 2]]) col = MultiIndex.from_product([["x", "y"], ["A", "B"]]) df = DataFrame(np.random.rand(4, 4), columns=col, index=idx) with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False): df.style.applymap(lambda x: "color: red;", subset=slice_).to_html() def test_applymap_subset_multiindex_code(self): # https://github.com/pandas-dev/pandas/issues/25858 # Checks styler.applymap works with multindex when codes are provided codes = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) columns = MultiIndex( levels=[["a", "b"], ["%", "#"]], codes=codes, names=["", ""] ) df = DataFrame( [[1, -1, 1, 1], [-1, 1, 1, 1]], index=["hello", "world"], columns=columns ) pct_subset = pd.IndexSlice[:, pd.IndexSlice[:, "%":"%"]] def color_negative_red(val): color = "red" if val < 0 else "black" return f"color: {color}" df.loc[pct_subset] df.style.applymap(color_negative_red, subset=pct_subset) def test_empty(self): df = DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): [("color", "red")], (1, 0): [("", "")]} result = s._translate(True, True)["cellstyle"] expected = [ {"props": [("color", "red")], "selectors": ["row0_col0"]}, {"props": [("", "")], "selectors": ["row1_col0"]}, ] assert result == expected def test_duplicate(self): df = DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): [("color", "red")], (1, 0): [("color", "red")]} result = s._translate(True, True)["cellstyle"] expected = [ {"props": [("color", "red")], "selectors": ["row0_col0", "row1_col0"]} ] assert result == expected def test_init_with_na_rep(self): # GH 21527 28358 df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"]) ctx = Styler(df, na_rep="NA")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "NA" assert ctx["body"][0][2]["display_value"] == "NA" def test_caption(self): styler = Styler(self.df, caption="foo") result = styler.to_html() assert all(["caption" in result, "foo" in result]) styler = self.df.style result = styler.set_caption("baz") assert styler is result assert styler.caption == "baz" def test_uuid(self): styler = Styler(self.df, uuid="abc123") result = styler.to_html() assert "abc123" in result styler = self.df.style result = styler.set_uuid("aaa") assert result is styler assert result.uuid == "aaa" def test_unique_id(self): # See https://github.com/pandas-dev/pandas/issues/16780 df = DataFrame({"a": [1, 3, 5, 6], "b": [2, 4, 12, 21]}) result = df.style.to_html(uuid="test") assert "test" in result ids = re.findall('id="(.*?)"', result) assert np.unique(ids).size == len(ids) def test_table_styles(self): style = [{"selector": "th", "props": [("foo", "bar")]}] # default format styler = Styler(self.df, table_styles=style) result = " ".join(styler.to_html().split()) assert "th { foo: bar; }" in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style # GH 39563 style = [{"selector": "th", "props": "foo:bar;"}] # css string format styler = self.df.style.set_table_styles(style) result = " ".join(styler.to_html().split()) assert "th { foo: bar; }" in result def test_table_styles_multiple(self): ctx = self.df.style.set_table_styles( [ {"selector": "th,td", "props": "color:red;"}, {"selector": "tr", "props": "color:green;"}, ] )._translate(True, True)["table_styles"] assert ctx == [ {"selector": "th", "props": [("color", "red")]}, {"selector": "td", "props": [("color", "red")]}, {"selector": "tr", "props": [("color", "green")]}, ] def test_table_styles_dict_multiple_selectors(self): # GH 44011 result = self.df.style.set_table_styles( [{"selector": "th,td", "props": [("border-left", "2px solid black")]}] )._translate(True, True)["table_styles"] expected = [ {"selector": "th", "props": [("border-left", "2px solid black")]}, {"selector": "td", "props": [("border-left", "2px solid black")]}, ] assert result == expected def test_maybe_convert_css_to_tuples(self): expected = [("a", "b"), ("c", "d e")] assert maybe_convert_css_to_tuples("a:b;c:d e;") == expected assert maybe_convert_css_to_tuples("a: b ;c: d e ") == expected expected = [] assert maybe_convert_css_to_tuples("") == expected def test_maybe_convert_css_to_tuples_err(self): msg = "Styles supplied as string must follow CSS rule formats" with pytest.raises(ValueError, match=msg): maybe_convert_css_to_tuples("err") def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.to_html() assert 'class="foo" data-bar' in result result = self.df.style.set_table_attributes(attributes).to_html() assert 'class="foo" data-bar' in result def test_apply_none(self): def f(x): return DataFrame( np.where(x == x.max(), "color: red", ""), index=x.index, columns=x.columns, ) result = DataFrame([[1, 2], [3, 4]]).style.apply(f, axis=None)._compute().ctx assert result[(1, 1)] == [("color", "red")] def test_trim(self): result = self.df.style.to_html() # trim=True assert result.count("#") == 0 result = self.df.style.highlight_max().to_html() assert result.count("#") == len(self.df.columns) def test_export(self): f = lambda x: "color: red" if x > 0 else "color: blue" g = lambda x, z: f"color: {z}" if x > 0 else f"color: {z}" style1 = self.styler style1.applymap(f).applymap(g, z="b").highlight_max()._compute() # = render result = style1.export() style2 = self.df.style style2.use(result) assert style1._todo == style2._todo style2.to_html() def test_bad_apply_shape(self): df = DataFrame([[1, 2], [3, 4]], index=["A", "B"], columns=["X", "Y"]) msg = "resulted in the apply method collapsing to a Series." with pytest.raises(ValueError, match=msg): df.style._apply(lambda x: "x") msg = "created invalid {} labels" with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: [""]) with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: ["", "", "", ""]) with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: pd.Series(["a:v;", ""], index=["A", "C"]), axis=0) with pytest.raises(ValueError, match=msg.format("columns")): df.style._apply(lambda x: ["", "", ""], axis=1) with pytest.raises(ValueError, match=msg.format("columns")): df.style._apply(lambda x:
pd.Series(["a:v;", ""], index=["X", "Z"])
pandas.Series
from __future__ import annotations import pandas as pd import geopandas as gpd from pathlib import Path from tqdm import tqdm import pg_data_etl as pg from network_routing import pg_db_connection from network_routing.accessibility.logic_analyze import get_unique_ids class IsochroneGenerator: """ - This class consumes the ouputs from `access eta-individual COUNTY` - It takes the node-level access analysis results and generates isochrones around each POI for both networks, sized to the specified distance threshold and walking speed Attributes: db (pg.Database): analysis database poi_table (str): name of the POI table poi_col (str): name of the unique ID column in the POI table network_a_edges (str): name of network 'A's edge table network_a_nodes (str): name of network 'A's node table network_a_node_id_col (str): name of ID column in network 'A's node table network_b_edges (str): name of network 'B's edge table network_b_nodes (str): name of network 'B's node table network_b_node_id_col (str): name of ID column in network 'B's node table distance_threshold_miles (float): distance to use for isochrones. Defaults to 1.0 walking_speed_mph (float): Assumned walking speed of pedestrians, defaults to 2.5 mph data_dir (str): folder where outputs from earlier process were stored. Defaults to "./data" """ def __init__( self, db: pg.Database, poi_table: str, poi_col: str, network_a_edges: str, network_a_nodes: str, network_a_node_id_col: str, network_b_edges: str, network_b_nodes: str, network_b_node_id_col: str, distance_threshold_miles: float = 1.0, walking_speed_mph: float = 2.5, data_dir: str = "./data", ): self.db = db self.data_dir = Path(data_dir) self.minutes_cutoff = distance_threshold_miles * 60 / walking_speed_mph self.data_names = { "a": { "edges": network_a_edges, "nodes": network_a_nodes, "node_id_col": network_a_node_id_col, }, "b": { "edges": network_b_edges, "nodes": network_b_nodes, "node_id_col": network_b_node_id_col, }, "poi": {"table": poi_table, "id_col": poi_col}, } # Read all filenames for networks A and B tables = { "a": [x for x in self.data_dir.rglob(f"{network_a_edges}_*.csv")], "b": [x for x in self.data_dir.rglob(f"{network_b_edges}_*.csv")], } # For each POI ID, record A and B filepaths if they exist uids = get_unique_ids(db, poi_table, poi_col) self.uid_results = { raw_id: {"clean_id": clean_id, "a": None, "b": None} for raw_id, clean_id in uids.items() } for uid in self.uid_results: clean_id = uids[uid] a_path = self.data_dir / f"{network_a_edges}_{clean_id}.csv" b_path = self.data_dir / f"{network_b_edges}_{clean_id}.csv" if a_path in tables["a"]: self.uid_results[uid]["a"] = a_path if b_path in tables["b"]: self.uid_results[uid]["b"] = b_path # For each ID, gather node lists or None self.data = { k: {"a": self.load_data(v["a"]), "b": self.load_data(v["b"])} for k, v in self.uid_results.items() } def load_data(self, filepath: Path | None) -> tuple | None: """ - Read CSV file from disk - Filter out rows beyond `self.minutes_cutoff` Arguments: filepath (Path | None): filepath to CSV file or None value Returns: tuple: if filepath is not None, read CSV with pandas and return a list of node IDs that meet the `minutes_cutoff` """ if filepath: # Read CSV df = pd.read_csv(filepath) # Filter to only include rows that are at or below the # defined cutoff time in minutes df = df[df["n_1"] <= self.minutes_cutoff] # Get a list of the remaining node id values as a tuple nodes_as_tuple = tuple(df["node_id"].unique()) return nodes_as_tuple else: return None def make_concave_hull(self, eta_uid: str) -> gpd.GeoDataFrame | None: """ - Generate a set of concave hulls for a single UID, using networks A and B Arguments: eta_uid (str): ID of the POI Returns: gpd.GeoDataFrame: polygons for both networks, if there are results """ # Only load node lists that exist. Skip 'None' values node_lists = {} for network_id in ["a", "b"]: data = self.data[eta_uid][network_id] if data: node_lists[network_id] = data gdfs = [] for network_id, node_filter in node_lists.items(): edge_table = self.data_names[network_id]["edges"] node_table = self.data_names[network_id]["nodes"] node_id_col = self.data_names[network_id]["node_id_col"] num_nodes = len(node_filter) if num_nodes > 0: # See: https://postgis.net/docs/ST_CollectionExtract.html if num_nodes == 1: geom_idx = 1 node_filter = f"({node_filter[0]})" elif num_nodes == 2: geom_idx = 2 else: geom_idx = 3 query = f""" select '{eta_uid}' as eta_uid, '{edge_table}' as src_network, st_buffer( st_collectionextract( st_concavehull( st_collect(geom), 0.99 ), {geom_idx}), 45) as geom from {node_table} where {node_id_col} in {node_filter} """ gdfs.append(self.db.gdf(query)) if len(gdfs) == 0: return None else: return
pd.concat(gdfs)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # Generate Generative Model Figures # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('matplotlib', 'inline') import os import glob from collections import OrderedDict import matplotlib.colors as mcolors import matplotlib.pyplot as plt import pandas as pd import plotnine as p9 import seaborn as sns import pdb import scipy.stats as ss # In[2]: def get_dataframes( result_dir, file_path, starting_point=0, ending_point=30, step=5, num_of_points=4 ): """ This function grabs the result tsv files and loads then into a dictionary strucutre [relationship] -> dataframe Args: result_dir - the directory containing all the results file_path - the path to extract the result files starting_point - the point to start each subgraph with in plot_graph function ending_point - the point to end each subgraph with step - the number to increase the middle points with num_of_points - the number of points to plot between the start and end points """ # Build up X axis by gathering relatively evely spaced points query_points = [starting_point] query_points += [1 + step*index for index in range(num_of_points)] query_points += [ending_point] return { # Get the head word of each file that will be parsed os.path.splitext(os.path.basename(file))[0].split("_")[0]: pd.read_csv(file, sep="\t") .query("lf_num in @query_points", engine="python", local_dict={"query_points":query_points}) .assign( lf_num=lambda x:x['lf_num'].map(lambda y: str(y) if y != ending_point else 'All') ) for file in glob.glob(f"{result_dir}/{file_path}") } # In[3]: file_tree = OrderedDict({ "DaG": { "DaG": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/DaG/results", "CtD": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/CtD/results", "CbG": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/CbG/results", "GiG": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/GiG/results", "All": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/all/results", }, "CtD": { "DaG": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/DaG/results", "CtD": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/CtD/results", "CbG": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/CbG/results", "GiG": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/GiG/results", "All": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/all/results", }, "CbG": { "DaG": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/DaG/results", "CtD": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/CtD/results", "CbG": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/CbG/results", "GiG": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/GiG/results", "All": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/all/results", }, "GiG": { "DaG": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/DaG/results", "CtD": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/CtD/results", "CbG": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/CbG/results", "GiG": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/GiG/results", "All": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/all/results", } }) # In[4]: # End total of label functions for each point end_points = { "DaG": 30, "CtD": 22, "CbG": 20, "GiG": 28, "All": 100 } # In[5]: critical_val = ss.norm.ppf(0.975) # In[6]: color_names = { "turquoise": pd.np.array([27, 158, 119, 255])/255, "orange": pd.np.array([217, 95, 2, 255])/255, "purple": pd.np.array([117, 112, 179, 255])/255, "pink": pd.np.array([231, 41, 138, 255])/255, "light-green": pd.np.array([102, 166, 30, 255])/255 } # In[7]: color_map = { "DaG": color_names["turquoise"], "CtD": color_names["orange"], "CbG": color_names["purple"], "GiG": color_names["pink"], "All": color_names["light-green"] } # In[8]: # Use the file tree above and graph the appropiate files performance_data_tree = OrderedDict({ key: { sub_key: get_dataframes( file_tree[key][sub_key], "*sampled_results.tsv", ending_point=end_points[sub_key], # if using all the label functions step by 32 instead of 5 step=5 if sub_key != "All" else 32 ) for sub_key in file_tree[key] } for key in file_tree }) # In[9]: dev_performance_df =
pd.DataFrame([], columns=['aupr', 'auroc', 'lf_num', 'predicted', 'lf_source'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jan 14 17:14:29 2020 @author: p000526841 """ from pathlib import Path import numpy as np import pandas as pd from datetime import datetime import inspect #from matplotlib_venn import venn2 from utils import * plt.rcParams['font.family'] = 'IPAexGothic' @contextmanager def save_fig(path_to_save=PATH_TO_GRAPH_DIR/f"tmp.png"): plt.figure() yield plt.savefig(path_to_save) def showCorr(df, str_value_name, show_percentage=0.6): corrmat = df.corr() num_of_col = len(corrmat.columns) cols = corrmat.nlargest(num_of_col, str_value_name)[str_value_name] tmp = cols[(cols >= show_percentage) | (cols <= -show_percentage)] print("*****[ corr : " + str_value_name + " ]*****") print(tmp) print("*****[" + str_value_name + "]*****") print("\n") #print(tmp[0]) def showBoxPlot(df, str_val1, str_va2): plt.figure(figsize=(15, 8)) plt.xticks(rotation=90, size='small') #neigh_median = df.groupby([str_val1],as_index=False)[str_va2].median().sort_values(str_va2) #print(neigh_median) #col_order = neigh_median[str_val1].values #sns.boxplot(x=df[str_val1], y =df[str_va2], order=col_order) sns.boxplot(x=df[str_val1], y =df[str_va2]) plt.tight_layout() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_box_plot_{}.png".format(str_val1)) #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() def createVenn(train_set, test_set, title_str, path_to_save, train_label="train", test_label="test"): plt.figure() #venn2(subsets=[train_set,test_set],set_labels=(train_label,test_label)) plt.title(f'{title_str}',fontsize=20) #path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_venn_{}.png".format(title_str)) #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() def showValueCount(df_train, df_test, str_value, str_target, debug=True, regression_flag=1, _fig_size=(20,10)): if str_value == str_target: df_test[str_value] = np.nan df = pd.concat([df_train, df_test]) if not str_value in df.columns: print(str_value, " is not inside columns") return se_all = df[str_value] se_train = df_train[str_value] se_test = df_test[str_value] all_desc = se_all.describe() train_desc = se_train.describe() test_desc = se_test.describe() df_concat_desc = pd.concat([train_desc, test_desc, all_desc], axis=1, keys=['train', 'test', "all"]) if debug: print("***[" + str_value + "]***") print("describe :") print(df_concat_desc) num_nan_all = se_all.isna().sum() num_nan_train = se_train.isna().sum() num_nan_test = se_test.isna().sum() df_concat_num_nan = pd.DataFrame([num_nan_train, num_nan_test, num_nan_all], columns=["num_of_nan"], index=['train', 'test', "all"]).transpose() if debug: print("Num of Nan : ") print(df_concat_num_nan) df_value = se_all.value_counts(dropna=False) df_value_percentage = (df_value / df_value.sum()) * 100 df_value_train = se_train.value_counts(dropna=False) df_value_train_percentage = (df_value_train / df_value_train.sum()) * 100 df_value_test = se_test.value_counts(dropna=False) df_value_test_percentage = (df_value_test / df_value_test.sum()) * 100 df_concat = pd.concat([df_value_train, df_value_train_percentage, df_value_test, df_value_test_percentage, df_value, df_value_percentage], axis=1, keys=['train', "train rate", 'test', "test rate", "all", "all rate"], sort=True) train_values = set(se_train.unique()) test_values = set(se_test.unique()) xor_values = test_values - train_values if xor_values: #print(f'Replace {len(xor_values)} in {col} column') print(f'{xor_values} is only found in test, not train!!!') #full_data.loc[full_data[col].isin(xor_values), col] = 'xor' xor_values_train = train_values - test_values if xor_values_train: #print(f'Replace {len(xor_values)} in {col} column') print(f'{xor_values_train} is only found in train, not test!!!' ) #full_data.loc[full_data[col].isin(xor_values), col] = 'xor' if debug: # plt.figure() # venn2(subsets=[train_values,test_values],set_labels=('train','test')) # plt.title(f'{str_value}',fontsize=20) # path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_venn_{}.png".format(str_value)) # #print("save: ", path_to_save) # plt.savefig(path_to_save) # plt.show(block=False) # plt.close() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_venn_{}.png".format(str_value)) createVenn(train_set=train_values, test_set=test_values, title_str=str_value, path_to_save=path_to_save, train_label="train", test_label="test") print("value_counts :") print(df_concat) plt.figure(figsize=_fig_size) df_graph = df_concat[['train', 'test', "all"]].reset_index() df_graph = pd.melt(df_graph, id_vars=["index"], value_vars=['train', 'test', "all"]) sns.barplot(x='index', y='value', hue='variable', data=df_graph) #sns.despine(fig) #df_concat[['train', 'test', "all"]].dropna().plot.bar(figsize=_fig_size) plt.ylabel('Number of each element', fontsize=12) plt.xlabel(str_value, fontsize=12) plt.xticks(rotation=90, size='small') plt.tight_layout() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_num_each_elments_{}.png".format(str_value)) #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() plt.figure(figsize=_fig_size) df_graph = df_concat[['train rate', 'test rate', "all rate"]].reset_index() df_graph = pd.melt(df_graph, id_vars=["index"], value_vars=['train rate', 'test rate', "all rate"]) sns.barplot(x='index', y='value', hue='variable', data=df_graph) #df_concat[['train rate', 'test rate', "all rate"]].plot.bar(figsize=_fig_size) plt.ylabel('rate of each element', fontsize=12) plt.xlabel(str_value, fontsize=12) plt.xticks(rotation=90, size='small') plt.tight_layout() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_rate_each_elments_{}.png".format(str_value)) #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() if str_value != str_target and str_target in df.columns: if regression_flag == 1: if debug: showBoxPlot(df_train, str_value, str_target) else: df_train_small = df.loc[df[str_target].isnull() == False, [str_value, str_target]] df_stack = df_train_small.groupby(str_value)[str_target].value_counts().unstack() if debug: print("---") col_list = [] df_list = [] if debug: plt.figure(figsize=_fig_size) g = sns.countplot(x=str_value, hue = str_target, data=df, order=df_stack.index) plt.xticks(rotation=90, size='small') ax1 = g.axes ax2 = ax1.twinx() for col in df_stack.columns: col_list += [str(col), str(col)+"_percent"] df_percent = (df_stack.loc[:, col] / df_stack.sum(axis=1)) df_list += [df_stack.loc[:, col], df_percent] if debug: #print(df_percent.index) xn = range(len(df_percent.index)) sns.lineplot(x=xn, y=df_percent.values, ax=ax2) #sns.lineplot(data=df_percent, ax=ax2) #sns.lineplot(data=df_percent, y=(str(col)+"_percent"), x=df_percent.index) df_conc = pd.concat(df_list, axis=1, keys=col_list) if debug: print(df_conc.T) #print(df_stack.columns) #print(df_stack.index) #plt.tight_layout() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_count_line_{}.png".format(str_value)) #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() if debug: print("******\n") del df gc.collect() return df_concat def showJointPlot(_df_train, _df_test, str_value, str_target, debug=True, regression_flag=1, corr_flag=False, empty_nums=[], log_flag=1, _fig_size=(20, 10)): print("now in function : ", inspect.getframeinfo(inspect.currentframe())[2]) df_train = _df_train.copy() df_test = _df_test.copy() if str_value == str_target: df_test[str_target] = np.nan if len(empty_nums) >0: for e in empty_nums: df_train[str_value] = df_train[str_value].replace(e, np.nan) df_test[str_value] = df_test[str_value].replace(e, np.nan) if log_flag==1: df_train[str_value] = np.log1p(df_train[str_value]) df_test[str_value] = np.log1p(df_test[str_value]) df =
pd.concat([df_train, df_test])
pandas.concat
import numpy as np import os import pandas as pd import pyro import torch from pyro.distributions import Gamma, Normal from tqdm import tqdm from deepscm.datasets.morphomnist import load_morphomnist_like, save_morphomnist_like from deepscm.datasets.morphomnist.transforms import SetThickness, SetSlant, ImageMorphology def model_(n_samples=None): with pyro.plate('observations', n_samples): thickness = pyro.sample('thickness', Gamma(10., 5.)) loc = thickness * 6. slant = pyro.sample('slant', Normal(loc, 1.)) return slant, thickness def model(n_samples=None): with pyro.plate('observations', n_samples): thickness = pyro.sample('thickness', Gamma(10., 5.)) loc = (thickness - 2.5) * 20 slant = pyro.sample('slant', Normal(loc, 1.)) return slant, thickness def gen_dataset(args, train=True): pyro.clear_param_store() images, labels, _ = load_morphomnist_like(args.data_dir, train=train) mask = (labels == args.digit_class) images = images[mask] labels = labels[mask] n_samples = len(images) with torch.no_grad(): slant, thickness = model(n_samples) metrics =
pd.DataFrame(data={'thickness': thickness, 'slant': slant})
pandas.DataFrame
from evalutils.exceptions import ValidationError from evalutils.io import CSVLoader, FileLoader, ImageLoader import json import nibabel as nib import numpy as np import os.path from pathlib import Path from pandas import DataFrame, MultiIndex import scipy.ndimage from scipy.ndimage.interpolation import map_coordinates, zoom from surface_distance import * ##### paths ##### DEFAULT_INPUT_PATH = Path("/input/") DEFAULT_GROUND_TRUTH_PATH = Path("/opt/evaluation/ground-truth/") DEFAULT_EVALUATION_OUTPUT_FILE_PATH = Path("/output/metrics.json") ##### metrics ##### def jacobian_determinant(disp): _, _, H, W, D = disp.shape gradx = np.array([-0.5, 0, 0.5]).reshape(1, 3, 1, 1) grady = np.array([-0.5, 0, 0.5]).reshape(1, 1, 3, 1) gradz = np.array([-0.5, 0, 0.5]).reshape(1, 1, 1, 3) gradx_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], gradx, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], gradx, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], gradx, mode='constant', cval=0.0)], axis=1) grady_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], grady, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], grady, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], grady, mode='constant', cval=0.0)], axis=1) gradz_disp = np.stack([scipy.ndimage.correlate(disp[:, 0, :, :, :], gradz, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 1, :, :, :], gradz, mode='constant', cval=0.0), scipy.ndimage.correlate(disp[:, 2, :, :, :], gradz, mode='constant', cval=0.0)], axis=1) grad_disp = np.concatenate([gradx_disp, grady_disp, gradz_disp], 0) jacobian = grad_disp + np.eye(3, 3).reshape(3, 3, 1, 1, 1) jacobian = jacobian[:, :, 2:-2, 2:-2, 2:-2] jacdet = jacobian[0, 0, :, :, :] * (jacobian[1, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[1, 2, :, :, :] * jacobian[2, 1, :, :, :]) -\ jacobian[1, 0, :, :, :] * (jacobian[0, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[2, 1, :, :, :]) +\ jacobian[2, 0, :, :, :] * (jacobian[0, 1, :, :, :] * jacobian[1, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[1, 1, :, :, :]) return jacdet def compute_tre(x, y, spacing): return np.linalg.norm((x - y) * spacing, axis=1) ##### file loader ##### class NiftiLoader(ImageLoader): @staticmethod def load_image(fname): return nib.load(str(fname)) @staticmethod def hash_image(image): return hash(image.get_fdata().tostring()) class NumpyLoader(ImageLoader): @staticmethod def load_image(fname): return np.load(str(fname))['arr_0'] @staticmethod def hash_image(image): return hash(image.tostring()) class CURIOUSLmsLoader(FileLoader): def load(self, fname): lms_fixed = [] lms_moving = [] f = open(fname, 'r') for line in f.readlines()[5:]: lms = [float(lm) for lm in line.split(' ')[1:-1]] lms_fixed.append(lms[:3]) lms_moving.append(lms[3:]) return {'lms_fixed': lms_fixed, 'lms_moving': lms_moving} class L2RLmsLoader(FileLoader): def load(self, fname): lms_fixed = [] lms_moving = [] f = open(fname, 'r') for line in f.readlines(): lms = [float(lm) for lm in line.split(',')] lms_fixed.append(lms[:3]) lms_moving.append(lms[3:]) return {'lms_fixed': lms_fixed, 'lms_moving': lms_moving} ##### validation errors ##### def raise_missing_file_error(fname): message = ( f"The displacement field {fname} is missing. " f"Please provide all required displacement fields." ) raise ValidationError(message) def raise_dtype_error(fname, dtype): message = ( f"The displacement field {fname} has a wrong dtype ('{dtype}'). " f"All displacement fields should have dtype 'float16'." ) raise ValidationError(message) def raise_shape_error(fname, shape, expected_shape): message = ( f"The displacement field {fname} has a wrong shape ('{shape[0]}x{shape[1]}x{shape[2]}x{shape[3]}'). " f"The expected shape of displacement fields for this task is {expected_shape[0]}x{expected_shape[1]}x{expected_shape[2]}x{expected_shape[3]}." ) raise ValidationError(message) ##### eval val ##### class EvalVal(): def __init__(self): self.ground_truth_path = DEFAULT_GROUND_TRUTH_PATH self.predictions_path = DEFAULT_INPUT_PATH self.output_file = DEFAULT_EVALUATION_OUTPUT_FILE_PATH self.csv_loader = CSVLoader() self.nifti_loader = NiftiLoader() self.numpy_loader = NumpyLoader() self.curious_lms_loader = CURIOUSLmsLoader() self.l2r_lms_loader = L2RLmsLoader() self.pairs_task_01 = DataFrame() self.imgs_task_01 = DataFrame() self.lms_task_01 = DataFrame() self.disp_fields_task_01 = DataFrame() self.cases_task_01 = DataFrame() self.pairs_task_02 = DataFrame() self.imgs_task_02 = DataFrame() self.lms_task_02 = DataFrame() self.disp_fields_task_02 = DataFrame() self.cases_task_02 = DataFrame() self.pairs_task_03 = DataFrame() self.segs_task_03 = DataFrame() self.disp_fields_task_03 = DataFrame() self.cases_task_03 = DataFrame() self.pairs_task_04 = DataFrame() self.segs_task_04 = DataFrame() self.disp_fields_task_04 = DataFrame() self.cases_task_04 = DataFrame() def evaluate(self): self.load_task_01() self.merge_ground_truth_and_predictions_task_01() self.score_task_01() self.load_task_02() self.merge_ground_truth_and_predictions_task_02() self.score_task_02() self.load_task_03() self.merge_ground_truth_and_predictions_task_03() self.score_task_03() self.load_task_04() self.merge_ground_truth_and_predictions_task_04() self.score_task_04() self.save() def load_task_01(self): self.pairs_task_01 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_01' / 'pairs_val.csv') self.imgs_task_01 = self.load_imgs_task_01() self.lms_task_01 = self.load_lms_task_01() self.disp_fields_task_01 = self.load_disp_fields(self.pairs_task_01, DEFAULT_INPUT_PATH / 'task_01', np.array([3, 128, 128, 144])) def load_task_02(self): self.pairs_task_02 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_02' / 'pairs_val.csv') self.imgs_task_02 = self.load_imgs_task_02() self.lms_task_02 = self.load_lms_task_02() self.disp_fields_task_02 = self.load_disp_fields(self.pairs_task_02, DEFAULT_INPUT_PATH / 'task_02', np.array([3, 96, 96, 104])) def load_task_03(self): self.pairs_task_03 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_03' / 'pairs_val.csv') self.segs_task_03 = self.load_segs_task_03() self.disp_fields_task_03 = self.load_disp_fields(self.pairs_task_03, DEFAULT_INPUT_PATH / 'task_03', np.array([3, 96, 80, 128])) def load_task_04(self): self.pairs_task_04 = self.load_pairs(DEFAULT_GROUND_TRUTH_PATH / 'task_04' / 'pairs_val.csv') self.segs_task_04 = self.load_segs_task_04() self.disp_fields_task_04 = self.load_disp_fields(self.pairs_task_04, DEFAULT_INPUT_PATH / 'task_04', np.array([3, 64, 64, 64])) def load_imgs_task_01(self): cases = None for _, row in self.pairs_task_01.iterrows(): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_01' / 'EASY-RESECT' / 'NIFTI' / 'Case{}'.format(row['fixed']) / 'Case{}-FLAIR-resize.nii'.format(row['fixed'])) if cases is None: cases = case index = [row['fixed']] else: cases += case index += [row['fixed']] return DataFrame(cases, index=index) def load_imgs_task_02(self): cases = None for _, row in self.pairs_task_02.iterrows(): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_02' / 'training' / 'lungMasks' / 'case_{:03d}_exp.nii.gz'.format(row['fixed'])) if cases is None: cases = case index = [row['fixed']] else: cases += case index += [row['fixed']] return DataFrame(cases, index=index) def load_segs_task_03(self): cases = None indices = [] for _, row in self.pairs_task_03.iterrows(): indices.append(row['fixed']) indices.append(row['moving']) indices = np.array(indices) for i in np.unique(indices): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_03' / 'Training' / 'label' / 'label{:04d}.nii.gz'.format(i)) if cases is None: cases = case index = [i] else: cases += case index += [i] return DataFrame(cases, index=index) def load_segs_task_04(self): cases = None indices = [] for _, row in self.pairs_task_04.iterrows(): indices.append(row['fixed']) indices.append(row['moving']) indices = np.array(indices) for i in np.unique(indices): case = self.nifti_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_04' / 'Training' / 'label' / 'hippocampus_{}.nii.gz'.format(i)) if cases is None: cases = case index = [i] else: cases += case index += [i] return DataFrame(cases, index=index) def load_lms_task_01(self): cases = None for _, row in self.pairs_task_01.iterrows(): case = self.curious_lms_loader.load(fname=DEFAULT_GROUND_TRUTH_PATH / 'task_01' / 'EASY-RESECT' / 'landmarks' / 'Coordinates' / 'Case{}-MRI-beforeUS.tag'.format(row['fixed'])) if cases is None: cases = [case] index = [row['fixed']] else: cases += [case] index += [row['fixed']] return
DataFrame(cases, index=index)
pandas.DataFrame
import os import sys import argparse import pandas as pd import numpy as np ### Version 3, created 12 August 2020 by <NAME> ### ### Reformats concatenated, headerless MELT vcf files, into the relevant information columns, with extraneous information/columns removed, ready to use in the duplicate-removal scripts ### This includes renaming MELT SPLIT hits to match the original TE names from RepeatMasker and the original TE library def get_args(): #What this script does parser = argparse.ArgumentParser(description="General removal of most MELT duplicate calls and overlapping calls", formatter_class=argparse.ArgumentDefaultsHelpFormatter) required = parser.add_argument_group('required arguments') #Give input coordinate file of formatted MELT SPLIT hits parser.add_argument('-s', '--split', help='filtered, unique, concatenated MELT SPLIT file', required=True) #Argument of directory containing the formatted MELT DELETION hits parser.add_argument('-del', '--deletion', help='filtered, unique, concatenated MELT DELETION file', required=True) #Argument of directory containing the list of formatted MELT hits (need full path) parser.add_argument('-d', '--directory', type=str, help='Path to the directory of the input file', default=".") #Argument of the output directory (need full path) parser.add_argument('-od', '--outdir', type=str, help='Location of directory for the output file', default=".") #Argument of the output directory (need full path) parser.add_argument('-mt', '--melttes', type=str, help='Path to list of MELT ZIP basenames (MELT compatible TE names = zip_te_names.txt)', required=True) #Argument of the output directory (need full path) parser.add_argument('-lib', '--telibrary', type=str, help='Path to the list of RepeatMasker TE names (te_list.txt)', required=True) #Argument of the output directory (need full path) parser.add_argument('-tecat', '--tecategories', type=str, help='Path to the list of RepeatMasker TE names, with TE family category (te_lib_categories.txt)', required=True) args = parser.parse_args() SPLIT = args.split DELETION = args.deletion DIR = args.directory OUTDIR = args.outdir SPLIT_TE_NAMES = args.melttes TE_NAMES = args.telibrary CAT_TE_NAMES = args.tecategories return SPLIT, DELETION, DIR, OUTDIR, SPLIT_TE_NAMES, TE_NAMES, CAT_TE_NAMES SPLIT, DELETION, DIR, OUTDIR, SPLIT_TE_NAMES, TE_NAMES, CAT_TE_NAMES = get_args() if DIR == ".": DIR = os.getcwd() if OUTDIR == ".": OUTDIR = os.getcwd() BASENAME = os.path.basename(SPLIT).split("_SPLIT")[0] SPLIT_HITS = os.path.join(DIR, SPLIT) DEL_HITS = os.path.join(DIR, DELETION) OUTBASE = os.path.join(OUTDIR, BASENAME) OUTPUT1 = OUTBASE + "_cat_assess_dups_headers.bed" OUTPUT2 = OUTBASE + "_cat_assess_dups.bed" HEADERS1 = ['#CHROM', 'POS', 'END', 'ASSESS', 'SVTYPE', 'SVLENGTH', 'ORIENTATION', 'Austroriparius', 'Brandtii', 'Ciliolabrum', 'Davidii', 'Myotis', 'Occultus', 'Sept_TTU', 'Thysanodes', 'Velifer', 'Vivesi', 'Yumanensis', 'MODULE'] HEADERS2 = ['#CHROM', 'POS', 'END', 'SVTYPE', 'SVLENGTH', 'ORIENTATION', 'Austroriparius', 'Brandtii', 'Ciliolabrum', 'Davidii', 'Myotis', 'Occultus', 'Sept_TTU', 'Thysanodes', 'Velifer', 'Vivesi', 'Yumanensis', 'MODULE'] SPLIT_DF =
pd.read_csv(SPLIT_HITS, sep='\t', names=HEADERS1)
pandas.read_csv
""" plotting functions for N2 experiments. """ # std lib import logging logger = logging.getLogger(__name__) ## local from elchempy.plotters.plot_helpers import PlotterMixin ## for developing and testing # from elchempy.experiments._dev_datafiles._dev_fetcher import get_files ## constants from elchempy.constants import EvRHE ### 3rd party import pandas as pd import matplotlib.pyplot as plt #%% class N2_Plotter(PlotterMixin): # sweep_type_mapper = {'ls' : {'anodic' : '-.', 'cathodic' : '-', 'chrono' : ':'}} def plot_all_scans_scanrate( self, plot_data=None, xlabel=EvRHE, ylabel="j_mA_cm2", max_seg_only=True, savepath=None, ): if not isinstance(plot_data, pd.DataFrame): plot_data = self.data_selection fig, ax = plt.subplots(figsize=(8, 8)) for sr, sgr in plot_data.groupby("scanrate"): max_seg = max(sgr["Segment #"].unique()) if max_seg_only: sgr = sgr.loc[sgr["Segment #"] == max_seg] for swp, swpgrp in sgr.groupby("SweepType"): ax.plot( swpgrp[xlabel], swpgrp[ylabel], label=f"{swp} {sr} mV, seg {max_seg}", linestyle=self.sweep_type_mapper["ls"][swp], ) # ax.legend(True) fig.suptitle( f"{self.filepath.parent.name}\n{self.filepath.name}\nData({len(plot_data)})" ) ax.legend() ax.set_ylabel("$j \//\/mA/cm^{2}$") ax.set_xlabel("$E \//\/V_{RHE}$") if savepath: plt.savefig(savepath, dpi=100, bbox_inches="tight") plt.close() return def plot_Cdl_sweeptype_scatter(Cdl_pars, **kwargs): # SampleID, ScanRates, Cdl_fit, Cdl_cath_slice, Cdl_an_slice, N2_dest_dir, N2_fn EvRHE = "E_AppV_RHE" fig, ax = plt.subplots() Cdl_cath_slice = Cdl_pars.query('SweepType == "cathodic"') Cdl_an_slice = Cdl_pars.query('SweepType == "anodic"') plt.title( "%s made with linear fit of\n %s (R=%.3f)" % ( kwargs.get("SampleID"), kwargs.get("scanrates"), Cdl_pars["lin_rvalue"].mean(), ) ) ylim = (0, 1.2 * Cdl_pars.Cdl.max()) Cdl_cath_slice.plot( x=EvRHE, y="Cdl_corr", kind="scatter", ylim=ylim, color="orange", ax=ax, label="Cdl_Cath_corr", ) Cdl_cath_slice.plot( x=EvRHE, y="Cdl", kind="scatter", ylim=ylim, color="r", ax=ax, label="Cdl_Cath", ) Cdl_an_slice.plot( x=EvRHE, y="Cdl_corr", kind="scatter", ylim=ylim, color="c", ax=ax, label="Cdl_Anod_corr", ) Cdl_an_slice.plot( x=EvRHE, y="Cdl", kind="scatter", ylim=ylim, ax=ax, label="Cdl_Anod", ) if kwargs.get("savepath"): plt.savefig( N2_dest_dir.joinpath(f"Cdl_{N2_fn}.png"), dpi=100, bbox_inches="tight" )
pd.concat([Cdl_an_slice, Cdl_cath_slice], sort=False, axis=0)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 22 10:16:42 2021 @author: tungbioinfo """ import argparse import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import time from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import pickle import os, sys from joblib import Parallel, delayed import PCA_Analysis as pca import RF_Analysis_Multiclass as rfc import RF_Analysis_Binary as rfb from Auto_ML_Multiclass import AutoML_classification ############################################################################### ############################## Read data set ################################## ############################################################################### rumi = pd.read_csv("rumi.csv") rumi = rumi.drop(rumi[rumi["Depressiongroup"]==1].index, axis=0).reset_index(drop=True) depre_gr = rumi["Depressiongroup"].apply(lambda x: "BPD" if x == 2 else "H" if x == 0 else "MDD") sex = rumi["Gender_1_male"].apply(lambda x: 0 if x == 2 else 1) rumi = rumi.drop(columns = ["Depressiongroup", "Gender_1_male"]) rumi = pd.concat([depre_gr, sex, rumi], axis = 1) rumi = shuffle(rumi).reset_index(drop=True) rumi_meta = rumi[['MRI_expID', 'MRI_ordID', 'CurrentDepression', 'Depressiongroup', 'TIV', 'Age', 'Gender_1_male', 'BDI_Total', 'RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'Dep_PastEpisodes', 'Dep_Duration']] rumi_meta = rumi_meta.set_index('MRI_expID') sns.pairplot(rumi_meta[['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'Depressiongroup']], hue="Depressiongroup") rumi_meta_bdp = rumi_meta.loc[rumi_meta['Depressiongroup'] == "BPD"] rumi_meta_mdd = rumi_meta.loc[rumi_meta['Depressiongroup'] == 'MDD'] sns.pairplot(rumi_meta_bdp[['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'CurrentDepression']], hue="CurrentDepression") sns.pairplot(rumi_meta_mdd[['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'CurrentDepression']], hue="CurrentDepression") rumi_region = rumi.drop(columns = ['MRI_ordID', 'CurrentDepression', 'Depressiongroup', 'TIV', 'Age', 'Gender_1_male', 'BDI_Total', 'RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'Dep_PastEpisodes', 'Dep_Duration']) rumi_region = rumi_region.set_index('MRI_expID') rumi_region_T = rumi_region.T rumi_region_bdp = rumi_region.loc[rumi_meta_bdp.index] rumi_region_mdd = rumi_region.loc[rumi_meta_mdd.index] y = rumi_meta["Depressiongroup"].apply(lambda x: 0 if x == "MDD" else 1 if x == "BPD" else 2) class_name = ["MDD", "BPD", 'Healthy'] X_train, X_test, y_train, y_test = train_test_split(rumi_region, y, test_size=0.3, random_state=42) ############################################################################### ######################## Step 1 - Run Auto_ML ################################# ############################################################################### automl = AutoML_classification() result = automl.fit(X_train, y_train, X_test, y_test) ############################################################################### ################### Step 2 - Run selected models ############################## ############################################################################### log_best, _, _, _, _ = automl.LogisticRegression(X_train, y_train, X_test, y_test) evaluate_dt = automl.evaluate_multiclass(log_best, X_train, y_train, X_test, y_test, model = "Logistics_regression", num_class=3, class_name = class_name) sgd_best, _, _, _, _ = automl.Stochastic_Gradient_Descent(X_train, y_train, X_test, y_test) evaluate_dt = automl.evaluate_multiclass(sgd_best, X_train, y_train, X_test, y_test, model = "Stochastic_Gradient_Descent", num_class=3, class_name = class_name) rf_best, _, _, _, _ = automl.Random_Forest(X_train, y_train, X_test, y_test) evaluate_rf = automl.evaluate_multiclass(rf_best, X_train, y_train, X_test, y_test, model = "Random Forest", num_class=3, top_features=20, class_name = class_name) ############################################################################### ########## Step 3.1 - Run forward algorithm + Random Forest ################### ############################################################################### import itertools from scipy import interp from itertools import cycle from sklearn.preprocessing import label_binarize from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn import metrics from sklearn.metrics import roc_curve, auc from sklearn.metrics import accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import KFold, RepeatedStratifiedKFold, RepeatedKFold from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.model_selection import TimeSeriesSplit, GridSearchCV, RandomizedSearchCV from xgboost import XGBClassifier from datetime import datetime as dt import warnings warnings.filterwarnings("ignore") st_t = dt.now() n_samples, n_features = X_train.shape n_estimators = [5, 10, 50, 100, 150, 200, 250, 300] max_depth = [5, 10, 25, 50, 75, 100] min_samples_leaf = [1, 2, 4, 8, 10] min_samples_split = [2, 4, 6, 8, 10] max_features = ["auto", "sqrt", "log2", None] hyperparameter = {'n_estimators': n_estimators, 'max_depth': max_depth, 'min_samples_leaf': min_samples_leaf, 'min_samples_split': min_samples_split, 'max_features': max_features, } base_model_rf = RandomForestClassifier(criterion = "gini", random_state=42) n_iter_search = 30 scoring = "accuracy" n_selected_features = 240 # selected feature set, initialized to be empty F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 rsearch_cv = RandomizedSearchCV(estimator=base_model_rf, random_state=42, param_distributions=hyperparameter, n_iter=n_iter_search, #cv=cv_timeSeries, cv=2, scoring=scoring, n_jobs=-1) rsearch_cv.fit(X_train_tmp, y_train) best_estimator = rsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) acc = metrics.accuracy_score(y_test, y_pred) F.pop() if acc > max_acc: max_acc = acc idx = i best_model = best_estimator F.append(idx) count += 1 print("The current number of features: {} - Accuracy: {}%".format(count, round(max_acc*100, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) all_info = pd.concat([c, a, f["All"]], axis=1) all_info.columns = ['Num_feature', 'Accuracy', 'Feature'] all_info = all_info.sort_values(by='Accuracy', ascending=False).reset_index(drop=True) all_info.to_csv("CDI_subset_accuracy.csv", index=False) f.to_csv("CDI_subset.csv") with open("CDI_models.txt", "wb") as fp: pickle.dump(all_model, fp) ############################################################################### ################# Step 3.1 - Run forward algorithm + SGD ###################### ############################################################################### from sklearn.linear_model import SGDClassifier st_t = dt.now() n_samples, n_features = X_train.shape # Loss function loss = ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"] penalty = ["l2", "l1", "elasticnet"] # The higher the value, the stronger the regularization alpha = np.logspace(-7, -1, 100) # The Elastic Net mixing parameter l1_ratio = np.linspace(0, 1, 100) epsilon = np.logspace(-5, -1, 100) learning_rate = ["constant", "optimal", "invscaling", "adaptive"] eta0 = np.logspace(-7, -1, 100) hyperparameter = {"loss": loss, "penalty": penalty, "alpha": alpha, "l1_ratio": l1_ratio, "epsilon": epsilon, "learning_rate": learning_rate, "eta0": eta0} model = SGDClassifier(n_jobs = -1) n_iter_search = 30 scoring = "accuracy" n_selected_features = 240 # selected feature set, initialized to be empty F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 rsearch_cv = RandomizedSearchCV(estimator = model, param_distributions = hyperparameter, cv = 2, scoring = scoring, n_iter = n_iter_search, n_jobs = -1) rsearch_cv.fit(X_train_tmp, y_train) best_estimator = rsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) acc = metrics.accuracy_score(y_test, y_pred) F.pop() if acc > max_acc: max_acc = acc idx = i best_model = best_estimator F.append(idx) count += 1 print("The current number of features: {} - Accuracy: {}%".format(count, round(max_acc*100, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) ############################################################################### ######## Step 4.1 - Run forward algorithm + Random_Forest_regression ########## ############################################################################### from Auto_ML_Regression import AutoML_Regression from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error from sklearn.metrics import mean_absolute_percentage_error import math y = rumi_meta["RRS_Brooding"] rumi_region_plus = pd.concat([rumi_meta[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region], axis=1) #------- y = rumi_meta_bdp["BDI_Total"] rumi_region_bdp_plus = pd.concat([rumi_meta_bdp[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region_bdp], axis=1) X_train, X_test, y_train, y_test = train_test_split(rumi_region_bdp_plus, y, test_size=0.3, random_state=42) # ------ y = rumi_meta_bdp["BDI_Total"] rumi_region_mdd_plus = pd.concat([rumi_meta_mdd[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region_mdd], axis=1) X_train, X_test, y_train, y_test = train_test_split(rumi_region_mdd_plus, y, test_size=0.3, random_state=42) # ------ ress_BPD_brain = pd.read_csv("BPD_brain.csv", header=None) ress_BPD_brain.columns = rumi_region.columns ress_BPD_meta = pd.read_csv("BPD_rrs.csv", header=None) ress_BPD_meta.columns = ['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination','RRS_Total'] y = ress_BPD_meta["RRS_Brooding"] X_train, X_test, y_train, y_test = train_test_split(BPD_subset, y, test_size=0.3, random_state=42) # ------ ress_MDD_brain = pd.read_csv("MDD_brain.csv", header=None) ress_MDD_brain.columns = rumi_region.columns ress_MDD_meta = pd.read_csv("MDD_rrs.csv", header=None) ress_MDD_meta.columns = ['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination','RRS_Total'] y = ress_MDD_meta["RRS_Brooding"] X_train, X_test, y_train, y_test = train_test_split(ress_MDD_brain, y, test_size=0.3, random_state=42) # ------ ress_HC_brain = pd.read_csv("Health_brain.csv", header=None) ress_HC_brain.columns = rumi_region.columns ress_HC_meta = pd.read_csv("Health_rrs.csv", header=None) ress_HC_meta.columns = ['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination','RRS_Total'] y = ress_HC_meta["RRS_Brooding"] X_train, X_test, y_train, y_test = train_test_split(ress_HC_brain, y, test_size=0.3, random_state=42) automl = AutoML_Regression() result = automl.fit(X_train, y_train, X_test, y_test) result.to_csv("AutoML_RRS_total_rumi_region_plus.csv", index = False) ress_BPD_meta["Label"] = "BPD" ress_MDD_meta["Label"] = "MDD" ress_HC_meta["Label"] = "HC" ress = pd.concat([ress_BPD_meta, ress_MDD_meta, ress_HC_meta]).reset_index(drop=True) sns.pairplot(ress, hue="Label") #------------------------------------------------------------------------------ automl = AutoML_Regression() lasso_best, _, _, _ = automl.Random_Forest(X_train, y_train, X_test, y_test) lasso_best.fit(X_train, y_train) y_pred = lasso_best.predict(X_test) plt.scatter(y_pred, y_test, s=8) plt.plot([min(y_pred), max(y_pred)], [min(y_test), max(y_test)], '--k') plt.ylabel('True RRS_total') plt.xlabel('Predicted RRS_total') #plt.text(s='Random Forest without Forward varible', x=1, # y=2, fontsize=12, multialignment='center') plt.text(min(y_pred), max(y_test) - 5, r'$R^2$ = %.2f' % (r2_score(y_test, y_pred))) plt.text(min(y_pred), max(y_test) - 10, r'MSE = %.2f' % (mean_squared_error(y_test, y_pred))) plt.text(min(y_pred), max(y_test) - 15, r'Accuracy = %.2f %' % (100 - 100*mean_absolute_percentage_error(y_test, y_pred))) #plt.ticklabel_format(axis="both", style="sci", scilimits=(0, 0)) errors = abs(y_pred - y_test) mean_err = np.stack(errors/y_test) mean_err = mean_err[np.isfinite(mean_err)] mape = 100 * np.mean(mean_err) acc = 100 - mape #------------------------------------------------------------------------------ n_samples, n_features = X_train.shape n_estimators = [5, 10, 50, 100, 150, 200, 250, 300] max_depth = [5, 10, 25, 50, 75, 100] min_samples_leaf = [1, 2, 4, 8, 10] min_samples_split = [2, 4, 6, 8, 10] max_features = ["auto", "sqrt", "log2", None] hyperparameter = {'n_estimators': n_estimators, 'max_depth': max_depth, 'min_samples_leaf': min_samples_leaf, 'min_samples_split': min_samples_split, 'max_features': max_features, } my_cv = RepeatedKFold(n_splits=10, n_repeats=10, random_state=42) base_model_rf = RandomForestRegressor(criterion = "mse", random_state=42) n_iter_search = 30 scoring = "neg_mean_squared_error" n_selected_features = 240 F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_mse = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 min_err = np.inf time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 rsearch_cv = RandomizedSearchCV(estimator=base_model_rf, random_state=42, param_distributions=hyperparameter, n_iter=n_iter_search, #cv=my_cv, cv=5, scoring=scoring, n_jobs=-1) rsearch_cv.fit(X_train_tmp, y_train) best_estimator = rsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) mse = mean_squared_error(y_test, y_pred) #acc = metrics.accuracy_score(y_test, y_pred) F.pop() if mse < min_err: min_err = mse idx = i best_model = best_estimator #errors = abs(y_pred - y_test) #mean_err = np.stack(errors/y_test) #mean_err = mean_err[np.isfinite(mean_err)] mape = mean_absolute_percentage_error(y_test, y_pred) max_acc = 100 - (100*mape) F.append(idx) count += 1 print("The current number of features: {} - MSE: {}".format(count, round(min_err, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) all_mse.append(min_err) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) e = pd.DataFrame(all_mse) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) all_info =
pd.concat([c, e, a, f["All"]], axis=1)
pandas.concat
import matplotlib matplotlib.use('Agg') from Swing.util.BoxPlot import BoxPlot from matplotlib.backends.backend_pdf import PdfPages from scipy import stats import pdb import numpy as np import matplotlib.pyplot as plt import pandas as pd import sys import os import time from Swing.util.mplstyle import style1 import seaborn as sns from palettable.colorbrewer.qualitative import Set1_3 def get_df(df, fp, min_lag, max_lag, td_window, inftype = "RandomForest"): new_df = df[(df['file_path'] == fp) & (df['min_lag'] == min_lag) & (df['max_lag'] == max_lag) & (df['td_window'] == td_window) & (df['InfType'] == inftype)] return(new_df) def load_data(): input_folder_list = ["/projects/p20519/roller_output/gnw/RandomForest/"] agg_df_RF = read_tdr_results(input_folder_list, folder_str = "2017-09") agg_df_RF['InfType'] = 'RandomForest' input_folder_list = ["/projects/p20519/roller_output/gnw/Dionesus/"] agg_df_P = read_tdr_results(input_folder_list, folder_str = "2017-09") agg_df_P['InfType'] = 'PLSR' input_folder_list = ["/projects/p20519/roller_output/gnw/Lasso/"] agg_df_L = read_tdr_results(input_folder_list, folder_str = "2017-09") agg_df_L['InfType'] = 'Lasso' all_dfs = [agg_df_RF, agg_df_P, agg_df_L] merged_df = pd.concat(all_dfs) return(merged_df) def read_tdr_results(folder_list, folder_str): agg_df = pd.DataFrame() for input_folder in folder_list: for file_path in os.listdir(input_folder): if folder_str in file_path: df = pd.read_csv(input_folder+file_path,sep='\t', engine='python') # check if the columns are misaligned. if type(df['permutation_n'].iloc[0]) is str: new_col = df.columns.tolist() new_col.pop(0) new_df = df.iloc[:,0:len(df.iloc[0])-1] new_df.columns = new_col df=new_df agg_df = agg_df.append(df) return(agg_df) def get_inf_df(network_1, inf_type): RFnet1 = network_1[network_1['InfType'] == inf_type] RFn1 = RFnet1.groupby('td_window').mean() return(RFn1) def get_comparisons(merged_df, inftypes, window_sizes, network_list): overall_df = pd.DataFrame() network_1_df = pd.DataFrame() for inftype in inftypes: for td_window in window_sizes: for network in network_list: baseline = get_df(merged_df, network, 0, 0, 21, inftype = inftype) if len(baseline) == 0: continue if 21-td_window > 2: max_lag = 3 else: max_lag = 21-td_window if (td_window == 21): min_lag = 0 max_lag = 0 else: min_lag = 1 comparisons = get_df(merged_df, network, min_lag, max_lag, td_window, inftype = inftype) if len(comparisons) == 0: continue # for each statistic, get the percent difference to the baseline comparison. stat = 'aupr' baseline_mean=baseline[stat].mean() comparisons['percent_{}'.format(stat)] = ((comparisons[stat]-baseline_mean)/baseline_mean)*100 stat = 'auroc' baseline_mean=baseline[stat].mean() comparisons['percent_{}'.format(stat)] = ((comparisons[stat]-baseline_mean)/baseline_mean)*100 overall_df = overall_df.append(comparisons.iloc[0:20,:], ignore_index = True) if network == network_list[6]: network_1_df = network_1_df.append(comparisons.iloc[0:20,:], ignore_index = True) print(comparisons,len(comparisons)) return(overall_df, network_1_df) test_statistic = ['aupr', 'auroc'] save_tag = "window_scan" n_trials = 100 #merged_df = load_data() #merged_df.to_pickle("merged_window_scan.pkl") #merged_df = pd.read_pickle("merged_window_scan.pkl") #network_list = merged_df['file_path'].unique().tolist() #window_sizes = range(2,22) #inftypes = ['RandomForest', 'Lasso', 'PLSR'] #overall_df, network_1 = get_comparisons(merged_df, inftypes, window_sizes, network_list) #overall_df.to_pickle("merged_window_scan_comparisons.pkl") #network_1.to_pickle("merged_window_scan_comparisons_network1.pkl") overall_df = pd.read_pickle("merged_window_scan_comparisons.pkl") network_1 =
pd.read_pickle("merged_window_scan_comparisons_network1.pkl")
pandas.read_pickle
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '{end_dt}'".format(end_dt=end_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = "index > '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert 0 == len(results) def test_select_iterator_many_empty_frames(self, setup_path): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = int(1e4) # with iterator, range limited to the first chunk with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100000, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = "index <= '{beg_dt}' & index >= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be [] assert len(results) == 0 @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes(self, setup_path): # GH 3499, losing frequency info on index recreation df = DataFrame( dict(A=Series(range(3), index=date_range("2000-1-1", periods=3, freq="H"))) ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "data") store.put("data", df, format="table") result = store.get("data") tm.assert_frame_equal(df, result) for attr in ["freq", "tz", "name"]: for idx in ["index", "columns"]: assert getattr(getattr(df, idx), attr, None) == getattr( getattr(result, idx), attr, None ) # try to append a table with a different frequency with catch_warnings(record=True): df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("data", df2) assert store.get_storer("data").info["index"]["freq"] is None # this is ok _maybe_remove(store, "df2") df2 = DataFrame( dict( A=Series( range(3), index=[ Timestamp("20010101"), Timestamp("20010102"), Timestamp("20020101"), ], ) ) ) store.append("df2", df2) df3 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("df2", df3) @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes2(self, setup_path): with ensure_clean_path(setup_path) as path: with catch_warnings(record=True): df = DataFrame( dict( A=Series( range(3), index=date_range("2000-1-1", periods=3, freq="H") ) ) ) df.to_hdf(path, "data", mode="w", append=True) df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) df2.to_hdf(path, "data", append=True) idx = date_range("2000-1-1", periods=3, freq="H") idx.name = "foo" df = DataFrame(dict(A=Series(range(3), index=idx))) df.to_hdf(path, "data", mode="w", append=True) assert read_hdf(path, "data").index.name == "foo" with catch_warnings(record=True): idx2 = date_range("2001-1-1", periods=3, freq="H") idx2.name = "bar" df2 = DataFrame(dict(A=Series(range(3), index=idx2))) df2.to_hdf(path, "data", append=True) assert read_hdf(path, "data").index.name is None def test_frame_select(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") date = df.index[len(df) // 2] crit1 = Term("index>=date") assert crit1.env.scope["date"] == date crit2 = "columns=['A', 'D']" crit3 = "columns=A" result = store.select("frame", [crit1, crit2]) expected = df.loc[date:, ["A", "D"]] tm.assert_frame_equal(result, expected) result = store.select("frame", [crit3]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append("df_time", df) with pytest.raises(ValueError): store.select("df_time", "index>0") # can't select if not written as table # store['frame'] = df # with pytest.raises(ValueError): # store.select('frame', [crit1, crit2]) def test_frame_select_complex(self, setup_path): # select via complex criteria df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[df.index[0:4], "string"] = "bar" with ensure_clean_store(setup_path) as store: store.put("df", df, format="table", data_columns=["string"]) # empty result = store.select("df", 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select("df", 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == "foo")] tm.assert_frame_equal(result, expected) # or result = store.select("df", 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select( "df", "(index>df.index[3] & " 'index<=df.index[6]) | string="bar"' ) expected = df.loc[ ((df.index > df.index[3]) & (df.index <= df.index[6])) | (df.string == "bar") ] tm.assert_frame_equal(result, expected) # invert result = store.select("df", 'string!="bar"') expected = df.loc[df.string != "bar"] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( with pytest.raises(NotImplementedError): store.select("df", '~(string="bar")') # invert ok for filters result = store.select("df", "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(["A", "B"])] tm.assert_frame_equal(result, expected) # in result = store.select("df", "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(self, setup_path): with ensure_clean_path(["parms.hdf", "hist.hdf"]) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({"A": [1, 1, 2, 2, 3]}) parms.to_hdf(pp, "df", mode="w", format="table", data_columns=["A"]) selection = read_hdf(pp, "df", where="A=[2,3]") hist = DataFrame( np.random.randn(25, 1), columns=["data"], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=["l1", "l2"] ), ) hist.to_hdf(hh, "df", mode="w", format="table") expected = read_hdf(hh, "df", where="l1=[2, 3, 4]") # scope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select("df", where="l1=l") tm.assert_frame_equal(result, expected) store.close() result = read_hdf(hh, "df", where="l1=l") tm.assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, "df", where="l1=index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) # scope with index store = HDFStore(hh) result = store.select("df", where="l1=index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) store.close() def test_invalid_filtering(self, setup_path): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") # not implemented with pytest.raises(NotImplementedError): store.select("df", "columns=['A'] | columns=['B']") # in theory we could deal with this with pytest.raises(NotImplementedError): store.select("df", "columns=['A','B'] & columns=['C']") def test_string_select(self, setup_path): # GH 2973 with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df["x"] = "none" df.loc[2:7, "x"] = "" store.append("df", df, data_columns=["x"]) result = store.select("df", "x=none") expected = df[df.x == "none"] tm.assert_frame_equal(result, expected) result = store.select("df", "x!=none") expected = df[df.x != "none"] tm.assert_frame_equal(result, expected) df2 = df.copy() df2.loc[df2.x == "", "x"] = np.nan store.append("df2", df2, data_columns=["x"]) result = store.select("df2", "x!=none") expected = df2[isna(df2.x)] tm.assert_frame_equal(result, expected) # int ==/!= df["int"] = 1 df.loc[2:7, "int"] = 2 store.append("df3", df, data_columns=["int"]) result = store.select("df3", "int=2") expected = df[df.int == 2] tm.assert_frame_equal(result, expected) result = store.select("df3", "int!=2") expected = df[df.int != 2] tm.assert_frame_equal(result, expected) def test_read_column(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # GH 17912 # HDFStore.select_column should raise a KeyError # exception if the key is not a valid store with pytest.raises(KeyError, match="No object named df in the file"): store.select_column("df", "index") store.append("df", df) # error with pytest.raises( KeyError, match=re.escape("'column [foo] not found in the table'") ): store.select_column("df", "foo") with pytest.raises(Exception): store.select_column("df", "index", where=["index>5"]) # valid result = store.select_column("df", "index") tm.assert_almost_equal(result.values, Series(df.index).values) assert isinstance(result, Series) # not a data indexable column with pytest.raises(ValueError): store.select_column("df", "values_block_0") # a data column df2 = df.copy() df2["string"] = "foo" store.append("df2", df2, data_columns=["string"]) result = store.select_column("df2", "string") tm.assert_almost_equal(result.values, df2["string"].values) # a data column with NaNs, result excludes the NaNs df3 = df.copy() df3["string"] = "foo" df3.loc[4:6, "string"] = np.nan store.append("df3", df3, data_columns=["string"]) result = store.select_column("df3", "string") tm.assert_almost_equal(result.values, df3["string"].values) # start/stop result = store.select_column("df3", "string", start=2) tm.assert_almost_equal(result.values, df3["string"].values[2:]) result = store.select_column("df3", "string", start=-2) tm.assert_almost_equal(result.values, df3["string"].values[-2:]) result = store.select_column("df3", "string", stop=2) tm.assert_almost_equal(result.values, df3["string"].values[:2]) result = store.select_column("df3", "string", stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[:-2]) result = store.select_column("df3", "string", start=2, stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[2:-2]) result = store.select_column("df3", "string", start=-2, stop=2) tm.assert_almost_equal(result.values, df3["string"].values[-2:2]) # GH 10392 - make sure column name is preserved df4 = DataFrame({"A": np.random.randn(10), "B": "foo"}) store.append("df4", df4, data_columns=True) expected = df4["B"] result = store.select_column("df4", "B") tm.assert_series_equal(result, expected) def test_coordinates(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append("df", df) # all c = store.select_as_coordinates("df") assert (c.values == np.arange(len(df.index))).all() # get coordinates back & test vs frame _maybe_remove(store, "df") df = DataFrame(dict(A=range(5), B=range(5))) store.append("df", df) c = store.select_as_coordinates("df", ["index<3"]) assert (c.values == np.arange(3)).all() result = store.select("df", where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates("df", ["index>=3", "index<=4"]) assert (c.values == np.arange(2) + 3).all() result = store.select("df", where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables _maybe_remove(store, "df1") _maybe_remove(store, "df2") df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) store.append("df1", df1, data_columns=["A", "B"]) store.append("df2", df2) c = store.select_as_coordinates("df1", ["A>0", "B>0"]) df1_result = store.select("df1", c) df2_result = store.select("df2", c) result = concat([df1_result, df2_result], axis=1) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # pass array/mask as the coordinates with ensure_clean_store(setup_path) as store: df = DataFrame( np.random.randn(1000, 2), index=date_range("20000101", periods=1000) ) store.append("df", df) c = store.select_column("df", "index") where = c[DatetimeIndex(c).month == 5].index expected = df.iloc[where] # locations result = store.select("df", where=where) tm.assert_frame_equal(result, expected) # boolean result = store.select("df", where=where) tm.assert_frame_equal(result, expected) # invalid with pytest.raises(ValueError): store.select("df", where=np.arange(len(df), dtype="float64")) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df) + 1)) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df)), start=5) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df)), start=5, stop=10) # selection with filter selection = date_range("20000101", periods=500) result = store.select("df", where="index in selection") expected = df[df.index.isin(selection)] tm.assert_frame_equal(result, expected) # list df = DataFrame(np.random.randn(10, 2)) store.append("df2", df) result = store.select("df2", where=[0, 3, 5]) expected = df.iloc[[0, 3, 5]] tm.assert_frame_equal(result, expected) # boolean where = [True] * 10 where[-2] = False result = store.select("df2", where=where) expected = df.loc[where] tm.assert_frame_equal(result, expected) # start/stop result = store.select("df2", start=5, stop=10) expected = df[5:10] tm.assert_frame_equal(result, expected) def test_append_to_multiple(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df2["foo"] = "bar" df = concat([df1, df2], axis=1) with ensure_clean_store(setup_path) as store: # exceptions with pytest.raises(ValueError): store.append_to_multiple( {"df1": ["A", "B"], "df2": None}, df, selector="df3" ) with pytest.raises(ValueError): store.append_to_multiple({"df1": None, "df2": None}, df, selector="df3") with pytest.raises(ValueError): store.append_to_multiple("df1", df, "df1") # regular operation store.append_to_multiple( {"df1": ["A", "B"], "df2": None}, df, selector="df1" ) result = store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df1" ) expected = df[(df.A > 0) & (df.B > 0)] tm.assert_frame_equal(result, expected) def test_append_to_multiple_dropna(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df1.iloc[1, df1.columns.get_indexer(["A", "B"])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(setup_path) as store: # dropna=True should guarantee rows are synchronized store.append_to_multiple( {"df1": ["A", "B"], "df2": None}, df, selector="df1", dropna=True ) result = store.select_as_multiple(["df1", "df2"]) expected = df.dropna() tm.assert_frame_equal(result, expected) tm.assert_index_equal(store.select("df1").index, store.select("df2").index) @pytest.mark.xfail( run=False, reason="append_to_multiple_dropna_false is not raising as failed" ) def test_append_to_multiple_dropna_false(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df1.iloc[1, df1.columns.get_indexer(["A", "B"])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(setup_path) as store: # dropna=False shouldn't synchronize row indexes store.append_to_multiple( {"df1a": ["A", "B"], "df2a": None}, df, selector="df1a", dropna=False ) with pytest.raises(ValueError): store.select_as_multiple(["df1a", "df2a"]) assert not store.select("df1a").index.equals(store.select("df2a").index) def test_select_as_multiple(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df2["foo"] = "bar" with ensure_clean_store(setup_path) as store: # no tables stored with pytest.raises(Exception): store.select_as_multiple(None, where=["A>0", "B>0"], selector="df1") store.append("df1", df1, data_columns=["A", "B"]) store.append("df2", df2) # exceptions with pytest.raises(Exception): store.select_as_multiple(None, where=["A>0", "B>0"], selector="df1") with pytest.raises(Exception): store.select_as_multiple([None], where=["A>0", "B>0"], selector="df1") msg = "'No object named df3 in the file'" with pytest.raises(KeyError, match=msg): store.select_as_multiple( ["df1", "df3"], where=["A>0", "B>0"], selector="df1" ) with pytest.raises(KeyError, match=msg): store.select_as_multiple(["df3"], where=["A>0", "B>0"], selector="df1") with pytest.raises(KeyError, match="'No object named df4 in the file'"): store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df4" ) # default select result = store.select("df1", ["A>0", "B>0"]) expected = store.select_as_multiple( ["df1"], where=["A>0", "B>0"], selector="df1" ) tm.assert_frame_equal(result, expected) expected = store.select_as_multiple( "df1", where=["A>0", "B>0"], selector="df1" ) tm.assert_frame_equal(result, expected) # multiple result = store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df1" ) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # multiple (diff selector) result = store.select_as_multiple( ["df1", "df2"], where="index>df2.index[4]", selector="df2" ) expected = concat([df1, df2], axis=1) expected = expected[5:] tm.assert_frame_equal(result, expected) # test exception for diff rows store.append("df3", tm.makeTimeDataFrame(nper=50)) with pytest.raises(ValueError): store.select_as_multiple( ["df1", "df3"], where=["A>0", "B>0"], selector="df1" ) @pytest.mark.skipif( LooseVersion(tables.__version__) < LooseVersion("3.1.0"), reason=("tables version does not support fix for nan selection bug: GH 4858"), ) def test_nan_selection_bug_4858(self, setup_path): with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
# -*- coding: utf-8 -*- from __future__ import unicode_literals import multiprocessing import random from threading import Thread import botocore from django.contrib import auth from django.contrib.auth import authenticate from django.shortcuts import render from django.template import RequestContext from django.utils.datetime_safe import datetime from django.views.decorators.csrf import csrf_exempt import json from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer as wn from django.http import HttpResponse, JsonResponse import re from openpyxl import load_workbook from openpyxl.writer.excel import save_virtual_workbook from apollo.Lib.collections import Counter from apollo4.ComputeOptimalParameters import getOptimalParameterForMNB_alpha, getOptimalParameterForLR_alpha, \ getOptimalParameterForSVM_alpha, getOptimalParameterForOVRMNB_alpha, getOptimalParameterForOVRLR_alpha, \ getOptimalParameterForOVRSVM_alpha, getBestModelAndHyperParameters from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import SGDClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.multiclass import OneVsRestClassifier from sklearn.cluster import MiniBatchKMeans from sklearn.decomposition import LatentDirichletAllocation from sklearn.model_selection import KFold from sklearn import preprocessing from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier import pandas as pd import numpy as np import glob import copy from dateutil.relativedelta import relativedelta import os, sys, signal from os.path import splitext import uuid import apollo4.globals import boto3 from elasticsearch import Elasticsearch from apollo4.connection import MyConnection import pickle from sklearn.metrics.pairwise import cosine_similarity from sklearn.decomposition import TruncatedSVD from zipfile import ZipFile import io from django.contrib.auth.decorators import login_required from django.conf import settings from array import array import copy stopwords = ["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "you're", "you've", "you'll", "you'd", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "she's", "her", "hers", "herself", "it", "it's", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "that'll", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "don't", "should", "should've", "now", "d", "ll", "m", "o", "re", "ve", "y", "ain", "aren", "aren't", "couldn", "couldn't", "didn", "didn't", "doesn", "doesn't", "hadn", "hadn't", "hasn", "hasn't", "haven", "haven't", "isn", "isn't", "ma", "mightn", "mightn't", "mustn", "mustn't", "needn", "needn't", "shan", "shan't", "shouldn", "shouldn't", "wasn", "wasn't", "weren", "weren't", "won", "won't", "wouldn", "wouldn't"] @csrf_exempt @login_required(login_url='/login/') def sl(request): return render(request, 'apollo4/spotlight.html') def Spotlight_Top_Papers(df): try: # if request.method == 'POST': # userName = request.user.username; # inputData = request.FILES.getlist('file') # inputDataArray = [] # altogether = None # titleRecords = [] # for files in inputData: # inputrecords = pd.read_csv(files, header=0, encoding='unicode_escape') # title = inputrecords.get('Title') # titleRecords.append(title) # inputDataArray.append(inputrecords) # # print(titleRecords) # df = pd.read_csv() # df.head(5) # # Get topk from GUI (e.g., top 5, top 10, top 15, or top 20) topk = 10 num_references = df['Cited by'] titles = df['Title'] years = df['Year'] authors = df['Authors'] affiliations = df['Affiliations'] topkindices = np.argsort(list(num_references))[::-1] topkindices_cleaned = [] counter = 0 while len(topkindices_cleaned) < topk: if not np.isnan(num_references[topkindices[counter]]): topkindices_cleaned.append(topkindices[counter]) counter += 1 num_references[topkindices_cleaned] # authors_without_commas = authors[topkindices_cleaned] # # authors_to_return = [] # for author in authors_without_commas: # authors_to_return.append(author.replace(',', ';')) topPapers = { 'titles': titles[topkindices_cleaned].to_json(), 'authors': authors[topkindices_cleaned].to_json(), 'affiliations':affiliations[topkindices_cleaned].to_json(), 'years':years[topkindices_cleaned].to_json(), 'citations': num_references[topkindices_cleaned].to_json() } # return titles, years, authors, and affiliations for top papers return topPapers except Exception as e: return HttpResponse( "Error running the program. Please contact the IP Group Analytics Team (<EMAIL>) to resolve the issue. Please provide the error details below in your email. \nPlease provide all the steps to reproduce this issue. \n" + "-" * 40 + "\n" + str( e) + "\n" + "-" * 40) def Spotlight_Top_Patents(df): try: # df = pd.read_csv(datafile, sep=',', encoding='ISO-8859-1') # print(df.head(5)) # Get topk from GUI (e.g., top 5, top 10, top 15, or top 20) topk = 10 references = df['Domestic References-By'] num_references = [] for ref in references: if type(ref) == str: if ref != '': num_ref = len(ref.split(',')) num_references.append(num_ref) else: num_references.append(0) elif type(ref) == float: num_references.append(0) else: num_references.append(0) titles = df['Title'] application_dates = df['Appl. Date'] assignees = df['Assignee'] topkindices = np.argsort(num_references)[::-1] topkindices_cleaned = [] num_references =
pd.DataFrame(num_references, columns=['References'])
pandas.DataFrame
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" import tensorflow as tf tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True sess = tf.Session(config=tf_config) import sys if not '../' in sys.path: sys.path.append('../') import pandas as pd from utils import data_utils from model_config import config from train_discriminator import get_label_vec from ved_varAttnMultiTask import VarSeq2SeqVarAttnMultiTaskModel def train_model(config): print('[INFO] Preparing data for experiment: {}'.format(config['experiment'])) if config['experiment'] == 'qgen': train_data = pd.read_csv(config['data_dir'] + 'df_qgen_train.csv') val_data = pd.read_csv(config['data_dir'] + 'df_qgen_val.csv') test_data = pd.read_csv(config['data_dir'] + 'df_qgen_test.csv') input_sentences =
pd.concat([train_data['answer'], val_data['answer'], test_data['answer']])
pandas.concat
#!/usr/bin/env python3 import pytest import os import pathlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import logging import math import torch from neuralprophet import NeuralProphet, set_random_seed from neuralprophet import df_utils log = logging.getLogger("NP.test") log.setLevel("WARNING") log.parent.setLevel("WARNING") DIR = pathlib.Path(__file__).parent.parent.absolute() DATA_DIR = os.path.join(DIR, "tests", "test-data") PEYTON_FILE = os.path.join(DATA_DIR, "wp_log_peyton_manning.csv") AIR_FILE = os.path.join(DATA_DIR, "air_passengers.csv") YOS_FILE = os.path.join(DATA_DIR, "yosemite_temps.csv") NROWS = 256 EPOCHS = 2 BATCH_SIZE = 64 LR = 1.0 PLOT = False def test_names(): log.info("testing: names") m = NeuralProphet() m._validate_column_name("hello_friend") def test_train_eval_test(): log.info("testing: Train Eval Test") m = NeuralProphet( n_lags=10, n_forecasts=3, ar_sparsity=0.1, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df = pd.read_csv(PEYTON_FILE, nrows=95) df = df_utils.check_dataframe(df, check_y=False) df = m._handle_missing_data(df, freq="D", predicting=False) df_train, df_test = m.split_df(df, freq="D", valid_p=0.1) metrics = m.fit(df_train, freq="D", validation_df=df_test) val_metrics = m.test(df_test) log.debug("Metrics: train/eval: \n {}".format(metrics.to_string(float_format=lambda x: "{:6.3f}".format(x)))) log.debug("Metrics: test: \n {}".format(val_metrics.to_string(float_format=lambda x: "{:6.3f}".format(x)))) def test_df_utils_func(): log.info("testing: df_utils Test") df = pd.read_csv(PEYTON_FILE, nrows=95) df = df_utils.check_dataframe(df, check_y=False) # test find_time_threshold df_dict, _ = df_utils.prep_copy_df_dict(df) time_threshold = df_utils.find_time_threshold(df_dict, n_lags=2, valid_p=0.2, inputs_overbleed=True) df_train, df_val = df_utils.split_considering_timestamp( df_dict, n_lags=2, n_forecasts=2, inputs_overbleed=True, threshold_time_stamp=time_threshold ) # init data params with a list global_data_params = df_utils.init_data_params(df_dict, normalize="soft") global_data_params = df_utils.init_data_params(df_dict, normalize="soft1") global_data_params = df_utils.init_data_params(df_dict, normalize="standardize") log.debug("Time Threshold: \n {}".format(time_threshold)) log.debug("Df_train: \n {}".format(type(df_train))) log.debug("Df_val: \n {}".format(type(df_val))) def test_trend(): log.info("testing: Trend") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( growth="linear", n_changepoints=10, changepoints_range=0.9, trend_reg=1, trend_reg_threshold=False, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # print(m.config_trend) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=60, n_historic_predictions=60) forecast = m.predict(df=future) if PLOT: m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_custom_changepoints(): log.info("testing: Custom Changepoints") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) dates = df["ds"][range(1, len(df) - 1, int(len(df) / 5.0))] dates_list = [str(d) for d in dates] dates_array = pd.to_datetime(dates_list).values log.debug("dates: {}".format(dates)) log.debug("dates_list: {}".format(dates_list)) log.debug("dates_array: {} {}".format(dates_array.dtype, dates_array)) for cp in [dates_list, dates_array]: m = NeuralProphet( changepoints=cp, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # print(m.config_trend) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=60, n_historic_predictions=60) forecast = m.predict(df=future) if PLOT: # m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_no_trend(): log.info("testing: No-Trend") df = pd.read_csv(PEYTON_FILE, nrows=512) m = NeuralProphet( growth="off", yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=60, n_historic_predictions=60) forecast = m.predict(df=future) if PLOT: m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_seasons(): log.info("testing: Seasonality: additive") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( yearly_seasonality=8, weekly_seasonality=4, seasonality_mode="additive", seasonality_reg=1, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=365, periods=365) forecast = m.predict(df=future) log.debug("SUM of yearly season params: {}".format(sum(abs(m.model.season_params["yearly"].data.numpy())))) log.debug("SUM of weekly season params: {}".format(sum(abs(m.model.season_params["weekly"].data.numpy())))) log.debug("season params: {}".format(m.model.season_params.items())) if PLOT: m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() log.info("testing: Seasonality: multiplicative") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) # m = NeuralProphet(n_lags=60, n_changepoints=10, n_forecasts=30, verbose=True) m = NeuralProphet( yearly_seasonality=8, weekly_seasonality=4, seasonality_mode="multiplicative", epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=365, periods=365) forecast = m.predict(df=future) def test_custom_seasons(): log.info("testing: Custom Seasonality") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) other_seasons = False m = NeuralProphet( yearly_seasonality=other_seasons, weekly_seasonality=other_seasons, daily_seasonality=other_seasons, seasonality_mode="additive", # seasonality_mode="multiplicative", seasonality_reg=1, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m = m.add_seasonality(name="quarterly", period=90, fourier_order=5) log.debug("seasonalities: {}".format(m.season_config.periods)) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=365, periods=365) forecast = m.predict(df=future) log.debug("season params: {}".format(m.model.season_params.items())) if PLOT: m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_ar(): log.info("testing: AR") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=7, n_lags=7, yearly_seasonality=False, epochs=EPOCHS, # batch_size=BATCH_SIZE, learning_rate=LR, ) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=90) forecast = m.predict(df=future) if PLOT: m.plot_last_forecast(forecast, include_previous_forecasts=3) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_ar_sparse(): log.info("testing: AR (sparse") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=3, n_lags=14, ar_sparsity=0.5, yearly_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=90) forecast = m.predict(df=future) if PLOT: m.plot_last_forecast(forecast, include_previous_forecasts=3) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_ar_deep(): log.info("testing: AR-Net (deep)") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=7, n_lags=14, num_hidden_layers=2, d_hidden=32, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=90) forecast = m.predict(df=future) if PLOT: m.plot_last_forecast(forecast, include_previous_forecasts=3) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_lag_reg(): log.info("testing: Lagged Regressors") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=2, n_lags=3, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df["A"] = df["y"].rolling(7, min_periods=1).mean() df["B"] = df["y"].rolling(30, min_periods=1).mean() m = m.add_lagged_regressor(names="A") m = m.add_lagged_regressor(names="B", only_last_value=True) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=10) forecast = m.predict(future) if PLOT: print(forecast.to_string()) m.plot_last_forecast(forecast, include_previous_forecasts=5) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_lag_reg_deep(): log.info("testing: List of Lagged Regressors (deep)") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=1, n_lags=14, num_hidden_layers=2, d_hidden=32, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df["A"] = df["y"].rolling(7, min_periods=1).mean() df["B"] = df["y"].rolling(15, min_periods=1).mean() df["C"] = df["y"].rolling(30, min_periods=1).mean() cols = [col for col in df.columns if col not in ["ds", "y"]] m = m.add_lagged_regressor(names=cols) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") forecast = m.predict(df) if PLOT: # print(forecast.to_string()) # m.plot_last_forecast(forecast, include_previous_forecasts=10) # m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_events(): log.info("testing: Events") df = pd.read_csv(PEYTON_FILE)[-NROWS:] playoffs = pd.DataFrame( { "event": "playoff", "ds": pd.to_datetime( [ "2008-01-13", "2009-01-03", "2010-01-16", "2010-01-24", "2010-02-07", "2011-01-08", "2013-01-12", "2014-01-12", "2014-01-19", "2014-02-02", "2015-01-11", "2016-01-17", "2016-01-24", "2016-02-07", ] ), } ) superbowls = pd.DataFrame( { "event": "superbowl", "ds": pd.to_datetime(["2010-02-07", "2014-02-02", "2016-02-07"]), } ) events_df = pd.concat((playoffs, superbowls)) m = NeuralProphet( n_lags=2, n_forecasts=30, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # set event windows m = m.add_events( ["superbowl", "playoff"], lower_window=-1, upper_window=1, mode="multiplicative", regularization=0.5 ) # add the country specific holidays m = m.add_country_holidays("US", mode="additive", regularization=0.5) m.add_country_holidays("Indonesia") m.add_country_holidays("Thailand") m.add_country_holidays("Philippines") m.add_country_holidays("Pakistan") m.add_country_holidays("Belarus") history_df = m.create_df_with_events(df, events_df) metrics_df = m.fit(history_df, freq="D") future = m.make_future_dataframe(df=history_df, events_df=events_df, periods=30, n_historic_predictions=90) forecast = m.predict(df=future) log.debug("Event Parameters:: {}".format(m.model.event_params)) if PLOT: m.plot_components(forecast) m.plot(forecast) m.plot_parameters() plt.show() def test_future_reg(): log.info("testing: Future Regressors") df = pd.read_csv(PEYTON_FILE, nrows=NROWS + 50) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df["A"] = df["y"].rolling(7, min_periods=1).mean() df["B"] = df["y"].rolling(30, min_periods=1).mean() regressors_df_future = pd.DataFrame(data={"A": df["A"][-50:], "B": df["B"][-50:]}) df = df[:-50] m = m.add_future_regressor(name="A") m = m.add_future_regressor(name="B", mode="multiplicative") metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df=df, regressors_df=regressors_df_future, n_historic_predictions=10, periods=50) forecast = m.predict(df=future) if PLOT: m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_plot(): log.info("testing: Plotting") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=7, n_lags=14, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=m.n_forecasts, n_historic_predictions=10) forecast = m.predict(future) m.plot(forecast) m.plot_last_forecast(forecast, include_previous_forecasts=10) m.plot_components(forecast) m.plot_parameters() m.highlight_nth_step_ahead_of_each_forecast(7) forecast = m.predict(df) m.plot(forecast) m.plot_last_forecast(forecast, include_previous_forecasts=10) m.plot_components(forecast) m.plot_parameters() if PLOT: plt.show() def test_air_data(): log.info("TEST air_passengers.csv") df = pd.read_csv(AIR_FILE) m = NeuralProphet( n_changepoints=0, yearly_seasonality=2, seasonality_mode="multiplicative", epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics = m.fit(df, freq="MS") future = m.make_future_dataframe(df, periods=48, n_historic_predictions=len(df) - m.n_lags) forecast = m.predict(future) if PLOT: m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_random_seed(): log.info("TEST random seed") df = pd.read_csv(PEYTON_FILE, nrows=512) set_random_seed(0) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=10, n_historic_predictions=10) forecast = m.predict(future) checksum1 = sum(forecast["yhat1"].values) set_random_seed(0) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=10, n_historic_predictions=10) forecast = m.predict(future) checksum2 = sum(forecast["yhat1"].values) set_random_seed(1) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=10, n_historic_predictions=10) forecast = m.predict(future) checksum3 = sum(forecast["yhat1"].values) log.debug("should be same: {} and {}".format(checksum1, checksum2)) log.debug("should not be same: {} and {}".format(checksum1, checksum3)) assert math.isclose(checksum1, checksum2) assert not math.isclose(checksum1, checksum3) def test_yosemite(): log.info("TEST Yosemite Temps") df = pd.read_csv(YOS_FILE, nrows=NROWS) m = NeuralProphet( changepoints_range=0.95, n_changepoints=15, weekly_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics = m.fit(df, freq="5min") future = m.make_future_dataframe(df, periods=12 * 24, n_historic_predictions=12 * 24) forecast = m.predict(future) if PLOT: m.plot(forecast) m.plot_parameters() plt.show() def test_model_cv(): log.info("CV from model") def check_simple(df): m = NeuralProphet( learning_rate=LR, ) folds = m.crossvalidation_split_df(df, freq="D", k=5, fold_pct=0.1, fold_overlap_pct=0.5) assert all([70 + i * 5 == len(train) for i, (train, val) in enumerate(folds)]) assert all([10 == len(val) for (train, val) in folds]) def check_cv(df, freq, n_lags, n_forecasts, k, fold_pct, fold_overlap_pct): m = NeuralProphet( n_lags=n_lags, n_forecasts=n_forecasts, learning_rate=LR, ) folds = m.crossvalidation_split_df(df, freq=freq, k=k, fold_pct=fold_pct, fold_overlap_pct=fold_overlap_pct) total_samples = len(df) - m.n_lags + 2 - (2 * m.n_forecasts) per_fold = int(fold_pct * total_samples) not_overlap = per_fold - int(fold_overlap_pct * per_fold) assert all([per_fold == len(val) - m.n_lags + 1 - m.n_forecasts for (train, val) in folds]) assert all( [ total_samples - per_fold - (k - i - 1) * not_overlap == len(train) - m.n_lags + 1 - m.n_forecasts for i, (train, val) in enumerate(folds) ] ) check_simple(pd.DataFrame({"ds": pd.date_range(start="2017-01-01", periods=100), "y": np.arange(100)})) check_cv( df=pd.DataFrame({"ds": pd.date_range(start="2017-01-01", periods=100), "y": np.arange(100)}), n_lags=10, n_forecasts=5, freq="D", k=5, fold_pct=0.1, fold_overlap_pct=0, ) check_cv( df=pd.DataFrame({"ds": pd.date_range(start="2017-01-01", periods=100), "y": np.arange(100)}), n_lags=10, n_forecasts=15, freq="D", k=5, fold_pct=0.1, fold_overlap_pct=0.5, ) def test_loss_func(): log.info("TEST setting torch.nn loss func") df = pd.read_csv(PEYTON_FILE, nrows=512) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, loss_func="MSE", learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=10, n_historic_predictions=10) forecast = m.predict(future) def test_loss_func_torch(): log.info("TEST setting torch.nn loss func") df = pd.read_csv(PEYTON_FILE, nrows=512) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, loss_func=torch.nn.MSELoss, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=10, n_historic_predictions=10) forecast = m.predict(future) def test_callable_loss(): log.info("TEST Callable Loss") def my_loss(output, target): assym_penalty = 1.25 beta = 1 e = target - output me = torch.abs(e) z = torch.where(me < beta, 0.5 * (me ** 2) / beta, me - 0.5 * beta) z = torch.where(e < 0, z, assym_penalty * z) return z df = pd.read_csv(YOS_FILE, nrows=NROWS) # auto-lr with range test m = NeuralProphet( seasonality_mode="multiplicative", loss_func=my_loss, ) with pytest.raises(ValueError): # find_learning_rate only suports normal torch Loss functions metrics = m.fit(df, freq="5min") df = pd.read_csv(YOS_FILE, nrows=NROWS) m = NeuralProphet( loss_func=my_loss, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=0.1, # bypasses find_learning_rate ) metrics = m.fit(df, freq="5min") future = m.make_future_dataframe(df, periods=12 * 24, n_historic_predictions=12 * 24) forecast = m.predict(future) def test_custom_torch_loss(): log.info("TEST PyTorch Custom Loss") class MyLoss(torch.nn.modules.loss._Loss): def forward(self, input, target): alpha = 0.9 y_diff = target - input yhat_diff = input - target loss = ( ( alpha * torch.max(y_diff, torch.zeros_like(y_diff)) + (1 - alpha) * torch.max(yhat_diff, torch.zeros_like(yhat_diff)) ) .sum() .mean() ) return loss df = pd.read_csv(YOS_FILE, nrows=NROWS) m = NeuralProphet( loss_func=MyLoss, # auto-lr with range test ) with pytest.raises(ValueError): # find_learning_rate only suports normal torch Loss functions metrics = m.fit(df, freq="5min") df = pd.read_csv(YOS_FILE, nrows=NROWS) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, loss_func=MyLoss, learning_rate=1, # bypasses find_learning_rate ) metrics = m.fit(df, freq="5min") future = m.make_future_dataframe(df, periods=12, n_historic_predictions=12) forecast = m.predict(future) def test_global_modeling_split_df(): ### GLOBAL MODELLING - SPLIT DF log.info("Global Modeling - Split df") df = pd.read_csv(PEYTON_FILE, nrows=512) df1 = df.iloc[:128, :].copy(deep=True) df2 = df.iloc[128:256, :].copy(deep=True) df3 = df.iloc[256:384, :].copy(deep=True) df_dict = {"dataset1": df1, "dataset2": df2, "dataset3": df3} m = NeuralProphet( n_forecasts=2, n_lags=3, learning_rate=LR, ) log.info("split df with single df") df_train, df_val = m.split_df(df1) log.info("split df with dict of dataframes") df_train, df_val = m.split_df(df_dict) log.info("split df with dict of dataframes - local_split") df_train, df_val = m.split_df(df_dict, local_split=True) def test_global_modeling_no_exogenous_variable(): ### GLOBAL MODELLING - NO EXOGENOUS VARIABLE log.info("Global Modeling - No exogenous variables") df = pd.read_csv(PEYTON_FILE, nrows=512) df1_0 = df.iloc[:128, :].copy(deep=True) df2_0 = df.iloc[128:256, :].copy(deep=True) df3_0 = df.iloc[256:384, :].copy(deep=True) df4_0 = df.iloc[384:, :].copy(deep=True) train_input = {0: df1_0, 1: {"df1": df1_0, "df2": df2_0}, 2: {"df1": df1_0, "df2": df2_0}} test_input = {0: df3_0, 1: {"df1": df3_0}, 2: {"df1": df3_0, "df2": df4_0}} info_input = { 0: "Testing df train / df test - no events, no regressors", 1: "Testing dict df train / df test - no events, no regressors", 2: "Testing dict df train / dict df test - no events, no regressors", } for i in range(0, 3): log.info(info_input[i]) m = NeuralProphet( n_forecasts=2, n_lags=10, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics = m.fit(train_input[i], freq="D") forecast = m.predict(df=test_input[i]) forecast_trend = m.predict_trend(df=test_input[i]) forecast_seasonal_componets = m.predict_seasonal_components(df=test_input[i]) if PLOT: forecast = forecast if isinstance(forecast, list) else [forecast] for key in forecast: fig1 = m.plot(forecast[key]) fig2 = m.plot(forecast[key]) with pytest.raises(ValueError): forecast = m.predict({"df4": df4_0}) log.info("Error - dict with names not provided in the train dict (not in the data params dict)") with pytest.raises(ValueError): metrics = m.test({"df4": df4_0}) log.info("Error - dict with names not provided in the train dict (not in the data params dict)") m = NeuralProphet( n_forecasts=2, n_lags=10, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m.fit({"df1": df1_0, "df2": df2_0}, freq="D") with pytest.raises(ValueError): forecast = m.predict({"df4": df4_0}) # log.info("unknown_data_normalization was not set to True") with pytest.raises(ValueError): metrics = m.test({"df4": df4_0}) # log.info("unknown_data_normalization was not set to True") with pytest.raises(ValueError): forecast_trend = m.predict_trend({"df4": df4_0}) # log.info("unknown_data_normalization was not set to True") with pytest.raises(ValueError): forecast_seasonal_componets = m.predict_seasonal_components({"df4": df4_0}) # log.info("unknown_data_normalization was not set to True") # Set unknown_data_normalization to True - now there should be no errors m.config_normalization.unknown_data_normalization = True forecast = m.predict({"df4": df4_0}) metrics = m.test({"df4": df4_0}) forecast_trend = m.predict_trend({"df4": df4_0}) forecast_seasonal_componets = m.predict_seasonal_components({"df4": df4_0}) m.plot_parameters(df_name="df1") m.plot_parameters() def test_global_modeling_validation_df(): log.info("Global Modeling + Local Normalization") df = pd.read_csv(PEYTON_FILE, nrows=512) df1_0 = df.iloc[:128, :].copy(deep=True) df2_0 = df.iloc[128:256, :].copy(deep=True) df_dict = {"df1": df1_0, "df2": df2_0} m = NeuralProphet( n_forecasts=2, n_lags=10, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) with pytest.raises(ValueError): m.fit(df_dict, freq="D", validation_df=df2_0) log.info("Error - name of validation df was not provided") m = NeuralProphet( n_forecasts=2, n_lags=10, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m.fit(df_dict, freq="D", validation_df={"df2": df2_0}) # Now it works because we provide the name of the validation_df def test_global_modeling_global_normalization(): ### GLOBAL MODELLING - NO EXOGENOUS VARIABLES - GLOBAL NORMALIZATION log.info("Global Modeling + Global Normalization") df = pd.read_csv(PEYTON_FILE, nrows=512) df1_0 = df.iloc[:128, :].copy(deep=True) df2_0 = df.iloc[128:256, :].copy(deep=True) df3_0 = df.iloc[256:384, :].copy(deep=True) m = NeuralProphet( n_forecasts=2, n_lags=10, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, global_normalization=True ) train_dict = {"df1": df1_0, "df2": df2_0} test_dict = {"df3": df3_0} m.fit(train_dict) future = m.make_future_dataframe(test_dict) forecast = m.predict(future) metrics = m.test(test_dict) forecast_trend = m.predict_trend(test_dict) forecast_seasonal_componets = m.predict_seasonal_components(test_dict) def test_global_modeling_with_future_regressors(): ### GLOBAL MODELLING + REGRESSORS log.info("Global Modeling + Regressors") df = pd.read_csv(PEYTON_FILE, nrows=512) df1 = df.iloc[:128, :].copy(deep=True) df2 = df.iloc[128:256, :].copy(deep=True) df3 = df.iloc[256:384, :].copy(deep=True) df4 = df.iloc[384:, :].copy(deep=True) df1["A"] = df1["y"].rolling(30, min_periods=1).mean() df2["A"] = df2["y"].rolling(10, min_periods=1).mean() df3["A"] = df3["y"].rolling(40, min_periods=1).mean() df4["A"] = df4["y"].rolling(20, min_periods=1).mean() future_regressors_df3 = pd.DataFrame(data={"A": df3["A"][:30]}) future_regressors_df4 = pd.DataFrame(data={"A": df4["A"][:40]}) train_input = {0: df1, 1: {"df1": df1, "df2": df2}, 2: {"df1": df1, "df2": df2}} test_input = {0: df3, 1: {"df1": df3}, 2: {"df1": df3, "df2": df4}} regressors_input = { 0: future_regressors_df3, 1: {"df1": future_regressors_df3}, 2: {"df1": future_regressors_df3, "df2": future_regressors_df4}, } info_input = { 0: "Testing df train / df test - df regressor, no events", 1: "Testing dict df train / df test - df regressors, no events", 2: "Testing dict df train / dict df test - dict regressors, no events", } for i in range(0, 3): log.info(info_input[i]) m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m = m.add_future_regressor(name="A") metrics = m.fit(train_input[i], freq="D") future = m.make_future_dataframe(test_input[i], n_historic_predictions=True, regressors_df=regressors_input[i]) forecast = m.predict(future) # if PLOT: #fix plot_components # forecast = forecast if isinstance(forecast, dict) else {'df1':forecast} # for key in forecast: # fig = m.plot(forecast[key]) # fig = m.plot_components(forecast[key]) # Possible errors with regressors m = NeuralProphet( epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m = m.add_future_regressor(name="A") metrics = m.fit({"df1": df1, "df2": df2}, freq="D") with pytest.raises(ValueError): future = m.make_future_dataframe( {"df1": df3, "df2": df4}, n_historic_predictions=True, regressors_df={"df1": future_regressors_df3} ) log.info("Error - dict of regressors len is different than dict of dataframes len") with pytest.raises(ValueError): future = m.make_future_dataframe( {"df1": df3}, n_historic_predictions=True, regressors_df={"dfn": future_regressors_df3} ) log.info("Error - key for regressors not valid") def test_global_modeling_with_lagged_regressors(): ### GLOBAL MODELLING + REGRESSORS log.info("Global Modeling + Regressors") df =
pd.read_csv(PEYTON_FILE, nrows=512)
pandas.read_csv
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pandas as pd from sqlalchemy import DateTime from spotrix import db from spotrix.utils import core as utils from .helpers import get_example_data, get_table_connector_registry def load_flights(only_metadata: bool = False, force: bool = False) -> None: """Loading random time series data from a zip file in the repo""" tbl_name = "Flights" database = utils.get_example_database() table_exists = database.has_table_by_name(tbl_name) if not only_metadata and (not table_exists or force): data = get_example_data("flight_data.csv.gz", make_bytes=True) pdf =
pd.read_csv(data, encoding="latin-1")
pandas.read_csv
# This code extract the features from the raw joined dataset (data.csv) # and save it in the LibSVM format. # Usage: python construct_features.py import pandas as pd import numpy as np from sklearn.datasets import dump_svmlight_file df = pd.read_csv("data.csv", low_memory=False) # NPU NPU = df.NPU.copy() NPU[NPU == ' '] = np.nan NPU = pd.get_dummies(NPU, prefix="NPU") # SiteZip SiteZip = df.SiteZip.copy() SiteZip = SiteZip.str.replace(',','') SiteZip = SiteZip.str.replace('\.00','') SiteZip = SiteZip.replace('0',np.nan) SiteZip = pd.get_dummies(SiteZip, prefix="SiteZip") # Submarket1 Submarket1 = df.Submarket1.copy() Submarket1 = pd.get_dummies(Submarket1, prefix="Submarket1") # TAX_DISTR TAX_DISTR = df.TAX_DISTR.copy() TAX_DISTR[TAX_DISTR == ' '] = np.nan TAX_DISTR = pd.get_dummies(TAX_DISTR, prefix="TAX_DISTR") # NBHD NBHD = df.NBHD.copy() NBHD[NBHD == ' '] = np.nan NBHD = pd.get_dummies(NBHD, prefix="NBHD") # ZONING_NUM ZONING_NUM = df.ZONING_NUM.copy() ZONING_NUM[ZONING_NUM == ' '] = np.nan ZONING_NUM = pd.get_dummies(ZONING_NUM, prefix="ZONING_NUM") # building_c building_c = df.building_c.copy() building_c[building_c == ' '] = np.nan building_c = pd.get_dummies(building_c, prefix="building_c") # PROP_CLASS PROP_CLASS = df.PROP_CLASS.copy() PROP_CLASS[PROP_CLASS == ' '] = np.nan PROP_CLASS = pd.get_dummies(PROP_CLASS, prefix="PROP_CLASS") # Existing_p Existing_p = df.Existing_p.copy() Existing_p[Existing_p == ' '] = np.nan Existing_p = pd.get_dummies(Existing_p, prefix="Existing_p") # PropertyTy PropertyTy = df.PropertyTy.copy() PropertyTy = pd.get_dummies(PropertyTy, prefix="PropertyTy") # secondaryT secondaryT = df.secondaryT.copy() secondaryT[secondaryT == ' '] = np.nan secondaryT = pd.get_dummies(secondaryT, prefix="secondaryT") # LUC LUC = df.LUC.copy() LUC[LUC == ' '] = np.nan LUC = pd.get_dummies(LUC, prefix="LUC") # Taxes_Per_ Taxes_Per_ = df.Taxes_Per_.copy() Taxes_Per_zero = (Taxes_Per_ == "0").apply(int) Taxes_Per_zero.name = 'Taxes_Per_zero' Taxes_Per_ = Taxes_Per_.str.replace(',','').astype(float) Taxes_Per_ = np.log1p(Taxes_Per_) Taxes_Per_ = Taxes_Per_ / Taxes_Per_.max() Taxes_Per_ = pd.concat([Taxes_Per_, Taxes_Per_zero], axis=1) # Taxes_Tota Taxes_Tota = df.Taxes_Tota.copy() Taxes_Tota_zero = (Taxes_Tota == "0").apply(int) Taxes_Tota_zero.name = 'Taxes_Tota_zero' Taxes_Tota = Taxes_Tota.str.replace(',','').astype(float) Taxes_Tota = np.log1p(Taxes_Tota) Taxes_Tota = Taxes_Tota / Taxes_Tota.max() Taxes_Tota = pd.concat([Taxes_Tota, Taxes_Tota_zero], axis=1) # TOT_APPR TOT_APPR = df.TOT_APPR.copy() TOT_APPR_zero = (TOT_APPR == "0").apply(int) TOT_APPR_zero.name = 'TOT_APPR_zero' TOT_APPR = TOT_APPR.str.replace(',','').astype(float) TOT_APPR = np.log1p(TOT_APPR) TOT_APPR = TOT_APPR / TOT_APPR.max() TOT_APPR = pd.concat([TOT_APPR, TOT_APPR_zero], axis=1) # VAL_ACRES VAL_ACRES = df.VAL_ACRES.copy() VAL_ACRES_zero = (VAL_ACRES == 0).apply(int) VAL_ACRES_zero.name = 'VAL_ACRES_zero' VAL_ACRES = np.log1p(VAL_ACRES) VAL_ACRES = VAL_ACRES / VAL_ACRES.max() VAL_ACRES = pd.concat([VAL_ACRES, VAL_ACRES_zero], axis=1) # For_Sale_P For_Sale_P = df.For_Sale_P.copy() For_Sale_P_notNA = (For_Sale_P != " ").apply(int) For_Sale_P_notNA.name = 'For_Sale_P_notNA' For_Sale_P[For_Sale_P == ' '] = 0 For_Sale_P = For_Sale_P.astype(float) For_Sale_P = np.log1p(For_Sale_P) For_Sale_P = For_Sale_P / For_Sale_P.max() For_Sale_P = pd.concat([For_Sale_P, For_Sale_P_notNA], axis=1) # Last_Sale1 Last_Sale1 = df.Last_Sale1.copy() Last_Sale1_zero = (Last_Sale1 == "0").apply(int) Last_Sale1_zero.name = "Last_Sale1_zero" Last_Sale1 = Last_Sale1.str.replace(',','').astype(float) Last_Sale1 = np.log1p(Last_Sale1) Last_Sale1 = (Last_Sale1 - Last_Sale1.min()) / (Last_Sale1.max() - Last_Sale1.min()) Last_Sale1 = pd.concat([Last_Sale1, Last_Sale1_zero], axis=1) # yearbuilt yearbuilt = df.yearbuilt.copy() yearbuilt_zero = (yearbuilt == "0").apply(int) yearbuilt_zero.name = "yearbuilt_zero" yearbuilt[yearbuilt == "0"] = np.nan yearbuilt = yearbuilt.str.replace(',','').astype(float) yearbuilt = (yearbuilt - yearbuilt.min()) / (yearbuilt.max() - yearbuilt.min()) yearbuilt = yearbuilt.fillna(0) yearbuilt = pd.concat([yearbuilt, yearbuilt_zero], axis=1) # year_reno year_reno = df.year_reno.copy() reno = (year_reno != "0").apply(int) reno.name = "reno" year_reno[year_reno == "0"] = np.nan year_reno = year_reno.str.replace(',','').astype(float) year_reno = (year_reno - year_reno.min()) / (year_reno.max() - year_reno.min()) year_reno = year_reno.fillna(0) year_reno = pd.concat([year_reno, reno], axis=1) # Lot_Condition Lot_Condition = df.Lot_Condition.copy() Lot_Condition[Lot_Condition == ' '] = np.nan Lot_Condition = pd.get_dummies(Lot_Condition, prefix="Lot_Condition") # Structure_Condition Structure_Condition = df.Structure_Condition.copy() Structure_Condition[Structure_Condition == ' '] = np.nan Structure_Condition = pd.get_dummies(Structure_Condition, prefix="Structure_Condition") # Sidewalks Sidewalks = df.Sidewalks.copy() Sidewalks[Sidewalks == "YES"] = "Yes" Sidewalks[Sidewalks == " "] = np.nan Sidewalks = pd.get_dummies(Sidewalks, prefix="Sidewalks") # Multiple_Violations Multiple_Violations = df.Multiple_Violations.copy() Multiple_Violations[Multiple_Violations == ' '] = np.nan Multiple_Violations =
pd.get_dummies(Multiple_Violations, prefix="Multiple_Violations")
pandas.get_dummies
from numpy import NaN, nan import pandas as pd from amparos.pesquisa import Pesquisa_Sem_Driver, Pesquisa_Com_Driver # Verifica se o arquico .xlsx e um arquivo valido def VerificarXlsx(local): """ Parameters: local: Arquivo .xlsx para ser analisado Returns: return 'ERRO: Caminho ou arquvio invalido': Mensagem return 'ERRO: Arquivo inadequado': Mensagem return 'ERRO: Arquivo .xlsx e fora dos padrões': Mensagem return True: Se o caminho e o arquivo estiver correto """ conter_na_tabela = ['sua pergunta', '1 pergunta similar', '1 pergunta similar 1 resposta', '1 pergunta similar 2 resposta', '2 pergunta similar', '2 pergunta similar 1 resposta', '2 pergunta similar 2 resposta'] contem = 0 try: tabela = pd.read_excel(local) except FileNotFoundError: return 'ERRO: Caminho ou arquivo invalido' except ValueError: return 'ERRO: Arquivo inadequado' # Deletar a coluna 'Unnamed: 0' ela e sempre crianda quando abrimos um arquivo .xlsx if 'Unnamed: 0' in tabela: tabela.drop('Unnamed: 0', axis=1, inplace=True) # Verifiando se há as colunas necessarias for c in conter_na_tabela: if c in tabela.keys(): contem += 1 else: return 'ERRO: Arquivo .xlsx fora dos padrões' # Se o arquivo tiver as colunas necessarias if contem == len(conter_na_tabela): return True # Cria uma lista com as pergunta do arquivo .xlsx def CriarListaPerguntas(local_xlsx): """ Parameters: local_xlsx: Local do arquivo .xlsx dentro dos padrões Returns: return lista_perguntas: Lista com todas as perguntas do arquivo .xlxs """ lista_perguntas = [] tabela_xlsx =
pd.read_excel(local_xlsx)
pandas.read_excel
import os import pandas as pd path = './csv' files = os.listdir(path) df1 = pd.read_csv(path + '/' + files[0], encoding='utf_8_sig') for file in files[1:]: df2 = pd.read_csv(path + '/' + file, encoding='utf_8_sig') df1 =
pd.concat([df1, df2], axis=0, ignore_index=True)
pandas.concat
"""GitHub Model""" __docformat__ = "numpy" # pylint: disable=C0201,W1401 import logging from typing import Any, Dict import math from datetime import datetime import requests import pandas as pd from openbb_terminal import config_terminal as cfg from openbb_terminal.decorators import log_start_end from openbb_terminal.rich_config import console from openbb_terminal.helper_funcs import get_user_agent logger = logging.getLogger(__name__) def get_github_data(url: str, **kwargs): """Get repository stats Parameters ---------- url: str github api endpoint params: dict params to pass to api endpoint Returns ------- dict with data """ res = requests.get( url, headers={ "Authorization": f"token {cfg.API_GITHUB_KEY}", "User-Agent": get_user_agent(), "Accept": "application/vnd.github.v3.star+json", }, **kwargs, ) if res.status_code == 200: return res.json() if res.status_code in (401, 403): console.print("[red]Rate limit reached, please provide a GitHub API key.[/red]") elif res.status_code == 404: console.print("[red]Repo not found.[/red]") else: console.print(f"[red]Error occurred {res.json()}[/red]") return None def search_repos( sortby: str = "stars", page: int = 1, categories: str = "" ) -> pd.DataFrame: """Get repos sorted by stars or forks. Can be filtered by categories Parameters ---------- sortby : str Sort repos by {stars, forks} categories : str Check for repo categories. If more than one separate with a comma: e.g., finance,investment. Default: None page : int Page number to get repos Returns ------- pd.DataFrame with list of repos """ params: Dict[str, Any] = {"page": page} if categories: params["sort"] = sortby params["q"] = categories.replace(",", "+") else: params["q"] = f"{sortby}:>1" data = get_github_data("https://api.github.com/search/repositories", params=params) if data and "items" in data: return pd.DataFrame(data["items"]) return pd.DataFrame() @log_start_end(log=logger) def get_stars_history(repo: str): """Get repository star history Parameters ---------- repo : str Repo to search for Format: org/repo, e.g., openbb-finance/openbbterminal Returns ------- pd.DataFrame - Columns: Date, Stars """ data = get_github_data(f"https://api.github.com/repos/{repo}") if data and "stargazers_count" in data: stars_number = data["stargazers_count"] stars: Dict[str, int] = {} pages = math.ceil(stars_number / 100) for page in range(0, pages): data = get_github_data( f"https://api.github.com/repos/{repo}/stargazers", params={"per_page": 100, "page": page}, ) if data: for star in data: day = star["starred_at"].split("T")[0] if day in stars: stars[day] += 1 else: stars[day] = 1 sorted_keys = sorted(stars.keys()) for i in range(1, len(sorted_keys)): stars[sorted_keys[i]] += stars[sorted_keys[i - 1]] df = pd.DataFrame( { "Date": [ datetime.strptime(date, "%Y-%m-%d").date() for date in stars.keys() ], "Stars": stars.values(), } ) df.set_index("Date") return df return pd.DataFrame() @log_start_end(log=logger) def get_top_repos(sortby: str, top: int, categories: str) -> pd.DataFrame: """Get repos sorted by stars or forks. Can be filtered by categories Parameters ---------- sortby : str Sort repos by {stars, forks} categories : str Check for repo categories. If more than one separate with a comma: e.g., finance,investment. Default: None top : int Number of repos to search for Returns ------- pd.DataFrame with list of repos """ initial_top = top df = pd.DataFrame( columns=[ "full_name", "open_issues", "stargazers_count", "forks_count", "language", "created_at", "updated_at", "html_url", ] ) if top <= 100: df2 = search_repos(sortby=sortby, page=1, categories=categories) df = pd.concat([df, df2], ignore_index=True) else: p = 2 while top > 0: df2 = search_repos(sortby=sortby, page=p, categories=categories) df = pd.concat([df, df2], ignore_index=True) top -= 100 p += 1 return df.head(initial_top) @log_start_end(log=logger) def get_repo_summary(repo: str): """Get repository summary Parameters ---------- repo : str Repo to search for Format: org/repo, e.g., openbb-finance/openbbterminal Returns ------- pd.DataFrame - Columns: Metric, Value """ data = get_github_data(f"https://api.github.com/repos/{repo}") if not data: return pd.DataFrame() release_data = get_github_data(f"https://api.github.com/repos/{repo}/releases") if not release_data: return
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 import string from collections import OrderedDict import numpy as np import pandas as pd import pandas.util.testing as pdt import pytest from kartothek.core.dataset import DatasetMetadata from kartothek.core.index import ExplicitSecondaryIndex from kartothek.core.uuid import gen_uuid from kartothek.io_components.metapartition import MetaPartition from kartothek.serialization import DataFrameSerializer def test_file_structure_dataset_v4(store_factory, bound_store_dataframes): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=4 ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() # TODO: json -> msgpack expected_keys = set( [ "dataset_uuid.by-dataset-metadata.json", "dataset_uuid/helper/cluster_1.parquet", "dataset_uuid/helper/cluster_2.parquet", "dataset_uuid/helper/_common_metadata", "dataset_uuid/core/cluster_1.parquet", "dataset_uuid/core/cluster_2.parquet", "dataset_uuid/core/_common_metadata", ] ) assert set(expected_keys) == set(store.keys()) def test_file_structure_dataset_v4_partition_on(store_factory, bound_store_dataframes): store = store_factory() assert set(store.keys()) == set() df = pd.DataFrame( {"P": [1, 2, 3, 1, 2, 3], "L": [1, 1, 1, 2, 2, 2], "TARGET": np.arange(10, 16)} ) df_helper = pd.DataFrame( { "P": [1, 2, 3, 1, 2, 3], "L": [1, 1, 1, 2, 2, 2], "info": string.ascii_lowercase[:2], } ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) assert isinstance(dataset, DatasetMetadata) assert dataset.partition_keys == ["P", "L"] assert len(dataset.partitions) == 12 store = store_factory() expected_keys = set( [ "dataset_uuid.by-dataset-metadata.json", "dataset_uuid/helper/P=1/L=1/cluster_1.parquet", "dataset_uuid/helper/P=1/L=1/cluster_2.parquet", "dataset_uuid/helper/P=1/L=2/cluster_1.parquet", "dataset_uuid/helper/P=1/L=2/cluster_2.parquet", "dataset_uuid/helper/P=2/L=1/cluster_1.parquet", "dataset_uuid/helper/P=2/L=1/cluster_2.parquet", "dataset_uuid/helper/P=2/L=2/cluster_1.parquet", "dataset_uuid/helper/P=2/L=2/cluster_2.parquet", "dataset_uuid/helper/P=3/L=1/cluster_1.parquet", "dataset_uuid/helper/P=3/L=1/cluster_2.parquet", "dataset_uuid/helper/P=3/L=2/cluster_1.parquet", "dataset_uuid/helper/P=3/L=2/cluster_2.parquet", "dataset_uuid/helper/_common_metadata", "dataset_uuid/core/P=1/L=1/cluster_1.parquet", "dataset_uuid/core/P=1/L=1/cluster_2.parquet", "dataset_uuid/core/P=1/L=2/cluster_1.parquet", "dataset_uuid/core/P=1/L=2/cluster_2.parquet", "dataset_uuid/core/P=2/L=1/cluster_1.parquet", "dataset_uuid/core/P=2/L=1/cluster_2.parquet", "dataset_uuid/core/P=2/L=2/cluster_1.parquet", "dataset_uuid/core/P=2/L=2/cluster_2.parquet", "dataset_uuid/core/P=3/L=1/cluster_1.parquet", "dataset_uuid/core/P=3/L=1/cluster_2.parquet", "dataset_uuid/core/P=3/L=2/cluster_1.parquet", "dataset_uuid/core/P=3/L=2/cluster_2.parquet", "dataset_uuid/core/_common_metadata", ] ) assert set(expected_keys) == set(store.keys()) def test_file_structure_dataset_v4_partition_on_second_table_no_index_col( store_factory, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 2), "L": np.arange(0, 2), "TARGET": np.arange(10, 12)} ) df_helper = pd.DataFrame({"P": [0, 0, 1], "info": string.ascii_lowercase[:2]}) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] with pytest.raises(Exception): bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) def test_file_structure_dataset_v4_partition_on_second_table_no_index_col_simple_group( store_factory, bound_store_dataframes ): """ Pandas seems to stop evaluating the groupby expression if the dataframes after the first column split is of length 1. This seems to be an optimization which should, however, still raise a KeyError """ df = pd.DataFrame( {"P": np.arange(0, 2), "L": np.arange(0, 2), "TARGET": np.arange(10, 12)} ) df_helper = pd.DataFrame({"P": [0, 1], "info": string.ascii_lowercase[:2]}) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] with pytest.raises(Exception): bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) def test_store_dataframes_as_dataset( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, secondary_indices=["P"], ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 assert "P" in dataset.indices store = store_factory() stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions index_dct = stored_dataset.indices["P"].load(store).index_dct assert sorted(index_dct.keys()) == list(range(0, 10)) assert any([sorted(p) == ["cluster_1", "cluster_2"] for p in index_dct.values()]) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["core"], store=store ) pdt.assert_frame_equal(df, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["core"], store=store ) pdt.assert_frame_equal(df, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["helper"], store=store ) pdt.assert_frame_equal(df_helper, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["helper"], store=store ) pdt.assert_frame_equal(df_helper, df_stored) def test_store_dataframes_as_dataset_empty_dataframe( store_factory, metadata_version, df_all_types, bound_store_dataframes ): """ Test that writing an empty column succeeds. In particular, this may fail due to too strict schema validation. """ df_empty = df_all_types.drop(0) # Store a second table with shared columns. All shared columns must be of the same type # This may fail in the presence of empty partitions if the schema validation doesn't account for it df_shared_cols = df_all_types.loc[:, df_all_types.columns[:3]] df_shared_cols["different_col"] = "a" assert df_empty.empty df_list = [ { "label": "cluster_1", "data": [("tableA", df_empty), ("tableB", df_shared_cols.copy(deep=True))], }, { "label": "cluster_2", "data": [ ("tableA", df_all_types), ("tableB", df_shared_cols.copy(deep=True)), ], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["tableA"], store=store ) pdt.assert_frame_equal(df_empty, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["tableA"], store=store ) # Roundtrips for type date are not type preserving df_stored["date"] = df_stored["date"].dt.date pdt.assert_frame_equal(df_all_types, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["tableB"], store=store ) pdt.assert_frame_equal(df_shared_cols, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["tableB"], store=store ) pdt.assert_frame_equal(df_shared_cols, df_stored) def test_store_dataframes_as_dataset_batch_mode( store_factory, metadata_version, bound_store_dataframes ): values_p1 = [1, 2, 3] values_p2 = [4, 5, 6] df = pd.DataFrame({"P": values_p1}) df2 = pd.DataFrame({"P": values_p2}) df_list = [ [ { "label": "cluster_1", "data": [("core", df)], "indices": { "P": ExplicitSecondaryIndex( "P", {v: ["cluster_1"] for v in values_p1} ) }, }, { "label": "cluster_2", "data": [("core", df2)], "indices": { "P": ExplicitSecondaryIndex( "P", {v: ["cluster_2"] for v in values_p2} ) }, }, ] ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() stored_dataset = DatasetMetadata.load_from_store( "dataset_uuid", store ).load_all_indices(store) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["core"], store=store ) pdt.assert_frame_equal(df, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["core"], store=store ) pdt.assert_frame_equal(df2, df_stored) assert stored_dataset.indices["P"].to_dict() == { 1: np.array(["cluster_1"], dtype=object), 2: np.array(["cluster_1"], dtype=object), 3: np.array(["cluster_1"], dtype=object), 4: np.array(["cluster_2"], dtype=object), 5: np.array(["cluster_2"], dtype=object), 6: np.array(["cluster_2"], dtype=object), } def test_store_dataframes_as_dataset_auto_uuid( store_factory, metadata_version, mock_uuid, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [ ("core", df.copy(deep=True)), ("helper", df_helper.copy(deep=True)), ], }, { "label": "cluster_2", "data": [ ("core", df.copy(deep=True)), ("helper", df_helper.copy(deep=True)), ], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, metadata_version=metadata_version ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 stored_dataset = DatasetMetadata.load_from_store( "auto_dataset_uuid", store_factory() ) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions def test_store_dataframes_as_dataset_list_input( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df2 = pd.DataFrame( { "P": np.arange(100, 110), "L": np.arange(100, 110), "TARGET": np.arange(10, 20), } ) df_list = [df, df2] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store_factory()) assert dataset == stored_dataset def test_store_dataframes_as_dataset_mp_partition_on_none( metadata_version, store, store_factory, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df2 = pd.DataFrame({"P": np.arange(0, 10), "info": np.arange(100, 110)}) mp = MetaPartition( label=gen_uuid(), data={"core": df, "helper": df2}, metadata_version=metadata_version, ) df_list = [None, mp] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, partition_on=["P"], ) assert isinstance(dataset, DatasetMetadata) assert dataset.partition_keys == ["P"] assert len(dataset.partitions) == 10 assert dataset.metadata_version == metadata_version stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset == stored_dataset def test_store_dataframes_partition_on(store_factory, bound_store_dataframes): df = pd.DataFrame( OrderedDict([("location", ["0", "1", "2"]), ("other", ["a", "a", "a"])]) ) # First partition is empty, test this edgecase input_ = [ { "label": "label", "data": [("order_proposals", df.head(0))], "indices": {"location": {}}, }, { "label": "label", "data": [("order_proposals", df)], "indices": {"location": {k: ["label"] for k in df["location"].unique()}}, }, ] dataset = bound_store_dataframes( input_, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=4, partition_on=["other"], ) assert len(dataset.partitions) == 1 assert len(dataset.indices) == 1 assert dataset.partition_keys == ["other"] def _exception_str(exception): """ Extract the exception message, even if this is a re-throw of an exception in distributed. """ if isinstance(exception, ValueError) and exception.args[0] == "Long error message": return exception.args[1] return str(exception) @pytest.mark.parametrize( "dfs,ok", [ ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.int64), } ), ], True, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int32), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.int16), } ), ], True, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int16), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int32), "X": pd.Series([2], dtype=np.int64), } ), ], True, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.uint64), } ), ], False, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.int64), "Y": pd.Series([2], dtype=np.int64), } ), ], False, ), ( [ pd.DataFrame( { "P": pd.Series([1, 2], dtype=np.int64), "X": pd.Series([1, 2], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([3], dtype=np.int64), "X": pd.Series([3], dtype=np.uint64), } ), ], False, ), ], ) def test_schema_check_write(dfs, ok, store_factory, bound_store_dataframes): df_list = [{"label": "cluster_1", "data": [("core", df)]} for df in dfs] if ok: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P"], metadata_version=4, ) else: with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P"], metadata_version=4, ) assert ( "Schemas for table 'core' of dataset 'dataset_uuid' are not compatible!" in _exception_str(exc.value) ) def test_schema_check_write_shared(store_factory, bound_store_dataframes): df1 = pd.DataFrame( {"P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64)} ) df2 = pd.DataFrame( {"P": pd.Series([1], dtype=np.uint64), "Y": pd.Series([1], dtype=np.int64)} ) df_list = [ {"label": "cluster_1", "data": [("core", df1)]}, {"label": "cluster_2", "data": [("prediction", df2)]}, ] with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P"], metadata_version=4, ) assert 'Found incompatible entries for column "P"' in str(exc.value) def test_schema_check_write_nice_error(store_factory, bound_store_dataframes): df1 = pd.DataFrame( { "P": pd.Series([1, 1], dtype=np.int64), "Q": pd.Series([1, 2], dtype=np.int64), "X": pd.Series([1, 1], dtype=np.int64), } ) df2 = pd.DataFrame( { "P": pd.Series([2, 2], dtype=np.uint64), "Q": pd.Series([1, 2], dtype=np.int64), "X": pd.Series([1, 1], dtype=np.int64), } ) df_list = [ {"label": "uuid1", "data": [("core", df1)]}, {"label": "uuid2", "data": [("core", df2)]}, ] with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "Q"], metadata_version=4, ) assert _exception_str(exc.value).startswith( """Schemas for table 'core' of dataset 'dataset_uuid' are not compatible! Schema violation Origin schema: {core/P=2/Q=2/uuid2} Origin reference: {core/P=1/Q=2/uuid1} Diff: """ ) def test_schema_check_write_cut_error(store_factory, bound_store_dataframes): df1 = pd.DataFrame( { "P": pd.Series([1] * 100, dtype=np.int64), "Q": pd.Series(range(100), dtype=np.int64), "X": pd.Series([1] * 100, dtype=np.int64), } ) df2 = pd.DataFrame( { "P": pd.Series([2] * 100, dtype=np.uint64), "Q": pd.Series(range(100), dtype=np.int64), "X": pd.Series([1] * 100, dtype=np.int64), } ) df_list = [ {"label": "uuid1", "data": [("core", df1)]}, {"label": "uuid2", "data": [("core", df2)]}, ] with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "Q"], metadata_version=4, ) assert _exception_str(exc.value).startswith( """Schemas for table 'core' of dataset 'dataset_uuid' are not compatible! Schema violation Origin schema: {core/P=2/Q=99/uuid2} Origin reference: {core/P=1/Q=99/uuid1} Diff: """ ) def test_metadata_consistency_errors_fails( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame({"W": np.arange(0, 10), "L": np.arange(0, 10)}) df_2 = pd.DataFrame( {"P": np.arange(10, 20), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_list = [ {"label": "cluster_1", "data": [("core", df)]}, {"label": "cluster_2", "data": [("core", df_2)]}, ] # Also test `df_list` in reverse order, as this could lead to different results for dfs in [df_list, list(reversed(df_list))]: with pytest.raises( Exception, match=r"Schemas for table .* of dataset .* are not compatible!" ): return bound_store_dataframes( dfs, store=store_factory, metadata_version=metadata_version ) def test_table_consistency_resistance( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame({"P": np.arange(0, 10)}) df_helper = pd.DataFrame( {"P": np.arange(15, 35), "info": string.ascii_lowercase[:10]} ) df_list = [ {"label": "cluster_1", "data": [("core", df)]}, {"label": "cluster_2", "data": [("core", df), ("helper", df_helper)]}, ] store_kwargs = dict(store=store_factory, metadata_version=metadata_version) metadata1 = bound_store_dataframes(df_list, **store_kwargs) metadata2 = bound_store_dataframes(list(reversed(df_list)), **store_kwargs) assert set(metadata1.tables) == set(metadata2.tables) == {"core", "helper"} def test_store_dataframes_as_dataset_overwrite( store_factory, dataset_function, bound_store_dataframes ): with pytest.raises(RuntimeError): bound_store_dataframes( [pd.DataFrame()], store=store_factory, dataset_uuid=dataset_function.uuid ) bound_store_dataframes( [pd.DataFrame()], store=store_factory, dataset_uuid=dataset_function.uuid, overwrite=True, ) bound_store_dataframes( [pd.DataFrame()], store=store_factory, dataset_uuid="new_dataset_uuid" ) def test_store_empty_dataframes_partition_on(store_factory, bound_store_dataframes): df1 = pd.DataFrame({"x": [1], "y": [1]}).iloc[[]] md1 = bound_store_dataframes( [df1], store=store_factory, dataset_uuid="uuid", partition_on=["x"] ) assert md1.tables == ["table"] assert set(md1.table_meta["table"].names) == set(df1.columns) df2 = pd.DataFrame({"x": [1], "y": [1], "z": [1]}).iloc[[]] md2 = bound_store_dataframes( [df2], store=store_factory, dataset_uuid="uuid", partition_on=["x"], overwrite=True, ) assert md2.tables == ["table"] assert set(md2.table_meta["table"].names) == set(df2.columns) df3 = pd.DataFrame({"x": [1], "y": [1], "a": [1]}).iloc[[]] md3 = bound_store_dataframes( [{"table2": df3}], store=store_factory, dataset_uuid="uuid", partition_on=["x"], overwrite=True, ) assert md3.tables == ["table2"] assert set(md3.table_meta["table2"].names) == set(df3.columns) def test_store_overwrite_none(store_factory, bound_store_dataframes): df1 =
pd.DataFrame({"x": [1], "y": [1]})
pandas.DataFrame
import os import sys import numpy as np import pandas as pd import time import scipy.sparse import scipy.sparse.linalg from scipy import stats from scipy.optimize import minimize np.set_printoptions(threshold=sys.maxsize) # Add lib to the python path. from genTestDat import genTestData2D, prodMats2D from est2d import * from est3d import * from npMatrix2d import * from npMatrix3d import * # ================================================================================== # # The below code runs multiple simulations in serial. It takes the following inputs: # # ---------------------------------------------------------------------------------- # # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - nsim: Number of simulations (default=1000) # - mode: String indicating whether to run parameter estimation simulations (mode= # 'param') or T statistic simulations (mode='Tstat'). # - REML: Boolean indicating whether to use ML or ReML estimation. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def sim2D(desInd, OutDir, nsim=1000, mode='param', REML=False): # Loop through and run simulations for simInd in range(1,nsim+1): runSim(simInd, desInd, OutDir, mode, REML) # ================================================================================== # # The below simulates random test data and runs all methods described in the LMM # paper on the simulated data. It requires the following inputs: # # ---------------------------------------------------------------------------------- # # - SimInd: An index to represent the simulation. All output for this simulation will # be saved in files with the index specified by this argument. The # simulation with index 1 will also perform any necessary additional setup # and should therefore be run before any others. # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - mode: String indicating whether to run parameter estimation simulations (mode= # 'param') or T statistic simulations (mode='Tstat'). # - REML: Boolean indicating whether to use ML or ReML estimation. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def runSim(simInd, desInd, OutDir, mode='param', REML=False): # Make sure simInd is an int simInd = int(simInd) #=============================================================================== # Setup #=============================================================================== # Decide whether we wish to run T statistics/degrees of freedom estimation if mode=='param': runDF = False else: runDF = True # Different designs if desInd==1: nlevels = np.array([50]) nraneffs = np.array([2]) if desInd==2: nlevels = np.array([50,25]) nraneffs = np.array([3,2]) if desInd==3: nlevels = np.array([100,30,10]) nraneffs = np.array([4,3,2]) # Number of observations n = 1000 # If we are doing a degrees of freedom simulation, create the factor vectors, X and Z if # this is the first run. These will then be used across all following simulations. If we # are doing a simulation to look at parameter estimation, we recreate the design on every # run as our focus is to stress test the performance of the algorithms, rather than compare # performance of one specific model in particular. if simInd == 1 or not runDF: # Delete any factor vectors from a previous batch of simulations. if runDF: for i in range(len(nlevels)): if os.path.isfile(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv')): os.remove(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv')) fvs = None X = None Z = None # Otherwise read the factor vectors, X and Z in from file. else: # Initialize empty factor vectors dict fvs = dict() # Loop through factors and save factor vectors for i in range(len(nlevels)): fvs[i] = pd.io.parsers.read_csv(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv'), header=None).values X = pd.io.parsers.read_csv(os.path.join(OutDir, 'X_' + str(desInd) + '.csv'), header=None).values Z = pd.io.parsers.read_csv(os.path.join(OutDir, 'Z_' + str(desInd) + '.csv'), header=None).values # Generate test data Y,X,Z,nlevels,nraneffs,beta,sigma2,b,D, fvs = genTestData2D(n=n, p=5, nlevels=nlevels, nraneffs=nraneffs, save=True, simInd=simInd, desInd=desInd, OutDir=OutDir, factorVectors=fvs, X=X, Z=Z) # Save the new factor vectors if this is the first run. if simInd == 1 and runDF: # Loop through the factors saving them for i in range(len(nlevels)): pd.DataFrame(fvs[i]).to_csv(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv'), index=False, header=None) pd.DataFrame(X).to_csv(os.path.join(OutDir, 'X_' + str(desInd) + '.csv'), index=False, header=None) pd.DataFrame(Z).to_csv(os.path.join(OutDir, 'Z_' + str(desInd) + '.csv'), index=False, header=None) # Work out number of observations, parameters, random effects, etc n = X.shape[0] p = X.shape[1] q = np.sum(nraneffs*nlevels) qu = np.sum(nraneffs*(nraneffs+1)//2) r = nlevels.shape[0] # Tolerance tol = 1e-6 # Work out factor indices. facInds = np.cumsum(nraneffs*nlevels) facInds = np.insert(facInds,0,0) # Convert D to dict Ddict=dict() for k in np.arange(len(nlevels)): Ddict[k] = D[facInds[k]:(facInds[k]+nraneffs[k]),facInds[k]:(facInds[k]+nraneffs[k])] # Get the product matrices XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ = prodMats2D(Y,Z,X) # ----------------------------------------------------------------------------- # Create empty data frame for results: # ----------------------------------------------------------------------------- # Row indices indexVec = np.array(['Time', 'nit', 'llh']) for i in np.arange(p): indexVec = np.append(indexVec, 'beta'+str(i+1)) # Sigma2 indexVec = np.append(indexVec, 'sigma2') # Dk for k in np.arange(r): for j in np.arange(nraneffs[k]*(nraneffs[k]+1)//2): indexVec = np.append(indexVec, 'D'+str(k+1)+','+str(j+1)) # Sigma2*Dk for k in np.arange(r): for j in np.arange(nraneffs[k]*(nraneffs[k]+1)//2): indexVec = np.append(indexVec, 'sigma2*D'+str(k+1)+','+str(j+1)) # If we're doing a T statistic simulation add the T statistics, p values and # degrees of freedom rows to the dataframe. if runDF: # T value p value and Satterthwaite degrees of freedom estimate. indexVec = np.append(indexVec,'T') indexVec = np.append(indexVec,'p') indexVec = np.append(indexVec,'swdf') # Construct dataframe results = pd.DataFrame(index=indexVec, columns=['Truth', 'FS', 'fFS', 'SFS', 'fSFS', 'cSFS']) # ------------------------------------------------------------------------------------ # Truth # ------------------------------------------------------------------------------------ # Default time and number of iterations results.at['Time','Truth']=0 results.at['nit','Truth']=0 # Construct parameter vector paramVec_true = beta[:] paramVec_true = np.concatenate((paramVec_true,np.array(sigma2).reshape(1,1)),axis=0) # Add D to parameter vector facInds = np.cumsum(nraneffs*nlevels) facInds = np.insert(facInds,0,0) # Convert D to vector for k in np.arange(len(nlevels)): vechD = mat2vech2D(D[facInds[k]:(facInds[k]+nraneffs[k]),facInds[k]:(facInds[k]+nraneffs[k])])/sigma2 paramVec_true = np.concatenate((paramVec_true,vechD),axis=0) # Add results to parameter vector for i in np.arange(3,p+qu+4): results.at[indexVec[i],'Truth']=paramVec_true[i-3,0] # Record D*sigma2 for i in np.arange(4+p,p+qu+4): results.at[indexVec[i+qu],'Truth']=paramVec_true[p,0]*paramVec_true[i-3,0] # Matrices needed for Zte = ZtY - ZtX @ beta ete = ssr2D(YtX, YtY, XtX, beta) DinvIplusZtZD = D @ np.linalg.inv(np.eye(q) + ZtZ @ D) # True log likelihood llh = llh2D(n, ZtZ, Zte, ete, sigma2, DinvIplusZtZD,D,REML,XtX,XtZ,ZtX)[0,0] # Add back on constant term if REML: llh = llh - (n-p)/2*np.log(2*np.pi) else: llh = llh - n/2*np.log(2*np.pi) # Add ground truth log likelihood results.at['llh','Truth']=llh # Get the ground truth degrees of freedom if running a T statistic simulation if runDF: # Contrast vector (1 in last place 0 elsewhere) L = np.zeros(p) L[-1] = 1 L = L.reshape(1,p) v = groundTruth_TDF(X, Z, beta, sigma2, D, L, nlevels, nraneffs, tol) results.at[indexVec[p+6+2*qu],'Truth']=v[0,0] #=============================================================================== # fSFS #=============================================================================== # Get the indices for the individual random factor covariance parameters. DkInds = np.zeros(len(nlevels)+1) DkInds[0]=np.int(p+1) for k in np.arange(len(nlevels)): DkInds[k+1] = np.int(DkInds[k] + nraneffs[k]*(nraneffs[k]+1)//2) # Run Full Simplified Fisher Scoring t1 = time.time() paramVector_fSFS,_,nit,llh = fSFS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=REML, init_paramVector=None) t2 = time.time() # Add back on constant term for llh if REML: llh = llh - (n-p)/2*np.log(2*np.pi) else: llh = llh - n/2*np.log(2*np.pi) # Record Time and number of iterations results.at['Time','fSFS']=t2-t1 results.at['nit','fSFS']=nit results.at['llh','fSFS']=llh # Record parameters for i in np.arange(3,p+qu+4): results.at[indexVec[i],'fSFS']=paramVector_fSFS[i-3,0] # Record D*sigma2 for i in np.arange(4+p,p+qu+4): results.at[indexVec[i+qu],'fSFS']=paramVector_fSFS[p,0]*paramVector_fSFS[i-3,0] # If running a T statistic simulation... if runDF: # Get T statistic, p value and Satterthwaite degrees of freedom T,Pval,df = simT(paramVector_fSFS, XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ, nraneffs, nlevels, n) results.at[indexVec[p+4+2*qu],'fSFS']=T[0,0] results.at[indexVec[p+5+2*qu],'fSFS']=Pval[0,0] results.at[indexVec[p+6+2*qu],'fSFS']=df[0,0] #=============================================================================== # cSFS #=============================================================================== # Run Cholesky Simplified Fisher Scoring t1 = time.time() paramVector_cSFS,_,nit,llh = cSFS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=REML, init_paramVector=None) t2 = time.time() # Add back on constant term for llh if REML: llh = llh - (n-p)/2*np.log(2*np.pi) else: llh = llh - n/2*np.log(2*np.pi) # Record time and number of iterations results.at['Time','cSFS']=t2-t1 results.at['nit','cSFS']=nit results.at['llh','cSFS']=llh # Save parameters for i in np.arange(3,p+qu+4): results.at[indexVec[i],'cSFS']=paramVector_cSFS[i-3,0] # Record D*sigma2 for i in np.arange(4+p,p+qu+4): results.at[indexVec[i+qu],'cSFS']=paramVector_cSFS[p,0]*paramVector_cSFS[i-3,0] # If running a T statistic simulation... if runDF: # Get T statistic, p value and Satterthwaite degrees of freedom T,Pval,df = simT(paramVector_cSFS, XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ, nraneffs, nlevels, n) results.at[indexVec[p+4+2*qu],'cSFS']=T[0,0] results.at[indexVec[p+5+2*qu],'cSFS']=Pval[0,0] results.at[indexVec[p+6+2*qu],'cSFS']=df[0,0] #=============================================================================== # FS #=============================================================================== # Run Fisher Scoring t1 = time.time() paramVector_FS,_,nit,llh = FS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=REML, init_paramVector=None) t2 = time.time() # Add back on constant term for llh if REML: llh = llh - (n-p)/2*np.log(2*np.pi) else: llh = llh - n/2*np.log(2*np.pi) # Record time and number of iterations results.at['Time','FS']=t2-t1 results.at['nit','FS']=nit results.at['llh','FS']=llh # Save parameters for i in np.arange(3,p+qu+4): results.at[indexVec[i],'FS']=paramVector_FS[i-3,0] # Record D*sigma2 for i in np.arange(4+p,p+qu+4): results.at[indexVec[i+qu],'FS']=paramVector_FS[p,0]*paramVector_FS[i-3,0] # If running a T statistic simulation... if runDF: # Get T statistic, p value and Satterthwaite degrees of freedom T,Pval,df = simT(paramVector_FS, XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ, nraneffs, nlevels, n) results.at[indexVec[p+4+2*qu],'FS']=T[0,0] results.at[indexVec[p+5+2*qu],'FS']=Pval[0,0] results.at[indexVec[p+6+2*qu],'FS']=df[0,0] #=============================================================================== # SFS #=============================================================================== # Run Simplified Fisher Scoring t1 = time.time() paramVector_SFS,_,nit,llh = SFS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=REML, init_paramVector=None) t2 = time.time() # Add back on constant term for llh if REML: llh = llh - (n-p)/2*np.log(2*np.pi) else: llh = llh - n/2*np.log(2*np.pi) # Record time and number of iterations results.at['Time','SFS']=t2-t1 results.at['nit','SFS']=nit results.at['llh','SFS']=llh # Save parameters for i in np.arange(3,p+qu+4): results.at[indexVec[i],'SFS']=paramVector_SFS[i-3,0] # Record D*sigma2 for i in np.arange(4+p,p+qu+4): results.at[indexVec[i+qu],'SFS']=paramVector_SFS[p,0]*paramVector_SFS[i-3,0] # If running a T statistic simulation... if runDF: # Get T statistic, p value and Satterthwaite degrees of freedom T,Pval,df = simT(paramVector_SFS, XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ, nraneffs, nlevels, n) results.at[indexVec[p+4+2*qu],'SFS']=T[0,0] results.at[indexVec[p+5+2*qu],'SFS']=Pval[0,0] results.at[indexVec[p+6+2*qu],'SFS']=df[0,0] #=============================================================================== # fFS #=============================================================================== # Run Full Fisher Scoring t1 = time.time() paramVector_fFS,_,nit,llh = fFS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=REML, init_paramVector=None) t2 = time.time() # Add back on constant term for llh if REML: llh = llh - (n-p)/2*np.log(2*np.pi) else: llh = llh - n/2*np.log(2*np.pi) # Record time and number of iterations results.at['Time','fFS']=t2-t1 results.at['nit','fFS']=nit results.at['llh','fFS']=llh # Save parameters for i in np.arange(3,p+qu+4): results.at[indexVec[i],'fFS']=paramVector_fFS[i-3,0] # Record D*sigma2 for i in np.arange(4+p,p+qu+4): results.at[indexVec[i+qu],'fFS']=paramVector_fFS[p,0]*paramVector_fFS[i-3,0] # If running a T statistic simulation... if runDF: # Get T statistic, p value and Satterthwaite degrees of freedom T,Pval,df = simT(paramVector_fFS, XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ, nraneffs, nlevels, n) results.at[indexVec[p+4+2*qu],'fFS']=T[0,0] results.at[indexVec[p+5+2*qu],'fFS']=Pval[0,0] results.at[indexVec[p+6+2*qu],'fFS']=df[0,0] # Save results results.to_csv(os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv')) # ================================================================================== # # The below function collates the performance metrics for the parameter estimation # simulations, prints summaries of the results and saves the results as csv files. # # ---------------------------------------------------------------------------------- # # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - nsim: Number of simulations to be collated. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def performanceTables(desInd, OutDir, nsim=1000): # Make row indices row = ['sim'+str(i) for i in range(1,nsim+1)] # Make column indices col = ['FS','fFS','SFS','fSFS','cSFS','lmer'] #----------------------------------------------------------------------------- # Work out timing stats #----------------------------------------------------------------------------- # Make timing table timesTable = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric timesTable = timesTable.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the times simTimes = results_table.loc['Time','FS':] # Add them to the table timesTable.loc['sim'+str(simInd),:]=simTimes # Save computation times to csv file timesTable.to_csv(os.path.join(OutDir,'timesTable.csv')) # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of computation times') print(timesTable.describe().to_string()) #----------------------------------------------------------------------------- # Work out number of iteration stats #----------------------------------------------------------------------------- # Make timing table nitTable = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric nitTable = nitTable.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the times simNIT = results_table.loc['nit','FS':] # Add them to the table nitTable.loc['sim'+str(simInd),:]=simNIT # Save number of iterations to csv file nitTable.to_csv(os.path.join(OutDir,'nitTable.csv')) # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of number of iterations') print(nitTable.describe().to_string()) #----------------------------------------------------------------------------- # Work out log-likelihood stats #----------------------------------------------------------------------------- # Make timing table llhTable = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric llhTable = nitTable.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the log-likelihoods simllh = results_table.loc['llh','FS':] # Add them to the table llhTable.loc['sim'+str(simInd),:]=simllh # Save log likelihoods to csv file llhTable.to_csv(os.path.join(OutDir,'llhTable.csv')) # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of maximized log-likelihoods') print(llhTable.describe().to_string()) # ================================================================================== # # The below function collates the MAE and MRD metrics for the parameter estimation # simulations, prints summaries of the results and saves the results as csv files. # # ---------------------------------------------------------------------------------- # # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - nsim: Number of simulations to be collated. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def differenceMetrics(desInd, OutDir, nsim=1000): # Make row indices row = ['sim'+str(i) for i in range(1,nsim+1)] # Make column indices col = ['FS','fFS','SFS','fSFS','cSFS','lmer'] #----------------------------------------------------------------------------- # Work out absolute difference metrics for lmer #----------------------------------------------------------------------------- # Make difference tables diffTableBetas = pd.DataFrame(index=row, columns=col) diffTableVar = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric diffTableBetas = diffTableBetas.apply(pd.to_numeric) diffTableVar = diffTableVar.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the betas simBetas = results_table.loc['beta1':'beta5',:] if desInd==1: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D1,3',:] if desInd==2: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D2,3',:] if desInd==3: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D3,3',:] # Work out the maximum absolute errors for betas maxAbsErrBetas = (simBetas.sub(simBetas['lmer'], axis=0)).abs().max() # Work out the maximum absolute errors for sigma2D if desInd==1: maxAbsErrVar = (simVar.sub(simVar['lmer'], axis=0)).abs().max() if desInd==2: maxAbsErrVar = (simVar.sub(simVar['lmer'], axis=0)).abs().max() if desInd==3: maxAbsErrVar = (simVar.sub(simVar['lmer'], axis=0)).abs().max() # Add them to the tables diffTableBetas.loc['sim'+str(simInd),:]=maxAbsErrBetas diffTableVar.loc['sim'+str(simInd),:]=maxAbsErrVar # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MAE values for beta estimates (compared to lmer)') print(diffTableBetas.describe().to_string()) print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MAE values for variance estimates (compared to lmer)') print(diffTableVar.describe().to_string()) # Save MAE values for lmer to csv diffTableVar.to_csv(os.path.join(OutDir,'diffTableVar_lmer_abs.csv')) diffTableBetas.to_csv(os.path.join(OutDir,'diffTableBetas_lmer_abs.csv')) #----------------------------------------------------------------------------- # Work out absolute difference metrics for Truth #----------------------------------------------------------------------------- # Make difference tables diffTableBetas = pd.DataFrame(index=row, columns=col) diffTableVar = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric diffTableBetas = diffTableBetas.apply(pd.to_numeric) diffTableVar = diffTableVar.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the betas simBetas = results_table.loc['beta1':'beta5',:] if desInd==1: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D1,3',:] if desInd==2: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D2,3',:] if desInd==3: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D3,3',:] # Work out the maximum absolute errors for betas maxAbsErrBetas = (simBetas.sub(simBetas['Truth'], axis=0)).abs().max() # Work out the maximum absolute errors for sigma2D if desInd==1: maxAbsErrVar = (simVar.sub(simVar['Truth'], axis=0)).abs().max() if desInd==2: maxAbsErrVar = (simVar.sub(simVar['Truth'], axis=0)).abs().max() if desInd==3: maxAbsErrVar = (simVar.sub(simVar['Truth'], axis=0)).abs().max() # Add them to the tables diffTableBetas.loc['sim'+str(simInd),:]=maxAbsErrBetas diffTableVar.loc['sim'+str(simInd),:]=maxAbsErrVar # Save MAE values for truth to csv diffTableVar.to_csv(os.path.join(OutDir,'diffTableVar_truth_abs.csv')) diffTableBetas.to_csv(os.path.join(OutDir,'diffTableBetas_truth_abs.csv')) # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MAE values for beta estimates (compared to truth)') print(diffTableBetas.describe().to_string()) print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MAE values for variance estimates (compared to truth)') print(diffTableVar.describe().to_string()) #----------------------------------------------------------------------------- # Work out relative difference metrics for lmer #----------------------------------------------------------------------------- # Make difference tables diffTableBetas = pd.DataFrame(index=row, columns=col) diffTableVar = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric diffTableBetas = diffTableBetas.apply(pd.to_numeric) diffTableVar = diffTableVar.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the betas simBetas = results_table.loc['beta1':'beta5',:] if desInd==1: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D1,3',:] if desInd==2: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D2,3',:] if desInd==3: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D3,3',:] # Work out the maximum relative differences for betas maxRelDiffBetas = (simBetas.sub(simBetas['lmer'], axis=0)).abs().div(simBetas.add(results_table.loc['beta1':'beta5','lmer'],axis=0)/2).max() # Work out the maximum relative differences for sigma2D if desInd==1: maxRelDiffVar = (simVar.sub(simVar['lmer'], axis=0)).abs().div(simVar.add(results_table.loc['sigma2*D1,1':'sigma2*D1,3','lmer'],axis=0)/2).max() if desInd==2: maxRelDiffVar = (simVar.sub(simVar['lmer'], axis=0)).abs().div(simVar.add(results_table.loc['sigma2*D1,1':'sigma2*D2,3','lmer'],axis=0)/2).max() if desInd==3: maxRelDiffVar = (simVar.sub(simVar['lmer'], axis=0)).abs().div(simVar.add(results_table.loc['sigma2*D1,1':'sigma2*D3,3','lmer'],axis=0)/2).max() # Add them to the tables diffTableBetas.loc['sim'+str(simInd),:]=maxRelDiffBetas diffTableVar.loc['sim'+str(simInd),:]=maxRelDiffVar # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MRD values for beta estimates (compared to lmer)') print(diffTableBetas.describe().to_string()) print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MRD values for variance estimates (compared to lmer)') print(diffTableVar.describe().to_string()) # Save MRD values for lmer to csv diffTableVar.to_csv(os.path.join(OutDir,'diffTableVar_lmer_rel.csv')) diffTableBetas.to_csv(os.path.join(OutDir,'diffTableBetas_lmer_rel.csv')) #----------------------------------------------------------------------------- # Work out relative difference metrics for Truth #----------------------------------------------------------------------------- # Make difference tables diffTableBetas = pd.DataFrame(index=row, columns=col) diffTableVar = pd.DataFrame(index=row, columns=col) # Make sure pandas knows the table is numeric diffTableBetas = diffTableBetas.apply(pd.to_numeric) diffTableVar = diffTableVar.apply(pd.to_numeric) for simInd in range(1,nsim+1): # Name of results file results_file = os.path.join(OutDir,'Sim'+str(simInd)+'_Design'+str(desInd)+'_results.csv') # Read in results file results_table = pd.read_csv(results_file, index_col=0) # Get the betas simBetas = results_table.loc['beta1':'beta5',:] if desInd==1: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D1,3',:] if desInd==2: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D2,3',:] if desInd==3: # Get the variance components simVar = results_table.loc['sigma2*D1,1':'sigma2*D3,3',:] # Work out the maximum relative differences for betas maxRelDiffBetas = (simBetas.sub(simBetas['Truth'], axis=0)).abs().div(simBetas.add(results_table.loc['beta1':'beta5','Truth'],axis=0)/2).dropna().max() # Work out the maximum relative differences for sigma2D if desInd==1: maxRelDiffVar = (simVar.sub(simVar['Truth'], axis=0)).abs().div(simVar.add(results_table.loc['sigma2*D1,1':'sigma2*D1,3','Truth'],axis=0)/2).dropna().max() if desInd==2: maxRelDiffVar = (simVar.sub(simVar['Truth'], axis=0)).abs().div(simVar.add(results_table.loc['sigma2*D1,1':'sigma2*D1,3','Truth'],axis=0)/2).dropna().max() if desInd==3: maxRelDiffVar = (simVar.sub(simVar['Truth'], axis=0)).abs().div(simVar.add(results_table.loc['sigma2*D1,1':'sigma2*D1,3','Truth'],axis=0)/2).dropna().max() # Add them to the tables diffTableBetas.loc['sim'+str(simInd),:]=maxRelDiffBetas diffTableVar.loc['sim'+str(simInd),:]=maxRelDiffVar # Save MRD values for truth to csv diffTableVar.to_csv(os.path.join(OutDir,'diffTableVar_truth_rel.csv')) diffTableBetas.to_csv(os.path.join(OutDir,'diffTableBetas_truth_rel.csv')) # Print summary print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MRD values for beta estimates (compared to truth)') print(diffTableBetas.describe().to_string()) print(' ') print('--------------------------------------------------------------------------') print(' ') print('Summary of MRD values for variance estimates (compared to truth)') print(diffTableVar.describe().to_string()) # ================================================================================== # # The below function generates a ground truth degrees of freedom estimate for a # given model. # # ---------------------------------------------------------------------------------- # # - X: The fixed effects design matrix. # - Z: The random effects design matrix. # - beta: The true fixed effects parameters to be used for simulation. # - sigma2: The true fixed effects variance to be used for simulation. # - D: The true random effects covariance matrix to be used for simulation. # - L: The contrast vector specifying which contrast we wish to estimate the degrees # of freedom for. # - nlevels: A vector containing the number of levels for each factor, # e.g. `nlevels=[3,4]` would mean the first factor has 3 # levels and the second factor has 4 levels. # - nraneffs: A vector containing the number of random effects for each # factor, e.g. `nraneffs=[2,1]` would mean the first factor has # random effects and the second factor has 1 random effect. # - tol: Convergence tolerance for the parameter estimation method. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def groundTruth_TDF(X, Z, beta, sigma2, D, L, nlevels, nraneffs, tol): # Required product matrices XtX = X.transpose() @ X XtZ = X.transpose() @ Z ZtZ = Z.transpose() @ Z # Inverse of (I+Z'ZD) multiplied by D DinvIplusZtZD = forceSym2D(np.linalg.solve(np.eye(ZtZ.shape[0]) + D @ ZtZ, D)) # Get the true variance of LB True_varLB = get_varLB2D(L, XtX, XtZ, DinvIplusZtZD, sigma2) # Get the variance of the estimated variance of LB using the 3D code var_est_varLB = get_VarhatLB2D(X, Z, beta, sigma2, D, L, nlevels, nraneffs, tol) # Get ground truth degrees of freedom v = 2*(True_varLB**2)/var_est_varLB # Return result return(v) # ================================================================================== # # The below function estimates the variance of Var(LB) empirically. It takes the # following inputs. # # ---------------------------------------------------------------------------------- # # - X: The fixed effects design matrix. # - Z: The random effects design matrix. # - beta: The true fixed effects parameters to be used for simulation. # - sigma2: The true fixed effects variance to be used for simulation. # - D: The true random effects covariance matrix to be used for simulation. # - L: The contrast vector specifying which contrast we wish to estimate the degrees # of freedom for. # - nlevels: A vector containing the number of levels for each factor, # e.g. `nlevels=[3,4]` would mean the first factor has 3 # levels and the second factor has 4 levels. # - nraneffs: A vector containing the number of random effects for each # factor, e.g. `nraneffs=[2,1]` would mean the first factor has # random effects and the second factor has 1 random effect. # - tol: Convergence tolerance for the parameter estimation method. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def get_VarhatLB2D(X, Z, beta, sigma2, D, L, nlevels, nraneffs, tol): # Work out dimensions n = X.shape[0] p = X.shape[1] q = Z.shape[1] qu = np.sum(nraneffs*(nraneffs+1)//2) # Reshape to 3D dimensions X = X.reshape((1,n,p)) Z = Z.reshape((1,n,q)) beta = beta.reshape((1,p,1)) D = D.reshape((1,q,q)) # New epsilon based on 1000 simulations epsilon = np.random.randn(1000, n, 1) # Work out cholesky of D Dhalf = np.linalg.cholesky(D) # New b based on 1000 simulations b = Dhalf @ np.random.randn(1000,q,1) # New Y based on 1000 simulations Y = X @ beta + Z @ b + epsilon # Delete b, epsilon, D, beta and sigma^2 del b, epsilon, D, beta, sigma2 # Calulcate product matrices XtX = X.transpose(0,2,1) @ X XtY = X.transpose(0,2,1) @ Y XtZ = X.transpose(0,2,1) @ Z YtX = Y.transpose(0,2,1) @ X YtY = Y.transpose(0,2,1) @ Y YtZ = Y.transpose(0,2,1) @ Z ZtX = Z.transpose(0,2,1) @ X ZtY = Z.transpose(0,2,1) @ Y ZtZ = Z.transpose(0,2,1) @ Z # Get parameter vector paramVec = fSFS3D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol,n,reml=True) # Get the indices in the paramvector corresponding to D matrices IndsDk = np.int32(np.cumsum(nraneffs*(nraneffs+1)//2) + p + 1) IndsDk = np.insert(IndsDk,0,p+1) # Retrieve beta estimates beta = paramVec[:, 0:p] # Retrieve sigma2 estimates sigma2 = paramVec[:,p:(p+1),:] # Retrieve unique D estimates elements (i.e. [vech(D_1),...vech(D_r)]) vechD = paramVec[:,(p+1):,:].reshape((1000,qu)) # Reconstruct D estimates Ddict = dict() # D as a dictionary for k in np.arange(len(nraneffs)): Ddict[k] = vech2mat3D(paramVec[:,IndsDk[k]:IndsDk[k+1],:]) # Full version of D estimates D = getDfromDict3D(Ddict, nraneffs, nlevels) # Inverse of (I+Z'ZD) multiplied by D DinvIplusZtZD = forceSym3D(np.linalg.solve(np.eye(q) + D @ ZtZ, D)) # Get variance of Lbeta estimates varLB = get_varLB3D(L, XtX, XtZ, DinvIplusZtZD, sigma2, nraneffs) # Estimated variance of varLB varofvarLB = np.var(varLB,axis=0) # Reshape and return return(varofvarLB.reshape((1,1))) # ================================================================================== # # The below function collates the t-statistics, p-values and degrees of freedom # estimates for the T-statistic simulations, prints summaries of the results and # saves the results as csv files. # # ---------------------------------------------------------------------------------- # # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - nsim: Number of simulations to be collated. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def tOutput(desInd, OutDir, nsim=1000): # Make row indices row = ['sim'+str(i) for i in range(1,nsim+1)] # Make column indices col = ['Truth','FS','lmer'] #----------------------------------------------------------------------------- # Work out timing stats #----------------------------------------------------------------------------- # Make timing table tTable = pd.DataFrame(index=row, columns=col) pTable = pd.DataFrame(index=row, columns=col) dfTable =
pd.DataFrame(index=row, columns=col)
pandas.DataFrame
""" Tests for scalar Timedelta arithmetic ops """ from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas as pd from pandas import NaT, Timedelta, Timestamp, offsets import pandas._testing as tm from pandas.core import ops class TestTimedeltaAdditionSubtraction: """ Tests for Timedelta methods: __add__, __radd__, __sub__, __rsub__ """ @pytest.mark.parametrize( "ten_seconds", [ Timedelta(10, unit="s"), timedelta(seconds=10), np.timedelta64(10, "s"), np.timedelta64(10000000000, "ns"), offsets.Second(10), ], ) def test_td_add_sub_ten_seconds(self, ten_seconds): # GH#6808 base = Timestamp("20130101 09:01:12.123456") expected_add = Timestamp("20130101 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + ten_seconds assert result == expected_add result = base - ten_seconds assert result == expected_sub @pytest.mark.parametrize( "one_day_ten_secs", [ Timedelta("1 day, 00:00:10"), Timedelta("1 days, 00:00:10"), timedelta(days=1, seconds=10), np.timedelta64(1, "D") + np.timedelta64(10, "s"), offsets.Day() + offsets.Second(10), ], ) def test_td_add_sub_one_day_ten_seconds(self, one_day_ten_secs): # GH#6808 base = Timestamp("20130102 09:01:12.123456") expected_add = Timestamp("20130103 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + one_day_ten_secs assert result == expected_add result = base - one_day_ten_secs assert result == expected_sub @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_datetimelike_scalar(self, op): # GH#19738 td = Timedelta(10, unit="d") result = op(td, datetime(2016, 1, 1)) if op is operator.add: # datetime + Timedelta does _not_ call Timedelta.__radd__, # so we get a datetime back instead of a Timestamp assert isinstance(result, Timestamp) assert result == Timestamp(2016, 1, 11) result = op(td, Timestamp("2018-01-12 18:09")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22 18:09") result = op(td, np.datetime64("2018-01-12")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22") result = op(td, NaT) assert result is NaT @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_td(self, op): td = Timedelta(10, unit="d") result = op(td, Timedelta(days=10)) assert isinstance(result, Timedelta) assert result == Timedelta(days=20) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_pytimedelta(self, op): td = Timedelta(10, unit="d") result = op(td, timedelta(days=9)) assert isinstance(result, Timedelta) assert result == Timedelta(days=19) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedelta64(self, op): td = Timedelta(10, unit="d") result = op(td, np.timedelta64(-4, "D")) assert isinstance(result, Timedelta) assert result == Timedelta(days=6) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_offset(self, op): td = Timedelta(10, unit="d") result = op(td, offsets.Hour(6)) assert isinstance(result, Timedelta) assert result == Timedelta(days=10, hours=6) def test_td_sub_td(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_pytimedelta(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_pytimedelta() assert isinstance(result, Timedelta) assert result == expected result = td.to_pytimedelta() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_timedelta64(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_timedelta64() assert isinstance(result, Timedelta) assert result == expected result = td.to_timedelta64() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_nat(self): # In this context pd.NaT is treated as timedelta-like td = Timedelta(10, unit="d") result = td - NaT assert result is NaT def test_td_sub_td64_nat(self): td = Timedelta(10, unit="d") td_nat = np.timedelta64("NaT") result = td - td_nat assert result is NaT result = td_nat - td assert result is NaT def test_td_sub_offset(self): td = Timedelta(10, unit="d") result = td - offsets.Hour(1) assert isinstance(result, Timedelta) assert result == Timedelta(239, unit="h") def test_td_add_sub_numeric_raises(self): td = Timedelta(10, unit="d") for other in [2, 2.0, np.int64(2), np.float64(2)]: with pytest.raises(TypeError): td + other with pytest.raises(TypeError): other + td with pytest.raises(TypeError): td - other with pytest.raises(TypeError): other - td def test_td_rsub_nat(self): td = Timedelta(10, unit="d") result = NaT - td assert result is NaT result = np.datetime64("NaT") - td assert result is NaT def test_td_rsub_offset(self): result = offsets.Hour(1) - Timedelta(10, unit="d") assert isinstance(result, Timedelta) assert result == Timedelta(-239, unit="h") def test_td_sub_timedeltalike_object_dtype_array(self): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20121231 9:01"), Timestamp("20121229 9:02")]) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_sub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) exp = np.array( [ now - Timedelta("1D"), Timedelta("0D"), np.timedelta64(2, "h") - Timedelta("1D"), ] ) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_rsub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) with pytest.raises(TypeError): Timedelta("1D") - arr @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedeltalike_object_dtype_array(self, op): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20130102 9:01"), Timestamp("20121231 9:02")]) res = op(arr, Timedelta("1D")) tm.assert_numpy_array_equal(res, exp) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_mixed_timedeltalike_object_dtype_array(self, op): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D")]) exp = np.array([now + Timedelta("1D"), Timedelta("2D")]) res = op(arr, Timedelta("1D")) tm.assert_numpy_array_equal(res, exp) # TODO: moved from index tests following #24365, may need de-duplication def test_ops_ndarray(self): td = Timedelta("1 day") # timedelta, timedelta other = pd.to_timedelta(["1 day"]).values expected = pd.to_timedelta(["2 days"]).values tm.assert_numpy_array_equal(td + other, expected) tm.assert_numpy_array_equal(other + td, expected) msg = r"unsupported operand type\(s\) for \+: 'Timedelta' and 'int'" with pytest.raises(TypeError, match=msg): td + np.array([1]) msg = r"unsupported operand type\(s\) for \+: 'numpy.ndarray' and 'Timedelta'" with pytest.raises(TypeError, match=msg): np.array([1]) + td expected = pd.to_timedelta(["0 days"]).values tm.assert_numpy_array_equal(td - other, expected) tm.assert_numpy_array_equal(-other + td, expected) msg = r"unsupported operand type\(s\) for -: 'Timedelta' and 'int'" with pytest.raises(TypeError, match=msg): td - np.array([1]) msg = r"unsupported operand type\(s\) for -: 'numpy.ndarray' and 'Timedelta'" with pytest.raises(TypeError, match=msg): np.array([1]) - td expected = pd.to_timedelta(["2 days"]).values tm.assert_numpy_array_equal(td * np.array([2]), expected) tm.assert_numpy_array_equal(np.array([2]) * td, expected) msg = ( "ufunc '?multiply'? cannot use operands with types" r" dtype\('<m8\[ns\]'\) and dtype\('<m8\[ns\]'\)" ) with pytest.raises(TypeError, match=msg): td * other with pytest.raises(TypeError, match=msg): other * td tm.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) tm.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(["2000-01-01"]).values expected = pd.to_datetime(["2000-01-02"]).values tm.assert_numpy_array_equal(td + other, expected) tm.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(["1999-12-31"]).values tm.assert_numpy_array_equal(-td + other, expected) tm.assert_numpy_array_equal(other - td, expected) class TestTimedeltaMultiplicationDivision: """ Tests for Timedelta methods: __mul__, __rmul__, __div__, __rdiv__, __truediv__, __rtruediv__, __floordiv__, __rfloordiv__, __mod__, __rmod__, __divmod__, __rdivmod__ """ # --------------------------------------------------------------- # Timedelta.__mul__, __rmul__ @pytest.mark.parametrize( "td_nat", [NaT, np.timedelta64("NaT", "ns"), np.timedelta64("NaT")] ) @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_nat(self, op, td_nat): # GH#19819 td = Timedelta(10, unit="d") with pytest.raises(TypeError): op(td, td_nat) @pytest.mark.parametrize("nan", [np.nan, np.float64("NaN"), float("nan")]) @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_nan(self, op, nan): # np.float64('NaN') has a 'dtype' attr, avoid treating as array td = Timedelta(10, unit="d") result = op(td, nan) assert result is NaT @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_scalar(self, op): # GH#19738 td = Timedelta(minutes=3) result = op(td, 2) assert result == Timedelta(minutes=6) result = op(td, 1.5) assert result == Timedelta(minutes=4, seconds=30) assert op(td, np.nan) is NaT assert op(-1, td).value == -1 * td.value assert op(-1.0, td).value == -1.0 * td.value with pytest.raises(TypeError): # timedelta * datetime is gibberish op(td, Timestamp(2016, 1, 2)) with pytest.raises(TypeError): # invalid multiply with another timedelta op(td, td) # --------------------------------------------------------------- # Timedelta.__div__, __truediv__ def test_td_div_timedeltalike_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = td / offsets.Hour(1) assert result == 240 assert td / td == 1 assert td / np.timedelta64(60, "h") == 4 assert np.isnan(td / NaT) def test_td_div_numeric_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = td / 2 assert isinstance(result, Timedelta) assert result == Timedelta(days=5) result = td / 5.0 assert isinstance(result, Timedelta) assert result == Timedelta(days=2) @pytest.mark.parametrize("nan", [np.nan, np.float64("NaN"), float("nan")]) def test_td_div_nan(self, nan): # np.float64('NaN') has a 'dtype' attr, avoid treating as array td = Timedelta(10, unit="d") result = td / nan assert result is NaT result = td // nan assert result is NaT # --------------------------------------------------------------- # Timedelta.__rdiv__ def test_td_rdiv_timedeltalike_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = offsets.Hour(1) / td assert result == 1 / 240.0 assert np.timedelta64(60, "h") / td == 0.25 # --------------------------------------------------------------- # Timedelta.__floordiv__ def test_td_floordiv_timedeltalike_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) scalar = Timedelta(hours=3, minutes=3) assert td // scalar == 1 assert -td // scalar.to_pytimedelta() == -2 assert (2 * td) // scalar.to_timedelta64() == 2 def test_td_floordiv_null_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) assert td // np.nan is NaT assert np.isnan(td // NaT) assert np.isnan(td // np.timedelta64("NaT")) def test_td_floordiv_offsets(self): # GH#19738 td = Timedelta(hours=3, minutes=4) assert td // offsets.Hour(1) == 3 assert td // offsets.Minute(2) == 92 def test_td_floordiv_invalid_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) with pytest.raises(TypeError): td // np.datetime64("2016-01-01", dtype="datetime64[us]") def test_td_floordiv_numeric_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) expected = Timedelta(hours=1, minutes=32) assert td // 2 == expected assert td // 2.0 == expected assert td // np.float64(2.0) == expected assert td // np.int32(2.0) == expected assert td // np.uint8(2.0) == expected def test_td_floordiv_timedeltalike_array(self): # GH#18846 td = Timedelta(hours=3, minutes=4) scalar = Timedelta(hours=3, minutes=3) # Array-like others assert td // np.array(scalar.to_timedelta64()) == 1 res = (3 * td) // np.array([scalar.to_timedelta64()]) expected = np.array([3], dtype=np.int64) tm.assert_numpy_array_equal(res, expected) res = (10 * td) // np.array([scalar.to_timedelta64(), np.timedelta64("NaT")]) expected = np.array([10, np.nan]) tm.assert_numpy_array_equal(res, expected) def test_td_floordiv_numeric_series(self): # GH#18846 td = Timedelta(hours=3, minutes=4) ser = pd.Series([1], dtype=np.int64) res = td // ser assert res.dtype.kind == "m" # --------------------------------------------------------------- # Timedelta.__rfloordiv__ def test_td_rfloordiv_timedeltalike_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) scalar =
Timedelta(hours=3, minutes=4)
pandas.Timedelta
import web import pandas as pd import numpy as np import common import os import click def hydro_op_chars_inputs_(webdb, project, hydro_op_chars_sid, balancing_type_project): rows = webdb.where("inputs_project_hydro_operational_chars", project=project, hydro_operational_chars_scenario_id=hydro_op_chars_sid, balancing_type_project=balancing_type_project).list() if rows: return pd.DataFrame(rows) else: raise common.NoEntriesError(f"Table inputs_project_hydro_operational_chars has no entries for project={project}, hydro_op_chars_scenario_id={hydro_op_chars_sid}, balancing_type_project={balancing_type_project}") def hydro_op_chars_inputs(webdb, scenario, project): hydro_op_chars_scenario_id = get_hydro_ops_chars_sceanario_id(webdb, scenario, project) balancing_type_project = get_balancing_type(webdb, scenario) return hydro_op_chars_inputs_(webdb, project, hydro_op_chars_scenario_id, balancing_type_project) def get_capacity(webdb, scenario, project): capacity_scenario_id = get_project_specified_capacity_scenario_id(webdb, scenario) return common.get_field(webdb , "inputs_project_specified_capacity", "specified_capacity_mw", project=project, project_specified_capacity_scenario_id=capacity_scenario_id) def get_project_specified_capacity_scenario_id(webdb, scenario): return common.get_field(webdb, "scenarios", "project_specified_capacity_scenario_id", scenario_name=scenario) def get_temporal_scenario_id(webdb, scenario): return common.get_field(webdb, "scenarios", "temporal_scenario_id", scenario_name=scenario) def get_balancing_type(webdb, scenario): temporal_scenario_id = get_temporal_scenario_id(webdb, scenario) return common.get_field(webdb, "inputs_temporal_horizons", "balancing_type_horizon", temporal_scenario_id=temporal_scenario_id) def get_temporal_start_end_table(conn, scenario): temporal_id = get_temporal_scenario_id(conn, scenario) temporal = conn.where("inputs_temporal_horizon_timepoints_start_end", temporal_scenario_id=temporal_id).list() return temporal def get_power_mw_dataset(webdb, scenario, project): scenario_id = common.get_field(webdb, 'scenarios', "scenario_id", scenario_name = scenario) rows = webdb.where("results_project_dispatch", scenario_id=scenario_id, project=project, operational_type='gen_hydro').list() return
pd.DataFrame(rows)
pandas.DataFrame
import logging import os import pandas as pd from glob import glob from pathlib import Path, PosixPath, WindowsPath from ekorpkit.utils.func import elapsed_timer log = logging.getLogger(__name__) def get_filepaths( filename_patterns, base_dir=None, recursive=True, verbose=True, **kwargs ): if isinstance(filename_patterns, (PosixPath, WindowsPath)): filename_patterns = str(filename_patterns) if isinstance(filename_patterns, str): filename_patterns = [filename_patterns] filepaths = [] for file in filename_patterns: file = os.path.join(base_dir, file) if base_dir else file if os.path.exists(file): if Path(file).is_file(): filepaths.append(file) else: filepaths += glob(file, recursive=recursive) filepaths = [fp for fp in filepaths if Path(fp).is_file()] if verbose: log.info(f"Processing [{len(filepaths)}] files from {filename_patterns}") return filepaths def get_files_from_archive(archive_path, filetype=None): import tarfile from zipfile import ZipFile if ".tar.gz" in archive_path: log.info(f"::Extracting files from {archive_path} with tar.gz") archive_handle = tarfile.open(archive_path, "r:gz") files = [ (file, file.name) for file in archive_handle.getmembers() if file.isfile() ] open_func = archive_handle.extractfile elif ".tar.bz2" in archive_path: log.info(f"::Extracting files from {archive_path} with tar.bz2") archive_handle = tarfile.open(archive_path, "r:bz2") files = [ (file, file.name) for file in archive_handle.getmembers() if file.isfile() ] open_func = archive_handle.extractfile elif ".zip" in archive_path: log.info(f"::Extracting files from {archive_path} with zip") archive_handle = ZipFile(archive_path) files = [ (file, file.encode("cp437").decode("euc-kr")) for file in archive_handle.namelist() ] open_func = archive_handle.open else: # print(f'::{archive_path} is not archive, use generic method') files = [(archive_path, os.path.basename(archive_path))] archive_handle = None open_func = None if filetype: files = [file for file in files if filetype in file[1]] return files, archive_handle, open_func def is_dataframe(data): return isinstance(data, pd.DataFrame) def concat_data( data, columns=None, add_key_as_name=False, name_column="_name_", ignore_index=True, verbose=False, **kwargs, ): if isinstance(data, dict): log.info(f"Concatenating {len(data)} dataframes") dfs = [] for df_name in data: df_each = data[df_name] if isinstance(columns, list): _columns = [c for c in columns if c in df_each.columns] df_each = df_each[_columns] if add_key_as_name: df_each[name_column] = df_name dfs.append(df_each) if len(dfs) > 0: return pd.concat(dfs, ignore_index=ignore_index) else: return None elif isinstance(data, list): log.info(f"Concatenating {len(data)} dataframes") if len(data) > 0: return pd.concat(data, ignore_index=ignore_index) else: return None else: log.warning("Warning: data is not a dict") return data def load_data(filename, base_dir=None, verbose=False, **kwargs): concatenate = kwargs.pop("concatenate", False) ignore_index = kwargs.pop("ignore_index", False) if base_dir: filepaths = get_filepaths(filename, base_dir) else: filepaths = get_filepaths(filename) log.info(f"Loading {len(filepaths)} dataframes from {filepaths}") data = { os.path.basename(f): load_dataframe(f, verbose=verbose, **kwargs) for f in filepaths } data = {k: v for k, v in data.items() if v is not None} if len(data) == 1: return list(data.values())[0] elif len(filepaths) > 1: if concatenate: return pd.concat(data.values(), ignore_index=ignore_index) else: return data else: log.warning(f"No files found for {filename}") return None def load_dataframe( filename, base_dir=None, columns=None, index_col=None, verbose=False, **kwargs, ): dtype = kwargs.pop("dtype", None) if isinstance(dtype, list): dtype = {k: "str" for k in dtype} parse_dates = kwargs.pop("parse_dates", False) filetype = kwargs.pop("filetype", None) or "parquet" fileinfo = os.path.splitext(filename) filename = fileinfo[0] filetype = fileinfo[1] if len(fileinfo) > 1 else filetype filetype = "." + filetype.replace(".", "") filename = f"{filename}{filetype}" if base_dir is not None: filepath = os.path.join(base_dir, filename) else: filepath = filename if not os.path.exists(filepath): log.warning(f"File {filepath} does not exist") return None log.info(f"Loading data from {filepath}") with elapsed_timer(format_time=True) as elapsed: if "csv" in filetype or "tsv" in filetype: delimiter = kwargs.pop("delimiter", "\t") if "tsv" in filetype else None data = pd.read_csv( filepath, index_col=index_col, dtype=dtype, parse_dates=parse_dates, delimiter=delimiter, ) elif "parquet" in filetype: engine = kwargs.pop("engine", "pyarrow") data =
pd.read_parquet(filepath, engine=engine)
pandas.read_parquet
""" parquet compat """ from __future__ import annotations from distutils.version import LooseVersion import io import os from typing import Any, AnyStr, Dict, List, Optional, Tuple from warnings import catch_warnings from pandas._typing import FilePathOrBuffer, StorageOptions from pandas.compat._optional import import_optional_dependency from pandas.errors import AbstractMethodError from pandas.util._decorators import doc from pandas import DataFrame, MultiIndex, get_option from pandas.core import generic from pandas.io.common import ( IOHandles, get_handle, is_fsspec_url, is_url, stringify_path, ) def get_engine(engine: str) -> BaseImpl: """ return our implementation """ if engine == "auto": engine = get_option("io.parquet.engine") if engine == "auto": # try engines in this order engine_classes = [PyArrowImpl, FastParquetImpl] error_msgs = "" for engine_class in engine_classes: try: return engine_class() except ImportError as err: error_msgs += "\n - " + str(err) raise ImportError( "Unable to find a usable engine; " "tried using: 'pyarrow', 'fastparquet'.\n" "A suitable version of " "pyarrow or fastparquet is required for parquet " "support.\n" "Trying to import the above resulted in these errors:" f"{error_msgs}" ) if engine == "pyarrow": return PyArrowImpl() elif engine == "fastparquet": return FastParquetImpl() raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") def _get_path_or_handle( path: FilePathOrBuffer, fs: Any, storage_options: StorageOptions = None, mode: str = "rb", is_dir: bool = False, ) -> Tuple[FilePathOrBuffer, Optional[IOHandles], Any]: """File handling for PyArrow.""" path_or_handle =
stringify_path(path)
pandas.io.common.stringify_path
# link: https://github.com/liulingbo918/ATFM/tree/master/data/TaxiNYC import h5py import pandas as pd import numpy as np import json import util outputdir = 'output/NYCTAXI20140112' util.ensure_dir(outputdir) dataurl = 'input/NYCTAXI20140112/' dataname = outputdir+'/NYCTAXI20140112' f = h5py.File(dataurl + 'NYC2014.h5', 'r') date_df = pd.DataFrame(np.array(f['date'])) data = np.array(f['data']) def get_geo(): li = [] ind = 0 for x in range(15): for y in range(5): li.append([ind, "Polygon", "[]", x, y]) ind += 1 return li def remove_imcomplete_days(data, timestamps, t=48): print("before removing", len(data)) date = [] days = [] days_incomplete = [] i = 0 print(len(timestamps)) while i < len(timestamps): if int(str(timestamps[i])[10:12]) != 1: i += 1 elif i + t - 1 < len(timestamps) \ and int(str(timestamps[i + t - 1])[10:12]) == t: for j in range(48): date.append(timestamps[i + j]) days.append(str(timestamps[i])[2:10]) i += t else: days_incomplete.append(str(timestamps[i])[2:10]) i += 1 print("imcomplete days", days_incomplete) days = set(days) idx = [] for i, t in enumerate(timestamps): if str(timestamps[i])[2:10] in days: idx.append(i) data_ = data[idx] print(len(date)) print(len(data_)) return date, data_ def del_date(date): date_str = str(date) s0 = date_str[2:6] s1 = date_str[6:8] s2 = date_str[8:10] s3 = date_str[10:12] num_s3 = int(s3) - 1 num = 0 if num_s3 % 2 == 0: num = int(num_s3 * 0.5) if num < 10: str_s3 = '0' + str(num) else: str_s3 = str(num) s = s0 + '-' + s1 + '-' + s2 + 'T' + str_s3 + ':00:00' + 'Z' else: num = (num_s3 - 1) * 0.5 num = int(num) if num < 10: str_s3 = '0' + str(num) else: str_s3 = str(num) s = s0 + '-' + s1 + '-' + s2 + 'T' + str_s3 + ':30:00' + 'Z' return s new_date, new_data = remove_imcomplete_days(np.array(f['data']), np.array(f['date'])) date_df = pd.DataFrame(new_date) date_df['time'] = date_df[0].apply(del_date) def get_dyna(): ind = 0 li = [] for x in range(15): for y in range(5): for time in range(len(date_df['time'])): li.append([ind, "state", date_df['time'][time], x, y, new_data[time][0][x][y], new_data[time][1][x][y]]) ind += 1 return li L0 = get_geo() pd.DataFrame(L0, columns=["geo_id", "type", "coordinates", "row_id", "column_id"]).to_csv(dataname + '.geo', index=None) L1 = get_dyna() pd.DataFrame(L1, columns=["dyna_id", "type", "time", "row_id", "column_id", "pickup", "dropoff"])\ .to_csv(dataname + '.grid', index=None) ext = h5py.File(dataurl + 'Meteorology.h5', 'r') date = np.array(ext['date']) Temperature = np.array(ext['Temperature']) Weather = np.array(ext['Weather']) WindSpeed = np.array(ext['WindSpeed']) datenew = [] for da in date: datenew.append(del_date(da)) ext_id = np.array(range(len(datenew))) extdf =
pd.DataFrame()
pandas.DataFrame
# %% Dependencies and variables' definitions. import pandas as pd import geopandas as gpd from osmi_helpers import data_gathering as osmi_dg # Define Data Sources ARBRAT_VIARI_URL = "https://opendata-ajuntament.barcelona.cat/data/dataset/27b3f8a7-e536-4eea-b025-ce094817b2bd/resource/28034af4-b636-48e7-b3df-fa1c422e6287/download" ARBRAT_ZONA_URL = "https://opendata-ajuntament.barcelona.cat/data/dataset/9b525e1d-13b8-48f1-abf6-f5cd03baa1dd/resource/8f2402dd-72dc-4b07-8145-e3f75004b0de/download" CSV_PARSER = 'fields_mapping.csv' # %% [markdown] # # Barcelona Trees' import. # # ## Goals¶ # # The goal is to manually merge and import all the trees' information provided by Barcelona City Council, while testing the scripts for data preparation. # # ## Data Sources¶ # # Two datasets provided by Barcelona City Council will be used: # # * [Arbrat viari](https://opendata-ajuntament.barcelona.cat/data/ca/dataset/arbrat-viari): Name of the species and geolocation of the trees of the city of Barcelona located on public roads. The information contains, among other data, the scientific name, the common name, the height, the direction and the width of the sidewalk... The trees of the parks are not included. The coordinates are expressed in the ETRS89 reference system. This dataset complemens of Zone trees of the city of Barcelona. Historical resources which contain data available until the last week of the term are published. The resources are ordered by year and term, information that can be found in the name of the resource. # * [Arbrat zona](https://opendata-ajuntament.barcelona.cat/data/ca/dataset/arbrat-zona): Name of the species and geolocation of the trees of the city of Barcelona located on public roads. The information contains, among other data, the scientific name, the common name, the height, the direction and the width of the sidewalk... The trees of the parks are not included. The coordinates are expressed in the ETRS89 reference system. This dataset complemens of Street trees of the city of Barcelona. Historical resources which contain data available until the last week of the term are published. The resources are ordered by year and term, information that can be found in the name of the resource. # # ## License # # We have an express authorization from the Barcelona city council for the reuse of open data published on theirs open Government website # # ![](https://wiki.openstreetmap.org/w/images/thumb/9/9a/201801107_AcordOSM_AjuntamentBarcelona_Def.pdf/page1-1240px-201801107_AcordOSM_AjuntamentBarcelona_Def.pdf.jpg) # # ## Import type¶ # # This import will be done manually, using JOSM to edit the data. Consider using Task Manager. # # ## Data preparations¶ # # All data preparations will be made automatically in this notebook. # # ### Fields' mapping. # %% Read CSV file with fields' mapping and description. fields_mapping = pd.read_csv(CSV_PARSER) # Display table. fields_mapping # %% [markdown] # ## Import script. # ### Data Gathering # %% Data Gathering # Download a file and convert it into a dataframe. df_aviari = pd.read_csv(ARBRAT_VIARI_URL) df_azona = pd.read_csv(ARBRAT_ZONA_URL) # Combine both data sources into a single one. df_raw =
pd.concat([df_aviari, df_azona])
pandas.concat
from keras.layers.core import Dense, Dropout from keras.layers.recurrent import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import tensorflow as tf import datetime import numpy as np import matplotlib.pyplot as plt import pandas as pd def data_preparation(company_input_data): """ funkcja wykonująca przygotowanie danych przez normalizacje. :param company_input_data: dane giełdowe firmy. :return: zwraca tablice x , y i informacje normalizujące """ company_val_data = company_input_data.iloc[:, 1:2].values scalar = MinMaxScaler(feature_range=(0, 1)) apple_training_scaled = scalar.fit_transform(company_val_data) features= [] labels = [] for i in range(60, company_val_data.size): features.append(apple_training_scaled[i - 60:i, 0]) labels.append(apple_training_scaled[i, 0]) features, labels = np.array(features), np.array(labels) features = np.reshape(features, (features.shape[0], features.shape[1], 1)) return features, labels, scalar def model_training(features_set, labels): """ Funkcja wykonujące uczenie modelu. Zbiera tez parametry uczenia w tym walidacyjne. :param features_set: tablica wartosci x. :param labels: tablica wartosci y. :return: zwraca nauczony model. """ model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(features_set.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=50)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) model.fit(features_set, labels, epochs=100, batch_size=32, validation_split=0.1, callbacks=[tensorboard_callback]) return model def prediction(model_obj, scalar, company_testing_complete_data, company_data): """ Funkcja przewidująca notowanie giełdowe. :param model_obj: nauczony model. :param scalar: informacje o :param company_testing_complete_data: dane testowe. :param company_data: dane notowań. :return: przewidywania. """ test_features = get_test_feature(company_data, company_testing_complete_data, scalar) predictions = model_obj.predict(test_features) predictions = scalar.inverse_transform(predictions) return predictions def get_test_feature(company_data, company_testing_complete_data, scaler): """ Funkcja przygtoująca dane testowe. :param company_data: notowania giedowe. :param company_testing_complete_data: dane testowe. :param scaler: informacje normalizujące. :return: przetworzone dane testowe. """ apple_total = pd.concat((company_data['Open'], company_testing_complete_data['Open']), axis=0) test_inputs = apple_total[len(apple_total) - len(company_testing_complete_data) - 60:].values test_inputs = test_inputs.reshape(-1, 1) test_inputs = scaler.transform(test_inputs) test_features = [] for i in range(60, 80): test_features.append(test_inputs[i - 60:i, 0]) test_features = np.array(test_features) test_features = np.reshape(test_features, (test_features.shape[0], test_features.shape[1], 1)) return test_features def trend_modelling(train_data, test_data, label): """ Funkcja prezntująca wyniki przewidywań. :param train_data: dane wynikajace z przewidywań. :param test_data: dane testowe. :param label: nazwa firmy. """ company_input_data =
pd.read_csv(train_data)
pandas.read_csv
#!/usr/bin/python print('financials_update_quarterly - initiating. Printing Stock and % Progress.') import os import pandas as pd from datetime import date pd.set_option('display.max_columns', None) pd.options.display.float_format = '{:20,.2f}'.format pd.options.mode.use_inf_as_na = True cwd = os.getcwd() input_folder = "0_input" prices_folder = "data" output_folder = "0_output" temp_folder = "temp" prices_temp = "prices" financials_temp = "financials_quarterly" #check year todays_date = date.today() curr_year = todays_date.year # prepare tickers list tickers_narrowed = pd.read_csv(os.path.join(cwd,"0_symbols.csv")) ticker_narrowed = tickers_narrowed.values.tolist() tickers = ' '.join(tickers_narrowed["symbol"].astype(str)).strip() # find last updated ticker (this is necessary if you lose internet connection, etc) financials_quarterly_last_ticker = pd.read_csv(os.path.join(cwd,input_folder,temp_folder,"financials_quarterly_last_ticker.csv"),index_col=0) last_ticker_n = financials_quarterly_last_ticker.values[0] last_ticker_nn = last_ticker_n[0] print("last ticker in financials_quarterly was number ", last_ticker_nn) # start importing index_max = pd.to_numeric(tickers_narrowed.index.values.max()) from yahoo_fin.stock_info import * #initiate yahoo_fin financials_table = [] company_info = [] for t in tickers.split(' '): try: n = pd.to_numeric(tickers_narrowed["symbol"][tickers_narrowed["symbol"] == t].index).values if n > last_ticker_n: # check if last quarter is recent (many tickers are dead for example) df_yf_stats = get_stats(t) df_check_mrq = df_yf_stats["Value"][df_yf_stats["Attribute"] == "Most Recent Quarter (mrq)"] datetime_object = pd.to_datetime(df_check_mrq) # , errors='coerce') df_mrq_year = datetime_object.dt.year mrq_year = df_mrq_year.values[0] if (mrq_year + 1) >= curr_year: # first loop through "values" in "dictionary" df_yf_financials = get_financials(t, yearly=False, quarterly=True) values_table = [] for keys, values in df_yf_financials.items(): #df_keys = keys #we dont need "keys" df = values df.reset_index(drop=False, inplace=True) df.columns.values[[0, 1, 2, 3, 4]] = ['Breakdown', 't0', 't-1', 't-2', 't-3'] values_table.append(df) values_table = pd.concat(values_table) values_table = values_table[~values_table['Breakdown'].duplicated(keep='first')] #catching double entries in values to properly reset the index values_table.drop_duplicates() values_table.reset_index(drop=True, inplace=True) values_table.set_index('Breakdown', inplace=True) # transpose financials df_T = values_table.T df_T.rename(columns={'netTangibleAssets':'NAV'}, inplace=True) df_T['WC'] = df_T['totalCurrentAssets'] - df_T['totalCurrentLiabilities'] df_T['symbol'] = t df_T['Period'] = df_T.index #get statistics #df_yf_stats = get_stats(t) df_yf_stats.reset_index(drop=True, inplace=True) df_yf_stats.set_index('Attribute', inplace=True) df_stats = df_yf_stats.T df_stats['symbol'] = t df_stats.reset_index(drop=True, inplace=True) # get "quote data" df_yf_quote_data = get_quote_data(t) df_yf_quote_data_1 = pd.Series(df_yf_quote_data) df_yf_quote_data_2 = pd.DataFrame(df_yf_quote_data_1).T df_yf_quote_data_2.reset_index(drop=False, inplace=True) df_yf_quote_data_2 = df_yf_quote_data_2.drop(columns=['index']) #get company info df_yf_info = get_company_info(t) df_yf_info.reset_index(drop=False, inplace=True) df_yf_info = df_yf_info[~df_yf_info['Breakdown'].duplicated(keep='first')] #catching double entries in values to properly reset the index df_yf_info.set_index('Breakdown', inplace=True) df_info = df_yf_info.T df_info['symbol'] = t df_info.reset_index(drop=False, inplace=True) # merge # financials to quote data to_merge = df_T df_merged = pd.merge(df_T, df_yf_quote_data_2, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop')) df_merged.drop([col for col in df_merged.columns if 'drop' in col], axis=1, inplace=True) df_merged.drop_duplicates() df_merged.reset_index(drop=True, inplace=True) # to stats to_merge = df_merged df_merged = pd.merge(to_merge, df_stats, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop')) df_merged.drop([col for col in df_merged.columns if 'drop' in col], axis=1, inplace=True) df_merged.drop_duplicates() df_merged.reset_index(drop=True, inplace=True) # to info to_merge = df_merged df_merged =
pd.merge(to_merge, df_info, how='left', left_on=['symbol'], right_on=['symbol'], suffixes=('', '_drop'))
pandas.merge
import datetime import logging from pathlib import Path import numpy as np import pandas as pd import plotly.graph_objs as go from numpy.linalg import inv from scipy.linalg import sqrtm from sklearn import covariance from sklearn.base import BaseEstimator from sklearn.covariance import EmpiricalCovariance from sklearn.decomposition import PCA from statsmodels.api import OLS from statsmodels.tools import add_constant from .. import tools # expenses + tax dividend EXPENSES = { "CASH": 0.0, "TMF": 0.0108, "DPST": 0.0104, "ASHR": 0.0065, "TQQQ": 0.0095, "UGLD": 0.0135, "ERX": 0.01, "RING": 0.0039, "LABU": 0.0109, "YINN": 0.0152, "SOXL": 0.0097, "RETL": 0.0105, "TYD": 0.0097, "UDOW": 0.0095, "GBTC": 0.02, "FAS": 0.0096, "MCHI": 0.0064, "CQQQ": 0.0070, "CHIX": 0.0065, "UBT": 0.0095, "FXI": 0.0074, "DRN": 0.0109, "O": 0 + 0.045 * 0.15, "DSUM": 0.0045 + 0.035 * 0.15, "SPY": 0.0009, "TLT": 0.0015, "ZIV": 0.0135, "GLD": 0.004, "BABA": 0.0, "BIDU": 0.0, "IEF": 0.0015, "KWEB": 0.007, "JPNL": 0.0121, "EDC": 0.0148, "EEMV.L": 0.0025, "IWVL.L": 0.003, "MVEU.L": 0.0025, "USMV": 0.0015, "ACWV": 0.002, "EFAV": 0.002, "KRE": 0.0035, "EEM": 0.0068, "VNQ": 0.0012 + 0.0309 * 0.15, "EWJ": 0.0049, "HYG": 0.0049, "VLUE": 0.0004, "SPMV": 0.001, "IDWP.L": 0.0069, "ZN": 0.0, "RFR": 0.0, } class CovarianceEstimator(object): """Estimator which accepts sklearn objects. :param w: regularization from paper `Enhanced Portfolio Optimization`, value 0 means no regularization, value 1 means to ignore covariances :param frequency: how often should we recalculate covariance matrix, used to speed up MPT prototyping """ def __init__(self, cov_est, window, standardize=True, w=0.0, frequency=1): self.cov_est = cov_est self.window = window self.standardize = standardize self.w = w self.frequency = frequency self._last_cov = None self._last_n = 0 def fit(self, X): # assert X.mean().mean() < 1. # reuse covariance matrix if ( self.frequency > 1 and len(X) - self._last_n < self.frequency and list(X.columns) == list(self._last_cov.columns) ): return self._last_cov # only use last window if self.window: X = X.iloc[-self.window :] # remove zero-variance elements zero_variance = X.std() == 0 Y = X.iloc[:, ~zero_variance.values] # most estimators assume isotropic covariance matrix, so standardize before feeding them std = Y.std() Y = Y / std # can estimator handle NaN values? if getattr(self.cov_est, "allow_nan", False): self.cov_est.fit(Y) cov = pd.DataFrame( self.cov_est.covariance_, index=Y.columns, columns=Y.columns ) else: # compute full covariance for non-NaN columns Yn = Y.dropna(1, how="any") full_cov = self.cov_est.fit(Yn).covariance_ full_cov = pd.DataFrame(full_cov, index=Yn.columns, columns=Yn.columns) full_cov = full_cov.reindex(Y.columns).reindex(columns=Y.columns) # put back NaN columns one by one, compute covariance using # available history cols = list(Yn.columns) for col in set(Y.columns) - set(Yn.columns): cols.append(col) c = Y[cols].dropna().cov().loc[col] full_cov.loc[col, cols] = c full_cov.loc[cols, col] = c cov = full_cov.loc[Y.columns, Y.columns] # standardize back cov = np.outer(std, std) * cov # put back zero covariance cov = cov.reindex(X.columns).reindex(columns=X.columns).fillna(0.0) # turn on? # assert np.linalg.eig(cov)[0].min() > 0 # annualize covariance cov *= tools.freq(X.index) # regularize cov = (1 - self.w) * cov + self.w * np.diag(np.diag(cov)) # CASH should have zero covariance if "CASH" in X.columns: cov.loc["CASH", :] = 0 cov.loc[:, "CASH"] = 0 self._last_cov = cov self._last_n = len(X) return cov class SharpeEstimator(object): def __init__( self, global_sharpe=0.4, override_sharpe=None, override_mean=None, capm=None, rfr=0.0, verbose=False, cov_estimator=None, tax_adjustment=None, ): """ :param rfr: risk-free rate """ self.override_sharpe = override_sharpe or {} self.override_mean = override_mean or {} self.capm = capm or {} self.global_sharpe = global_sharpe self.rfr = rfr self.verbose = verbose self.cov_estimator = cov_estimator self.tax_adjustment = tax_adjustment def fit(self, X, sigma): """ formula for mean is: sh * vol + rf - expenses """ # estimate sigma again if cov_estimator is present if self.cov_estimator is not None: sigma = self.cov_estimator.fit(X - 1) est_sh = pd.Series(self.global_sharpe, index=sigma.index) for k, v in self.override_sharpe.items(): if k in est_sh: est_sh[k] = v if isinstance(self.rfr, pd.Series): rfr = self.rfr.loc[X.index[-1]] else: rfr = self.rfr # assume that all assets have yearly sharpe ratio 0.5 and deduce return from volatility vol = pd.Series(np.sqrt(np.diag(sigma)), index=sigma.index) if self.verbose: missing_expenses = set(sigma.index) - set(EXPENSES.keys()) if missing_expenses: logging.warning("Missing ETF expense for {}".format(missing_expenses)) expenses = pd.Series( [EXPENSES.get(c, 0.0) for c in sigma.index], index=sigma.index ) mu = est_sh * vol + rfr - expenses # adjust CASH - note that CASH has -1.5% fee from IB if "CASH" in X.columns: mu["CASH"] = X.CASH[-1] ** (tools.freq(X.index)) - 1 for asset, item in self.capm.items(): if isinstance(item, list): markets = item alpha = 0.0 elif isinstance(item, dict): markets = item["market"] alpha = item["alpha"] if asset in X.columns: mu[asset] = self._capm_mu(asset, markets, mu, sigma, X) + alpha if self.override_mean: for k, v in self.override_mean.items(): if k in mu.index: mu.loc[k] = v if self.tax_adjustment: mu = self.tax_adjustment.fit(mu, sigma) if self.verbose: print( pd.DataFrame( { "volatility": vol, "mean": mu, } ) ) return mu def _capm_mu(self, asset, markets, mu, sigma, X): """Calculate mean estimated by CAPM.""" freq = tools.freq(X.index) X = X[[asset] + markets].dropna() res = OLS( X[asset] - 1 - self.rfr / freq, add_constant(X[markets] - 1 - self.rfr / freq), ).fit() beta = res.params.drop(["const"]) prev_mu = mu[asset] new_mu = self.rfr + (mu[markets] - self.rfr).dot(beta) alpha = res.params.const * freq alpha_std = freq * np.sqrt(res.cov_params().loc["const", "const"]) if self.verbose: print( f"Beta of {[x for x in beta.round(2)]} changed {asset} mean return from {prev_mu:.1%} to {new_mu:.1%} with alpha {alpha:.2%} ({alpha_std:.2%})" ) # be benevolent and add alpha if it is positive # k = 0.2 was fine tuned on DPST in order to get it out of the portfolio k = 0.2 if alpha - k * alpha_std > 0 and asset in ("KRE", "DPST"): if self.verbose: print(f" Adding alpha of {alpha - k * alpha_std:.2%} for {asset}") new_mu += alpha - k * alpha_std return new_mu class MuVarianceEstimator(object): def fit(self, X, sigma): # assume that all assets have yearly sharpe ratio 1 and deduce return from volatility mu = np.matrix(sigma).dot(np.ones(sigma.shape[0])) return mu class HistoricalEstimator(object): def __init__(self, window): self.window = window def fit(self, X, sigma): if self.window: X = X.iloc[-self.window :] mu = X.mean() mu = (1 + mu) ** tools.freq(X.index) - 1 return mu class MixedEstimator(object): """Combines historical estimation with sharpe estimation from volatility. Has two parameters alpha and beta that works like this: alpha in (0, 1) controls regularization of covariance matrix alpha = 0 -> assume covariance is zero alpha = 1 -> don't regularize beta in (0, inf) controls weight we give on historical mean beta = 0 -> return is proportional to volatility if alpha = 0 or row sums of covariance matrix if alpha = 1 beta = inf -> use historical return """ def __init__(self, window=None, alpha=0.0, beta=0.0): self.GLOBAL_SHARPE = SharpeEstimator.GLOBAL_SHARPE self.historical_estimator = HistoricalEstimator(window=window) self.alpha = alpha self.beta = beta def fit(self, X, sigma): alpha = self.alpha beta = self.beta m = X.shape[1] # calculate historical return historical_mu = self.historical_estimator.fit(X, sigma) # regularize sigma reg_sigma = alpha * sigma + (1 - alpha) * np.diag(np.diag(sigma)) # avoid computing inversions if beta == 0: mu = self.GLOBAL_SHARPE * np.real(sqrtm(reg_sigma)).dot(np.ones(m)) else: # estimate mean mu_tmp = beta * historical_mu + self.GLOBAL_SHARPE * inv( np.real(sqrtm(reg_sigma)) ).dot(np.ones(m)) mu = inv(inv(reg_sigma) + beta * np.eye(m)).dot(mu_tmp) return pd.Series(mu, index=X.columns) class PCAEstimator(object): def __init__(self, window, n_components="mle"): self.window = window self.n_components = n_components def fit(self, X, sigma): # take recent period (PCA could be estimated from sigma too) R = X.iloc[-self.window :].fillna(0.0) pca = PCA(n_components=self.n_components).fit(R) pca_mu = np.sqrt(pca.explained_variance_) * 0.5 * np.sqrt(tools.freq(X.index)) comp = pca.components_.T # principal components have arbitraty orientation -> choose orientation to maximize final mean return comp = comp * np.sign(comp.sum(0)) pca_mu = comp.dot(pca_mu) pca_mu = pd.Series(pca_mu, index=X.columns) return pca_mu class MLEstimator(object): """Predict mean using sklearn model.""" def __init__(self, model, freq="M"): self.model = model self.freq = freq def featurize(self, H): X = pd.DataFrame( { "last_sh": H.shift(1).stack(), "history_sh": pd.expanding_mean(H).shift(1).stack(), "history_sh_vol": pd.expanding_std(H).shift(1).stack(), "nr_days": H.notnull().cumsum().stack(), } ) return X def fit(self, X, sigma): # work with sharpe ratio of log returns (assume raw returns) R = np.log(X + 1) H = R.resample( self.freq, how=lambda s: s.mean() / s.std() * np.sqrt(tools.freq(X.index)) ) # calculate features XX = self.featurize(H) yy = H.stack() # align training data and drop missing values XX = XX.dropna() yy = yy.dropna() XX = XX.loc[yy.index].dropna() yy = yy.loc[XX.index] # fit model on historical data self.model.fit(XX, yy) # print(self.model.intercept_, pd.Series(self.model.coef_, index=XX.columns)) # make predictions for all assets with features XX_pred = XX.loc[XX.index[-1][0]] pred_sh = self.model.predict(XX_pred) pred_sh = pd.Series(pred_sh, index=XX_pred.index) # assume 0.5 sharpe for assets with missing features pred_sh = pred_sh.reindex(X.columns).fillna(0.5) # convert predictions from sharpe ratio to means mu = pred_sh * np.diag(sigma) return mu class SingleIndexCovariance(BaseEstimator): """Estimation of covariance matrix by Ledoit and Wolf (http://www.ledoit.net/ole2.pdf). It combines sample covariance matrix with covariance matrix from single-index model and automatically estimates shrinking parameter alpha. Assumes that first column represents index. Note that Ledoit-Wolf is already implemented in scikit-learn. """ def __init__(self, alpha=None): self.alpha = alpha def _sample_covariance(self, X): return EmpiricalCovariance().fit(X).covariance_ def _single_index_covariance(self, X, S): # estimate beta from CAPM (use precomputed sample covariance to calculate beta) # https://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line var_market = S[0, 0] y = X[:, 0] beta = S[0, :] / var_market alpha = np.mean(X, 0) - beta * np.mean(y) # get residuals and their variance eps = X - alpha - np.matrix(y).T * np.matrix(beta) D = np.diag(np.var(eps, 0)) return var_market * np.matrix(beta).T * np.matrix(beta) + D def _P(self, X, S): Xc = X - np.mean(X, 0) T, N = X.shape P = np.zeros((N, N)) for i in range(N): for j in range(i, N): P[i, j] = P[j, i] = sum((Xc[:, i] * Xc[:, j] - S[i, j]) ** 2) return P / T def _rho(self, X, S, F, P): Xc = X - np.mean(X, 0) T, N = X.shape R = np.zeros((N, N)) for i in range(N): for j in range(i, N): g = ( S[j, 0] * S[0, 0] * Xc[:, i] + S[i, 0] * S[0, 0] * Xc[:, j] - S[i, 0] * S[j, 0] * Xc[:, 0] ) / S[0, 0] ** 2 R[i, j] = R[j, i] = ( 1.0 / T * sum(g * Xc[:, 0] * Xc[:, i] * Xc[:, j] - F[i, j] * S[i, j]) ) return np.sum(R) def _gamma(self, S, F): return np.sum((F - S) ** 2) def _optimal_alpha(self, X, S, F): T = X.shape[0] P = self._P(X, S) phi = np.sum(P) gamma = self._gamma(S, F) rho = self._rho(X, S, F, P) return 1.0 / T * (phi - rho) / gamma def fit(self, X): # use implicitely with arrays X = np.array(X) # sample and single-index covariance S = self._sample_covariance(X) F = self._single_index_covariance(X, S) alpha = self.alpha or self._optimal_alpha(X, S, F) S_hat = alpha * F + (1 - alpha) * S self.covariance_ = S_hat self.optimal_alpha_ = alpha return self class HistoricalSharpeEstimator(object): def __init__( self, window=None, alpha=1e10, override_sharpe=None, prior_sharpe=0.3, max_sharpe=100.0, max_mu=100.0, ): self.window = window self.alpha = alpha self.prior_sharpe = prior_sharpe self.max_sharpe = max_sharpe self.max_mu = max_mu self.override_sharpe = override_sharpe or {} def fit(self, X, sigma): if self.window: X = X.iloc[-self.window :] # get mean and variance of sharpe ratios mu_sh = tools.sharpe(X) var_sh = tools.sharpe_std(X) ** 2 # combine prior sharpe ratio with observations alpha = self.alpha est_sh = (mu_sh / var_sh + self.prior_sharpe * alpha) / (1.0 / var_sh + alpha) est_sh = np.minimum(est_sh, self.max_sharpe) # override sharpe ratios for k, v in self.override_sharpe.items(): if k in est_sh: est_sh[k] = v mu = est_sh * pd.Series(np.sqrt(np.diag(sigma)), index=sigma.index) mu = np.minimum(mu, self.max_mu) # print(est_sh[{'XIV', 'ZIV', 'UGAZ'} & set(est_sh.index)].to_dict()) return mu def ar(vals, frac): r = list(vals[:1]) for v in vals[1:]: r.append(frac * r[-1] + v) return r class FractionalCovariance(covariance.OAS): def __init__(self, frac, *args, **kwargs): self.frac = frac super().__init__(*args, **kwargs) def fit(self, Y): # calculate fractional returns logY = np.log(Y) fracY = ar(logY, self.frac) return super().fit(fracY) class ExponentiallyWeightedCovariance(BaseEstimator): def __init__(self, span): self.span = span def fit(self, X): alpha = 2 / (self.span + 1) w = (1 - alpha) ** np.arange(len(X))[::-1] w = np.tile(w, (X.shape[1], 1)).T Xv = X.values * w C = Xv.T @ Xv / w[:, 0].sum() self.covariance_ = C return self class TaxAdjustment: """Adjust mean return for taxes. It should be 1. if we are at loss and 0.85 if we are in super profit. Anything in between will produce way smaller factor around 0.5""" def __init__(self, market_value, profit, tax=0.15, days_until_year_end=None): assert market_value.notnull().all() self.market_value = market_value self.profit = profit self.tax = tax self.days_until_year_end = days_until_year_end def fit(self, mu, sigma): b = self.market_value profit = self.profit # only pick selected assets m = mu.loc[b.index] sigma = sigma.loc[b.index, b.index] # scale sigma to the end of the year days_until_year_end = ( self.days_until_year_end or ( datetime.date(datetime.date.today().year + 1, 1, 1) - datetime.date.today() ).days ) sigma = sigma * days_until_year_end / 365 # calculate tax factor x = np.random.multivariate_normal(m, sigma, size=100000) r = x @ b factor = (r + profit > 0) * (1 - self.tax) + (r + profit < 0) tr = x.T * factor m = mu.copy() m.update(pd.Series(tr.mean(axis=1), index=b.index)) # f = (tr.mean() - np.minimum(profit, profit * (1 - self.tax))) / r.mean() print(f"Tax loss: {(m / mu).loc[b.index].round(2)}") # adjust mean returns and update original mean # mu = mu.copy() # mu.update(m * f) return m class JPMEstimator(object): def __init__(self, year=2021, currency="usd", rfr=0.0, verbose=False): self.rfr = rfr self.verbose = verbose self.year = year self.currency = currency self.col_ret = f"Arithmetic Return {year}" def _parse_jpm(self): # load excel path = ( Path(__file__).parents[1] / "data" / "jpm_assumptions" / f"jpm-matrix-{self.currency}-{self.year}.xlsx" ) df = pd.read_excel(path, skiprows=7) df.columns = [ "class", "asset", f"Compound Return {self.year}", self.col_ret, "Annualized Volatility", f"Compound Return {self.year - 1}", ] + list(df.columns[6:]) df["class"] = df["class"].fillna(method="ffill") # correlation matrix corr = df.iloc[:, 6:] corr.index = df.asset corr.columns = df.asset corr = corr.fillna(corr.T) # returns matrix rets = df.iloc[:, 1:6].set_index("asset") rets = rets.replace({"-": None}).astype(float) / 100 # fix names rets.index = [c.replace("\xa0", " ") for c in rets.index] corr.index = [c.replace("\xa0", " ") for c in corr.index] corr.columns = [c.replace("\xa0", " ") for c in corr.columns] if self.currency == "usd": rf = rets.loc["U.S. Cash", self.col_ret] elif self.currency == "eur": rf = rets.loc["Euro Cash", self.col_ret] else: raise NotImplementedError() rets["Sharpe"] = (rets[self.col_ret] - rf) / rets["Annualized Volatility"] return rets, corr def jpm_map(self): jpm = {} for k, syms in JPM_MAP.items(): jpm[k] = k for sym in syms: jpm[sym] = k return jpm def simulate(self, S): # simulate assets from JPM rets, corr = self._parse_jpm() freq = tools.freq(S.index) mean = rets[self.col_ret] / freq vols = rets["Annualized Volatility"] / np.sqrt(freq) cov = corr * np.outer(vols, vols) Y = np.random.multivariate_normal(mean, cov, size=len(S)) Y =
pd.DataFrame(1 + Y, columns=mean.index, index=S.index)
pandas.DataFrame
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from msticpy.analysis.anomalous_sequence import sessionize class TestSessionize(unittest.TestCase): def setUp(self): self.df1 = pd.DataFrame({"UserId": [], "time": [], "operation": []}) self.df1_with_ses_col = pd.DataFrame( {"UserId": [], "time": [], "operation": [], "session_ind": []} ) self.df1_sessionized = pd.DataFrame( { "UserId": [], "time_min": [], "time_max": [], "operation_list": [], "duration": [], "number_events": [], } ) self.df2 = pd.DataFrame( { "UserId": [1, 1, 2, 3, 1, 2, 2], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-06 11:06:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), ], "operation": ["A", "B", "C", "A", "A", "B", "C"], } ) self.df2_with_ses_col_1 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation": ["A", "B", "A", "C", "B", "C", "A"], "session_ind": [0, 0, 1, 2, 3, 4, 5], } ) self.df2_sessionized_1 = pd.DataFrame( { "UserId": [1, 1, 2, 2, 2, 3], "time_min": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "time_max": [ pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"),
pd.to_datetime("2020-01-05 00:00:00")
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # # ReEDS Scenarios on PV ICE Tool STATES # To explore different scenarios for furture installation projections of PV (or any technology), ReEDS output data can be useful in providing standard scenarios. ReEDS installation projections are used in this journal as input data to the PV ICE tool. # # Current sections include: # # <ol> # <li> ### Reading a standard ReEDS output file and saving it in a PV ICE input format </li> # <li>### Reading scenarios of interest and running PV ICE tool </li> # <li>###Plotting </li> # <li>### GeoPlotting.</li> # </ol> # Notes: # # Scenarios of Interest: # the Ref.Mod, # o 95-by-35.Adv, and # o 95-by-35+Elec.Adv+DR ones # # In[1]: import PV_ICE import numpy as np import pandas as pd import os,sys import matplotlib.pyplot as plt from IPython.display import display plt.rcParams.update({'font.size': 22}) plt.rcParams['figure.figsize'] = (12, 8) # In[2]: import os from pathlib import Path testfolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP' / 'SF_States') statedatafolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP' / 'STATEs') print ("Your simulation will be stored in %s" % testfolder) # In[3]: PV_ICE.__version__ # ### Reading REEDS original file to get list of SCENARIOs, PCAs, and STATEs # In[4]: r""" reedsFile = str(Path().resolve().parent.parent.parent / 'December Core Scenarios ReEDS Outputs Solar Futures v2a.xlsx') print ("Input file is stored in %s" % reedsFile) rawdf = pd.read_excel(reedsFile, sheet_name="UPV Capacity (GW)") #index_col=[0,2,3]) #this casts scenario, PCA and State as levels #now set year as an index in place #rawdf.drop(columns=['State'], inplace=True) rawdf.drop(columns=['Tech'], inplace=True) rawdf.set_index(['Scenario','Year','PCA', 'State'], inplace=True) scenarios = list(rawdf.index.get_level_values('Scenario').unique()) PCAs = list(rawdf.index.get_level_values('PCA').unique()) STATEs = list(rawdf.index.get_level_values('State').unique()) simulationname = scenarios simulationname = [w.replace('+', '_') for w in simulationname] simulationname SFscenarios = [simulationname[0], simulationname[4], simulationname[8]] """ # ### Reading GIS inputs # In[5]: r""" GISfile = str(Path().resolve().parent.parent.parent.parent / 'gis_centroid_n.xlsx') GIS = pd.read_excel(GISfile) GIS = GIS.set_index('id') GIS.head() GIS.loc['p1'].long """ # ### Create Scenarios in PV_ICE # #### Downselect to Solar Future scenarios of interest # # Scenarios of Interest: # <li> Ref.Mod # <li> 95-by-35.Adv # <li> 95-by-35+Elec.Adv+DR # In[6]: SFscenarios = ['Reference.Mod', '95-by-35.Adv', '95-by-35_Elec.Adv_DR'] SFscenarios # In[7]: STATEs = ['WA', 'CA', 'VA', 'FL', 'MI', 'IN', 'KY', 'OH', 'PA', 'WV', 'NV', 'MD', 'DE', 'NJ', 'NY', 'VT', 'NH', 'MA', 'CT', 'RI', 'ME', 'ID', 'MT', 'WY', 'UT', 'AZ', 'NM', 'SD', 'CO', 'ND', 'NE', 'MN', 'IA', 'WI', 'TX', 'OK', 'OR', 'KS', 'MO', 'AR', 'LA', 'IL', 'MS', 'AL', 'TN', 'GA', 'SC', 'NC'] # ### Create the 3 Scenarios and assign Baselines # # Keeping track of each scenario as its own PV ICE Object. # In[8]: MATERIALS = ['glass', 'silicon', 'silver','copper','aluminium','backsheet','encapsulant'] # In[9]: #for ii in range (0, 1): #len(scenarios): i = 0 r1 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r1.createScenario(name=STATEs[jj], file=filetitle) r1.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') i = 1 r2 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r2.createScenario(name=STATEs[jj], file=filetitle) r2.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') i = 2 r3 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r3.createScenario(name=STATEs[jj], file=filetitle) r3.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') # # Calculate Mass Flow # In[10]: r1.scenMod_noCircularity() r2.scenMod_noCircularity() r3.scenMod_noCircularity() IRENA= False PERFECTMFG = False ELorRL = 'RL' if IRENA: r1.scenMod_IRENIFY(ELorRL=ELorRL) r2.scenMod_IRENIFY(ELorRL=ELorRL) r3.scenMod_IRENIFY(ELorRL=ELorRL) if PERFECTMFG: r1.scenMod_PerfectManufacturing() r2.scenMod_PerfectManufacturing() r3.scenMod_PerfectManufacturing() # In[11]: r1.calculateMassFlow() r2.calculateMassFlow() r3.calculateMassFlow() # In[12]: print("STATEs:", r1.scenario.keys()) print("Module Keys:", r1.scenario[STATEs[jj]].data.keys()) print("Material Keys: ", r1.scenario[STATEs[jj]].material['glass'].materialdata.keys()) # # OPEN EI # In[13]: kk=0 SFScenarios = [r1, r2, r3] SFScenarios[kk].name # In[14]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': for ii in range (0, len(materials)): sentit = '@value|'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: for ii in range (0, len(materials)): sentit = '@value|Cumulative'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]].cumsum()/keywscale[jj] else: sentit = '@value|'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI.csv', index=False) print("Done") # In[15]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': for ii in range (0, len(materials)): sentit = '@value|'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]]/keywscale[jj] else: sentit = '@value|'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI Yearly Only.csv', index=False) print("Done") # In[16]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': if keywdcumneed[jj]: for ii in range (0, len(materials)): sentit = '@value|Cumulative'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]].cumsum()/keywscale[jj] else: if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv(title_Method+' OpenEI Cumulatives Only.csv', index=False) print("Done") # In[ ]: # WORK ON THIS FOIR OPENEI # SCENARIO DIFERENCeS keyw=['new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['NewInstalledCapacity','InstalledCapacity'] keywprint = ['NewInstalledCapacity','InstalledCapacity'] sfprint = ['Reference','Grid Decarbonization', 'High Electrification'] keywunits = ['MW','MW'] keywdcumneed = [True,False] keywdlevel = ['module','module'] keywscale = [1,1e6] materials = [] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): # kk -- scenario for kk in range(0, 3): sentit = '@value|'+keywprint[jj]+'|'+sfprint[kk]+'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+sfprint[kk]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] # foo['@value|scenario|Solar Futures'] = SFScenarios[kk].name foo['@states'] = STATEs[zz] foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI ScenarioDifferences.csv', index=False) print("Done") # In[ ]: scenariolist.head() # # SAVE DATA FOR BILLY: STATES # In[ ]: #for 3 significant numbers rounding N = 2 # SFScenarios[kk].scenario[PCAs[zz]].data.year # # Index 20 --> 2030 # # Index 30 --> 2040 # # Index 40 --> 2050 # In[ ]: idx2030 = 20 idx2040 = 30 idx2050 = 40 print("index ", idx2030, " is year ", r1.scenario[STATEs[0]].data['year'].iloc[idx2030]) print("index ", idx2040, " is year ", r1.scenario[STATEs[0]].data['year'].iloc[idx2040]) print("index ", idx2050, " is year ", r1.scenario[STATEs[0]].data['year'].iloc[idx2050]) # #### 6 - STATE Cumulative Virgin Needs by 2050 # # In[ ]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = [] for ii in range (0, len(materials)): keywordsum = [] for zz in range (0, len(STATEs)): keywordsum.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword].sum()) materiallist.append(keywordsum) df = pd.DataFrame (materiallist,columns=STATEs, index = materials) df = df.T df = df.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , df], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE 6 - STATE Cumulative2050 VirginMaterialNeeds_tons.csv') # #### 7 - STATE Cumulative EoL Only Waste by 2050 # In[ ]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = [] for ii in range (0, len(materials)): keywordsum = [] for zz in range (0, len(STATEs)): keywordsum.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword].sum()) materiallist.append(keywordsum) df = pd.DataFrame (materiallist,columns=STATEs, index = materials) df = df.T df = df.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , df], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE 7 - STATE Cumulative2050 Waste_EOL_tons.csv') # ##### 8 - STATE Yearly Virgin Needs 2030 2040 2050 # In[ ]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PVICE 8 - STATE Yearly 2030 2040 2050 VirginMaterialNeeds_tons.csv') # #### 9 - STATE Yearly EoL Waste 2030 2040 205 # In[ ]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tonnes #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PVICE 9 - STATE Yearly 2030 2040 2050 Waste_EOL_tons.csv') # # APPENDIX TABLES # # # #### Appendix - Cumulative Virgin Stock # In[ ]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][0:20].sum()) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][0:30].sum()) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][0:].sum()) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons # Loop over SF Scenarios for kk in range(0, 3): filter_col = [col for col in scenariolist if (col.startswith(SFScenarios[kk].name)) ] scen = scenariolist[filter_col] scen.columns = scen.columns.str.lstrip(SFScenarios[kk].name+'_') # strip suffix at the right end only. scen = scen.rename_axis('State') scen = scen.sort_values(by='glass_2050', ascending=False) scen.sum(axis=0) reduced = scen.iloc[0:23] new_row = pd.Series(data=scen.iloc[23::].sum(axis=0), name='OTHER STATES') new_row_2 = pd.Series(data=scen.sum(axis=0), name='US TOTAL') reduced = reduced.append(new_row, ignore_index=False) reduced = reduced.append(new_row_2, ignore_index=False) reduced = reduced.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) reduced = reduced.applymap(lambda x: int(x)) reduced.to_csv('PV ICE Appendix - '+ SFScenarios[kk].name + ' Cumulative Virgin Stock by State.csv') # #### Appendix - Yearly Virgin Stock # In[ ]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons # Loop over SF Scenarios for kk in range(0, 3): filter_col = [col for col in scenariolist if (col.startswith(SFScenarios[kk].name)) ] scen = scenariolist[filter_col] scen.columns = scen.columns.str.lstrip(SFScenarios[kk].name+'_') # strip suffix at the right end only. scen = scen.rename_axis('State') scen = scen.sort_values(by='glass_2050', ascending=False) reduced = scen.iloc[0:23] new_row = pd.Series(data=scen.iloc[23::].sum(axis=0), name='OTHER STATES') new_row_2 = pd.Series(data=scen.sum(axis=0), name='US TOTAL') reduced = reduced.append(new_row, ignore_index=False) reduced = reduced.append(new_row_2, ignore_index=False) reduced = reduced.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) reduced = reduced.applymap(lambda x: int(x)) reduced.to_csv('PV ICE Appendix - '+ SFScenarios[kk].name + ' Yearly Virgin Stock by State.csv') # #### Appendix - Cumulative EOL_ WASTE by State # In[ ]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][0:20].sum()) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][0:30].sum()) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][0:].sum()) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons # Loop over SF Scenarios for kk in range(0, 3): filter_col = [col for col in scenariolist if (col.startswith(SFScenarios[kk].name)) ] scen = scenariolist[filter_col] scen.columns = scen.columns.str.lstrip(SFScenarios[kk].name+'_') # strip suffix at the right end only. scen = scen.rename_axis('State') #scen = scen.sort_values(by='glass_2050', ascending=False) reduced = scen new_row = pd.Series(data=scen.sum(axis=0), name='US TOTAL') reduced = reduced.append(new_row, ignore_index=False) #reduced = reduced.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #reduced = reduced.applymap(lambda x: int(x)) reduced.to_csv('PV ICE Appendix - '+ SFScenarios[kk].name + ' Cumulative EOL_ WASTE by State.csv') # ##### Sparkplots + APPENDIX - Yearly EoL Waste # In[ ]: sparkplotfolder = os.path.join(testfolder, 'SPARKPLOTS') if not os.path.exists(sparkplotfolder): os.makedirs(sparkplotfolder) # In[ ]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist =
pd.DataFrame()
pandas.DataFrame
import ast import datetime import time import math import pypandoc import os import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma import pandas as pd import statsmodels.api as sm from library.api import API_HOST, fetch_objects, fetch_objects_by_id, get_token from library.settings import MIN_VIDEO_LENGTH def get_unix_date(date): if date: timestamp = time.mktime(datetime.datetime.strptime(date.split('+')[0], "%Y-%m-%dT%H:%M:%SZ").timetuple()) return int(timestamp) return None def html2latex(text): output = pypandoc.convert(text, 'latex', format='html', extra_args=['-f', 'html+tex_math_dollars']) return output def process_step_url(row): if ('max_step_variation' not in row.index) or (row.max_step_variation == 1): # no step variations return '{}/lesson/{}/step/{}'.format(API_HOST, row.lesson_id, row.step_position) return '{}/lesson/{}/step/{}?alternative={}'.format(API_HOST, row.lesson_id, row.step_position, row.step_variation) # API functions def get_course_structure(course_id, cached=True, token=None): # use cache course_structure_filename = 'cache/course-{}-structure.csv'.format(course_id) if os.path.isfile(course_structure_filename) and cached: course_structure = pd.read_csv(course_structure_filename) return course_structure if not token: token = get_token() course = fetch_objects_by_id('courses', course_id, token=token)[0] sections = fetch_objects('sections', token=token, id=course['sections']) unit_ids = [unit for section in sections for unit in section['units']] units = fetch_objects('units', token=token, id=unit_ids) lesson_ids = [unit['lesson'] for unit in units] lessons = fetch_objects('lessons', token=token, id=lesson_ids) step_ids = [step for lesson in lessons for step in lesson['steps']] steps = fetch_objects('steps', token=token, id=step_ids) step_id = [step['id'] for step in steps] step_position = [step['position'] for step in steps] step_type = [step['block']['name'] for step in steps] step_lesson = [step['lesson'] for step in steps] step_correct_ratio = [step['correct_ratio'] for step in steps] course_structure = pd.DataFrame({'course_id': course_id, 'lesson_id': step_lesson, 'step_id': step_id, 'step_position': step_position, 'step_type': step_type, 'step_correct_ratio': step_correct_ratio}) module_position = [[section['position']]*len(section['units']) for section in sections] module_position = [value for small_list in module_position for value in small_list] module_id = [[section['id']]*len(section['units']) for section in sections] module_id = [value for small_list in module_id for value in small_list] module_hard_deadline = [[section['hard_deadline']]*len(section['units']) for section in sections] module_hard_deadline = [value for small_list in module_hard_deadline for value in small_list] module_begin_date = [[section['begin_date']]*len(section['units']) for section in sections] module_begin_date = [value for small_list in module_begin_date for value in small_list] lesson_position = [unit['position'] for unit in units] module_structure = pd.DataFrame({'lesson_id': lesson_ids, 'lesson_position': lesson_position, 'module_id': module_id, 'module_position': module_position, 'hard_deadline': module_hard_deadline, 'begin_date': module_begin_date}) course_structure = course_structure.merge(module_structure) course_structure = course_structure.sort_values(['module_position', 'lesson_position', 'step_position']) course_structure.to_csv(course_structure_filename, index=False) return course_structure def get_course_submissions(course_id, course_structure=pd.DataFrame(), cached=True, token=None): header = ['submission_id', 'step_id', 'user_id', 'attempt_time', 'submission_time', 'status'] # use cache course_submissions_filename = 'cache/course-{}-submissions.csv'.format(course_id) if os.path.isfile(course_submissions_filename) and cached: course_submissions = pd.read_csv(course_submissions_filename) course_submissions = course_submissions[header] return course_submissions if not token: token = get_token() if course_structure.empty: course_structure = get_course_structure(course_id, token) course_submissions = pd.DataFrame() for step in course_structure.step_id.unique().tolist(): step_submissions = pd.DataFrame(fetch_objects('submissions', token=token, step=step)) if step_submissions.empty: continue step_submissions = step_submissions.rename(columns={'id': 'submission_id', 'time': 'submission_time', 'attempt': 'attempt_id'}) attempt_ids = step_submissions['attempt_id'].unique().tolist() step_attempts = pd.DataFrame(fetch_objects_by_id('attempts', attempt_ids, token=token)) step_attempts = step_attempts.rename(columns={'id': 'attempt_id', 'time': 'attempt_time', 'status': 'attempt_status'}) step_submissions = pd.merge(step_submissions, step_attempts, on='attempt_id') step_submissions['step_id'] = step course_submissions = course_submissions.append(step_submissions) if course_submissions.empty: return pd.DataFrame(columns=header) course_submissions['submission_time'] = course_submissions['submission_time'].apply(get_unix_date) course_submissions['attempt_time'] = course_submissions['attempt_time'].apply(get_unix_date) course_submissions = course_submissions.rename(columns={'user': 'user_id'}) course_submissions = course_submissions[header] course_submissions.to_csv(course_submissions_filename, index=False) return course_submissions def get_course_grades(course_id, cached=True, token=None): header = ['user_id', 'step_id', 'is_passed', 'score', 'total_score', 'date_joined', 'last_viewed'] # use cache course_grades_filename = 'cache/course-{}-grades.csv'.format(course_id) if os.path.isfile(course_grades_filename) and cached: course_grades = pd.read_csv(course_grades_filename) course_grades = course_grades[header] return course_grades if not token: token = get_token() course_grades = pd.DataFrame() grades = fetch_objects('course-grades', course=course_id, token=token) for grade in grades: user_grade = pd.DataFrame(grade['results']).transpose() user_grade['user_id'] = grade['user'] user_grade['total_score'] = grade['score'] user_grade['date_joined'] = grade['date_joined'] user_grade['last_viewed'] = grade['last_viewed'] course_grades = course_grades.append(user_grade) course_grades['date_joined'] = course_grades['date_joined'].apply(get_unix_date) course_grades['last_viewed'] = course_grades['last_viewed'].apply(get_unix_date) course_grades = course_grades.reset_index(drop=True) course_grades = course_grades[header] course_grades.to_csv(course_grades_filename, index=False) return course_grades def get_enrolled_users(course_id, token=None): if not token: token = get_token() learner_group = fetch_objects('courses', token=token, pk=course_id)[0]['learners_group'] users = fetch_objects('groups', token=token, pk=learner_group)[0]['users'] return users def process_options_with_name(data, reply, option_names): data = ast.literal_eval(data) reply = ast.literal_eval(reply)['choices'] is_multiple = data['is_multiple_choice'] options = data['options'] option_id = [] clue = [] for op in options: if op in option_names.option_name.tolist(): val = option_names.loc[option_names.option_name == op, 'option_id'].values[0] clue_val = option_names.loc[option_names.option_name == op, 'is_correct'].values[0] else: val = np.nan clue_val = np.nan option_id += [val] clue += [clue_val] answer = [(c == r) for c, r in zip(clue, reply)] options = pd.DataFrame({'is_multiple': is_multiple, 'option_id': option_id, 'answer': answer, 'clue': clue}) options = options[['is_multiple', 'option_id', 'answer', 'clue']] return options def get_question(step_id): source = fetch_objects('step-sources', id=step_id) try: question = source[0]['block']['text'] except: question = '\n' question = html2latex(question) return question def get_step_options(step_id): source = fetch_objects('step-sources', id=step_id) try: options = source[0]['block']['source']['options'] options = pd.DataFrame(options) is_multiple = source[0]['block']['source']['is_multiple_choice'] except KeyError: options = pd.DataFrame(columns=['step_id', 'option_id', 'option_name', 'is_correct', 'is_multiple']) return options options['step_id'] = step_id options['is_multiple'] = is_multiple options = options.sort_values('text').reset_index() options = options.rename(columns={'text': 'option_name'}) options['option_id'] = options.index + 1 options = options[['step_id', 'option_id', 'option_name', 'is_correct', 'is_multiple']] return options def get_step_info(step_id): info = pd.Series(fetch_objects('steps', pk=step_id)[0]) info = info.rename(columns={'id': 'step_id'}) return info # IRT functions def create_answer_matrix(data, user_column, item_column, value_column, aggfunc=np.mean, time_column=None): if time_column: # select only the first response data = data.loc[data.groupby([item_column, user_column])[time_column].idxmin()] data = data.drop_duplicates(subset=[item_column, user_column]) answers = pd.pivot_table(data, values=[value_column], index=[user_column], columns=[item_column], aggfunc=aggfunc) if not answers.empty: answers = answers[value_column] return answers # TODO: add Cronbach's alpha to item statistics # see http://stackoverflow.com/questions/20799403/improving-performance-of-cronbach-alpha-code-python-numpy def get_item_statistics(answers, discrimination_prop=0.3): total_people = answers.shape[0] n_people = answers.count(axis=0) # use mean (not sum) because of NA values item_difficulty = 1 - answers.mean(axis=0) total_score = answers.mean(axis=1) item_total_corr = answers.corrwith(total_score) n_top_people = int(discrimination_prop * total_people) low_performers = total_score.sort_values().index[:n_top_people] top_performers = total_score.sort_values().index[-n_top_people:] item_discrimination = answers.loc[top_performers].mean(axis=0) - answers.loc[low_performers].mean(axis=0) stats = pd.DataFrame({'item': item_difficulty.index, 'n_people': n_people, 'difficulty': item_difficulty, 'item_total_corr': item_total_corr, 'discrimination': item_discrimination}) stats.reset_index(drop=True, inplace=True) stats = stats[['item', 'n_people', 'difficulty', 'discrimination', 'item_total_corr']] return stats # Video report def get_video_stats(step_id, cached=True, token=None): if not token: token = get_token() cached_name = 'cache/step-{}-videostats.csv'.format(step_id) if cached and os.path.isfile(cached_name): stats = pd.read_csv(cached_name) return stats stats = pd.DataFrame(fetch_objects('video-stats', token=token, step=step_id)) if not stats.empty: stats.to_csv(cached_name, index=False) stats = pd.read_csv(cached_name) return stats def get_video_peaks(stats, plot=False, ax=None, ax2=None): header = ['start', 'peak', 'end', 'rise_rate', 'is_common', 'width', 'height', 'area'] if stats.empty: return pd.DataFrame(columns=header) row = stats.loc[stats.index[0]] try: watched_first = np.array(ast.literal_eval(row['watched_first'])) watched_total = np.array(ast.literal_eval(row['watched_total'])) play = np.array(ast.literal_eval(row['play'])) except ValueError: return pd.DataFrame(columns=header) # use only shortest data for analyses video_length = min(len(watched_first), len(watched_total), len(play)) if video_length < MIN_VIDEO_LENGTH: return pd.DataFrame(columns=header) watched_first = watched_first[:video_length] watched_total = watched_total[:video_length] play = play[:video_length] play[0] = play[1] # ignore auto-play in the beginning rewatching = watched_total - watched_first # To fight the noise, use smoothing technique before analysis rewatching = get_smoothing_data(rewatching, frac=0.05) play = get_smoothing_data(play, frac=0.1) rewatch_windows = detect_peaks(rewatching) play_windows = detect_peaks(play) rewatch_windows['is_common'] = False play_windows['is_common'] = False # find common windows for ind, row in rewatch_windows.iterrows(): start = row['start'] end = row['end'] if play_windows.loc[~((play_windows.end < start) | (end < play_windows.start))].shape[0] > 0: rewatch_windows.loc[ind, 'is_common'] = True common_windows = rewatch_windows[rewatch_windows.is_common].copy() if plot: peak_plot(rewatching, rewatch_windows, ax) if ax: ax.set_ylabel('Num rewatchers', fontsize=10) peak_plot(play, play_windows, ax2) if ax2: ax2.set_xlabel('Time in video (seconds)', fontsize=10) ax2.set_ylabel('Num play events', fontsize=10) # calculate peak features (normalized width, height, and area) total_length = len(rewatching) total_height = max(rewatching) total_area = sum(rewatching) if not common_windows.empty: common_windows['width'] = common_windows.apply(lambda x: (x['end']-x['start'])/total_length, axis=1) common_windows['height'] = common_windows.apply(lambda x: rewatching[x['peak']]/total_height, axis=1) common_windows['area'] = common_windows.apply( lambda x: rewatching[x['start']:x['end']].sum()/total_area, axis=1) else: common_windows =
pd.DataFrame(columns=header)
pandas.DataFrame
import logging import numpy as np import pandas as pd from pathlib import Path import PyCrowdTangle as pct import time import glob import os from tqdm import tqdm from ratelimiter import RateLimiter from .utils import Utils logger = logging.getLogger(__name__) class CrowdTangle: """Descripción de la clase. api_key (str): CrowdTangle API key. """ def __init__(self, api_key): """Constructor method """ if not api_key: raise Exception('Crowdtangle Api Token is missing') self.api_key = api_key def get_shares(self, urls, url_column='url', date_column='date', platforms=('facebook', 'instagram'), nmax=1000, max_calls = 2, clean_urls=False, save_ctapi_output=False, temp_saves = False, temp_number = 1000, id_column=None, remove_days=None): """ Get the URLs shares from CrowdTangle from a list of URLs with publish datetime Args: urls (pandas.DataFrame): a dataframe with at least a column "url" containing the URLs, and a column "date" with their published date url_column (str, optional): name of the column (placed inside quote marks) where the URLs are stored. Defaults to 'url'. date_column (str, optional): name of the column (placed inside quote marks) where the date of the URLs are stored. Defaults to 'date'. platforms (tuple, optional): a tuple of platforms to search. You can specify only facebook to search on Facebook, or only instagram to search on Instagram. Defaults to ('facebook', 'instagram'). nmax (int, optional): max number of results for query. Defaults to 100. max_calls (int, optional): Max number of Api call per minute. It can be lowered or increased depending on the assigned API rate limit. Defaults to 2. clean_urls (bool, optional): clean the URLs from tracking parameters. Defaults to False. save_ctapi_output (bool, optional): saves the original CT API output in rawdata/ folder. Defaults to False. temp_saves (bool, optional): saves the partial concatenated dataframe to create a final dataframe at the end temp_number (int, optional): number of downloaded urls to be saves as temporal, temp_saves has to be set to 'True' id_column(str,optional): name of the column wherre the id of each URL is stored. remove_days(int,optional): remove shares performed more than X days from first share Raises: Exception: [description] Exception: [description] e: [description] SystemExit: [description] Returns: pandas.DataFrame: A pandas dataframe of posts that shared the URLs and a number of variables returned by the https://github.com/CrowdTangle/API/wiki/Links CrowdTangle API links endpoint and the original data set of news. """ try: if url_column not in urls.columns: message = f"Can't find {url_column} in urls dataframe" raise Exception(message) if date_column not in urls.columns: message = f"Can't find {date_column} in urls dataframe" raise Exception(message) logger.info("########## PyCoornet ##########") logger.info(f"get_shares script execute \n\n") # remove duplicated rows urls = urls.drop_duplicates(subset=url_column, keep=False) # set column names urls = urls.rename(columns={url_column: 'url', date_column: 'date'}) #convert the type of date column to datetime urls['date'] = pd.to_datetime(urls['date']) # clean the URLs if clean_urls: urls = Utils.clean_urls(urls, 'url') logger.info("Original URLs have been cleaned") # create empty dataframe ct_shares_df = pd.DataFrame() if temp_saves: #create dir to save temporal data Path("rawdata").mkdir(parents=True, exist_ok=True) # for temporal file numbering num =1 # if temp number is bigger than the number of urls if temp_number > len(urls): temp_number = len(urls)//2 #number of maximum calls to crowdtangle per minute rate_limiter = RateLimiter(max_calls=max_calls, period=60) # Progress bar tqdm for i in tqdm(range(len(urls))): # set date limits, endDate: one week after date_published startDate = urls.iloc[i, :].loc['date'] #startDate = startDate.replace(microsecond=0) if remove_days: days = f"{remove_days} day" endDate = startDate + pd.Timedelta(days) else: endDate = None url = urls.iloc[i, :].loc['url'] #add ratelimit restriction with rate_limiter: try: # pycrowdtangle get links data = pct.ct_get_links(link=url, platforms=platforms, start_date=startDate, end_date=endDate, include_history='true', sortBy='date', count=nmax, api_token=self.api_key ) # if status is an error if data['status'] != 200: logger.exception(f"Unexpected http response code on url {url}") print(f"Unexpected http response code on url {url}") #next iteration continue #if data response is empty if not data['result']['posts']: print(f"Empty response on url: {url}") logger.debug(f"Empty response on url: {url}") continue # convert json response to dataframe df =
pd.DataFrame(data['result']['posts'])
pandas.DataFrame
import requests import pandas as pd import json import datetime as dt import time #========================================================================================= # Automatic CSV File Generator for Meetup.com API Data # Created by: <NAME> # Date: Jan 17, 2018 #========================================================================================= """Prompts user for API key, zipcode, and search radius (0 - 100 miles). Stores api key in api_key.txt for later user. Exports a csv file containing rows with the following meetup group information: - name of group - group url (used as the main group identifier for the meetup API) - city - latitude of meetup location - longitude of meetup location - meetup category (Social, Tech, Arts, etc.) - datetime of group creation - status (active, grace) - # of current members - join mode (open, approval) - # of previous events held - datetime of most recently past event - # of 'yes' rsvps for most recently past event """ # Meetup.com api instructions can be found here: https://www.meetup.com/meetup_api/docs/find/groups/ def get_api_key(): """Checks if there is an api_key.txt file in the folder. If none exists, prompts the user for an api key and store it in a newly created file. """ try: with open("api_key.txt", "r") as f: #try to open up the txt file and read in api key api_key = f.read() print("***User API key is on file.***") print("") key = str(api_key) return key except: #if file does not already exist with open("api_key.txt", "w+") as f: #create the file print("**(You can find your API key for meetup.com at https://secure.meetup.com/meetup_api/key/)") print(" ") key = input("API key: ") #prompt user for api key f.write(key) #write the user input to the api_key.txt file for later use return key def query_api(): """Queries the meetup.com API and returns a list of dictionaries containing the requested info on meetup groups. Responses are in batches of 200 entries. There is a time delay between reqs to not exceed the API rate limit. Once we receive a response containing less than 200 entries, we know we have collected all information we need.""" finished = False #we are just beginning! batch = 0 #set our first batch number raw_data = [] #create our list to eventually return while finished == False: #keep looping until we run out of data to find parameters = {"key":key, "sign":"true", "page":"200", "offset":batch, "zip":zip, "radius":radius, "only":"category,created,urlname,city,join_mode,last_event,members,name,past_event_count,status,lat,lon", "fields":"last_event,past_event_count"} response = requests.get("https://api.meetup.com/find/groups", params = parameters) #make the API request status = response.status_code #get the status of our request data = response.json() #convert the JSON data to python dictionaries print("Batch number: {}".format(batch+1)) if status == 200: #things are ok print("Server request: OK") if status == 401: #not ok print("***Bad server request!***") exit() if status != 200 and status != 401: #else print("Server request: Status Code {}".format(status)) print("Number of groups returned: " + str(len(data))) print(" ") raw_data.append(data) #add the raw data to our list if len(data) < 200: #if we get less than 200 entries, stop the loop and return our final list finished = True print(" ") print("***Finished!***") return raw_data else: #if not, pause before making a new request with a new batch number time.sleep(0.25) batch+=1 def convert_to_df(raw_data): """Takes in a list of dictionaries, does some cleaning, and converts each to a pandas df. Returns a single dataframe combining all entries.""" all_dfs = [] #master list of dataframes for i in range(0,len(raw_data)): #for each dictionary in our raw_data list utc_found = False #Search the dictionary for an entry containing the utc_offset value to adjust utc to local time while utc_found == False: for each in raw_data[i]: if "last_event" in each: utc_offset = int(each["last_event"]["utc_offset"]) utc_found = True else: next for each in raw_data[i]: #clean up each dictionary if "category" in each: #correct the category name each["category"] = each["category"]["name"] each["created"] = each["created"] + utc_offset #correct the founding date to the local timezone if "past_event_count" in each: #if there is a past event counter make it an integer each["past_event_count"] = int(each["past_event_count"]) if "last_event" in each: #if there was a past event, clean up the rsvp_count and the time of the event last = each["last_event"] each["last_rsvp"] = int(last["yes_rsvp_count"]) #make a new, separate dict key for the rsvp count each["last_event"] = int(last["time"] + utc_offset) #correct the last event date with UTC offset data =
pd.DataFrame(raw_data[i])
pandas.DataFrame
''' Get Per Season Level data from the Player Page ''' import requests, pandas from bs4 import BeautifulSoup, Comment def getpp(player_id): baseurl = "http://www.basketball-reference.com/players/{firstletter}/{playerid}.html" return requests.get(baseurl.format(firstletter=player_id[:1],playerid=player_id)) def test(player_id): return get_player_data(player_id) class player_page: def __init__(self,player_id): self.player_id = player_id self.all_tables = self.get_player_data() self.totals = self.all_tables.get('totals', pandas.DataFrame()).pipe(self.add_player_id).pipe(self.remap).pipe(self.create_composite_key).pipe(self.convert_nullcolumns_from_number) self.per_game = self.all_tables.get('per_game', pandas.DataFrame()).pipe(self.add_player_id) self.per_minute = self.all_tables.get('per_minute', pandas.DataFrame()).pipe(self.add_player_id) self.per_poss = self.all_tables.get('per_poss', pandas.DataFrame()).pipe(self.add_player_id) self.advanced = self.all_tables.get('advanced', pandas.DataFrame()).pipe(self.add_player_id) self.shooting = self.all_tables.get('shooting', pandas.DataFrame()).pipe(self.add_player_id) self.advanced_pbp = self.all_tables.get('advanced_pbp', pandas.DataFrame()).pipe(self.add_player_id) self.playoffs_totals = self.all_tables.get('playoffs_totals', pandas.DataFrame()).pipe(self.add_player_id) self.playoffs_per_game = self.all_tables.get('playoffs_per_game', pandas.DataFrame()).pipe(self.add_player_id) self.playoffs_per_minute = self.all_tables.get('playoffs_per_minute',
pandas.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from pathlib import Path import os import argparse import logging from camel_tools.utils.charsets import UNICODE_PUNCT_CHARSET import pandas as pd import re from funcy import log_durations from camel_tools.utils.normalize import normalize_unicode # punctuation set used in tokenize_hyph, which skips hyphens. NOTE: LOC hamza and 3ayn are not! part of UNICODE_PUNCT_CHARSET so no need to worry about them. puncs = UNICODE_PUNCT_CHARSET-{'-'}#,'ʼ','ʻ'} puncs = dict(zip(puncs,len(puncs)*[''])) # manual tag selection is documented in documentation/tag_selection(dev).tsv and 01-explore_dev.ipynb SELECTED_TAGS = [ '245a', '245c', '100a', '260b', '250a', '245b', '264b', '264a', '700a', '490a', '600a', '246a', '440a', '830a', '260f', '700t', '490v', '600t', '500a', '740a', '111a', '110b', '440v', '246b', '440p', '800a', '775t', '775d', '775b', '830v' ] punc_remove_dict = dict(zip(UNICODE_PUNCT_CHARSET,['']*len(UNICODE_PUNCT_CHARSET))) #required for depunc(string) but no needed to load for every string def depunc(string,keep_hyph=False): dct = punc_remove_dict.copy() if keep_hyph: dct.pop('-') mapped = map(lambda x: dct.get(x,x),string) # for each char if char is in punc_remove_dict get dict value (i.e, empty string ''), else get char itself return ''.join(mapped) # TODO: make consisten filter names (anyways filters returning false will be excluded, and true included) def drop_nan(dfrow): '''checks if ar and rom are of type str, and further checks if those lines are not numeric when stripped of punctuation''' return not dfrow.isnull().any() def filter_nonnumeric_str(dfrow): '''checks if ar and rom are of type str, and further checks if those lines are not numeric when stripped of punctuation''' ar = dfrow['ar'] rom = dfrow['rom'] if type(ar) == str and type(rom) == str: if not depunc(ar).isnumeric() and not depunc(rom).replace(' ','').isnumeric(): return True else: return False else: return False def drop_link_errors(dfrow): if dfrow['link-error']==False: return True else: return False def filter_persian(dfrow): # perfilter sent = str(dfrow['rom']).split() for tok in sent: if tok.endswith('-i') or tok.endswith("-'i"): return False else: return True def filter_tags(dfrow,selected_tags=SELECTED_TAGS): combtag = str(dfrow['comb.tag']) if combtag in selected_tags: return True else: return False def filter_nonalligned(dfrow): rom = str(dfrow['rom']) ar = str(dfrow['ar']) rom = recompose(tokenize_skiphyph(rom),mode='rom').split() ar = recompose(tokenize_skiphyph(ar),mode='ar').split() if len(rom)==len(ar): return True else: return False def filter_data(lines,filter_funcs, print_log = True, log_additional_columns = ['recID','comb.tag']): '''applies filter funcs to lines, and logs how many lines were removed, as well as additional logs such as 'comb.tag' or 'id' ''' filtered_lines = lines.copy() previous = pd.DataFrame() for func in filter_funcs: print(func.__name__) logging.info(func.__name__) condition = filtered_lines.apply(func,axis=1)==True previous = filtered_lines filtered_lines = filtered_lines[condition] if print_log: print(f'# of removed lines: {len(previous)-len(filtered_lines)}') logging.info(f'# of removed lines: {len(previous)-len(filtered_lines)}') if log_additional_columns: for column in log_additional_columns: print(f'# of removed {column}: {len(set(previous[column]))-len(set(filtered_lines[column]))}') logging.info(f'# of removed {column}: {len(set(previous[column]))-len(set(filtered_lines[column]))}') # print('# of removed by tag:') # print(lines[~condition]['comb.tag'].value_counts()[:50]) # prints most frequent removed tags and their frequency return filtered_lines ### recompose sentences # 1 def recompose_waw(line): # reattach waws return line.replace(' و ', ' و') # 2 def tokenize_skiphyph(sent,puncs=puncs): chars = [] sent = str(sent) for char in list(sent): if char in puncs: chars.append(' '+char+' ') else: chars.append(char) sent = ''.join(chars) sent = re.sub(r'\s+',r' ',sent) return sent.strip() # 3 def remove_extra_space(sent): return re.sub(r'\s+',r' ',sent) # 4 def recompose_hyphens(sent,mode): #TODO: there is no longer a separate rom handling, recomposition happens on all equally, so other code should be changed accordingly sent = re.sub(r'\s*(-+)\s*',r' \1 ',sent) if mode == 'rom': # NOTE: Rule 16 b form loc rules: (b) Inseparable prepositions, conjunctions, and other prefixes are connected with what follows # DEFINE prc3 prc3:0 prc3:na prc3:>a_ques # DEFINE prc2 prc2:fa_conn prc2:fa_rc prc2:na prc2:0 prc2:wa_part prc2:wa_sub prc2:fa_sub prc2:wa_conj prc2:fa_conj # DEFINE prc1 prc1:la_emph prc1:ka_prep prc1:fiy_prep prc1:li_jus prc1:0 prc1:la_rc prc1:li_prep prc1:wA_voc prc1:yA_voc prc1:ta_prep prc1:wa_prep prc1:sa_fut prc1:hA_dem prc1:bi_prep prc1:na prc1:la_prep prc1:bi_part # DEFINE prc0 prc0:na prc0:mA_part prc0:0 prc0:Al_det prc0:mA_neg prc0:lA_neg prc0:mA_rel # NOTE: from database almor-msa-r13: DEFINE prc1 prc1:la_emph prc1:ka_prep prc1:fiy_prep prc1:li_jus prc1:0 prc1:la_rc prc1:li_prep prc1:wA_voc prc1:yA_voc prc1:ta_prep prc1:wa_prep prc1:sa_fut prc1:hA_dem prc1:bi_prep prc1:na prc1:la_prep prc1:bi_part sent = re.sub(r'\b(al|ka|fa|la|bi|lil|wa|lā|mā|li|sa|ta|)\s*-\s+',r'\1-',sent) #check to see if all applicable prefixes are covered return sent.strip() def recompose_lacunas(sent): sent = re.sub(r'(\.{2,})',r' \1 ',sent) sent = remove_extra_space(sent).strip() return sent # 5 def recompose_right_punc(sent): right_attaching_puncs = re.escape(r'.?,)]!،؟') sent = re.sub(f'\s*([{right_attaching_puncs}])',r'\1',sent) return sent.strip() # must make sure no trailing spaces at the end!!!! # 6 def recompose_left_punc(sent): left_attaching_puncs = re.escape(r'([') sent = re.sub(f'\s*([{left_attaching_puncs}])\s*',r' \1',sent) return sent.strip() # 7 def recompose_date_slash(sent): return re.sub(r'(\d)\s*(/)\s*(\d)',r'\1\2\3',sent) # 8 def recompose_quotes(sent): chars = list(sent) begin_quote = False bef = '' aft = '' for char_index in range(len(chars)): char = chars[char_index] if char_index>0: bef = chars[char_index-1] if char_index<len(chars)-1: aft = chars[char_index+1] if char in {'"',"'"}: if not begin_quote: begin_quote = True if aft == ' ': chars[char_index+1] = '' else: begin_quote = False if bef == ' ': chars[char_index-1] = '' return ''.join(chars) def recompose(sent,mode): #TODO: this was changed so only difference between ar and rom is waw handling #NOTE: order of rules is not trivial!! sent = remove_extra_space(sent) sent = tokenize_skiphyph(sent) sent = recompose_hyphens(sent,mode='rom') sent = recompose_right_punc(sent) sent = recompose_lacunas(sent) sent = recompose_left_punc(sent) sent = recompose_date_slash(sent) sent = recompose_quotes(sent) if mode=='ar': sent = recompose_waw(sent) elif mode=='rom': pass else: raise Exception('make sure you have the right recompose mode 1)ar 2)rom') return sent def create_splits(lines): def dosplits(record_list_row): if record_list_row.name%10 == 0: return 'dev' elif record_list_row.name%10 in range(1,9): return 'train' elif record_list_row.name%10 == 9: return 'test' record_list = lines['recID'].drop_duplicates().reset_index(drop=True) record_list =
pd.DataFrame(record_list)
pandas.DataFrame
# ********************************************************************************** # # # # Project: FastClassAI workbecnch # # # # Author: <NAME> # # Contact: <EMAIL> # # # # This notebook is a part of Skin AanaliticAI development kit, created # # for evaluation of public datasets used for skin cancer detection with # # large number of AI models and data preparation pipelines. # # # # License: MIT # # Copyright (C) 2021.01.30 <NAME> # # https://opensource.org/licenses/MIT # # # # ********************************************************************************** # #!/usr/bin/env python # -*- coding: utf-8 -*- import os # allow changing, and navigating files and folders, import sys import re # module to use regular expressions, import glob # lists names in folders that match Unix shell patterns import random # functions that use and generate random numbers import pickle import numpy as np # support for multi-dimensional arrays and matrices import pandas as pd # library for data manipulation and analysis import seaborn as sns # advance plots, for statistics, import matplotlib.pyplot as plt # for making plots, import matplotlib as mpl # to get some basif functions, heping with plot mnaking import tensorflow as tf import tensorflow_hub as hub import scipy.stats as stats # library for statistics and technical programming, import tensorflow.keras as keras from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.model_selection import ParameterGrid from sklearn.dummy import DummyClassifier from sklearn.tree import DecisionTreeClassifier # accepts only numerical data from sklearn.tree import export_graphviz from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import backend as K # used for housekeeping of tf models, from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.decomposition import PCA from tensorflow.keras import backend as K from tensorflow.keras import Sequential from tensorflow.keras import activations from tensorflow.keras import initializers from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Dropout from tensorflow.keras import optimizers from tensorflow.keras import losses from tensorflow.keras import metrics from tensorflow.keras import Sequential, activations, initializers from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score # Function, ................................................................................ def plot_NN_loss_acc(*, model_history_df, title="", n_mean=3, figsize=(8,4), top=0.75): ''' small function to plot loss and accuracy over epoch using data created with history.history() keras functions, the columns shodul be called acc, loss, and val_acc, val_loss, # ... . model_history_df : dataframe, created with history.history() keras functions (see in the above) . n_mean : int, how many last results use to caulate values displayed in suplot title . title. : str, plot title, ''' #.. figure, axes, fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=figsize) fig.suptitle(title) #.. Plot accuracy values ax1.plot(model_history_df.loc[:,'loss'], label='train loss') ax1.plot(model_history_df.loc[:,'val_loss'], label='val loss') ax1.set_title('Mean validation loss {:.3f}'.format(np.mean(model_history_df.loc[:, 'val_loss'][-n_mean:]))) ax1.set_xlabel('epoch') ax1.set_ylabel('loss value') ax1.grid(ls="--", color="grey") ax1.legend() #.. Plot accuracy values ax2.plot(model_history_df.loc[:, 'acc'], label='train acc') ax2.plot(model_history_df.loc[:, 'val_acc'], label='val acc') ax2.set_title('Mean validation acc {:.3f}'.format( np.mean(model_history_df.loc[:, 'val_acc'][-n_mean:]))) ax2.set_xlabel('epoch') ax2.set_ylabel('accuracy') ax2.set_ylim(0,1) ax2.grid(ls="--", color="grey") ax2.legend() # ... plt.tight_layout() plt.subplots_adjust(top=top) plt.show() # Function, ........................................................................ def deNovoCNN_gridsearch(*, # ... model/run description method, run_name, dataset_name, dataset_variant, module_name, # input data, cnn_model_function, grid, # list or list-like, obj created wiht ParameterGrid() path, # path to data input_data_info_df=None, # df, with 3. columns, unit_test = False, # options, default_validation_split=0.2, # float, used only if this value is not provided in input_data_info_df or validation_split pramatere in datagen_params = dict(rescale =1/255), # dict, for keras imagedatagenerator, used only if not provided with parameter grid, # info, verbose=False, # detailed info, model_fit__verbose=0, ): """ this function will train model provided with the important: cnn_model_function : this fucntion needs to return two objects * keras model : compileed already * list with callback function/s - always a list ! here is how teturn function looks: return model, [callback_function] Limitations, because we are creating valid dataset as subset of train data with image data generators, these must be done using the same image generator (or else it will return Value Err after 1st epoch) from that reason, validaiton data have the same transformations as train data, and return typically lower acc values as the tests done with other technicques and pielines, code example: _ ,_ , _ , _ = deNovoCNN_gridsearch( # model/run description method = ai_method, run_name = "test_run", dataset_name = dataset_name, dataset_variant = dataset_variant, module_name = None, # input data, cnn_model_function = create_cnn_model, grid = grid, path = path, # path to dir with data subsets in separate folders for train, test ect... input_data_info_df = CNN_DF_INFO, # df, with 3. columns, subset_role/results_name/dirname # results and info, verbose=True ) """ # Set up, ............................................................................. #.. variables, model_ID = -1 # to start usnique counts of the models from 0 colname_with_classname_in_batch_labels_table = "classname" #.. objects to store the results, model_acc_and_parameters_list = list() model_predictions_dict = dict() model_parameters_dict = dict() # for iterations from grid model_history_dict = dict() # create input_data_info_df is None available, if input_data_info_df is None: input_data_info_df = pd.DataFrame([ { "subset_role": "train", "subset_results_name": "train", "subset_dirname": "train" }, { "subset_role": "valid", "subset_results_name": "valid", "subset_dirname": None }, { "subset_role": "test", "subset_results_name": "test", "subset_dirname": "test" } ]) else: pass #.. if unit_test==True: subset_dirname_to_use_for_unit_test = input_data_info_df.subset_dirname.iloc[0] input_data_info_df.subset_dirname = subset_dirname_to_use_for_unit_test else: pass # for loop for grid serch wiith each parameter combination,, ............................... for params_i, params in enumerate(grid): model_ID +=1 # check for required parameters, except for validation split, try: params['method_group'] except: params['method_group']="unknown" try: params['method_variant'] except: params['method_variant']="unknown" try: params['random_state_nr'] except: params['random_state_nr']=0 try: params['batch_size'] except: params['batch_size']=10 try: params['img_size'] except: params['img_size']=[128, 128] try: params['epoch'] except: params['epoch']=100 try: params['early_strop'] except: params['early_strop']=None # add or reset status column un info df, input_data_info_df["status"]="awating" #.. plot history, ''' printed here, so you know what data are being loaded with image generators, ''' if verbose==True: print(f"\n\n..................................................") print(f"model_ID: {model_ID}") print(f"method_group: {params['method_group']}") print(f"method: {method}") print(f"method_variant: {params['method_variant']}") print(f"............................... input data ...") print(f"run_name: {run_name}") print(f"dataset_name: {dataset_name}") print(f"dataset_variant: {dataset_variant}") print(f"unit_test: {unit_test}") print(f"............................... basic params ...") print(f"random_state_nr: {params['random_state_nr']}") print(f"batch_size: {params['batch_size']}") print(f"img_size: {params['img_size']}") print(f"epoch: {params['epoch']}") print(f"..................................................\n") else: pass # set parameters for try: train_datagen_params = params["train_datagen_params"] valid_datagen_params = params["valid_datagen_params"] test_datagen_params = params["test_datagen_params"] datagen_params_info = "imgadatagen prams provided by the user" except: train_datagen_params = datagen_params valid_datagen_params = datagen_params test_datagen_params = datagen_params datagen_params_info = "using default imgadatagen params" # load train & valid data if unit_test==True: valid_datagen_params = train_datagen_params test_datagen_params = train_datagen_params else: pass # dirnames (only one dirname is allowed with generaqtors,) train_subset_dirname = input_data_info_df.subset_dirname.loc[input_data_info_df.subset_role=="train"].iloc[0] valid_subset_dirname = input_data_info_df.subset_dirname.loc[input_data_info_df.subset_role=="valid"].iloc[0] # not used at this moment, # OPTION 1, subset valid data from train data if valid_subset_dirname is None or isinstance(valid_subset_dirname, float): # set-up directory names and datagen parameters, if isinstance(valid_subset_dirname, float): train_datagen_params["validation_split"]=valid_subset_dirname # else its None, so we have to get validaiton split value from somewhere, else: try: train_datagen_params["validation_split"] #KeyError if it is missing, except: train_datagen_params["validation_split"]=default_validation_split train_datagen = ImageDataGenerator(**train_datagen_params) TRAINING_DIR = os.path.join(path, train_subset_dirname) VALIDATION_DIR = TRAINING_DIR # update, status: input_data_info_df.loc[input_data_info_df.subset_role=="train", "status"] = "Loading" input_data_info_df.loc[input_data_info_df.subset_role=="valid", "status"] = f"{train_datagen_params['validation_split']} of train" #.. for train dataset trainset = train_datagen.flow_from_directory( TRAINING_DIR, batch_size =params["batch_size"], target_size =params["img_size"], shuffle =True, subset ="training" ) #.. for validation data, no shuffle, made from the same dataset as train data, validset = train_datagen.flow_from_directory( VALIDATION_DIR, batch_size =params["batch_size"], target_size =params["img_size"], shuffle =False, subset ="validation" ) # OPTION 2, valid data are loaded from separate directory, else: #.. create image generator, validation_split=params["validation_split"] train_datagen = ImageDataGenerator(**train_datagen_params) valid_datagen = ImageDataGenerator(**valid_datagen_params) TRAINING_DIR = os.path.join(path, train_subset_dirname) VALIDATION_DIR = os.path.join(path, valid_subset_dirname) # update, status: input_data_info_df.loc[input_data_info_df.subset_role=="train", "status"] = "Loading" input_data_info_df.loc[input_data_info_df.subset_role=="valid", "status"] = "Loading" #.. for train dataset trainset = train_datagen.flow_from_directory( TRAINING_DIR, batch_size =params["batch_size"], target_size =params["img_size"], shuffle =True ) #.. for validation data, no shuffle, made from the same dataset as train data, validset = valid_datagen.flow_from_directory( VALIDATION_DIR, batch_size =params["batch_size"], target_size =params["img_size"], shuffle =False ) # Collect class encoding/decoding - its not the standard one, ..................... class_encoding = trainset.class_indices class_decoding = dict(zip(list(class_encoding.values()),list(class_encoding.keys()))) # add some info: if verbose==True: print("Datagenerator parameters: ",datagen_params_info) print(input_data_info_df) print(f"\n") else: pass # train the model, collect the results, and plot history, ......................... #.. create the model, model, callback_function = cnn_model_function( input_size=(params["img_size"][0], params["img_size"][1], 3), output_size=trainset.num_classes, params=params, verbose=verbose ) #.. train the model if callback_function is not None: history = model.fit_generator( generator =trainset, # you provide iterators, instead of data, validation_data =validset, epochs =params["epoch"], callbacks =callback_function, # LIST, functions that can be applied at diffeerent stages to fight overfitting, verbose =model_fit__verbose ) else: history = model.fit_generator( generator =trainset, # you provide iterators, instead of data, validation_data =validset, epochs =params["epoch"], verbose =model_fit__verbose ) #.. store the results, model_acc = dict() model_loss = dict() n = 3 # use last 3 results in history, acc_results = pd.DataFrame(history.history).iloc[-n::,:].mean(axis=0) model_acc["model_acc_train"] = acc_results.loc["acc"] model_acc["model_acc_valid"] = acc_results.loc["val_acc"] model_loss["loss_acc_train"] = acc_results.loc["loss"] model_loss["loss_acc_valid"] = acc_results.loc["val_loss"] # LOAD TEST DATA and store all sort of data in the last loop !, ......................... # prepare objects to store results, baseline_acc = dict() one_model_predictions = dict() # with predictions collected for each subset separately, # it will be used temporaly, untul the last chunk of code to reload model predictions to final location # first, chek if test data were provided, if (input_data_info_df.subset_role=="test").sum()==0: pass else: # get df subset with test data test__input_data_info_df = pd.DataFrame(input_data_info_df.loc[input_data_info_df.subset_role=="test",:]) test__input_data_info_df.reset_index(inplace=True, drop=True) # now check if there is anythign to load, and pass if None, if test__input_data_info_df.shape[0]==1 and test__input_data_info_df.subset_dirname.iloc[0] is None: pass else: # loop over each row, to load and evaluate each test data if verbose==True: print(f"generating predicitons for test data: {test__input_data_info_df.shape[0]} subsets") else: pass for test_subset_nr in range(test__input_data_info_df.shape[0]): # load the dataset, one_test_xy_name = test__input_data_info_df.subset_results_name.iloc[test_subset_nr] one_test_subset_name_to_load = test__input_data_info_df.subset_dirname.iloc[test_subset_nr] #.. generator for test data test_datagen = ImageDataGenerator(**test_datagen_params) #.. find how many images there are temp_testset = test_datagen.flow_from_directory( os.path.join(path, one_test_subset_name_to_load), batch_size =params["batch_size"], target_size =params["img_size"], shuffle =False ) #.. get all images in one batch, test_img_number = len(temp_testset.filenames) testset = test_datagen.flow_from_directory( os.path.join(path, one_test_subset_name_to_load), batch_size =test_img_number, target_size =params["img_size"], shuffle =False ) # calculate test set accuracy, #.. get predictions (in dummy array) test_preds = model.predict_generator(testset) y_true = testset.classes # array with true labels y_pred = test_preds.argmax(axis=1) # array with predicted labels model_acc[f"model_acc_{one_test_xy_name}"] = accuracy_score(y_true, y_pred) model_loss[f"model_loss_{one_test_xy_name}"]= np.nan #.. caulate test set baseline baseline_acc[f"baseline_acc_{one_test_xy_name}"] = pd.Series(y_true).value_counts(normalize=True).sort_values(ascending=True).iloc[0] #.. store model predictions, predictions = y_pred decoded_predictions = pd.Series(y_pred).map(class_decoding).values model_predictions_proba = test_preds decoded_y_labels =
pd.Series(y_true)
pandas.Series
import pytest import copy import numpy as np import pandas as pd from sklearn.compose import TransformedTargetRegressor from sklearn.preprocessing import QuantileTransformer from sklearn.linear_model import Ridge from sklearn.tree import DecisionTreeRegressor from sklearn.svm import SVR, LinearSVR from sklearn.metrics import mean_squared_error, r2_score from sklearn.exceptions import NotFittedError from sklearn.dummy import DummyRegressor from data_dashboard.model_finder import ModelsNotSearchedError from data_dashboard.model_finder import WrappedModelRegression @pytest.mark.parametrize( ("test_input",), ( ([0, 1, 2, 3, 4, 5],), ([6, 7, 8, 9, 10, 11],), ([12, 13, 14, 15, 16, 17],), ) ) def test_model_finder_dummy_regression(model_finder_regression, test_input): """Testing if DummyModel (for regression) is created correctly.""" expected_model = DummyRegressor(strategy="median") median = 35.619966243279364 expected_model_scores = {"mean_squared_error": 487.0142795860736, "r2_score": -0.003656622727187031} model_finder_regression.scoring_functions = [mean_squared_error, r2_score] actual_model, actual_model_scores = model_finder_regression._create_dummy_model() assert str(actual_model) == str(expected_model) assert np.array_equal(actual_model.predict(test_input), np.array([median] * len(test_input))) assert actual_model_scores == expected_model_scores def test_model_finder_regression_dummy_model_results(model_finder_regression): """Testing if dummy_model_results() function returns correct DataFrame (regression).""" _ = { "model": "DummyRegressor", "fit_time": np.nan, "params": "{'constant': None, 'quantile': None, 'strategy': 'median'}", "mean_squared_error": 487.0142795860736, "mean_absolute_error": 14.28810797425516, "explained_variance_score": 0.0, "r2_score": -0.003656622727187031 } expected_df =
pd.DataFrame(_, index=[9999])
pandas.DataFrame
import urllib from io import StringIO from io import BytesIO import csv import numpy as np from datetime import datetime import matplotlib.pylab as plt import pandas as pd import scipy.signal as signal from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() datos=pd.read_csv('https://raw.githubusercontent.com/ComputoCienciasUniandes/FISI2029-201910/master/Seccion_1/Fourier/Datos/transacciones2008.txt',sep=";",header=None, decimal=",") datos[0]=pd.to_datetime(datos[0],format='%d/%m/%Y %H:%M:%S') #datos.set_index([0],inplace=True) datos[1]=pd.to_datetime(datos[1],format='%d/%m/%Y %H:%M:%S') #datos.set_index([1],inplace=True) datos[1]=str(datos[1]) datos[1]=datos[1].str[1:20] datos2=pd.read_csv('https://raw.githubusercontent.com/ComputoCienciasUniandes/FISI2029-201910/master/Seccion_1/Fourier/Datos/transacciones2009.txt',sep=";",header=None, decimal=",") datos2[0]=pd.to_datetime(datos2[0],format='%d/%m/%Y %H:%M:%S') #datos.set_index([0],inplace=True) datos2[1]=pd.to_datetime(datos2[1],format='%d/%m/%Y %H:%M:%S') #datos.set_index([1],inplace=True) datos2[1]=str(datos2[1]) datos2[1]=datos2[1].str[1:20] datos3=
pd.read_csv('https://raw.githubusercontent.com/ComputoCienciasUniandes/FISI2029-201910/master/Seccion_1/Fourier/Datos/transacciones2010.txt',sep=";",header=None, decimal=",")
pandas.read_csv
from __future__ import division import argparse import mayavi.mlab as mlab from CameraNetwork.visualization import calcSeaMask import matplotlib.mlab as ml import datetime import glob import json import moviepy.editor as mpy import numpy as np import os import pandas as pd import pymap3d FLIGHT_PATH = r"data\2017_04_22_09_57_54_040000" MAP_ZSCALE = 3 PARTICLE_SIZE = 0.28 COLUMNS = [0.25, 0.28, 0.3, 0.35, 0.4, 0.45, 0.5, 0.58, 0.65, 0.7, 0.8, 1, 1.3, 1.6, 2, 2.5, 3, 3.5, 4, 5, 6.5, 7.5, 8.5, 10, 12.5, 15, 17.5, 20, 25, 30, 32] CLIP_DURATION = 18 def load_path(flight_path, lat0=32.775776, lon0=35.024963, alt0=229): """Load the flight path.""" file_paths = sorted(glob.glob(os.path.join(flight_path, '*.json'))) data = [] indices = [] lat = [] lon = [] alt = [] relative_alt = [] for file_path in file_paths: with open(file_path, 'rb') as f: d = json.load(f) if len(d['data'])==0 or d['coords'] is None or d['coords']['lat'] == 0: # # ignore corrupt data. # continue t = datetime.datetime(*[int(i) for i in os.path.split(file_path)[-1].split('.')[0].split('_')]) indices.append(t) data.append(d['data']) lat.append(d['coords']['lat']*1e-7) lon.append(d['coords']['lon']*1e-7) alt.append(d['coords']['alt']*1e-3) relative_alt.append(d['coords']['relative_alt']*1e-3) data = np.array(data)[..., :-1] df =
pd.DataFrame(data=data, index=indices, columns=COLUMNS)
pandas.DataFrame
"""Tools to visualize the JHU CSSE COVID-19 Data and the forecasts made with it using the model module. """ import numpy as np import pandas as pd from babel.dates import format_date from babel.numbers import format_decimal import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib.dates as mdates import seaborn as sns from modules import processing # Seaborn styling options sns.set_style('darkgrid') sns.set_context('paper') sns.set_palette('muted') palette = sns.xkcd_palette(['denim blue','pale red']) blue, red = sns.xkcd_palette(['denim blue','pale red']) # For localized formatting locale = 'de_DE' # Dates today = pd.to_datetime('today').normalize() yesterday = today - pd.Timedelta(1,'D') footnote = 'Updated on {}. JHU CSSE COVID-19 Data: https://github.com/CSSEGISandData/COVID-19.'.format(format_date(today, locale=locale)) def cases(cases, cases_forecast=pd.DataFrame()): fig, ax = plt.subplots() if cases_forecast.empty == False: sns.lineplot(data=cases_forecast, dashes=False, legend=False) for i in np.arange(len(cases_forecast.columns)): ax.lines[i].set_linestyle('--') sns.lineplot(data=cases, dashes=False) ax.set_title('COVID-19 cases') ax.set_xlabel(None) ax.set_ylabel('Cases') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y,p: format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def cases_per_million(cases, population, cases_forecast=pd.DataFrame()): cases = cases / population * 1000000 cases_forecast = cases_forecast / population * 1000000 fig, ax = plt.subplots() if cases_forecast.empty == False: sns.lineplot(data=cases_forecast, dashes=False, legend=False) for i in np.arange(len(cases_forecast.columns)): ax.lines[i].set_linestyle('--') sns.lineplot(data=cases, dashes=False) ax.set_title('COVID-19 cases per million inhabitants') ax.set_xlabel(None) ax.set_ylabel('Cases per million inhabitants') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def deaths(deaths, deaths_forecast=pd.DataFrame()): fig, ax = plt.subplots() if deaths_forecast.empty == False: sns.lineplot(data=deaths_forecast, dashes=False, legend=False) for i in np.arange(len(deaths_forecast.columns)): ax.lines[i].set_linestyle('--') sns.lineplot(data=deaths, dashes=False) ax.set_title('COVID-19 deaths') ax.set_xlabel(None) ax.set_ylabel('Deaths') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def deaths_per_million(deaths, population, deaths_forecast=pd.DataFrame()): deaths = deaths / population * 1000000 deaths_forecast = deaths_forecast / population * 1000000 fig, ax = plt.subplots() if deaths_forecast.empty == False: sns.lineplot(data=deaths_forecast, dashes=False, legend=False) for i in np.arange(len(deaths_forecast.columns)): ax.lines[i].set_linestyle('--') sns.lineplot(data=deaths, dashes=False) ax.set_title('COVID-19 deaths per million inhabitants') ax.set_xlabel(None) ax.set_ylabel('Deaths per million inhabitants') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def daily_cases(cases): cases = processing.time_series_delta(cases).rolling(7).mean() fig, ax = plt.subplots() sns.lineplot(data=cases, dashes=False) ax.set_title('Daily COVID-19 cases (7 day rolling average)') ax.set_xlabel(None) ax.set_ylabel('Daily cases') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def daily_deaths(deaths): deaths = processing.time_series_delta(deaths).rolling(7).mean() fig, ax = plt.subplots() sns.lineplot(data=deaths, dashes=False) ax.set_title('Daily COVID-19 deaths (7 day rolling average)') ax.set_xlabel(None) ax.set_ylabel('Daily deaths') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def daily_cases_per_million(cases, population): cases = processing.time_series_delta(cases).rolling(7).mean() / population * 1000000 fig, ax = plt.subplots() sns.lineplot(data=cases, dashes=False) ax.set_title('Daily COVID-19 cases per million inhabitants (7 day rolling average)') ax.set_xlabel(None) ax.set_ylabel('Daily cases per million inhabitants') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def daily_deaths_per_million(deaths, population): deaths = processing.time_series_delta(deaths).rolling(7).mean() / population * 1000000 fig, ax = plt.subplots() sns.lineplot(data=deaths, dashes=False) ax.set_title('Daily COVID-19 deaths per million inhabitants (7 day rolling average)') ax.set_xlabel(None) ax.set_ylabel('Daily deaths per million inhabitants') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def cases_by_days(cases): cases = processing.align_from_first_ocurrence(cases) fig, ax = plt.subplots() sns.lineplot(data=cases, dashes=False) ax.set_title('COVID-19 cases by days since the first ocurrence') ax.set_xlabel('Days since the first case') ax.set_ylabel('Cases') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.01, footnote, fontsize=6, ha='center') plt.show() return fig, ax def deaths_by_days(deaths): deaths = processing.align_from_first_ocurrence(deaths) fig, ax = plt.subplots() sns.lineplot(data=deaths, dashes=False) ax.set_title('COVID-19 deaths by days since the first ocurrence') ax.set_xlabel('Days since the first death') ax.set_ylabel('Deaths') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.01, footnote, fontsize=6, ha='center') plt.show() return fig, ax def cases_by_days_per_million(cases, population): cases = processing.align_from_first_ocurrence(cases) cases = cases / population * 1000000 fig, ax = plt.subplots() sns.lineplot(data=cases, dashes=False) ax.set_title('COVID-19 cases by days since the first ocurrence per million inhabitants') ax.set_xlabel('Days since the first case') ax.set_ylabel('Cases per million inhabitants') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.01, footnote, fontsize=6, ha='center') plt.show() return fig, ax def deaths_by_days_per_million(deaths, population): deaths = processing.align_from_first_ocurrence(deaths) deaths = deaths / population * 1000000 fig, ax = plt.subplots() sns.lineplot(data=deaths, dashes=False) ax.set_title('COVID-19 deaths by days since the first ocurrence per million inhabitants') ax.set_xlabel('Days since the first death') ax.set_ylabel('Deaths per million inhabitants') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y, locale=locale))) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.01, footnote, fontsize=6, ha='center') plt.show() return fig, ax def mortality(mortality, mortality_forecast=pd.DataFrame()): fig, ax = plt.subplots() if mortality_forecast.empty == False: sns.lineplot(data=mortality_forecast, dashes=False, legend=False) for i in np.arange(len(mortality_forecast.columns)): ax.lines[i].set_linestyle('--') sns.lineplot(data=mortality.rolling(7).mean(), dashes=False) ax.set_title('COVID-19 mortality (7 day rolling average)') ax.set_xlabel(None) ax.set_ylabel('Percentage of deaths per cases') ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda y,p: format_decimal(y, locale=locale))) plt.xticks(rotation=45) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b')) ax.legend(loc='upper left', bbox_to_anchor=(1.01, 0.95)) plt.figtext(0.5, -0.03, footnote, fontsize=6, ha='center') plt.show() return fig, ax def country_situation_with_forecast(cases, deaths, cases_forecast, deaths_forecast): country = cases.name days = cases_forecast.shape[0] fig, axs = plt.subplots(2, 2 , figsize=(13, 6), sharex='col') fig.subplots_adjust(hspace=0.05) # Cases sns.lineplot( data=cases, color=blue, dashes=False, ax=axs[0,0], label='Confirmed cases') sns.lineplot( data=cases_forecast['yhat'], color=blue, ax=axs[0,0], label='Projected cases') axs[0,0].lines[1].set_linestyle('--') axs[0,0].fill_between( cases_forecast.index, cases_forecast['yhat_lower'], cases_forecast['yhat_upper'], color=blue, alpha=0.1, label='95% confidence interval') axs[0,0].legend(loc='upper left') axs[0,0].yaxis.set_major_formatter(ticker.FuncFormatter( lambda y, p : format_decimal(y,locale=locale))) axs[0,0].set_ylabel('Cases') # Daily cases sns.lineplot( data=processing.time_series_delta(cases).rolling(7).mean(), color=blue, dashes=False, ax=axs[1,0], label='Confirmed daily cases') sns.lineplot( data=processing.time_series_delta(
pd.concat([cases[-8:], cases_forecast['yhat']])
pandas.concat
#!/usr/bin/env python # Copyright 2016 DIANA-HEP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import random import sys import time import unittest import numpy import histogrammar as hg from histogrammar.defs import Factory from histogrammar.primitives.average import Average from histogrammar.primitives.bag import Bag from histogrammar.primitives.bin import Bin from histogrammar.primitives.categorize import Categorize from histogrammar.primitives.centrallybin import CentrallyBin from histogrammar.primitives.collection import Branch, Index, Label, UntypedLabel from histogrammar.primitives.count import Count from histogrammar.primitives.deviate import Deviate from histogrammar.primitives.fraction import Fraction from histogrammar.primitives.irregularlybin import IrregularlyBin from histogrammar.primitives.minmax import Minimize, Maximize from histogrammar.primitives.select import Select from histogrammar.primitives.sparselybin import SparselyBin from histogrammar.primitives.stack import Stack from histogrammar.primitives.sum import Sum from histogrammar import util from histogrammar.util import xrange tolerance = 1e-12 util.relativeTolerance = tolerance util.absoluteTolerance = tolerance class Numpy(object): def __enter__(self): try: import numpy except ImportError: return None self.errstate = numpy.geterr() numpy.seterr(invalid="ignore") return numpy def __exit__(self, exc_type, exc_value, traceback): try: import numpy numpy.seterr(**self.errstate) except ImportError: pass class Pandas(object): def __enter__(self): try: import pandas # noqa except ImportError: return None def __exit__(self, exc_type, exc_value, traceback): try: import pandas # noqa except ImportError: pass def makeSamples(SIZE, HOLES): with Numpy() as numpy: if numpy is None: return {"empty": None, "positive": None, "boolean": None, "noholes": None, "withholes": None, "withholes2": None} empty = numpy.array([], dtype=float) if numpy is not None: rand = random.Random(12345) positive = numpy.array([abs(rand.gauss(0, 1)) + 1e-12 for i in xrange(SIZE)]) assert all(x > 0.0 for x in positive) boolean = positive > 1.5 noholes = numpy.array([rand.gauss(0, 1) for i in xrange(SIZE)]) withholes = numpy.array([rand.gauss(0, 1) for i in xrange(SIZE)]) for i in xrange(HOLES): withholes[rand.randint(0, SIZE)] = float("nan") for i in xrange(HOLES): withholes[rand.randint(0, SIZE)] = float("inf") for i in xrange(HOLES): withholes[rand.randint(0, SIZE)] = float("-inf") withholes2 = numpy.array([rand.gauss(0, 1) for i in xrange(SIZE)]) for i in xrange(HOLES): withholes2[rand.randint(0, SIZE)] = float("nan") for i in xrange(HOLES): withholes2[rand.randint(0, SIZE)] = float("inf") for i in xrange(HOLES): withholes2[rand.randint(0, SIZE)] = float("-inf") return {"empty": empty, "positive": positive, "boolean": boolean, "noholes": noholes, "withholes": withholes, "withholes2": withholes2} def to_ns(x): """convert timestamp to nanosec since 1970-1-1""" import pandas as pd return
pd.to_datetime(x)
pandas.to_datetime
import xarray as xr import numpy as np import pandas as pd import glob import os import warnings warnings.filterwarnings('ignore') def get_ds_latlon(infile): ds = xr.open_dataset(infile) vars_needed = ['StdPressureLev:ascending_TqJoint', 'SurfPres_Forecast_TqJ_A', 'SurfPres_Forecast_TqJ_D', 'Temperature_TqJ_A', 'Temperature_TqJ_D', 'SurfAirTemp_TqJ_A', 'SurfAirTemp_TqJ_D', 'SurfSkinTemp_TqJ_A', 'SurfSkinTemp_TqJ_D', 'H2O_MMR_TqJ_A', 'H2O_MMR_TqJ_D', 'H2O_MMR_Surf_TqJ_A', 'H2O_MMR_Surf_TqJ_D', 'O3_VMR_TqJ_A', 'O3_VMR_TqJ_D'] ds_sub = ds[vars_needed] var_lat = ds_sub['YDim:ascending_TqJoint'].values var_lon = ds_sub['XDim:ascending_TqJoint'].values lat_lon_var = [] for i in var_lat: for j in var_lon: lat_lon_var.append([i, j]) return ds_sub, lat_lon_var def haversine_np(latlon1, latlon2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ latlon1, latlon2 = map(np.radians, [latlon1, latlon2]) i = 0 stn_new = [] for item in latlon1: j = 0 dist = [] for value in latlon2: dlat = latlon1[i][0]-latlon2[j][0] dlon = latlon1[i][1]-latlon2[j][1] a = np.sin(dlat/2.0)**2 + np.cos(latlon2[j][0]) * np.cos(latlon1[i][0]) * np.sin(dlon/2.0)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6367 * c dist.append(km) j += 1 idx=dist.index(min(dist)) stn_new.append(latlon2[idx]) i += 1 stn_new = list(map(np.degrees, stn_new)) return stn_new def get_stn_latlonname(station_file): lst_stn =
pd.read_csv(station_file)
pandas.read_csv
from anndata import AnnData import numpy as np import pandas as pd import warnings from ... import logging as logg from .._distributed import materialize_as_ndarray from .._utils import _get_mean_var from scipy.sparse import issparse def filter_genes_dispersion(data, flavor='seurat', min_disp=None, max_disp=None, min_mean=None, max_mean=None, n_bins=20, n_top_genes=None, log=True, subset=True, copy=False): """Extract highly variable genes [Satija15]_ [Zheng17]_. This is a deprecated function, use :func:`~scanpy.api.pp.highly_variable_genes` instead. If trying out parameters, pass the data matrix instead of AnnData. Depending on `flavor`, this reproduces the R-implementations of Seurat [Satija15]_ and Cell Ranger [Zheng17]_. The normalized dispersion is obtained by scaling with the mean and standard deviation of the dispersions for genes falling into a given bin for mean expression of genes. This means that for each bin of mean expression, highly variable genes are selected. Use `flavor='cell_ranger'` with care and in the same way as in :func:`~scanpy.api.pp.recipe_zheng17`. Parameters ---------- data : :class:`~anndata.AnnData`, `np.ndarray`, `sp.sparse` The (annotated) data matrix of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to genes. flavor : {'seurat', 'cell_ranger'}, optional (default: 'seurat') Choose the flavor for computing normalized dispersion. If choosing 'seurat', this expects non-logarithmized data - the logarithm of mean and dispersion is taken internally when `log` is at its default value `True`. For 'cell_ranger', this is usually called for logarithmized data - in this case you should set `log` to `False`. In their default workflows, Seurat passes the cutoffs whereas Cell Ranger passes `n_top_genes`. min_mean=0.0125, max_mean=3, min_disp=0.5, max_disp=`None` : `float`, optional If `n_top_genes` unequals `None`, these cutoffs for the means and the normalized dispersions are ignored. n_bins : `int` (default: 20) Number of bins for binning the mean gene expression. Normalization is done with respect to each bin. If just a single gene falls into a bin, the normalized dispersion is artificially set to 1. You'll be informed about this if you set `settings.verbosity = 4`. n_top_genes : `int` or `None` (default: `None`) Number of highly-variable genes to keep. log : `bool`, optional (default: `True`) Use the logarithm of the mean to variance ratio. subset : `bool`, optional (default: `True`) Keep highly-variable genes only (if True) else write a bool array for h ighly-variable genes while keeping all genes copy : `bool`, optional (default: `False`) If an :class:`~anndata.AnnData` is passed, determines whether a copy is returned. Returns ------- If an AnnData `adata` is passed, returns or updates `adata` depending on \ `copy`. It filters the `adata` and adds the annotations means : adata.var Means per gene. Logarithmized when `log` is `True`. dispersions : adata.var Dispersions per gene. Logarithmized when `log` is `True`. dispersions_norm : adata.var Normalized dispersions per gene. Logarithmized when `log` is `True`. If a data matrix `X` is passed, the annotation is returned as `np.recarray` \ with the same information stored in fields: `gene_subset`, `means`, `dispersions`, `dispersion_norm`. """ if n_top_genes is not None and not all([ min_disp is None, max_disp is None, min_mean is None, max_mean is None]): logg.info('If you pass `n_top_genes`, all cutoffs are ignored.') if min_disp is None: min_disp = 0.5 if min_mean is None: min_mean = 0.0125 if max_mean is None: max_mean = 3 if isinstance(data, AnnData): adata = data.copy() if copy else data result = filter_genes_dispersion(adata.X, log=log, min_disp=min_disp, max_disp=max_disp, min_mean=min_mean, max_mean=max_mean, n_top_genes=n_top_genes, flavor=flavor) adata.var['means'] = result['means'] adata.var['dispersions'] = result['dispersions'] adata.var['dispersions_norm'] = result['dispersions_norm'] if subset: adata._inplace_subset_var(result['gene_subset']) else: adata.var['highly_variable'] = result['gene_subset'] return adata if copy else None logg.msg('extracting highly variable genes', r=True, v=4) X = data # no copy necessary, X remains unchanged in the following mean, var = materialize_as_ndarray(_get_mean_var(X)) # now actually compute the dispersion mean[mean == 0] = 1e-12 # set entries equal to zero to small value dispersion = var / mean if log: # logarithmized mean as in Seurat dispersion[dispersion == 0] = np.nan dispersion = np.log(dispersion) mean = np.log1p(mean) # all of the following quantities are "per-gene" here import pandas as pd df = pd.DataFrame() df['mean'] = mean df['dispersion'] = dispersion if flavor == 'seurat': df['mean_bin'] =
pd.cut(df['mean'], bins=n_bins)
pandas.cut
#!/usr/bin/env python # coding: utf-8 # In[95]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import math # ## Step 1: collecting data # In[96]: #Reading data titanic_data = pd.read_csv('titanic_train_clean.csv') titanic_data.head(10) # In[97]: #Get the total number of passengers titanic_data.shape # ## Step 2 Analyzing Data # In[98]: #survived vs not survived sns.countplot(x = 'Survived', data = titanic_data) # In[99]: #how many males and females sns.countplot(x = 'Survived', hue='Sex', data=titanic_data) # In[100]: #ticket class of the passengers sns.countplot(x='Survived', hue='Pclass', data=titanic_data) # In[101]: #Age distribution titanic_data['Age'].plot.hist() # In[102]: #Fare Distribution titanic_data['Fare'].plot.hist() # In[103]: #get info on columns titanic_data.info() # In[104]: sns.countplot(x='SibSp', data=titanic_data) # In[105]: sns.countplot(x='Parch', data=titanic_data) # ## Step 3 Data Wrangling # In[106]: #cleaning the data, removing all null values #check for null values titanic_data.isnull() # In[107]: #show all null values in the dataset titanic_data.isnull().sum() # In[108]: #display in heatmap sns.heatmap(titanic_data.isnull(), cmap="viridis") # In[109]: #if age had null #plot boxplot for visualization sns.boxplot(x='Pclass', y='Age', data=titanic_data) #imputation def impute_age(cols): Age =cols[0] Pclass = cols[6] if(
pd.isnull(Age)
pandas.isnull
import sys, warnings, operator import json import time import types import numbers import inspect import itertools import string import unicodedata import datetime as dt from collections import defaultdict, OrderedDict from contextlib import contextmanager from distutils.version import LooseVersion as _LooseVersion from functools import partial from threading import Thread, Event from types import FunctionType import numpy as np import param # Python3 compatibility if sys.version_info.major >= 3: import builtins as builtins # noqa (compatibility) if sys.version_info.minor > 3: from collections.abc import Iterable # noqa (compatibility) else: from collections import Iterable # noqa (compatibility) basestring = str unicode = str long = int cmp = lambda a, b: (a>b)-(a<b) generator_types = (zip, range, types.GeneratorType) RecursionError = RecursionError if sys.version_info.minor > 4 else RuntimeError # noqa _getargspec = inspect.getfullargspec get_keywords = operator.attrgetter('varkw') LooseVersion = _LooseVersion else: import __builtin__ as builtins # noqa (compatibility) from collections import Iterable # noqa (compatibility) basestring = basestring unicode = unicode from itertools import izip generator_types = (izip, xrange, types.GeneratorType) # noqa RecursionError = RuntimeError _getargspec = inspect.getargspec get_keywords = operator.attrgetter('keywords') class LooseVersion(_LooseVersion): """ Subclassed to avoid unicode issues in python2 """ def __init__ (self, vstring=None): if isinstance(vstring, unicode): vstring = str(vstring) self.parse(vstring) def __cmp__(self, other): if isinstance(other, unicode): other = str(other) if isinstance(other, basestring): other = LooseVersion(other) return cmp(self.version, other.version) numpy_version = LooseVersion(np.__version__) param_version = LooseVersion(param.__version__) datetime_types = (np.datetime64, dt.datetime, dt.date, dt.time) timedelta_types = (np.timedelta64, dt.timedelta,) arraylike_types = (np.ndarray,) masked_types = () try: import pandas as pd except ImportError: pd = None if pd: pandas_version = LooseVersion(pd.__version__) try: if pandas_version >= '0.24.0': from pandas.core.dtypes.dtypes import DatetimeTZDtype as DatetimeTZDtypeType from pandas.core.dtypes.generic import ABCSeries, ABCIndexClass elif pandas_version > '0.20.0': from pandas.core.dtypes.dtypes import DatetimeTZDtypeType from pandas.core.dtypes.generic import ABCSeries, ABCIndexClass else: from pandas.types.dtypes import DatetimeTZDtypeType from pandas.types.dtypes.generic import ABCSeries, ABCIndexClass pandas_datetime_types = (pd.Timestamp, DatetimeTZDtypeType, pd.Period) pandas_timedelta_types = (pd.Timedelta,) datetime_types = datetime_types + pandas_datetime_types timedelta_types = timedelta_types + pandas_timedelta_types arraylike_types = arraylike_types + (ABCSeries, ABCIndexClass) if pandas_version > '0.23.0': from pandas.core.dtypes.generic import ABCExtensionArray arraylike_types = arraylike_types + (ABCExtensionArray,) if pandas_version > '1.0': from pandas.core.arrays.masked import BaseMaskedArray masked_types = (BaseMaskedArray,) except Exception as e: param.main.param.warning('pandas could not register all extension types ' 'imports failed with the following error: %s' % e) try: import cftime cftime_types = (cftime.datetime,) datetime_types += cftime_types except: cftime_types = () _STANDARD_CALENDARS = set(['standard', 'gregorian', 'proleptic_gregorian']) class VersionError(Exception): "Raised when there is a library version mismatch." def __init__(self, msg, version=None, min_version=None, **kwargs): self.version = version self.min_version = min_version super(VersionError, self).__init__(msg, **kwargs) class Config(param.ParameterizedFunction): """ Set of boolean configuration values to change HoloViews' global behavior. Typically used to control warnings relating to deprecations or set global parameter such as style 'themes'. """ future_deprecations = param.Boolean(default=False, doc=""" Whether to warn about future deprecations""") image_rtol = param.Number(default=10e-4, doc=""" The tolerance used to enforce regular sampling for regular, gridded data where regular sampling is expected. Expressed as the maximal allowable sampling difference between sample locations.""") no_padding = param.Boolean(default=False, doc=""" Disable default padding (introduced in 1.13.0).""") warn_options_call = param.Boolean(default=True, doc=""" Whether to warn when the deprecated __call__ options syntax is used (the opts method should now be used instead). It is recommended that users switch this on to update any uses of __call__ as it will be deprecated in future.""") default_cmap = param.String(default='kbc_r', doc=""" Global default colormap. Prior to HoloViews 1.14.0, the default value was 'fire' which can be set for backwards compatibility.""") default_gridded_cmap = param.String(default='kbc_r', doc=""" Global default colormap for gridded elements (i.e. Image, Raster and QuadMesh). Can be set to 'fire' to match raster defaults prior to HoloViews 1.14.0 while allowing the default_cmap to be the value of 'kbc_r' used in HoloViews >= 1.14.0""") default_heatmap_cmap = param.String(default='kbc_r', doc=""" Global default colormap for HeatMap elements. Prior to HoloViews 1.14.0, the default value was the 'RdYlBu_r' colormap.""") def __call__(self, **params): self.param.set_param(**params) return self config = Config() class HashableJSON(json.JSONEncoder): """ Extends JSONEncoder to generate a hashable string for as many types of object as possible including nested objects and objects that are not normally hashable. The purpose of this class is to generate unique strings that once hashed are suitable for use in memoization and other cases where deep equality must be tested without storing the entire object. By default JSONEncoder supports booleans, numbers, strings, lists, tuples and dictionaries. In order to support other types such as sets, datetime objects and mutable objects such as pandas Dataframes or numpy arrays, HashableJSON has to convert these types to datastructures that can normally be represented as JSON. Support for other object types may need to be introduced in future. By default, unrecognized object types are represented by their id. One limitation of this approach is that dictionaries with composite keys (e.g. tuples) are not supported due to the JSON spec. """ string_hashable = (dt.datetime,) repr_hashable = () def default(self, obj): if isinstance(obj, set): return hash(frozenset(obj)) elif isinstance(obj, np.ndarray): return obj.tolist() if pd and isinstance(obj, (pd.Series, pd.DataFrame)): return obj.to_csv(header=True).encode('utf-8') elif isinstance(obj, self.string_hashable): return str(obj) elif isinstance(obj, self.repr_hashable): return repr(obj) try: return hash(obj) except: return id(obj) def merge_option_dicts(old_opts, new_opts): """ Update the old_opts option dictionary with the options defined in new_opts. Instead of a shallow update as would be performed by calling old_opts.update(new_opts), this updates the dictionaries of all option types separately. Given two dictionaries old_opts = {'a': {'x': 'old', 'y': 'old'}} and new_opts = {'a': {'y': 'new', 'z': 'new'}, 'b': {'k': 'new'}} this returns a dictionary {'a': {'x': 'old', 'y': 'new', 'z': 'new'}, 'b': {'k': 'new'}} """ merged = dict(old_opts) for option_type, options in new_opts.items(): if option_type not in merged: merged[option_type] = {} merged[option_type].update(options) return merged def merge_options_to_dict(options): """ Given a collection of Option objects or partial option dictionaries, merge everything to a single dictionary. """ merged_options = {} for obj in options: if isinstance(obj,dict): new_opts = obj else: new_opts = {obj.key: obj.kwargs} merged_options = merge_option_dicts(merged_options, new_opts) return merged_options def deprecated_opts_signature(args, kwargs): """ Utility to help with the deprecation of the old .opts method signature Returns whether opts.apply_groups should be used (as a bool) and the corresponding options. """ from .options import Options groups = set(Options._option_groups) opts = {kw for kw in kwargs if kw != 'clone'} apply_groups = False options = None new_kwargs = {} if len(args) > 0 and isinstance(args[0], dict): apply_groups = True if (not set(args[0]).issubset(groups) and all(isinstance(v, dict) and not set(v).issubset(groups) for v in args[0].values())): apply_groups = False elif set(args[0].keys()) <= groups: new_kwargs = args[0] else: options = args[0] elif opts and opts.issubset(set(groups)): apply_groups = True elif kwargs.get('options', None) is not None: apply_groups = True elif not args and not kwargs: apply_groups = True return apply_groups, options, new_kwargs class periodic(Thread): """ Run a callback count times with a given period without blocking. If count is None, will run till timeout (which may be forever if None). """ def __init__(self, period, count, callback, timeout=None, block=False): if isinstance(count, int): if count < 0: raise ValueError('Count value must be positive') elif not type(count) is type(None): raise ValueError('Count value must be a positive integer or None') if block is False and count is None and timeout is None: raise ValueError('When using a non-blocking thread, please specify ' 'either a count or a timeout') super(periodic, self).__init__() self.period = period self.callback = callback self.count = count self.counter = 0 self.block = block self.timeout = timeout self._completed = Event() self._start_time = None @property def completed(self): return self._completed.is_set() def start(self): self._start_time = time.time() if self.block is False: super(periodic,self).start() else: self.run() def stop(self): self.timeout = None self._completed.set() def __repr__(self): return 'periodic(%s, %s, %s)' % (self.period, self.count, callable_name(self.callback)) def __str__(self): return repr(self) def run(self): while not self.completed: if self.block: time.sleep(self.period) else: self._completed.wait(self.period) self.counter += 1 try: self.callback(self.counter) except Exception: self.stop() if self.timeout is not None: dt = (time.time() - self._start_time) if dt > self.timeout: self.stop() if self.counter == self.count: self.stop() def deephash(obj): """ Given an object, return a hash using HashableJSON. This hash is not architecture, Python version or platform independent. """ try: return hash(json.dumps(obj, cls=HashableJSON, sort_keys=True)) except: return None def tree_attribute(identifier): """ Predicate that returns True for custom attributes added to AttrTrees that are not methods, properties or internal attributes. These custom attributes start with a capitalized character when applicable (not applicable to underscore or certain unicode characters) """ if identifier[0].upper().isupper() is False and identifier[0] != '_': return True else: return identifier[0].isupper() def argspec(callable_obj): """ Returns an ArgSpec object for functions, staticmethods, instance methods, classmethods and partials. Note that the args list for instance and class methods are those as seen by the user. In other words, the first argument which is conventionally called 'self' or 'cls' is omitted in these cases. """ if (isinstance(callable_obj, type) and issubclass(callable_obj, param.ParameterizedFunction)): # Parameterized function.__call__ considered function in py3 but not py2 spec = _getargspec(callable_obj.__call__) args = spec.args[1:] elif inspect.isfunction(callable_obj): # functions and staticmethods spec = _getargspec(callable_obj) args = spec.args elif isinstance(callable_obj, partial): # partials arglen = len(callable_obj.args) spec = _getargspec(callable_obj.func) args = [arg for arg in spec.args[arglen:] if arg not in callable_obj.keywords] elif inspect.ismethod(callable_obj): # instance and class methods spec = _getargspec(callable_obj) args = spec.args[1:] else: # callable objects return argspec(callable_obj.__call__) return inspect.ArgSpec(args=args, varargs=spec.varargs, keywords=get_keywords(spec), defaults=spec.defaults) def validate_dynamic_argspec(callback, kdims, streams): """ Utility used by DynamicMap to ensure the supplied callback has an appropriate signature. If validation succeeds, returns a list of strings to be zipped with the positional arguments, i.e. kdim values. The zipped values can then be merged with the stream values to pass everything to the Callable as keywords. If the callbacks use *args, None is returned to indicate that kdim values must be passed to the Callable by position. In this situation, Callable passes *args and **kwargs directly to the callback. If the callback doesn't use **kwargs, the accepted keywords are validated against the stream parameter names. """ argspec = callback.argspec name = callback.name kdims = [kdim.name for kdim in kdims] stream_params = stream_parameters(streams) defaults = argspec.defaults if argspec.defaults else [] all_posargs = argspec.args[:-len(defaults)] if defaults else argspec.args # Filter out any posargs for streams posargs = [arg for arg in all_posargs if arg not in stream_params] kwargs = argspec.args[-len(defaults):] if argspec.keywords is None: unassigned_streams = set(stream_params) - set(argspec.args) if unassigned_streams: unassigned = ','.join(unassigned_streams) raise KeyError('Callable {name!r} missing keywords to ' 'accept stream parameters: {unassigned}'.format(name=name, unassigned=unassigned)) if len(posargs) > len(kdims) + len(stream_params): raise KeyError('Callable {name!r} accepts more positional arguments than ' 'there are kdims and stream parameters'.format(name=name)) if kdims == []: # Can be no posargs, stream kwargs already validated return [] if set(kdims) == set(posargs): # Posargs match exactly, can all be passed as kwargs return kdims elif len(posargs) == len(kdims): # Posargs match kdims length, supplying names if argspec.args[:len(kdims)] != posargs: raise KeyError('Unmatched positional kdim arguments only allowed at ' 'the start of the signature of {name!r}'.format(name=name)) return posargs elif argspec.varargs: # Posargs missing, passed to Callable directly return None elif set(posargs) - set(kdims): raise KeyError('Callable {name!r} accepts more positional arguments {posargs} ' 'than there are key dimensions {kdims}'.format(name=name, posargs=posargs, kdims=kdims)) elif set(kdims).issubset(set(kwargs)): # Key dims can be supplied by keyword return kdims elif set(kdims).issubset(set(posargs+kwargs)): return kdims elif argspec.keywords: return kdims else: raise KeyError('Callback {name!r} signature over {names} does not accommodate ' 'required kdims {kdims}'.format(name=name, names=list(set(posargs+kwargs)), kdims=kdims)) def callable_name(callable_obj): """ Attempt to return a meaningful name identifying a callable or generator """ try: if (isinstance(callable_obj, type) and issubclass(callable_obj, param.ParameterizedFunction)): return callable_obj.__name__ elif (isinstance(callable_obj, param.Parameterized) and 'operation' in callable_obj.param): return callable_obj.operation.__name__ elif isinstance(callable_obj, partial): return str(callable_obj) elif inspect.isfunction(callable_obj): # functions and staticmethods return callable_obj.__name__ elif inspect.ismethod(callable_obj): # instance and class methods meth = callable_obj if sys.version_info < (3,0): owner = meth.im_class if meth.im_self is None else meth.im_self if meth.__name__ == '__call__': return type(owner).__name__ return '.'.join([owner.__name__, meth.__name__]) else: return meth.__func__.__qualname__.replace('.__call__', '') elif isinstance(callable_obj, types.GeneratorType): return callable_obj.__name__ else: return type(callable_obj).__name__ except Exception: return str(callable_obj) def process_ellipses(obj, key, vdim_selection=False): """ Helper function to pad a __getitem__ key with the right number of empty slices (i.e. :) when the key contains an Ellipsis (...). If the vdim_selection flag is true, check if the end of the key contains strings or Dimension objects in obj. If so, extra padding will not be applied for the value dimensions (i.e. the resulting key will be exactly one longer than the number of kdims). Note: this flag should not be used for composite types. """ if getattr(getattr(key, 'dtype', None), 'kind', None) == 'b': return key wrapped_key = wrap_tuple(key) ellipse_count = sum(1 for k in wrapped_key if k is Ellipsis) if ellipse_count == 0: return key elif ellipse_count != 1: raise Exception("Only one ellipsis allowed at a time.") dim_count = len(obj.dimensions()) index = wrapped_key.index(Ellipsis) head = wrapped_key[:index] tail = wrapped_key[index+1:] padlen = dim_count - (len(head) + len(tail)) if vdim_selection: # If the end of the key (i.e. the tail) is in vdims, pad to len(kdims)+1 if wrapped_key[-1] in obj.vdims: padlen = (len(obj.kdims) +1 ) - len(head+tail) return head + ((slice(None),) * padlen) + tail def bytes_to_unicode(value): """ Safely casts bytestring to unicode """ if isinstance(value, bytes): return unicode(value.decode('utf-8')) return value def get_method_owner(method): """ Gets the instance that owns the supplied method """ if isinstance(method, partial): method = method.func return method.__self__ if sys.version_info.major >= 3 else method.im_self def capitalize_unicode_name(s): """ Turns a string such as 'capital delta' into the shortened, capitalized version, in this case simply 'Delta'. Used as a transform in sanitize_identifier. """ index = s.find('capital') if index == -1: return s tail = s[index:].replace('capital', '').strip() tail = tail[0].upper() + tail[1:] return s[:index] + tail class sanitize_identifier_fn(param.ParameterizedFunction): """ Sanitizes group/label values for use in AttrTree attribute access. Depending on the version parameter, either sanitization appropriate for Python 2 (no unicode gn identifiers allowed) or Python 3 (some unicode allowed) is used. Note that if you are using Python 3, you can switch to version 2 for compatibility but you cannot enable relaxed sanitization if you are using Python 2. Special characters are sanitized using their (lowercase) unicode name using the unicodedata module. For instance: >>> unicodedata.name(u'$').lower() 'dollar sign' As these names are often very long, this parameterized function allows filtered, substitutions and transforms to help shorten these names appropriately. """ version = param.ObjectSelector(sys.version_info.major, objects=[2,3], doc=""" The sanitization version. If set to 2, more aggressive sanitization appropriate for Python 2 is applied. Otherwise, if set to 3, more relaxed, Python 3 sanitization is used.""") capitalize = param.Boolean(default=True, doc=""" Whether the first letter should be converted to uppercase. Note, this will only be applied to ASCII characters in order to make sure paths aren't confused with method names.""") eliminations = param.List(['extended', 'accent', 'small', 'letter', 'sign', 'digit', 'latin', 'greek', 'arabic-indic', 'with', 'dollar'], doc=""" Lowercase strings to be eliminated from the unicode names in order to shorten the sanitized name ( lowercase). Redundant strings should be removed but too much elimination could cause two unique strings to map to the same sanitized output.""") substitutions = param.Dict(default={'circumflex':'power', 'asterisk':'times', 'solidus':'over'}, doc=""" Lowercase substitutions of substrings in unicode names. For instance the ^ character has the name 'circumflex accent' even though it is more typically used for exponentiation. Note that substitutions occur after filtering and that there should be no ordering dependence between substitutions.""") transforms = param.List(default=[capitalize_unicode_name], doc=""" List of string transformation functions to apply after filtering and substitution in order to further compress the unicode name. For instance, the default capitalize_unicode_name function will turn the string "capital delta" into "Delta".""") disallowed = param.List(default=['trait_names', '_ipython_display_', '_getAttributeNames'], doc=""" An explicit list of name that should not be allowed as attribute names on Tree objects. By default, prevents IPython from creating an entry called Trait_names due to an inconvenient getattr check (during tab-completion).""") disable_leading_underscore = param.Boolean(default=False, doc=""" Whether leading underscores should be allowed to be sanitized with the leading prefix.""") aliases = param.Dict(default={}, doc=""" A dictionary of aliases mapping long strings to their short, sanitized equivalents""") prefix = 'A_' _lookup_table = param.Dict(default={}, doc=""" Cache of previously computed sanitizations""") @param.parameterized.bothmethod def add_aliases(self_or_cls, **kwargs): """ Conveniently add new aliases as keyword arguments. For instance you can add a new alias with add_aliases(short='Longer string') """ self_or_cls.aliases.update({v:k for k,v in kwargs.items()}) @param.parameterized.bothmethod def remove_aliases(self_or_cls, aliases): """ Remove a list of aliases. """ for k,v in self_or_cls.aliases.items(): if v in aliases: self_or_cls.aliases.pop(k) @param.parameterized.bothmethod def allowable(self_or_cls, name, disable_leading_underscore=None): disabled_reprs = ['javascript', 'jpeg', 'json', 'latex', 'latex', 'pdf', 'png', 'svg', 'markdown'] disabled_ = (self_or_cls.disable_leading_underscore if disable_leading_underscore is None else disable_leading_underscore) if disabled_ and name.startswith('_'): return False isrepr = any(('_repr_%s_' % el) == name for el in disabled_reprs) return (name not in self_or_cls.disallowed) and not isrepr @param.parameterized.bothmethod def prefixed(self, identifier, version): """ Whether or not the identifier will be prefixed. Strings that require the prefix are generally not recommended. """ invalid_starting = ['Mn', 'Mc', 'Nd', 'Pc'] if identifier.startswith('_'): return True return((identifier[0] in string.digits) if version==2 else (unicodedata.category(identifier[0]) in invalid_starting)) @param.parameterized.bothmethod def remove_diacritics(self_or_cls, identifier): """ Remove diacritics and accents from the input leaving other unicode characters alone.""" chars = '' for c in identifier: replacement = unicodedata.normalize('NFKD', c).encode('ASCII', 'ignore') if replacement != '': chars += bytes_to_unicode(replacement) else: chars += c return chars @param.parameterized.bothmethod def shortened_character_name(self_or_cls, c, eliminations=[], substitutions={}, transforms=[]): """ Given a unicode character c, return the shortened unicode name (as a list of tokens) by applying the eliminations, substitutions and transforms. """ name = unicodedata.name(c).lower() # Filtering for elim in eliminations: name = name.replace(elim, '') # Substitution for i,o in substitutions.items(): name = name.replace(i, o) for transform in transforms: name = transform(name) return ' '.join(name.strip().split()).replace(' ','_').replace('-','_') def __call__(self, name, escape=True, version=None): if name in [None, '']: return name elif name in self.aliases: return self.aliases[name] elif name in self._lookup_table: return self._lookup_table[name] name = bytes_to_unicode(name) version = self.version if version is None else version if not self.allowable(name): raise AttributeError("String %r is in the disallowed list of attribute names: %r" % (name, self.disallowed)) if version == 2: name = self.remove_diacritics(name) if self.capitalize and name and name[0] in string.ascii_lowercase: name = name[0].upper()+name[1:] sanitized = (self.sanitize_py2(name) if version==2 else self.sanitize_py3(name)) if self.prefixed(name, version): sanitized = self.prefix + sanitized self._lookup_table[name] = sanitized return sanitized def _process_underscores(self, tokens): "Strip underscores to make sure the number is correct after join" groups = [[str(''.join(el))] if b else list(el) for (b,el) in itertools.groupby(tokens, lambda k: k=='_')] flattened = [el for group in groups for el in group] processed = [] for token in flattened: if token == '_': continue if token.startswith('_'): token = str(token[1:]) if token.endswith('_'): token = str(token[:-1]) processed.append(token) return processed def sanitize_py2(self, name): # This fix works but masks an issue in self.sanitize (py2) prefix = '_' if name.startswith('_') else '' valid_chars = string.ascii_letters+string.digits+'_' return prefix + str('_'.join(self.sanitize(name, lambda c: c in valid_chars))) def sanitize_py3(self, name): if not name.isidentifier(): return '_'.join(self.sanitize(name, lambda c: ('_'+c).isidentifier())) else: return name def sanitize(self, name, valid_fn): "Accumulate blocks of hex and separate blocks by underscores" invalid = {'\a':'a','\b':'b', '\v':'v','\f':'f','\r':'r'} for cc in filter(lambda el: el in name, invalid.keys()): raise Exception("Please use a raw string or escape control code '\%s'" % invalid[cc]) sanitized, chars = [], '' for split in name.split(): for c in split: if valid_fn(c): chars += str(c) if c=='_' else c else: short = self.shortened_character_name(c, self.eliminations, self.substitutions, self.transforms) sanitized.extend([chars] if chars else []) if short != '': sanitized.append(short) chars = '' if chars: sanitized.extend([chars]) chars='' return self._process_underscores(sanitized + ([chars] if chars else [])) sanitize_identifier = sanitize_identifier_fn.instance() group_sanitizer = sanitize_identifier_fn.instance() label_sanitizer = sanitize_identifier_fn.instance() dimension_sanitizer = sanitize_identifier_fn.instance(capitalize=False) def isscalar(val): """ Value is scalar or None """ return val is None or np.isscalar(val) or isinstance(val, datetime_types) def isnumeric(val): if isinstance(val, (basestring, bool, np.bool_)): return False try: float(val) return True except: return False def asarray(arraylike, strict=True): """ Converts arraylike objects to NumPy ndarray types. Errors if object is not arraylike and strict option is enabled. """ if isinstance(arraylike, np.ndarray): return arraylike elif isinstance(arraylike, list): return np.asarray(arraylike, dtype=object) elif not isinstance(arraylike, np.ndarray) and isinstance(arraylike, arraylike_types): return arraylike.values elif hasattr(arraylike, '__array__'): return np.asarray(arraylike) elif strict: raise ValueError('Could not convert %s type to array' % type(arraylike)) return arraylike nat_as_integer = np.datetime64('NAT').view('i8') def isnat(val): """ Checks if the value is a NaT. Should only be called on datetimelike objects. """ if (isinstance(val, (np.datetime64, np.timedelta64)) or (isinstance(val, np.ndarray) and val.dtype.kind == 'M')): if numpy_version >= '1.13': return np.isnat(val) else: return val.view('i8') == nat_as_integer elif pd and val is pd.NaT: return True elif pd and isinstance(val, pandas_datetime_types+pandas_timedelta_types): return pd.isna(val) else: return False def isfinite(val): """ Helper function to determine if scalar or array value is finite extending np.isfinite with support for None, string, datetime types. """ is_dask = is_dask_array(val) if not np.isscalar(val) and not is_dask: if isinstance(val, np.ma.core.MaskedArray): return ~val.mask & isfinite(val.data) elif isinstance(val, masked_types): return ~val.isna() & isfinite(val._data) val = asarray(val, strict=False) if val is None: return False elif is_dask: import dask.array as da return da.isfinite(val) elif isinstance(val, np.ndarray): if val.dtype.kind == 'M': return ~isnat(val) elif val.dtype.kind == 'O': return np.array([isfinite(v) for v in val], dtype=bool) elif val.dtype.kind in 'US': return ~pd.isna(val) if pd else np.ones_like(val, dtype=bool) finite = np.isfinite(val) if pd and pandas_version >= '1.0.0': finite &= ~pd.isna(val) return finite elif isinstance(val, datetime_types+timedelta_types): return not isnat(val) elif isinstance(val, (basestring, bytes)): return True finite = np.isfinite(val) if pd and pandas_version >= '1.0.0': if finite is pd.NA: return False return finite & (~
pd.isna(val)
pandas.isna
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort =
pd.Series([], dtype="float", name="cbt_bird_1inten_mort")
pandas.Series
''' Created with love by Sigmoid @Author - <NAME> - <EMAIL> ''' # Importing all libraries import numpy as np import pandas as pd import random import sys from math import floor from .erorrs import NotBinaryData, NoSuchColumn def warn(*args, **kwargs): pass import warnings warnings.warn = warn class ADASYN: def __init__(self, binary_columns : list = None, beta : "float < 1" = 1.0, k : "int > 0" = 5, seed : int = 42) -> None: ''' The constructor of the ADASYN algorithm. :param binary_columns: list, default = None The list of columns that should have binary values after balancing. :param beta: float <= 1, default = 1.0 The ration of minority : majority data desired after ADASYN. :param k: int > 0, default = 5 The number of neighbours used by the knn algorithm. :param seed: int, default = 42 The seed for random number generator. ''' if binary_columns is None: self.__binarize = False else: self.__binarize = True self.__binary_columns = binary_columns self.__beta = beta self.__k = k self.__seed = seed np.random.seed(self.__seed) random.seed(self.__seed) def __to_binary(self) -> None: ''' If the :param binary_columns: is set to True then the intermediate values in binary columns will be rounded. ''' for column_name in self.__binary_columns: serie = self.synthetic_df[column_name].values threshold = (self.df[column_name].max() + self.df[column_name].min()) / 2 for i in range(len(serie)): if serie[i] >= threshold: serie[i] = self.df[column_name].max() else: serie[i] = self.df[column_name].min() self.synthetic_df[column_name] = serie def __infinity_check(self, matrix : 'np.array') -> 'np.array': ''' This function replaces the infinity and -infinity values with the minimal and maximal float python values. :param matrix: 'np.array' The numpy array that was generated my the algorithm. :return: 'np.array' The numpy array with the infinity replaced values. ''' matrix[matrix == -np.inf] = sys.float_info.min matrix[matrix == np.inf] = sys.float_info.max return matrix def balance(self, df : pd.DataFrame, target : str): ''' The balance function. :param df: pd.DataFrame The pandas Data Frame to apply the balancer. :param target: str The name of the target column. :return: pd.DataFrame A pandas Data Frame ''' # Creating an internal copy of the data frame. self.df = df.copy() self.target = target # Checking if the target string based t algorithm is present in the data frame. if target not in self.df.columns: raise NoSuchColumn(f"{target} isn't a column of passed data frame") # Checking if the target column is a binary one. if len(self.df[target].unique()) != 2: raise NotBinaryData(f"{target} column isn't a binary column") # Getting the column names that are not the target one. self.X_columns = [column for column in self.df.columns if column != target] # Getting the class frequencies. classes_frequency = dict(self.df[target].value_counts()) # Searching for the class with the biggest frequency. max_freq = 0 for cls in classes_frequency: if classes_frequency[cls] > max_freq: majority_class = cls max_freq = classes_frequency[cls] # Getting the name of the minority class. minority_class = [cls for cls in classes_frequency if cls != majority_class][0] # Getting the total number of minority samples to generate. G = int((classes_frequency[majority_class] - classes_frequency[minority_class]) * self.__beta) # Getting the set of the minority samples. minority_samples = self.df[self.df[target] == minority_class][self.X_columns].values # Generating the r matrix - the k indexes of the nearest neighbours. r = np.array([]) self.neighbourhood = [] for minority_sample in minority_samples: predicted_indexes = self.__predict_knn(minority_sample) r = np.append(r, len(self.df[(self.df.index.isin(predicted_indexes) & (self.df[self.target] == majority_class))]) / self.__k) self.neighbourhood.append(predicted_indexes) # Normalizing the r array r = r / np.sum(r) # Calculating the amount of synthetic examples to generate per neighbourhood. G = r * G # Generating the synthetic data. self.synthetic_data = [] for i in range(len(G)): for _ in range(floor(G[i])): choices = self.df.iloc[self.neighbourhood[i], :][self.df[self.target] == minority_class][self.X_columns].values if len(choices) < 2: continue choices = choices[ np.random.randint(len(choices), size=2)] s = choices[0] + (choices[1] - choices[0]) * random.uniform(0, 1) self.synthetic_data.append(s) # Replacing infinity values with minimal and maximal float python values. self.synthetic_data = self.__infinity_check(np.array(self.synthetic_data).astype(float)) # Creating the synthetic data frame self.synthetic_df = pd.DataFrame(np.array(self.synthetic_data), columns=self.X_columns) # Rounding binary columns if needed. if self.__binarize: self.__to_binary() # Adding the target column self.synthetic_df.loc[:, self.target] = minority_class new_df =
pd.concat([self.df, self.synthetic_df], axis=0)
pandas.concat
from requests_html import HTMLSession from requests.exceptions import ConnectionError from retry import retry from typing import List from time import sleep import pandas as pd from numpy import nan import pickle from logging import getLogger, StreamHandler, Formatter, DEBUG logger = getLogger(__name__) logger.setLevel(DEBUG) ch = StreamHandler() ch.setLevel(DEBUG) formatter = Formatter('%(asctime)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) logger.propagate = False def get_articles(base_domain: str, kind: str) -> List[str]: base_url = base_domain + kind session = HTMLSession() r = session.get(base_url + ".html") all_articles = pd.Series(list(r.html.links), name=kind) articles = all_articles[all_articles.str.startswith("20")] logger.debug("Checked: %s", base_url) sleep(10) r = session.get(base_url + "_list.html") all_art_list = pd.Series(list(r.html.links)) art_list = all_art_list[all_art_list.str.startswith("20")] logger.debug("Checked: %s", base_url + "_list.html") sleep(10) ret_articles = pd.concat([articles, art_list], ignore_index=True, names=[kind]) return ret_articles @retry() def get_description(base_domain: str, code: str, kind: str) -> pd.core.series.Series: session = HTMLSession() url = base_domain + code r = session.get(url) sleep(10) try: raw_title = r.html.find('title', first=True).text raw_article = r.html.find('article', first=True).text data_row = ["".join(a_text.replace("これは嘘ニュースです", "").replace("\n\n\n新しいアプリで記事を読む", "").split("\n")) for a_text in [raw_title, raw_article]] except AttributeError: data_row = ["404", "Not Found"] data = [code, kind] + data_row data_sr = pd.Series(data, index=["code", "kind", "title", "article"]) return data_sr def main(): base_domain = "http://kyoko-np.net/" try: urls = pickle.load(open("urls.pickle", "rb")) except (OSError, IOError): kinds = ["national", "politics", "business", "sport", "international", "science", "culture", "entertainment"] urls = pd.concat( [get_articles(base_domain, kind) for kind in kinds], axis=1, names=kinds ) urls.columns = kinds pickle.dump(urls, open("urls.pickle", "wb")) df =
pd.DataFrame(columns=["code", "kind", "title", "article"])
pandas.DataFrame
""" Characteristic the heuristic algorithm. """ import argparse import os import numpy as np import pandas as pd import torch import torch.nn as nn from gumi.pruning.mask_utils import group_sort, run_mbm from gumi.model_runner import utils # Plotting import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt plt.ioff() plt.rcParams.update({"font.size": 22}) CMAP = plt.cm.inferno # Seaborn style import seaborn as sns sns.set_style("whitegrid") def parse_args(): parser = argparse.ArgumentParser(prog="Characteristic heuristic algorithm.") parser.add_argument("-s", "--size", type=int, help="Size of the matrix") parser.add_argument( "--num-samples", default=1000, type=int, help="Size of the matrix" ) parser.add_argument( "-g", "--num-groups", nargs="+", type=int, help="Number of groups" ) parser.add_argument( "-a", "--archs", nargs="+", type=str, help="Models to be evaluated" ) parser.add_argument( "-i", "--num-iters", nargs="*", type=int, default=1, help="Number of iterations" ) parser.add_argument( "-m", "--min-g", type=int, default=0, help="Only move to group min_g" ) parser.add_argument( "--print-freq", type=int, default=100, help="Print frequency when sampling data.", ) parser.add_argument( "-d", "--dir", type=str, default="data", metavar="PATH", help="Directory to place all the data files.", ) # options parser.add_argument( "--draw-model-stats", action="store_true", default=False, help="Whether to draw the model statistics.", ) parser.add_argument( "--draw-rand-stats", action="store_true", default=False, help="Whether to draw the random statistics.", ) parser.add_argument( "--resume", action="store_true", default=False, help="Whether to reload previously computed data.", ) return parser.parse_args() def generate_test_matrix(size, G, scale=10): """ First create the original matrix with diagonal blocks larger, then randomly permute it. """ C = np.zeros((size, size)) SoG = size // G for g in range(G): R0 = np.random.rand(SoG, SoG) R1 = scale * np.random.rand(SoG, SoG) C[g * SoG : (g + 1) * SoG, g * SoG : (g + 1) * SoG] += R0 + R1 # shuffle perm_cols = np.random.permutation(size) perm_rows = np.random.permutation(size) return C, C[perm_rows, :][:, perm_cols] def plot_mat_to_file(mat, file_name): """ """ fig, ax = plt.subplots() cax = ax.matshow(mat) fig.colorbar(cax) fig.savefig(file_name) def plot_mats(mats, file_name): """ """ fig, axes = plt.subplots(ncols=len(mats)) for i in range(len(mats)): cax = axes[i].matshow(mats[i], cmap=CMAP) fig.savefig(file_name) def get_cost(C, G): """ Split into groups, collect the values on diagonal. """ SoG = C.shape[0] // G, C.shape[1] // G cost = 0.0 for g in range(G): cost += C[g * SoG[0] : (g + 1) * SoG[0], g * SoG[1] : (g + 1) * SoG[1]].sum() return cost def draw_example(C0, C, fp): fig, axes = plt.subplots(ncols=2, figsize=(6, 3)) axes[0].set_title("Original") axes[0].matshow(C0, cmap=CMAP) axes[0].get_xaxis().set_ticks([]) axes[0].get_yaxis().set_ticks([]) axes[1].set_title("Permuted") axes[1].matshow(C, cmap=CMAP) axes[1].get_xaxis().set_ticks([]) axes[1].get_yaxis().set_ticks([]) plt.tight_layout() fig.savefig(fp) def draw_step_by_step(C, G, fp, total_cost, num_iters=100): """ The step-by-step algorithm illustration graph""" min_gs = [G - 1, G // 2, 0] fig, axes = plt.subplots(ncols=2, nrows=2, figsize=(6, 6)) for idx, min_g in enumerate(min_gs): ind_in, ind_out = group_sort(C, G, num_iters=num_iters, min_g=min_g) C_ = C[ind_out, :][:, ind_in] cost = get_cost(C_, G) r, c = idx // 2, idx % 2 axes[r, c].set_title( "$min_g = {} ({:.2f}\%)$".format(min_g + 1, cost / total_cost * 100) ) axes[r, c].matshow(C_, cmap=CMAP) axes[r, c].get_xaxis().set_ticks([]) axes[r, c].get_yaxis().set_ticks([]) # TODO: don't show these # result from run MBM gnd_in, gnd_out, cost = run_mbm(C, G, perm="GRPS", num_iters=num_iters) ind_in = [i for l in gnd_in for i in l] ind_out = [i for l in gnd_out for i in l] C_ = C[ind_out, :][:, ind_in] axes[1, 1].set_title("$MBM({:.2f}\%)$".format(get_cost(C_, G) / total_cost * 100)) axes[1, 1].matshow(C_, cmap=CMAP) axes[1, 1].get_xaxis().set_ticks([]) axes[1, 1].get_yaxis().set_ticks([]) plt.tight_layout() fig.savefig(fp) def draw_stats(size, G, data_dir, num_iters=None, num_samples=500, **kwargs): """ Collect the performance result """ if not num_iters: num_iters = [1] # sns.set_style('whitegrid') fp = os.path.join( data_dir, "random_stats_NI_{}_NS_{}.pdf".format( "-".join([str(i) for i in num_iters]), num_samples ), ) fig, ax = plt.subplots(figsize=(5, 4)) for ni in num_iters: print("Figuring out num_iters={}".format(ni)) ratios = collect_random_stats( size, G, data_dir, num_iters=ni, num_samples=num_samples, **kwargs ) # plot the histogram sns.distplot(ratios, kde=False, label="$N_S={}$".format(ni), ax=ax) ax.set_xlabel("Ratio") ax.set_ylabel("Frequency") ax.legend() plt.tight_layout() fig.savefig(fp) def collect_random_stats( size, G, data_dir, resume=False, num_samples=100, num_iters=100, print_freq=100 ): """ Collect the statistics from randomly sampled test matrices. If resume is specified, we will load from the data file. """ # where the data file is stored fp = os.path.join( data_dir, "random_stats_NI_{}_NS_{}.npy".format(num_iters, num_samples) ) # Decide how to deal with the stats data if resume: assert os.path.isfile(fp) ratios = np.load(fp) else: ratios = np.zeros(num_samples) # where to store result. for i in range(num_samples): if i % print_freq == 0: print("[{}/{}] Sampling ...".format(i, num_samples)) C0, C = generate_test_matrix(size, G) gnd_in, gnd_out, cost = run_mbm(C, G, perm="GRPS", num_iters=num_iters) ind_in = [i for l in gnd_in for i in l] ind_out = [i for l in gnd_out for i in l] C_ = C[ind_out, :][:, ind_in] ratios[i] = get_cost(C_, G) / get_cost(C0, G) # save to file np.save(fp, ratios) return ratios def draw_model_stats(arch, grps, data_dir, num_iters=None): """ Draw the statistics of several models """ if not num_iters: num_iters = [1] fp = os.path.join( data_dir, "model_stats_{}_NI_{}_G_{}.pdf".format( arch, "-".join([str(ni) for ni in num_iters]), "-".join([str(g) for g in grps]), ), ) print("Plot to file: {}".format(fp)) fig, ax = plt.subplots(figsize=(5, 4)) print("Running on model {} ...".format(arch)) model = utils.load_model(arch, "imagenet", pretrained=True) results = {"num_iters": [], "num_groups": [], "ratio": []} for ni in num_iters: for G in grps: print("G = {} NI = {}".format(G, ni)) mods = {} # Collect statistics for a single model for name, mod in model.named_modules(): if not isinstance(mod, nn.Conv2d): continue W = mod.weight F, C = W.shape[:2] if F % G != 0 or C % G != 0: continue C = W.norm(dim=(2, 3)).cpu().detach().numpy() gnd_in, gnd_out, cost = run_mbm(C, G, perm="GRPS", num_iters=ni) mods[name] = (cost, C.sum(), cost / C.sum() * 100) # print('{:30s}\t {:.2e}\t {:.2e}\t {:.2f}%'.format( # name, mods[name][0], mods[name][1], mods[name][2])) # Summarise results sum_cost = sum([val[0] for val in mods.values()]) total_cost = sum([val[1] for val in mods.values()]) results["num_iters"].append("$N_S={}$".format(ni)) results["num_groups"].append("$G={}$".format(G)) results["ratio"].append(sum_cost / total_cost * 100) df =
pd.DataFrame(results)
pandas.DataFrame
import subete import pandas as pd import matplotlib.pyplot as plt repo = subete.load() data = {} data["language"] = [lang for lang in repo.language_collections().keys()] data["total_programs"] = [lang.total_programs() for lang in repo.language_collections().values()] data["total_size"] = [lang.total_size() for lang in repo.language_collections().values()] data["total_line_count"] = [lang.total_line_count() for lang in repo.language_collections().values()] df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd from options_parser import arguments options, args = arguments() def brca_data(train_test=False, full_data=False): # input cells over which the predsictive model is built input_cells = open(options.cell_list, "r").read().splitlines() input_cells = [ic.replace("-", "").upper() for ic in input_cells] print("Parsed %s user-provided cell line names"%len(input_cells)) # baseline data dfbase = pd.read_csv(options.baseline_data, index_col=0) base_cells = dfbase.columns.tolist() msg = "Loaded %s containing %s features and %s cell lines" print(msg%(options.baseline_data, dfbase.shape[0], dfbase.shape[1])) # list of genes (or proteins) which would serve as the features for predictive modeling genes = open(options.gene_list, "r").read().splitlines() print("Parsed %s user-provided gene names"%len(genes)) # GR-metrics data dfgr = pd.read_csv(options.response_data) dfgr = dfgr[dfgr.generic_name==options.drug] dfgr.index=dfgr.cell_line gr_cells = dfgr.index.tolist() print("Loaded GR values for %s cell lines"%len(gr_cells)) # cells that are present in both, baseline as well GR-data cells = list(set(input_cells).intersection(set(base_cells).intersection(set(gr_cells)))) dfbase = dfbase[cells] dfgr = dfgr[dfgr.index.isin(cells)] print("%s cell lines are in common to all sources"%len(cells)) # combine the baseline and dose response data into one dataFrame dfc = pd.concat([dfbase[dfbase.index.isin(genes)].T, dfgr[[options.metric, "sigma_%s"%options.metric]]], axis=1).dropna() dff = pd.concat([dfbase.T, dfgr[[options.metric, "sigma_%s"%options.metric]]], axis=1).dropna() # train-test sets, with roughly 80-20 split, for rescursive feature elimination dftest =
pd.read_csv(options.test_set, index_col=0)
pandas.read_csv
# + """ Functions/classes/variables for interacting between a pandas DataFrame and postgres/mysql/sqlite (and potentially other databases). """ import json import pandas as pd import logging import re from copy import deepcopy from math import floor from sqlalchemy import JSON, MetaData, select from sqlalchemy.sql import null from sqlalchemy.schema import (PrimaryKeyConstraint, CreateColumn, CreateSchema) from alembic.runtime.migration import MigrationContext from alembic.operations import Operations from pangres.logger import log from pangres.upsert import (mysql_upsert, postgres_upsert, sqlite_upsert) # compile some regexes # column names that will cause issues with psycopg2 default parameter style # (so we will need to switch to format style when we see such columns) RE_BAD_COL_NAME = re.compile('[\(\)\%]') # e.g. match "(50)" in "VARCHAR(50)" RE_CHARCOUNT_COL_TYPE = re.compile('(?<=.)+\(\d+\)') # - # # Class PandasSpecialEngine class PandasSpecialEngine: def __init__(self, engine, df, table_name, schema=None, dtype=None): """ Interacts with SQL tables via pandas and SQLalchemy table models. Attributes ---------- engine : sqlalchemy.engine.base.Engine Engine provided during class instantiation df : pd.DataFrame DataFrame provided during class instantiation table_name : str Table name provided during class instantiation schema : str or None SQL schema provided during class instantiation table : sqlalchemy.sql.schema.Table Sqlalchemy table model for df Parameters ---------- engine : sqlalchemy.engine.base.Engine Engine from sqlalchemy (see https://docs.sqlalchemy.org/en/13/core/engines.html and examples below) df : pd.DataFrame A pandas DataFrame table_name : str Name of the SQL table schema : str or None, default None Name of the schema that contains/will contain the table For postgres defaults to "public" if not provided. dtype : None or dict {str:SQL_TYPE}, default None Similar to pd.to_sql dtype argument. This is especially useful for MySQL where the length of primary keys with text has to be provided (see Examples) Examples -------- >>> from sqlalchemy import create_engine >>> from pangres.helpers import PandasSpecialEngine >>> >>> engine = create_engine("postgresql://user:[email protected]:5432/database") >>> df = pd.DataFrame({'name':['Albert', 'Toto'], ... 'profileid':[10, 11]}).set_index('profileid') >>> pse = PandasSpecialEngine(engine=engine, df=df, table_name='example') >>> pse # doctest: +SKIP PandasSpecialEngine (id 123546, hexid 0x1E29A) * connection: Engine(postgresql://user:***@host.com:5432/database) * schema: public * table: example * SQLalchemy table model: Table('example', MetaData(bind=Engine(postgresql://user:***@host.com:5432/database)), Column('profileid', BigInteger(), table=<example>, primary_key=True, nullable=False), Column('name', Text(), table=<example>), schema='public') * df.head(): | profileid | name | |------------:|:-------| | 10 | Albert | | 11 | Toto | """ self._db_type = self._detect_db_type(engine) if self._db_type == "postgres": schema = 'public' if schema is None else schema # raise if we find columns with "(", ")" or "%" if any((RE_BAD_COL_NAME.search(col) for col in df.columns)): err = ("psycopg2 (Python postgres driver) does not seem to support" "column names with '%', '(' or ')' " "(see https://github.com/psycopg/psycopg2/issues/167)") raise ValueError(err) # VERIFY ARGUMENTS # all index levels have names index_names = list(df.index.names) if any([ix_name is None for ix_name in index_names]): raise IndexError("All index levels must be named!") # index is unique if not df.index.is_unique: err = ("The index must be unique since it is used " "as primary key.\n" "Check duplicates using this code (assuming df " " is the DataFrame you want to upsert):\n" ">>> df.index[df.index.duplicated(keep=False)]") raise IndexError(err) # there are no duplicated names fields = list(df.index.names) + df.columns.tolist() if len(set(fields)) != len(fields): raise ValueError(("There cannot be duplicated names amongst " "index levels and/or columns!")) # detect json columns def is_json(col): s = df[col].dropna() return (not s.empty and s.map(lambda x: isinstance(x, (list, dict))).all()) json_cols = [col for col in df.columns if is_json(col)] # merge with dtype from user new_dtype = {c:JSON for c in json_cols} if dtype is not None: new_dtype.update(dtype) new_dtype = None if new_dtype == {} else new_dtype # create sqlalchemy table model via pandas pandas_sql_engine = pd.io.sql.SQLDatabase(engine=engine, schema=schema) table = pd.io.sql.SQLTable(name=table_name, pandas_sql_engine=pandas_sql_engine, frame=df, dtype=new_dtype).table # change bindings of table (we want a sqlalchemy engine # not a pandas_sql_engine) metadata = MetaData(bind=engine) table.metadata = metadata # add PK constraint = PrimaryKeyConstraint(*[table.columns[name] for name in df.index.names]) table.append_constraint(constraint) # add remaining attributes self.engine = engine self.df = df self.schema = schema self.table = table @staticmethod def _detect_db_type(engine) -> str: """ Identifies whether the dialect of given sqlalchemy engine corresponds to postgres, mysql or another sql type. Returns ------- sql_type : {'postgres', 'mysql', 'sqlite', 'other'} """ dialect = engine.dialect.dialect_description if re.search('psycopg|postgres', dialect): return "postgres" elif 'mysql' in dialect: return "mysql" elif 'sqlite' in dialect: return 'sqlite' else: return "other" def table_exists(self) -> bool: """ Returns True if the table defined in given instance of PandasSpecialEngine exists else returns False. Returns ------- exists : bool True if table exists else False """ return self.engine.has_table(self.table.name, schema=self.schema) def create_schema_if_not_exists(self): """ Creates the schema defined in given instance of PandasSpecialEngine if it does not exist. """ if (self.schema is not None and not self.engine.dialect.has_schema(self.engine, self.schema)): self.engine.execute(CreateSchema(self.schema)) def create_table_if_not_exists(self): """ Creates the table generated in given instance of PandasSpecialEngine if it does not exist. """ self.table.create(checkfirst=True) def get_db_columns_names(self) -> list: """ Gets the column names of the SQL table defined in given instance of PandasSpecialEngine. Returns ------- db_columns_names : list list of column names (str) """ columns_info = self.engine.dialect.get_columns(connection=self.engine, table_name=self.table.name, schema=self.schema) db_columns_names = [col_info["name"] for col_info in columns_info] return db_columns_names def add_new_columns(self): """ Adds columns present in df but not in the SQL table for given instance of PandasSpecialEngine. Notes ----- Sadly, it seems that we cannot create JSON columns. """ # create deepcopies of the column because we are going to unbound # them for the table model (otherwise alembic would think we add # a column that already exists in the database) cols_to_add = [deepcopy(col) for col in self.table.columns if col.name not in self.get_db_columns_names()] # check columns are not index levels if any((c.name in self.df.index.names for c in cols_to_add)): raise ValueError(('Cannot add any column that is part of the df index!\n' "You'll have to update your table primary key or change your " "df index")) with self.engine.connect() as con: ctx = MigrationContext.configure(con) op = Operations(ctx) for col in cols_to_add: col.table = None # Important! unbound column from table op.add_column(self.table.name, col, schema=self.schema) log(f"Added column {col} (type: {col.type}) in table {self.table.name} " f'(schema="{self.schema})"') def get_db_table_schema(self): """ Gets the sqlalchemy table model for the SQL table defined in given PandasSpecialEngine (using schema and table_name attributes to find the table in the database). Returns ------- db_table : sqlalchemy.sql.schema.Table """ table_name = self.table.name schema = self.schema engine = self.engine metadata = MetaData(bind=engine, schema=schema) metadata.reflect(bind=engine, schema=schema, only=[table_name]) namespace = table_name if schema is None else f'{schema}.{table_name}' db_table = metadata.tables[namespace] return db_table def get_empty_columns(self) -> list: """ Gets a list of the columns that contain no data in the SQL table defined in given instance of PandasSpecialEngine. Uses method get_db_table_schema (see its docstring). Returns ------- empty_columns : list of str List of column names that contain no data """ db_table = self.get_db_table_schema() empty_columns = [] for col in db_table.columns: stmt = select(from_obj=db_table, columns=[col], whereclause=col.isnot(None)).limit(1) results = self.engine.execute(stmt).fetchall() if results == []: empty_columns.append(col) return empty_columns def adapt_dtype_of_empty_db_columns(self): """ Changes the data types of empty columns in the SQL table defined in given instance of a PandasSpecialEngine. This should only happen in case of data type mismatches. This means with columns for which the sqlalchemy table model for df and the model for the SQL table have different data types. """ empty_db_columns = self.get_empty_columns() db_table = self.get_db_table_schema() # if column does not have value in db and there are values # in the frame then change the column type if needed for col in empty_db_columns: # check if the column also exists in df if col.name not in self.df.columns: continue # check same type orig_type = db_table.columns[col.name].type.compile(self.engine.dialect) dest_type = self.table.columns[col.name].type.compile(self.engine.dialect) # remove character count e.g. "VARCHAR(50)" -> "VARCHAR" orig_type = RE_CHARCOUNT_COL_TYPE.sub('', orig_type) dest_type = RE_CHARCOUNT_COL_TYPE.sub('', dest_type) # if same type or we want to insert TEXT instead of JSON continue # (JSON is not supported on some DBs so it's normal to have TEXT instead) if ((orig_type == dest_type) or ((orig_type == 'JSON') and (dest_type == 'TEXT'))): continue # grab the col/index from the df # so we can check if there are any values if col.name in self.df.index.names: df_col = self.df.index.get_level_values(col.name) else: df_col = self.df[col.name] if df_col.notna().any(): # raise error if we have to modify the dtype but we have a SQlite engine # (SQLite does not support data type alteration) if self._db_type == 'sqlite': raise ValueError('SQlite does not support column data type alteration!') with self.engine.connect() as con: ctx = MigrationContext.configure(con) op = Operations(ctx) new_col = self.table.columns[col.name] # check if postgres (in which case we have to use "using" syntax # to alter columns data types) if self._db_type == 'postgres': escaped_col = str(new_col.compile(dialect=self.engine.dialect)) compiled_type = new_col.type.compile(dialect=self.engine.dialect) alter_kwargs = {'postgresql_using':f'{escaped_col}::{compiled_type}'} else: alter_kwargs = {} op.alter_column(table_name=self.table.name, column_name=new_col.name, type_=new_col.type, schema=self.schema, **alter_kwargs) log(f"Changed type of column {new_col.name} " f"from {col.type} to {new_col.type} " f'in table {self.table.name} (schema="{self.schema}")') @staticmethod def _create_chunks(values, chunksize=10000): """ Chunks a list into a list of lists of size :chunksize:. Parameters ---------- chunksize : int > 0, default 10000 Number of values to be inserted at once, an integer strictly above zero. """ if not isinstance(chunksize, int) or chunksize <= 0: raise ValueError('chunksize must be an integer strictly above 0') chunks = [values[i:i + chunksize] for i in range(0, len(values), chunksize)] return chunks def _get_values_to_insert(self): """ Gets the values to be inserted from the pandas DataFrame defined in given instance of PandasSpecialEngine to the coresponding SQL table. Returns ------- values : list Values from the df attribute that may have been converted for SQL compability e.g. pd.Timestamp will be converted to datetime.datetime objects. """ # this seems to be the most reliable way to unpack # the DataFrame. For instance using df.to_dict(orient='records') # can introduce types such as numpy integer which we'd have to deal with values = self.df.reset_index().values.tolist() for i in range(len(values)): row = values[i] for j in range(len(row)): val = row[j] # replace pd.Timestamp with datetime.datetime if isinstance(val, pd.Timestamp): values[i][j] = val.to_pydatetime() # check if na unless it is list like elif not
pd.api.types.is_list_like(val)
pandas.api.types.is_list_like
import argparse import matplotlib.pyplot as plt import matplotlib import pandas as pd import numpy as np import glob import os from ML.DDModel import DDModel from sklearn.metrics import auc from sklearn.metrics import roc_curve parser = argparse.ArgumentParser() parser.add_argument('-pr','--project',required=True,help='Location of project') parser.add_argument('-sz_test','--size_test_set',required=True,help='Number of molecules in the test set') parser.add_argument('-it_1','--start_iteration',required=True,help='Number of first iteration to analyze') parser.add_argument('-it_2','--end_iteration',required=True,help='Number of last iteration to analyze') parser.add_argument('-fo','--output_folder',required=True,help='Folder where to output the figures') io_args = parser.parse_args() path = io_args.project num_molec = int(io_args.size_test_set) it_1 = int(io_args.start_iteration) it_2 = int(io_args.end_iteration) path_out = io_args.output_folder def get_zinc_and_labels(zinc_path, labels_path): ids = [] with open(zinc_path,'r') as ref: for line in ref: ids.append(line.split(',')[0]) zincIDs = pd.DataFrame(ids, columns=['ZINC_ID']) labels_df = pd.read_csv(labels_path, header=0) combined_df = pd.merge(labels_df, zincIDs, how='inner', on=['ZINC_ID']) return combined_df.set_index('ZINC_ID') def get_all_x_data(morgan_path, ID_labels): # ID_labels is a dataframe containing the zincIDs and their corresponding labels. train_set = np.zeros([num_molec,1024], dtype=bool) # using bool to save space train_id = [] print('x data from:', morgan_path) with open(morgan_path,'r') as ref: line_no=0 for line in ref: mol_info=line.rstrip().split(',') train_id.append(mol_info[0]) # "Decompressing" the information from the file about where the 1s are on the 1024 bit vector. bit_indicies = mol_info[1:] # array of indexes of the binary 1s in the 1024 bit vector representing the morgan fingerprint for elem in bit_indicies: train_set[line_no,int(elem)] = 1 line_no+=1 train_set = train_set[:line_no,:] print('Done...') train_pd = pd.DataFrame(data=train_set, dtype=np.uint8) train_pd['ZINC_ID'] = train_id score_col = ID_labels.columns.difference(['ZINC_ID'])[0] train_data =
pd.merge(ID_labels, train_pd, how='inner',on=['ZINC_ID'])
pandas.merge
import argparse import os import boto3 import pandas as pd from io import StringIO # Parse Command Line Arguments parser = argparse.ArgumentParser(description='Add some integers.') parser.add_argument('startitem', metavar='s', type=int, help='What item of the OnlineRetail.csv should I start at') parser.add_argument('enditem', metavar='e', type=int, help='What item of the OnlineRetail.csv should I end at') args = parser.parse_args() START_ITEM = args.startitem; END_ITEM = args.enditem; print(f'Crunching stats for items #{START_ITEM} to #{END_ITEM} of OnlineRetail.csv') # Read CSV into a Dataframe print(f'Reading data from Key=rawdata/OnlineRetail.csv') s3_resource = boto3.resource('s3') S3_BUCKET = os.environ['S3_BUCKET'] bucket = s3_resource.Bucket(S3_BUCKET) obj = bucket.Object(key=f"rawdata/OnlineRetail.csv") df = pd.read_csv(obj.get()['Body'], sep=",", encoding = "utf-8") items = df.Description.unique() # Crunching Stats stats_list = [] for i, i_description in enumerate(items[START_ITEM : END_ITEM]): print(f'Crunching Stats for item: {i_description}') item_df = df[df.Description == i_description] stat = ( i + START_ITEM, i_description, item_df.Quantity.sum(), item_df.UnitPrice.mean() ) print(stat) stats_list.append(stat) del(item_df) stats_df =
pd.DataFrame(stats_list, columns =['Item_Number', 'Item', 'Total_Units_Sold', 'Average_Price_Of_Unit'])
pandas.DataFrame
import gym import pandas as pd import numpy as np from numpy import inf from gym import spaces from sklearn import preprocessing from statsmodels.tsa.statespace.sarimax import SARIMAX from empyrical import sortino_ratio, calmar_ratio, omega_ratio from render.BitcoinTradingGraph import BitcoinTradingGraph from util.stationarization import log_and_difference from util.benchmarks import buy_and_hodl, rsi_divergence, sma_crossover from util.indicators import add_indicators # Delete this if debugging np.warnings.filterwarnings('ignore') class BitcoinTradingEnv(gym.Env): '''A Bitcoin trading environment for OpenAI gym''' metadata = {'render.modes': ['human', 'system', 'none']} viewer = None def __init__(self, df, initial_balance=10000, commission=0.0025, reward_func='sortino', **kwargs): super(BitcoinTradingEnv, self).__init__() self.initial_balance = initial_balance self.commission = commission self.reward_func = reward_func self.df = df.fillna(method='bfill').reset_index() self.stationary_df = log_and_difference( self.df, ['Open', 'High', 'Low', 'Close', 'Volume BTC', 'Volume USD']) benchmarks = kwargs.get('benchmarks', []) self.benchmarks = [ { 'label': 'Buy and HODL', 'values': buy_and_hodl(self.df['Close'], initial_balance, commission) }, { 'label': 'RSI Divergence', 'values': rsi_divergence(self.df['Close'], initial_balance, commission) }, { 'label': 'SMA Crossover', 'values': sma_crossover(self.df['Close'], initial_balance, commission) }, *benchmarks, ] self.forecast_len = kwargs.get('forecast_len', 10) self.confidence_interval = kwargs.get('confidence_interval', 0.95) self.obs_shape = (1, 5 + len(self.df.columns) - 2 + (self.forecast_len * 3)) # Actions of the format Buy 1/4, Sell 3/4, Hold (amount ignored), etc. self.action_space = spaces.Discrete(12) # Observes the price action, indicators, account action, price forecasts self.observation_space = spaces.Box( low=0, high=1, shape=self.obs_shape, dtype=np.float16) def _next_observation(self): scaler = preprocessing.MinMaxScaler() features = self.stationary_df[self.stationary_df.columns.difference([ 'index', 'Date'])] scaled = features[:self.current_step + self.forecast_len + 1].values scaled[abs(scaled) == inf] = 0 scaled = scaler.fit_transform(scaled.astype('float32')) scaled =
pd.DataFrame(scaled, columns=features.columns)
pandas.DataFrame
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort = pd.Series([], dtype="float", name="cbt_bird_1inten_mort") self.cbt_bird_low_lc50 = pd.Series([], dtype="float", name="cbt_bird_low_lc50") self.cbt_bird_sub_direct = pd.Series([], dtype="float", name="cbt_bird_sub_direct") self.cbt_bird_grow_noec = pd.Series([], dtype="float", name="cbt_bird_grow_noec") self.cbt_bird_grow_loec = pd.Series([], dtype="float", name="cbt_bird_grow_loec") self.cbt_bird_repro_noec = pd.Series([], dtype="float", name="cbt_bird_repro_noec") self.cbt_bird_repro_loec = pd.Series([], dtype="float", name="cbt_bird_repro_loec") self.cbt_bird_behav_noec = pd.Series([], dtype="float", name="cbt_bird_behav_noec") self.cbt_bird_behav_loec = pd.Series([], dtype="float", name="cbt_bird_behav_loec") self.cbt_bird_sensory_noec = pd.Series([], dtype="float", name="cbt_bird_sensory_noec") self.cbt_bird_sensory_loec = pd.Series([], dtype="float", name="cbt_bird_sensory_loec") self.cbt_bird_sub_indirect = pd.Series([], dtype="float", name="cbt_bird_sub_indirect") # concentration-based toxicity (cbt) : reptiles, terrestrial-phase amphibians (mg-pest/kg-diet food) self.cbt_reptile_1inmill_mort =
pd.Series([], dtype="float", name="cbt_reptile_1inmill_mort")
pandas.Series
#!/usr/bin/env python3 from argparse import ArgumentParser import matplotlib matplotlib.rcParams['text.usetex'] = True matplotlib.use("Agg") import matplotlib.pyplot as plt import pandas as pd import seaborn as sns def plot(combined_df): systems = [ "Weak Spec.", "Weak Spec. + Search", "Expert + Search", "AMS + Search" ] combined_df["order"] = combined_df["name"].map(lambda x: systems.index(x)) combined_df = combined_df.sort_values("order") fig, ax = plt.subplots(1) ax = sns.barplot( data=combined_df, x="search", y="wins", hue="name", ci=None, ax=ax, ) ax.set_xlabel("Search") ax.set_ylabel("Number of Wins") plt.legend( loc='upper center', bbox_to_anchor=(0.5, 1.3), title="Approach", ncol=2 ) plt.tight_layout() return ax def combine_dfs(input_paths, search_names): acc = [] for path, search in zip(input_paths, search_names): df =
pd.read_csv(path)
pandas.read_csv
from __future__ import annotations from typing import Any, cast, Generator, Iterable, Optional, TYPE_CHECKING, Union import numpy as np import pandas as pd from pandas.core.frame import DataFrame from pandas.core.series import Series from tanuki.data_store.data_type import DataType from tanuki.data_store.index.index import Index from tanuki.data_store.index.pandas_index import PandasIndex from tanuki.database.data_token import DataToken from .data_backend import DataBackend, ILocIndexer, LocIndexer if TYPE_CHECKING: from tanuki.data_store.index.index_alias import IndexAlias from tanuki.data_store.query import Query class PandasBackend(DataBackend): _data: DataFrame _index: PandasIndex _loc: _LocIndexer _iloc: _ILocIndexer def __init__( self, data: Optional[Union(Series, DataFrame, dict[str, list])] = None, index: Optional[PandasIndex] = None, ) -> None: if data is None: self._data = DataFrame(dtype="object") elif type(data) is Series: self._data = cast(Series, data).to_frame().transpose() elif type(data) is DataFrame: self._data =
DataFrame(data)
pandas.core.frame.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jul 16 12:00:00 2018 @author: <NAME> """ import pandas as pd import os import psycopg2 import networkx as nx import csv import itertools import operator import ast from sqlalchemy import create_engine import numpy as np import igraph as ig import copy from collections import Counter import sys import math import copy from vtra.utils import load_config from vtra.transport_network_creation import province_shapefile_to_network, add_igraph_generalised_costs_province_roads, province_shapefile_to_dataframe def net_present_value(adaptation_options_dataframe,strategy_parameter,parameter_value_list,min_eal,max_eal,edge_options_dictionary,edge_width = 1.0, edge_length = 1.0): for param_val in parameter_value_list: st = adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'strategy'].values[0] st_min_benefit = edge_width*edge_length*adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'min_benefit'].sum() + min_eal st_max_benefit = edge_width*edge_length*adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'max_benefit'].sum() + max_eal min_npv = st_min_benefit - edge_width*edge_length*adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'max_cost'].sum() max_npv = st_max_benefit - edge_width*edge_length*adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'min_cost'].sum() if adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'max_cost'].sum() > 0: min_bc_ratio = 1.0*st_min_benefit/(edge_width*edge_length*adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'max_cost'].sum()) else: min_bc_ratio = 0 if adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'min_cost'].sum() > 0: max_bc_ratio = 1.0*st_max_benefit/(edge_width*edge_length*adaptation_options_dataframe.loc[adaptation_options_dataframe[strategy_parameter] == param_val,'min_cost'].sum()) else: max_bc_ratio = 0 edge_options_dictionary.append({'strategy':st,'min_npv':min_npv,'max_npv':max_npv,'min_bc_ratio':min_bc_ratio,'max_bc_ratio':max_bc_ratio}) return edge_options_dictionary def main(): data_path,calc_path,output_path = load_config()['paths']['data'],load_config()['paths']['calc'],load_config()['paths']['output'] ''' cols = ['band_name','band_num','climate_scenario','commune_id','commune_name','district_id','district_name', 'edge_id','hazard_type','max_val','min_val','model','probability','province_id','province_name','sector', 'year','length','road_cond','asset_type','width','min_econ_loss','max_econ_loss'] ''' start_year = 2016 end_year = 2050 truck_unit_wt = [5.0,20.0] discount_rate = 12.0 total_discount_ratio = [] for year in range(start_year,end_year): # total_discount_ratio += 1.0/math.pow(1.0 + 1.0*discount_rate/100.0,year - start_year) total_discount_ratio.append(1.0/math.pow(1.0 + 1.0*discount_rate/100.0,year - start_year)) # total_discount_ratio = sum(total_discount_ratio_list) df_path = os.path.join(data_path,'Adaptation_options','adaptation_options.xlsx') adaptation_df = pd.read_excel(df_path,sheet_name = 'adapt_options') adaptation_df['total_discount_ratio'] = sum(total_discount_ratio) min_maintain_discount_ratio_list = [] max_maintain_discount_ratio_list = [] for iter_, row in adaptation_df.iterrows(): min_maintain_schedule = row['maintenance_times_min'] max_maintain_schedule = row['maintenance_times_max'] min_maintain_discount_ratio = 0 max_maintain_discount_ratio = 0 max_maintain_discount_years = np.arange(start_year,end_year,min_maintain_schedule) min_maintain_discount_years = np.arange(start_year,end_year,max_maintain_schedule) for year in max_maintain_discount_years[1:]: max_maintain_discount_ratio += 1.0/math.pow(1.0 + 1.0*discount_rate/100.0,year - start_year) for year in min_maintain_discount_years[1:]: min_maintain_discount_ratio += 1.0/math.pow(1.0 + 1.0*discount_rate/100.0,year - start_year) min_maintain_discount_ratio_list.append(min_maintain_discount_ratio) max_maintain_discount_ratio_list.append(max_maintain_discount_ratio) adaptation_df['min_maintain_discount_ratio'] = min_maintain_discount_ratio_list adaptation_df['max_maintain_discount_ratio'] = max_maintain_discount_ratio_list adaptation_df['min_benefit'] = adaptation_df['rehab_cost_min']*adaptation_df['total_discount_ratio'] adaptation_df['max_benefit'] = adaptation_df['rehab_cost_max']*adaptation_df['total_discount_ratio'] adaptation_df['min_cost'] = adaptation_df['adapt_cost_min']*adaptation_df['total_discount_ratio'] + adaptation_df['maintain_cost_min']*adaptation_df['min_maintain_discount_ratio'] adaptation_df['max_cost'] = adaptation_df['adapt_cost_max']*adaptation_df['total_discount_ratio'] + adaptation_df['maintain_cost_max']*adaptation_df['max_maintain_discount_ratio'] print (adaptation_df) ''' Add new strategy cols = ['strategy','asset_type','asset_cond','location','height_m','adapt_cost_min','adapt_cost_max', 'maintain_cost_min','maintain_cost_max','rehab_cost_min','rehab_cost_max','height_incr_min', 'height_incr_max','maintenance_times_min','maintenance_times_max','cost_unit'] ''' cols = ['strategy','asset_type','asset_cond','location','height_m','cost_unit','min_cost','max_cost','min_benefit','max_benefit'] adaptation_options = adaptation_df[cols] ad_opt = [] st_desc = ['road change','roads','unpaved-paved','all',0,'$/m2'] st_min_cost = adaptation_df.loc[adaptation_df['asset_cond'] == 'paved','min_cost'].sum() st_max_cost = adaptation_df.loc[adaptation_df['asset_cond'] == 'paved','max_cost'].sum() st_min_benefit = adaptation_df.loc[adaptation_df['asset_cond'] == 'unpaved','rehab_cost_min'].sum()*total_discount_ratio[0] + adaptation_df.loc[adaptation_df['asset_cond'] == 'paved','rehab_cost_min'].sum()*sum(total_discount_ratio[1:]) st_max_benefit = adaptation_df.loc[adaptation_df['asset_cond'] == 'unpaved','rehab_cost_max'].sum()*total_discount_ratio[0] + adaptation_df.loc[adaptation_df['asset_cond'] == 'paved','rehab_cost_max'].sum()*sum(total_discount_ratio[1:]) ad_opt.append(st_desc + [st_min_cost,st_max_cost,st_min_benefit,st_max_benefit]) new_ht = 6 st_desc = ['dyke building','dyke','rural','sea',new_ht,'million USD/km'] st_min_cost = adaptation_df.loc[adaptation_df['height_m'] == 4,'min_cost'].sum() + (new_ht - 4)*adaptation_df.loc[adaptation_df['height_m'] == 4,'height_incr_min'].sum()*sum(total_discount_ratio) st_max_cost = adaptation_df.loc[adaptation_df['height_m'] == 4,'max_cost'].sum() + (new_ht - 4)*adaptation_df.loc[adaptation_df['height_m'] == 4,'height_incr_max'].sum()*sum(total_discount_ratio) st_min_benefit = adaptation_df.loc[adaptation_df['height_m'] == 4,'min_benefit'].sum() st_max_benefit = adaptation_df.loc[adaptation_df['height_m'] == 4,'max_benefit'].sum() ad_opt.append(st_desc + [st_min_cost,st_max_cost,st_min_benefit,st_max_benefit]) ad_opt_df = pd.DataFrame(ad_opt,columns = cols) adaptation_options = adaptation_options.append(ad_opt_df, ignore_index=True) print (adaptation_options) cols = ['band_num','climate_scenario', 'edge_id','hazard_type','max_val','min_val','model','probability', 'year','exposure_length'] # index_cols = ['edge_id','hazard_type','model','climate_scenario','year','road_cond','asset_type','width','road_length'] selection_criteria = ['commune_id','hazard_type','model','climate_scenario','year'] filter_cols = ['edge_id','exposed_length'] + selection_criteria # provinces to consider province_list = ['Lao Cai','Binh Dinh','Thanh Hoa'] province_terrian = ['mountain','flat','flat'] growth_scenarios = [(5,'low'),(6.5,'forecast'),(10,'high')] base_year = 2016 types = ['min','max'] fail_scenarios_data = os.path.join(output_path,'hazard_scenarios','province_roads_hazard_intersections.xlsx') rd_prop_file = os.path.join(data_path,'Roads','road_properties','road_properties.xlsx') duration_max = [10,15,20,25,30] length_thr = 100.0 for prn in range(len(province_list)): # for prn in range(1,3): province = province_list[prn] # set all paths for all input files we are going to use province_name = province.replace(' ','').lower() all_edge_fail_scenarios = pd.read_excel(fail_scenarios_data,sheet_name = province_name) all_edge_fail_scenarios.loc[all_edge_fail_scenarios['probability'] == 'none', 'probability'] = 1.0 all_edge_fail_scenarios['probability'] =
pd.to_numeric(all_edge_fail_scenarios['probability'])
pandas.to_numeric
import os import collections import argparse import numpy as np import pandas as pd import statistics as stat from datetime import datetime, timedelta, date import plotly.graph_objects as go import dash # (version 1.12.0) pip install dash import dash_table from dash_table.Format import Format, Scheme from dash_table import FormatTemplate import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import dash_bootstrap_components as dbc from src.tos_api_calls import tos_search, tos_get_quotes, tos_get_option_chain, tos_get_price_hist from src.tos_helper import create_pricelist from src.gbm import prob_over, prob_under from src.stats import get_hist_volatility, prob_cone, get_prob # app = dash.Dash(__name__) app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) # Docker support parser = argparse.ArgumentParser() parser.add_argument("--docker", help="Change the default server host to 0.0.0.0", action='store_true') args = parser.parse_args() # API credentials API_KEY = os.environ.get('TOS_API_KEY') # Data Table Properties PAGE_SIZE = 30 # ------------------------------------------------------------------------------ # Dash table value formatting money = FormatTemplate.money(0) money_full=FormatTemplate.money(2) percentage = FormatTemplate.percentage(2) # Define column names in Ticker Pandas Dataframe ticker_df_columns=[ dict(id='ticker', name='Ticker'), dict(id='hist_volatility_1Y', name='1Y Hist. Vol', type='numeric', format=percentage), dict(id='hist_volatility_3m', name='3M Hist. Vol', type='numeric', format=percentage), dict(id='hist_volatility_1m', name='1M Hist. Vol', type='numeric', format=percentage), dict(id='hist_volatility_2w', name='2w Hist. Vol', type='numeric', format=percentage), dict(id='skew_category', name='Skew Category'), dict(id='skew', name='Skew'), dict(id='liquidity', name='Liquidity'), ] # Define column names in Options Chain Pandas Dataframe option_chain_df_columns=[ dict(id='ticker', name='Ticker'), dict(id='exp_date', name='Exp. Date (Local)'), dict(id='option_type', name='Option Type'), dict(id='strike_price', name='Strike', type='numeric', format=money_full), dict(id='exp_days', name='Exp. Days'), dict(id='delta', name='Delta'), dict(id='prob_val', name='Conf. Prob', type='numeric', format=percentage), dict(id='open_interest', name='Open Int.', type='numeric', format=Format().group(True)), dict(id='total_volume', name='Total Vol.', type='numeric', format=Format().group(True)), dict(id='premium', name='Premium', type='numeric', format=money), dict(id='option_leverage', name='Leverage'), dict(id='bid_size', name='Bid Size', type='numeric', format=Format().group(True)), dict(id='ask_size', name='Ask Size', type='numeric', format=Format().group(True)), dict(id='roi_val', name='ROI') ] # ------------------------------------------------------------------------------ # App layout app.layout = html.Div([ dcc.Store(id='storage-historical'), dcc.Store(id='storage-quotes'), dcc.Store(id='storage-option-chain-all'), dbc.Navbar( [ html.A( # Use row and col to control vertical alignment of logo / brand dbc.Row( [ dbc.Col(dbc.NavbarBrand("TOS Options Wheel Dashboard", className="ml-2")), ], align="center", no_gutters=True, ), href="#", ), ], color="dark", dark=True, ), html.Div([ # Dropdown field of available stock tickers based on description input html.Div([ dbc.Row([ dbc.Col(html.H5("Stock Description(s):", style={'text-align': 'left'}), width="auto"), dbc.Col( dbc.Checklist( options=[ {"label": "Ticker Mode", "value": True}, ], value=[], id="ticker_switch__input", inline=True, switch=True, ) ) ]), dcc.Dropdown( id="memory-ticker", placeholder="Enter a valid stock name.", multi=True, style={'width': "100%"} ), ], style={ 'padding': '10px 5px' } ), html.Div([ dbc.Row( [dbc.Col( html.Div([ html.H5("ROI Range:"), dcc.Dropdown( id="memory-roi", options=[ {"label": "More than 0.5%", "value": 0.5}, {"label": "More than 1%", "value": 1.00}, {"label": "More than 2%", "value": 2.00}, {"label": "More than 3%", "value": 3.00}, {"label": "Ignore ROI", "value": 0.00} ], multi=False, value=1.00 ) ], # style={'width': '30%', 'float': 'left', 'display': 'inline-block'} ) ), dbc.Col( html.Div([ html.H5("Delta Range:"), dcc.Dropdown( id="memory-delta", options=[ {"label": "Less than 0.2", "value": 0.2}, {"label": "Less than 0.3", "value": 0.3}, {"label": "Less than 0.4", "value": 0.4}, {"label": "Ignore Delta", "value": 1.0} ], multi=False, value=1.00 ) ], # style={'width': '30%', 'display': 'inline-block'} ) ), dbc.Col( html.Div([ html.H5("Option Contract Type:"), dcc.Dropdown( id="memory-contract-type", options=[ {"label": "Put", "value": "PUT"}, {"label": "Call", "value": "CALL"}, {"label": "All", "value": "ALL"}], multi=False, value="ALL" ) ], # style={'width': '30%', 'float': 'right', 'display': 'inline-block'} ) ), ] ), ], style={ # 'borderBottom': 'thin lightgrey solid', 'padding': '10px 5px' } ), html.Div([ dbc.Row( [dbc.Col( html.Div([ html.H5("Day(s) to Expiration:"), dcc.Dropdown( id="memory-expdays", options=[ {"label": "0 - 7 days", "value": 7}, {"label": "0 - 14 days", "value": 14}, {"label": "0 - 21 days", "value": 21}, {"label": "0 - 28 days", "value": 28}, {"label": "0 - 35 days", "value": 35}, {"label": "0 - 42 days", "value": 42}, {"label": "0 - 49 days", "value": 49}, {"label": "0 - 56 days", "value": 56} ], multi=False, value=14.00 ) ], # style={'width': '30%', 'float': 'left', 'display': 'inline-block'} ) ), dbc.Col( html.Div([ html.H5("Confidence Level:"), dcc.Dropdown( id="memory-confidence", options=[ {"label": "30% Confidence", "value": 0.3}, {"label": "35% Confidence", "value": 0.35}, {"label": "40% Confidence", "value": 0.4}, {"label": "45% Confidence", "value": 0.45}, {"label": "50% Confidence", "value": 0.5}, {"label": "55% Confidence", "value": 0.55}, {"label": "60% Confidence", "value": 0.6}, {"label": "65% Confidence", "value": 0.65}, {"label": "70% Confidence", "value": 0.7}, {"label": "75% Confidence", "value": 0.75}, {"label": "80% Confidence", "value": 0.8}, {"label": "85% Confidence", "value": 0.85}, {"label": "90% Confidence", "value": 0.9} ], multi=False, value=0.3 ) ], # style={'width': '30%', 'display': 'inline-block'} ) ), dbc.Col( html.Div([ html.H5("Hist. Volatility Period:"), dcc.Dropdown( id="memory-vol-period", options=[ {"label": "2 Weeks", "value": "2W"}, {"label": "1 Month", "value": "1M"}, {"label": "3 Months", "value": "3M"}, {"label": "1 Year", "value": "1Y"} ], multi=False, value="1M" ) ], # style={'width': '30%', 'display': 'inline-block'} ) ), ] ), ], style={ # 'borderBottom': 'thin lightgrey solid', 'padding': '10px 5px' } ), html.Div([ dbc.Button("Submit", id='submit-button-state', color="info") ], style={'margin-bottom': '10px', 'textAlign':'center', 'width': '220px', 'margin':'auto' } ), ], className="pretty_container", # style={'padding-left': '50px', # 'padding-right': '50px', # } ), html.Div([ html.Div([ dcc.Tabs(id='tabs_price_chart', value='price_tab_1', children=[ dcc.Tab(label='1 Day', value='price_tab_1', className='custom-tab'), dcc.Tab(label='5 Days', value='price_tab_2', className='custom-tab'), dcc.Tab(label='1 Month', value='price_tab_3', className='custom-tab'), dcc.Tab(label='1 Year', value='price_tab_4', className='custom-tab'), dcc.Tab(label='5 Years', value='price_tab_5', className='custom-tab'), ]), dcc.Loading( id="loading_price_chart", type="default", children=html.Div([ dcc.Graph( id='price_chart', figure={ 'layout':{'title': {'text':'Price History'}} }, config={"displayModeBar": False, "scrollZoom": True} ) ]) ) ], className="pretty_container", style={'width': '48%', 'display': 'inline-block'} ), html.Div([ dcc.Tabs(id='tabs_prob_chart', value='prob_cone_tab', children=[ dcc.Tab(label='Historical Volatility', value='prob_cone_tab', className='custom-tab'), dcc.Tab(label='GBM Simulation', value='gbm_sim_tab', className='custom-tab'), ]), dcc.Loading( id="loading_prob_cone", type="default", children=html.Div([ dcc.Graph( id='prob_cone_chart', figure={ 'layout':{'title': {'text':'Probability Cone'}} }, config={"displayModeBar": False, "scrollZoom": True} ) ]) ) ], className="pretty_container", style={'width': '48%', 'float': 'right', 'display': 'inline-block'} ) ]), html.Div([ dcc.Dropdown( id="memory_exp_day_graph", placeholder="Select expiration date after entering the above fields.", multi=False, style={'width': "100%", 'padding-bottom': '10px',} ), dcc.Loading( id="loading_open_ir_vol", type="default", children=html.Div([ dcc.Graph( id='open_ir_vol', figure={ 'layout':{'title': {'text':'Open Interest/Volume Plot'}} }, config={"displayModeBar": False, "scrollZoom": True} ) ]) ), ], className="pretty_container", ), html.Div([ html.H5("Ticker Data \u2754", id='ticker_data'), # Source: https://unicode.org/emoji/charts/full-emoji-list.html dbc.Collapse( dbc.Card(dbc.CardBody(dcc.Markdown(''' Call skew is defined as the price of 10% OTM calls/10% OTM puts for the next monthly option expiry. \n A call skew of 1.3 means the 10% OTM call is 1.3x the price of 10% OTM put. \n Potential Causes of Call Skew: * Unusual and extreme speculation of stocks. Eg: TSLA battery day * Stocks with limited downside but very high upside. Eg: Bankrupt stock trading at a fraction of book value, or SPACs near PIPE value * High demand/Low supply for calls, driving up call prices. * Low demand/High supply for puts, driving down put prices. \n Put skew is defined as the price of 10% OTM puts/10% OTM calls for the next monthly option expiry. \n A put skew of 2.1 means the 10% OTM put is 2.1x the price of 10% OTM call. \n Potential Causes of Put Skew: * Insitutions using the Collar strategy, buying puts and selling calls to limit downside at the cost of upside. * High demand/Low supply for puts, driving up put prices. Usual occurence during bear markets. * Low demand/High supply for calls, driving down calls prices. * Stock had recent huge upward price movements and is grossly overvalued, shifting the supply/demand curve for puts. * Dividends contributes to put skew, especially if the dividend is a large percentage of stock price. '''))), id="ticker_table_collapse_content", ), dcc.Loading( id="loading_ticker-data-table", type="default", children=html.Div([ dash_table.DataTable( id='ticker-data-table', columns=ticker_df_columns, page_current=0, page_size=PAGE_SIZE, page_action='custom', sort_action='custom', sort_mode='multi', sort_by=[], style_cell={'textAlign': 'left'}, style_data_conditional=[ { 'if': { # 'column_id': 'bid_size', 'filter_query': '{liquidity} contains "FAILED"' }, 'backgroundColor': '#FF4136', 'color': 'white', }, { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(248, 248, 248)' } ], style_header={ 'backgroundColor': 'rgb(230, 230, 230)', 'fontWeight': 'bold' } ) ]) ), ], style={ 'max-width': '1450px', 'padding': '10px 5px', 'margin': 'auto' } ), html.Div([ html.H5("Option Chain Data"), dcc.Loading( id="loading_option-chain-table", type="default", children=html.Div([ dash_table.DataTable( id='option-chain-table', columns=option_chain_df_columns, page_current=0, page_size=PAGE_SIZE, page_action='custom', sort_action='custom', sort_mode='multi', sort_by=[], style_cell={'textAlign': 'left'}, style_data_conditional=[ { 'if': { 'column_id': 'bid_size', 'filter_query': '{bid_size} < {ask_size}' }, 'color': 'tomato', 'fontWeight': 'bold' }, { 'if': { 'column_id': 'total_volume', 'filter_query': '{total_volume} > {open_interest}' }, 'color': 'green', 'fontWeight': 'bold' }, { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(248, 248, 248)' } ], style_header={ 'backgroundColor': 'rgb(230, 230, 230)', 'fontWeight': 'bold' } ) ]) ), ], style={ 'max-width': '1450px', 'padding': '10px 5px', 'margin': 'auto' } ) ]) # ------------------------------------------------------------------------------ # Connect the Plotly graphs with Dash Components # Toggle collapsable content for ticker_data HTML element @app.callback( Output("ticker_table_collapse_content", "is_open"), [Input("ticker_data", "n_clicks")], [State("ticker_table_collapse_content", "is_open")], ) def toggle_collapse(n, is_open): if n: return not is_open return is_open # Update Search bar to return possible listed equity options based on input value as a list @app.callback(Output('memory-ticker', 'options'), [Input('memory-ticker', 'search_value'), Input('ticker_switch__input','value')], [State('memory-ticker', 'value')] ) def update_search(search_value, ticker_switch, value): if not search_value: raise PreventUpdate if ticker_switch: json_data = tos_search(search_value, projection='symbol-search', apiKey=API_KEY) else: json_data = tos_search(search_value, projection='desc-search', apiKey=API_KEY) try: #To-do: Dynamic Options (https://dash.plotly.com/dash-core-components/dropdown) options = [{"label": dict_item['description'] + ' (Symbol: ' + dict_item['symbol'] + ')', "value": dict_item['symbol']} for dict_item in json_data.values()] if value is not None: for selection in value: options.append({"label":selection, "value":selection}) return options except: return [] # Temporarily stores JSON data in the browser (generally safe to store up to 2MB of data) @app.callback(Output('storage-historical', 'data'), [Input('submit-button-state', 'n_clicks')], [State('memory-ticker', 'value')]) def get_historical_prices(n_clicks, ticker_ls): if ticker_ls is None: raise PreventUpdate json_data = {} for ticker in ticker_ls: json_data[ticker] = tos_get_price_hist(ticker, apiKey=API_KEY) return json_data # Temporarily stores JSON data in the browser (generally safe to store up to 2MB of data) @app.callback(Output('storage-quotes', 'data'), [Input('submit-button-state', 'n_clicks')], [State('memory-ticker', 'value')]) def get_price_quotes(n_clicks, ticker_ls): if ticker_ls is None: raise PreventUpdate ticker_query = "" for ticker in ticker_ls: ticker_query += ticker + "," return tos_get_quotes(ticker_query, apiKey=API_KEY) # Temporarily stores JSON data in the browser (generally safe to store up to 2MB of data) @app.callback(Output('storage-option-chain-all', 'data'), [Input('submit-button-state', 'n_clicks')], [State('memory-ticker', 'value')]) def get_option_chain_all(n_clicks, ticker_ls): if ticker_ls is None: raise PreventUpdate json_data = {} for ticker in ticker_ls: json_data[ticker] = tos_get_option_chain(ticker, contractType='ALL', rangeType='ALL', apiKey=API_KEY) return json_data # Update Ticker Table from API Response call @app.callback(Output('ticker-data-table', 'data'), [Input('submit-button-state', 'n_clicks'), Input('storage-historical', 'data'), Input('storage-option-chain-all', 'data'), Input('ticker-data-table', "page_current"), Input('ticker-data-table', "page_size"), Input('ticker-data-table', "sort_by")], [State('memory-ticker', 'value')]) def on_data_set_ticker_table(n_clicks, hist_data, optionchain_data, page_current, page_size, sort_by, ticker_ls): # Define empty list to be accumulate into Pandas dataframe (Source: https://stackoverflow.com/questions/10715965/add-one-row-to-pandas-dataframe) insert = [] if ticker_ls is None: raise PreventUpdate for ticker in ticker_ls: option_chain_response = optionchain_data[ticker] hist_price = hist_data[ticker] # Sanity check on API response data if option_chain_response is None or list(option_chain_response.keys())[0] == "error": raise PreventUpdate # Create and append a list of historical share prices of specified ticker PRICE_LS = create_pricelist(hist_price) trailing_3mth_price_hist = PRICE_LS[-90:] trailing_1mth_price_hist = PRICE_LS[-30:] trailing_2wks_price_hist = PRICE_LS[-14:] hist_volatility_1Y = get_hist_volatility(PRICE_LS) hist_volatility_3m = get_hist_volatility(trailing_3mth_price_hist) hist_volatility_1m = get_hist_volatility(trailing_1mth_price_hist) hist_volatility_2w = get_hist_volatility(trailing_2wks_price_hist) stock_price = option_chain_response['underlyingPrice'] stock_price_110percent = stock_price * 1.1 stock_price_90percent = stock_price * 0.9 # Process API response data from https://developer.tdameritrade.com/option-chains/apis/get/marketdata/chains into Dataframe # Calculation for put call skew: https://app.fdscanner.com/aboutskew low_call_strike, high_call_strike, low_put_strike, high_put_strike = None, None, None, None for option_chain_type in ['call','put']: for exp_date in option_chain_response[f'{option_chain_type}ExpDateMap'].keys(): # Note: example of exp_date is '2020-12-24:8' where 8 is the days to expiry day_diff = int(exp_date.split(':')[1]) if day_diff < 28 or day_diff >= 35: continue # Define boolean variables because option chain is read in acsending order based on strike price high_call_strike_found = False high_put_strike_found = False for strike in option_chain_response[f'{option_chain_type}ExpDateMap'][exp_date].values(): strike_price = strike[0]['strikePrice'] if option_chain_type == 'call': if strike_price < stock_price_90percent: low_call_strike = strike_price low_call_strike_bid = strike[0]['bid'] low_call_strike_ask = strike[0]['ask'] elif strike_price > stock_price_110percent: if not high_call_strike_found: high_call_strike = strike_price high_call_strike_bid = strike[0]['bid'] high_call_strike_ask = strike[0]['ask'] high_call_strike_found = True elif option_chain_type == 'put': if strike_price < stock_price_90percent: low_put_strike = strike_price low_put_strike_bid = strike[0]['bid'] low_put_strike_ask = strike[0]['ask'] elif strike_price > stock_price_110percent: if not high_put_strike_found: high_put_strike = strike_price high_put_strike_bid = strike[0]['bid'] high_put_strike_ask = strike[0]['ask'] high_put_strike_found = True # Ensure if there is an error, will not be displayed strike_checklist = [low_call_strike, high_call_strike, low_put_strike, high_put_strike] if (all(item is None for item in strike_checklist)): raise PreventUpdate # Ensuring options pass liquidity checks prevent_zero_div = lambda x, y: 0 if (y == 0 or y == None) else x/y high_call_strike_askbid = prevent_zero_div(high_call_strike_ask, high_call_strike_bid) high_put_strike_askbid = prevent_zero_div(high_put_strike_ask, high_put_strike_bid) low_call_strike_askbid = prevent_zero_div(low_call_strike_ask, low_call_strike_bid) low_put_strike_askbid = prevent_zero_div(low_put_strike_ask, low_put_strike_bid) askbid_checklist = [high_call_strike_askbid, high_put_strike_askbid, low_call_strike_askbid, low_put_strike_askbid] liquidity_check = all(askbid > 1.25 for askbid in askbid_checklist) if liquidity_check: liquidity = 'FAILED' else: liquidity = 'PASSED' # Computing option midpoints high_call_strike_midpoint = (high_call_strike_bid + high_call_strike_ask)/2 high_put_strike_midpoint = (high_put_strike_bid + high_put_strike_ask)/2 low_call_strike_midpoint = (low_call_strike_bid + low_call_strike_ask)/2 low_put_strike_midpoint = (low_put_strike_bid + low_put_strike_ask)/2 # Computing Interpolated Price call_110percent_price = low_call_strike_midpoint - (low_call_strike_midpoint - high_call_strike_midpoint)/(high_call_strike-low_call_strike) * (stock_price_110percent-low_call_strike) put_90percent_price = low_put_strike_midpoint + (high_put_strike_midpoint - low_put_strike_midpoint)/(high_put_strike - low_put_strike) * (stock_price_90percent - low_put_strike) # Calculate Skew if put_90percent_price > call_110percent_price: skew_category = 'Put Skew' skew = round(put_90percent_price/call_110percent_price,3) else: skew_category = 'Call Skew' skew = round(call_110percent_price/put_90percent_price,3) insert.append([ticker, hist_volatility_1Y, hist_volatility_3m, hist_volatility_1m, hist_volatility_2w, skew_category, skew, liquidity]) # Create Empty Dataframe to be populated df =
pd.DataFrame(insert, columns=[column['id'] for column in ticker_df_columns])
pandas.DataFrame
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..trex_exe import Trex test = {} class TestTrex(unittest.TestCase): """ Unit tests for T-Rex model. """ print("trex unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for trex unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open trex qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for trex unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_trex_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty trex object trex_empty = Trex(df_empty, df_empty) return trex_empty def test_app_rate_parsing(self): """ unittest for function app_rate_testing: method extracts 1st and maximum from each list in a series of lists of app rates """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([], dtype="object") result = pd.Series([], dtype="object") expected_results = [[0.34, 0.78, 2.34], [0.34, 3.54, 2.34]] try: trex_empty.app_rates = pd.Series([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]], dtype='object') # trex_empty.app_rates = ([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]]) # parse app_rates Series of lists trex_empty.app_rate_parsing() result = [trex_empty.first_app_rate, trex_empty.max_app_rate] npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial(self): """ unittest for function conc_initial: conc_0 = (app_rate * self.frac_act_ing * food_multiplier) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [12.7160, 9.8280, 11.2320] try: # specify an app_rates Series (that is a series of lists, each list representing # a set of application rates for 'a' model simulation) trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.food_multiplier_init_sg = pd.Series([110., 15., 240.], dtype='float') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') for i in range(len(trex_empty.frac_act_ing)): result[i] = trex_empty.conc_initial(i, trex_empty.app_rates[i][0], trex_empty.food_multiplier_init_sg[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ unittest for function conc_timestep: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [6.25e-5, 0.039685, 7.8886e-30] try: trex_empty.foliar_diss_hlife = pd.Series([.25, 0.75, 0.01], dtype='float') conc_0 = pd.Series([0.001, 0.1, 10.0]) for i in range(len(conc_0)): result[i] = trex_empty.conc_timestep(i, conc_0[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_percent_to_frac(self): """ unittest for function percent_to_frac: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([.04556, .1034, .9389], dtype='float') try: trex_empty.percent_incorp = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.percent_to_frac(trex_empty.percent_incorp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_inches_to_feet(self): """ unittest for function inches_to_feet: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([0.37966, 0.86166, 7.82416], dtype='float') try: trex_empty.bandwidth = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.inches_to_feet(trex_empty.bandwidth) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird(self): """ unittest for function at_bird: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') # following variable is unique to at_bird and is thus sent via arg list trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') for i in range(len(trex_empty.aw_bird_sm)): result[i] = trex_empty.at_bird(i, trex_empty.aw_bird_sm[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird1(self): """ unittest for function at_bird1; alternative approach using more vectorization: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') # for i in range(len(trex_empty.aw_bird_sm)): # result[i] = trex_empty.at_bird(i, trex_empty.aw_bird_sm[i]) result = trex_empty.at_bird1(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_bird(self): """ unittest for function fi_bird: food_intake = (0.648 * (aw_bird ** 0.651)) / (1 - mf_w_bird) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.19728, 22.7780, 59.31724], dtype='float') try: #?? 'mf_w_bird_1' is a constant (i.e., not an input whose value changes per model simulation run); thus it should #?? be specified here as a constant and not a pd.series -- if this is correct then go ahead and change next line trex_empty.mf_w_bird_1 = pd.Series([0.1, 0.8, 0.9], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.fi_bird(trex_empty.aw_bird_sm, trex_empty.mf_w_bird_1) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_sc_bird(self): """ unittest for function sc_bird: m_s_a_r = ((self.app_rate * self.frac_act_ing) / 128) * self.density * 10000 # maximum seed application rate=application rate*10000 risk_quotient = m_s_a_r / self.noaec_bird """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([6.637969, 77.805, 34.96289, np.nan], dtype='float') try: trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4], [3.]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.frac_act_ing = pd.Series([0.15, 0.20, 0.34, np.nan], dtype='float') trex_empty.density = pd.Series([8.33, 7.98, 6.75, np.nan], dtype='float') trex_empty.noaec_bird = pd.Series([5., 1.25, 12., np.nan], dtype='float') result = trex_empty.sc_bird() npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_sa_bird_1(self): """ # unit test for function sa_bird_1 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm = pd.Series([0.228229, 0.704098, 0.145205], dtype = 'float') expected_results_md = pd.Series([0.126646, 0.540822, 0.052285], dtype = 'float') expected_results_lg = pd.Series([0.037707, 0.269804, 0.01199], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_bird_md = pd.Series([115., 120., 130.], dtype='float') trex_empty.aw_bird_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_bird_1 = 0.1 trex_empty.nagy_bird_coef_sm = 0.02 trex_empty.nagy_bird_coef_md = 0.1 trex_empty.nagy_bird_coef_lg = 1.0 result_sm = trex_empty.sa_bird_1("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_bird_1("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_bird_1("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_bird_2(self): """ # unit test for function sa_bird_2 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([0.018832, 0.029030, 0.010483], dtype = 'float') expected_results_md = pd.Series([2.774856e-3, 6.945353e-3, 1.453192e-3], dtype = 'float') expected_results_lg =pd.Series([2.001591e-4, 8.602729e-4, 8.66163e-5], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') trex_empty.max_seed_rate = pd.Series([33.19, 20.0, 45.6]) # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_bird_md = pd.Series([115., 120., 130.], dtype='float') trex_empty.aw_bird_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.nagy_bird_coef_sm = 0.02 trex_empty.nagy_bird_coef_md = 0.1 trex_empty.nagy_bird_coef_lg = 1.0 result_sm = trex_empty.sa_bird_2("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_bird_2("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_bird_2("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_mamm_1(self): """ # unit test for function sa_mamm_1 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([0.022593, 0.555799, 0.010178], dtype = 'float') expected_results_md = pd.Series([0.019298, 0.460911, 0.00376], dtype = 'float') expected_results_lg =pd.Series([0.010471, 0.204631, 0.002715], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.ld50_mamm = pd.Series([321., 100., 400.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_bird_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sa_mamm_1("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_mamm_1("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_mamm_1("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_mamm_2(self): """ # unit test for function sa_mamm_2 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([2.46206e-3, 3.103179e-2, 1.03076e-3], dtype = 'float') expected_results_md = pd.Series([1.304116e-3, 1.628829e-2, 4.220702e-4], dtype = 'float') expected_results_lg =pd.Series([1.0592147e-4, 1.24391489e-3, 3.74263186e-5], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') trex_empty.max_seed_rate = pd.Series([33.19, 20.0, 45.6]) # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.ld50_mamm = pd.Series([321., 100., 400.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_mamm_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sa_mamm_2("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_mamm_2("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_mamm_2("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sc_mamm(self): """ # unit test for function sc_mamm """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([2.90089, 15.87995, 8.142130], dtype = 'float') expected_results_md = pd.Series([2.477926, 13.16889, 3.008207], dtype = 'float') expected_results_lg =pd.Series([1.344461, 5.846592, 2.172211], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.noael_mamm = pd.Series([2.5, 3.5, 0.5], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_mamm_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sc_mamm("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sc_mamm("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sc_mamm("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_ld50_rg_bird(self): """ # unit test for function ld50_rg_bird (LD50ft-2 for Row/Band/In-furrow granular birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([346.4856, 25.94132, np.nan], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'max app rate' per model simulation run trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, equal_nan=True, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rg_bird1(self): """ # unit test for function ld50_rg_bird1 (LD50ft-2 for Row/Band/In-furrow granular birds) this is a duplicate of the 'test_ld50_rg_bird' method using a more vectorized approach to the calculations; if desired other routines could be modified similarly --comparing this method with 'test_ld50_rg_bird' it appears (for this test) that both run in the same time --but I don't think this would be the case when 100's of model simulation runs are executed (and only a small --number of the application_types apply to this method; thus I conclude we continue to use the non-vectorized --approach -- should be revisited when we have a large run to execute """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([346.4856, 25.94132, np.nan], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'max app rate' per model simulation run trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_bird1(trex_empty.aw_bird_sm) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, equal_nan=True, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bl_bird(self): """ # unit test for function ld50_bl_bird (LD50ft-2 for broadcast liquid birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([46.19808, 33.77777, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_bird trex_empty.application_type = pd.Series(['Broadcast-Liquid', 'Broadcast-Liquid', 'Non-Broadcast'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bl_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bg_bird(self): """ # unit test for function ld50_bg_bird (LD50ft-2 for broadcast granular) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([46.19808, np.nan, 0.4214033], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Broadcast-Liquid', 'Broadcast-Granular'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bg_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rl_bird(self): """ # unit test for function ld50_rl_bird (LD50ft-2 for Row/Band/In-furrow liquid birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([np.nan, 2.20701, 0.0363297], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Row/Band/In-furrow-Liquid', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rl_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_mamm(self): """ unittest for function at_mamm: adjusted_toxicity = self.ld50_mamm * ((self.tw_mamm / aw_mamm) ** 0.25) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([705.5036, 529.5517, 830.6143], dtype='float') try: trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') for i in range(len(trex_empty.ld50_mamm)): result[i] = trex_empty.at_mamm(i, trex_empty.aw_mamm_sm[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_anoael_mamm(self): """ unittest for function anoael_mamm: adjusted_toxicity = self.noael_mamm * ((self.tw_mamm / aw_mamm) ** 0.25) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([5.49457, 9.62821, 2.403398], dtype='float') try: trex_empty.noael_mamm = pd.Series([2.5, 5.0, 1.25], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.anoael_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_mamm(self): """ unittest for function fi_mamm: food_intake = (0.621 * (aw_mamm ** 0.564)) / (1 - mf_w_mamm) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([3.17807, 16.8206, 42.28516], dtype='float') try: trex_empty.mf_w_mamm_1 = pd.Series([0.1, 0.8, 0.9], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.fi_mamm(trex_empty.aw_mamm_sm, trex_empty.mf_w_mamm_1) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bl_mamm(self): """ # unit test for function ld50_bl_mamm (LD50ft-2 for broadcast liquid) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.52983, 9.36547, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Liquid', 'Broadcast-Liquid', 'Non-Broadcast'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "test_at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm =
pd.Series([15., 20., 30.], dtype='float')
pandas.Series
import os from math import floor, ceil from pprint import pprint import csv import argparse import simuran import pandas as pd import matplotlib.pyplot as plt import astropy.units as u from neurochat.nc_lfp import NLfp import numpy as np from scipy.signal import coherence from skm_pyutils.py_table import list_to_df, df_from_file, df_to_file from skm_pyutils.py_config import parse_args import seaborn as sns from scipy.signal import welch try: from lfp_atn_simuran.analysis.lfp_clean import LFPClean do_analysis = True except ImportError: do_analysis = False from neuronal.decoding import LFPDecoder def decoding(lfp_array, groups, labels, base_dir): for group in ["Control", "Lesion (ATNx)"]: correct_groups = groups == group lfp_to_use = lfp_array[correct_groups, :] labels_ = labels[correct_groups] decoder = LFPDecoder( labels=labels_, mne_epochs=None, features=lfp_to_use, cv_params={"n_splits": 100}, ) out = decoder.decode() print(decoder.decoding_accuracy(out[2], out[1])) print("\n----------Cross Validation-------------") decoder.cross_val_decode(shuffle=False) pprint(decoder.cross_val_result) pprint(decoder.confidence_interval_estimate("accuracy")) print("\n----------Cross Validation Control (shuffled)-------------") decoder.cross_val_decode(shuffle=True) pprint(decoder.cross_val_result) pprint(decoder.confidence_interval_estimate("accuracy")) random_search = decoder.hyper_param_search(verbose=True, set_params=False) print("Best params:", random_search.best_params_) decoder.visualise_features(output_folder=base_dir, name=f"_{group}") def main( excel_location, base_dir, plot_individual_sessions, do_coherence=True, do_decoding=True, overwrite=False, ): # Setup df = df_from_file(excel_location) cfg = simuran.parse_config() delta_min = cfg["delta_min"] delta_max = cfg["delta_max"] theta_min = cfg["theta_min"] theta_max = cfg["theta_max"] clean_method = cfg["clean_method"] clean_kwargs = cfg["clean_kwargs"] window_sec = 0.5 fmin, fmax = 2.0, 40 max_lfp_lengths_seconds = {"start": 20, "choice": (3.5, 0.5), "end": 10} ituples = df.itertuples() num_rows = len(df) no_pass = False if "passed" not in df.columns: print("Please add passed as a column to the df.") no_pass = True results = [] coherence_df_list = [] base_dir_new = os.path.dirname(excel_location) here = os.path.dirname(os.path.abspath(__file__)) decoding_loc = out_name = os.path.join( here, "..", "sim_results", "tmaze", "lfp_decoding.csv" ) lfp_len = 6 hf = lfp_len // 2 new_lfp = np.zeros(shape=(num_rows // 2, lfp_len)) groups = [] choices = [] pxx_arr = [] oname_coherence = os.path.join( here, "..", "sim_results", "tmaze", "coherence_full.csv" ) oname_power_tmaze = os.path.join( here, "..", "sim_results", "tmaze", "power_tmaze_full.csv" ) split = os.path.splitext(os.path.basename(excel_location)) o_name_res = os.path.join( here, "..", "sim_results", "tmaze", split[0] + "_results" + split[1] ) # Load existing data if instructed to and it exists os.makedirs(os.path.dirname(oname_coherence), exist_ok=True) skip = ( (os.path.exists(decoding_loc)) and (not overwrite) and (os.path.exists(oname_coherence)) ) if skip: with open(decoding_loc, "r") as f: csvreader = csv.reader(f, delimiter=",") for i, row in enumerate(csvreader): groups.append(row[0]) choices.append(row[1]) vals = row[2:] new_lfp[i] = np.array([float(v) for v in vals[:lfp_len]]) coherence_df = df_from_file(oname_coherence) power_df = df_from_file(oname_power_tmaze) res_df = df_from_file(o_name_res) ## Extract LFP, do coherence, and plot if not skip: for j in range(num_rows // 2): # row1 is the forced movement row1 = next(ituples) # row2 is the choice trial row2 = next(ituples) # Load the t-maze data recording_location = os.path.join(base_dir, row1.location) recording_location = recording_location.replace("--", os.sep) param_file = os.path.join(here, "..", "recording_mappings", row1.mapping) recording = simuran.Recording( param_file=param_file, base_file=recording_location, load=False ) lfp_clean = LFPClean(method=clean_method, visualise=False) recording.signals.load() sig_dict = lfp_clean.clean( recording, min_f=fmin, max_f=fmax, method_kwargs=clean_kwargs )["signals"] x = np.array(sig_dict["SUB"].samples.to(u.mV)) duration = len(x) / 250 y = np.array(sig_dict["RSC"].samples.to(u.mV)) fig, ax = plt.subplots() fs = sig_dict["SUB"].sampling_rate # Setup and loading done -- Analyse the t-maze data if do_coherence: # Coherence over the whole recording f, Cxy = coherence(x, y, fs, nperseg=window_sec * 250) f = f[np.nonzero((f >= fmin) & (f <= fmax))] Cxy = Cxy[np.nonzero((f >= fmin) & (f <= fmax))] theta_co = Cxy[np.nonzero((f >= theta_min) & (f <= theta_max))] delta_co = Cxy[np.nonzero((f >= delta_min) & (f <= delta_max))] max_theta_coherence_ = np.nanmean(theta_co) max_delta_coherence_ = np.nanmean(delta_co) if plot_individual_sessions: # Used to plot t-maze sessions - mostly for verification recording.spatial.load() spatial = recording.spatial.underlying fig, ax = plt.subplots() for k_, r in enumerate( ( row1, row2, ) ): if k_ == 0: trial_type = "forced" else: trial_type = "choice" # Parse out the times t1, t2, t3 = r.start, r.choice, r.end # Make sure there are no parsing Incorrect if t3 > duration: raise RuntimeError( "Last time {} greater than duration {}".format(t3, duration) ) # Convert these times into LFP samples lfpt1, lfpt2, lfpt3 = ( int(floor(t1 * fs)), int(ceil(t2 * fs)), int(ceil(t3 * fs)), ) # Split the LFP into three parts, the start, choice, and end lfp_portions = {} time_dict = { "start": (lfpt1, lfpt2, lfpt2), "choice": (lfpt1, lfpt2, lfpt3), "end": (lfpt2, lfpt3, lfpt3), } for k, v in max_lfp_lengths_seconds.items(): max_len = v start_time = time_dict[k][0] choice_time = time_dict[k][1] end_time = time_dict[k][2] if k == "start": # If the start bit is longer than max_len, take the last X # seconds before the choice data ct = max_lfp_lengths_seconds["choice"][0] end_time = max(end_time - int(floor(ct * fs)), start_time) natural_start_time = end_time - max_len * fs start_time = max(natural_start_time, start_time) elif k == "choice": # For the choice, take (max_len[0], max_len[1]) seconds # of data around the point left_push = int(floor(v[0] * fs)) right_push = int(ceil(v[1] * fs)) start_time = max(choice_time - left_push, start_time) end_time = min(choice_time + right_push, end_time) elif k == "end": # For the end time, if the end is longer than max_len, take the first X seconds after the choice data ct = max_lfp_lengths_seconds["choice"][1] start_time = min(start_time + int(ceil(ct * fs)), end_time) natural_end_time = start_time + max_len * fs end_time = min(natural_end_time, end_time) else: raise RuntimeError(f"Unsupported key {k}") # Make sure have at least 1 second if (end_time - start_time) < fs: end_time = start_time + fs if end_time > int(ceil(duration * 250)): raise RuntimeError( "End time {} greater than duration {}".format( end_time, duration ) ) lfp_portions[k] = (start_time, end_time) if j % 20 == 0: print(f"On iteration {j} of {num_rows // 2} -- trial {trial_type}") for k in lfp_portions.keys(): print( "{}: {} -- {}".format( k, np.array(time_dict[k]) / 250, np.array(lfp_portions[k]) / 250, ) ) print("----------------------") if plot_individual_sessions: if r.test == "first": c = "k" else: c = "r" st1, st2 = int(floor(t1 * 50)), int(ceil(t3 * 50)) x_time = spatial.get_pos_x()[st1:st2] y_time = spatial.get_pos_y()[st1:st2] c_end = int(floor(t2 * 50)) spat_c = (spatial.get_pos_x()[c_end], spatial.get_pos_y()[c_end]) ax.plot(x_time, y_time, c=c, label=r.test) ax.plot(spat_c[0], spat_c[1], c="b", marker="x", label="decision") ax.plot(x_time[0], y_time[0], c="b", marker="o", label="start") ax.plot(x_time[-1], y_time[-1], c="b", marker=".", label="end") if do_coherence: res_dict = {} # Power for k, v in lfp_portions.items(): for region, signal in sig_dict.items(): lfpt1, lfpt2 = v lfp = NLfp() lfp.set_channel_id(signal.channel) lfp._timestamp = np.array( signal.timestamps[lfpt1:lfpt2].to(u.s) ) lfp._samples = np.array( signal.samples[lfpt1:lfpt2].to(u.mV) ) lfp._record_info["Sampling rate"] = signal.sampling_rate delta_power = lfp.bandpower( [delta_min, delta_max], window_sec=window_sec, band_total=True, ) theta_power = lfp.bandpower( [theta_min, theta_max], window_sec=window_sec, band_total=True, ) res_dict["{}-{}_delta".format(region, k)] = delta_power[ "relative_power" ] res_dict["{}-{}_theta".format(region, k)] = theta_power[ "relative_power" ] sub_s = sig_dict["SUB"] rsc_s = sig_dict["RSC"] x = np.array(sub_s.samples[lfpt1:lfpt2].to(u.mV)) y = np.array(rsc_s.samples[lfpt1:lfpt2].to(u.mV)) f, Cxy = coherence(x, y, fs, nperseg=window_sec * 250, nfft=256) f = f[np.nonzero((f >= fmin) & (f <= fmax))] Cxy = Cxy[np.nonzero((f >= fmin) & (f <= fmax))] if do_decoding: if k == "choice": coherence_vals_for_decode = Cxy[ np.nonzero((f >= theta_min) & (f <= theta_max)) ] s, e = (k_) * hf, (k_ + 1) * hf new_lfp[j, s:e] = coherence_vals_for_decode theta_co = Cxy[np.nonzero((f >= theta_min) & (f <= theta_max))] delta_co = Cxy[np.nonzero((f >= delta_min) & (f <= delta_max))] max_theta_coherence = np.nanmean(theta_co) max_delta_coherence = np.nanmean(delta_co) theta_co_peak = Cxy[np.nonzero((f >= 11.0) & (f <= 13.0))] peak_theta_coherence = np.nanmax(theta_co_peak) if trial_type == "forced": final_trial_type = "Forced" else: if r.passed.strip().upper() == "Y": final_trial_type = "Correct" elif r.passed.strip().upper() == "N": final_trial_type = "Incorrect" else: final_trial_type = "ERROR IN ANALYSIS" res_list = [ r.location, r.session, r.animal, r.test, r.passed.strip(), k, final_trial_type, ] res_list += [ res_dict[f"SUB-{k}_delta"], res_dict[f"SUB-{k}_theta"], res_dict[f"RSC-{k}_delta"], res_dict[f"RSC-{k}_theta"], ] res_list += [max_theta_coherence, max_delta_coherence] res_list += [ max_theta_coherence_, max_delta_coherence_, peak_theta_coherence, ] if no_pass is False: group = ( "Control" if r.animal.lower().startswith("c") else "Lesion (ATNx)" ) if do_coherence: for f_, cxy_ in zip(f, Cxy): coherence_df_list.append( ( f_, cxy_, r.passed.strip(), group, r.test, r.session, k, final_trial_type, ) ) f_welch, Pxx = welch( x, fs=fs, nperseg=window_sec * 250, return_onesided=True, scaling="density", average="mean", ) f_welch = f_welch[ np.nonzero((f_welch >= fmin) & (f_welch <= fmax)) ] Pxx = Pxx[ np.nonzero((f_welch >= fmin) & (f_welch <= fmax)) ] # Convert to full scale relative dB (so max at 0) Pxx_max = np.max(Pxx) Pxx = 10 * np.log10(Pxx / Pxx_max) for p_val, f_val in zip(Pxx, f_welch): pxx_arr.append( [ f_val, p_val, r.passed.strip(), group, k, final_trial_type, ] ) res_list += [group] results.append(res_list) name = os.path.splitext(r.location)[0] if plot_individual_sessions: fig2, ax2 = plt.subplots(3, 1) ax2[0].plot(f, Cxy, c="k") ax2[1].plot([i / 250 for i in range(len(x))], x, c="k") ax2[2].plot([i / 250 for i in range(len(y))], y, c="k") base_dir_new = os.path.dirname(excel_location) fig2.savefig( os.path.join( base_dir_new, "coherence_{}_{}_{}.png".format( row1.location, r.session, r.test ), ) ) plt.close(fig2) if do_decoding: groups.append(group) choices.append(str(r.passed).strip()) if plot_individual_sessions: ax.invert_yaxis() ax.legend() base_dir_new = os.path.dirname(excel_location) figname = os.path.join(base_dir_new, name) + "_tmaze.png" fig.savefig(figname, dpi=400) plt.close(fig) if do_coherence and not skip: # Save the results headers = [ "location", "session", "animal", "test", "choice", "part", "trial", "SUB_delta", "SUB_theta", "RSC_delta", "RSC_theta", "Theta_coherence", "Delta_coherence", "Full_theta_coherence", "Full_delta_coherence", "Peak 12Hz Theta coherence", "Group", ] res_df =
pd.DataFrame(results, columns=headers)
pandas.DataFrame
# -*- coding: utf-8 -*- """Main module.""" ### Libraries ### import pandas as pd from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from pandas import Series import subprocess import sys from scipy import interpolate import math import argparse from matplotlib.legend_handler import HandlerLine2D import seaborn as sns import xlsxwriter import datetime #TEST __version__ = "0.1.1" def argument_parser(argv_list=None): '''Asesses the input arguments and outputs flags to run the different functions according to the user needs. Args: argv_list: List of arguments provided by the user when running the program. Returns: flags ''' #Initialize the argument parser parser = argparse.ArgumentParser() #Adding general arguments parser.add_argument("-e", "--estimations", help="Get only the estimations for every sample", action = "store_true") parser.add_argument("-f", "--figures", help="Get only the growth curve figures", action = "store_true") parser.add_argument("-s", "--summary", help="Get only the summary of growth rate estimations",action = "store_true") parser.add_argument("-it", "--interpolation", help="Get interpolation of growth rate measurements with given od", action = "store_true") #Visualization arguments parser.add_argument("-b", "--bioshaker", help="Get one growth rate figure for every individual bioshaker", action = "store_true") parser.add_argument("-i", "--individual", help="Get one growth rate figure for every individual sample", action = "store_true") parser.add_argument("-bc", "--bioshakercolor", help="Get one growth rate figure for every species colored by bioshaker", action = "store_true") #Volume loss related arguments parser.add_argument("-v", "--volumeloss", help="Volume loss compesation is not computed", action = "store_false") parser.parse_args() args = parser.parse_args(argv_list[1:]) #Create flags if args.estimations == False and args.figures == False and args.summary == False : flag_all = True flag_est = False flag_sum = False flag_fig = False flag_ind = args.individual flag_bioshakercolor = args.bioshakercolor flag_volume_loss = args.volumeloss flag_bioshaker = args.bioshaker flag_interpolation = args.interpolation elif args.estimations == True or args.figures == True or args.summary == True : flag_all = False flag_est = args.estimations flag_sum = args.summary flag_fig = args.figures flag_ind = args.individual flag_bioshakercolor = args.bioshakercolor flag_volume_loss = args.volumeloss flag_bioshaker = args.bioshaker flag_interpolation = args.interpolation return flag_all, flag_est, flag_sum, flag_fig, flag_ind, flag_bioshakercolor, args.volumeloss, flag_bioshaker, flag_interpolation # ------ PARSE THE DATA USING THE autoflow_parser LIBRARY ------ def parse_data() : '''Calls the autoflow_parser and returns a merged xlsx document with all the OD readings combined''' try : call = subprocess.call("autoflow_parser",shell = True) except : return sys.exit("The data could not be parsed due to some error, check the input documentation") return call # ------ DATA LOADING AND VARIABLE SELECTION ------ def read_xlsx(filename = "results.xlsx") : #done '''Reads .xlsx file, returns a dataframe with relevant variables. The output of the parser is set to be "results.xlsx", the default reads the mentioned file without any additional argument''' try : #Open data file df = pd.read_excel(filename) except FileNotFoundError : return sys.exit("Could not find the parsed data file (XLSX extension)") #Select valuable columns cols = ["Sample ID", "Measurement", "Measurement type", "Sampling time","Sampling date"] #relevant variables df = df[cols] df.columns = df.columns.str.replace(' ', '_') #header spaces replaced with underscore return df # ------ SEPARATION OF GROWTH RATE SAMPLE AND VOLUME LOSS SAMPLES ------ def sample_outcome(sample_file, df) : #done '''Uses an external file containing individual sample purposes, returns two classifed dataframes based on sample purposes and labelled by bioshaker. Args: sample_file: variable or string containing the name of the file and its extension. df: dataframe obtained by using the read_xlsx method on the merged xlsx file. Returns: df_gr: dataframe containing observations related to the microbial growth rate, labelled by bioshaker. df_vl: dataframe containing observations related to the volume loss estimation, labelled by bioshaker. ''' #Open the file containing sample purposes df_calc = pd.read_csv(sample_file, sep="\t") #Info about the purpose of the sample (growth rate, volume loss compensation, species and drop-out samples) df_calc = df_calc[df_calc.Drop_out == False] #Add species and bioshaker labels to every observation cols=["Sample_ID", "Species"] temp_df = df_calc[cols] df = pd.merge(df, temp_df, how="left", on="Sample_ID") df["bioshaker"] = df["Sample_ID"].str[0:3] #Separate samples for growth rate or volume loss according to calc.tsv gr_samples = df_calc.loc[df_calc["calc_gr"] == True] gr_samples = gr_samples["Sample_ID"].tolist() vol_loss_samples = df_calc.loc[df_calc["calc_volumeloss"] == True] vol_loss_samples = vol_loss_samples["Sample_ID"].tolist() #Separate initial dataframe in 2 df_gr = df[df.Sample_ID.isin(gr_samples)] df_gr = df_gr.loc[df_gr["Measurement_type"] == "OD600"] df_vl = df[df.Sample_ID.isin(vol_loss_samples)] df_vl = df_vl.loc[df_vl["Measurement_type"] == "OD450"] return df_gr, df_vl # ------- GROWTH RATE FORMATTING FOR SUITABLE CROISSANCE ANALYSIS INPUT ------ def time_formater(df) : '''Takes a dataframe and turns date and time variables into differential time in hours for every bioshaker, returns modified dataframe. Args: df: dataframe with containing date and time measurements. Returns: df_out: dataframe with differential time measurements in hours. ''' #Get list of bioshakers unique_bioshakers = df["bioshaker"].unique() #Measurement type variable removal df = df.drop(columns=["Measurement_type"]) #Initialize empty output dataframe df_out = pd.DataFrame() for bioshaker in unique_bioshakers : #Subset initial dataframe by bioshaker df_temp = df.loc[df["bioshaker"] == bioshaker] unique_date = df["Sampling_date"].unique() #Merge date and time variable to datetime format df_temp["date_time"] = df_temp["Sampling_time"]+" "+df_temp["Sampling_date"] df_temp["date_time"] = pd.to_datetime(df_temp["date_time"]) #Substracting the time of the first obs to all obs df_temp['time_hours'] = df_temp["date_time"] - df_temp.loc[df_temp.index[0], 'date_time'] df_temp['h'] = df_temp['time_hours'].dt.components['hours'] df_temp['m'] = df_temp['time_hours'].dt.components['minutes'] df_temp['s'] = df_temp['time_hours'].dt.components['seconds'] df_temp["time_hours"] = df_temp['h']+df_temp['m']/60+df_temp['s']/360 #df_temp["time_hours"] = df_temp["time_hours"].dt.total_seconds()/3600 #Append dataframes together df_out = df_out.append(df_temp) #Removal of temporary variables df_out = df_out.drop_duplicates() #df_out = df_out.drop(columns=["Sampling_date", "Sampling_time"]) #df_out = df_out.drop(columns=["date_time"]) return df_out # ------ VOLUME LOSS CORRELATION FOR EVERY SAMPLE ------ def vol_correlation(df_vl): #done ''' Assess the volume loss with OD450 measurements and correlates the OD450 readings to time for every different bioshaker, returns a correlation dataframe. Args: df_vl: dataframe containing only volume loss measurements. Returns: cor_df: dataframe containing correlation values of the volume loss according to time measurements. ''' #Subset initial df_raw according to OD measurement and get unique IDs unique_IDs_vl = df_vl["Sample_ID"].unique() unique_bioshaker = df_vl["bioshaker"].unique() cor_df =
pd.DataFrame()
pandas.DataFrame
# ============================================================================= # File: get_fees.py # Author: <NAME> # Created: 12 Jun 2017 # Last Modified: 12 Jun 2017 # Description: description # ============================================================================= import requests import pandas as pd from bs4 import BeautifulSoup def get_fee_number(fee_string): fee_list = [s for s in fee_string.split()] return float(fee_list[-2]) def get_fee_df(url): r = requests.get(url) soup = BeautifulSoup(r.content, 'html.parser') tag_texts = [ tag.text.strip() for tag in soup.find_all("td") if len(tag.text.strip()) > 0 ] coins = tag_texts[0::2] fees = tag_texts[1::2] df =
pd.DataFrame()
pandas.DataFrame
import datetime import fiona import geopandas as gpd import jinja2 import logging import numpy as np import pandas as pd import random import requests import sqlite3 import sys import time import yaml from collections import ChainMap, defaultdict from operator import attrgetter, itemgetter from osgeo import ogr, osr from pathlib import Path from shapely.geometry import LineString, Point from sqlalchemy import create_engine, exc as sqlalchemy_exc from sqlalchemy.engine.base import Engine from tqdm import tqdm from tqdm.auto import trange from typing import Any, Dict, List, Type, Union # Set logger. logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s: %(message)s", "%Y-%m-%d %H:%M:%S")) logger.addHandler(handler) # Enable ogr exceptions. ogr.UseExceptions() # Define globally accessible variables. filepath = Path(__file__).resolve() distribution_format_path = filepath.parent / "distribution_format.yaml" field_domains_path = {lang: filepath.parent / f"field_domains_{lang}.yaml" for lang in ("en", "fr")} class Timer: """Tracks stage runtime.""" def __init__(self) -> None: """Initializes the Timer class.""" self.start_time = None def __enter__(self) -> None: """Starts the timer.""" logger.info("Started.") self.start_time = time.time() def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: """ Computes and returns the elapsed time. :param Any exc_type: required parameter for __exit__. :param Any exc_val: required parameter for __exit__. :param Any exc_tb: required parameter for __exit__. """ total_seconds = time.time() - self.start_time delta = datetime.timedelta(seconds=total_seconds) logger.info(f"Finished. Time elapsed: {delta}.") def apply_domain(series: pd.Series, domain: dict, default: Any) -> pd.Series: """ Applies a domain restriction to the given Series based on a domain dictionary. Replaces missing or invalid values with the default value. Non-dictionary domains are treated as Null. Values are left as-is excluding Null types and empty strings, which are replaced with the default value. :param pd.Series series: Series. :param dict domain: dictionary of acceptable domain values. :param Any default: default value. :return pd.Series: Series with enforced domain restriction. """ # Validate against domain dictionary. if isinstance(domain, dict): # Convert keys to lowercase strings. domain = {str(k).lower(): v for k, v in domain.items()} # Configure lookup function, convert invalid values to default. def get_value(val: Any) -> Any: """ Retrieves a domain dictionary value for a given key, non-matches return the default value. :param Any val: lookup key. :return Any: corresponding domain value or the default value. """ try: return domain[str(val).lower()] except KeyError: return default # Get values. return series.map(get_value) else: # Convert empty strings and null types to default. series.loc[(series.map(str).isin(["", "nan", "-2147483648"])) | (series.isna())] = default return series def cast_dtype(val: Any, dtype: Type, default: Any) -> Any: """ Casts the value to the given numpy dtype. Returns the default parameter for invalid or Null values. :param Any val: value. :param Type dtype: numpy type object to be casted to. :param Any default: value to be returned in case of error. :return Any: casted or default value. """ try: if pd.isna(val) or val == "": return default else: return itemgetter(0)(np.array([val]).astype(dtype)) except (TypeError, ValueError): return default def compile_default_values(lang: str = "en") -> dict: """ Compiles the default value for each field in each NRN dataset. :param str lang: output language: 'en', 'fr'. :return dict: dictionary of default values for each attribute of each NRN dataset. """ dft_vals = load_yaml(field_domains_path[lang])["default"] dist_format = load_yaml(distribution_format_path) defaults = dict() try: # Iterate tables. for name in dist_format: defaults[name] = dict() # Iterate fields. for field, dtype in dist_format[name]["fields"].items(): # Configure default value. key = "label" if dtype[0] == "str" else "code" defaults[name][field] = dft_vals[key] except (AttributeError, KeyError, ValueError): logger.exception(f"Invalid schema definition for one or more yamls:" f"\nDefault values: {dft_vals}" f"\nDistribution format: {dist_format}") sys.exit(1) return defaults def compile_domains(mapped_lang: str = "en") -> dict: """ Compiles the acceptable domain values for each field in each NRN dataset. Each domain will consist of the following keys: 1) 'values': all English and French values and keys flattened into a single list. 2) 'lookup': a lookup dictionary mapping each English and French value and key to the value of the given map language. Integer keys and their float-equivalents are both added to accommodate incorrectly casted data. :param str mapped_lang: output language: 'en', 'fr'. :return dict: dictionary of domain values and lookup dictionary for each attribute of each NRN dataset. """ # Compile field domains. domains = defaultdict(dict) # Load domain yamls. domain_yamls = {lang: load_yaml(field_domains_path[lang]) for lang in ("en", "fr")} # Iterate tables and fields with domains. for table in domain_yamls["en"]["tables"]: for field in domain_yamls["en"]["tables"][table]: try: # Compile domains. domain_en = domain_yamls["en"]["tables"][table][field] domain_fr = domain_yamls["fr"]["tables"][table][field] # Configure mapped and non-mapped output domain. domain_mapped = domain_en if mapped_lang == "en" else domain_fr domain_non_mapped = domain_en if mapped_lang != "en" else domain_fr # Compile all domain values and domain lookup table, separately. if domain_en is None: domains[table][field] = {"values": None, "lookup": None} elif isinstance(domain_en, list): domains[table][field] = { "values": sorted(list({*domain_en, *domain_fr}), reverse=True), "lookup": dict([*zip(domain_en, domain_mapped), *zip(domain_fr, domain_mapped)]) } elif isinstance(domain_en, dict): domains[table][field] = { "values": sorted(list({*domain_en.values(), *domain_fr.values()}), reverse=True), "lookup": {**domain_mapped, **{v: v for v in domain_mapped.values()}, **{v: domain_mapped[k] for k, v in domain_non_mapped.items()}} } # Add integer keys as floats to accommodate incorrectly casted data. for k, v in domain_mapped.items(): try: domains[table][field]["lookup"].update({str(float(k)): v}) except ValueError: continue else: raise TypeError except (AttributeError, KeyError, TypeError, ValueError): yaml_paths = ", ".join(str(field_domains_path[lang]) for lang in ("en", "fr")) logger.exception(f"Unable to compile domains from config yamls: {yaml_paths}. Invalid schema " f"definition for table: {table}, field: {field}.") sys.exit(1) return domains def compile_dtypes(length: bool = False) -> dict: """ Compiles the dtype for each field in each NRN dataset. Optionally includes the field length. :param bool length: includes the length of the field in the returned data. :return dict: dictionary of dtypes and, optionally, length for each attribute of each NRN dataset. """ dist_format = load_yaml(distribution_format_path) dtypes = dict() try: # Iterate tables. for name in dist_format: dtypes[name] = dict() # Iterate fields. for field, dtype in dist_format[name]["fields"].items(): # Compile dtype and field length. dtypes[name][field] = dtype if length else dtype[0] except (AttributeError, KeyError, ValueError): logger.exception(f"Invalid schema definition: {dist_format}.") sys.exit(1) return dtypes def create_db_engine(url: str) -> Engine: """ :param str url: NRN database connection URL. :return sqlalchemy.engine.base.Engine: SQLAlchemy database engine. """ logger.info(f"Creating NRN database engine.") # Create database engine. try: engine = create_engine(url) except sqlalchemy_exc.SQLAlchemyError as e: logger.exception(f"Unable to create engine for NRN database.") logger.exception(e) sys.exit(1) return engine def explode_geometry(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: """ Explodes MultiLineStrings and MultiPoints to LineStrings and Points, respectively. :param gpd.GeoDataFrame gdf: GeoDataFrame. :return gpd.GeoDataFrame: GeoDataFrame containing only single-part geometries. """ logger.info("Exploding multi-type geometries.") multi_types = {"MultiLineString", "MultiPoint"} if len(set(gdf.geom_type.unique()).intersection(multi_types)): # Separate multi- and single-type records. multi = gdf.loc[gdf.geom_type.isin(multi_types)] single = gdf.loc[~gdf.index.isin(multi.index)] # Explode multi-type geometries. multi_exploded = multi.explode().reset_index(drop=True) # Merge all records. merged = gpd.GeoDataFrame(pd.concat([single, multi_exploded], ignore_index=True), crs=gdf.crs) return merged.copy(deep=True) else: return gdf.copy(deep=True) def export(dfs: Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]], dst: Path, driver: str = "GPKG", name_schemas: Union[None, dict] = None, merge_schemas: bool = False, keep_uuid: bool = True, outer_pbar: Union[tqdm, trange, None] = None) -> None: """ Exports one or more (Geo)DataFrames as a specified OGR driver file / layer. :param Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]] dfs: dictionary of NRN dataset names and (Geo)DataFrames. :param Path dst: output path. :param str driver: OGR driver short name, default='GPKG'. :param Union[None, dict] name_schemas: optional dictionary mapping of dataset and field names for each provided dataset. Expected dictionary format: { <dataset_name>: name: <new_dataset_name> fields: <field_name>: <new_field_name> ... ... } :param bool merge_schemas: optional flag to merge type and name schemas such that attributes from any dataset can exist on each provided dataset, default False. :param bool keep_uuid: optional flag to preserve the uuid column, default True. :param Union[tqdm, trange, None] outer_pbar: optional pre-existing tqdm progress bar. """ try: # Validate / create driver. driver = ogr.GetDriverByName(driver) # Create directory structure and data source (only create source for layer-based drivers). dst = Path(dst).resolve() if dst.suffix: dst.parent.mkdir(parents=True, exist_ok=True) if dst.exists(): source = driver.Open(str(dst), update=1) else: source = driver.CreateDataSource(str(dst)) else: dst.mkdir(parents=True, exist_ok=True) source = None # Compile type schemas, conditionally merge. type_schemas = load_yaml(distribution_format_path) if merge_schemas: merged = {"spatial": any(type_schemas[table]["spatial"] for table in dfs), "fields": dict(ChainMap(*[type_schema["fields"] for table, type_schema in type_schemas.items()]))} type_schemas = {table: merged for table in type_schemas} # Compile name schemas (filter datasets and fields within the existing type schemas and dataframe columns). if not name_schemas: name_schemas = {table: {"name": table, "fields": dict(zip(table_schema["fields"], table_schema["fields"]))} for table, table_schema in type_schemas.items()} # Iterate dataframes. for table, df in dfs.items(): name_schema, type_schema = name_schemas[table], type_schemas[table] schema = {"name": str(name_schema["name"]), "spatial": type_schema["spatial"], "fields": {field: {"name": name_schema["fields"][field], "type": type_schema["fields"][field][0], "width": type_schema["fields"][field][1]} for field in set(name_schema["fields"]).intersection(set(df.columns))}} # Conditionally add uuid to schema. if keep_uuid and "uuid" in df.columns: schema["fields"]["uuid"] = {"name": "uuid", "type": "str", "width": 32} # Configure layer geometry type and spatial reference system. spatial = schema["spatial"] srs = None geom_type = ogr.wkbNone if schema["spatial"]: srs = osr.SpatialReference() srs.ImportFromEPSG(df.crs.to_epsg()) geom_type = attrgetter(f"wkb{df.geom_type.iloc[0]}")(ogr) # Create source (non-layer-based drivers only) and layer. if dst.suffix: layer = source.CreateLayer(name=schema["name"], srs=srs, geom_type=geom_type, options=["OVERWRITE=YES"]) else: source = driver.CreateDataSource(str(dst / schema["name"])) layer = source.CreateLayer(name=Path(schema["name"]).stem, srs=srs, geom_type=geom_type) # Set field definitions from schema. ogr_field_map = {"float": ogr.OFTReal, "int": ogr.OFTInteger, "str": ogr.OFTString} for field, specs in schema["fields"].items(): field_defn = ogr.FieldDefn(specs["name"], ogr_field_map[specs["type"]]) field_defn.SetWidth(specs["width"]) layer.CreateField(field_defn) # Reorder and rename columns to match schema. df = df[[*schema["fields"], "geometry"] if spatial else [*schema["fields"]]].copy(deep=True) df.rename(columns={field: specs["name"] for field, specs in schema["fields"].items()}, inplace=True) # Write layer. layer.StartTransaction() for feat in tqdm(df.itertuples(index=False), total=len(df), desc=f"Writing to file={source.GetName()}, layer={table}", bar_format="{desc}: |{bar}| {percentage:3.0f}% {r_bar}", leave=not bool(outer_pbar)): # Instantiate feature. feature = ogr.Feature(layer.GetLayerDefn()) # Compile feature properties. properties = feat._asdict() # Set feature geometry, if spatial. if spatial: geom = ogr.CreateGeometryFromWkb(properties.pop("geometry").wkb) feature.SetGeometry(geom) # Iterate and set feature properties (attributes). for field_index, prop in enumerate(properties.items()): feature.SetField(field_index, prop[-1]) # Create feature. layer.CreateFeature(feature) # Clear pointer for next iteration. feature = None layer.CommitTransaction() # Update outer progress bar. if outer_pbar: outer_pbar.update(1) except FileExistsError as e: logger.exception(f"Invalid output directory - already exists.") logger.exception(e) sys.exit(1) except (KeyError, ValueError, sqlite3.Error) as e: logger.exception(f"Error raised when writing output: {dst}.") logger.exception(e) sys.exit(1) def extract_nrn(url: str, source_code: int) -> Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]]: """ Extracts NRN database records for the source into (Geo)DataFrames. :param str url: NRN database connection URL. :param int source_code: code for the source province / territory. :return Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]]: dictionary of NRN dataset names and (Geo)DataFrames. """ logger.info(f"Extracting NRN datasets for source code: {source_code}.") # Connect to database. con = create_db_engine(url) # Compile field defaults, domains, and dtypes. defaults = compile_default_values(lang="en") domains = compile_domains(mapped_lang="en") dtypes = compile_dtypes() # Load and execute database queries for NRN datasets. dfs = dict() for sql_file in (filepath.parent / "sql/extract").glob("*.sql"): logger.info(f"Extracting NRN dataset: {sql_file.stem}.") try: # Resolve layer name. layer = sql_file.stem # Load document as jinja template. with open(sql_file, "r") as doc: template = jinja2.Template(doc.read()) # Update template. query = template.render( source_code=source_code, metacover=f"'{defaults[layer]['metacover']}'" if isinstance(defaults[layer]["metacover"], str) else defaults[layer]["metacover"], specvers=2.0, muniquad=f"'{defaults['strplaname']['muniquad']}'" if isinstance(defaults['strplaname']["muniquad"], str) else defaults['strplaname']["muniquad"] ) # Execute query. df = gpd.read_postgis(query, con, geom_col="geometry") # Store non-empty dataset. if len(df): dfs[layer] = df.copy(deep=True) except (jinja2.TemplateError, jinja2.TemplateAssertionError, jinja2.UndefinedError) as e: logger.exception(f"Unable to load SQL from: {sql_file}.") logger.exception(e) # Separate individual datasets from extracted data. logger.info("Separating individual datasets from extracted data.") nrn = dict() # Separate dataset: addrange. logger.info("Separating dataset: addrange.") # Separate records. addrange = dfs["roadseg"].loc[dfs["roadseg"]["segment_type"] == 1, [ "addrange_acqtech", "metacover", "addrange_credate", "datasetnam", "accuracy", "addrange_provider", "addrange_revdate", "specvers", "l_altnanid", "r_altnanid", "addrange_l_digdirfg", "addrange_r_digdirfg", "addrange_l_hnumf", "addrange_r_hnumf", "addrange_l_hnumsuff", "addrange_r_hnumsuff", "addrange_l_hnumtypf", "addrange_r_hnumtypf", "addrange_l_hnumstr", "addrange_r_hnumstr", "addrange_l_hnuml", "addrange_r_hnuml", "addrange_l_hnumsufl", "addrange_r_hnumsufl", "addrange_l_hnumtypl", "addrange_r_hnumtypl", "addrange_nid", "segment_id_left", "segment_id_right", "addrange_l_rfsysind", "addrange_r_rfsysind"] ].rename(columns={ "addrange_acqtech": "acqtech", "addrange_credate": "credate", "addrange_provider": "provider", "addrange_revdate": "revdate", "addrange_l_digdirfg": "l_digdirfg", "addrange_r_digdirfg": "r_digdirfg", "addrange_l_hnumf": "l_hnumf", "addrange_r_hnumf": "r_hnumf", "addrange_l_hnumsuff": "l_hnumsuff", "addrange_r_hnumsuff": "r_hnumsuff", "addrange_l_hnumtypf": "l_hnumtypf", "addrange_r_hnumtypf": "r_hnumtypf", "addrange_l_hnumstr": "l_hnumstr", "addrange_r_hnumstr": "r_hnumstr", "addrange_l_hnuml": "l_hnuml", "addrange_r_hnuml": "r_hnuml", "addrange_l_hnumsufl": "l_hnumsufl", "addrange_r_hnumsufl": "r_hnumsufl", "addrange_l_hnumtypl": "l_hnumtypl", "addrange_r_hnumtypl": "r_hnumtypl", "addrange_nid": "nid", "segment_id_left": "l_offnanid", "segment_id_right": "r_offnanid", "addrange_l_rfsysind": "l_rfsysind", "addrange_r_rfsysind": "r_rfsysind"} ).copy(deep=True) addrange.reset_index(drop=True, inplace=True) # Store dataset. nrn["addrange"] = pd.DataFrame(addrange).copy(deep=True) # Separate dataset: junction. logger.info(f"Separating dataset: junction.") # Separate records. junction = dfs["junction"][[ "acqtech", "metacover", "credate", "datasetnam", "accuracy", "provider", "revdate", "specvers", "exitnbr", "junctype", "nid", "geometry"]].copy(deep=True) junction.reset_index(drop=True, inplace=True) # Store dataset. nrn["junction"] = junction.copy(deep=True) # Separate dataset: ferryseg. if 2 in set(dfs["roadseg"]["segment_type"]): logger.info("Separating dataset: ferryseg.") # Separate records. ferryseg = dfs["roadseg"].loc[dfs["roadseg"]["segment_type"] == 2, [ "acqtech", "metacover", "credate", "datasetnam", "accuracy", "provider", "revdate", "specvers", "closing", "ferrysegid", "roadclass", "nid", "rtename1en", "rtename2en", "rtename3en", "rtename4en", "rtename1fr", "rtename2fr", "rtename3fr", "rtename4fr", "rtnumber1", "rtnumber2", "rtnumber3", "rtnumber4", "rtnumber5", "geometry"]].copy(deep=True) ferryseg.reset_index(drop=True, inplace=True) # Store dataset. nrn["ferryseg"] = ferryseg.copy(deep=True) # Separate dataset: roadseg. logger.info("Separating dataset: roadseg.") # Separate records. roadseg = dfs["roadseg"].loc[dfs["roadseg"]["segment_type"] == 1, [ "acqtech", "metacover", "credate", "datasetnam", "accuracy", "provider", "revdate", "specvers", "addrange_l_digdirfg", "addrange_r_digdirfg", "addrange_nid", "closing", "exitnbr", "addrange_l_hnumf", "addrange_r_hnumf", "roadclass", "addrange_l_hnuml", "addrange_r_hnuml", "nid", "nbrlanes", "strplaname_l_placename", "strplaname_r_placename", "l_stname_c", "r_stname_c", "pavsurf", "pavstatus", "roadjuris", "roadsegid", "rtename1en", "rtename2en", "rtename3en", "rtename4en", "rtename1fr", "rtename2fr", "rtename3fr", "rtename4fr", "rtnumber1", "rtnumber2", "rtnumber3", "rtnumber4", "rtnumber5", "speed", "strunameen", "strunamefr", "structid", "structtype", "trafficdir", "unpavsurf", "geometry"] ].rename(columns={ "addrange_l_digdirfg": "l_adddirfg", "addrange_r_digdirfg": "r_adddirfg", "addrange_nid": "adrangenid", "addrange_l_hnumf": "l_hnumf", "addrange_r_hnumf": "r_hnumf", "addrange_l_hnuml": "l_hnuml", "addrange_r_hnuml": "r_hnuml", "strplaname_l_placename": "l_placenam", "strplaname_r_placename": "r_placenam"} ).copy(deep=True) roadseg.reset_index(drop=True, inplace=True) # Store dataset. nrn["roadseg"] = roadseg.copy(deep=True) # Separate dataset: strplaname. logger.info("Separating dataset: strplaname.") # Separate records. strplaname = pd.DataFrame().append([ dfs["roadseg"].loc[dfs["roadseg"]["segment_type"] == 1, [ "strplaname_l_acqtech", "metacover", "strplaname_l_credate", "datasetnam", "accuracy", "strplaname_l_provider", "strplaname_l_revdate", "specvers", "strplaname_l_dirprefix", "strplaname_l_dirsuffix", "muniquad", "segment_id_left", "strplaname_l_placename", "strplaname_l_placetype", "strplaname_l_province", "strplaname_l_starticle", "strplaname_l_namebody", "strplaname_l_strtypre", "strplaname_l_strtysuf"] ].rename(columns={ "strplaname_l_acqtech": "acqtech", "strplaname_l_credate": "credate", "strplaname_l_provider": "provider", "strplaname_l_revdate": "revdate", "strplaname_l_dirprefix": "dirprefix", "strplaname_l_dirsuffix": "dirsuffix", "segment_id_left": "nid", "strplaname_l_placename": "placename", "strplaname_l_placetype": "placetype", "strplaname_l_province": "province", "strplaname_l_starticle": "starticle", "strplaname_l_namebody": "namebody", "strplaname_l_strtypre": "strtypre", "strplaname_l_strtysuf": "strtysuf"}), dfs["roadseg"].loc[dfs["roadseg"]["segment_type"] == 1, [ "strplaname_r_acqtech", "metacover", "strplaname_r_credate", "datasetnam", "accuracy", "strplaname_r_provider", "strplaname_r_revdate", "specvers", "strplaname_r_dirprefix", "strplaname_r_dirsuffix", "muniquad", "segment_id_right", "strplaname_r_placename", "strplaname_r_placetype", "strplaname_r_province", "strplaname_r_starticle", "strplaname_r_namebody", "strplaname_r_strtypre", "strplaname_r_strtysuf"] ].rename(columns={ "strplaname_r_acqtech": "acqtech", "strplaname_r_credate": "credate", "strplaname_r_provider": "provider", "strplaname_r_revdate": "revdate", "strplaname_r_dirprefix": "dirprefix", "strplaname_r_dirsuffix": "dirsuffix", "segment_id_right": "nid", "strplaname_r_placename": "placename", "strplaname_r_placetype": "placetype", "strplaname_r_province": "province", "strplaname_r_starticle": "starticle", "strplaname_r_namebody": "namebody", "strplaname_r_strtypre": "strtypre", "strplaname_r_strtysuf": "strtysuf"})]).copy(deep=True) strplaname.reset_index(drop=True, inplace=True) # Store dataset. nrn["strplaname"] =
pd.DataFrame(strplaname)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed May 13 13:59:31 2020 @author: <NAME> """ import sys, os sys.path.append('H:/cloud/cloud_data/Projects/DL/Code/src') sys.path.append('H:/cloud/cloud_data/Projects/DL/Code/src/ct') import pandas as pd import ntpath import datetime from openpyxl.worksheet.datavalidation import DataValidation from openpyxl.formatting.formatting import ConditionalFormattingList from openpyxl.styles import Font, Color, Border, Side from openpyxl.styles import Protection from openpyxl.styles import PatternFill from glob import glob from shutil import copyfile import numpy as np from collections import defaultdict from openpyxl.utils import get_column_letter from CTDataStruct import CTPatient import keyboard from openpyxl.styles.differential import DifferentialStyle from openpyxl.formatting import Rule from settings import initSettings, saveSettings, loadSettings, fillSettingsTags from classification import createRFClassification, initRFClassification, classifieRFClassification from filterTenStepsGuide import filter_CACS_10StepsGuide, filter_CACS, filter_NCS, filterReconstruction, filter_CTA, filer10StepsGuide, filterReconstructionRF from discharge_extract import extractDICOMTags from tqdm import tqdm #from reco.reco_filter import RecoFilter patient_status = ['OK', 'EXCLUDED', 'MISSING_CACS', 'MISSING_CTA', 'MISSING_NC_CACS', 'MISSING_NC_CTA'] patient_status_manual = ['OK', 'EXCLUDED', 'UNDEFINED', 'INPROGRESS'] patient_status_manualStr = '"' + 'OK,' + 'EXCLUDED,' + 'UNDEFINED,' + 'INPROGRESS,' + '"' scanClasses = defaultdict(lambda:None,{'UNDEFINED': 0, 'CACS': 1, 'CTA': 2, 'NCS_CACS': 3, 'NCS_CTA': 4, 'ICA': 5, 'OTHER': 6}) scanClassesInv = defaultdict(lambda:None,{0: 'UNDEFINED', 1: 'CACS', 2: 'CTA', 3: 'NCS_CACS', 4: 'NCS_CTA', 5: 'ICA', 6: 'OTHER'}) scanClassesStr = '"' + 'UNDEFINED,' + 'CACS,' + 'CTA,' + 'NCS_CACS,' + 'NCS_CTA,' + 'ICA,' + 'OTHER' +'"' scanClassesManualStr = '"' + 'UNDEFINED,' + 'CACS,' + 'CTA,' + 'NCS_CACS,' + 'NCS_CTA,' + 'ICA,' + 'OTHER,' + 'PROBLEM,' + 'QUESTION,' +'"' imageQualityStr = '"' + 'UNDEFINED,' + 'GOOD,' + 'BAD' +'"' recoClasses = ['FBP', 'IR', 'UNDEFINED'] changeClasses = ['NO_CHANGE', 'SOURCE_CHANGE', 'MASTER_CHANGE', 'MASTER_SOURCE_CHANGE'] def setColor(workbook, sheet, rows, NumColumns, color): for r in rows: if r % 100 == 0: print('index:', r, '/', max(rows)) for c in range(1,NumColumns): cell = sheet.cell(r, c) cell.fill = PatternFill(start_color=color, end_color=color, fill_type = 'solid') def setColorFormula(sheet, formula, color, NumRows, NumColumns): column_letter = get_column_letter(NumColumns+1) colorrange="B2:" + str(column_letter) + str(NumRows) dxf = DifferentialStyle(font=Font(color=color)) r = Rule(type="expression", dxf=dxf, stopIfTrue=True) r.formula = [formula] sheet.conditional_formatting.add(colorrange, r) def setBorderFormula(sheet, formula, NumRows, NumColumns): column_letter = get_column_letter(NumColumns+1) colorrange="B1:" + str(column_letter) + str(NumRows) thin = Side(border_style="thin", color="000000") border = Border(bottom=thin) dxf = DifferentialStyle(border=border) r = Rule(type="expression", dxf=dxf, stopIfTrue=True) r.formula = [formula] sheet.conditional_formatting.add(colorrange, r) # Set border for index for i in range(1, NumRows + 1): cell = sheet.cell(i, 1) cell.border = Border() return sheet def sortFilepath(filepathList): filenameList=[] folderpathList=[] for filepath in filepathList: folderpath, filename, _ = splitFilePath(filepath) filenameList.append(filename) folderpathList.append(folderpath) dates_str = [x.split('_')[-1] for x in filenameList] dates = [datetime.datetime(int(x[4:8]), int(x[2:4]), int(x[0:2])) for x in dates_str] idx = list(np.argsort(dates)) filepathlistsort=[] for i in idx: filepathlistsort.append(folderpathList[i] + '/' + '_'.join(filenameList[i].split('_')[0:-1]) + '_' + dates[i].strftime("%d%m%Y") + '.xlsx') return filepathlistsort def sortFolderpath(folderpath, folderpathList): dates_str = [x.split('_')[-1] for x in folderpathList] dates = [datetime(int(x[4:8]), int(x[2:4]), int(x[0:2])) for x in dates_str] date_str = folderpath.split('_')[-1] date = datetime(int(date_str[4:8]), int(date_str[2:4]), int(date_str[0:2])) idx = list(np.argsort(dates)) folderpathSort=[] for i in idx: folderpathSort.append(folderpathList[i]) if dates[i] == date: break return folderpathSort def isNaN(num): return num != num def splitFilePath(filepath): """ Split filepath into folderpath, filename and file extension :param filepath: Filepath :type filepath: str """ folderpath, _ = ntpath.split(filepath) head, file_extension = os.path.splitext(filepath) folderpath, filename = ntpath.split(head) return folderpath, filename, file_extension def update_CACS_10StepsGuide(df_CACS, sheet): for index, row in df_CACS.iterrows(): cell_str = 'AB' + str(index+2) cell = sheet[cell_str] cell.value = row['CACS10StepsGuide'] #cell.protection = Protection(locked=False) return sheet def mergeITT(df_ITT, df_data): # Merge ITT table print('Merge ITT table') for i in range(len(df_data)): patient = df_ITT[df_ITT['ID']==df_data.loc[i, 'PatientID']] if len(patient)==1: df_data.loc[i, 'ITT'] = patient.iloc[0]['ITT'] df_data.loc[i, 'Date CT'] = patient.iloc[0]['Date CT'] df_data.loc[i, 'Date ICA'] = patient.iloc[0]['Date ICA'] return df_data def mergeDicom(df_dicom, df_data_old=None): print('Merge dicom table') if df_data_old is None: df_data = df_dicom.copy() else: idx = df_dicom['SeriesInstanceUID'].isin(df_data_old['SeriesInstanceUID']) df_data =
pd.concat([df_data_old, df_dicom[idx==False]], axis=0)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] alpha = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha.columns = ['alpha137'] return alpha @timer def alpha138(self): vwap = self.vwap volume = self.volume low = self.low data1 = pd.concat([low,vwap], axis = 1, join = 'inner') temp1 = pd.DataFrame(data1['Low'] * 0.7 + data1['Vwap'] * 0.3) temp1_delta = Delta(temp1,3) temp1_delta_decay = DecayLinear(temp1_delta,20) r1 = Rank(temp1_delta_decay) low_r = TsRank(low,8) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,17) data2 = pd.concat([low_r,volume_mean_r],axis = 1, join = 'inner') corr = Corr(data2,5) corr_r = TsRank(corr,19) corr_r_decay = DecayLinear(corr_r,16) r2 = TsRank(corr_r_decay,7) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha138'] return alpha @timer def alpha139(self): Open = self.open volume = self.volume data = pd.concat([Open,volume], axis = 1, join = 'inner') alpha = -1 * Corr(data,10) alpha.columns = ['alpha139'] return alpha @timer def alpha140(self): Open = self.open volume = self.volume high = self.high low = self.low close = self.close open_r = Rank(Open) low_r = Rank(low) high_r = Rank(high) close_r = Rank(close) data1 = pd.concat([open_r,low_r,high_r,close_r],axis = 1, join = 'inner') data1.columns = ['open_r','low_r','high_r','close_r'] temp = pd.DataFrame(data1['open_r'] + data1['low_r'] - \ (data1['high_r'] + data1['close_r'])) close_r_temp = TsRank(close,8) volume_mean = Mean(volume,70) volume_mean_r = TsRank(volume_mean,20) data2 = pd.concat([close_r_temp,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data2,8) temp_decay = DecayLinear(temp,8) r1 = Rank(temp_decay) corr_decay = DecayLinear(corr,7) r2 = TsRank(corr_decay,3) r = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = pd.DataFrame(np.min(r)) alpha.columns = ['alpha140'] return alpha @timer def alpha141(self): volume = self.volume high = self.high volume_mean = Mean(volume,15) high_r = Rank(high) volume_mean_r = Rank(volume_mean) data = pd.concat([high_r,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data,9) alpha = -1 * Rank(corr) alpha.columns = ['alpha141'] return alpha @timer def alpha142(self): close = self.close volume = self.volume close_r = TsRank(close,10) r1 = Rank(close_r) close_delta = Delta(close,1) close_delta_delta = Delta(close_delta,1) r2 = Rank(close_delta_delta) volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['v','v_m'] temp = pd.DataFrame(data['v']/data['v_m']) temp_r = TsRank(temp,5) r3 = Rank(temp_r) r = pd.concat([r1,r2,r3],axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(- 1* r['r1'] * r['r2'] * r['r3']) alpha.columns= ['alpha142'] return alpha @timer def alpha143(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] - data['close_delay'])/data['close_delay']) temp.columns= ['temp'] data_temp = pd.concat([data,temp],axis = 1, join = 'inner') data_temp['temp'][data_temp['close'] <= data_temp['close_delay']] = 1 temp_unstack = data_temp['temp'].unstack() temp_unstack.iloc[0,:] = 1 df = np.cumprod(temp_unstack,axis = 0) alpha = df.stack() alpha.columns = ['alpha143'] return alpha @timer def alpha144(self): close = self.close amt = self.amt close_delay = Delay(close,1) data = pd.concat([close,close_delay,amt], axis = 1, join = 'inner') data.columns = ['close','close_delay','amt'] data['temp'] = np.abs(data['close']/data['close_delay'] - 1)/data['amt'] data['sign'] = 1 data['sign'][data['close'] >= data['close_delay']] = 0 tep1 = Sum(pd.DataFrame(data['sign'] * data['temp']),20) tep2 = Count(0,pd.DataFrame(data['close_delay']),pd.DataFrame(data['close']),20) data2 = pd.concat([tep1,tep2], axis = 1, join = 'inner') data2.columns = ['tep1','tep2'] alpha = pd.DataFrame(data2['tep1']/data2['tep2']) alpha.columns = ['alpha144'] return alpha @timer def alpha145(self): volume = self.volume volume_mean9 = Mean(volume,9) volume_mean26 = Mean(volume,26) volume_mean12 = Mean(volume,12) data = pd.concat([volume_mean9,volume_mean26,volume_mean12], axis = 1, join = 'inner') data.columns = ['m9','m26','m12'] alpha = pd.DataFrame((data['m9'] - data['m26'])/data['m12'] * 100) alpha.columns = ['alpha145'] return alpha @timer def alpha146(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] -data['close_delay'])/data['close_delay']) sma1 = SMA(temp,61,2) data2 = pd.concat([temp,sma1], axis = 1, join = 'inner') data2.columns = ['temp1','sma1'] data2['temp2'] = data2['temp1'] - data2['sma1'] temp2_mean = Mean(pd.DataFrame(data2['temp2']),20) sma2 = SMA(pd.DataFrame(data2['temp1'] - data2['temp2']),61,2) data_temp = pd.concat([temp2_mean,pd.DataFrame(data2['temp2']),sma2], axis = 1 , join = 'inner') data_temp.columns = ['temp2_mean','temp2','sma2'] alpha = data_temp['temp2_mean'] * data_temp['temp2'] / data_temp['sma2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha146'] return alpha @timer def alpha147(self): close = self.close close_mean = Mean(close,12) alpha = RegBeta(0,close_mean,None,12) alpha.columns = ['alpha147'] return alpha @timer def alpha148(self): Open = self.open volume = self.volume volume_mean = Mean(volume,60) volume_mean_s = Sum(volume_mean,9) data = pd.concat([Open,volume_mean_s],axis = 1, join = 'inner') corr = Corr(data,6) r1 = Rank(corr) open_min = TsMin(Open,14) data2 = pd.concat([Open,open_min], axis = 1, join = 'inner') data2.columns = ['open','open_min'] r2 = Rank(
pd.DataFrame(data2['open'] - data2['open_min'])
pandas.DataFrame
import pandas as pd import numpy as np """ LOCAL IMPORTS """ from src.data_preprocessing import remove_misc, randomize_units from src.common import Common from src.common import get_max_len, create_final_data from src.data_creation.laptop_data_classes import populate_spec from src.data_creation.general_cpu_data_creation import create_general_cpu_data from src.data_creation.general_drive_data import create_final_drive_data from src.data_creation.gs_data_creation import create_computer_gs_data from src.data_creation.laptop_data_creation import create_pseudo_laptop_data from src.data_creation.pcpartpicker_data_creation import create_pcpartpicker_data from src.data_creation.retailer_test_creation import create_laptop_test_data from src.data_creation.neg_laptop_test_creation import create_neg_laptop_test_data from src.data_creation.retailer_laptop_train_creation import create_retailer_laptop_train_data def gen_gb_pos_data(): ''' Create positive gigabyte data (ex: 8 gb vs 8 gb) to essentially differentiate between numbers. ''' pos = [] for x in range(2, 5000, 2): attr = '{} {}'.format(x, 'gb') pos.append([attr, attr, 1]) return pd.DataFrame(pos, columns = Common.COLUMN_NAMES) def gen_neg_gb_data(): ''' Create negative gigabyte data (ex: 8 gb vs 10 gb) to essentially differentiate between numbers. ''' neg = [] for x in range(2, 1000, 2): for y in range(2, 1000, 2): x_attr = '{} {}'.format(x, 'gb') y_attr = '{} {}'.format(y, 'gb') if x != y: neg.append([x_attr, y_attr, 0]) return pd.DataFrame(neg, columns = Common.COLUMN_NAMES) def create_data(): ''' Runs the necessary functions to create the data for training. ''' # Don't show the copy warnings pd.set_option('mode.chained_assignment', None) # Run the functions populate_spec() create_pcpartpicker_data() create_general_cpu_data() create_final_drive_data() create_pseudo_laptop_data() final_gb_data = create_final_data(gen_gb_pos_data(), gen_neg_gb_data()) final_gb_data.reset_index(inplace=True) randomize_units(final_gb_data, units=['gb']) create_laptop_test_data() create_neg_laptop_test_data() create_retailer_laptop_train_data() create_computer_gs_data() print('Generating gigabyte data (as in just examples that use GB)') # Load all the data final_computer_df = pd.read_csv('data/train/wdc_computers.csv') final_pseudo_laptop_df =
pd.read_csv('data/train/spec_train_data_new.csv')
pandas.read_csv
import numpy as np import pandas as pd import pandas._testing as tm def test_data_frame_value_counts_unsorted(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts(sort=False) expected = pd.Series( data=[1, 2, 1], index=pd.MultiIndex.from_arrays( [(2, 4, 6), (2, 0, 0)], names=["num_legs", "num_wings"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_ascending(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts(ascending=True) expected = pd.Series( data=[1, 1, 2], index=pd.MultiIndex.from_arrays( [(2, 6, 4), (2, 0, 0)], names=["num_legs", "num_wings"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_default(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts() expected = pd.Series( data=[2, 1, 1], index=pd.MultiIndex.from_arrays( [(4, 2, 6), (0, 2, 0)], names=["num_legs", "num_wings"] ), )
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import copy import gc import numpy from numpy.linalg import LinAlgError import joblib import pandas import psutil import pygmo from scipy.optimize import minimize from scipy.optimize import differential_evolution import time from typing import Dict, List, Tuple import warnings from .constants import Constants from .constants import Messages from .datatypes import Measurement from .datatypes import Sensitivity from .generalized_islands import ArchipelagoHelpers from .generalized_islands import LossCalculator from .generalized_islands import ParallelEstimationInfo from .model_checking import ModelChecker from .oed import CovOptimality from .parameter import Parameter from .parameter import ParameterMapper from .parameter import ParameterManager from .simulation import ExtendedSimulator from .utils import Calculations from .utils import OwnDict from .utils import Helpers EPS64 = Constants.eps_float64 PRETTY_METRICS = Constants.pretty_metrics SINGLE_ID = Constants.single_id class Caretaker(): """ Manages (takes care of) all major methods related to simulation, estimation, and evaluation of dynamic bioprocess models and its observation functions. Exposes several convient methods of the individual classes in this module. """ def __init__(self, bioprocess_model_class, model_parameters, states:list=None, initial_values:dict=None, replicate_ids:list=None, initial_switches:list=None, model_name:str=None, observation_functions_parameters:List[tuple]=None, model_checking_assistance:bool=True, ): """ Arguments --------- bioprocess_model_class : Subclass of BioprocessModel This class implements the bioprocess model. model_parameters : list or dict The model parameters, as specified in `bioprocess_model_class`. Keyword arguments ----------------- states : list The model states, as specified in `bioprocess_model_class`. Default is none, which enforces `initial_values` not to be None. initial_values : dict Initial values to the model, keys must match the states with a trailing '0'. Default is None, which enforces `states` not to be None. replicate_ids : list Unique ids of replicates, for which the full model applies. The parameters, as specified for the model and observation functions are considered as global ones, which may have different names and values for each replicate. Default is None, which implies a single replicate model. initial_switches : list A list of booleans, indicating the initial state of switches. Number of switches must correpond to the number of return events in method `state_events`, if this method is implemented by the inheriting class. Default is None, which enables auto-detection of initial switches, which all will be False. model_name : str A descriptive model name. Default is None. observation_funtions_parameters : list of tuples Each tuple stores a subclass of ObservationFunction and a dictionary of its correponding parametrization. Default is None, which implies that there are no ObservationFunctions. model_checking_assistance : bool Runs a few sanity and call checks on the implemented model """ # store arguements for later use self.__bioprocess_model_class = bioprocess_model_class self.__model_parameters = model_parameters self.__states = states self.__initial_values = initial_values self.__replicate_ids = replicate_ids self.__initial_switches = initial_switches self.__model_name = model_name self.__observation_functions_parameters = observation_functions_parameters self.replicate_ids = replicate_ids if model_name is None: self.model_name = bioprocess_model_class.__name__ else: self.model_name = model_name # Create an ExtendendSimulator instance for each replicate id model_checker = ModelChecker() self.simulators = {} for _replicate_id in self.replicate_ids: if _replicate_id is None: _model_name = model_name else: _model_name = f'{model_name}_{_replicate_id}' _simulator = ExtendedSimulator( bioprocess_model_class, model_parameters, states, initial_values, initial_switches, _model_name, observation_functions_parameters, _replicate_id, ) if model_checking_assistance: if not model_checker.check_model_consistency(copy.deepcopy(_simulator)): warnings.warn(f'There might by some issues for {_model_name} with replicate_id {_replicate_id}') self.simulators[_replicate_id] = _simulator # Create a ParameterManager object self._parameter_manager = ParameterManager( self.replicate_ids, self.simulators[self.replicate_ids[0]].get_all_parameters(), ) self.optimizer_kwargs = None #%% Properties @property def replicate_ids(self) -> list: return self._replicate_ids @replicate_ids.setter def replicate_ids(self, value): if value is None: self._replicate_ids = [SINGLE_ID] else: if not Helpers.has_unique_ids(value): raise ValueError(Messages.non_unique_ids) self._replicate_ids = value @property def parameter_mapping(self): return self._parameter_manager.parameter_mapping @property def optimizer_kwargs(self) -> dict: return self._optimizer_kwargs @optimizer_kwargs.setter def optimizer_kwargs(self, value): if value is not None and not isinstance(value, dict): raise ValueError('Optimizer kwargs must be either `None` or a dictionary') self._optimizer_kwargs = value #%% Public methods def add_replicate(self, replicate_id:str, mappings:List[ParameterMapper]=None): """ Adds another replicate to the multi model Caretaker object. Arguments --------- replicate_id : str The new replicate_id to be added. Keyword arguments ----------------- mappings : list of ParameterMapper or tuple A list parameter mappings that should be applied to the new replicate_id. Default is None, which implies that the local parameters names for the new replicate correspond to the global names. Raises ------ AttributeError In case the Caretaker object was created without explicit `replicate_ids` argument. ValueError The new replicate_id is not unique including the extisting ones. KeyError Any of the `mappings` aims not for the new replicate_id. """ # store current parameter mapping _parameter_mappers = self._parameter_manager.get_parameter_mappers() _parameters = self._get_all_parameters() if len(self.replicate_ids) == 1 and self.replicate_ids[0] is None: raise AttributeError('Cannot add replicate_id to implicitly defined single replicate Caretaker object') _updated_replicate_ids = copy.deepcopy(self.replicate_ids) _updated_replicate_ids.append(replicate_id) if not Helpers.has_unique_ids(_updated_replicate_ids): raise ValueError(Messages.non_unique_ids) if mappings is not None: for _mapping in mappings: if _mapping.replicate_id != replicate_id: raise KeyError('The given mapping does not aim for the new replicate') self.__init__( bioprocess_model_class=self.__bioprocess_model_class, model_parameters=self.__model_parameters, states=self.__states, initial_values=self.__initial_values, replicate_ids=_updated_replicate_ids, initial_switches=self.__initial_switches, model_name=self.__model_name, observation_functions_parameters=self.__observation_functions_parameters, ) self.set_parameters(_parameters) self.apply_mappings(_parameter_mappers) if mappings is not None: self.apply_mappings(mappings) def simulate(self, t:numpy.ndarray, parameters:dict=None, verbosity:int=40, reset_afterwards:bool=False, suppress_stdout:bool=True) -> list: """ Runs a forward simulation for the fully specified model and its observation functions (if specified). Arguments --------- t : numpy.ndarray or float The time points for integration. In case a single time point is provided, the solver will treat this as final integration time and chooses the intermediate steps on its own. Keyword arguments ----------------- parameters : dict In case a simulation for specific parameter values is wanted. Default is None. verbosity : int Prints solver statistics (quiet = 50, whisper = 40, normal = 30, loud = 20, scream = 10). Default is 30. suppress_stdout : bool No printouts of integrator warnings, which are directed to stdout by the assimulo package. Set to False for model debugging purposes. Default is True. Returns ------- simulations : list The collection of simulations results as list of ModelState or Observation objects. """ if parameters is not None: _original_parameters = self._get_all_parameters() self.set_parameters(parameters) simulations = [] for _id in self.simulators.keys(): _simulator = self.simulators[_id] simulations.extend(_simulator.simulate(t=t, verbosity=verbosity, reset_afterwards=reset_afterwards, suppress_stdout=suppress_stdout)) if parameters is not None: self.set_parameters(_original_parameters) return simulations def estimate(self, unknowns:dict, measurements:List[Measurement], bounds:List[Tuple]=None, metric:str='negLL', use_global_optimizer:bool=None, report_level:int=0, reset_afterwards:bool=False, handle_CVodeError:bool=True, optimizer_kwargs:dict=None, ) -> Tuple[dict, dict]: """ Estimates values for requested unknowns according to a specific metric, given some measurements. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. Providing a list of valid unknowns causes the use of scipy's differential evolution global optimizer. A dictionary with parameter:guess as key-value pairs is needed to use the local but faster minimizer. measurements : List[Measurement] The data from which the parameter estimation is performed. Can provide a Measurement object for any model state or observation. Keyword arguments ----------------- bounds : list of tuples Bounds for for each unknown to be estimated. Must be provided for use with differential evolution optimizer. Default is None. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. use_global_optimizer : bool Enforce the use of differential evolution optimizer. Default is None, which makes this decision based on the the type of `unknowns` and `bounds`. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = prints estimated parameters and runtime of the estimation job. 2 = prints additionally the `OptimizeResult` result object, as returned by the optimizer 3 = prints additionally handled CVodeErrors, which arise from toxic parameters. This has only effect in case `handle_CVodeError` is True 4 = prints additionally the progress of the optimizer. reset_afterwards : bool To reset the Caretaker object after the estimation has finished. Default is False. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. Returns ------- estimations : dict Key-value pairs of the unknowns and corresponding estimated values. estimation_info : dict Additional information about the estimation job. Raises ------ KeyError Non-unique unknowns are provided. ValueError Invalid unknowns shall be estimated. ValueError No bounds are provided for use of differential evolution optimizer. TypeError A list containing not only Measurement objects is provided. Warns ----- UserWarning The `optimizer_kwargs` argument is not None. """ for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') _start = time.time() if not Helpers.has_unique_ids(unknowns): raise KeyError(Messages.bad_unknowns) # test if parameters are estimated that are not known to the model _valid_unknowns = self._get_valid_parameter_names() for _unknown in unknowns: if _unknown not in _valid_unknowns: raise ValueError(f'Detected invalid unknown to be estimated: {_unknown} vs. {_valid_unknowns}') if use_global_optimizer == False and not isinstance(unknowns, dict): raise ValueError('Must provide initial guesses to use the local minimizer') # sort unknowns and corresponding bounds alphabetically and case-insensitive # Decide also whether to use the local or global minimizer _unknowns_names_sorted = sorted(unknowns, key=str.lower) if isinstance(unknowns, dict): _unknowns = {_unknown_name : unknowns[_unknown_name] for _unknown_name in _unknowns_names_sorted} elif isinstance(unknowns, list): _unknowns = {_unknown_name : None for _unknown_name in _unknowns_names_sorted} if use_global_optimizer is None: use_global_optimizer = True if use_global_optimizer and bounds is None: raise ValueError(Messages.missing_bounds) if bounds is not None: try: _bounds = [bounds[unknowns.index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] except AttributeError: _bounds = [bounds[list(unknowns.keys()).index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] # To protect for integration error when a bound is integer 0 _bounds = Helpers.bounds_to_floats(_bounds) else: _bounds = None # Check for optimizer_kwargs to be used _optimizer_kwargs = {} if self.optimizer_kwargs is None: _warning_flag = False else: _optimizer_kwargs.update(self.optimizer_kwargs) _warning_flag = True # check if the keyword argument `optimizer_kwargs` was set, which has a higher priority over the corresponding Caretaker property if optimizer_kwargs is not None: _optimizer_kwargs = optimizer_kwargs if _warning_flag: warnings.warn('Using the `optimizer_kwargs` keyword argument overrides the Caretaker property `optimizer_kwargs`.', UserWarning) if report_level >= 3: verbosity_CVodeError = True else: verbosity_CVodeError = False if report_level >= 4 and 'disp' not in _optimizer_kwargs.keys(): _optimizer_kwargs['disp'] = True if use_global_optimizer: minimizer_scope = 'differential evolution optimizer' if 'popsize' not in _optimizer_kwargs.keys(): popsize = 5*len(_unknowns) _optimizer_kwargs['popsize'] = popsize opt = differential_evolution(self._loss_fun_scipy, bounds=_bounds, args=(_unknowns, metric, measurements, handle_CVodeError, verbosity_CVodeError, ), **_optimizer_kwargs, ) else: minimizer_scope = 'local minimizer' if 'disp' in _optimizer_kwargs.keys(): options = {'disp' : _optimizer_kwargs['disp']} del _optimizer_kwargs['disp'] _optimizer_kwargs['options'] = options opt = minimize(self._loss_fun_scipy, list(_unknowns.values()), args=(_unknowns, metric, measurements, handle_CVodeError, verbosity_CVodeError, ), bounds=_bounds, **_optimizer_kwargs, ) # Preparing returns estimations = {_unknown : value for _unknown, value in zip(_unknowns, opt.x)} estimation_info = {} estimation_info['opt_info'] = opt if metric in list(PRETTY_METRICS.keys()): estimation_info['metric'] = PRETTY_METRICS[metric] else: estimation_info['metric'] = metric estimation_info['loss'] = opt.fun _end = time.time() estimation_info['runtime_min'] = (_end - _start)/60 if report_level >= 1: print(f'\n----------Results from {minimizer_scope}') print('\nEstimated parameters:') for estimation in estimations.keys(): print(f'{estimation}: {estimations[estimation]}') print(f'\nRuntime was {estimation_info["runtime_min"]:.2f} min') if report_level >= 2: print('\n----------') print(opt) return estimations, estimation_info def estimate_parallel(self, unknowns:list, measurements:List[Measurement], bounds:List[Tuple], metric:str='negLL', report_level:int=0, optimizers:List[str]='de1220', optimizers_kwargs:List[dict]={}, log_each_nth_gen:int=None, rel_pop_size:float=10.0, evolutions:int=5, archipelago_kwargs:dict={}, atol_islands:float=None, rtol_islands:float=1e-6, max_runtime_min:float=None, max_evotime_min:float=None, max_memory_share:float=0.95, handle_CVodeError:bool=True, loss_calculator:LossCalculator=LossCalculator, ) -> Tuple[dict, ParallelEstimationInfo]: """ Estimates values for requested unknowns according to a specific metric, given some measurements, using the generalized island model for parallelization that allows for global optimization. This is provided by the pygmo package, which runs parallel evolutions of populations, with migration of improved variants between the populations occuring. For further info and use of pygmo, see https://github.com/esa/pygmo2, doi:10.5281/zenodo.3603747. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. measurements : List[Measurement] The data from which the parameter estimation is performed. Can provide a Measurement object for any model state or observation. bounds : list of tuples Bounds for for each unknown to be estimated, in the following form [(lower, upper), ...] Keyword arguments ---------------- metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), `SS` (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. report_level : int Enables informative output about the estimation process. Information will be printed after each evolution. Default is 0, which is no output. 1 = Prints the best loss, as well as information about archipelago creation and evolution. For each completed evolution, a dot is printed. 2 = Prints additionally the best loss after each evolution 3 = Prints additionally average loss among all islands, and the runtime of each evolution. 4 = Prints additionally the parameter values for the best loss, and the average parameter values among the champions of all islands in the `archipelago` after the evolutions. optimizers : List[str] or str A list of names for the pygmo optimization algorithms of choice. For a list of such to be conveniently used, see `PygmoOptimizers` class of this module. In case a list with one item is used, this optimizer is used for all explicitly or implicitly (default None of `n_islands`) defined nunmber islands. In case a list with >1 optimizers is used, the corresponding number of islands will be created within the archipelago. The currently supported list of optimizer can be found at pyfoomb.generalized_islands.PygmoOptimizers.optimizers Default is `de1220`, which makes each island to use this algorithm. optimizers_kwargs : List[dict] or dict A list of optimizer_kwargs as dicts, corresponding to the list of optimizers. In case more >1 optimizers are used, the 1-item list of optimizer_kwargs will be applied to all of the optimizers. Default is `[{}]`, i.e. no additional optimizer kwargs. log_each_nth_gen : int Specifies at which each n-th generation the algorithm stores logs. Can be later extracted from the returned `archipelago` instance. Note that only the log from the last evolution is stored in the archipelago. Default is None, which disables logging. rel_pop_size : float Determines the population size on each island, relative to the number of unknown to be estimated, i.e. pop_size = rel_pop_size * len(unknowns), rounded to the next integer. Default is 10, which creates population sizes 10 times the number of unknowns. evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after each finished evolution. Migration depends of the topology of the archipelago, as well as the defined migration polices, which are parts of `archipelago_kwargs`. Default is 5, which triggers five rounds of evolution. archipelago_kwargs : dict The keyword arguments for instantiation of the archipelago. In case `archipelago_kwargs` has no key `t`, the `pygmo.fully_connected()` topology will be used Default is {}, i.e. an empty dictionary, which implies the use of `pygmo.fully_connected()` topology. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. max_runtime_min : float The maximun time in min the estimation process may take. The current runtimee is evaluated after each completion of an evolution. Default is None, which implies there is no maximum runtime for the estimation process. max_evotime_min : float The maximum cumulative pure evolution time the estimation process is allowed to take. In contrast to the `max_runtime_min` stopping criterion, only the evolution runtime is considered, without runtime needed for checking stopping criteria, reporting prints outs between each evolution, etc. Default is None. max_memory_share : float Defines the allowed memory share in usage, for which no evolutions are run anymore. Default is 0.95, meaning that repeat are only run if used memory share is less than 95 %. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. loss_calculator : LossCalculator By subclassing `LossCalculator`, user-defined constraints can be implemented. The resulting subclass needs to be provided. Default is LossCalculator, which implements no additional constraints Returns ------- best_estimates : dict The estimated parameters, according to the best champion among all populations of the archipelago, aftet the last evolution. estimation_result : ParallelEstimationInfo Stores the archipelago and the history of the previous evolutions. Needed to continue an estimation process. Raises ------ KeyError Non-unique unknowns are provided. ValueError Invalid unknowns shall be estimated. """ _start = time.time() if len(unknowns) != len(bounds): raise ValueError('Number of unkowns does not match number of pairs of upper and lower bounds.') if not isinstance(optimizers, list) and isinstance(optimizers, str): optimizers = [optimizers] if not isinstance(optimizers_kwargs, list) and isinstance(optimizers_kwargs, dict): optimizers_kwargs = [optimizers_kwargs] if not Helpers.has_unique_ids(unknowns): raise KeyError(Messages.bad_unknowns) # test if parameters are estimated that are not known to the model _valid_unknowns = self._get_valid_parameter_names() for _unknown in unknowns: if _unknown not in _valid_unknowns: raise ValueError(f'Detected invalid unknown to be estimated: {_unknown} vs. {_valid_unknowns}') # sort unknowns and corresponding bounds _unknowns_names_sorted = sorted(unknowns, key=str.lower) _unknowns = [_unknown_name for _unknown_name in _unknowns_names_sorted] _bounds = [bounds[unknowns.index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] if report_level >= 5: _verbosity_CVodeError = True else: _verbosity_CVodeError = False # get the problem pg_problem = pygmo.problem( loss_calculator( unknowns=_unknowns, bounds=_bounds, metric=metric, measurements=measurements, caretaker_loss_fun=self.loss_function, handle_CVodeError=handle_CVodeError, verbosity_CVodeError=_verbosity_CVodeError, ), ) # get the archipelago archipelago = ArchipelagoHelpers.create_archipelago( _unknowns, optimizers, optimizers_kwargs, pg_problem, rel_pop_size, archipelago_kwargs, log_each_nth_gen, report_level, ) archipelago.problem = loss_calculator estimation_result = ParallelEstimationInfo(archipelago=archipelago) return self.estimate_parallel_continued( estimation_result=estimation_result, evolutions=evolutions, report_level=report_level, atol_islands=atol_islands, rtol_islands=rtol_islands, max_runtime_min=max_runtime_min, max_evotime_min=max_evotime_min, max_memory_share=max_memory_share, start_time=_start, ) def estimate_parallel_continued(self, estimation_result:ParallelEstimationInfo, evolutions:int=1, report_level:int=0, atol_islands:float=None, rtol_islands:float=1e-6, max_runtime_min:float=None, max_evotime_min:float=None, max_memory_share:float=0.95, start_time:float=None, ) -> Tuple[dict, ParallelEstimationInfo]: """ Continues a parallel parameter estimation job by running more evolutions on a corresponding archipelago object. Arguments --------- estimation_result : ParallelEstimationInfo Stores the archipelago and the history of the previous evolutions as returned by method 'estimate_parallel'. Needed to continue an estimation process. Keyword arguments ----------------- evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after an evolution. report_level : int Enables informative output about the estimation process. Information will be printed after each evolution. Default is 0, which is no output. 1 = Prints the best loss, as well as information about archipelago creation and evolution. For each completed evolution, a dot is printed. 2 = Prints additionally the best loss after each evolution 3 = Prints additionally average loss among all islands, and the runtime of each evolution. 4 = Prints additionally the parameter values for the best loss, and the average parameter values among the champions of all islands in the `archipelago` after the evolutions. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. max_runtime_min : float The maximum runtime in min the estimation process is allowed to take. The current runtime is evaluated after each completion of an evolution. Default is None, which implies that there is no time limit for the estimation process. max_evotime_min : float The maximum cumulative pure evolution time the estimation process is allowed to take. In contrast to the `max_runtime_min` stopping criterion, only the evolution runtime is considered, without runtime needed for checking stopping criteria, reporting prints outs between each evolution, etc. Default is None. max_memory_share : float Defines the allowed memory share in usage, for which no evolutions are run anymore. Default is 0.95, meaning that repeat are only run if used memory share is less than 95 %. start_time : float In case a total runtime, started from another method, shall be reported. Default is None, which measured the total run time only within this method. Returns ------- best_estimates : dict The estimated parameters, according to the best champion among all populations of the archipelago, aftet the last evolution. estimation_result : ParallelEstimationInfo Stores the archipelago and the history of the previous evolutions. Needed to continue an estimation process. Raises ------ ValueError Not all island of the archipelago have the same unknowns. """ if start_time is None: start_time = time.time() archipelago = estimation_result.archipelago evolutions_trail = estimation_result.evolutions_trail.copy() if report_level >= 1: if not evolutions_trail['evo_time_min']: _filler = '' else: _filler = 'additional ' print(f'Running {_filler}{evolutions} evolutions for all {len(archipelago)} islands of the archipelago...\n') _current_evotime_min = 0 for _evolution in range(1, evolutions+1): _evo_start = time.time() archipelago.evolve() archipelago.wait_check() _evo_end = time.time() _evo_time_min = (_evo_end - _evo_start)/60 _current_evotime_min += _evo_time_min best_estimates, best_loss, estimates_info = ArchipelagoHelpers.extract_archipelago_results(archipelago) evolutions_trail['evo_time_min'].append(_evo_time_min) evolutions_trail['best_losses'].append(best_loss) evolutions_trail['best_estimates'].append(best_estimates) evolutions_trail['estimates_info'].append(estimates_info) if report_level == 1: if _evolution % 120 == 0: end = '\n' else: end = '' print('.', end=end) elif report_level >= 2: ArchipelagoHelpers.report_evolution_result(evolutions_trail, report_level) # evaluate stopping criteria after each evolution _current_runtime_min = (time.time() - start_time)/60 stopping_criteria = ArchipelagoHelpers.check_evolution_stop( current_losses=estimates_info['losses'], atol_islands=atol_islands, rtol_islands=rtol_islands, current_runtime_min=_current_runtime_min, max_runtime_min=max_runtime_min, current_evotime_min=_current_evotime_min, max_evotime_min=max_evotime_min, max_memory_share=max_memory_share, ) if any(stopping_criteria.values()): if report_level >= 1: print(f'\nReached a stopping criterion after evolution {len(evolutions_trail["evo_time_min"])}:') for _st in stopping_criteria: print(f'{_st}: {stopping_criteria[_st]}') early_stop = True break else: early_stop = False if report_level >= 1: if not early_stop: print(f'\nCompleted {_evolution} {_filler}evolution runs.') print('\nEstimated parameters:') for p in best_estimates: print(f'{p}: {best_estimates[p]}') print('') ArchipelagoHelpers.report_evolution_result(evolutions_trail, report_level=3) _runtime_min = (time.time() - start_time)/60 evolutions_trail['cum_runtime_min'].append(_runtime_min) if report_level >= 1: if _runtime_min/60 > 1: print(f'\nTotal runtime was {_runtime_min/60:.2f} h\n') else: print(f'\nTotal runtime was {_runtime_min:.2f} min\n') estimation_result = ParallelEstimationInfo(archipelago=archipelago, evolutions_trail=evolutions_trail) return best_estimates, estimation_result def estimate_parallel_MC_sampling(self, unknowns:list, measurements:List[Measurement], bounds:List[Tuple], mc_samples:int=25, reuse_errors_as_weights:bool=True, metric:str='negLL', report_level:int=0, optimizers:List[str]='de1220', optimizers_kwargs:List[dict]={}, rel_pop_size:float=10.0, evolutions:int=25, archipelago_kwargs:dict={}, atol_islands:float=None, rtol_islands:float=1e-6, n_islands:int=4, handle_CVodeError:bool=True, loss_calculator:LossCalculator=LossCalculator, jobs_to_save:int=None, max_memory_share:float=0.95, ) -> pandas.DataFrame: """ Performs Monte-Carlo sampling from measurements to create new measurements, according to the statitical distribution of the respective Measurement objects. For each newly created measurement, the requested unknowns (parameters) are estimated, resulting in an empirical distribution of parameter values. these empirical distributions for the parameters can be assessed for uncertainties and correlations. For each MC sample, a parallel estimation procedure is carried out, for details see methods `estimate_parallel` and `estimate_parallel_continued`. Depending on the available number of CPUs on your machine, these estimation procedure are run in parallel. The selection of suitable hyperparameters, e.g. which optimizers, etc., use method `estimate_parallel` and refer to corresponding Jupyter notebooks. NOTE: To increase the number of MC samples to an arbiratry high number, set `repeats_to_save` argument. Afterwards, the results saved to disk can be read and merged. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. measurements : List[Measurement] The measurements from which the parameters are to be estimated. bounds : List[tuple] List of tuples (lower, upper), one tuple for each parameter. Must be provided when using the global optimizer. Default is None. Keyword arguments ----------------- mc_samples : int The number of MC samples that shall be drawn from the measurement data. Default is 25. reuse_errors_as_weights : bool Uses the measurement errors as weights for each set of measurement samples drawn. Default is True. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement objects are accordingly specified. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = Prints a dot for each processing batch, the total runtime and the ratio of samples that reached convergence. 2 = Prints likewise for 1, but with more information on each batch. 3 = Prints additionally the runtime of each batch, as well as as summary for the obtained parameter distributions. 4 = Prints additionally the reason for a MS sample to finish (i.e., whether convergence or the maximum number of evolutions was reached). 5 = Prints additionally information on the creation of the archipelagos for each batch 6 = Prints additionally the current evolution for each MC samples, and report any handled integration error. optimizers : List[str] or str A list of names for the pygmo optimization algorithms of choice. For a list of such to be conveniently used, see `PygmoOptimizers` class of this module. In case a list with one item is used, this optimizer is used for all explicitly or implicitly (default None of `n_islands`) defined nunmber islands. In case a list with >1 optimizers is used, the corresponding number of islands will be created within the archipelago. The currently supported list of optimizer can be found at pyfoomb.generalized_islands.PygmoOptimizers.optimizers Default is `de1220`, which makes each island to use this algorithm. optimizers_kwargs : List[dict] or dict A list of optimizer_kwargs as dicts, corresponding to the list of optimizers. In case more >1 optimizers are used, the 1-item list of optimizer_kwargs will be applied to all of the optimizers. Default is `{}`, i.e. no additional optimizer kwargs. rel_pop_size : float Determines the population size on each island, relative to the number of unknown to be estimated, i.e. pop_size = rel_pop_size * len(unknowns), rounded to the next integer. Default is 10, which creates population sizes 10 times the number of unknowns. evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after each finished evolution. Migration depends of the topology of the archipelago, as well as the defined migration polices, which are parts of `archipelago_kwargs`. Default is 5, which triggers five rounds of evolution. archipelago_kwargs : dict The keyword arguments for instantiation of the archipelago. In case `archipelago_kwargs` has no key `t`, the `pygmo.fully_connected()` topology will be used Default is {}, i.e. an empty dictionary, which implies the use of `pygmo.fully_connected()` topology. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. n_islands : int Specifies the number of parallel estimations per MC samples for all archipelagos in an estimation batch. In case a list of optimizers is provided, the number of islands is implicitly defined by its length. Must use values > 1. Default is 4. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. loss_calculator : LossCalculator By subclassing `LossCalculator`, user-defined constraints can be implemented. The resulting subclass needs to be provided. Default is LossCalculator, which implements no additional constraints jobs_to_save : int Set to repeatedly run the specifified number of MC samples and to save the results from each repeat to file. Default is None, which causes no result storage ti file. max_memory_share : float Defines the allowed memory share in usage, for which no repeats are run anymore. Has only effect if `jobs_to_save` is not None. Default is 0.95, meaning that repeat are only run if used memory share is less than 95 %. Returns ------- estimates : pandas.DataFrame The values from repeated estimation for the requested unknowns. Only converged estimations are included. Raises ------ AttributeError Measurements have no errors. ValueError Degree of archipelago parallelization is < 2. TypeError A list containing not only Measurement objects is provided. KeyError: Non-unique unknowns detected. ValueError: Invalid parameters shall be estimated. """ if jobs_to_save is None: _estimate = self._estimate_parallel_MC_sampling( unknowns=unknowns, measurements=measurements, bounds=bounds, mc_samples=mc_samples, reuse_errors_as_weights=reuse_errors_as_weights, metric=metric, report_level=report_level, optimizers=optimizers, optimizers_kwargs=optimizers_kwargs, rel_pop_size=rel_pop_size, evolutions=evolutions, archipelago_kwargs=archipelago_kwargs, atol_islands=atol_islands, rtol_islands=rtol_islands, n_islands=n_islands, handle_CVodeError=handle_CVodeError, loss_calculator=loss_calculator, ) return pandas.DataFrame.from_dict(_estimate) _estimate_batches = [] session_id = int(time.monotonic()) for i in range(1, jobs_to_save+1): curr_memory_share = psutil.virtual_memory().percent/100 if curr_memory_share > max_memory_share: print(f'Cannot run MC estimation job due to low memory: {(1-curr_memory_share)*100:.2f} % free memory left') else: _estimate_batch = self._estimate_parallel_MC_sampling( unknowns=unknowns, measurements=measurements, bounds=bounds, mc_samples=mc_samples, reuse_errors_as_weights=reuse_errors_as_weights, metric=metric, report_level=report_level, optimizers=optimizers, optimizers_kwargs=optimizers_kwargs, rel_pop_size=rel_pop_size, evolutions=evolutions, archipelago_kwargs=archipelago_kwargs, atol_islands=atol_islands, rtol_islands=rtol_islands, n_islands=n_islands, handle_CVodeError=handle_CVodeError, loss_calculator=loss_calculator, ) _filename = f'{self.model_name}_MC-sample-estimates_session-id-{session_id}_job-{i}.xlsx' _df = pandas.DataFrame.from_dict(_estimate_batch) _estimate_batches.append(_df) _df.to_excel(_filename) if report_level > 0: print(f'Current memory usage is {psutil.virtual_memory().percent:.2f} %.\nSaved results of job #{i} to file: {_filename}\n') return pandas.concat(_estimate_batches, ignore_index=True) def _estimate_parallel_MC_sampling(self, unknowns:list, measurements:List[Measurement], bounds:List[Tuple], mc_samples:int=25, reuse_errors_as_weights:bool=True, metric:str='negLL', report_level:int=0, optimizers:List[str]='de1220', optimizers_kwargs:List[dict]={}, rel_pop_size:float=10.0, evolutions:int=25, archipelago_kwargs:dict={}, atol_islands:float=None, rtol_islands:float=1e-6, n_islands:int=4, handle_CVodeError:bool=True, loss_calculator:LossCalculator=LossCalculator, ) -> dict: """ Performs Monte-Carlo sampling from measurements to create new measurements, according to the statitical distribution of the respective Measurement objects. For each newly created measurement, the requested unknowns (parameters) are estimated, resulting in an empirical distribution of parameter values. these empirical distributions for the parameters can be assessed for uncertainties and correlations. For each MC sample, a parallel estimation procedure is carried out, for details see methods `estimate_parallel` and `estimate_parallel_continued`. Depending on the available number of CPUs on your machine, these estimation procedure are run in parallel. The selection of suitable hyperparameters, e.g. which optimizers, etc., use method `estimate_parallel` and refer to corresponding Jupyter notebooks. NOTE: To increase the number of MC samples to an arbiratry high number, run this method several times and store intermediate results. Afterwards, these can be merged. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : dict or list The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. measurements : List[Measurement] The measurements from which the parameters are to be estimated. bounds : List[tuple] List of tuples (lower, upper), one tuple for each parameter. Must be provided when using the global optimizer. Default is None. Keyword arguments ----------------- mc_samples : int The number of MC samples that shall be drawn from the measurement data. Default is 25. reuse_errors_as_weights : bool Uses the measurement errors as weights for each set of measurement samples drawn. Default is True. metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement objects are accordingly specified. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = Prints a dot for each processing batch, the total runtime and the ratio of samples that reached convergence. 2 = Prints likewise for 1, but with more information on each batch. 3 = Prints additionally the runtime of each batch, as well as as summary for the obtained parameter distributions. 4 = Prints additionally the reason for a MS sample to finish (i.e., whether convergence or the maximum number of evolutions was reached). 5 = Prints additionally information on the creation of the archipelagos for each batch 6 = Prints additionally the current evolution for each MC samples, and report any handled integration error. optimizers : List[str] or str A list of names for the pygmo optimization algorithms of choice. For a list of such to be conveniently used, see `PygmoOptimizers` class of this module. In case a list with one item is used, this optimizer is used for all explicitly or implicitly (default None of `n_islands`) defined nunmber islands. In case a list with >1 optimizers is used, the corresponding number of islands will be created within the archipelago. The currently supported list of optimizer can be found at pyfoomb.generalized_islands.PygmoOptimizers.optimizers Default is `de1220`, which makes each island to use this algorithm. optimizers_kwargs : List[dict] or dict A list of optimizer_kwargs as dicts, corresponding to the list of optimizers. In case more >1 optimizers are used, the 1-item list of optimizer_kwargs will be applied to all of the optimizers. Default is `{}`, i.e. no additional optimizer kwargs. rel_pop_size : float Determines the population size on each island, relative to the number of unknown to be estimated, i.e. pop_size = rel_pop_size * len(unknowns), rounded to the next integer. Default is 10, which creates population sizes 10 times the number of unknowns. evolutions : int Defines how often the populations on the islands are evolved. Migrations between the populations of the islands occur after each finished evolution. Migration depends of the topology of the archipelago, as well as the defined migration polices, which are parts of `archipelago_kwargs`. Default is 5, which triggers five rounds of evolution. archipelago_kwargs : dict The keyword arguments for instantiation of the archipelago. In case `archipelago_kwargs` has no key `t`, the `pygmo.fully_connected()` topology will be used Default is {}, i.e. an empty dictionary, which implies the use of `pygmo.fully_connected()` topology. atol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is None, which implies no effect for this argument. rtol_islands : float Defines a stopping criterion that is checked after each evolution. If the std of the islands' losses < atol_islands + rtol_islands * abs(mean(islands' losses)), then the optimization is stopped. Default is 1e-6. n_islands : int Specifies the number of parallel estimations per MC samples for all archipelagos in an estimation batch. In case a list of optimizers is provided, the number of islands is implicitly defined by its length. Must use values > 1. Default is 4. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. loss_calculator : LossCalculator By subclassing `LossCalculator`, user-defined constraints can be implemented. The resulting subclass needs to be provided. Default is LossCalculator, which implements no additional constraints Returns ------- estimates : dict The values from repeated estimation for the requested unknowns. Only converged estimations are included. estimates_info : dict Contains additional information for all finished jobs. Raises ------ AttributeError Measurements have no errors. ValueError Degree of archipelago parallelization is < 2. TypeError A list containing not only Measurement objects is provided. KeyError: Non-unique unknowns detected. ValueError: Invalid parameters shall be estimated. """ _start = time.time() # Some input error checkings if len(unknowns) != len(bounds): raise ValueError('Number of unkowns does not match number of pairs of upper and lower bounds.') for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if not Helpers.all_measurements_have_errors(measurements): raise AttributeError('Measurements must have errors') if not Helpers.has_unique_ids(unknowns): raise KeyError(Messages.bad_unknowns) _valid_unknowns = self._get_valid_parameter_names() for _unknown in unknowns: if _unknown not in _valid_unknowns: raise ValueError(f'Detected invalid unknown to be estimated: {_unknown} vs. {_valid_unknowns}') # Sort unknowns and corresponding bounds _unknowns_names_sorted = sorted(unknowns, key=str.lower) _unknowns = [_unknown_name for _unknown_name in _unknowns_names_sorted] _bounds = [bounds[unknowns.index(_unknown_name)] for _unknown_name in _unknowns_names_sorted] if report_level >= 6: _verbosity_CVodeError = True else: _verbosity_CVodeError = False # Check whether to use the same optimizer for all islands or a list of optimizers if isinstance(optimizers, str): optimizers = [optimizers]*n_islands elif isinstance(optimizers, list): n_islands = len(optimizers) if isinstance(optimizers_kwargs, dict): optimizers_kwargs = [optimizers_kwargs]*n_islands if n_islands < 2: raise ValueError('Must use at least 2 islands per archipelago, either by specifying `n_islands` or using a list with more than 1 optimizers for kwargs `optimizers`.') if atol_islands is None: atol_islands = 0.0 if rtol_islands is None: rtol_islands = 0.0 # Calculate the number of archipelagos that can be run in parallel n_archis = max([int(numpy.floor(joblib.cpu_count()/n_islands)), 1]) # Collects all finished estimation jobs _mc_estimates = [] # Run parallel estimation jobs batch-wise for i in range(1, mc_samples+1, n_archis): _batch_no = int((i-1+n_archis)/n_archis) if report_level == 1: if _batch_no % 120 == 0: end = '\n' else: end = '' print('.', end=end) elif report_level >= 2: if report_level >= 3: _insert = '\n' else: _insert = '' _current_samples = [_sample for _sample in range(i, _batch_no*n_archis+1) if _sample <= mc_samples] _first = _current_samples[0] _last = f' to {_current_samples[-1]}' if _current_samples[-1] != _first else '' print(f'{_insert}------- Starting batch #{_batch_no} for MC sample {_first}{_last}.') # Initialize the current batch _batch_start = time.time() mc_count = i active_archis = [] # Create a batch of achipelagos for j in range(n_archis): if mc_count+j > mc_samples: break # Create the problem for a MC sample _pg_problem = pygmo.problem( loss_calculator( unknowns=_unknowns, bounds=_bounds, metric=metric, measurements=self._draw_measurement_samples(measurements, reuse_errors_as_weights), caretaker_loss_fun=self.loss_function, handle_CVodeError=handle_CVodeError, verbosity_CVodeError=_verbosity_CVodeError, ) ) # Create the archipelago for the current problem _archi = ArchipelagoHelpers.create_archipelago( unknowns=_unknowns, optimizers=optimizers, optimizers_kwargs=optimizers_kwargs, pg_problem=_pg_problem, rel_pop_size=rel_pop_size, archipelago_kwargs=archipelago_kwargs, log_each_nth_gen=None, report_level=0, ) _archi.mc_info = f'MC sample #{mc_count+j}' _archi.finished = False _archi.problem = loss_calculator _archi.wait_check() if report_level >= 5: print(f'{_archi.mc_info}: created archipelago with {len(_archi)} islands') active_archis.append(_archi) # Evolve the archipelagos in the current batch for j in range(len(active_archis)): for evo in range(1, evolutions+1): # Start an async evolution for all non-converged archis for _archi in active_archis: if not _archi.finished: if report_level >= 6: print(f'\t{_archi.mc_info}: running evolution {evo}') _archi.evolve() # Wait for all archis to finish for _archi in active_archis: if not _archi.finished: _archi.wait_check() # Check the archis for results for _archi in active_archis: # Calculate convergence criterion _losses = numpy.array(_archi.get_champions_f()).flatten() _stop_criterion = atol_islands + rtol_islands * numpy.abs(numpy.mean(_losses)) _abs_std = numpy.std(_losses, ddof=1) # Check for convergence for the non-finished archi if _abs_std < _stop_criterion and not _archi.finished: _best_estimates = ArchipelagoHelpers.estimates_from_archipelago(_archi) _best_estimates['convergence'] = True _best_estimates['max_evos'] = False _best_estimates['archi'] = f'{_archi.mc_info}' _best_estimates['losses'] = _losses _archi.finished = True _mc_estimates.append(_best_estimates) if report_level >= 4: print(f'{_archi.mc_info}: convergence') # Check for max evolutions for the non-finished archi elif evo == evolutions and not _archi.finished: _best_estimates = ArchipelagoHelpers.estimates_from_archipelago(_archi) _best_estimates['convergence'] = False _best_estimates['max_evos'] = True _best_estimates['archi'] = f'{_archi.mc_info}' _best_estimates['losses'] = _losses _archi.finished = True _mc_estimates.append(_best_estimates) if report_level >= 4: print(f'{_archi.mc_info}: no convergence after max. evolutions ({evo}).') if all([_archi.finished for _archi in active_archis]): del active_archis gc.collect() active_archis = [] break if all([_archi.finished for _archi in active_archis]): del active_archis gc.collect() active_archis = [] break if report_level >= 3: print(f'Runtime for batch {_batch_no} was {(time.time() - _batch_start)/60:.2f} min.') # All requested MC samples were run if mc_count > mc_samples: break # Comprehend results aug_unknowns = [*_unknowns, 'convergence', 'max_evos', 'archi', 'losses'] estimates_info = {str(_p) : [] for _p in aug_unknowns} for _mc_estimate in _mc_estimates: for _p in _mc_estimate: estimates_info[_p].append(_mc_estimate[_p]) estimates = { str(_p) : numpy.array(numpy.array(estimates_info[_p])[estimates_info['convergence']]) # include only samples that converged for _p in _unknowns } if report_level >= 1: _end = time.time() # Runtime was > 1 h if (_end-_start)/3600 > 1: print(f'\n-----------------------------------------------\nTotal runtime was {(_end-_start)/3600:.2f} h.') else: print(f'\n-----------------------------------------------\nTotal runtime was {(_end-_start)/60:.2f} min.') print(f'Convergence ratio was {numpy.sum(estimates_info["convergence"])/len(estimates_info["convergence"])*100:.1f} %.') if report_level >= 3: print('\nSummaries for empirical parameter distributions\n-----------------------------------------------') print(pandas.DataFrame(estimates).describe().T) return estimates def estimate_repeatedly(self, unknowns:list, measurements:List[Measurement], bounds:List[tuple], metric:str='negLL', jobs:int=10, rel_jobs:float=None, report_level:int=0, reset_afterwards:bool=False, handle_CVodeError:bool=True, ) -> Tuple[dict, list]: """ Runs a several global estimations for the requested unknowns. Resulting distributions for the estimated parameters can be inspected for measures of dispersion or correlations among parameters. In case a rather high number of estimation jobs is run, the resulting distributions can be nicely investigated using the Visualization.show_parameter_distributions method. NOTE: This method puts considerable computational load on your machine. Arguments --------- unknowns : list or dict The parameters to be estimated. Can be any of the model parameters, initial values or observation parameters. In case a dict is provided, the corresponding values are ignored. measurements : List[Measurement] The data, from which the repeated estimation is performed. Can provide a Measurement object for any model state or observation. bounds : List[Tuple] Bounds for for each unknown to be estimated. Keyword arguments ----------------- metric : str The metric according to which the loss to be minimized is calculated. Can be one of, e.g. `negLL` (negative log-likelihood), 'SS' (sum of squares), or `WSS` (weighted sum of squares). Default is `negLL`, which implies that the corresponding Measurement object are accordingly specified. jobs : int The number of estimation jobs that are requested. Default is 10. rel_jobs : float Number of estimation jobs, relative to the number of unknowns: rel_jobs * number of unknowns. Overrides jobs argument. Default is None, which implies use of `jobs`. report_level : int Enables informative output about the estimation process. Default is 0, which is no output. 1 = prints a summary of the empirical parameter distributions and basic information about the parallization. 2 = reports additionally about each parallel estimation job. reset_afterwards : bool To reset the Caretaker object after the estimation has finished. Default is False. handle_CVodeError : bool Catches CVodeError raised by the solver, in order to not interrupt the estimations for toxic parameter values. Default is True. Returns ------- repeated_estimates : dict The values from repeated estimation for the requested unknowns. results : list Contains estimation_info dicts for each estimation job. TypeError A list containing not only Measurement objects is provided. Warns ----- UserWarning Property `optimizer_kwargs` of this Caretaker instance has key `disp`. """ warnings.warn( 'This method will be deprecated in future releases of pyFOOMB.', PendingDeprecationWarning ) for _item in measurements: if not isinstance(_item, Measurement): raise TypeError('Must provide a list of Measurement objects') if isinstance(unknowns, list): unknowns = {unknown : None for unknown in unknowns} # rel_jobs overrides jobs if rel_jobs is not None: jobs = int(numpy.ceil(rel_jobs * len(bounds))) if self.optimizer_kwargs is not None: if 'disp' in self.optimizer_kwargs.keys(): warnings.warn( 'Reporting progress for each single optimization job is deactivated for parallel multi-estimation methods', UserWarning, ) # collect arg instances for each parallel job arg_instances = [ { 'unknowns' : unknowns, 'measurements' : measurements, 'bounds' : bounds, 'metric' : metric, 'use_global_optimizer' : True, 'handle_CVodeError' : handle_CVodeError, 'optimizer_kwargs' : {'disp' : False}, } for job in range(jobs) ] parallel_verbosity = 0 if report_level >= 1: parallel_verbosity = 1 if report_level >= 2: parallel_verbosity = 11 # do the jobs repeated_estimates, results = self._estimate_parallelized_helper(arg_instances, unknowns, parallel_verbosity) if report_level >= 1: print('\nSummaries for empirical parameter distributions\n-----------------------------------------------') print(
pandas.DataFrame(repeated_estimates)
pandas.DataFrame
import json from datetime import datetime import numpy as np import pandas as pd from joblib import dump, load from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from os import mkdir class kickstarter_predictor(): def __init__(self) -> None: self._RSEED=42 self._json_cols=['category', 'location'] self._cat_features_impute = ['country', 'currency', 'category_name', 'location_type'] self._cat_features_onehot = ['country', 'currency', 'category_name', 'location_type'] self.preprocessor = ColumnTransformer( transformers=[ #('cat_impute', SimpleImputer(strategy='constant', fill_value='missing'), self._cat_features_impute), ('cat_onehot', OneHotEncoder(handle_unknown='ignore'), self._cat_features_onehot), ('untouched', 'passthrough', ['duration','goal_usd', 'launched_at_month', 'created_at_month']) #('untouched', 'passthrough', ['deadline','static_usd_rate', 'goal', 'launched_at', 'created_at']) ], sparse_threshold=0 ) self.model = RandomForestClassifier(n_estimators=120, random_state=self._RSEED, max_features = 'sqrt', n_jobs=-1, verbose = 1) try: mkdir('./output') except OSError: print ("Creation of the directory output failed.") def expand_json_cols(self, df): """ Expand columns that contain json objects Parameters --------- df: Pandas DataFrame Returns -------- df: Pandas DataFrame """ df_dicts = pd.DataFrame() print('---------- Parsing json ------------') for col in self._json_cols: print('Parsing json: '+col) c = [] for i, val in df[col].items(): try: c.append(json.loads(val)) except: c.append(dict()) df_dicts[col] = pd.Series(np.array(c)) print('---------- Expanding dictionaries --------') df_expanded = [] for col in df_dicts.columns: print('Expanding: '+col) df_expanded.append(
pd.json_normalize(df_dicts[col])
pandas.json_normalize
import os import param import pandas as pd from .tasks import add_async from .projects import _get_project_dir from .collections import get_collections from .metadata import get_metadata, update_metadata from .. import util from .. import static from ..plugins import load_providers, load_plugins, list_plugins from ..database.database import get_db, db_session, select_datasets @add_async def download(catalog_entry, file_path, dataset=None, **kwargs): """Download dataset and save it locally. Args: catalog_entry (string, Required): uri of catalog_entry within a service or collection file_path (string, Required): path location to save downloaded data dataset (string, Optional, Default=None): maybe only be used by some providers async: (bool, Optional, Default=False) if True, download in background kwargs: optional download kwargs Returns: data (dict): details of downloaded data """ service_uri = catalog_entry if file_path is None: pass provider, service, catalog_id = util.parse_service_uri(service_uri) provider_plugin = load_providers()[provider] data = provider_plugin.download(service=service, catalog_id=catalog_id, file_path=file_path, dataset=dataset, **kwargs) return data @add_async def publish(publisher_uri, options=None, **kwargs): if isinstance(options, param.Parameterized): options = dict(options.get_param_values()) options = options or dict() options.update(kwargs) provider, publisher, _ = util.parse_service_uri(publisher_uri) provider_plugin = load_providers()[provider] data = provider_plugin.publish(publisher=publisher, **options) return data @add_async def download_datasets(datasets, options=None, raise_on_error=False): """Download datasets and save them in the Quest project. Args: datasets (string or list, Required): datasets to download options (dict, Optional, Default=None): Dictionary of download options to stage the datasets with before downloading (see :func:`quest.api.stage_for_download`) raise_on_error (bool, Optional, Default=False): if True, if an error occurs raise an exception async (bool, Optional, Default=False): if True, download in background Note: If `options` are not provided then the `datasets` should already download options set by calling :func:`quest.api.stage_for_download`. Returns: status (dict): download status of datasets """ if options is not None: datasets = stage_for_download(uris=datasets, options=options) datasets = get_metadata(datasets, as_dataframe=True) if datasets.empty: return # filter out non download datasets datasets = datasets[datasets['source'] == static.DatasetSource.WEB_SERVICE] db = get_db() project_path = _get_project_dir() status = {} for idx, dataset in datasets.iterrows(): collection_path = os.path.join(project_path, dataset['collection']) catalog_entry = dataset["catalog_entry"] try: update_metadata(idx, quest_metadata={'status': static.DatasetStatus.PENDING}) kwargs = dataset['options'] or dict() all_metadata = download(catalog_entry, file_path=collection_path, dataset=idx, **kwargs) metadata = all_metadata.pop('metadata', None) quest_metadata = all_metadata quest_metadata.update({ 'status': static.DatasetStatus.DOWNLOADED, 'message': 'success', }) except Exception as e: if raise_on_error: raise quest_metadata = { 'status': static.DatasetStatus.FAILED_DOWNLOAD, 'message': str(e), } metadata = None status[idx] = quest_metadata['status'] quest_metadata.update({'metadata': metadata}) with db_session: dataset = db.Dataset[idx] dataset.set(**quest_metadata) return status def get_download_options(uris, fmt='json'): """List optional kwargs that can be specified when downloading a dataset. Args: uris (string or list, Required): uris of catalog_entries or datasets fmt (string, Required, Default='json'): format in which to return download_options. One of ['json', 'param'] Returns: download_options (dict): download options that can be specified when calling quest.api.stage_for_download or quest.api.download """ uris = util.listify(uris) grouped_uris = util.classify_uris(uris, as_dataframe=False, exclude=['collections']) services = grouped_uris.get(static.UriType.SERVICE) or [] datasets = grouped_uris.get(static.UriType.DATASET) or [] service_uris = {s: s for s in services} service_uris.update({dataset: get_metadata(dataset)[dataset]['catalog_entry'] for dataset in datasets}) options = {} for uri, service_uri in service_uris.items(): provider, service, _ = util.parse_service_uri(service_uri) provider_plugin = load_providers()[provider] options[uri] = provider_plugin.get_download_options(service, fmt) return options def get_publish_options(publish_uri, fmt='json'): uris = util.listify(publish_uri) options = {} for uri in uris: publish_uri = uri provider, publisher, _ = util.parse_service_uri(publish_uri) provider_plugin = load_providers()[provider] options[uri] = provider_plugin.publish_options(publisher, fmt) return options @add_async def get_datasets(expand=None, filters=None, queries=None, as_dataframe=None): """Return all available datasets in active project. Args: expand (bool, Optional, Default=None): include dataset details and format as dict filters(dict, Optional, Default=None): filter dataset by any metadata field queries(list, Optional, Default=None): list of string arguments to pass to pandas.DataFrame.query to filter the datasets as_dataframe (bool or None, Optional, Default=None): include dataset details and format as pandas dataframe Returns: uris (list, dict, pandas Dataframe, Default=list): staged dataset uids """ datasets = select_datasets() datasets =
pd.DataFrame(datasets)
pandas.DataFrame
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_run_if_out_of_bounds(): algo = algos.RunIfOutOfBounds(0.5) dts = pd.date_range('2010-01-01', periods=3) s = bt.Strategy('s') data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.temp['selected'] = ['c1', 'c2'] s.temp['weights'] = {'c1': .5, 'c2':.5} s.update(dts[0]) s.children['c1'] = bt.core.SecurityBase('c1') s.children['c2'] = bt.core.SecurityBase('c2') s.children['c1']._weight = 0.5 s.children['c2']._weight = 0.5 assert not algo(s) s.children['c1']._weight = 0.25 s.children['c2']._weight = 0.75 assert not algo(s) s.children['c1']._weight = 0.24 s.children['c2']._weight = 0.76 assert algo(s) s.children['c1']._weight = 0.75 s.children['c2']._weight = 0.25 assert not algo(s) s.children['c1']._weight = 0.76 s.children['c2']._weight = 0.24 assert algo(s) def test_run_after_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDate('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert algo(target) def test_run_after_days(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDays(3) assert not algo(target) assert not algo(target) assert not algo(target) assert algo(target) def test_set_notional(): algo = algos.SetNotional('notional') s = bt.FixedIncomeStrategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) notional = pd.Series(index=dts[:2], data=[1e6, 5e6]) s.setup( data, notional = notional ) s.update(dts[0]) assert algo(s) assert s.temp['notional_value'] == 1e6 s.update(dts[1]) assert algo(s) assert s.temp['notional_value'] == 5e6 s.update(dts[2]) assert not algo(s) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_rebalance_updatecount(): algo = algos.Rebalance() s = bt.Strategy('s') s.use_integer_positions(False) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4','c5'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) assert s.value == 1000 assert s.capital == 0 # Update is called once when each weighted security is created (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[1]) s.temp['weights'] = {'c1': 0.5, 'c2':0.5} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[2]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (2) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 6 def test_rebalance_fixedincome(): algo = algos.Rebalance() c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') s = bt.FixedIncomeStrategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) coupons = pd.DataFrame(index=dts, columns=['c2'], data=0) s.setup(data, coupons=coupons) s.update(dts[0]) s.temp['notional_value'] = 1000 s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000 c1 = s['c1'] assert c1.value == 1000 assert c1.notional_value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000*100 c2 = s['c2'] assert c1.value == 0 assert c1.notional_value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000*100 assert c2.notional_value == 1000 assert c2.position == 1000 assert c2.weight == 1. def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectAll(include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectAll(include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly_n_none(): algo = algos.SelectRandomly(n=None) # Behaves like SelectAll s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectRandomly(n=None, include_no_data=True) assert algo2(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectRandomly(n=None, include_negative=True) assert algo3(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[0]] = np.nan data['c2'][dts[0]] = 95 data['c3'][dts[0]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectRandomly(n=1) assert algo(s) assert s.temp.pop('selected') == ['c2'] random.seed(1000) algo = algos.SelectRandomly(n=1, include_negative=True) assert algo(s) assert s.temp.pop('selected') == ['c3'] random.seed(1009) algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c1'] random.seed(1009) # If selected already set, it will further filter it s.temp['selected'] = ['c2'] algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c2'] def test_select_these(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected algo = algos.SelectThese( ['c1']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectThese( ['c1', 'c2'], include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectThese(['c1', 'c2'], include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where_all(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) s.setup(data, where = where) s.update(dts[0]) algo = algos.SelectWhere('where') assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectWhere('where', include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectWhere('where', include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere('where') s.setup(data, where=where) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_where_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere(where) s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_regex(): s = bt.Strategy('s') algo = algos.SelectRegex( 'c1' ) s.temp['selected'] = ['a1', 'c1', 'c2', 'c11', 'cc1'] assert algo( s ) assert s.temp['selected'] == ['c1', 'c11', 'cc1'] algo = algos.SelectRegex( '^c1$' ) assert algo( s ) assert s.temp['selected'] == ['c1'] def test_resolve_on_the_run(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'b1'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c2'][dts[2]] = -5 on_the_run = pd.DataFrame(index=dts, columns=['c'], data='c1') on_the_run.loc[dts[2], 'c'] = 'c2' s.setup(data, on_the_run = on_the_run) s.update(dts[0]) s.temp['selected'] = ['c', 'b1'] algo = algos.ResolveOnTheRun( 'on_the_run' ) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # make sure don't keep nan s.update(dts[1]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected # if specify include_no_data then 2 algo2 = algos.ResolveOnTheRun('on_the_run', include_no_data=True) s.temp['selected'] = ['c', 'b1'] assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # behavior on negative prices s.update(dts[2]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected algo3 = algos.ResolveOnTheRun('on_the_run', include_negative=True) s.temp['selected'] = ['c', 'b1'] assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c2' in selected assert 'b1' in selected def test_select_types(): c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') c3 = bt.HedgeSecurity('c3') c4 = bt.CouponPayingHedgeSecurity('c4') c5 = bt.FixedIncomeSecurity('c5') s = bt.Strategy('p', children = [c1, c2, c3, c4, c5]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) algo = algos.SelectTypes(include_types=(bt.Security, bt.HedgeSecurity), exclude_types=()) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3']) algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,), exclude_types=(bt.CouponPayingSecurity,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3', 'c5']) s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c2', 'c3']) def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_scale_weights(): s = bt.Strategy('s') algo = algos.ScaleWeights( -0.5 ) s.temp['weights'] = {'c1': 0.5, 'c2': -0.4, 'c3':0 } assert algo( s ) assert s.temp['weights'] == {'c1':-0.25, 'c2':0.2, 'c3':0} def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_target(): algo = algos.WeighTarget('target') s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) target = pd.DataFrame(index=dts[:2], columns=['c1', 'c2'], data=0.5) target['c1'].loc[dts[1]] = 1.0 target['c2'].loc[dts[1]] = 0.0 s.setup( data, target = target ) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.5 assert weights['c2'] == 0.5 s.update(dts[1]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 1.0 assert weights['c2'] == 0.0 s.update(dts[2]) assert not algo(s) def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data['c1'].loc[dts[1]] = 105 data['c1'].loc[dts[2]] = 95 data['c1'].loc[dts[3]] = 105 data['c1'].loc[dts[4]] = 95 # low vol c2 data['c2'].loc[dts[1]] = 100.1 data['c2'].loc[dts[2]] = 99.9 data['c2'].loc[dts[3]] = 100.1 data['c2'].loc[dts[4]] = 99.9 s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c2'] > weights['c1'] aae(weights['c1'], 0.020, 3) aae(weights['c2'], 0.980, 3) @mock.patch('ffn.calc_mean_var_weights') def test_weigh_mean_var(mock_mv): algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5)) mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_mv.called rets = mock_mv.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_randomly(): s = bt.Strategy('s') s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.WeighRandomly() assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 assert sum( weights.values() ) == 1. algo = algos.WeighRandomly( (0.3,0.5), 0.95) assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 aae( sum( weights.values() ), 0.95 ) for c in s.temp['selected']: assert weights[c] <= 0.5 assert weights[c] >= 0.3 def test_set_stat(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( 'test_stat' ) s.setup(data, test_stat = stat) s.update(dts[0]) print() print(s.get_data('test_stat')) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_set_stat_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( stat ) s.setup(data) s.update(dts[0]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_stat_total_return(): algo = algos.StatTotalReturn(lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) stat = s.temp['stat'] assert len(stat) == 2 assert stat['c1'] == 105.0 / 100 - 1 assert stat['c2'] == 95.0 / 100 - 1 def test_select_n(): algo = algos.SelectN(n=1, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected algo = algos.SelectN(n=1, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # return 2 we have if all_or_none false algo = algos.SelectN(n=3, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # return 0 we have if all_or_none true algo = algos.SelectN(n=3, sort_descending=False, all_or_none=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 def test_select_n_perc(): algo = algos.SelectN(n=0.5, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected def test_select_momentum(): algo = algos.SelectMomentum(n=1, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) actual = s.temp['selected'] assert len(actual) == 1 assert 'c1' in actual def test_limit_weights(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 0.6, 'c2':0.2, 'c3':0.2} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.5 assert w['c2'] == 0.25 assert w['c3'] == 0.25 algo = algos.LimitWeights(0.3) assert algo(s) w = s.temp['weights'] assert w == {} s.temp['weights'] = {'c1': 0.4, 'c2':0.3, 'c3':0.3} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.4 assert w['c2'] == 0.3 assert w['c3'] == 0.3 def test_limit_deltas(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 1} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.1 s.temp['weights'] = {'c1': 0.05} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.05 s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == 0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.5 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1, 'c2': 0.3}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.3 # set exisitng weight s.children['c1'] = bt.core.SecurityBase('c1') s.children['c1']._weight = 0.3 s.children['c2'] = bt.core.SecurityBase('c2') s.children['c2']._weight = -0.7 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.4 assert w['c2'] == -0.6 def test_rebalance_over_time(): target = mock.MagicMock() rb = mock.MagicMock() algo = algos.RebalanceOverTime(n=2) # patch in rb function algo._rb = rb target.temp = {} target.temp['weights'] = {'a': 1, 'b': 0} a = mock.MagicMock() a.weight = 0. b = mock.MagicMock() b.weight = 1. target.children = {'a': a, 'b': b} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 0.5 assert w['b'] == 0.5 assert rb.called called_tgt = rb.call_args[0][0] called_tgt_w = called_tgt.temp['weights'] assert len(called_tgt_w) == 2 assert called_tgt_w['a'] == 0.5 assert called_tgt_w['b'] == 0.5 # update weights for next call a.weight = 0.5 b.weight = 0.5 # clear out temp - same as would Strategy target.temp = {} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 1. assert w['b'] == 0. assert rb.call_count == 2 # update weights for next call # should do nothing now a.weight = 1 b.weight = 0 # clear out temp - same as would Strategy target.temp = {} assert algo(target) # no diff in call_count since last time assert rb.call_count == 2 def test_require(): target = mock.MagicMock() target.temp = {} algo = algos.Require(lambda x: len(x) > 0, 'selected') assert not algo(target) target.temp['selected'] = [] assert not algo(target) target.temp['selected'] = ['a', 'b'] assert algo(target) def test_run_every_n_periods(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=0) target.now = pd.to_datetime('2010-01-01') assert algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert algo(target) target.now = pd.to_datetime('2010-01-05') assert not algo(target) def test_run_every_n_periods_offset(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=1) target.now = pd.to_datetime('2010-01-01') assert not algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert not algo(target) target.now = pd.to_datetime('2010-01-05') assert algo(target) def test_not(): target = mock.MagicMock() target.temp = {} #run except on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) notAlgo = algos.Not(runOnDateAlgo) target.now = pd.to_datetime('2018-01-01') assert notAlgo(target) target.now =
pd.to_datetime('2018-01-02')
pandas.to_datetime
""" test the scalar Timestamp """ import pytz import pytest import dateutil import calendar import locale import numpy as np from dateutil.tz import tzutc from pytz import timezone, utc from datetime import datetime, timedelta import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.tseries import offsets from pandas._libs.tslibs import conversion from pandas._libs.tslibs.timezones import get_timezone, dateutil_gettz as gettz from pandas.errors import OutOfBoundsDatetime from pandas.compat import long, PY3 from pandas.compat.numpy import np_datetime64_compat from pandas import Timestamp, Period, Timedelta, NaT class TestTimestampProperties(object): def test_properties_business(self): ts = Timestamp('2017-10-01', freq='B') control = Timestamp('2017-10-01') assert ts.dayofweek == 6 assert not ts.is_month_start # not a weekday assert not ts.is_quarter_start # not a weekday # Control case: non-business is month/qtr start assert control.is_month_start assert control.is_quarter_start ts = Timestamp('2017-09-30', freq='B') control = Timestamp('2017-09-30') assert ts.dayofweek == 5 assert not ts.is_month_end # not a weekday assert not ts.is_quarter_end # not a weekday # Control case: non-business is month/qtr start assert control.is_month_end assert control.is_quarter_end def test_fields(self): def check(value, equal): # that we are int/long like assert isinstance(value, (int, long)) assert value == equal # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) # GH 13303 ts = Timestamp('2014-12-31 23:59:00-05:00', tz='US/Eastern') check(ts.year, 2014) check(ts.month, 12) check(ts.day, 31) check(ts.hour, 23) check(ts.minute, 59) check(ts.second, 0) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 0) check(ts.nanosecond, 0) check(ts.dayofweek, 2) check(ts.quarter, 4) check(ts.dayofyear, 365) check(ts.week, 1) check(ts.daysinmonth, 31) ts = Timestamp('2014-01-01 00:00:00+01:00') starts = ['is_month_start', 'is_quarter_start', 'is_year_start'] for start in starts: assert getattr(ts, start) ts = Timestamp('2014-12-31 23:59:59+01:00') ends = ['is_month_end', 'is_year_end', 'is_quarter_end'] for end in ends: assert getattr(ts, end) # GH 12806 @pytest.mark.parametrize('data', [Timestamp('2017-08-28 23:00:00'), Timestamp('2017-08-28 23:00:00', tz='EST')]) @pytest.mark.parametrize('time_locale', [ None] if tm.get_locales() is None else [None] + tm.get_locales()) def test_names(self, data, time_locale): # GH 17354 # Test .weekday_name, .day_name(), .month_name with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert data.weekday_name == 'Monday' if time_locale is None: expected_day = 'Monday' expected_month = 'August' else: with tm.set_locale(time_locale, locale.LC_TIME): expected_day = calendar.day_name[0].capitalize() expected_month = calendar.month_name[8].capitalize() assert data.day_name(time_locale) == expected_day assert data.month_name(time_locale) == expected_month # Test NaT nan_ts = Timestamp(NaT) assert np.isnan(nan_ts.day_name(time_locale)) assert np.isnan(nan_ts.month_name(time_locale)) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']) def test_is_leap_year(self, tz): # GH 13727 dt = Timestamp('2000-01-01 00:00:00', tz=tz) assert dt.is_leap_year assert isinstance(dt.is_leap_year, bool) dt = Timestamp('1999-01-01 00:00:00', tz=tz) assert not dt.is_leap_year dt = Timestamp('2004-01-01 00:00:00', tz=tz) assert dt.is_leap_year dt = Timestamp('2100-01-01 00:00:00', tz=tz) assert not dt.is_leap_year def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013, 12, 31) result = Timestamp(d).week expected = 1 # ISO standard assert result == expected d = datetime(2008, 12, 28) result = Timestamp(d).week expected = 52 # ISO standard assert result == expected d = datetime(2009, 12, 31) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 1) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 3) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected result = np.array([Timestamp(datetime(*args)).week for args in [(2000, 1, 1), (2000, 1, 2), ( 2005, 1, 1), (2005, 1, 2)]]) assert (result == [52, 52, 53, 53]).all() class TestTimestampConstructors(object): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 assert result.value == expected_utc assert
conversion.pydt_to_i8(result)
pandas._libs.tslibs.conversion.pydt_to_i8
# encoding: utf-8 import tkinter.messagebox import webbrowser from tkinter import * import jieba import pandas as pd import pymongo from pyecharts import options as opts from pyecharts.charts import Bar, Page, Pie, WordCloud, Line, Map class App: def __init__(self, master): self.master = master self.initWidgets() def initWidgets(self): def DiQuXinZi(): webbrowser.open_new('地区薪资分布图.html') def XueLiXinZi(): webbrowser.open_new('学历薪资图.html') def JingYanXinZi(): webbrowser.open_new('经验-薪资对比图.html') def GongSiFuLi(): webbrowser.open_new('公司福利词云图.html') def ChaXun(): Gangwei = self.txt1.get() City = self.txt2.get() df.drop_duplicates(['职位信息'], inplace=True) get_data = df[df['工作岗位'].str.contains('{}'.format(Gangwei), case=False)] # self.txt3.set("数据表:" + collection.name + "--包含数据%s条" % len(get_data)) self.txt3.set('正在生成!') City_Salary(get_data, City) One_avgs = [One_City(get_data, i, City) for i in edul] bar_same_series_gap(edul, City, One_avgs).render('学历薪资图.html') Get_Photo(get_data, City) FuLiCiYun(get_data, City) self.txt3.set('生成完成,请查看!') self.txt1 = StringVar() self.txt2 = StringVar() self.txt3 = StringVar() self.txt1.set('java') self.txt2.set('重庆') # 这里是队名Logo global photo photo = PhotoImage(file='redafine.png') fm = Frame(self.master) fm.pack(side=LEFT, fill=BOTH, expand=NO, ) Button(fm, text='Redafine', image=photo, relief=RIDGE).pack(side=TOP, fill=X, expand=NO, padx=5, pady=5) # 顶部 fmTop = Frame(self.master) fmTop.pack(side=TOP, fill=BOTH, expand=NO, padx=150) Entry(fmTop, textvariable=self.txt1, width=14, font=('楷体', 16), relief=RIDGE).pack(side=LEFT, expand=NO, fill=X, padx=20, pady=10) Label(fmTop, text="岗位、关键字", font=('思源黑体')).pack(side=LEFT, expand=NO, fill=Y, padx=0, pady=10) Entry(fmTop, textvariable=self.txt2, width=14, font=('楷体', 16), relief=RIDGE).pack(side=LEFT, expand=NO, fill=X, padx=20, pady=10) Label(fmTop, text="城市选择", font=('思源黑体')).pack(side=LEFT, expand=NO, fill=Y, pady=10) Button(fmTop, text='点击查询', command=ChaXun, font=('思源黑体'), height=2, width=10, relief=RIDGE).pack(side=RIGHT, fill=X, expand=NO, padx=20, pady=10) # 左边导航栏 fm1 = Frame(fm) fm1.pack(side=LEFT, fill=Y, expand=NO, pady=60) Button(fm1, text='地区薪资', height=3, command=DiQuXinZi, width=20, font=('思源黑体'), relief=RIDGE).pack(side=TOP, fill=X, padx=10) Button(fm1, text='学历薪资', height=3, command=XueLiXinZi, font=('思源黑体'), relief=RIDGE).pack(side=TOP, fill=X, pady=10, padx=10) Button(fm1, text='经验薪资', height=3, command=JingYanXinZi, font=('思源黑体'), relief=RIDGE).pack(side=TOP, fill=X, padx=10) Button(fm1, text='公司福利', height=3, command=GongSiFuLi, font=('思源黑体'), relief=RIDGE).pack(side=TOP, fill=X, pady=10, padx=10) # 这里是主体 monty = LabelFrame(root, text="数据系统", font=('思源黑体', 16), width=300, padx=30, ) monty.pack(side=LEFT, fill=Y, expand=NO, padx=30) # expand,是否随窗体大小改变而改变位置 can = tkinter.Canvas(monty, bg='#afdfe4') can.pack(expand=YES, fill=BOTH) Label(can, textvariable=self.txt3, relief='ridge', font=('思源黑体', 12), width=100).grid(row=0, column=1, pady=10, padx=50) def bar_same_series_gap(edul, City, One_avgs) -> Bar: c = ( Bar() .add_xaxis(edul) .add_yaxis("{}".format(City), One_avgs, category_gap="50%") .set_global_opts(title_opts=opts.TitleOpts(title="{}地区-学历薪资".format(City))) ) return c def City_Salary(get_data, City_name): work_salas = get_data[get_data['城市'].str.contains('{}'.format(City_name))] sums = [sala for sala in work_salas['平均薪资'] if type(sala) == int] # 工资列表 avg = int(sum(sums) / int(len(sums))) # 平均工资 def Area_Salary(): Data = work_salas['地区'].value_counts() attr = list(Data.index) value = [int(i) for i in list(Data.values)] print(attr) # 统计地区 print(value) # 统计地区的数量 return attr, value # 返回地区以及对应的数量 attr, value = Area_Salary() sala = [] for i in attr: work_sa = work_salas[work_salas['地区'].str.contains('{}'.format(i))] sums = [sala for sala in work_sa['平均薪资'] if type(sala) == int] avg = int(sum(sums) / int(len(sums))) sala.append(avg) print(sala) def map_guangdong() -> Map: c = ( Map() .add("{}".format(City_name), [list(z) for z in zip(attr, value)], "{}".format(City_name)) .set_global_opts( title_opts=opts.TitleOpts(title="{}地区-岗位分布".format(City_name)), visualmap_opts=opts.VisualMapOpts(), ) ) return c def bar_same_series_gap() -> Bar: c = ( Bar() .add_xaxis(attr) .add_yaxis("{}".format(City_name), sala, category_gap="50%") .set_global_opts(title_opts=opts.TitleOpts(title="{}地区-薪资分布".format(City_name))) .set_series_opts( label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem(type_="max", name="最大值"), opts.MarkPointItem(type_="min", name="最小值"), opts.MarkPointItem(type_="average", name="平均值"), ]) ) ) return c page = Page() page.add(map_guangdong(), bar_same_series_gap()) page.render('地区薪资分布图.html') return sala, attr, value def One_City(get_data, Edu_name, City): One_City = get_data[get_data['城市'].str.contains('{}'.format(City))] work_salas = One_City[One_City['学历要求'].str.contains('{}'.format(Edu_name))] CQ_sum = [sala for sala in work_salas['平均薪资'] if type(sala) == int] # 工资列表 try: if len(CQ_sum) < 3: # 过滤掉只包含三个职位的学历 avg = 0 else: avg = int(sum(CQ_sum) / int(len(CQ_sum))) except: avg = 0 return avg def Get_Photo(get_data, City_name): work = ['3-4年经验', '无工作经验', '5-7年经验', '2年经验', '1年经验', '8-9年经验', '10年以上经验'] workyear = ['无工作经验', '1年经验', '2年经验', '3-4年经验', '5-7年经验', '8-9年经验', '10年以上经验'] Data = get_data[get_data['城市'].str.contains('{}'.format(City_name))] print("得到有效数据%s条" % len(Data)) """计算不同工作经验对应的平均薪资""" def Work_Salary(Work_name): work_salas = Data[Data['工作经验'].str.contains('{}'.format(Work_name))] sums = [sala for sala in work_salas['平均薪资'] if type(sala) == int] # 工资列表 try: avg = int(sum(sums) / int(len(sums))) except: avg = 0 return avg All_avgs = [Work_Salary(i) for i in workyear] print('平均薪资', All_avgs) # 工作经验部分,排序处理 def workyear_ChuLi(Data): value_workyear = [] for i in workyear: try: value_workyear.append(int(Data[i])) except: value_workyear.append(0) return value_workyear # 统计工作经验对应得岗位数量 Data1 = Data['工作经验'].value_counts() value_workyear1 = workyear_ChuLi(Data1) print(workyear) print(value_workyear1) """工作经验文本饼图""" def pie_rich_label() -> Pie: c = ( Pie() .add( "", [list(z) for z in zip(workyear, value_workyear1)], radius=["40%", "55%"], label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) .set_global_opts( title_opts=opts.TitleOpts(title="{}Java岗位-工作经验需求占比".format(City_name), pos_left='center'), legend_opts=opts.LegendOpts( orient="vertical", pos_top="5%", pos_left="1%") ) ) return c def overlap_bar_line() -> Bar: bar = ( Bar() .add_xaxis(workyear) .add_yaxis("岗位数量", value_workyear1, category_gap="50%") .extend_axis( yaxis=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} /月"), interval=5000 ) ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="{}岗位数量-平均薪资对比图".format(City_name)), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} 个") ), ) ) line = Line().add_xaxis(workyear).add_yaxis("平均薪资", All_avgs, yaxis_index=1, is_smooth=True) \ .set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth")) bar.overlap(line) return bar page = Page() page.add(pie_rich_label(), overlap_bar_line()) page.render('经验-薪资对比图.html'.format(City_name)) def FuLiCiYun(get_data, City_name): Data = get_data[get_data['城市'].str.contains('{}'.format(City_name))] max = len(Data) information = Data['公司福利'] txtl = jieba.cut(' '.join(information), cut_all=False) # jieba分词 txt = ' '.join(txtl).replace('\n', ' ').lower() china = re.sub('[0-9a-zA-Z_]', '', txt) # 保留汉字 for i in '!"#$%&()*+, ()【】,;0.!、:。-./:;<=>?@[\\]^_‘{|}~': china = china.replace(i, " ") # 将文本中特殊字符替换为空格 print("请稍等,正在生成") Idioms = china.split() Icounts = {} for Idiom in Idioms: if len(Idiom) < 2: # 过滤掉单个字 continue else: Icounts[Idiom] = Icounts.get(Idiom, 0) + 1 chinas = list(Icounts.items()) chinas.sort(key=lambda x: x[1], reverse=True) def wordcloud_base() -> WordCloud: c = ( WordCloud() .add("", chinas, word_size_range=[20, 100]) .set_global_opts(title_opts=opts.TitleOpts(title="岗位要求")) ) return c wordcloud_base().render(('公司福利词云图.html')) def main(): global root, df, edul, collection, df root = Toplevel() root.title("单个城市岗位数据分析") root.geometry("1200x800") display = App(root) client = pymongo.MongoClient() collection = client['51Job']['Scrapy'] data = collection.find() df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import mplfinance as mpl plt.rcParams['legend.facecolor'] = 'darkgray' ############################## RETAIL SALES ############################## def process_retailsales(path): data = pd.read_csv(path, index_col=0, parse_dates=True) data = data.drop('Date', axis=1) data.IsHoliday = data.IsHoliday.apply(lambda x : int(x) if not pd.isna(x) else np.nan) return data def plot_retialsales(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=data.groupby('Store').Weekly_Sales.plot(title='Weekly Sales all stores') _=plt.xlabel('Dates') _=plt.ylabel('Qty') ############################## SUNSPOTS ############################## def process_sunspots(path): data=pd.read_csv(path, index_col=[0], usecols=[1,2], parse_dates=True) data.index.name = 'Month' data.columns = ['MMTS'] data = data.sort_index() return data def plot_sunspots(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=data.plot(title='Monthly Mean of Sunspots observed') _=plt.title('Sunspots') _=plt.ylabel('Mean Sunspots Numbers') ############################## USA ECONOMIC ############################## def process_usaeconomic(path): data = pd.read_csv(path, index_col=0, parse_dates=True) data.index.name = 'Date' return data def plot_usaeconomic(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=data.plot(title='USA-Consumption, Income, Production, Savings & Unemployment Pct Changes') ############################## VISITORS TO 20 REGIONS ############################## def process_20rvisitors(path): data =
pd.read_csv(path, index_col=0, parse_dates=True)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed May 19 18:24:25 2021 @author: HASANUL """ import pandas as pd from scipy import sparse ratings = pd.read_csv('ratings.csv') movies =
pd.read_csv('movies.csv')
pandas.read_csv
# -*- coding: utf-8 -*- # Copyright (c) 2016-2021 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import pandas as pd from pandapower.plotting.generic_geodata import create_generic_coordinates from pandapower.plotting.plotly.traces import create_bus_trace, create_line_trace, \ create_trafo_trace, draw_traces, version_check, _create_node_trace, _create_branch_trace from pandapower.plotting.plotly.mapbox_plot import * try: import pplog as logging except ImportError: import logging logger = logging.getLogger(__name__) def get_hoverinfo(net, element, precision=3, sub_index=None): hover_index = net[element].index if element == "bus": load_str, sgen_str = [], [] for ln in [net.load.loc[net.load.bus == b, "p_mw"].sum() for b in net.bus.index]: load_str.append("Load: {:.3f} MW<br />".format(ln) if ln != 0. else "") for s in [net.sgen.loc[net.sgen.bus == b, "p_mw"].sum() for b in net.bus.index]: sgen_str.append("Static generation: {:.3f} MW<br />".format(s) if s != 0. else "") hoverinfo = ( "Index: " + net.bus.index.astype(str) + '<br />' + "Name: " + net.bus['name'].astype(str) + '<br />' + 'V_n: ' + net.bus['vn_kv'].round(precision).astype(str) + ' kV' + '<br />' + load_str + sgen_str)\ .tolist() elif element == "line": hoverinfo = ( "Index: " + net.line.index.astype(str) + '<br />' + "Name: " + net.line['name'].astype(str) + '<br />' + 'Length: ' + net.line['length_km'].round(precision).astype(str) + ' km' + '<br />' + 'R: ' + (net.line['length_km'] * net.line['r_ohm_per_km']).round(precision).astype(str) + ' Ohm' + '<br />' + 'X: ' + (net.line['length_km'] * net.line['x_ohm_per_km']).round(precision).astype(str) + ' Ohm' + '<br />').tolist() elif element == "trafo": hoverinfo = ( "Index: " + net.trafo.index.astype(str) + '<br />' + "Name: " + net.trafo['name'].astype(str) + '<br />' + 'V_n HV: ' + net.trafo['vn_hv_kv'].round(precision).astype(str) + ' kV' + '<br />' + 'V_n LV: ' + net.trafo['vn_lv_kv'].round(precision).astype(str) + ' kV' + '<br />' + 'Tap pos.: ' + net.trafo['tap_pos'].astype(str) + '<br />').tolist() elif element == "trafo3w": hoverinfo = ( "Index: " + net.trafo3w.index.astype(str) + '<br />' + "Name: " + net.trafo3w['name'].astype(str) + '<br />' + 'V_n HV: ' + net.trafo3w['vn_hv_kv'].round(precision).astype(str) + ' kV' + '<br />' + 'V_n MV: ' + net.trafo3w['vn_mv_kv'].round(precision).astype(str) + ' kV' + '<br />' + 'V_n LV: ' + net.trafo3w['vn_lv_kv'].round(precision).astype(str) + ' kV' + '<br />' + 'Tap pos.: ' + net.trafo3w['tap_pos'].astype(str) + '<br />').tolist() elif element == "ext_grid": hoverinfo = ( "Index: " + net.ext_grid.index.astype(str) + '<br />' + "Name: " + net.ext_grid['name'].astype(str) + '<br />' + 'V_m: ' + net.ext_grid['vm_pu'].round(precision).astype(str) + ' p.u.' + '<br />' + 'V_a: ' + net.ext_grid['va_degree'].round(precision).astype(str) + ' °' + '<br />').tolist() hover_index = net.ext_grid.bus.tolist() else: return None hoverinfo =
pd.Series(index=hover_index, data=hoverinfo)
pandas.Series
from kmeaningful import __version__ from kmeaningful.preprocess import preprocess from sklearn.datasets import make_blobs import pandas as pd import numpy as np import pytest def test_version(): assert __version__ == '0.1.0' def test_preprocess(): """ Performs tests for preprocess function """ # empty dataframe or array should throw exception assert pytest.raises(Exception, preprocess,
pd.DataFrame({})
pandas.DataFrame