prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import requests import os import pandas as pd from datetime import datetime import csv def norm(qty, asset): dps = 6 if (asset == "USDC" or asset == "USDT") else 18 tmp = qty.rjust(dps + 1, "0") return (tmp[0:-dps] + "." + tmp[-dps:]).rstrip("0").rstrip(".") def main(in_class="mined", out_class="remove funds"): wallet = os.environ["ETH_WALLET"] csv_path = "transactions.csv" inc = 100 n = 0 new_c = 0 while True: # Try to read existing csv if available try: df = pd.read_csv(csv_path) except (FileNotFoundError, pd.errors.EmptyDataError, csv.Error): df = None # get the next batch of transactions try: resp = requests.get( f"https://api.zksync.io/api/v0.1/account/{wallet}/history/{n}/{inc}" ) resp.raise_for_status() except requests.exceptions.HTTPError as err: raise SystemExit(err) # get json response j = resp.json() # Repeat until response empty if not j: break all_trx = [] # For every transaction in the batch for t in j: # clean transaction string tx_hash = t["hash"].replace("sync-tx:", "") # skip existing transactions to avoid duplicates try: if df.isin([tx_hash]).any().any(): # just for debugging # print(f"Found duplicate: {tx_hash}, skipping!") continue except AttributeError: pass # transaction detail shortcut td = t["tx"] # init structure for csv my_trx = { "Type": None, "Buy Quantity": None, "Buy Asset": None, "Buy Value": None, "Sell Quantity": None, "Sell Asset": None, "Sell Value": None, "Fee Quantity": None, "Fee Asset": None, "Fee Value": None, "Wallet": "ZKSync", "Timestamp": None, } my_date = t["created_at"] # convert to datetime object and then to format needed dto = datetime.strptime(my_date, "%Y-%m-%dT%H:%M:%S.%f%z") my_trx["Timestamp"] = dto.strftime("%d/%m/%Y %H:%M:%S") # trx coming in try: # Withdrawal to mainnet if (td["type"] == "Withdraw"): my_trx["Type"] = "Withdrawal" my_trx["Sell Quantity"] = norm(td["amount"], td["token"]) my_trx["Sell Asset"] = td["token"] my_trx["Fee Quantity"] = norm(td["fee"], td["token"]) my_trx["Fee Asset"] = td["token"] elif (td["type"] == "Transfer"): if td["to"].lower() == wallet.lower(): # Some fee payments look like zero value transfers to oneself with fees if (td["from"].lower() == wallet.lower() and td["amount"] == "0" and td["fee"] != "0"): my_trx["Type"] = "Spend" my_trx["Sell Quantity"] = 0 my_trx["Sell Asset"] = td["token"] my_trx["Fee Quantity"] = norm(td["fee"], td["token"]) my_trx["Fee Asset"] = td["token"] # Incoming tx else: my_trx["Type"] = "Income" my_trx["Buy Quantity"] = norm(td["amount"], td["token"]) my_trx["Buy Asset"] = td["token"] # Outgoing tx else: my_trx["Type"] = "Spend" my_trx["Sell Quantity"] = norm(td["amount"], td["token"]) my_trx["Sell Asset"] = td["token"] my_trx["Fee Quantity"] = norm(td["fee"], td["token"]) my_trx["Fee Asset"] = td["token"] # Swaps are too hard to populate: need to do it manually (e.g. token types are indexed) elif (td["type"] == "Swap"): my_trx["Type"] = "Trade" # Ignore others like ChangePubKey # Also, I don't know how deposits from L1 are categorised - I've never done one. else: print(f"Warning: ignoring transaction type {td['type']}") continue except KeyError: continue my_trx["operationId"] = tx_hash all_trx.append(my_trx) # count new transactions new_c += 1 # Append to existing df or create new if df is None or df.empty: df =
pd.DataFrame(all_trx)
pandas.DataFrame
from tqdm import tqdm from functools import partial import multiprocessing import pandas as pd import numpy as np import argparse import os def step0_extract(filename): df = pd.read_csv(filename, low_memory=False) print('Total size:\t\t\t\t\t', len(df)) df = df[df['TransactionType'] == 'FI-InvoicedDocument'] print('Total size (transaction type filter):\t\t', len(df)) df = df[['DocumentKey', 'CustomerKey', 'DocumentDate', 'DueDate', 'ClearingDate', 'InvoicedAmount']].dropna() print('Total size (dropna filter):\t\t\t', len(df)) for col in ['DocumentKey']: df[col] = df[col].apply(lambda x: x.split('|')[2]) for col in ['DocumentDate', 'DueDate', 'ClearingDate']: df[col] = pd.to_datetime(df[col]) for col in ['DocumentKey', 'CustomerKey', 'InvoicedAmount']: df[col] = pd.to_numeric(df[col]) df = df[(df['DocumentDate'] < df['DueDate']) & (df['DocumentDate'] < df['ClearingDate'])] df = df[df['InvoicedAmount'] >= 1000] print('Total size (Date and Invoice Amount filters):\t', len(df), '\n') return df def step1_organize(filename): def group(x): return x.groupby(['CustomerKey', 'DueDate']) def order(x): return x.sort_values(by=['DueDate'], ascending=True, ignore_index=True) def merge(x1, x2): return pd.merge(order(x1), order(x2), how='left', on=['CustomerKey', 'DueDate']) df = pd.read_csv(filename, parse_dates=['DocumentDate', 'DueDate', 'ClearingDate'], low_memory=False) df['OS'] = ((df['ClearingDate'] - (df['DueDate'] - pd.to_timedelta(arg=df['DueDate'].dt.weekday, unit='D'))) .astype('timedelta64[D]') > 0).astype(int) df_doc = order(group(df)['DocumentDate'].min().reset_index()) df_cle = order(group(df)['ClearingDate'].max().reset_index()) df_gp = pd.DataFrame({ 'CustomerKey': df_doc['CustomerKey'].values, 'DocumentDate': df_doc['DocumentDate'].values, 'DueDate': df_doc['DueDate'].values, 'ClearingDate': df_cle['ClearingDate'].values, }) df_gp = merge(df_gp, group(df).size().reset_index(name='InvoiceCount')) df_gp = merge(df_gp, group(df[df['OS'] == 1]).size().reset_index(name='OSInvoiceCount')) df_gp['OSInvoiceCount'] = df_gp['OSInvoiceCount'].fillna(0).astype(int) df_gp['R_OSInvoiceCount'] = df_gp['OSInvoiceCount'] / df_gp['InvoiceCount'] df_gp['R_OSInvoiceCount'] = df_gp['R_OSInvoiceCount'].fillna(0) df_gp = merge(df_gp, group(df)['InvoicedAmount'].sum().reset_index(name='InvoiceAmount')) df_gp = merge(df_gp, group(df[df['OS'] == 1])['InvoicedAmount'].sum().reset_index(name='OSInvoiceAmount')) df_gp['OSInvoiceAmount'] = df_gp['OSInvoiceAmount'].fillna(0) df_gp['R_OSInvoiceAmount'] = df_gp['OSInvoiceAmount'] / df_gp['InvoiceAmount'] df_gp['R_OSInvoiceAmount'] = df_gp['R_OSInvoiceAmount'].fillna(0) return df_gp def step2_generate(filename): df = pd.read_csv(filename, parse_dates=['DocumentDate', 'DueDate', 'ClearingDate'], low_memory=False) df['DaysToEndMonth'] = ((df['DueDate'] + pd.offsets.MonthEnd(0)) - df['DueDate']).dt.days df['DaysLate'] = ((df['ClearingDate'] - df['DueDate']).dt.days).clip(lower=0) df['DaysLateAM'] = (df['DaysLate'] - df['DaysToEndMonth']).clip(lower=0) df['PaymentCategory'] = 0 df.loc[(df['DaysLate'] > 0) & (df['DaysLateAM'] <= 0), 'PaymentCategory'] = 1 df.loc[(df['DaysLate'] > 0) & (df['DaysLateAM'] > 0), 'PaymentCategory'] = 2 features = [] with multiprocessing.Pool(multiprocessing.cpu_count()) as pool: for x in tqdm(pool.imap(partial(_historic), df[['CustomerKey', 'DueDate']].values), total=len(df)): features.append(x) pool.close() pool.join() df = pd.merge(df, pd.DataFrame(features), how='left', on=['CustomerKey', 'DueDate']) df.drop(['DaysToEndMonth', 'DaysLate', 'DaysLateAM', 'PaymentCategory'], axis=1, inplace=True) return df def step3_prepare(filename): df = pd.read_csv(filename, parse_dates=['DocumentDate', 'DueDate', 'ClearingDate'], low_memory=False) df['DaysToDueDate'] = (df['DueDate'] - df['DocumentDate']).dt.days df['DaysToEndMonth'] = ((df['DueDate'] +
pd.offsets.MonthEnd(0)
pandas.offsets.MonthEnd
""" Tests dtype specification during parsing for all of the parsers defined in parsers.py """ from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserWarning from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timestamp, concat import pandas._testing as tm @pytest.mark.parametrize("dtype", [str, object]) @pytest.mark.parametrize("check_orig", [True, False]) def test_dtype_all_columns(all_parsers, dtype, check_orig): # see gh-3795, gh-6607 parser = all_parsers df = DataFrame( np.random.rand(5, 2).round(4), columns=list("AB"), index=["1A", "1B", "1C", "1D", "1E"], ) with tm.ensure_clean("__passing_str_as_dtype__.csv") as path: df.to_csv(path) result = parser.read_csv(path, dtype=dtype, index_col=0) if check_orig: expected = df.copy() result = result.astype(float) else: expected = df.astype(str) tm.assert_frame_equal(result, expected) def test_dtype_all_columns_empty(all_parsers): # see gh-12048 parser = all_parsers result = parser.read_csv(StringIO("A,B"), dtype=str) expected = DataFrame({"A": [], "B": []}, index=[], dtype=str) tm.assert_frame_equal(result, expected) def test_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" expected = DataFrame( [[1, "2.5"], [2, "3.5"], [3, "4.5"], [4, "5.5"]], columns=["one", "two"] ) expected["one"] = expected["one"].astype(np.float64) expected["two"] = expected["two"].astype(object) result = parser.read_csv(StringIO(data), dtype={"one": np.float64, 1: str}) tm.assert_frame_equal(result, expected) def test_invalid_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" with pytest.raises(TypeError, match="data type [\"']foo[\"'] not understood"): parser.read_csv(StringIO(data), dtype={"one": "foo", 1: "int"}) @pytest.mark.parametrize( "dtype", [ "category", CategoricalDtype(), {"a": "category", "b": "category", "c": CategoricalDtype()}, ], ) def test_categorical_dtype(all_parsers, dtype): # see gh-10153 parser = all_parsers data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["a", "a", "b"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize("dtype", [{"b": "category"}, {1: "category"}]) def test_categorical_dtype_single(all_parsers, dtype): # see gh-10153 parser = all_parsers data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = DataFrame( {"a": [1, 1, 2], "b": Categorical(["a", "a", "b"]), "c": [3.4, 3.4, 4.5]} ) actual = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_unsorted(all_parsers): # see gh-10153 parser = all_parsers data = """a,b,c 1,b,3.4 1,b,3.4 2,a,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["b", "b", "a"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype="category") tm.assert_frame_equal(actual, expected) def test_categorical_dtype_missing(all_parsers): # see gh-10153 parser = all_parsers data = """a,b,c 1,b,3.4 1,nan,3.4 2,a,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["b", np.nan, "a"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype="category") tm.assert_frame_equal(actual, expected) @pytest.mark.slow def test_categorical_dtype_high_cardinality_numeric(all_parsers): # see gh-18186 parser = all_parsers data = np.sort([str(i) for i in range(524289)]) expected = DataFrame({"a": Categorical(data, ordered=True)}) actual = parser.read_csv(StringIO("a\n" + "\n".join(data)), dtype="category") actual["a"] = actual["a"].cat.reorder_categories( np.sort(actual.a.cat.categories), ordered=True ) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_latin1(all_parsers, csv_dir_path): # see gh-10153 pth = os.path.join(csv_dir_path, "unicode_series.csv") parser = all_parsers encoding = "latin-1" expected = parser.read_csv(pth, header=None, encoding=encoding) expected[1] = Categorical(expected[1]) actual = parser.read_csv(pth, header=None, encoding=encoding, dtype={1: "category"}) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_utf16(all_parsers, csv_dir_path): # see gh-10153 pth = os.path.join(csv_dir_path, "utf16_ex.txt") parser = all_parsers encoding = "utf-16" sep = "\t" expected = parser.read_csv(pth, sep=sep, encoding=encoding) expected = expected.apply(Categorical) actual = parser.read_csv(pth, sep=sep, encoding=encoding, dtype="category") tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize_infer_categories(all_parsers): # see gh-10153 parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" expecteds = [ DataFrame({"a": [1, 1], "b": Categorical(["a", "b"])}), DataFrame({"a": [1, 2], "b": Categorical(["b", "c"])}, index=[2, 3]), ] actuals = parser.read_csv(StringIO(data), dtype={"b": "category"}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize_explicit_categories(all_parsers): # see gh-10153 parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" cats = ["a", "b", "c"] expecteds = [ DataFrame({"a": [1, 1], "b": Categorical(["a", "b"], categories=cats)}), DataFrame( {"a": [1, 2], "b": Categorical(["b", "c"], categories=cats)}, index=[2, 3] ), ] dtype = CategoricalDtype(cats) actuals = parser.read_csv(StringIO(data), dtype={"b": dtype}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize("ordered", [False, True]) @pytest.mark.parametrize( "categories", [["a", "b", "c"], ["a", "c", "b"], ["a", "b", "c", "d"], ["c", "b", "a"]], ) def test_categorical_category_dtype(all_parsers, categories, ordered): parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" expected = DataFrame( { "a": [1, 1, 1, 2], "b": Categorical( ["a", "b", "b", "c"], categories=categories, ordered=ordered ), } ) dtype = {"b": CategoricalDtype(categories=categories, ordered=ordered)} result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_category_dtype_unsorted(all_parsers): parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" dtype = CategoricalDtype(["c", "b", "a"]) expected = DataFrame( { "a": [1, 1, 1, 2], "b": Categorical(["a", "b", "b", "c"], categories=["c", "b", "a"]), } ) result = parser.read_csv(StringIO(data), dtype={"b": dtype}) tm.assert_frame_equal(result, expected) def test_categorical_coerces_numeric(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype([1, 2, 3])} data = "b\n1\n1\n2\n3" expected = DataFrame({"b": Categorical([1, 1, 2, 3])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_datetime(all_parsers): parser = all_parsers dti = pd.DatetimeIndex(["2017-01-01", "2018-01-01", "2019-01-01"], freq=None) dtype = {"b": CategoricalDtype(dti)} data = "b\n2017-01-01\n2018-01-01\n2019-01-01" expected = DataFrame({"b": Categorical(dtype["b"].categories)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_timestamp(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype([Timestamp("2014")])} data = "b\n2014-01-01\n2014-01-01T00:00:00" expected = DataFrame({"b": Categorical([Timestamp("2014")] * 2)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_timedelta(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype(pd.to_timedelta(["1H", "2H", "3H"]))} data = "b\n1H\n2H\n3H" expected = DataFrame({"b": Categorical(dtype["b"].categories)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data", [ "b\nTrue\nFalse\nNA\nFalse", "b\ntrue\nfalse\nNA\nfalse", "b\nTRUE\nFALSE\nNA\nFALSE", "b\nTrue\nFalse\nNA\nFALSE", ], ) def test_categorical_dtype_coerces_boolean(all_parsers, data): # see gh-20498 parser = all_parsers dtype = {"b": CategoricalDtype([False, True])} expected = DataFrame({"b": Categorical([True, False, None, False])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_unexpected_categories(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype(["a", "b", "d", "e"])} data = "b\nd\na\nc\nd" # Unexpected c expected = DataFrame({"b": Categorical(list("dacd"), dtype=dtype["b"])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_empty_pass_dtype(all_parsers): parser = all_parsers data = "one,two" result = parser.read_csv(StringIO(data), dtype={"one": "u1"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "two": np.empty(0, dtype=object)}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_index_pass_dtype(all_parsers): parser = all_parsers data = "one,two" result = parser.read_csv( StringIO(data), index_col=["one"], dtype={"one": "u1", 1: "f"} ) expected = DataFrame( {"two": np.empty(0, dtype="f")}, index=Index([], dtype="u1", name="one") ) tm.assert_frame_equal(result, expected) def test_empty_with_multi_index_pass_dtype(all_parsers): parser = all_parsers data = "one,two,three" result = parser.read_csv( StringIO(data), index_col=["one", "two"], dtype={"one": "u1", 1: "f8"} ) exp_idx = MultiIndex.from_arrays( [np.empty(0, dtype="u1"), np.empty(0, dtype=np.float64)], names=["one", "two"] ) expected = DataFrame({"three": np.empty(0, dtype=object)}, index=exp_idx) tm.assert_frame_equal(result, expected) def test_empty_with_mangled_column_pass_dtype_by_names(all_parsers): parser = all_parsers data = "one,one" result = parser.read_csv(StringIO(data), dtype={"one": "u1", "one.1": "f"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_mangled_column_pass_dtype_by_indexes(all_parsers): parser = all_parsers data = "one,one" result = parser.read_csv(StringIO(data), dtype={0: "u1", 1: "f"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_dup_column_pass_dtype_by_indexes(all_parsers): # see gh-9424 parser = all_parsers expected = concat( [Series([], name="one", dtype="u1"), Series([], name="one.1", dtype="f")], axis=1, ) expected.index = expected.index.astype(object) data = "one,one" result = parser.read_csv(StringIO(data), dtype={0: "u1", 1: "f"}) tm.assert_frame_equal(result, expected) def test_empty_with_dup_column_pass_dtype_by_indexes_raises(all_parsers): # see gh-9424 parser = all_parsers expected = concat( [Series([], name="one", dtype="u1"), Series([], name="one.1", dtype="f")], axis=1, ) expected.index = expected.index.astype(object) with pytest.raises(ValueError, match="Duplicate names"): data = "" parser.read_csv(StringIO(data), names=["one", "one"], dtype={0: "u1", 1: "f"}) def test_raise_on_passed_int_dtype_with_nas(all_parsers): # see gh-2631 parser = all_parsers data = """YEAR, DOY, a 2001,106380451,10 2001,,11 2001,106380451,67""" msg = ( "Integer column has NA values" if parser.engine == "c" else "Unable to convert column DOY" ) with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), dtype={"DOY": np.int64}, skipinitialspace=True) def test_dtype_with_converters(all_parsers): parser = all_parsers data = """a,b 1.1,2.2 1.2,2.3""" # Dtype spec ignored if converted specified. with tm.assert_produces_warning(ParserWarning): result = parser.read_csv( StringIO(data), dtype={"a": "i8"}, converters={"a": lambda x: str(x)} ) expected = DataFrame({"a": ["1.1", "1.2"], "b": [2.2, 2.3]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (np.float64, DataFrame(columns=["a", "b"], dtype=np.float64)), ("category", DataFrame({"a": Categorical([]), "b": Categorical([])}, index=[])), ( dict(a="category", b="category"), DataFrame({"a": Categorical([]), "b": Categorical([])}, index=[]), ), ("datetime64[ns]", DataFrame(columns=["a", "b"], dtype="datetime64[ns]")), ( "timedelta64[ns]", DataFrame( { "a": Series([], dtype="timedelta64[ns]"), "b":
Series([], dtype="timedelta64[ns]")
pandas.Series
import matplotlib.pyplot as plt #import numpy import pandas as pd #This is the evaluation methods used for extracting the data for the test-cases. #-Hopefully the names of the functions is self-explanatory all_cost = [] last_costs = [] acceptance = [] temp = [] seconds = [] usages = [] requirements = [] RB_usages = [] no_of_groups = [] data_node = [] parity_node = [] def eval_topology_RB(cost): list.append(all_cost, cost) #print(all_cost) plt.plot(all_cost) plt.ylabel('Overall latency') plt.xlabel('Iterations') return all_cost def eval_topology_DS(cost): #print('hej fra eval') list.append(all_cost, cost) #print(all_cost) plt.plot(all_cost) plt.ylabel('Overall - Latency') plt.xlabel('Iterations') return all_cost def eval_annealing_DS(T): #print('hej fra eval') list.append(temp, T) print('temp', temp) return def csv1(): df = pd.DataFrame(temp) df.to_csv("/home/christopher/IdeaProjects//evaluation/anneal_DS/Exponential/schedule.csv") return def eval_seonds_DS(sec): #print('hej fra eval') list.append(seconds, sec) print('sec', sec) return def csv_sec(): df = pd.DataFrame(seconds) df.to_csv("/home/christopher/IdeaProjects/evaluation/scalability-parity/seconds-GNP-200.csv") return def eval_usage_DS(usage, req): #print('hej fra eval') list.append(usages, usage) list.append(requirements, req) print('usage', usage) print('requirement', req) return def csv_usage(): df =
pd.DataFrame(usages)
pandas.DataFrame
""" Created on Mon Feb 22 15:52:51 2021 @author: <NAME> """ import pandas as pd import numpy as np import os import pickle import calendar import time import warnings from pyproj import Transformer import networkx as nx import matplotlib as mpl import matplotlib.pyplot as plt from requests import get import dataframe_key def compile_chicago_stations(): """ Reads data files containing information about docking stations in Chicago and compiles the data into a dataframe. The dataframe is then saved as a pickle for further use. The relevant files can be found at: https://divvy-tripdata.s3.amazonaws.com/index.html https://data.cityofchicago.org/Transportation/Divvy-Bicycle-Stations-All-Map/bk89-9dk7 Raises ------ FileNotFoundError Raised if no data files containing station data are found. Returns ------- stat_df : pandas DataFrame Dataframe of all docking station information. """ try: with open('./python_variables/Chicago_stations.pickle', 'rb') as file: stat_df = pickle.load(file) except FileNotFoundError as exc: print('No pickle found. Creating pickle...') stat_files = [file for file in os.listdir('data') if 'Divvy_Stations' in file] col_list = ['id', 'name', 'latitude', 'longitude'] key = {'ID':'id', 'Station Name':'name', 'Latitude':'latitude','Longitude':'longitude'} try: stat_df = pd.read_csv( 'data/Divvy_Bicycle_Stations_-_All_-_Map.csv').rename(columns = key) stat_df = stat_df[col_list] except FileNotFoundError: stat_df = pd.DataFrame(columns = col_list) for file in stat_files: df = pd.read_csv(f'./data/{file}')[col_list] stat_df = pd.concat([stat_df, df], sort = False) if stat_df.size == 0: raise FileNotFoundError( 'No data files containing station data found. Please read the docstring for more information.') from exc stat_df.drop_duplicates(subset = 'name', inplace = True) with open('./python_variables/Chicago_stations.pickle', 'wb') as file: pickle.dump(stat_df, file) print('Pickle loaded') return stat_df def get_JC_blacklist(): """ Constructs/updates a blacklist of stations in Jersey City area. The blacklist is created using historical biketrip datasets for the area. Use only if you know what you are doing. The relevant files can be found at: https://www.citibikenyc.com/system-data Raises ------ FileNotFoundError Raised if no Jersey City dataset is found. Returns ------- blacklist : list List of IDs of the Jersey City docking stations. """ try: with open('./python_variables/JC_blacklist', 'rb') as file: blacklist = pickle.load(file) except FileNotFoundError: print('No previous blacklist found. Creating blacklist...') blacklist = set() JC_files = [file for file in os.listdir('data') if 'JC' in file] if len(JC_files) == 0: raise FileNotFoundError( 'No JC files found. Please have a JC file in the data directory to create/update blacklist.') for file in JC_files: df = pd.read_csv('data/' + file) df = df.rename(columns = dataframe_key.get_key('nyc')) JC_start_stat_indices = df.loc[df['start_stat_long'] < 74.02] JC_end_stat_indices = df.loc[df['end_stat_long'] < 74.02] stat_IDs = set( df['start_stat_id'][JC_start_stat_indices]) | set(df['end_stat_id'][JC_end_stat_indices]) blacklist = blacklist | stat_IDs with open('./python_variables/JC_blacklist', 'wb') as file: pickle.dump(blacklist, file) print('Blacklist updated') return blacklist def days_index(df): """ Find indices of daily trips. Parameters ---------- df : pandas DataFrame Dataframe containing bikeshare trip data with columns that have been renamed to the common key. Returns ------- d_i : dict Contains the indices of the first trip per day. """ days = df['start_dt'].dt.day d_i = [(days == i).idxmax() for i in range(1, max(days)+1)] return dict(zip(range(1, max(days)+1), d_i)) def pickle_data(df, city, year, month): """ Generate pickle of days' starting indices. Parameters ---------- df : pandas DataFrame bikeshare trip data with columns that have been renamed to the common key. city : str The identification of the city. For a list of supported cities, see the documentation for the Data class. year : int The year of interest in YYYY format. month : int The month of interest in MM format. Returns ------- d : dict Contains the indices of the first trip per day. """ d = days_index(df) with open(f'./python_variables/day_index_{city}{year:d}{month:02d}.pickle', 'wb') as file: pickle.dump(d, file) return d def get_data(city, year, month, blacklist=None): """ Read data from csv files. Parameters ---------- city : str The identification of the city. For a list of supported cities, see the documentation for the Data class. year : int The year of interest in YYYY format. month : int The month of interest in MM format. blacklist : list, optional List of IDs of stations to remove. Default is None. Returns ------- df : pandas DataFrame Dataframe containing bikeshare trip data. days : dict Contains the indices of the first trip per day. """ supported_cities = ['nyc', 'sfran', 'sjose', 'washDC', 'chic', 'london', 'oslo', 'edinburgh', 'bergen', 'buenos_aires', 'madrid', 'mexico', 'taipei'] # Remember to update this list if city not in supported_cities: raise ValueError("This city is not currently supported. Supported cities are {}".format(supported_cities)) # Make folder for dataframes if not found if not os.path.exists('python_variables/big_data'): os.makedirs('python_variables/big_data') try: with open(f'./python_variables/big_data/{city}{year:d}{month:02d}_dataframe_blcklst={blacklist}.pickle', 'rb') as file: df = pickle.load(file) print('Pickle loaded') except FileNotFoundError: print('No dataframe pickle found. Pickling dataframe...') if city == "nyc": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-citibike-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.citibikenyc.com/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) try: with open('./python_variables/JC_blacklist', 'rb') as file: JC_blacklist = pickle.load(file) df = df[~df['start_stat_id'].isin(JC_blacklist)] df = df[~df['end_stat_id'].isin(JC_blacklist)] except FileNotFoundError: print('No JC blacklist found. Continuing...') df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "washDC": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-capitalbikeshare-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.capitalbikeshare.com/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) df['start_stat_lat'] = '' df['start_stat_long'] = '' df['end_stat_lat'] = '' df['end_stat_long'] = '' stat_df = pd.read_csv('data/Capital_Bike_Share_Locations.csv') for _ , stat in stat_df.iterrows(): start_matches = np.where(df['start_stat_id'] == stat['TERMINAL_NUMBER']) end_matches = np.where(df['end_stat_id'] == stat['TERMINAL_NUMBER']) df.at[start_matches[0], 'start_stat_lat'] = stat['LATITUDE'] df.at[start_matches[0], 'start_stat_long'] = stat['LONGITUDE'] df.at[end_matches[0], 'end_stat_lat'] = stat['LATITUDE'] df.at[end_matches[0], 'end_stat_long'] = stat['LONGITUDE'] df.replace('', np.nan, inplace = True) df.dropna(inplace=True) max_lat = 38.961029 min_lat = 38.792686 max_long= -76.909415 min_long= -77.139396 df = df.iloc[np.where( (df['start_stat_lat'] < max_lat) & (df['start_stat_lat'] > min_lat) & (df['start_stat_long'] < max_long) & (df['start_stat_long'] > min_long))] df = df.iloc[np.where( (df['end_stat_lat'] < max_lat) & (df['end_stat_lat'] > min_lat) & (df['end_stat_long'] < max_long) & (df['end_stat_long'] > min_long))] df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "chic": q = int(np.ceil(month/3)) try: df = pd.read_csv(f'./data/Divvy_Trips_{year:d}_Q{q}.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.divvybikes.com/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) n_days = calendar.monthrange(year, month)[1] df = df.iloc[np.where(df['start_t'] > f'{year:d}-{month:02d}-01 00:00:00')] df = df.iloc[np.where(df['start_t'] < f'{year:d}-{month:02d}-{n_days} 23:59:59')] df.reset_index(inplace = True, drop = True) df['start_stat_lat'] = '' df['start_stat_long'] = '' df['end_stat_lat'] = '' df['end_stat_long'] = '' try: with open('./python_variables/Chicago_stations.pickle', 'rb') as file: stat_df = pickle.load(file) except FileNotFoundError as exc: compile_chicago_stations() with open('./python_variables/Chicago_stations.pickle', 'rb') as file: stat_df = pickle.load(file) for _, stat in stat_df.iterrows(): start_matches = np.where(df['start_stat_name'] == stat['name']) end_matches = np.where(df['end_stat_name'] == stat['name']) df.at[start_matches[0], 'start_stat_lat'] = stat['latitude'] df.at[start_matches[0], 'start_stat_long'] = stat['longitude'] df.at[end_matches[0], 'end_stat_lat'] = stat['latitude'] df.at[end_matches[0], 'end_stat_long'] = stat['longitude'] df.replace('', np.nan, inplace = True) df.dropna(subset = ['start_stat_lat', 'start_stat_long', 'end_stat_lat', 'end_stat_long'], inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) df['duration'] = df['duration'].str.replace(',', '').astype(float) elif city == "sfran": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-baywheels-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.lyft.com/bikes/bay-wheels/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df = df.iloc[np.where(df['start_stat_lat'] > 37.593220)] df = df.iloc[np.where(df['end_stat_lat'] > 37.593220)] df.sort_values(by = 'start_t', inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "sjose": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-baywheels-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.lyft.com/bikes/bay-wheels/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df = df.iloc[np.where(df['start_stat_lat'] < 37.593220)] df = df.iloc[np.where(df['end_stat_lat'] < 37.593220)] df.sort_values(by = 'start_t', inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "london": month_dict = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'} data_files = [file for file in os.listdir('data') if 'JourneyDataExtract' in file] data_files = [file for file in data_files if '{}'.format(year) and '{}'.format(month_dict[month]) in file] if len(data_files) == 0: raise FileNotFoundError('No London data for {}. {} found. All relevant files can be found at https://cycling.data.tfl.gov.uk/.'.format(month_dict[month], year)) if isinstance(data_files, str): warnings.warn('Only one data file found. Please check that you have all available data.') df = pd.read_csv('./data/' + data_files[0]) for file in data_files[1:]: df_temp = pd.read_csv('./data/' + file) df = pd.concat([df, df_temp], sort = False) df.rename(columns = dataframe_key.get_key(city), inplace = True) n_days = calendar.monthrange(year, month)[1] df = df.iloc[np.where(df['start_t'] >= f'01/{month:02d}/{year} 00:00')] df = df.iloc[np.where(df['start_t'] <= f'{n_days}/{month:02d}/{year} 23:59')] df.sort_values(by = 'start_t', inplace = True) df.reset_index(inplace = True) df['start_t'] = pd.to_datetime(df['start_t'], format = '%d/%m/%Y %H:%M').astype(str) df['end_t'] = pd.to_datetime(df['end_t'], format = '%d/%m/%Y %H:%M').astype(str) stat_df = pd.read_csv('./data/london_stations.csv') stat_df.at[np.where(stat_df['station_id'] == 502)[0][0], 'latitude'] = 51.53341 df['start_stat_lat'] = '' df['start_stat_long'] = '' df['end_stat_lat'] = '' df['end_stat_long'] = '' for _ , stat in stat_df.iterrows(): start_matches = np.where(df['start_stat_name'] == stat['station_name']) end_matches = np.where(df['end_stat_name'] == stat['station_name']) df.at[start_matches[0], 'start_stat_lat'] = stat['latitude'] df.at[start_matches[0], 'start_stat_long'] = stat['longitude'] df.at[end_matches[0], 'end_stat_lat'] = stat['latitude'] df.at[end_matches[0], 'end_stat_long'] = stat['longitude'] df.replace('', np.nan, inplace = True) df.dropna(inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) df = df[df.start_dt.dt.month == month] df.reset_index(inplace = True, drop = True) elif city == "oslo": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-oslo.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://oslobysykkel.no/en/open-data/historical') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "edinburgh": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-edinburgh.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://edinburghcyclehire.com/open-data/historical') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "bergen": try: df =
pd.read_csv(f'./data/{year:d}{month:02d}-bergen.csv')
pandas.read_csv
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = ( "The default of the 'keep_tz' keyword in " "DatetimeIndex.to_series will change to True in a future " "release." ) assert msg in str(m[0].message) with tm.assert_produces_warning(FutureWarning): result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx =
date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx")
pandas.date_range
## python 101917081.py "C:\Users\hp\Desktop\Assignment-4\Input files for Assignment04\data.csv" "1,1,1,1,1" "+,-,+,-,+" "abcd-result.csv" from argparse import ArgumentParser from pathlib import Path import pandas as pd import sys def main(): # total arguments n = len(sys.argv) if n<5 : exit('Enter more arguments') if n>5 : exit('Enter less arguments') input_file = sys.argv[1] path = Path(input_file) if not path.is_file(): print('File not found!!') exit() df=pd.read_csv(input_file) if df.shape[1]<3 : print('Input file contains less 3 columns') exit() # Checking whether dataframe contains only numeric values or not check_numeric= df.apply(lambda s:
pd.to_numeric(s, errors='coerce')
pandas.to_numeric
# Copyright WillianFuks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for module plot.py. Module matplotlib is not required as it's mocked accordingly. """ import mock import numpy as np import pandas as pd import pytest from numpy.testing import assert_array_equal import causalimpact.plot as plotter @pytest.fixture def inferences(rand_data): df = pd.DataFrame(np.random.rand(len(rand_data), 9)) df.columns = [ 'complete_preds_means', 'complete_preds_lower', 'complete_preds_upper', 'point_effects_means', 'point_effects_lower', 'point_effects_upper', 'post_cum_effects_means', 'post_cum_effects_lower', 'post_cum_effects_upper' ] return df def test_build_data(): pre_data = pd.DataFrame([0, 1, np.nan]) post_data = pd.DataFrame([3, 4, np.nan], index=[3, 4, 5]) inferences = pd.DataFrame([0, 1, 2, 3, 4, 5]) pre_data, post_data, inferences = plotter.build_data(pre_data, post_data, inferences) expected_pre_data = pd.DataFrame([0, 1]).astype(np.float64) pd.testing.assert_frame_equal(pre_data, expected_pre_data) expected_post_data = pd.DataFrame([3, 4], index=[3, 4]).astype(np.float64) pd.testing.assert_frame_equal(post_data, expected_post_data) expected_inferences = pd.DataFrame([0, 1, 3, 4], index=[0, 1, 3, 4]).astype(np.float64) pd.testing.assert_frame_equal(inferences, expected_inferences) def test_plot_original_panel(rand_data, pre_int_period, post_int_period, inferences, monkeypatch): plot_mock = mock.Mock() pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1]] post_data = rand_data.loc[post_int_period[0]: post_int_period[1]] pre_post_index = pre_data.index.union(post_data.index) monkeypatch.setattr('causalimpact.plot.get_plotter', plot_mock) plotter.plot(inferences, pre_data, post_data, panels=['original']) plot_mock.assert_called_once() plot_mock.return_value.figure.assert_called_with(figsize=(10, 7)) plot_mock.return_value.subplot.assert_any_call(1, 1, 1) ax_mock = plot_mock.return_value.subplot.return_value ax_args = ax_mock.plot.call_args_list assert_array_equal(pre_post_index, ax_args[0][0][0]) assert_array_equal( pd.concat([pre_data.iloc[:, 0], post_data.iloc[:, 0]]), ax_args[0][0][1] ) assert ax_args[0][0][2] == 'k' assert ax_args[0][1] == {'label': 'y'} assert_array_equal(pre_post_index[1:], ax_args[1][0][0]) assert_array_equal(inferences['complete_preds_means'].iloc[1:], ax_args[1][0][1]) assert ax_args[1][1] == {'color': 'orangered', 'ls': 'dashed', 'label': 'Predicted'} ax_mock.axvline.assert_called_with(pre_int_period[1], c='gray', linestyle='--') ax_args = ax_mock.fill_between.call_args_list[0] assert_array_equal(ax_args[0][0], pre_post_index[1:]) assert_array_equal(ax_args[0][1], inferences['complete_preds_lower'].iloc[1:]) assert_array_equal(ax_args[0][2], inferences['complete_preds_upper'].iloc[1:]) assert ax_args[1] == {'color': (1.0, 0.4981, 0.0549), 'alpha': 0.4} ax_mock.grid.assert_called_with(True, color='gainsboro') ax_mock.legend.assert_called() plot_mock.return_value.show.assert_called_once() def test_plot_original_panel_gap_data(rand_data, pre_int_gap_period, post_int_gap_period, inferences, monkeypatch): plot_mock = mock.Mock() pre_data = rand_data.loc[pre_int_gap_period[0]: pre_int_gap_period[1]] post_data = rand_data.loc[post_int_gap_period[0]: post_int_gap_period[1]] pre_data = pre_data.set_index(pd.RangeIndex(start=0, stop=len(pre_data))) post_data = post_data.set_index(pd.RangeIndex(start=len(pre_data), stop=len(pre_data) + len(post_data))) pre_post_index = pre_data.index.union(post_data.index) monkeypatch.setattr('causalimpact.plot.get_plotter', plot_mock) plotter.plot(inferences, pre_data, post_data, panels=['original']) plot_mock.assert_called_once() plot_mock.return_value.figure.assert_called_with(figsize=(10, 7)) plot_mock.return_value.subplot.assert_any_call(1, 1, 1) ax_mock = plot_mock.return_value.subplot.return_value ax_args = ax_mock.plot.call_args_list assert_array_equal(pre_post_index, ax_args[0][0][0]) assert_array_equal(
pd.concat([pre_data.iloc[:, 0], post_data.iloc[:, 0]])
pandas.concat
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with
tm.assert_raises_regex(TypeError, msg)
pandas.util.testing.assert_raises_regex
# ActivitySim # See full license in LICENSE.txt. import logging import numpy as np import pandas as pd from activitysim.core import config from activitysim.core import inject from activitysim.core import pipeline from activitysim.core import simulate from activitysim.core import tracing from activitysim.core import logit from activitysim.core import expressions from activitysim.core.interaction_sample_simulate import interaction_sample_simulate from activitysim.core.util import assign_in_place from activitysim.core.tracing import print_elapsed_time from .util import estimation logger = logging.getLogger(__name__) NO_DESTINATION = -1 def wrap_skims(model_settings): """ wrap skims of trip destination using origin, dest column names from model settings. Various of these are used by destination_sample, compute_logsums, and destination_simulate so we create them all here with canonical names. Note that compute_logsums aliases their names so it can use the same equations to compute logsums from origin to alt_dest, and from alt_dest to primarly destination odt_skims - SkimStackWrapper: trip origin, trip alt_dest, time_of_day dot_skims - SkimStackWrapper: trip alt_dest, trip origin, time_of_day dpt_skims - SkimStackWrapper: trip alt_dest, trip primary_dest, time_of_day pdt_skims - SkimStackWrapper: trip primary_dest,trip alt_dest, time_of_day od_skims - SkimDictWrapper: trip origin, trip alt_dest dp_skims - SkimDictWrapper: trip alt_dest, trip primary_dest Parameters ---------- model_settings Returns ------- dict containing skims, keyed by canonical names relative to tour orientation """ network_los = inject.get_injectable('network_los') skim_dict = network_los.get_default_skim_dict() origin = model_settings['TRIP_ORIGIN'] park_zone = model_settings['ALT_DEST_COL_NAME'] destination = model_settings['TRIP_DESTINATION'] time_period = model_settings['TRIP_DEPARTURE_PERIOD'] skims = { "odt_skims": skim_dict.wrap_3d(orig_key=origin, dest_key=destination, dim3_key=time_period), "dot_skims": skim_dict.wrap_3d(orig_key=destination, dest_key=origin, dim3_key=time_period), "opt_skims": skim_dict.wrap_3d(orig_key=origin, dest_key=park_zone, dim3_key=time_period), "pdt_skims": skim_dict.wrap_3d(orig_key=park_zone, dest_key=destination, dim3_key=time_period), "od_skims": skim_dict.wrap(origin, destination), "do_skims": skim_dict.wrap(destination, origin), "op_skims": skim_dict.wrap(origin, park_zone), "pd_skims": skim_dict.wrap(park_zone, destination), } return skims def get_spec_for_segment(model_settings, spec_name, segment): omnibus_spec = simulate.read_model_spec(file_name=model_settings[spec_name]) spec = omnibus_spec[[segment]] # might as well ignore any spec rows with 0 utility spec = spec[spec.iloc[:, 0] != 0] assert spec.shape[0] > 0 return spec def parking_destination_simulate( segment_name, trips, destination_sample, model_settings, skims, chunk_size, trace_hh_id, trace_label): """ Chose destination from destination_sample (with od_logsum and dp_logsum columns added) Returns ------- choices - pandas.Series destination alt chosen """ trace_label = tracing.extend_trace_label(trace_label, 'trip_destination_simulate') spec = get_spec_for_segment(model_settings, 'SPECIFICATION', segment_name) alt_dest_col_name = model_settings['ALT_DEST_COL_NAME'] logger.info("Running trip_destination_simulate with %d trips", len(trips)) locals_dict = config.get_model_constants(model_settings).copy() locals_dict.update(skims) parking_locations = interaction_sample_simulate( choosers=trips, alternatives=destination_sample, spec=spec, choice_column=alt_dest_col_name, want_logsums=False, allow_zero_probs=True, zero_prob_choice_val=NO_DESTINATION, skims=skims, locals_d=locals_dict, chunk_size=chunk_size, trace_label=trace_label, trace_choice_name='parking_loc') # drop any failed zero_prob destinations if (parking_locations == NO_DESTINATION).any(): logger.debug("dropping %s failed parking locations", (parking_locations == NO_DESTINATION).sum()) parking_locations = parking_locations[parking_locations != NO_DESTINATION] return parking_locations def choose_parking_location( segment_name, trips, alternatives, model_settings, want_sample_table, skims, chunk_size, trace_hh_id, trace_label): logger.info("choose_parking_location %s with %d trips", trace_label, trips.shape[0]) t0 = print_elapsed_time() alt_dest_col_name = model_settings['ALT_DEST_COL_NAME'] destination_sample = logit.interaction_dataset(trips, alternatives, alt_index_id=alt_dest_col_name) destination_sample.index = np.repeat(trips.index.values, len(alternatives)) destination_sample.index.name = trips.index.name destination_sample = destination_sample[[alt_dest_col_name]].copy() # # - trip_destination_simulate destinations = parking_destination_simulate( segment_name=segment_name, trips=trips, destination_sample=destination_sample, model_settings=model_settings, skims=skims, chunk_size=chunk_size, trace_hh_id=trace_hh_id, trace_label=trace_label) if want_sample_table: # FIXME - sample_table destination_sample.set_index(model_settings['ALT_DEST_COL_NAME'], append=True, inplace=True) else: destination_sample = None t0 = print_elapsed_time("%s.parking_location_simulate" % trace_label, t0) return destinations, destination_sample def run_parking_destination( model_settings, trips, land_use, chunk_size, trace_hh_id, trace_label, fail_some_trips_for_testing=False): chooser_filter_column = model_settings.get('CHOOSER_FILTER_COLUMN_NAME') chooser_segment_column = model_settings.get('CHOOSER_SEGMENT_COLUMN_NAME') parking_location_column_name = model_settings['ALT_DEST_COL_NAME'] sample_table_name = model_settings.get('DEST_CHOICE_SAMPLE_TABLE_NAME') want_sample_table = config.setting('want_dest_choice_sample_tables') and sample_table_name is not None choosers = trips[trips[chooser_filter_column]] choosers = choosers.sort_index() # Placeholder for trips without a parking choice trips[parking_location_column_name] = -1 skims = wrap_skims(model_settings) alt_column_filter_name = model_settings.get('ALTERNATIVE_FILTER_COLUMN_NAME') alternatives = land_use[land_use[alt_column_filter_name]] # don't need size terms in alternatives, just TAZ index alternatives = alternatives.drop(alternatives.columns, axis=1) alternatives.index.name = parking_location_column_name choices_list = [] sample_list = [] for segment_name, chooser_segment in choosers.groupby(chooser_segment_column): if chooser_segment.shape[0] == 0: logger.info("%s skipping segment %s: no choosers", trace_label, segment_name) continue choices, destination_sample = choose_parking_location( segment_name, chooser_segment, alternatives, model_settings, want_sample_table, skims, chunk_size, trace_hh_id, trace_label=tracing.extend_trace_label(trace_label, segment_name)) choices_list.append(choices) if want_sample_table: assert destination_sample is not None sample_list.append(destination_sample) if len(choices_list) > 0: parking_df = pd.concat(choices_list) if fail_some_trips_for_testing: parking_df = parking_df.drop(parking_df.index[0]) assign_in_place(trips, parking_df.to_frame(parking_location_column_name)) trips[parking_location_column_name] = trips[parking_location_column_name].fillna(-1) else: trips[parking_location_column_name] = -1 save_sample_df =
pd.concat(sample_list)
pandas.concat
import unittest import numpy as np import pandas as pd from haychecker.chc.metrics import rule class TestRule(unittest.TestCase): def test_empty(self): df =
pd.DataFrame()
pandas.DataFrame
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for module main.py. Fixtures comes from file conftest.py located at the same dir of this file. """ from __future__ import absolute_import, division, print_function import os import mock import numpy as np import pandas as pd import pytest from numpy.testing import assert_array_equal from pandas.core.indexes.range import RangeIndex from pandas.util.testing import assert_frame_equal from statsmodels.tsa.statespace.structural import ( UnobservedComponents, UnobservedComponentsResultsWrapper) from causalimpact import CausalImpact from causalimpact.misc import standardize def test_default_causal_cto(rand_data, pre_int_period, post_int_period): ci = CausalImpact(rand_data, pre_int_period, post_int_period) assert_frame_equal(ci.data, rand_data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = rand_data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, normed_pre_data.iloc[:, 1:].values.reshape( -1, rand_data.shape[1] - 1 ) ) assert ci.model.endog_names == 'y' assert ci.model.exog_names == ['x1', 'x2'] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_default_causal_cto_w_date(date_rand_data, pre_str_period, post_str_period): ci = CausalImpact(date_rand_data, pre_str_period, post_str_period) assert_frame_equal(ci.data, date_rand_data) assert ci.pre_period == pre_str_period assert ci.post_period == post_str_period pre_data = date_rand_data.loc[pre_str_period[0]: pre_str_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = date_rand_data.loc[post_str_period[0]: post_str_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, normed_pre_data.iloc[:, 1:].values.reshape( -1, date_rand_data.shape[1] - 1 ) ) assert ci.model.endog_names == 'y' assert ci.model.exog_names == ['x1', 'x2'] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_default_causal_cto_no_exog(rand_data, pre_int_period, post_int_period): rand_data = pd.DataFrame(rand_data.iloc[:, 0]) ci = CausalImpact(rand_data, pre_int_period, post_int_period) assert_frame_equal(ci.data, rand_data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = rand_data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert ci.model.exog is None assert ci.model.endog_names == 'y' assert ci.model.exog_names is None assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_default_causal_cto_w_np_array(rand_data, pre_int_period, post_int_period): data = rand_data.values ci = CausalImpact(data, pre_int_period, post_int_period) assert_array_equal(ci.data, data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = pd.DataFrame(data[pre_int_period[0]: pre_int_period[1] + 1, :]) assert_frame_equal(ci.pre_data, pre_data) post_data = pd.DataFrame(data[post_int_period[0]: post_int_period[1] + 1, :]) post_data.index = RangeIndex(start=len(pre_data), stop=len(rand_data)) assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, normed_pre_data.iloc[:, 1:].values.reshape( -1, data.shape[1] - 1 ) ) assert ci.model.endog_names == 'y' assert ci.model.exog_names == [1, 2] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_causal_cto_w_no_standardization(rand_data, pre_int_period, post_int_period): ci = CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False) pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert ci.normed_pre_data is None assert ci.normed_post_data is None assert ci.mu_sig is None assert_array_equal(ci.model.endog, pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, pre_data.iloc[:, 1:].values.reshape( -1, rand_data.shape[1] - 1 ) ) assert ci.p_value > 0 and ci.p_value < 1 def test_causal_cto_w_seasons(date_rand_data, pre_str_period, post_str_period): ci = CausalImpact(date_rand_data, pre_str_period, post_str_period, nseasons=[{'period': 4}, {'period': 3}]) assert ci.model.freq_seasonal_periods == [4, 3] assert ci.model.freq_seasonal_harmonics == [2, 1] ci = CausalImpact(date_rand_data, pre_str_period, post_str_period, nseasons=[{'period': 4, 'harmonics': 1}, {'period': 3, 'harmonis': 1}]) assert ci.model.freq_seasonal_periods == [4, 3] assert ci.model.freq_seasonal_harmonics == [1, 1] def test_causal_cto_w_custom_model_and_seasons(rand_data, pre_int_period, post_int_period): pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] model = UnobservedComponents(endog=pre_data.iloc[:, 0], level='llevel', exog=pre_data.iloc[:, 1:], freq_seasonal=[{'period': 4}, {'period': 3}]) ci = CausalImpact(rand_data, pre_int_period, post_int_period, model=model) assert ci.model.freq_seasonal_periods == [4, 3] assert ci.model.freq_seasonal_harmonics == [2, 1] def test_causal_cto_w_custom_model(rand_data, pre_int_period, post_int_period): pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] model = UnobservedComponents(endog=pre_data.iloc[:, 0], level='llevel', exog=pre_data.iloc[:, 1:]) ci = CausalImpact(rand_data, pre_int_period, post_int_period, model=model) assert ci.model.endog_names == 'y' assert ci.model.exog_names == ['x1', 'x2'] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) def test_causal_cto_raises_on_None_input(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(None, pre_int_period, post_int_period) assert str(excinfo.value) == 'data input cannot be empty' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, None, post_int_period) assert str(excinfo.value) == 'pre_period input cannot be empty' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, None) assert str(excinfo.value) == 'post_period input cannot be empty' def test_invalid_data_input_raises(): with pytest.raises(ValueError) as excinfo: CausalImpact('test', [0, 5], [5, 10]) assert str(excinfo.value) == 'Could not transform input data to pandas DataFrame.' data = [1, 2, 3, 4, 5, 6, 2 + 1j] with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 3], [3, 6]) assert str(excinfo.value) == 'Input data must contain only numeric values.' data = np.random.randn(10, 2) data[0, 1] = np.nan with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 3], [3, 6]) assert str(excinfo.value) == 'Input data cannot have NAN values.' def test_invalid_response_raises(): data = np.random.rand(100, 2) data[:, 0] = np.ones(len(data)) * np.nan with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 50], [50, 100]) assert str(excinfo.value) == 'Input response cannot have just Null values.' data[0:2, 0] = 1 with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 50], [50, 100]) assert str(excinfo.value) == ('Input response must have more than 3 non-null points ' 'at least.') data[0:3, 0] = 1 with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 50], [50, 100]) assert str(excinfo.value) == 'Input response cannot be constant.' def test_invalid_alpha_raises(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, alpha=1) assert str(excinfo.value) == 'alpha must be of type float.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, alpha=2.) assert str(excinfo.value) == ( 'alpha must range between 0 (zero) and 1 (one) inclusive.' ) def test_custom_model_input_validation(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model='test') assert str(excinfo.value) == 'Input model must be of type UnobservedComponents.' ucm = UnobservedComponents(rand_data.iloc[:101, 0], level='llevel', exog=rand_data.iloc[:101, 1:]) ucm.level = False with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model=ucm) assert str(excinfo.value) == 'Model must have level attribute set.' ucm = UnobservedComponents(rand_data.iloc[:101, 0], level='llevel', exog=rand_data.iloc[:101, 1:]) ucm.exog = None with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model=ucm) assert str(excinfo.value) == 'Model must have exog attribute set.' ucm = UnobservedComponents(rand_data.iloc[:101, 0], level='llevel', exog=rand_data.iloc[:101, 1:]) ucm.data = None with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model=ucm) assert str(excinfo.value) == 'Model must have data attribute set.' def test_kwargs_validation(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize='yes') assert str(excinfo.value) == 'Standardize argument must be of type bool.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False, nseasons=[7]) assert str(excinfo.value) == ( 'nseasons must be a list of dicts with the required key "period" and the ' 'optional key "harmonics".' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False, nseasons=[{'test': 8}]) assert str(excinfo.value) == 'nseasons dicts must contain the key "period" defined.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False, nseasons=[{'period': 4, 'harmonics': 3}]) assert str(excinfo.value) == ( 'Total harmonics must be less or equal than periods divided by 2.') def test_periods_validation(rand_data, date_rand_data): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [5, 10], [4, 7]) assert str(excinfo.value) == ( 'Values in training data cannot be present in the ' 'post-intervention data. Please fix your pre_period value to cover at most one ' 'point less from when the intervention happened.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180201'], ['20180110', '20180210']) assert str(excinfo.value) == ( 'Values in training data cannot be present in the ' 'post-intervention data. Please fix your pre_period value to cover at most one ' 'point less from when the intervention happened.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [5, 10], [15, 11]) assert str(excinfo.value) == 'post_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180110'], ['20180115', '20180111']) assert str(excinfo.value) == 'post_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 2], [15, 11]) assert str(excinfo.value) == 'pre_period must span at least 3 time points.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180102'], ['20180115', '20180111']) assert str(excinfo.value) == 'pre_period must span at least 3 time points.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [5, 0], [15, 11]) assert str(excinfo.value) == 'pre_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180105', '20180101'], ['20180115', '20180111']) assert str(excinfo.value) == 'pre_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, 0, [15, 11]) assert str(excinfo.value) == 'Input period must be of type list.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, '20180101', ['20180115', '20180130']) assert str(excinfo.value) == 'Input period must be of type list.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 10, 30], [15, 11]) assert str(excinfo.value) == ( 'Period must have two values regarding the beginning ' 'and end of the pre and post intervention data.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, None], [15, 11]) assert str(excinfo.value) == 'Input period cannot have `None` values.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 5.5], [15, 11]) assert str(excinfo.value) == 'Input must contain either int, str or pandas Timestamp' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [-2, 10], [11, 20]) assert str(excinfo.value) == ( '-2 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 10], [11, 2000]) assert str(excinfo.value) == ( '2000 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, ['20180101', '20180110'], ['20180111', '20180130']) assert str(excinfo.value) == ( '20180101 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180110'], ['20180111', '20200130']) assert str(excinfo.value) == ('20200130 not present in input data index.') with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20170101', '20180110'], ['20180111', '20180120']) assert str(excinfo.value) == ('20170101 not present in input data index.') with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [pd.Timestamp('20180101'),
pd.Timestamp('20180110')
pandas.Timestamp
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/8 22:08 Desc: 金十数据中心-经济指标-美国 https://datacenter.jin10.com/economic """ import json import time import pandas as pd import demjson import requests from akshare.economic.cons import ( JS_USA_NON_FARM_URL, JS_USA_UNEMPLOYMENT_RATE_URL, JS_USA_EIA_CRUDE_URL, JS_USA_INITIAL_JOBLESS_URL, JS_USA_CORE_PCE_PRICE_URL, JS_USA_CPI_MONTHLY_URL, JS_USA_LMCI_URL, JS_USA_ADP_NONFARM_URL, JS_USA_GDP_MONTHLY_URL, ) # 东方财富-美国-未决房屋销售月率 def macro_usa_phs(): """ 未决房屋销售月率 http://data.eastmoney.com/cjsj/foreign_0_5.html :return: 未决房屋销售月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { 'type': 'GJZB', 'sty': 'HKZB', 'js': '({data:[(x)],pages:(pc)})', 'p': '1', 'ps': '2000', 'mkt': '0', 'stat': '5', 'pageNo': '1', 'pageNum': '1', '_': '1625474966006' } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json['data']]) temp_df.columns = [ '时间', '前值', '现值', '发布日期', ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) return temp_df # 金十数据中心-经济指标-美国-经济状况-美国GDP def macro_usa_gdp_monthly(): """ 美国国内生产总值(GDP)报告, 数据区间从20080228-至今 https://datacenter.jin10.com/reportType/dc_usa_gdp :return: pandas.Series 2008-02-28 0.6 2008-03-27 0.6 2008-04-30 0.9 2008-06-26 1 2008-07-31 1.9 ... 2019-06-27 3.1 2019-07-26 2.1 2019-08-29 2 2019-09-26 2 2019-10-30 0 """ t = time.time() res = requests.get( JS_USA_GDP_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国国内生产总值(GDP)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "53", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gdp" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告 def macro_usa_cpi_monthly(): """ 美国CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_cpi https://cdn.jin10.com/dc/reports/dc_usa_cpi_all.js?v=1578741110 :return: 美国CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国居民消费价格指数(CPI)(月环比)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "9", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi_monthly" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告 def macro_usa_core_cpi_monthly(): """ 美国核心CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_cpi https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v=1578740570 :return: 美国核心CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "6", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_cpi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告 def macro_usa_personal_spending(): """ 美国个人支出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_personal_spending https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v=1578741327 :return: 美国个人支出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国个人支出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "35", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_personal_spending" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告 def macro_usa_retail_sales(): """ 美国零售销售月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_retail_sales https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v=1578741528 :return: 美国零售销售月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国零售销售月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "39", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_retail_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告 def macro_usa_import_price(): """ 美国进口物价指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_import_price https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v=1578741716 :return: 美国进口物价指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国进口物价指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "18", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_import_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告 def macro_usa_export_price(): """ 美国出口价格指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_export_price https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v=1578741832 :return: 美国出口价格指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国出口价格指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "79", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_export_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-LMCI def macro_usa_lmci(): """ 美联储劳动力市场状况指数报告, 数据区间从20141006-至今 https://datacenter.jin10.com/reportType/dc_usa_lmci https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v=1578742043 :return: 美联储劳动力市场状况指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_LMCI_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美联储劳动力市场状况指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "93", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index =
pd.to_datetime(temp_se.iloc[:, 0])
pandas.to_datetime
import logging import pandas as pd import numpy as np from binance.client import Client _logger = logging.getLogger(__name__) def get_metadata(sid_map): client = Client("", "") metadata = pd.DataFrame( np.empty( len(sid_map), dtype=[ ('symbol', 'str'), ('asset_name', 'str') ] ) ) for sid, symbol in sid_map: res = client.get_symbol_info(symbol) metadata.loc[sid, 'symbol'] = symbol metadata.loc[sid, 'asset_name'] = res['baseAsset'] #metadata.loc[sid, 'start_date'] = pd.to_datetime(start_session) # this is a hack metadata['exchange'] = 'binance' return metadata def _get_historical_klines( sid_map, start_session, end_session, cache, timeframe, show_progress): client = Client("", "") for sid, symbol in sid_map: key = symbol + '-' + timeframe if key not in cache: cache[key] = pd.DataFrame() while cache[key].empty or cache[key].index[-1] < end_session: cursor = start_session if cache[key].empty else cache[key].index[-1] _res = client.get_historical_klines(symbol, timeframe, str(cursor), str(end_session), 720) if not _res: break res = pd.DataFrame(_res).drop(columns=list(range(6,12))) res.columns = ['date', 'open', 'high', 'low', 'close', 'volume'] res['date'] = res['date'].map(lambda x: pd.Timestamp(x*1000000, tz='utc')) res.set_index('date', inplace=True) res.open = res.open.astype(np.float32) res.high = res.high.astype(np.float32) res.low = res.low.astype(np.float32) res.close = res.close.astype(np.float32) res.volume = res.volume.astype(np.float32) if not cache[key].empty: cache[key] = cache[key].drop(index=cache[key].index[-1]) cache[key] =
pd.concat([cache[key], res])
pandas.concat
import time import csv import gensim import nltk import numpy as np import pandas as pd from datetime import datetime from gensim.models import Word2Vec from gensim.models.callbacks import CallbackAny2Vec from nltk.sentiment.vader import SentimentIntensityAnalyzer from progress.bar import Bar from scipy import spatial from tqdm import tqdm class EpochLogger(CallbackAny2Vec): def __init__(self): self.starttime = 0.0 self.epoch = 0 self.tot_epochs = 100 self.single_epoch_time = 0 def on_epoch_begin(self, model): if self.epoch != 0: print(f"Started epoch {self.epoch}.") def on_epoch_end(self, model): if self.epoch == 0: self.starttime = time.time() self.single_epoch_time = time.time() else: if self.epoch != self.tot_epochs: print(f"Finished epoch {self.epoch} in {time.time() - self.single_epoch_time}") self.single_epoch_time = time.time() else: print(f"Training finished in {time.time() - self.starttime}s") self.epoch += 1 class BiasModel: nltk.download('averaged_perceptron_tagger') nltk.download('vader_lexicon') def __init__(self, comments_document, comment_column='body', output_name='outputModel', window=4, min_frequency=10, out_dimension=200): self.comments_document = comments_document self.comment_column = comment_column self.output_name = output_name self.window = window self.min_frequency = min_frequency self.out_dimension = out_dimension self.sentiment_analyzer = SentimentIntensityAnalyzer() @staticmethod def calculate_centroid(model, words): embeddings = [np.array(model[w]) for w in words if w in model] centroid = np.zeros(len(embeddings[0])) for e in embeddings: centroid += e return centroid / len(embeddings) @staticmethod def get_cosine_distance(embedding1, embedding2): return spatial.distance.cosine(embedding1, embedding2) def load_csv_and_preprocess(self, path, nrowss=None, lemmatise=False): """ input: nrowss <int> : number of rows to process, leave None if all tolower <True/False> : transform all text to lowercase returns: List of preprocessed sentences, i.e. the input to train """ print(f"Processing document: {self.comments_document}") trpCom = pd.read_csv(self.comments_document, lineterminator='\n', nrows=nrowss) trpCom.fillna(0) documents = [] with open(path, 'a', encoding='utf-8') as file: for i, row in enumerate(trpCom[self.comment_column]): if i % 500000 == 0: print(f'Processing line {i}') for word in documents: file.write("%s\n" % word) documents = [] try: pp = gensim.utils.simple_preprocess(row) if lemmatise: pp = [wordnet_lemmatizer.lemmatize(w, pos="n") for w in pp] documents.append(pp) except TypeError: print(f'Row {i} threw a type error.') file.close() print(f'Wrote corpus to file: {path}.') return documents def stream_load_csv_and_preprocess(self, csv_in, csv_out, corpus_out, subsample=False, fraction=None): if subsample and fraction is None: print("If subsampling is enabled a fraction must be specified.") return f_in = open(csv_in, encoding="utf-8") reader = csv.DictReader(f_in) tmp_df = pd.DataFrame() previous_day = datetime.fromtimestamp(0) with open(corpus_out, 'a', encoding='utf-8') as file: for row in tqdm(reader): mask = [True if val is not None and val != "" else False for val in row.values()] if not all(mask): print("Empty value in row.") continue next_day = datetime.fromtimestamp(int(row["created"])).date() row["body"] = ' '.join(w for w in gensim.utils.simple_preprocess(row["body"])) if previous_day != next_day and not tmp_df.empty: tmp_df["created"] =
pd.to_datetime(tmp_df["created"], unit='s')
pandas.to_datetime
import spacy import pandas as pd from warnings import filterwarnings from pathlib import Path from os.path import isfile filterwarnings('ignore') nlp = spacy.load('en_core_web_md') def form_similar_sequences(text: str, n: int) -> list: tokens = nlp(text) token_tuples = [(tokens[i].text, i) for i in range(len(tokens)) if tokens[i].pos_ in {'ADJ', 'NOUN', 'VERB'}][:5] texts_only = [t.text for t in tokens] def most_similar(word: str): token = nlp.vocab[word] queries = [w for w in token.vocab if w.is_lower == token.is_lower and w.prob >= -15] by_similarity = sorted(queries, key=lambda w: token.similarity(w), reverse=True)[1:n] return [w.lower_ for w in by_similarity] modified_sentences = [] while token_tuples: replace, position = token_tuples.pop(0) synonyms = most_similar(replace) subsentences = [] for ind in range(len(synonyms)): new_sentence = ' '.join(texts_only[0:position] + [synonyms[ind]]) if position < len(tokens) - 1: new_sentence += ' ' new_sentence += ' '.join(texts_only[position+1:]) subsentences.append(new_sentence) if subsentences: modified_sentences.append(subsentences) index = 0 short_list = [text] while modified_sentences: index %= len(modified_sentences) current = modified_sentences[index] if current: next_sentence = current.pop(0) if next_sentence not in short_list: short_list.append(next_sentence) else: del modified_sentences[index] index += 1 if len(short_list) >= n: break return short_list def synonym_replacement(dataset_name: str, text_data: pd.Series, label_data: pd.Series, target_length) -> tuple: base_path = Path(__file__).parent# augmented_path = str(base_path / ('../datasets/' + dataset_name + "/processed_data/AugmentedData.csv")) if isfile(augmented_path): augmented_data = pd.read_csv(augmented_path, encoding="ISO-8859-1") return augmented_data['clean_data'][:target_length], augmented_data['sarcasm_label'][:target_length] duplicate_no = (target_length // len(text_data)) + 1 list_of_texts = [] list_of_labels = [] for index in range(len(text_data)): print(index) text = text_data[index] label = label_data[index] for t in form_similar_sequences(text, duplicate_no): list_of_texts.append(t) list_of_labels.append(label) if len(list_of_labels) > target_length: break clean_data, sarcasm_labels = pd.Series(list_of_texts, name="clean_data")[:target_length], pd.Series(list_of_labels, name='sarcasm_label')[ :target_length] new_data =
pd.concat([sarcasm_labels, clean_data], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # Generate tessellation diagram # # Computational notebook 01 for **Morphological tessellation as a way of partitioning space: Improving consistency in urban morphology at the plot scale**. # # # <NAME>., <NAME>., <NAME>. and <NAME>. (2020) _‘Morphological tessellation as a way of partitioning space: Improving consistency in urban morphology at the plot scale’_, Computers, Environment and Urban Systems, 80, p. 101441. doi: [10.1016/j.compenvurbsys.2019.101441](http://doi.org/10.1016/j.compenvurbsys.2019.101441). # # Contact: <EMAIL> # # Date: 27/03/2020 # # Note: notebook has been cleaned and released retroactively. It is likely that different versions of packages were initially used, but we made sure that the results remained unaltered. # # --- # **Description** # # This notebook generates diagrams illustrating the principles of morphological tessellation used to prepare figures 2, 3 and 4. Figures were later post-processed in Illustrator. # In[1]: import geopandas as gpd import momepy as mm import matplotlib import matplotlib.pyplot as plt import seaborn as sns import numpy as np import scipy as sp import pandas as pd from scipy.spatial import Voronoi, voronoi_plot_2d from random import random import shapely from shapely.wkt import loads from shapely.geometry import Polygon, Point from tqdm import tqdm # In[2]: gpd.__version__, mm.__version__, matplotlib.__version__, sns.__version__, np.__version__, sp.__version__, shapely.__version__ # In[3]: polys = [ Polygon([(10, 10), (20, 10), (20, 20), (10, 20)]), Polygon([(30, 10), (40, 10), (40, 20), (30, 20)]), Polygon([(10, 30), (20, 30), (20, 40), (10, 40)]), Polygon([(20, 30), (30, 30), (30, 40), (20, 40)]), Polygon([(30, 30), (40, 30), (40, 40), (30, 40)]), ] # In[4]: gdf = gpd.GeoDataFrame(geometry=polys) gdf['uID'] = mm.unique_id(gdf) retain = gdf.copy() # In[5]: sns.set_style('whitegrid') sns.set_context(context='paper', font_scale=1, rc=None) # In[6]: f, ax = plt.subplots(figsize=(10, 10)) gdf.plot(ax=ax) sns.despine(left=True, bottom=True) #plt.savefig('tesdiag_0.svg') # In[7]: limit = Polygon([(0, 0), (50, 0), (50, 50), (0, 50)]) # In[8]: f, ax = plt.subplots(figsize=(10, 10)) gdf.plot(ax=ax) gpd.GeoDataFrame(geometry=[limit.boundary]).plot(ax=ax, edgecolor='red') sns.despine(left=True, bottom=True) #plt.savefig('tesdiag_1.svg') # In[9]: shrink = 1 # In[10]: polys = ["Polygon", "MultiPolygon"] print("Bufferring geometry...") gdf["geometry"] = gdf.geometry.apply( lambda g: g.buffer(-shrink, cap_style=2, join_style=2) if g.type in polys else g ) # In[11]: f, ax = plt.subplots(figsize=(10, 10)) gdf.plot(ax=ax) sns.despine(left=True, bottom=True) #plt.savefig('tesdiag_2.svg') # In[12]: segment = 2 # In[13]: def _densify(geom, segment): """ Returns densified geoemtry with segments no longer than `segment`. """ from osgeo import ogr poly = geom wkt = geom.wkt # shapely Polygon to wkt geom = ogr.CreateGeometryFromWkt(wkt) # create ogr geometry geom.Segmentize(segment) # densify geometry by set metres geom.CloseRings() # fix for GDAL 2.4.1 bug wkt2 = geom.ExportToWkt() # ogr geometry to wkt new = loads(wkt2) # wkt to shapely Polygon return new gdf["geometry"] = gdf["geometry"].apply(_densify, segment=segment) # In[14]: def _point_array(objects, unique_id): """ Returns lists of points and ids based on geometry and unique_id. """ points = [] ids = [] for idx, row in tqdm(objects.iterrows(), total=objects.shape[0]): if row["geometry"].type in ["Polygon", "MultiPolygon"]: poly_ext = row["geometry"].boundary else: poly_ext = row["geometry"] if poly_ext is not None: if poly_ext.type == "MultiLineString": for line in poly_ext: point_coords = line.coords row_array = np.array(point_coords[:-1]).tolist() for i, a in enumerate(row_array): points.append(row_array[i]) ids.append(row[unique_id]) elif poly_ext.type == "LineString": point_coords = poly_ext.coords row_array = np.array(point_coords[:-1]).tolist() for i, a in enumerate(row_array): points.append(row_array[i]) ids.append(row[unique_id]) else: raise Exception("Boundary type is {}".format(poly_ext.type)) return points, ids points, ids = _point_array(gdf, 'uID') # In[15]: pts = [Point(p) for p in points] # In[16]: pts = gpd.GeoDataFrame(geometry=pts) # In[17]: f, ax = plt.subplots(figsize=(10, 10)) pts.plot(ax=ax) sns.despine(left=True, bottom=True) #plt.savefig('tesdiag_3.svg') # In[18]: hull = limit.buffer(100) hull = _densify(hull, 10) hull_array = np.array(hull.boundary.coords).tolist() for i, a in enumerate(hull_array): points.append(hull_array[i]) ids.append(-1) # In[19]: voronoi_diagram = Voronoi(np.array(points)) # In[20]: def _regions(voronoi_diagram, unique_id, ids, crs): """ Generate GeoDataFrame of Voronoi regions from scipy.spatial.Voronoi. """ # generate DataFrame of results regions =
pd.DataFrame()
pandas.DataFrame
import os from getpass import getpass import pandas as pd import numpy as np import lib.galaxy_utilities as gu from panoptes_client import Panoptes, Project, Subject def find_duplicates(): Panoptes.connect(username='tingard', password=getpass()) gzb_project = Project.find(slug='tingard/galaxy-builder') subject_sets = [] for set in gzb_project.links.subject_sets: subject_sets.append(list(set.subjects)) subjects = [j for i in subject_sets for j in i] subject_set_ids = [[np.int64(j.id) for j in i] for i in subject_sets] ids = [int(i.id) for i in subjects] dr7objids = [np.int64(i.metadata.get('SDSS dr7 id', False)) for i in subjects] pairings = sorted(zip(ids, dr7objids), key=lambda i: i[0]) df =
pd.DataFrame(pairings, columns=('subject_id', 'dr7objid'))
pandas.DataFrame
import glob import tempfile import pandas as pd import pytest from pandas.api.types import is_integer_dtype from pandas.testing import assert_frame_equal, assert_series_equal import grblogtools as glt @pytest.fixture(scope="module") def glass4_summary(): """Summary data from API call.""" return glt.parse("data/*.log").summary() @pytest.fixture(scope="module") def glass4_progress(): """Progress data from API call.""" return { "norel": glt.parse("data/*.log").progress("norel"), "rootlp": glt.parse("data/*.log").progress("rootlp"), "nodelog": glt.parse("data/*.log").progress("nodelog"), } @pytest.fixture(scope="module") def testlog_summary(): return glt.parse("tests/assets/*.log").summary() @pytest.fixture(scope="module") def testlog_progress(): return { "norel": glt.parse("tests/assets/*.log").progress("norel"), "rootlp": glt.parse("tests/assets/*.log").progress("rootlp"), "nodelog": glt.parse("tests/assets/*.log").progress("nodelog"), } @pytest.fixture(scope="module") def merged_log(): with tempfile.NamedTemporaryFile("w") as fp: for path in sorted(glob.glob("data/912-glass4-*.log")): with open(path) as infile: fp.writelines(infile.readlines()) fp.flush() yield fp.name def test_merged_log(merged_log): summary = glt.parse(merged_log).summary() result = summary[["Seed", "Runtime", "LogFilePath", "LogNumber"]] expected = pd.DataFrame( [ {"Seed": 0, "Runtime": 35.66, "LogFilePath": merged_log, "LogNumber": 1}, {"Seed": 1, "Runtime": 42.79, "LogFilePath": merged_log, "LogNumber": 2}, {"Seed": 2, "Runtime": 11.37, "LogFilePath": merged_log, "LogNumber": 3}, ] ) assert_frame_equal(result, expected) def test_summary(testlog_summary): assert len(testlog_summary) == 7 assert set(testlog_summary.columns).issuperset( {"Status", "ObjVal", "ReadingTime", "RelaxObj"} ) def test_progress(testlog_progress): assert len(testlog_progress) == 3 assert len(testlog_progress["norel"]) == 15 assert set(testlog_progress["norel"].columns).issuperset( {"Time", "BestBd", "Incumbent"} ) assert len(testlog_progress["rootlp"]) == 409 assert set(testlog_progress["rootlp"].columns).issuperset( {"Iteration", "PInf", "DInf", "PObj", "DObj"} ) assert len(testlog_progress["nodelog"]) == 133 assert set(testlog_progress["nodelog"].columns).issuperset( {"Depth", "IntInf", "Incumbent", "BestBd", "ItPerNode", "ModelFile", "Version"} ) def test_summary_glass4(glass4_summary): assert len(glass4_summary) == 63 assert set(glass4_summary.columns).issuperset( {"Status", "ObjVal", "ReadingTime", "RelaxObj", "Seed"} ) def test_progress_glass4(glass4_progress): assert len(glass4_progress) == 3 assert len(glass4_progress["norel"]) == 0 assert len(glass4_progress["rootlp"]) == 0 assert set(glass4_progress["nodelog"].columns).issuperset( {"Depth", "IntInf", "Incumbent", "BestBd", "ItPerNode"} ) def test_logfile(glass4_summary): logfiles = glass4_summary["LogFilePath"] assert len(logfiles.unique()) == len(logfiles) assert logfiles.str.startswith("data/").all() assert logfiles.str.endswith(".log").all() assert_series_equal( glass4_summary["LogFile (Parameter)"].apply(lambda l: "data/" + l), logfiles, check_names=False, ) # log names are stripped of the model name and seed log = glass4_summary["Log"] assert log.str.startswith("912").all() assert not log.str.contains("glass4").any() assert not log.str.endswith("-").any() assert len(log.unique()) == 21 # different seeds get same label def test_modelfile(glass4_summary): modelfiles = glass4_summary["ModelFilePath"] assert len(modelfiles.unique()) == 1 assert glass4_summary["ModelFile"].eq("glass4").all() assert glass4_summary["Model"].eq("glass4").all() def test_parameters(glass4_summary): seeds = glass4_summary["Seed"] assert
is_integer_dtype(seeds)
pandas.api.types.is_integer_dtype
import csv as cs import os from pathlib import Path from app import app import pandas as pd from app.routes import app def fileread(filename): Time_f = 's' # Open csv file File_name = str(filename) file_to_open = os.path.join(app.config['USER_FOLDER'],File_name) csvFile = open(file_to_open, "r") reader = cs.reader(csvFile) Columns = [] Data1 =
pd.DataFrame(columns=Columns)
pandas.DataFrame
import numpy as np import pandas as pd df = pd.DataFrame( [ ["A", "group_1", pd.Timestamp(2019, 1, 1, 9)], ["B", "group_1", pd.Timestamp(2019, 1, 2, 9)], ["C", "group_2", pd.Timestamp(2019, 1, 3, 9)], ["D", "group_1", pd.Timestamp(2019, 1, 6, 9)], ["E", "group_1", pd.Timestamp(2019, 1, 7, 9)], ["F", "group_1", pd.Timestamp(2019, 1, 10, 9)], ["G", "group_2", pd.Timestamp(2019, 1, 20, 9)], ["H", "group_1", pd.Timestamp(2019, 4, 8, 9)], ], columns=["index", "group", "eventTime"], ).set_index("index") groups = df.groupby("group") df["count_to_date"] = groups.cumcount() rolling_groups = groups.rolling("10d", on="eventTime") group_size = rolling_groups.apply(lambda df: df.shape[0]) print(group_size) index = pd.MultiIndex.from_tuples( [ ("group_1", "A"), ("group_1", "B"), ("group_1", "D"), ("group_1", "E"), ("group_1", "F"), ("group_1", "H"), ("group_2", "C"), ("group_2", "G"), ], names=["group", "index"], ) columns = pd.Index(["eventTime", "count_to_date"], dtype="object") values = np.array( [ [pd.Timestamp("2019-01-01 09:00:00"), 1.0], [pd.Timestamp("2019-01-02 09:00:00"), 2.0], [pd.Timestamp("2019-01-06 09:00:00"), 3.0], [pd.Timestamp("2019-01-07 09:00:00"), 4.0], [pd.Timestamp("2019-01-10 09:00:00"), 5.0], [
pd.Timestamp("2019-04-08 09:00:00")
pandas.Timestamp
from os.path import join, realpath, dirname, exists, basename from os import makedirs import pandas as pd from pandas import CategoricalDtype from tqdm.auto import tqdm from .coalitions import coalitions def generate_number_of_tweets_per_day(df, output_dir): # exclude retweets df = df[df.user_rt.isnull()] value_counts = df['date'].value_counts() df_value_counts = pd.DataFrame(value_counts) df_value_counts = df_value_counts.reset_index() df_value_counts.columns = ['date', 'number_of_tweets'] df_value_counts = df_value_counts.sort_values(by=['date']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "number_of_tweets_per_day.csv") df_value_counts.to_csv(path, index=False) def generate_number_of_retweets_per_day(df, output_dir): df = df.dropna(subset=['user_rt']) value_counts = df['date'].value_counts() df_value_counts = pd.DataFrame(value_counts) df_value_counts = df_value_counts.reset_index() df_value_counts.columns = ['date', 'number_of_retweets'] df_value_counts = df_value_counts.sort_values(by=['date']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "number_of_retweets_per_day.csv") df_value_counts.to_csv(path, index=False) def generate_number_of_retweets_for_users_tweets_per_day(df, output_dir): df_retweets_counts = df.groupby("date")['retweets_count'].sum().reset_index() df_retweets_counts = df_retweets_counts.sort_values(by=['date']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "number_of_retweets_for_users_tweets_per_day.csv") df_retweets_counts.to_csv(path, index=False) def generate_number_of_likes_for_users_tweets_per_day(df, output_dir): df_likes_counts = df.groupby("date")['likes_count'].sum().reset_index() df_likes_counts = df_likes_counts.sort_values(by=['date']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "number_of_likes_for_users_tweets_per_day.csv") df_likes_counts.to_csv(path, index=False) def generate_tweeting_activity_distribution_in_a_day(df, output_dir): # exclude retweets df = df[df.user_rt.isnull()] value_counts = pd.to_datetime(df['time']).dt.hour.value_counts(dropna=True) df_value_counts = pd.DataFrame(value_counts) df_value_counts = df_value_counts.reset_index() df_value_counts.columns = ['hour', 'number_of_tweets'] df_value_counts = df_value_counts.sort_values(by=['hour']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "tweeting_activity_distribution_in_a_day.csv") df_value_counts.to_csv(path, index=False) def generate_tweeting_activity_distribution_in_a_week(df, output_dir): # exclude retweets df = df[df.user_rt.isnull()] value_counts = pd.to_datetime(df['date']).dt.day_name().value_counts(dropna=True) df_value_counts = pd.DataFrame(value_counts) df_value_counts = df_value_counts.reset_index() df_value_counts.columns = ['week_day', 'number_of_tweets'] cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] cat_type = CategoricalDtype(categories=cats, ordered=True) df_value_counts['week_day'] = df_value_counts['week_day'].astype(cat_type) df_value_counts = df_value_counts.sort_values(by=['week_day']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "tweeting_activity_distribution_in_a_week.csv") df_value_counts.to_csv(path, index=False) def generate_retweeting_activity_distribution_in_a_day(df, output_dir): df = df.dropna(subset=['user_rt']) value_counts = pd.to_datetime(df['time']).dt.hour.value_counts(dropna=True) df_value_counts = pd.DataFrame(value_counts) df_value_counts = df_value_counts.reset_index() df_value_counts.columns = ['hour', 'number_of_retweets'] df_value_counts = df_value_counts.sort_values(by=['hour']) if not exists(output_dir): makedirs(output_dir) path = join(output_dir, "retweeting_activity_distribution_in_a_day.csv") df_value_counts.to_csv(path, index=False) def generate_retweeting_activity_distribution_in_a_week(df, output_dir): df = df.dropna(subset=['user_rt']) value_counts =
pd.to_datetime(df['date'])
pandas.to_datetime
#------------------------------------------------------------------------------ # Libraries #------------------------------------------------------------------------------ import pandas as pd import numpy as np from sklearn.base import is_regressor from collections.abc import Sequence #------------------------------------------------------------------------------ # Main #------------------------------------------------------------------------------ def check_estimator(estimator): """Check estimator""" if not is_regressor(estimator): raise Exception(f"Estimator '{type(estimator).__name__}' did not pass an a regressor") # Required methods of an regression model REQUIRED_METHODS = ["get_params", "set_params", "fit", "predict", "score"] # Check if class has required methods by using getattr() to get the attribute, and callable() to verify it is a method for method in REQUIRED_METHODS: method_attribute = getattr(estimator, method, None) if not callable(method_attribute): raise Exception(f"Estimator '{type(estimator).__name__}' does not contain the method '{method}'") def check_param_grid(param_grid): if hasattr(param_grid, "items"): param_grid = [param_grid] for p in param_grid: for name, v in p.items(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") if isinstance(v, str) or not isinstance(v, (np.ndarray, Sequence)): raise ValueError( "Parameter grid for parameter ({0}) needs to" " be a list or numpy array, but got ({1})." " Single values need to be wrapped in a list" " with one element.".format(name, type(v)) ) if len(v) == 0: raise ValueError( "Parameter values for parameter ({0}) need " "to be a non-empty sequence.".format(name) ) def check_X(X): # Convert to dataframe if not already converted if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) # Check for numeric dtype if not all(X.dtypes.map(pd.api.types.is_numeric_dtype)): raise Exception("X must be only numeric dtype") # Check for missing if X.isnull().values.any(): raise Exception("X contains missing inputs") # Convert back to np.array X = np.array(X) return X def check_Y(Y): # Convert to series if not already converted if not isinstance(Y, pd.Series): Y = pd.Series(Y) # Check for numeric dtype if not
pd.api.types.is_numeric_dtype(Y.dtype)
pandas.api.types.is_numeric_dtype
from functools import partial import pandas as pd # the following functions should be easy: # a function that just gets all the component collections it requires. # useful for pandas. # a function that gets the component collections, filtered by the # intersection of entity_id. Useful for Python, not useful for pandas. # a function that gets a single instance of each component it requests. # useful for Python update functions, not useful for pandas. # a pure function that gets all component collections it requires, and # must return new copies of those component collections, including having # done any add and removal. # a pure function that gets the component collections, filtered by the # interaction of entity_ids, and returns collections with updated components, # plus component_id / entity_ids to remove, plus component / entity_ids to add. # Useful for Pandas and Python. # a pure function that *returns* a new single instance of each component it # requests. This is going to be stored in the collection. class DictContainer(dict): """Component container backed by dict. This is in fact a Python dict. """ def value(self): """Get the underlying container object. """ return self class DataFrameContainer: """Component container backed by pandas DataFrame. This can give a performance boost when you have a large amount of components and you use vectorized functionality to query and update components. adds and removes are buffered for efficiency, only once the container is accessed for its value is the buffer flushed; typically this happens before the next system runs that requires this component container. """ def __init__(self): self.df = pd.DataFrame([]) self.to_add_entity_ids = [] self.to_add_components = [] self.to_remove_entity_ids = [] def __setitem__(self, entity_id, component): self.to_add_entity_ids.append(entity_id) self.to_add_components.append(component) def __delitem__(self, entity_id): self.to_remove.append(entity_id) def _complete(self): self._complete_remove() self._complete_add() def _complete_add(self): if not self.to_add_entity_ids: return add_df = self._create(self.to_add_components, self.to_add_entity_ids) self.df = pd.concat([self.df, add_df]) self.to_add_entity_ids = [] self.to_add_components = [] def _complete_remove(self): if not self.to_remove_entity_ids: return self.df = self.df.drop(self.to_remove_entity_ids) def _create(self, components, entity_ids): return
pd.DataFrame(components, index=entity_ids)
pandas.DataFrame
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEquals(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEquals(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEquals(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i1 = Period('05Q1') self.assertEquals(i1, i2) lower = Period('05q1') self.assertEquals(i1, lower) i1 = Period('1Q2005') self.assertEquals(i1, i2) lower = Period('1q2005') self.assertEquals(i1, lower) i1 = Period('1Q05') self.assertEquals(i1, i2) lower = Period('1q05') self.assertEquals(i1, lower) i1 = Period('4Q1984') self.assertEquals(i1.year, 1984) lower = Period('4q1984') self.assertEquals(i1, lower) i1 = Period('1982', freq='min') i2 = Period('1982', freq='MIN') self.assertEquals(i1, i2) i2 = Period('1982', freq=('Min', 1)) self.assertEquals(i1, i2) def test_freq_str(self): i1 = Period('1982', freq='Min') self.assert_(i1.freq[0] != '1') i2 = Period('11/30/2005', freq='2Q') self.assertEquals(i2.freq[0], '2') def test_to_timestamp(self): intv = Period('1982', freq='A') start_ts = intv.to_timestamp(which_end='S') aliases = ['s', 'StarT', 'BEGIn'] for a in aliases: self.assertEquals(start_ts, intv.to_timestamp(which_end=a)) end_ts = intv.to_timestamp(which_end='E') aliases = ['e', 'end', 'FINIsH'] for a in aliases: self.assertEquals(end_ts, intv.to_timestamp(which_end=a)) from_lst = ['A', 'Q', 'M', 'W', 'B', 'D', 'H', 'Min', 'S'] for i, fcode in enumerate(from_lst): intv = Period('1982', freq=fcode) result = intv.to_timestamp().to_period(fcode) self.assertEquals(result, intv) self.assertEquals(intv.start_time(), intv.to_timestamp('S')) self.assertEquals(intv.end_time(), intv.to_timestamp('E')) def test_properties_annually(self): # Test properties on Periods with annually frequency. a_date = Period(freq='A', year=2007) assert_equal(a_date.year, 2007) def test_properties_quarterly(self): # Test properties on Periods with daily frequency. qedec_date = Period(freq="Q-DEC", year=2007, quarter=1) qejan_date = Period(freq="Q-JAN", year=2007, quarter=1) qejun_date = Period(freq="Q-JUN", year=2007, quarter=1) # for x in range(3): for qd in (qedec_date, qejan_date, qejun_date): assert_equal((qd + x).qyear, 2007) assert_equal((qd + x).quarter, x + 1) def test_properties_monthly(self): # Test properties on Periods with daily frequency. m_date = Period(freq='M', year=2007, month=1) for x in range(11): m_ival_x = m_date + x assert_equal(m_ival_x.year, 2007) if 1 <= x + 1 <= 3: assert_equal(m_ival_x.quarter, 1) elif 4 <= x + 1 <= 6: assert_equal(m_ival_x.quarter, 2) elif 7 <= x + 1 <= 9: assert_equal(m_ival_x.quarter, 3) elif 10 <= x + 1 <= 12: assert_equal(m_ival_x.quarter, 4) assert_equal(m_ival_x.month, x + 1) def test_properties_weekly(self): # Test properties on Periods with daily frequency. w_date = Period(freq='WK', year=2007, month=1, day=7) # assert_equal(w_date.year, 2007) assert_equal(w_date.quarter, 1) assert_equal(w_date.month, 1) assert_equal(w_date.week, 1) assert_equal((w_date - 1).week, 52) def test_properties_daily(self): # Test properties on Periods with daily frequency. b_date = Period(freq='B', year=2007, month=1, day=1) # assert_equal(b_date.year, 2007) assert_equal(b_date.quarter, 1) assert_equal(b_date.month, 1) assert_equal(b_date.day, 1) assert_equal(b_date.weekday, 0) assert_equal(b_date.day_of_year, 1) # d_date = Period(freq='D', year=2007, month=1, day=1) # assert_equal(d_date.year, 2007) assert_equal(d_date.quarter, 1) assert_equal(d_date.month, 1) assert_equal(d_date.day, 1) assert_equal(d_date.weekday, 0) assert_equal(d_date.day_of_year, 1) def test_properties_hourly(self): # Test properties on Periods with hourly frequency. h_date = Period(freq='H', year=2007, month=1, day=1, hour=0) # assert_equal(h_date.year, 2007) assert_equal(h_date.quarter, 1) assert_equal(h_date.month, 1) assert_equal(h_date.day, 1) assert_equal(h_date.weekday, 0) assert_equal(h_date.day_of_year, 1) assert_equal(h_date.hour, 0) # def test_properties_minutely(self): # Test properties on Periods with minutely frequency. t_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) # assert_equal(t_date.quarter, 1) assert_equal(t_date.month, 1) assert_equal(t_date.day, 1) assert_equal(t_date.weekday, 0) assert_equal(t_date.day_of_year, 1) assert_equal(t_date.hour, 0) assert_equal(t_date.minute, 0) def test_properties_secondly(self): # Test properties on Periods with secondly frequency. s_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0, second=0) # assert_equal(s_date.year, 2007) assert_equal(s_date.quarter, 1) assert_equal(s_date.month, 1) assert_equal(s_date.day, 1) assert_equal(s_date.weekday, 0) assert_equal(s_date.day_of_year, 1) assert_equal(s_date.hour, 0) assert_equal(s_date.minute, 0) assert_equal(s_date.second, 0) def noWrap(item): return item class TestFreqConversion(TestCase): "Test frequency conversion of date objects" def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='WK', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) assert_equal(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) assert_equal(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) assert_equal(ival_A.asfreq('M', 's'), ival_A_to_M_start) assert_equal(ival_A.asfreq('M', 'E'), ival_A_to_M_end) assert_equal(ival_A.asfreq('WK', 'S'), ival_A_to_W_start) assert_equal(ival_A.asfreq('WK', 'E'), ival_A_to_W_end) assert_equal(ival_A.asfreq('B', 'S'), ival_A_to_B_start) assert_equal(ival_A.asfreq('B', 'E'), ival_A_to_B_end) assert_equal(ival_A.asfreq('D', 'S'), ival_A_to_D_start) assert_equal(ival_A.asfreq('D', 'E'), ival_A_to_D_end) assert_equal(ival_A.asfreq('H', 'S'), ival_A_to_H_start) assert_equal(ival_A.asfreq('H', 'E'), ival_A_to_H_end) assert_equal(ival_A.asfreq('min', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('min', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('T', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('T', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('S', 'S'), ival_A_to_S_start) assert_equal(ival_A.asfreq('S', 'E'), ival_A_to_S_end) assert_equal(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) assert_equal(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) assert_equal(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) assert_equal(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) assert_equal(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) assert_equal(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) assert_equal(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='WK', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) assert_equal(ival_Q.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) assert_equal(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) assert_equal(ival_Q.asfreq('WK', 'S'), ival_Q_to_W_start) assert_equal(ival_Q.asfreq('WK', 'E'), ival_Q_to_W_end) assert_equal(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) assert_equal(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) assert_equal(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) assert_equal(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) assert_equal(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) assert_equal(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) assert_equal(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) assert_equal(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) assert_equal(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) assert_equal(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) assert_equal(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) assert_equal(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) assert_equal(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) assert_equal(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) assert_equal(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='WK', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) assert_equal(ival_M.asfreq('A'), ival_M_to_A) assert_equal(ival_M_end_of_year.asfreq('A'), ival_M_to_A) assert_equal(ival_M.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M.asfreq('WK', 'S'), ival_M_to_W_start) assert_equal(ival_M.asfreq('WK', 'E'), ival_M_to_W_end) assert_equal(ival_M.asfreq('B', 'S'), ival_M_to_B_start) assert_equal(ival_M.asfreq('B', 'E'), ival_M_to_B_end) assert_equal(ival_M.asfreq('D', 'S'), ival_M_to_D_start) assert_equal(ival_M.asfreq('D', 'E'), ival_M_to_D_end) assert_equal(ival_M.asfreq('H', 'S'), ival_M_to_H_start) assert_equal(ival_M.asfreq('H', 'E'), ival_M_to_H_end) assert_equal(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) assert_equal(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) assert_equal(ival_M.asfreq('S', 'S'), ival_M_to_S_start) assert_equal(ival_M.asfreq('S', 'E'), ival_M_to_S_end) assert_equal(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='WK', year=2007, month=1, day=1) ival_WSUN = Period(freq='WK', year=2007, month=1, day=7) ival_WSAT = Period(freq='WK-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='WK-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='WK-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='WK-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='WK-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='WK-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq='D', year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq='D', year=2007, month=1, day=5) ival_WTHU_to_D_start =
Period(freq='D', year=2006, month=12, day=29)
pandas.tseries.period.Period
""" An improved version of your marketsim code that accepts a "trades" data frame (instead of a file). More info on the trades data frame below. """ import warnings warnings.filterwarnings("ignore", message="numpy.dtype size changed") import pandas as pd import numpy as np import datetime as dt from util import get_data, plot_data def compute_portvals(df_orders=None, orders_file=None, start_val=1000000, commission=9.95, impact=0.005, start_date=None, end_date=None): # NOTE: orders_file may be a string, or it may be a file object. # 1. Import Order dataframe # df_orders = pd.read_csv(orders_file, index_col='Date', parse_dates=True, na_values=['nan']) # print("df_orders") # print(df_orders.head()) # 2. Sort order file by dates (ascending) df_orders = df_orders.sort_index(ascending=1) # print("df_orders") # print(df_orders) # print(df_orders.shape) # 3. Get symbols for the portfolio symbols = df_orders["Symbol"].unique().tolist() # print("symbols") # print(symbols) # print(type(symbols)) # 4. Get date range. # start_date = min(df_orders.index) # end_date = max(df_orders.index) # print("start_date", start_date) # print(type(start_date)) # print("end_date", end_date) # print(type(end_date)) # 5. Get df_prices using adjusted closing price, add cash column at last (all 1.0) df_prices = get_data(symbols,
pd.date_range(start_date, end_date)
pandas.date_range
# Copyright (c) 2019-2020, NVIDIA CORPORATION. """ Test related to MultiIndex """ import re import cupy as cp import numpy as np import pandas as pd import pytest import cudf from cudf.core.column import as_column from cudf.core.index import as_index from cudf.tests.utils import assert_eq, assert_neq def test_multiindex_levels_codes_validation(): levels = [["a", "b"], ["c", "d"]] # Codes not a sequence of sequences with pytest.raises(TypeError): pd.MultiIndex(levels, [0, 1]) with pytest.raises(TypeError): cudf.MultiIndex(levels, [0, 1]) # Codes don't match levels with pytest.raises(ValueError): pd.MultiIndex(levels, [[0], [1], [1]]) with pytest.raises(ValueError): cudf.MultiIndex(levels, [[0], [1], [1]]) # Largest code greater than number of levels with pytest.raises(ValueError): pd.MultiIndex(levels, [[0, 1], [0, 2]]) with pytest.raises(ValueError): cudf.MultiIndex(levels, [[0, 1], [0, 2]]) # Unequal code lengths with pytest.raises(ValueError): pd.MultiIndex(levels, [[0, 1], [0]]) with pytest.raises(ValueError): cudf.MultiIndex(levels, [[0, 1], [0]]) # Didn't pass levels and codes with pytest.raises(TypeError): pd.MultiIndex() with pytest.raises(TypeError): cudf.MultiIndex() # Didn't pass non zero levels and codes with pytest.raises(ValueError): pd.MultiIndex([], []) with pytest.raises(ValueError): cudf.MultiIndex([], []) def test_multiindex_construction(): levels = [["a", "b"], ["c", "d"]] codes = [[0, 1], [1, 0]] pmi = pd.MultiIndex(levels, codes) mi = cudf.MultiIndex(levels, codes) assert_eq(pmi, mi) pmi =
pd.MultiIndex(levels, codes)
pandas.MultiIndex
# -*- coding: utf-8 -*- """ Created on Wed Nov 30 02:13:48 2016 @author: Евгений """ import pandas as pd from folders import ParsedCSV from row_parser import get_colname_dtypes file = ParsedCSV(2015).filepath() chunksize = 100*1000 chunks = pd.read_csv(file, dtype=get_colname_dtypes(), chunksize=chunksize, iterator=True) def nlargest(df0, n=100): max_vals = sorted(df0.ta.tolist(), reverse=True)[:n] ix = df0['ta'].isin(max_vals) return df0[ix] def process_chunks(chunks): result =
pd.DataFrame()
pandas.DataFrame
"""Tests for irradiance quality control functions.""" from datetime import datetime import pytz import pandas as pd import numpy as np import pytest from pandas.util.testing import assert_series_equal from pvanalytics.quality import irradiance @pytest.fixture def irradiance_qcrad(): """Synthetic irradiance data and its expected quality flags. Notes ----- Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory of this distribution and at `<https://github.com/pvlib/ pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_ for more information. """ output = pd.DataFrame( columns=['ghi', 'dhi', 'dni', 'solar_zenith', 'dni_extra', 'ghi_limit_flag', 'dhi_limit_flag', 'dni_limit_flag', 'consistent_components', 'diffuse_ratio_limit'], data=np.array([[-100, 100, 100, 30, 1370, 0, 1, 1, 0, 0], [100, -100, 100, 30, 1370, 1, 0, 1, 0, 0], [100, 100, -100, 30, 1370, 1, 1, 0, 0, 1], [1000, 100, 900, 0, 1370, 1, 1, 1, 1, 1], [1000, 200, 800, 15, 1370, 1, 1, 1, 1, 1], [1000, 200, 800, 60, 1370, 0, 1, 1, 0, 1], [1000, 300, 850, 80, 1370, 0, 0, 1, 0, 1], [1000, 500, 800, 90, 1370, 0, 0, 1, 0, 1], [500, 100, 1100, 0, 1370, 1, 1, 1, 0, 1], [1000, 300, 1200, 0, 1370, 1, 1, 1, 0, 1], [500, 600, 100, 60, 1370, 1, 1, 1, 0, 0], [500, 600, 400, 80, 1370, 0, 0, 1, 0, 0], [500, 500, 300, 80, 1370, 0, 0, 1, 1, 1], [0, 0, 0, 93, 1370, 1, 1, 1, 0, 0]])) dtypes = ['float64', 'float64', 'float64', 'float64', 'float64', 'bool', 'bool', 'bool', 'bool', 'bool'] for (col, typ) in zip(output.columns, dtypes): output[col] = output[col].astype(typ) return output def test_check_ghi_limits_qcrad(irradiance_qcrad): """Test that QCRad identifies out of bounds GHI values. Notes ----- Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory of this distribution and at `<https://github.com/pvlib/ pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_ for more information. """ expected = irradiance_qcrad ghi_out_expected = expected['ghi_limit_flag'] ghi_out = irradiance.check_ghi_limits_qcrad(expected['ghi'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(ghi_out, ghi_out_expected, check_names=False) def test_check_dhi_limits_qcrad(irradiance_qcrad): """Test that QCRad identifies out of bounds DHI values. Notes ----- Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory of this distribution and at `<https://github.com/pvlib/ pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_ for more information. """ expected = irradiance_qcrad dhi_out_expected = expected['dhi_limit_flag'] dhi_out = irradiance.check_dhi_limits_qcrad(expected['dhi'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(dhi_out, dhi_out_expected, check_names=False) def test_check_dni_limits_qcrad(irradiance_qcrad): """Test that QCRad identifies out of bounds DNI values. Notes ----- Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory of this distribution and at `<https://github.com/pvlib/ pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_ for more information. """ expected = irradiance_qcrad dni_out_expected = expected['dni_limit_flag'] dni_out = irradiance.check_dni_limits_qcrad(expected['dni'], expected['solar_zenith'], expected['dni_extra']) assert_series_equal(dni_out, dni_out_expected, check_names=False) def test_check_irradiance_limits_qcrad(irradiance_qcrad): """Test different input combinations to check_irradiance_limits_qcrad. Notes ----- Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory of this distribution and at `<https://github.com/pvlib/ pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_ for more information. """ expected = irradiance_qcrad ghi_out_expected = expected['ghi_limit_flag'] ghi_out, dhi_out, dni_out = irradiance.check_irradiance_limits_qcrad( expected['solar_zenith'], expected['dni_extra'], ghi=expected['ghi'])
assert_series_equal(ghi_out, ghi_out_expected, check_names=False)
pandas.util.testing.assert_series_equal
import numpy as np import pandas as pd import matplotlib.pyplot as plt from hash import * class simulation: def __init__(self, length=12096, mu=0, sigma=0.001117728, b_target=10, block_reward=12.5, hash_ubd=55, hash_slope=3, hash_center=1.5, prev_data=pd.DataFrame(), T_BCH=144, T_BTC=2016, init_price=5400, init_winning_rate=0.00003): ''' Parameters ---------- length: time length of simulation length = the number of blocks generated in one simulation. A new block is generated in 10 minutes in expection; 12096 blocks are generated in three months in expectation. mu: average of the brownian motion sigma: standard deviation of the brownian motion b_target: target block time (min) (default: 10 min) \bar{B} block_reward: the amount of cryptocurrency the miner receives when he adds a block. (default: 12.5) hash_ubd: the upper bound of global hash rate. hash_slope, hash_center: the parameters that affects the shape of hash supply function prev_data: a pandas dataframe containing (i) prices, (ii) winning rates, (iii) hash rates, and (iv) block times. The number of rows should coincides with T_BCH. T_BCH: the length of the time window used for DAA of BCH. T_BTC: the length of the time window used for DAA of BTC. init_price: the initial price. init_winning-rate: the inirial winning rate. Attributes ---------- block_times prices winning_rates hash_rates optimal_winning_rates expected_returns Notes ----- * As for BTC and BCH, b_target is set to be 10 minutes. ''' # params self.mu = mu self.sigma = sigma self.b_target = b_target self.length = length self.block_reward = block_reward self.hash_ubd = hash_ubd self.hash_slope = hash_slope self.hash_center = hash_center self.T_BCH = T_BCH self.T_BTC = T_BTC if prev_data.empty == True: self.prev_prices = np.ones(T_BCH) * init_price self.prev_block_times = np.ones(T_BCH) * b_target self.prev_winning_rates = np.ones(T_BCH) * init_winning_rate else: self.prev_prices = prev_data['prices'] self.prev_block_times = prev_data['block_times'] self.prev_winning_rates = prev_data['winning_rates'] def sim_DAA_1(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), init_height=551443, presim_length=2016, ubd_param=3): ''' Conduct a simulation using DAA-1 as its DAA. DAA-1 is based on the DAA used by BTC. Parameters ---------- prices : exogenously given. price[t] is the price at time 10*t exprvs : exogenously given; used for computing block times. opt_w : the oprimal winning rates, computed in advance. init_height : the height of the block that is created first in the simulation. (default: 551443) presim_length : the length of periods contained in prev_data. (Real data used for the pre-simulation period.) See also __init__. ubd_param : determine the maximum number of iterations See also _initialization. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every self.T_BTC periods. In reality, BTC lets T_BTC = 2016. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) # W(t+1) if (init_height + t)%self.T_BTC == 0: self.diff_adjust_BTC(current_period=t) else: break self._postprocessing(period) return None def sim_DAA_2(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), presim_length=2016, ubd_param=3): ''' Conduct a simulation using DAA-2 as its DAA. DAA-2 is based on the DAA used by BCH. Parameters ---------- prices: see sim_BTC. exprvs: see sim_BTC. presim_length: see sim_BTC. ubd_param: see sim_BTC. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every period. At each adjustment, the last T_BCH blocks are taken into account. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) # W(t+1) ## different from that of BTC in that ## difficulty adjustment is conducted every period. self.diff_adjust_BCH(current_period=t) else: break self._postprocessing(period) return None def sim_DAA_asert(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), presim_length=2016, ubd_param=3, half_life=2880): ''' Conduct a simulation using DAA-2 as its DAA. DAA-2 is based on the DAA used by BCH. Parameters ---------- prices: see sim_BTC. exprvs: see sim_BTC. presim_length: see sim_BTC. ubd_param: see sim_BTC. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every period. At each adjustment, the last T_BCH blocks are taken into account. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) # W(t+1) ## different from that of BTC in that ## difficulty adjustment is conducted every period. self.diff_adjust_asert(current_period=t, half_life=half_life) else: break self._postprocessing(period) return None def sim_DAA_0(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), init_height=551443, presim_length=2016, ubd_param=3): ''' Conduct a simulation where the difficulty is always adjusted to the optimal level. (imaginary DAA) Parameters ---------- prices : exogenously given. price[t] is the price at time 10*t exprvs : exogenously given; used for computing block times. opt_w : init_height : the height of the block that is created first in the simulation. (default: 551443) presim_length : the length of periods contained in prev_data. (Real data used for the pre-simulation period.) See also __init__. ubd_param : determine the maximum number of iterations See also _initialization. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every self.T_BTC periods. In reality, BTC lets T_BTC = 2016. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # W^*(t) ## W(t) = W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] self.winning_rates[t] = self.optimal_winning_rates[t] # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) else: break self._postprocessing(period) return None def compute_price(self, current_period, current_time, prices): ''' Compute the price at the time when the (t+1)-th block is created: compute S(t+1) using price data via linear interpolation. prices contains the price date recorded every 10 minutes. ''' time_left = int(current_time//self.b_target) time_right = time_left + 1 self.prices[current_period+1] = \ prices[time_left] + (prices[time_right] - prices[time_left]) * \ ((current_time - time_left*self.b_target)/self.b_target) return None def diff_adjust_BTC(self, current_period): ''' Used by sim_DAA-1. Modify self.winning_rates in place. ''' multiplier = \ (self.block_times[current_period-self.T_BTC+1:\ current_period+1].sum() / (self.T_BTC * self.b_target)) self.winning_rates[current_period+1:current_period+self.T_BTC+1] = \ self.winning_rates[current_period] * multiplier return None def diff_adjust_BCH(self, current_period): ''' Used by sim_DAA_2. Modify self.winning_rates in place. ''' # the term related to B(t) block_term = \ (self.block_times[current_period-self.T_BCH+1: \ current_period+1].sum() / self.b_target) # the term related to W(t) temp = np.ones(self.T_BCH) w_inverses = temp / (self.winning_rates[current_period-self.T_BCH+1: \ current_period+1]) winning_prob_term = 1 / w_inverses.sum() # update W(t) self.winning_rates[current_period+1] = \ block_term * winning_prob_term return None def diff_adjust_asert(self, current_period, half_life=2880): ''' Used by sim_DAA_asert. Modify self.winning_rates in place. ''' temp = (self.block_times[current_period] - self.b_target)/half_life # update W(t) self.winning_rates[current_period+1] = \ self.winning_rates[current_period] * np.exp(temp) return None def hash_supply(self, current_period): ''' Compute hash supply in current period (EH) ''' current_exp_reward = \ (self.prices[current_period] * self.winning_rates[current_period] * self.block_reward) return self.hash_ubd * \ self._sigmoid(self.hash_slope * (current_exp_reward - self.hash_center)) def _sigmoid(self, x): sigmoid_range = 34.538776394910684 if x <= -sigmoid_range: return 1e-15 if x >= sigmoid_range: return 1.0 - 1e-15 return 1.0 / (1.0 + np.exp(-x)) def _initialization(self, ubd_param, presim_length=2016): # the number of iteration cannot exceeds self.length * self.ubd_param sim_length_ubd = self.length * ubd_param self.prices = np.zeros((sim_length_ubd,)) # S(t) self.winning_rates = np.zeros((sim_length_ubd,)) # W(t) self.block_times = np.zeros((sim_length_ubd,)) # B(t) self.hash_rates = np.zeros((sim_length_ubd,)) #H(t) self.optimal_winning_rates = np.zeros((sim_length_ubd,)) #W^*(t) self.expected_rewards = np.zeros((sim_length_ubd,)) #R(t) # add pre-simulation periods self.prices = np.hstack([self.prev_prices, self.prices]) self.block_times = \ np.hstack([self.prev_block_times, self.block_times]) self.winning_rates = \ np.hstack([self.prev_winning_rates, self.winning_rates]) ## for BTC, set the winning rates self.winning_rates[presim_length:presim_length+self.T_BTC] = \ self.winning_rates[presim_length-1] ## hash rates in pre-simulation periods will not be used ## The same is true of opt_win_rate and exp_returns _ = np.zeros(presim_length) + self.hash_supply(presim_length-1) # may be redundant self.hash_rates = np.hstack([_, self.hash_rates]) _ = np.zeros(presim_length) self.optimal_winning_rates = np.hstack([_, self.optimal_winning_rates]) self.expected_rewards = np.hstack([_, self.expected_rewards]) return None def _postprocessing(self, period, presim_length=2016): self.block_times = self.block_times[presim_length:period] self.prices = self.prices[presim_length:period] self.winning_rates = self.winning_rates[presim_length:period] self.hash_rates = self.hash_rates[presim_length:period] self.optimal_winning_rates =\ self.optimal_winning_rates[presim_length:period] self.expected_rewards = self.expected_rewards[presim_length:period] return None # Functions def generate_simulation_data(num_iter=3, price_shock=0, T=None, opt_w=pd.DataFrame(), prev_data=pd.DataFrame(), dir_sim='/Volumes/Data/research/BDA/simulation/'): ''' Notes ----- num_iter is a number of observations. The price data 'sim_prices_ps={}_5000obs.csv'.format(price_shock) should be created in advance. If T is specified, T_BTC <- T and T_BCH <- T. ''' df_exprvs = pd.read_csv(dir_sim+'sim_exprvs_5000obs.csv') df_price = pd.read_csv(dir_sim+'sim_prices_ps={}_5000obs.csv'\ .format(price_shock)) df_opt_w = pd.read_csv(dir_sim + 'opt_w.csv', index_col=0) path = '../data/BTCdata_presim.csv' prev_data = pd.read_csv(path) prev_data['time'] = pd.to_datetime(prev_data['time']) prev_data = prev_data.rename(columns={'blocktime': 'block_times', 'price': 'prices', 'probability of success /Eh': 'winning_rates'}) df_DAA_1_blocktime = pd.DataFrame() df_DAA_1_hashrate = pd.DataFrame() df_DAA_1_winrate = pd.DataFrame() df_DAA_1_optwinrate = pd.DataFrame() df_DAA_1_expreward = pd.DataFrame() df_DAA_2_blocktime = pd.DataFrame() df_DAA_2_hashrate = pd.DataFrame() df_DAA_2_winrate = pd.DataFrame() df_DAA_2_optwinrate = pd.DataFrame() df_DAA_2_expreward = pd.DataFrame() df_DAA_0_blocktime = pd.DataFrame() df_DAA_0_hashrate = pd.DataFrame() df_DAA_0_winrate = pd.DataFrame() df_DAA_0_optwinrate = pd.DataFrame() df_DAA_0_expreward = pd.DataFrame() if T: T_BTC = T T_BCH = T else: T_BTC = 2016 T_BCH = 144 sim = simulation(prev_data=prev_data, T_BTC=T_BTC, T_BCH=T_BCH) for iter in range(num_iter): prices = df_price.loc[:, 'iter_{}'.format(iter)] exprvs = df_exprvs.loc[:, 'iter_{}'.format(iter)] # DAA-1 _blocktime = pd.DataFrame() _hashrate = pd.DataFrame() _winrate = pd.DataFrame() _optwinrate = pd.DataFrame() _expreward = pd.DataFrame() sim.sim_DAA_1(prices=prices, exprvs=exprvs, df_opt_w=df_opt_w) _blocktime['iter_{}'.format(iter)] = sim.block_times _hashrate['iter_{}'.format(iter)] = sim.hash_rates _winrate['iter_{}'.format(iter)] = sim.winning_rates _optwinrate['iter_{}'.format(iter)] = sim.optimal_winning_rates _expreward['iter_{}'.format(iter)] = sim.expected_rewards df_DAA_1_blocktime = pd.concat([df_DAA_1_blocktime, _blocktime], axis=1) df_DAA_1_hashrate = pd.concat([df_DAA_1_hashrate, _hashrate], axis=1) df_DAA_1_winrate = pd.concat([df_DAA_1_winrate, _winrate], axis=1) df_DAA_1_optwinrate = pd.concat([df_DAA_1_optwinrate, _optwinrate], axis=1) df_DAA_1_expreward = pd.concat([df_DAA_1_expreward, _expreward], axis=1) # DAA-2 _blocktime = pd.DataFrame() _hashrate = pd.DataFrame() _winrate = pd.DataFrame() _optwinrate = pd.DataFrame() _expreward = pd.DataFrame() sim.sim_DAA_2(prices=prices, exprvs=exprvs, df_opt_w=df_opt_w) _blocktime['iter_{}'.format(iter)] = sim.block_times _hashrate['iter_{}'.format(iter)] = sim.hash_rates _winrate['iter_{}'.format(iter)] = sim.winning_rates _optwinrate['iter_{}'.format(iter)] = sim.optimal_winning_rates _expreward['iter_{}'.format(iter)] = sim.expected_rewards df_DAA_2_blocktime = pd.concat([df_DAA_2_blocktime, _blocktime], axis=1) df_DAA_2_hashrate = pd.concat([df_DAA_2_hashrate, _hashrate], axis=1) df_DAA_2_winrate = pd.concat([df_DAA_2_winrate, _winrate], axis=1) df_DAA_2_optwinrate = pd.concat([df_DAA_2_optwinrate, _optwinrate], axis=1) df_DAA_2_expreward = pd.concat([df_DAA_2_expreward, _expreward], axis=1) df_DAA_1_blocktime.to_csv(dir_sim+'DAA-1_blocktime_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_1_hashrate.to_csv(dir_sim+'DAA-1_hashrate_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_1_winrate.to_csv(dir_sim+'DAA-1_winrate_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_1_optwinrate.to_csv(dir_sim+'DAA-1_optwinrate_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_1_expreward.to_csv(dir_sim+'DAA-1_expreward_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_2_blocktime.to_csv(dir_sim+'DAA-2_blocktime_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_2_hashrate.to_csv(dir_sim+'DAA-2_hashrate_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_2_winrate.to_csv(dir_sim+'DAA-2_winrate_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_2_optwinrate.to_csv(dir_sim+'DAA-2_optwinrate_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') df_DAA_2_expreward.to_csv(dir_sim+'DAA-2_expreward_ps{}_{}obs_T={}'\ .format(price_shock, num_iter, T)+'.csv') return None def generate_simulation_data_DAA0(num_iter=3, price_shock=0, opt_w=pd.DataFrame(), prev_data=pd.DataFrame(), dir_sim='/Volumes/Data/research/BDA/simulation/'): ''' Notes ----- num_iter is a number of observations. The price data 'sim_prices_ps={}_5000obs.csv'.format(price_shock) should be created in advance. ''' df_exprvs = pd.read_csv(dir_sim+'sim_exprvs_5000obs.csv') df_price = pd.read_csv(dir_sim+'sim_prices_ps={}_5000obs.csv'\ .format(price_shock)) df_opt_w = pd.read_csv(dir_sim + 'opt_w.csv', index_col=0) path = '../data/BTCdata_presim.csv' prev_data = pd.read_csv(path) prev_data['time'] =
pd.to_datetime(prev_data['time'])
pandas.to_datetime
import os import json from typing import Union from scipy.spatial import distance import numpy as np import pandas as pd import bottleneck from .fileformat import WordVecSpaceFile from .base import WordVecSpaceBase np.set_printoptions(precision=4) check_equal = np.testing.assert_array_almost_equal # export data directory path for test cases # $export WORDVECSPACE_DATADIR=/path/to/data/ DATAFILE_ENV_VAR = os.environ.get("WORDVECSPACE_DATADIR", "") class WordVecSpace(WordVecSpaceBase): METRIC = "cosine" DEFAULT_K = 512 def __init__(self, input_dir: str, metric: str = METRIC) -> None: self._f = WordVecSpaceFile(input_dir, mode="r") self.input_dir = input_dir self.metric = metric self.nvecs = len(self._f) self.dim = int(self._f.dim) self.vecs = self._f.vecs self.wtoi = self._f.wtoi self.itow = self._f.itow self.occurs = self._f.occurs self.mags = self._f.mags def _make_array(self, shape, dtype): return np.ndarray(shape, dtype) def _check_index_or_word(self, item): if isinstance(item, str): return self.get_index(item) return item def _check_indices_or_words(self, items): w = items if len(w) == 0: return [] if isinstance(w, np.ndarray): assert w.dtype == np.uint32 and len(w.shape) == 1 if isinstance(w, (list, tuple)): if isinstance(w[0], str): return self.get_indices(w) return w def _check_vec(self, v, normalized=False): if isinstance(v, np.ndarray) and len(v.shape) == 2 and v.dtype == np.float32: if normalized: m = np.linalg.norm(v) return v / m return v else: if isinstance(v, (list, tuple)): return self.get_vectors(v, normalized=normalized) return self.get_vector(v, normalized=normalized) def get_manifest(self) -> dict: manifest_info = open(os.path.join(self.input_dir, "manifest.json"), "r") manifest_info = json.loads(manifest_info.read()) return manifest_info def does_word_exist(self, word: str) -> bool: return word in self.wtoi def get_index(self, word: str) -> int: assert isinstance(word, str) return self.wtoi[word] def get_indices(self, words: list) -> list: assert isinstance(words, (tuple, list)) and len(words) != 0 indices = [self.wtoi[w] for w in words] return indices def get_word(self, index: int) -> str: return self.itow[index] def get_words(self, indices: list) -> list: return [self.itow[i] for i in indices] def get_magnitude(self, word_or_index: Union[int, str]) -> np.float32: index = self._check_index_or_word(word_or_index) return self.mags[index] def get_magnitudes(self, words_or_indices: list) -> np.ndarray: w = self._check_indices_or_words(words_or_indices) return self.mags.take(w) def get_occurrence(self, word_or_index: Union[int, str]) -> int: index = self._check_index_or_word(word_or_index) return self.occurs[index] def get_occurrences(self, words_or_indices: list) -> list: w = self._check_indices_or_words(words_or_indices) return self.occurs.take(w) def get_vector( self, word_or_index: Union[int, str], normalized: bool = False ) -> np.ndarray: index = self._check_index_or_word(word_or_index) if normalized: return self.vecs[index] return self.vecs[index] * self.mags[index] def get_vectors( self, words_or_indices: list, normalized: bool = False ) -> np.ndarray: w = self._check_indices_or_words(words_or_indices) if normalized: return self.vecs.take(w, axis=0) vecs = self.vecs.take(w, axis=0) mags = self.mags.take(w) return np.multiply(vecs.T, mags).T def get_distance( self, word_or_index1: Union[int, str], word_or_index2: Union[int, str], metric: str = "cosine", normalized: bool = True, ) -> float: w1 = word_or_index1 w2 = word_or_index2 if not metric: metric = self.metric if metric in ("cosine", "angular"): vec1 = self._check_vec(w1, normalized) vec2 = self._check_vec(w2, normalized) return 1 - np.dot(vec1, vec2.T) elif metric == "euclidean": vec1 = self._check_vec(w1) vec2 = self._check_vec(w2) return distance.euclidean(vec1, vec2) def _check_r_and_c(self, r, c, m): if not m: m = self.metric if not isinstance(r, (tuple, list, np.ndarray)): r = [r] if c is not None and len(c): if not isinstance(c, (tuple, list, np.ndarray)): c = [c] return m, r, c def get_distances( self, row_words_or_indices: Union[list, np.ndarray], col_words_or_indices: Union[list, None, np.ndarray] = None, metric=None, normalized: bool = True, ) -> np.ndarray: r = row_words_or_indices c = col_words_or_indices metric, r, c = self._check_r_and_c(r, c, metric) if metric in ("cosine", "angular"): row_vectors = self._check_vec(r, normalized) col_vectors = self.vecs if c is not None and len(c): col_vectors = self._check_vec(c, normalized) if len(r) == 1: nvecs, dim = col_vectors.shape vec_out = self._make_array( (len(col_vectors), len(row_vectors)), dtype=np.float32 ) res = self._perform_sgemv(row_vectors, col_vectors, vec_out, nvecs, dim) else: mat_out = self._make_array( (len(row_vectors), len(col_vectors)), dtype=np.float32 ) res = self._perform_sgemm(row_vectors, col_vectors, mat_out) if not normalized: res = np.multiply(res, self.mags) return res return 1 - res elif metric == "euclidean": row_vectors = self._check_vec(r) if c: col_vectors = self._check_vec(c) else: col_vectors = self.vecs return distance.cdist(row_vectors, col_vectors, "euclidean") def _nearest_sorting(self, d, k, normalized=True): ner = self._make_array(shape=(len(d), k), dtype=np.uint32) dist = self._make_array(shape=(len(d), k), dtype=np.float32) for index, p in enumerate(d): if normalized: # FIXME: better variable name for b_sort b_sort = bottleneck.argpartition(p, k)[:k] pr_dist = np.take(p, b_sort) # FIXME: better variable name for a_sorted a_sorted = np.argsort(pr_dist) indices = np.take(b_sort, a_sorted) else: d =
pd.Series(p)
pandas.Series
import io import os import pandas as pd import numpy as np from datetime import date from .io import ms_file_to_df MINT_ROOT = os.path.dirname(__file__) PEAKLIST_COLUMNS = ['peak_label', 'mz_mean', 'mz_width', 'rt_min', 'rt_max', 'intensity_threshold', 'peaklist'] def example_peaklist(): return pd.read_csv(f'{MINT_ROOT}/../tests/data/example_peaklist.csv') def example_results(): return pd.read_csv(f'{MINT_ROOT}/../tests/data/example_results.csv') RESULTS_COLUMNS = ['peak_label', 'peak_area', 'peak_n_datapoints', 'peak_max', 'peak_min', 'peak_median', 'peak_mean', 'peak_int_first', 'peak_int_last', 'peak_delta_int', 'peak_rt_of_max', 'peaklist', 'mz_mean', 'mz_width', 'rt_min', 'rt_max', 'intensity_threshold', 'peak_shape_rt', 'peak_shape_int'] MINT_RESULTS_COLUMNS = ['peak_label', 'ms_file', 'peak_area', 'peak_n_datapoints', 'peak_max', 'peak_min', 'peak_median', 'peak_mean', 'peak_int_first', 'peak_int_last', 'peak_delta_int', 'peak_rt_of_max', 'file_size', 'intensity_sum', 'ms_path', 'peaklist', 'mz_mean', 'mz_width', 'rt_min', 'rt_max', 'intensity_threshold', 'peak_shape_rt', 'peak_shape_int'] def integrate_peaks(ms_data, peaklist): def base(peak): slizE = slice_ms1_mzxml(ms_data, **peak) shape = slizE[['retentionTime', 'm/z array', 'intensity array']]\ .groupby(['retentionTime', 'm/z array']).sum()\ .unstack()\ .sum(axis=1) if len(shape) == 0: results = peak.copy() results.update({'peak_area': 0}) return results peak_area = np.int64(shape.sum()) peak_med = np.float64(shape[shape != 0].median()) peak_avg = np.float64(shape[shape != 0].mean()) peak_max = np.float64(shape.max()) peak_min = np.float64(shape.min()) results = {} float_list_to_comma_sep_str = lambda x: ','.join( [ str(np.round(i, 4)) for i in x ] ) results['peak_shape_rt'] = float_list_to_comma_sep_str( shape.index ) results['peak_shape_int'] = float_list_to_comma_sep_str ( shape.values ) results['peak_area'] = peak_area results['peak_max'] = peak_max results['peak_min'] = peak_min results['peak_median'] = peak_med results['peak_mean'] = peak_avg results['peak_int_first'] = shape.values[0] results['peak_int_last'] = shape.values[-1] results['peak_delta_int'] = results['peak_int_last'] - results['peak_int_first'] results['peak_rt_of_max'] = shape[shape == peak_max].index results['peak_n_datapoints'] = len(shape) if len(results['peak_rt_of_max']) > 0: results['peak_rt_of_max'] = np.mean(results['peak_rt_of_max']) else: results['peak_rt_of_max'] = np.nan results.update(peak) return results base = np.vectorize(base) results = base(to_peaks(peaklist)) results = pd.merge(pd.DataFrame(list(results)), peaklist[['peaklist', 'peak_label']], on=['peak_label']) # Make sure all columns are present for col in RESULTS_COLUMNS: if not col in results.keys(): results[col] = np.NaN return results[RESULTS_COLUMNS] def integrate_peak(ms_data, mz_mean, mz_width, rt_min, rt_max, intensity_threshold, peak_label): peaklist = pd.DataFrame([dict(mz_mean=mz_mean, mz_width=mz_width, rt_min=rt_min, rt_max=rt_max, intensity_threshold=intensity_threshold, peak_label=peak_label, peaklist='single_peak')], index=[0]) result = integrate_peaks(ms_data, peaklist) return result def read_peaklists(filenames): ''' Extracts peak data from csv files that contain peak definitions. CSV files must contain columns: - 'peak_label': str, unique identifier - 'peakMz': float, center of mass to be extracted in [Da] - 'peakMzWidth[ppm]': float, with of mass window in [ppm] - 'rtmin': float, minimum retention time in [min] - 'rtmax': float, maximum retention time in [min] ----- Args: - filenames: str or PosixPath or list of such with path to csv-file(s) Returns: pandas.DataFrame in peaklist format ''' NEW_LABELS = {'peakLabel': 'peak_label', 'peakMz': 'mz_mean', 'peakMzWidth[ppm]': 'mz_width', 'rtmin': 'rt_min', 'rtmax': 'rt_max'} if isinstance(filenames, str): filenames = [filenames] peaklist = [] for file in filenames: if str(file).endswith('.csv'): df = pd.read_csv(file, dtype={'peakLabel': str})\ .rename(columns=NEW_LABELS) elif str(file).endswith('.xlsx'): df = pd.read_excel(file, dtype={'peakLabel': str})\ .rename(columns=NEW_LABELS) df['peaklist'] = os.path.basename(file) if 'intensity_threshold' not in df.columns: df['intensity_threshold'] = 0 df['peak_label'] = df['peak_label'].astype(str) peaklist.append(df[PEAKLIST_COLUMNS]) peaklist =
pd.concat(peaklist)
pandas.concat
import numpy as np from numpy.testing import assert_equal, assert_, assert_raises import pandas as pd import pandas.util.testing as tm import pytest from statsmodels.base import data as sm_data from statsmodels.formula import handle_formula_data from statsmodels.regression.linear_model import OLS from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families from statsmodels.discrete.discrete_model import Logit # FIXME: do not leave commented-out, enable or move/remove # class TestDates(object): # @classmethod # def setup_class(cls): # nrows = 10 # cls.dates_result = cls.dates_results = np.random.random(nrows) # # def test_dates(self): # np.testing.assert_equal(data.wrap_output(self.dates_input, 'dates'), # self.dates_result) class TestArrays(object): @classmethod def setup_class(cls): cls.endog = np.random.random(10) cls.exog = np.c_[np.ones(10), np.random.random((10, 2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_result = cls.col_input = np.random.random(nvars) cls.row_result = cls.row_input = np.random.random(nrows) cls.cov_result = cls.cov_input = np.random.random((nvars, nvars)) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y' cls.row_labels = None def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog) def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves np.testing.assert_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) np.testing.assert_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) np.testing.assert_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) def test_names(self): data = self.data np.testing.assert_equal(data.xnames, self.xnames) np.testing.assert_equal(data.ynames, self.ynames) def test_labels(self): # HACK: because numpy master after NA stuff assert_equal fails on # pandas indices # FIXME: see if this can be de-hacked np.testing.assert_(np.all(self.data.row_labels == self.row_labels)) class TestArrays2dEndog(TestArrays): @classmethod def setup_class(cls): super(TestArrays2dEndog, cls).setup_class() cls.endog = np.random.random((10, 1)) cls.exog = np.c_[np.ones(10), np.random.random((10, 2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) class TestArrays1dExog(TestArrays): @classmethod def setup_class(cls): super(TestArrays1dExog, cls).setup_class() cls.endog = np.random.random(10) exog = np.random.random(10) cls.data = sm_data.handle_data(cls.endog, exog) cls.exog = exog[:, None] cls.xnames = ['x1'] cls.ynames = 'y' def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog.squeeze()) class TestDataFrames(TestArrays): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): tm.assert_frame_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog.values) def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves tm.assert_series_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) tm.assert_series_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) tm.assert_frame_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) class TestDataFramesWithMultiIndex(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) mi = pd.MultiIndex.from_product([['x'], ['1', '2']]) exog = pd.DataFrame(np.random.random((10, 2)), columns=mi) exog_flattened_idx = pd.Index(['const', 'x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog_flattened_idx) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog_flattened_idx, columns=exog_flattened_idx) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index class TestLists(TestArrays): @classmethod def setup_class(cls): super(TestLists, cls).setup_class() cls.endog = np.random.random(10).tolist() cls.exog = np.c_[np.ones(10), np.random.random((10, 2))].tolist() cls.data = sm_data.handle_data(cls.endog, cls.exog) class TestRecarrays(TestArrays): @classmethod def setup_class(cls): super(TestRecarrays, cls).setup_class() cls.endog = np.random.random(9).view([('y_1', 'f8')]).view(np.recarray) exog = np.random.random(9*3).view([('const', 'f8'), ('x_1', 'f8'), ('x_2', 'f8')]).view(np.recarray) exog['const'] = 1 cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.view(float, type=np.ndarray)) np.testing.assert_equal(self.data.exog, self.exog.view((float, 3), type=np.ndarray)) class TestStructarrays(TestArrays): @classmethod def setup_class(cls): super(TestStructarrays, cls).setup_class() cls.endog = np.random.random(9).view([('y_1', 'f8')]).view(np.recarray) exog = np.random.random(9*3).view([('const', 'f8'), ('x_1', 'f8'), ('x_2', 'f8')]).view(np.recarray) exog['const'] = 1 cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.view(float, type=np.ndarray)) np.testing.assert_equal(self.data.exog, self.exog.view((float, 3), type=np.ndarray)) class TestListDataFrame(TestDataFrames): @classmethod def setup_class(cls): cls.endog = np.random.random(10).tolist() exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y' cls.row_labels = cls.exog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog.values) def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) class TestDataFrameList(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x1', 'x2']) exog.insert(0, 'const', 1) cls.exog = exog.values.tolist() cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y_1' cls.row_labels = cls.endog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) def test_orig(self): tm.assert_frame_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) class TestArrayDataFrame(TestDataFrames): @classmethod def setup_class(cls): cls.endog = np.random.random(10) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y' cls.row_labels = cls.exog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog.values) def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) class TestDataFrameArray(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x1', 'x2']) # names mimic defaults exog.insert(0, 'const', 1) cls.exog = exog.values cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y_1' cls.row_labels = cls.endog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) def test_orig(self):
tm.assert_frame_equal(self.data.orig_endog, self.endog)
pandas.util.testing.assert_frame_equal
import pickle import pandas as pd import numpy as np from random import sample from collections import Counter import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.ioff() def sub_sampling(table, sampling_depth = 50): ''' subsamping a table to get same sampling depth for all samples. ''' sub_sampled_table = np.zeros(table.shape) for idx in range(table.shape[0]): pool = [] for ISM_idx, count in enumerate(table[idx].tolist()): pool.extend([ISM_idx for i in range(int(count))]) sub_sampled_dict = Counter(sample(pool,sampling_depth)) for ISM_idx in sub_sampled_dict: sub_sampled_table[idx, ISM_idx] = sub_sampled_dict[ISM_idx] return sub_sampled_table def bray_curtis_distance(table, sample1_id, sample2_id): ''' compute Bray Curtis distance between two samples. ''' numerator = 0 denominator = 0 sample1_counts = table[sample1_id] sample2_counts = table[sample2_id] for sample1_count, sample2_count in zip(sample1_counts, sample2_counts): numerator += abs(sample1_count - sample2_count) denominator += sample1_count + sample2_count return numerator / denominator def build_ISM_abundance_table(data_df, sampling_depth = 150): ''' convert ISM dataframe to ISM abundance table. ''' NT_SET = set(['A', 'C', 'G', 'T', '-']) tmp = data_df[['continent', 'country/region']] country_to_continent = {} for i in range(tmp.shape[0]): continent, country = tmp.iloc[i]['continent'], tmp.iloc[i]['country/region'] if country in country_to_continent: pass else: country_to_continent[country] = continent ISM_to_idx, idx_to_ISM, region_to_idx, idx_to_region = {}, {}, {}, {} region_list = [] ISM_set = set([]) for region, count in data_df['country/region'].value_counts().items(): if count >= sampling_depth: region_list.append(region) tmp = data_df[data_df['country/region'] == region] ISM_set.update(tmp['ISM'].unique()) country_to_continent = {country: country_to_continent[country] for country in country_to_continent if country in region_list} continent_list = sorted(set(country_to_continent.values())) color_list = ['red', 'orange', 'green', 'blue', 'brown', 'black', 'pink', 'mediumpurple','gold', 'lightskyblue', ] continent_to_color = {} for idx, item in enumerate(continent_list): continent_to_color[item] = color_list[idx] n_row, n_ISM = len(region_list), len(ISM_set) raw_table = np.zeros((n_row, n_ISM)) for idx, ISM in enumerate(ISM_set): ISM_to_idx[ISM] = idx idx_to_ISM[idx] = ISM for idx, region in enumerate(region_list): region_to_idx[region] = idx idx_to_region[idx] = region for region_idx in range(n_row): region = idx_to_region[region_idx] tmp = data_df[data_df['country/region'] == region] for ISM, count in tmp['ISM'].value_counts().items(): ISM_idx = ISM_to_idx[ISM] raw_table[region_idx, ISM_idx] += count return raw_table, n_row, n_ISM, country_to_continent, continent_to_color, idx_to_region def region_pca_plot(INPUT_FOLDER, OUTPUT_FOLDER, sampling_depth=150): ''' pca plot of ISM abundance table ''' ISM_df = pd.read_csv('{}/ISM_df_with_correction.csv'.format(INPUT_FOLDER)) ISM_df['date'] =
pd.to_datetime(ISM_df['date'])
pandas.to_datetime
# Diffusion Maps Framework implementation as part of MSc Data Science Project of student # <NAME> at University of Southampton, MSc Data Science course # Script 9: Network example taken on 20/08/2016 from # https://networkx.readthedocs.io/en/stable/examples/drawing/weighted_graph.html import openpyxl import numpy as np import pandas as pd from math import sqrt from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import rbf_kernel from sklearn.decomposition import PCA from datetime import datetime import matplotlib import matplotlib.pyplot as plt import matplotlib.mlab as mlab from diffusion_framework import main as diffusion_framework matplotlib.style.use('ggplot') # Choose set of normalised data # datasource = './data/normalised/sqrtData.xlsx' # datasource = './data/normalised/NormalisationData.xlsx' datasource = './data/normalised/NormalisationByRowData.xlsx' # datasource = './data/normalised/MinMaxScalerData.xlsx' # datasource = './data/normalised/MinMaxScalerFeatureData.xlsx' # datasource = './data/pcaData.xlsx' dtsource = './data/datetimes.xlsx' def main(): xlData = pd.ExcelFile(datasource) sheetNames = xlData.sheet_names dtExcel =
pd.ExcelFile(dtsource)
pandas.ExcelFile
from flask import Flask, request, render_template, Response from flask import make_response, jsonify import sys import os import requests import json import threading import time import pandas as pd import tempfile import datetime from collections import defaultdict import namegenerator sys.path.append(os.path.abspath("./")) from apollo.Scraper.config import ( USER_AGENT, YOUTUBE_VIDEO_URL, ) if not(os.path.isdir(os.path.join('./', 'downloads'))): os.mkdir(os.path.join('./', 'downloads')) from apollo.Scraper.LinkParser import extract_id from apollo.inference.inference import inference_v2, load_model from apollo.Scraper.download_comments import download_comments app = Flask(__name__) app.secret_key = os.urandom(24) LOAD_MODEL_THREAD = None chart_data = [0, 0] log_data = '' DATA_STORE = defaultdict(list) COMMENTS_STORE = [] @app.after_request def add_header(response): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ response.headers["X-UA-Compatible"] = "IE=Edge,chrome=1" response.headers["Cache-Control"] = "public, max-age=0" return response def scrapper_v2(youtube_id, sensitivity, limit): ''' Code modified from : https://github.com/egbertbouman/youtube-comment-downloader :param youtube_id: ID of Youtube Video Link :param sensitivity: Sensitivity tolerance level (To be used as threshold during inference) :param limit: Number of comments to be scraped :return: CSV file of output comments ''' try: # if LOAD_MODEL_THREAD is not None: LOAD_MODEL_THREAD.join() global chart_data global log_data global DATA_STORE filename = '{}_{}_{}.csv'.format(youtube_id, sensitivity, limit) chart_data = [0, 0] log_data = '' df =
pd.DataFrame(columns=['id', 'comment', 'score', 'sensitivity'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: <NAME> Aarhus University TECOLOGY.xyz Production of collages of crops of flower and insect detections to be used on Zooniverse. This script takes raw images and detection info (bounding box coordinates) for flowers and insects as input. It crops detections and produces collages with four crops in each. It also produces a manifest to be used on the Zooniverse platform. """ import cv2 import pandas as pd import csv import os from PIL import Image, ImageDraw from math import ceil ### SET THE RELEVANT PATHS ### camyear = "2018_NARS-02" flower_detections = r"2018_NARS-02_submit_boxes_NewFormat_NoZeroes_Day.csv" known_visitors = r"Dryas-12_All.csv" save_root = r"/mnt/archive/Workspace_Hjalte/MaskRCNN/2020_01_22_VisitorDetectionOnFlowers_DetectionPhenologyTestSeries/collages_Monster_Final/" flowers_and_visitors = camyear + "_" + "flowers_and_visitors_Temp.csv" ### USER SETTINGS ### upscale_factor = 1 # Use this if the coordinates for the detections need to be upscaled crops_per_collage = 4 # Number of flower crops in each collage known_visitor_percentage = 0.5 # So far, we have used 2% known visitors. However, as we are presenting four crops at a time, we can divide this by 4. collages_per_folder = 50000 # Number of collages per folder ### Mixing in known insects ### """ To mix in known insects, we will -open the flower detections -count the number of detections -calculate number of known insect needed -open insect annotations file -sample the number needed -add them to the flower detections -mix the flower detections, so the insects appear randomly -save the new flower detections file containing the known insects. -Now the rest of the script can be run """ fl_detections = pd.read_csv(flower_detections, header = None) # Read the file containing the flower detections fl_detections.columns=['filename', 'x_min', 'y_min', 'x_max', 'y_max'] # Name the columns fl_detections['known_insect'] = str(0) fl_detections['x_min'] = fl_detections['x_min']*upscale_factor # We might as well upscale the detection coordinates now we have the file open fl_detections['y_min'] = fl_detections['y_min']*upscale_factor fl_detections['x_max'] = fl_detections['x_max']*upscale_factor fl_detections['y_max'] = fl_detections['y_max']*upscale_factor fl_detections['x_min'] = fl_detections['x_min'].astype(int) fl_detections['y_min'] = fl_detections['y_min'].astype(int) fl_detections['x_max'] = fl_detections['x_max'].astype(int) fl_detections['y_max'] = fl_detections['y_max'].astype(int) det_count = fl_detections.shape[0] # Count the number of detections visitors_needed = ceil(det_count/100 * known_visitor_percentage) # We calculate the number of known insects we need to add to the detection dataset. ceil rounds up to the next integer if visitors_needed + det_count % crops_per_collage != 0: # If the combined number of images is not divisible by 4 (crops_per_collage), we will sample extra insects until it is. This ensures that we do not leave out any crops. visitors_needed = visitors_needed + (crops_per_collage -((visitors_needed + det_count) % crops_per_collage)) known_visitors = pd.read_csv(known_visitors, header = None) known_visitors.columns=['filename', 'x_min', 'y_min', 'x_max', 'y_max'] #known_visitors = known_visitors[['filename', 'x_min', 'y_min', 'x_max', 'y_max']] known_visitors['known_insect'] = str(1) sampled_visitors = known_visitors.sample(n = visitors_needed, replace = True) # Sample the insect visitor crops fl_detections_visitors = pd.concat([fl_detections, sampled_visitors], axis=0) # Add them to the detection dataframe fl_detections_visitors = fl_detections_visitors.sample(frac=1) # Mix the dataframe so the insects occur at random locations fl_detections_visitors.to_csv(flowers_and_visitors, header = None, index = False) # Write the dataframe to csv ### PRINT SOME STUFF ### number_flowers = len(fl_detections) number_visitors_sampled = len(sampled_visitors) number_collages = (number_flowers + number_visitors_sampled)//crops_per_collage number_folders = (number_collages//collages_per_folder) + 1 print(f"Running on: {camyear}") print(f"Number of flowers detected: {number_flowers}") print(f"Number of visitors sampled: {number_visitors_sampled}") print(f"Number of collages that will be produced: {number_collages}") print(f"Number of folders that will hold the collages: {number_folders}") ### manifest = [] def write_manifest(collage_name, list_of_crops, folder_name): # Write a manifest for the Zooniverse platform TL_Path = list_of_crops[0][0] # Get the paths for the image for each crop in a collage TR_Path = list_of_crops[1][0] BL_Path = list_of_crops[2][0] BR_Path = list_of_crops[3][0] TL_Coordinates = str(list_of_crops[0][1]) + "_" + str(list_of_crops[0][2]) + "_" + str(list_of_crops[0][3]) + "_" + str(list_of_crops[0][4]) # Get the coordinates for the detection in each image TR_Coordinates = str(list_of_crops[1][1]) + "_" + str(list_of_crops[1][2]) + "_" + str(list_of_crops[1][3]) + "_" + str(list_of_crops[1][4]) BL_Coordinates = str(list_of_crops[2][1]) + "_" + str(list_of_crops[2][2]) + "_" + str(list_of_crops[2][3]) + "_" + str(list_of_crops[2][4]) BR_Coordinates = str(list_of_crops[3][1]) + "_" + str(list_of_crops[3][2]) + "_" + str(list_of_crops[3][3]) + "_" + str(list_of_crops[3][4]) TL_KnownInsect = list_of_crops[0][5] # Binary score of whether the crop is a known insect. 0: no, 1: yes. TR_KnownInsect = list_of_crops[1][5] BL_KnownInsect = list_of_crops[2][5] BR_KnownInsect = list_of_crops[3][5] row = [collage_name, TL_Path, TL_Coordinates, TL_KnownInsect, TR_Path, TR_Coordinates, TR_KnownInsect, BL_Path, BL_Coordinates, BL_KnownInsect, BR_Path, BR_Coordinates, BR_KnownInsect, folder_name] # Header row manifest.append(row) def cut_crops(list_of_crops): # Function for cutting out the detection crops from the full images based on the bounding box coordinates crops = [] for c in list_of_crops: image = cv2.imread(c[0]) c_xmin = c[1] c_ymin = c[2] c_xmax = c[3] c_ymax = c[4] c_width = c_xmax - c_xmin c_height = c_ymax - c_ymin crop = image[c_ymin:c_ymin + c_height, c_xmin:c_xmin + c_width] crops.append(crop) return crops def create_background(crops): # Create a background image in which the crops will be pasted to create a collage of four crops background_width = (max([crops[0].shape[0], crops[1].shape[0], crops[2].shape[0], crops[3].shape[0]]) * 2) + 50 # The width of the background image is 2*widest crop + 50 pixels background_height = (max([crops[0].shape[1], crops[1].shape[1], crops[2].shape[1], crops[3].shape[1]]) * 2) + 50 # The height of the background image is 2*tallest crop + 50 pixels background_image = Image.new("RGB", (background_height, background_width), (255,255,255)) # Create the background image # We'll draw a frame around the image and a cross in the middle' draw = ImageDraw.Draw(background_image) draw.line((0,int(background_width/2), background_height, int(background_width/2)), fill=(0,0,0, 255), width=2) # draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)] draw.line(((int(background_height/2), 0, int(background_height/2), background_width)), fill=(0,0,0, 255), width=2) draw.line(((0, 0, int(background_height), 0)), fill=(0,0,0, 255), width=2) draw.line(((1, int(background_width), 1, 0)), fill=(0,0,0, 255), width=2) draw.line(((int(background_height), int(background_width)-1, 0, int(background_width)-1)), fill=(0,0,0, 255), width=2) draw.line(((int(background_height)-2, 0, int(background_height)-2, int(background_width))), fill=(0,0,0, 255), width=2) return background_image # And we are ready to return our background image def paste_crops(background_image, crops): # Function for pasting crops in the background image index = 0 background_height, background_width = background_image.size for c in crops: c = cv2.cvtColor(c, cv2.COLOR_BGR2RGB) c = Image.fromarray(c) h, w = c.size if index == 0: x = int(background_width/4 - (w/2)) y = int(background_height/4 -(h/2)) elif index == 1: x = int(background_width/4 - (w/2)) y = int((background_height/(4/3)) - (h/2)) elif index == 2: x = int((background_width/(4/3)) - (w/2)) y = int(background_height/4 -(h/2)) else: x = int((background_width/(4/3)) - (w/2)) y = int((background_height/(4/3)) - (h/2)) background_image.paste(c, (y, x, y + h, x + w)) collage = background_image index += 1 return collage ######## PRODUCE CROP COLLAGES ###### collage_counter = 0 # Keep track of the number of collages produced folder_counter = 0 # Keep track of the folder number split_save_to = save_root + "/" + camyear + "_" + str(folder_counter) os.makedirs(split_save_to) with open(flowers_and_visitors, 'r') as csvfile: detections = csv.reader(csvfile, delimiter=',') lines = [] collage_index = 0 for line in detections: line = [int(int(i)*upscale_factor) if i.isdigit() else i.replace('O:/Tech_TTH-AID','/mnt/bitcue_mountpoint') for i in line] # Convert the coordinates to digits in the line lines.append(line) if len(lines) >= crops_per_collage: crops = cut_crops(lines) background_image = create_background(crops) collage = paste_crops(background_image, crops) collage_name = camyear + "_" + str(collage_index).zfill(6) + ".jpg" collage_path = split_save_to + "/" + collage_name folder_name = camyear + "_" + str(folder_counter) collage.save(collage_path) write_manifest(collage_name, lines, folder_name) collage_counter += 1 collage_index += 1 if collage_counter % 2500 == 0: # Print message to let the user know that the script is still running print("2500 mark. Still going strong...") if collage_counter == collages_per_folder: print(str(collages_per_folder), " mark. Still going. Starting a new folder.") manifest =
pd.DataFrame(manifest, columns = ["ID", "!TL_Path", "!TL_Coordinates", "!TL_KnownInsect","!TR_Path","!TR_Coordinates", "!TR_KnownInsect","!BL_Path","!BL_Coordinates", "!BL_KnownInsect", "!BR_Path", "!BR_Coordinates", "!BR_KnownInsect", "Folder_Name"])
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pytz from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( DataFrame, DatetimeIndex, Index, IntervalIndex, Series, Timestamp, cut, date_range, ) import pandas._testing as tm class TestDataFrameAlterAxes: @pytest.fixture def idx_expected(self): idx = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B").tz_localize( "US/Pacific" ) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) assert expected.dtype == idx.dtype return idx, expected def test_to_series_keep_tz_deprecated_true(self, idx_expected): # convert to series while keeping the timezone idx, expected = idx_expected msg = "stop passing 'keep_tz'" with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=True, index=[0, 1]) assert msg in str(m[0].message) tm.assert_series_equal(result, expected) def test_to_series_keep_tz_deprecated_false(self, idx_expected): idx, expected = idx_expected with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) def test_setitem_dt64series(self, idx_expected): # convert to utc idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) df["B"] = idx with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = df["B"] comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B") tm.assert_series_equal(result, comp) def test_setitem_datetimeindex(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) def test_setitem_object_array_of_tzaware_datetimes(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # object array of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) def test_constructor_from_tzaware_datetimeindex(self, idx_expected): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx, expected = idx_expected # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) def test_set_axis_setattr_index(self): # GH 6785 # set the index manually df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo") df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.reindex(idx2) tm.assert_index_equal(df.index, idx2) def test_dti_set_index_reindex_with_tz(self): # GH 11314 # with tz index = date_range( datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern" ) df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index) new_index = date_range( datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern" ) result = df.set_index(new_index) assert result.index.freq == index.freq # Renaming def test_assign_columns(self, float_frame): float_frame["hi"] = "there" df = float_frame.copy() df.columns = ["foo", "bar", "baz", "quux", "foo2"] tm.assert_series_equal(float_frame["C"], df["baz"], check_names=False) tm.assert_series_equal(float_frame["hi"], df["foo2"], check_names=False) class TestIntervalIndex: def test_setitem(self): df = DataFrame({"A": range(10)}) ser = cut(df["A"], 5) assert isinstance(ser.cat.categories, IntervalIndex) # B & D end up as Categoricals # the remainer are converted to in-line objects # contining an IntervalIndex.values df["B"] = ser df["C"] = np.array(ser) df["D"] = ser.values df["E"] = np.array(ser.values) assert is_categorical_dtype(df["B"].dtype) assert is_interval_dtype(df["B"].cat.categories) assert is_categorical_dtype(df["D"].dtype) assert is_interval_dtype(df["D"].cat.categories) assert is_object_dtype(df["C"]) assert is_object_dtype(df["E"]) # they compare equal as Index # when converted to numpy objects c = lambda x: Index(np.array(x)) tm.assert_index_equal(c(df.B), c(df.B)) tm.assert_index_equal(c(df.B), c(df.C), check_names=False) tm.assert_index_equal(c(df.B), c(df.D), check_names=False) tm.assert_index_equal(c(df.C), c(df.D), check_names=False) # B & D are the same Series tm.assert_series_equal(df["B"], df["B"]) tm.assert_series_equal(df["B"], df["D"], check_names=False) # C & E are the same Series tm.assert_series_equal(df["C"], df["C"]) tm.assert_series_equal(df["C"], df["E"], check_names=False) def test_set_reset_index(self): df = DataFrame({"A": range(10)}) s =
cut(df.A, 5)
pandas.cut
#!/usr/bin/env python # coding: utf-8 import streamlit as st import streamlit.components.v1 as components import matplotlib.pyplot as plt import kayak from PIL import Image import numpy as np filename_airport = './assets/airports.csv' filename_aircraft = './assets/aircraft.csv' output = './assets/output.xlsx' blank = Image.open('./assets/blank.jpeg') greenest = Image.open('./assets/planet-earth.png') cheapest = Image.open('./assets/decrease.png') shortest = Image.open('./assets/chronometer.png') bg = Image.open('./assets/background.jpg') plane = Image.open('./assets/plane.png') import pandas as pd df_airport =
pd.read_csv(filename_airport)
pandas.read_csv
import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn import svm from sklearn import preprocessing from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, auc import random import warnings warnings.filterwarnings("ignore") def main(): tr_x, tr_y, ts_x, ts_y = preprocess() assert(tr_x.shape == (2300,57)) assert(tr_y.shape == (2300, 1)) assert(ts_x.shape == (2301, 57)) assert(ts_y.shape == (2301, 1)) print("---------------------------------") print("-------EXP 1---------------------") print("---------------------------------") # Train a SVM model clf = svm.SVC(kernel='linear',probability=True) clf.fit(tr_x, tr_y) prediction = clf.predict(ts_x) probs = clf.predict_proba(ts_x) # Accuracy, precision, recall, and ROC curve acc = accuracy_score(ts_y, prediction) * 100 precision = precision_score(ts_y, prediction) * 100 recall = recall_score(ts_y, prediction) * 100 probs = probs[:,1] fpr, tpr, thresh = roc_curve(ts_y, probs) roc_auc = auc(fpr, tpr) print("Accuracy: {} %".format(acc)) print("Precision: {} %".format(precision)) print("Recall: {} %".format(recall)) # Plot ROC Curve and save plot plt.title('ROC Curve') plt.plot(fpr, tpr, label='AUC = %0.2f' % roc_auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], linestyle='--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.savefig('roc_exp1.png') plt.clf() print("---------------------------------") print("-------EXP 2---------------------") print("---------------------------------") # Compute weight vector w w = np.dot(clf.dual_coef_, clf.support_vectors_) w = w.reshape((57,)) w = np.absolute(w) svm_m = svm.SVC(kernel='linear') acc_data = [] # Get new features with highest wight vector value for m in range(2, 58): new_tr_x, new_ts_x = select_features(w, m, tr_x, ts_x) svm_m.fit(new_tr_x, tr_y) predict_m = svm_m.predict(new_ts_x) acc = accuracy_score(ts_y, predict_m) * 100 acc_data.append(acc) print("M: {}, \t Accuracy: {}".format(m, acc)) # Plot Accuracy plt.title('Number of features vs Accuracy') plt.plot(range(2,58), acc_data) plt.ylabel('Accuracy %') plt.xlim([0, 57]) plt.ylim([30, 100]) plt.xlabel('number of features') plt.savefig('acc_exp2.png') plt.clf() print("---------------------------------") print("-------EXP 3---------------------") print("---------------------------------") svm_random = svm.SVC(kernel='linear') acc_data_random = [] for m in range(2, 58): random_tr_x, random_ts_x = select_random_features(m, tr_x, ts_x) svm_random.fit(random_tr_x, tr_y) predict_random = svm_random.predict(random_ts_x) acc_random = accuracy_score(ts_y, predict_random) * 100 acc_data_random.append(acc_random) print("M: {}, \t Accuracy: {}".format(m, acc_random)) # Plot Accuracy plt.title('Number of features (Random) vs Accuracy') plt.plot(range(2, 58), acc_data_random) plt.ylabel('Accuracy %') plt.xlim([0, 57]) plt.ylim([30, 100]) plt.xlabel('number of features') plt.savefig('rand_acc_exp3.png') plt.clf() def preprocess(): data = pd.read_csv('spambase.data', header=None, sep=',', engine='c', na_filter= False, low_memory=False) labels = data.iloc[:, 57] # 1 1813 # 0 2788 # Split train test 50-50. Make sure # of classes are balanced in each tr_x = pd.concat([data.head(906), data.tail(1394)]) tr_y = pd.concat([labels.head(906), labels.tail(1394)]) ts_x =
pd.concat([data[906:1813], data[1813:3207]])
pandas.concat
import ast import csv import sys, os from pandas import DataFrame, to_datetime from PyQt5 import uic from PyQt5.QtChart import QChartView, QValueAxis, QBarCategoryAxis, QBarSet, QBarSeries, QChart from PyQt5.QtCore import QFile, QTextStream, Qt from PyQt5.QtGui import QPainter from PyQt5.QtWidgets import QApplication, QComboBox, QHeaderView, QLineEdit, QMainWindow, QPushButton, QTableWidget, QTableView,QTableWidgetItem, QMessageBox, QFileDialog from client.charts import Piechart, Barchart from client.datahandler import DataHandler from client.logs import PandasModel from modules.Processor import ProcessData from modules.Parser import export_to_file class MainWindow(QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) #Load the UI Page uic.loadUi('client/main.ui', self) # upload self.actionUpload.triggered.connect(self.upload) # Exit self.actionExit.triggered.connect(self.exit) self.df = None self.searchdata = None # Export Protocols and IP self.actionSummary.triggered.connect(self.Summary) # Exporting table details self.actionTableDetails.triggered.connect(self.TableDetails) def popup(self): ''' Popup Dialog to request file to be uploaded ''' msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Information) msgBox.setWindowTitle("New File") msgBox.setText("Upload New File to Analyze.") msgBox.setStandardButtons(QMessageBox.Open) msgBox.buttonClicked.connect(self.upload) msgBox.exec() def upload(self): ''' Uploads file to application ''' fileName, _ = QFileDialog.getOpenFileName(None, "Select File", "", "Log Files (*.csv *.tsv *.json *.xls *.xlsx)") if fileName is not '': proc = ProcessData(fileName) proc.parse() data = proc.analyse() self.df = DataFrame.from_dict(data) self.display() else: self.showMessageBox("File Not Uploaded", "File Not Uploaded Successfully") def display(self): ''' Calls the data processor DataHandler and displays the result ''' if self.df is not None: self.data = DataHandler(self.df) QApplication.processEvents() # self.summary = self.data.getSummary() self.chartseries = self.data.getSeries() # Displays Charts and Tables self.displaychart("attackchart", self.chartseries, "Attack Types") self.displaytable("datatable", self.df) self.displaytop("topip", self.data.getTopIPs(), ['IP Addresses', 'Count']) self.displaytop("topports", self.data.getTopProtocols(), ['Protocol : Port', 'Count']) QApplication.processEvents() # Search Fields and Buttons self.isatksearch = self.findChild(QComboBox, "isAtk") self.ipsearch = self.findChild(QLineEdit, "ipaddr") self.protocolsearch = self.findChild(QLineEdit, "protocol") self.portsearch = self.findChild(QLineEdit, "port") self.atksearch = self.findChild(QLineEdit, "atk") self.timesearch = self.findChild(QLineEdit, "time") self.searchbtn = self.findChild(QPushButton, "searchbtn") self.searchbtn.clicked.connect(self.search) self.clearbtn = self.findChild(QPushButton, "clearbtn") self.clearbtn.clicked.connect(self.clear) QApplication.processEvents() self.bargraph() QApplication.processEvents() def bargraph(self): ''' Processes and Creates Bar Graph. ''' self.barchart = self.findChild(QChartView, "attackgraph") bardata = self.data.getBar() chartobj = Barchart(bardata) chartseries = chartobj.getSeries() # create QChart object and add data chart = QChart() chart.addSeries(chartseries) chart.setTitle("Attacks Over the Past 12 Months") chart.setAnimationOptions(QChart.SeriesAnimations) axisX = QBarCategoryAxis() axisX.append(chartobj.getKeys()) chart.addAxis(axisX, Qt.AlignBottom) axisY = QValueAxis() axisY.setRange(0, chartobj.getMax()) chart.addAxis(axisY, Qt.AlignLeft) chart.legend().setVisible(False) self.barchart.setChart(chart) def clear(self): ''' Clears Search Form ''' self.isatksearch.setCurrentIndex(0) self.ipsearch.clear() self.protocolsearch.clear() self.portsearch.clear() self.atksearch.clear() self.timesearch.clear() self.pdmdl.clear() self.searchdata = None self.logtable.setModel(self.pdmdl) def displaychart(self, widgetname, chartseries, title): ''' Displays PieChart ------------------ widgetname : str of widget to call in .ui file chartseries: PyQT Series to be displayed on chart title: str of title to be header of chart ''' self.piechart = self.findChild(QChartView, widgetname) chartdata = Piechart(chartseries, title).create() self.piechart.setChart(chartdata) self.piechart.setRenderHint(QPainter.Antialiasing) def displaytop(self, widgetname, data, header): ''' Displays Top IP/Protocols Table Parameters ------------------ widgetname : str of widget to call in .ui file data: dict of top ip/protocol data to display title: str of title to be header of chart ''' table = self.findChild(QTableWidget, widgetname) table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) table.verticalHeader().setSectionResizeMode(QHeaderView.ResizeToContents) table.setColumnCount(2) table.setRowCount(5) table.setHorizontalHeaderLabels(header) index = 0 for k,v in data.items(): table.setItem(int(index),0, QTableWidgetItem(k)) table.setItem(int(index),1, QTableWidgetItem(str(v))) index += 1 def displaytable(self, widgetname, data): ''' Displays Log Table Parameters ------------------ widgetname: str of widget to call in .ui file data: Pandas Dataframe ''' self.logtable = self.findChild(QTableView, widgetname) self.logtable.setSortingEnabled(True) self.pdmdl = PandasModel(data) self.logtable.setModel(self.pdmdl) self.logtable.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.logtable.verticalHeader().setSectionResizeMode(QHeaderView.Stretch) def search(self): ''' Checks Search Form to be sent to table ''' # get searchquery as dictionary searchquery = {'IsAtk': self.isatksearch.currentText(), 'IP': self.ipsearch.text(), 'Protocol': self.protocolsearch.text(), 'Port': self.portsearch.text(), 'Atk': self.atksearch.text(), 'Time': self.timesearch.text()} # check if search query is not empty searchquery = {k: v for k, v in searchquery.items() if v != ''} atk = {'Yes': 1, 'No':0} if searchquery.get('IsAtk', None) == '-': del searchquery['IsAtk'] elif searchquery.get('IsAtk', None) != None: searchquery['IsAtk'] = atk[searchquery['IsAtk']] # check if the searchquery is empty if bool(searchquery) is True: self.searchdata = self.pdmdl.search(searchquery) if self.searchdata is not None: self.logtable.setModel(PandasModel(self.searchdata, search=True)) else: self.clear() else: self.clear() def Summary(self): ''' Exports summary ''' protocol = self.data.getTopProtocols() ip = self.data.getTopIPs() fileName = QFileDialog.getSaveFileName(self, "Save File", "", "Log Files (*.csv *.tsv *.json *.xls *.xlsx)") if fileName[0]: export_data = [x + y for x, y in zip(protocol.items(), ip.items())] export_dataframe = ['Protocol & Ports','Counts','IP Address','Counts'] export_dataframe =
DataFrame(export_data, columns=export_dataframe)
pandas.DataFrame
from copy import deepcopy import os import pandas as pd from pandas.util.testing import assert_frame_equal import pytest import cdpybio as cpb FL = [os.path.join(cpb._root, 'tests', 'express', 'results.{}.xprs'.format(x)) for x in ['a','b','c']] TG = os.path.join(cpb._root, 'tests', 'express', 'tg.tsv') TDF = pd.DataFrame([[ 68., 44., 50.], [ 98., 33., 25.], [ 82., 27., 24.]], index=['TA', 'TB', 'TC'], columns=FL) TDF.index.name = 'transcript' GDF = pd.DataFrame([[ 166., 77., 75.], [ 82., 27., 24.]], index=['GA', 'GB'], columns=FL) GDF.index.name = 'gene' class TestCombineExpressOutput: def test_normal(self): df = cpb.express.combine_express_output(FL)[0] assert_frame_equal(df, TDF, check_names = True) def test_none(self): assert cpb.express.combine_express_output(FL)[1] is None def test_est_counts(self): df = pd.DataFrame([[ 25., 54., 81.], [ 34., 78., 69.], [ 71., 88., 35.]], index=TDF.index, columns=TDF.columns) df.index.name = 'transcript' df2 = cpb.express.combine_express_output(FL, column='est_counts')[0] assert_frame_equal(df, df2) df = pd.DataFrame([[ 59., 132., 150.], [ 71., 88., 35.]], index=GDF.index, columns=GDF.columns) df.index.name = 'gene' df2 = cpb.express.combine_express_output( FL, column='est_counts', tg=TG)[1] assert_frame_equal(df, df2) def test_gene(self): df = cpb.express.combine_express_output(FL, tg=TG)[1] assert_frame_equal(df, GDF) def test_missing_values(self): with pytest.raises(SystemExit): cpb.express.combine_express_output( [os.path.join(cpb._root, 'tests', 'express', 'results.a.xprs'), os.path.join(cpb._root, 'tests', 'express', 'results.missing.xprs')]) def test_names(self): df = deepcopy(TDF) df.columns = ['a','b','c'] df2 = cpb.express.combine_express_output(FL, names=['a','b','c'])[0] assert_frame_equal(df, df2) df = deepcopy(GDF) df.columns = ['a','b','c'] df2 = cpb.express.combine_express_output(FL, names=['a','b','c'], tg=TG)[1]
assert_frame_equal(df, df2)
pandas.util.testing.assert_frame_equal
from pandas_datareader import data as web import pandas as pd import datetime as dt import numpy as np import requests http_header = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36", "X-Requested-With": "XMLHttpRequest" } class PriceReader: def __init__(self, brTickerList, usTickerList, startDate='2018-01-01'): self.brTickerList = brTickerList self.usTickerList = usTickerList self.startDate = startDate self.fillDate = dt.datetime.today().strftime('%m-%d-%Y') self.df = pd.DataFrame(columns=['Date']) def load(self): # Read BR market data if((self.brTickerList != None) and (len(self.brTickerList) > 0)): self.df = self.readData(self.brTickerList, self.startDate).reset_index() self.df.columns = self.df.columns.str.replace('\.SA','') # Read US Market data if((self.usTickerList != None) and (len(self.usTickerList) > 0)): self.df = self.df.merge(self.readUSData(self.usTickerList, self.startDate).reset_index(), how='outer', on='Date') self.df = self.df.set_index('Date').sort_index() # self.df.to_csv('debug.csv', sep='\t') indexList = ['^BVSP', '^GSPC', 'BRLUSD=X'] self.brlIndex = self.readUSData(indexList, self.startDate).reset_index() self.brlIndex.rename(columns={'^BVSP':'IBOV', '^GSPC':'S&P500', 'BRLUSD=X':'USD'}, inplace=True) self.brlIndex = self.brlIndex.set_index('Date') # display(self.brlIndex) def setFillDate(self, date): self.fillDate = date def fillCurrentValue(self, row): row['PRICE'] = self.getCurrentValue(row['SYMBOL'], self.fillDate) return row def readData(self, code, startDate='2018-01-01'): s='' for c in code: s += c + '.SA ' tks = yf.Tickers(s) dfs = tks.history(start=startDate)[['Close']] dfs.columns = dfs.columns.droplevel() return dfs def readUSData(self, code, startDate='2018-01-01'): s='' for c in code: s += c + ' ' tks = yf.Tickers(s) dfs = tks.history(start=startDate)[['Close']] dfs.columns = dfs.columns.droplevel() return dfs def getHistory(self, code, start='2018-01-01'): return self.df.loc[start:][code] def getCurrentValue(self, code, date=None): if(date == None): return self.df.iloc[-1][code] available, date = self.checkLastAvailable(self.df, date, code) if available: return self.df.loc[date][code] return self.df.iloc[0][code] def getIndexHistory(self, code, end): ret = self.brlIndex.loc[:end][code] return ret.dropna() def getIndexCurrentValue(self, code, date=None): if(date == None): return self.brlIndex.iloc[-1][code] available,date = self.checkLastAvailable(self.brlIndex, date, code) if available: return self.brlIndex.loc[date][code] return self.brlIndex.iloc[0][code] def checkLastAvailable(self, dtframe, loockDate, field): date = pd.to_datetime(loockDate) day = pd.Timedelta(1, unit='d') #Look for last available date while((not (date in dtframe.index)) or
pd.isna(dtframe.loc[date][field])
pandas.isna
# -*- coding: utf-8 -*- """ @author: mje @emai: <EMAIL> """ import numpy as np import mne import matplotlib.pyplot as plt import pandas as pd import itertools from my_settings import (tf_folder, subjects_test, subjects_ctl, subjects_dir) plt.style.use("ggplot") b_df = pd.read_csv("/Volumes/My_Passport/agency_connectivity/results/" + "behavioural_results.csv") def calc_ISPC_time_between(data, chan_1=52, chan_2=1): result = np.empty([data.shape[0]]) for i in range(data.shape[0]): result[i] = np.abs( np.mean( np.exp(1j * (np.angle(data[i, chan_1, window_start:window_end]) - np.angle(data[i, chan_2, window_start: window_end]))))) return result # load labels labels = mne.read_labels_from_annot( "fs_p2", parc='selected_lbl', regexp="Bro", subjects_dir=subjects_dir) label_names = ["sens_motor_lh", "sens_motor_rh", "BA39_lh", "BA39_rh", "audi_lh", "audi_rh", "BA46_lh", "BA46_rh"] for j in range(len(labels)): labels[j].name = label_names[j] # make combinations of label indices combinations = [] label_index = [0, 1, 2, 3, 4, 5, 6, 7] for L in range(0, len(label_index) + 1): for subset in itertools.combinations(label_index, L): if len(subset) == 2: combinations.append(subset) # make dict with names and indices label_dict = {} for comb in combinations: fname = labels[comb[0]].name + "_" + labels[comb[1]].name print(fname) label_dict.update({fname: [comb[0], comb[1]]}) # label_dict = { # "ba_1_4_r": [1, 52], # "ba_1_4_l": [0, 51], # "ba_4_4": [51, 52], # "ba_1_1": [0, 1], # "ba_4_39_l": [49, 51], # "ba_4_39_r": [50, 52], # "ba_39_39": [49, 50], # } bands = ["alpha", "beta", "gamma"] # bands = ["beta"] # subjects = ["p9"] # labels = list(np.load(data_path + "label_names.npy")) times = np.arange(-2000, 1001, 1.95325) times = times / 1000. window_start, window_end = 1024, 1280 results_all =
pd.DataFrame()
pandas.DataFrame
import datetime import numpy as np import pandas as pd import pytest from sklearn.exceptions import NotFittedError from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from testfixtures import LogCapture import greykite.common.constants as cst from greykite.algo.forecast.silverkite.forecast_silverkite import SilverkiteForecast from greykite.common.data_loader import DataLoader from greykite.common.features.timeseries_features import convert_date_to_continuous_time from greykite.common.python_utils import assert_equal from greykite.common.testing_utils import daily_data_reg from greykite.common.testing_utils import generate_df_for_tests from greykite.common.testing_utils import generate_df_with_reg_for_tests from greykite.sklearn.estimator.base_silverkite_estimator import BaseSilverkiteEstimator from greykite.sklearn.estimator.testing_utils import params_components @pytest.fixture def params(): autoreg_dict = { "lag_dict": {"orders": [7]}, "agg_lag_dict": { "orders_list": [[7, 7 * 2, 7 * 3]], "interval_list": [(7, 7 * 2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()} uncertainty_dict = { "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 5, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}} return { "origin_for_time_vars": convert_date_to_continuous_time(datetime.datetime(2018, 1, 3)), "extra_pred_cols": ["ct1", "regressor1", "regressor2"], "train_test_thresh": None, "training_fraction": None, "fit_algorithm": "sgd", "fit_algorithm_params": {"alpha": 0.1}, "daily_event_df_dict": None, "changepoints_dict": None, "fs_components_df": pd.DataFrame({ "name": ["tow"], "period": [7.0], "order": [3], "seas_names": [None]}), "autoreg_dict": autoreg_dict, "min_admissible_value": None, "max_admissible_value": None, "uncertainty_dict": uncertainty_dict } @pytest.fixture def daily_data(): return generate_df_for_tests( freq="D", periods=1000, train_start_date=datetime.datetime(2018, 1, 1), conti_year_origin=2018) @pytest.fixture def daily_data_with_reg(): return daily_data_reg() @pytest.fixture def X(): periods = 11 return pd.DataFrame({ cst.TIME_COL:
pd.date_range("2018-01-01", periods=periods, freq="D")
pandas.date_range
# -*- coding: utf-8 -*- """ Created on Wed Oct 28 09:27:49 2020 @author: <NAME> """ import pickle import pandas as pd import numpy as np from country import country from scipy.integrate import solve_ivp from scipy.optimize import minimize from scipy.optimize import dual_annealing from scipy.optimize import brute from scipy.interpolate import interp1d from scipy.ndimage.filters import uniform_filter1d import psutil from functools import partial import multiprocessing as mp from tqdm import tqdm_notebook as tqdm import pdb from datetime import date, datetime, timedelta import time from pathlib import Path from matplotlib import pyplot as plt import statsmodels.api as sm from sklearn import linear_model import matplotlib.patches as mpatches import country_converter as coco import math import seaborn as sns # -------------------------------------------------------- # Global variables, chosen cohorts of data and estimates # -------------------------------------------------------- from param_simple import * # ---------------------- # Main class # ---------------------- class solveCovid: def __init__(self,iso2: str): # eg 'US' self.iso2 = iso2 # Policy strategies for forecast self.policy = 'optim' # ['optim', 'linear'] self.phi_option = 'fit' # ['fit','exo']: Fit phi to latest data or specify as exogenous self.phi_exo = 2.5e-9 # weight on mobility in social welfare function self.phi_min = 1e-13 # Lowerbound for phi - authorities care about output # Infection rate model for forecast self.gamma_tilde_model = 'AR1' # ['AR1','AR2','shock'] self.gamma_shock_length = 10 # Shock gamma_tilde for x days self.gamma_shock_depth = 0.5 # Daily increment of gamma self.default_init_single = default_init_single self.default_bounds_single = default_bounds_single # Vaccine assumptions self.vac_assump = 'vac_base' # Vaccination scenarios: ['vac_base','vac_worse','vac_better'] self.vac_receiver = 'S+R' # Vaccines given to S or S+R? ['S only','S+R'] self.effi_one = 0.5 # Efficacy after one dose in % self.effi_two = 0.95 # Efficacy after two doses in % self.target_weight = 0.7 # How targeted vaccine distribution is (1 = sequenced from eldest to youngest, 0 is random) self.vac_base_cover = 1 # Baseline: (already started): % of effective coverage by December 2021 (to be controlled by country-specific scaling factor below) self.vac_base_delayedstart = '2021-06-30' # Baseline: (hasn't started): first date of vaccination self.vac_base_delayedcover = 0.75 # Baseline: (hasn't started): % of contracted dosages deployed by December 2021 self.vac_worse_cover = 0.3 # Worse (started): Use by end of 2021 self.vac_worse_delayedstart = '2021-09-30' # Worse (hasn't started): Starting date self.vac_worse_delayedcover = 0.3 # Worse (hasn't started): Use by end of 2021 self.vac_better_cover = 1.3 self.vac_better_delayedstart = '2021-06-30' self.vac_better_delayedcover = 1 # Reinfection and loss of immunity self.reinfect = 'immune' # ['immune','reinfect'] self.r_re1_R = np.log(2)/10000 # Baseline: R loses immunity after 3 years self.r_re1_V = np.log(2)/10000 # Baseline: V loses immunity after 3 years self.r_re2_R = np.log(2)/60 # Downside risk: R loses immunity after 60 days, approx 1% of R lose immunity each day self.r_re2_V = np.log(2)/60 # Downside risk: V loses immunity after 60 days, approx 1% of V lose immunity each day # Death probabilities self.pdth_assump = 'martingale' # ['martingale','treatment'] self.pdth_min = 0.005 # Lowerbound on death probability - countries with very few cases still think there is death probability self.pdth_halflife = 60 # Halflife for treatment case; no. of days it takes to close half the gap of current and assumed minimum death prob self.pdth_theta = np.exp(-np.log(2)/self.pdth_halflife) # --------------- 1. Preliminary: Get the data ------------------------ def prelim(self): iso2 = self.iso2 self.N = df1.fillna(method='ffill')['population'][iso2].iloc[-1] df2 = df1.iloc[:,df1.columns.get_level_values(1)==iso2][[ 'total_cases','total_deaths','new_cases','new_deaths', 'google_smooth','icu_patients','hosp_patients','reproduction_rate', 'new_tests','tests_per_case','aged_70_older', 'vac_total','vac_people', 'vac_fully']][df1['total_cases'][iso2] > virus_thres] df2 = df2.droplevel('iso2',axis=1) df2['vac_total'] = df2['vac_total'].interpolate() df2['vac_people'] = df2['vac_people'].interpolate() if iso2 == 'AU' or iso2 == 'SA': # Countries with no breakdowns; do manual approximation df2['vac_partial'] = 0.8 * df2['vac_total'] df2['vac_fully'] = 0.2 * df2['vac_total'] else : # For most countries, date1 = df2['vac_fully'].first_valid_index() # Next 2 lines fill NA in 'vac_fully', so vac_partial is defined df2['vac_fully'].iloc[:df2.index.get_loc(date1)-1] = 0 df2['vac_fully'] = df2['vac_fully'].interpolate() df2['vac_partial'] = df2['vac_people'] - df2['vac_fully'] df2 = df2.fillna(0) # Replace NaN by 0 - deaths and vaccinations PopulationI = df2['total_cases'][0] PopulationD = df2['total_deaths'][0] if PopulationD==0: PopulationD = 0 PopulationR = 5 else: PopulationR = PopulationD * 5 PopulationCI = PopulationI - PopulationD - PopulationR # Undetected and infectious cases self.cases_data_fit = df2['total_cases'].tolist() self.deaths_data_fit = df2['total_deaths'].tolist() self.newcases_data_fit = df2['new_cases'].tolist() self.newdeaths_data_fit = df2['new_deaths'].tolist() self.balance = self.cases_data_fit[-1] / max(self.deaths_data_fit[-1], 10) / 3 date_day_since100 = pd.to_datetime(df2.index[0]) self.maxT = (default_maxT - date_day_since100).days + 1 self.mobility_vec = df2['google_smooth'].values self.T = len(df2) self.t_cases = np.arange(0,self.T) self.mobility_interp = interp1d(self.t_cases,self.mobility_vec,bounds_error=False,fill_value=0.,kind='cubic') self.GLOBAL_PARAMS = (self.N, PopulationCI, PopulationR, PopulationD, PopulationI, p_d, p_h, p_v) self.gamma_0_days = 1 # average of gamma_t during first n days becomes the target # Compute vaccination parameters self.vac_partial = df2['vac_partial'].values self.vac_fully = df2['vac_fully'].values #self.vac_contracted = 1000*df_vac.loc[iso2]['No. of people covered (thousands)']/self.N df2['V_'] = self.N * (self.effi_one*df2['vac_partial'] + self.effi_two*df2['vac_fully'])/100 # V = expected number of effectively vaccinated persons ix = pd.date_range(start=df2.index[0], end=default_maxT, freq='D') # Expand time-sample, to include forecast later df_v = df2.reindex(ix) # Vaccination assumptions if self.iso2 in ['GB','US']: vac_scale = 1 elif self.iso2 in ['BE','FR','DE','IT','NL','PL','SG','ES','CH','RO','CL','CA']: vac_scale = 0.8 elif self.iso2 in ['AU','SA','SE','TR']: vac_scale = 0.65 elif self.iso2 in ['AR','BR','MX','RU']: vac_scale = 0.50 elif self.iso2 in ['ID','IN','JP','KR','MY','TH']: vac_scale = 0.25 elif self.iso2 in ['ZA']: vac_scale = 0.10 else: vac_scale = 0.50 print('Missing vaccine assumption for selected country') if self.vac_assump == 'vac_base': if df2['V_'][-1] > 0: # already started df_v['V_'].loc['2021-12-31'] = self.vac_base_cover * vac_scale * self.N elif df2['V_'][-1] == 0: # If has not started, assume starting by xxx and cover xxx at year end df_v['V_'].loc[self.vac_base_delayedstart] = 100 # 100 = assumed number of effectively vaccinated on first day df_v['V_'].loc['2021-12-31'] = self.vac_base_delayedcover* vac_scale*self.N # partial orders filled by year end elif self.vac_assump == 'vac_worse': if df2['V_'][-1] > 0: df_v['V_'].loc['2021-12-31'] = self.vac_worse_cover * vac_scale * self.N elif df2['V_'][-1] == 0: df_v['V_'].loc[self.vac_worse_delayedstart] = 100 df_v['V_'].loc['2021-12-31'] = self.vac_worse_delayedcover* vac_scale*self.N elif self.vac_assump == 'vac_better': if df2['V_'][-1]>0: df_v['V_'].loc['2021-12-31'] = self.vac_better_cover * vac_scale * self.N elif df2['V_'][-1] == 0: df_v['V_'].loc[self.vac_better_delayedstart] = 100 df_v['V_'].loc['2021-12-31'] = self.vac_better_delayedcover* vac_scale*self.N df_v['V_'] = df_v['V_'].interpolate() df_v['V_'] = df_v['V_'].clip(0,self.N) self.df2 = df2 self.df_v = df_v print(f'Data preparation for {iso2} done') # --------------------------3 . SEIR model ------------------ def step_seir(self, t, x, gamma_t, p_dth) -> list: """ SEIR model building on DELPHI v.3 Features 16 distinct states, taking into account undetected, deaths, hospitalized and recovered [0 S, 1 E, 2 I, 3 UR, 4 DHR, 5 DQR, 6 UD, 7 DHD, 8 DQD, 9 R, 10 D, 11 TH, 12 DVR,13 DVD, 14 DD, 15 DT, 16 V] """ S, E, I, AR, DHR, DQR, AD, DHD, DQD, R, D, TH, DVR, DVD, DD, DT, V = x r_v = self.df_v['V_'].iloc[t+1] - self.df_v['V_'].iloc[t] # Reinfection parameters if self.reinfect == 'immune': r_re_R = self.r_re1_R r_re_V = self.r_re1_V elif self.reinfect == 'reinfect': if t <= self.T: r_re_R = self.r_re1_R r_re_V = self.r_re1_V else: r_re_R = self.r_re2_R r_re_V = self.r_re2_V # Vaccination recipients (S, or S+R) if self.vac_receiver == 'S only': zeta = 1 elif self.vac_receiver == 'S+R': zeta = S/(S+R) else: print('Re-specify vaccine recipient choice') # Main equations S1 = S - gamma_t * S * I / self.N + r_re_R*R +r_re_V*V - r_v * zeta if S1 < 0: # Vaccination reaches saturating point S1 = 0 r_v = (S - gamma_t * S * I / self.N + r_re_R*R +r_re_V*V) /zeta E1 = E + gamma_t * S * I / self.N - r_i * E I1 = I + r_i * E - r_d * I AR1 = AR + r_d * (1 - p_dth) * (1 - p_d) * I - r_ri * AR DHR1 = DHR + r_d * (1 - p_dth) * p_d * p_h * I - r_rh * DHR DQR1 = DQR + r_d * (1 - p_dth) * p_d * (1 - p_h) * I - r_ri * DQR AD1 = AD + r_d * p_dth * (1 - p_d) * I - r_dth * AD DHD1 = DHD + r_d * p_dth * p_d * p_h * I - r_dth * DHD DQD1 = DQD + r_d * p_dth * p_d * (1 - p_h) * I - r_dth * DQD R1 = R + r_ri * (AR + DQR) + r_rh * DHR - r_re_R*R - r_v * (1-zeta) D1 = D + r_dth * (AD + DQD + DHD) # Helper states TH1 = TH + r_d * p_d * p_h * I DVR1 = DVR + r_d * (1 - p_dth) * p_d * p_h * p_v * I - r_rv * DVR DVD1 = DVD + r_d * p_dth * p_d * p_h * p_v * I - r_dth * DVD DD1 = DD + r_dth * (DHD + DQD) DT1 = DT + r_d * p_d * I V1 = V + r_v -r_re_V*V x1 = [S1, E1, I1, AR1, DHR1, DQR1, AD1, DHD1, DQD1, R1, D1, TH1, DVR1, DVD1, DD1, DT1, V1] return x1 # ------------------ X. Construct initial conditions def initial_states_func(self,k): N, PopulationCI, PopulationR, PopulationD, PopulationI, p_d, p_h, p_v = self.GLOBAL_PARAMS p_dth0 = self.newdeaths_data_fit[0]/(r_dth*PopulationCI) # Set p_dth0 to match D1-D0 to newdeaths_data_fit E_0 = PopulationCI / p_d * k I_0 = PopulationCI / p_d * k UR_0 = (PopulationCI / p_d - PopulationCI) * (1 - p_dth0) DHR_0 = (PopulationCI * p_h) * (1 - p_dth0) DQR_0 = PopulationCI * (1 - p_h) * (1 - p_dth0) UD_0 = (PopulationCI / p_d - PopulationCI) * p_dth0 DHD_0 = PopulationCI * p_h * p_dth0 DQD_0 = PopulationCI * (1 - p_h) * p_dth0 R_0 = PopulationR / p_d D_0 = PopulationD / p_d S_0 = N - (E_0 +I_0 +UR_0 +DHR_0 +DQR_0 +UD_0 +DHD_0 +DQD_0 +R_0 +D_0) TH_0 = PopulationCI * p_h DVR_0 = (PopulationCI * p_h * p_v) * (1 - p_dth0) DVD_0 = (PopulationCI * p_h * p_v) * p_dth0 DD_0 = PopulationD DT_0 = PopulationI V_0 = 0 x_init = [ S_0, E_0, I_0, UR_0, DHR_0, DQR_0, UD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0 ] return x_init # Find k=k1,k2 that matches gamma_0 to 2.08 (R0=6 equivalent) def loss_gamma0(self,k): newcases = np.array(self.newcases_data_fit) newdeaths = np.array(self.newdeaths_data_fit) newcases_sm = uniform_filter1d(newcases, size=21, mode='nearest') newdeaths_sm = uniform_filter1d(newdeaths, size=21, mode='nearest') gamma_t_vec = [] x_init = self.initial_states_func(k) (S_0, E_0, I_0, UR_0, DHR_0, DQR_0, UD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0) = x_init newcases_sm2 = np.append(newcases_sm, newcases_sm[-2:]) # Extend the list for forward projection below newdeaths_sm2 = np.append(newdeaths_sm, newdeaths_sm[-1]) x_0 = x_init.copy() for t in range(self.gamma_0_days): # Target first n days gamma_t = (newcases_sm2[t+2]/(r_d*p_d) - (1-r_d)**2 *I_0 - r_i*(2-r_d-r_i)*E_0 )*self.N/(r_i*S_0*I_0) p_dth = (newdeaths_sm2[t+1] - r_dth*(1-r_dth)*(DHD_0 + DQD_0))/(r_dth*r_d*p_d*I_0) gamma_t = np.clip(gamma_t, 0.01, 10) p_dth = np.clip(p_dth,0,1) # Probability limit [0,1] x_1 = self.step_seir(t, x_0, gamma_t, p_dth) x_0 = x_1 gamma_t_vec.append(gamma_t) gamma_0 = np.mean(gamma_t_vec) loss = (gamma_0 - (r_d*6) )**2 # gamma_0 equivalent to R0=6 is 2.08 return loss def fit_gamma0(self): output = dual_annealing( self.loss_gamma0, x0 = [5], bounds = [(1,50)], ) k_star = output.x return k_star def get_initial_conditions(self): if Path(f'../params/param_fixed/kstar.csv').exists(): df = pd.read_csv(f'../params/param_fixed/kstar.csv') kstar = df[self.iso2].values[0] else: kstar = self.fit_gamma0()[0] # find kstar that matches gamma_0 to target x_init = self.initial_states_func(kstar) return x_init # -------------------- x. Implied gamma_t and pdth_t in-sample ------------------- def gamma_t_compute(self): newcases = np.array(self.newcases_data_fit) newdeaths = np.array(self.newdeaths_data_fit) newcases_sm = uniform_filter1d(newcases, size=21, mode='nearest') newdeaths_sm = uniform_filter1d(newdeaths, size=21, mode='nearest') gamma_t_vec = [] p_dth_vec = [] x_init = self.get_initial_conditions() S_0, E_0, I_0, AR_0, DHR_0, DQR_0, AD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0 = x_init S_vec = [S_0] E_vec = [E_0] I_vec = [I_0] DT_vec = [DT_0] DD_vec = [DD_0] DHR_vec = [DHR_0] DHD_vec = [DHD_0] newcases_sm2 = np.append(newcases_sm, newcases_sm[-2:]) # Extend the list for forward projection below newdeaths_sm2 = np.append(newdeaths_sm, newdeaths_sm[-1]) x_0 = x_init.copy() for t in range(len(newcases)): # Work backwards to compute 'exact' gamma_t and p_dth gamma_t = (newcases_sm2[t+2]/(r_d*p_d) - (1-r_d)**2 *I_0 - r_i*(2-r_d-r_i)*E_0 )*self.N/(r_i*S_0*I_0) p_dth = (newdeaths_sm2[t+1] - r_dth*(1-r_dth)*(DHD_0 + DQD_0))/(r_dth*r_d*p_d*I_0) gamma_t = np.clip(gamma_t, 0.01, 10) p_dth = np.clip(p_dth,0,1) # Probability limit [0,1] x_1 = self.step_seir(t, x_0, gamma_t, p_dth) S_0, E_0, I_0, AR_0, DHR_0, DQR_0, AD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0 = x_1 x_0 = x_1 gamma_t_vec.append(gamma_t) p_dth_vec.append(p_dth) S_vec.append(S_0) I_vec.append(I_0) E_vec.append(E_0) DT_vec.append(DT_0) DD_vec.append(DD_0) DHR_vec.append(DHR_0) DHD_vec.append(DHD_0) self.df2['gamma_t'] = gamma_t_vec self.df2['pdth_t'] = p_dth_vec self.S_vec = S_vec # In-sample estmates, useful for phi calculation later on self.I_vec = I_vec self.DHR_vec = DHR_vec # For fitting death probability self.DHD_vec = DHD_vec HD_HR = np.array(self.DHR_vec) + np.array(self.DHD_vec) self.df2['HD_HR'] = 100*HD_HR[:-1]/self.N # gamma_t_sm = uniform_filter1d(gamma_t_vec, size=6, mode='nearest') # self.df2['gamma_sm'] = gamma_t_sm return gamma_t_vec, p_dth_vec # -------------------- x. Estimating the model ----------- def gamma_func(self, params): m_t = self.df2['google_smooth'].values tvec = np.arange(len(m_t)) beta0, beta1 = params gamma_vec = beta0*np.exp(beta1* m_t) return gamma_vec def loss_betas(self, params) -> float: gamma_model = self.gamma_func(params) loss = sum( (self.df2['gamma_t'].values[:len(gamma_model)] - gamma_model)**2 ) return loss def fitmodel(self): # A. Fit beta0 and beta1 x0 = self.default_init_single bounds_0 = self.default_bounds_single output = dual_annealing( self.loss_betas, x0 = x0, bounds = bounds_0, ) best_betas = output.x self.best_betas = best_betas # B. Fit the residual (gamma_tilde) to AR models m_t = self.df2['google_smooth'].values tvec = np.arange(len(self.df2)) beta0, beta1 = self.best_betas self.df2['gamma_mob'] = beta0*np.exp(beta1* m_t) self.df2['gamma_tilde'] = self.df2['gamma_t'] - self.df2['gamma_mob'] self.df2['gamma_tilde_sm'] = uniform_filter1d(self.df2['gamma_tilde'], size=21, mode='reflect') self.df2['gamma_tilde_resid'] = self.df2['gamma_tilde'] - self.df2['gamma_tilde_sm'] y = self.df2['gamma_tilde_sm'] self.df2['gamma_tilde_sm_lag1'] = self.df2['gamma_tilde_sm'].shift(1) # No constant term self.df2['gamma_tilde_sm_lag2'] = self.df2['gamma_tilde_sm'].shift(2) reg_AR1 = sm.OLS(y,self.df2['gamma_tilde_sm_lag1'],missing='drop').fit() reg_AR2 = sm.OLS(y,self.df2[['gamma_tilde_sm_lag1','gamma_tilde_sm_lag2']],missing='drop').fit() best_rho1 = reg_AR1.params[0] best_rho1 = np.clip(best_rho1, 0.1, 0.99) #Assume stationarity best_rho2 = reg_AR2.params[:] best_params = np.array([beta0, beta1, best_rho1, best_rho2[0], best_rho2[1]]) self.best_rho1 = best_rho1 self.best_rho2 = best_rho2 self.best_params = best_params # C. Empirically fit phi for optimal policy to last observation if self.phi_option == 'fit': m = self.df2['google_smooth'][-15:].mean() # Take average of last 15 days to smooth volatility s = self.S_vec[-1]/self.N i = self.I_vec[-1]/self.N gamma_tilde = self.df2['gamma_tilde'][-1] pdth = self.df2['pdth_t'][-1] pdth = max(pdth, self.pdth_min) # Get around cases where pdth=0 for countries with very few cases LHS1 = pdth*r_d*i*s*(beta0*beta1*np.exp(beta1*m)) LHS2 = pdth*r_d*i*(1 - r_d + s*(gamma_tilde + beta0*np.exp(beta1*m))) phi = -(LHS1 * LHS2)/m self.phi = max(phi, self.phi_min) elif self.phi_option == 'exo': self.phi = self.phi_exo return best_params # ------------------ x. Forecasts --------------------------- def step_gamma_tilde(self, gamma_tilde_lag1, gamma_tilde_lag2, model='AR1'): if model =='AR1': return self.best_rho1*gamma_tilde_lag1 elif model =='AR2': return self.best_rho2[0]*gamma_tilde_lag1 + self.best_rho2[1]*gamma_tilde_lag2 def mobility_choice(self,x,gamma_tilde,pdth): if self.policy == 'constant': mob = self.poparam_constant elif self.policy == 'linear-I': # Respond linearly to infection level mob = self.poparam_linear_I[0] + self.poparam_linear_I[1]*x[2] elif self.policy == 'linear-dI': # Respond to new infections dI = r_i*x[1] - r_d*x[2] # x[1]=E, x[2]=I mob = self.poparam_linear_dI[0] + self.poparam_linear_dI[1]*dI elif self.policy == 'optim': # Analytical optimal policy based on simplified model and quadratic losses beta0 = self.best_params[0] beta1 = self.best_params[1] phi = self.phi s = x[0]/self.N i = x[2]/self.N m_set = np.linspace(-1,0,101) RHS = -phi*m_set LHS1 = pdth*r_d*i*s*(beta0*beta1*np.exp(beta1*m_set)) LHS2 = pdth*r_d*i*(1 - r_d + s*(gamma_tilde + beta0*np.exp(beta1*m_set))) LHS = LHS1 * LHS2 m_id = np.argmin(np.abs(RHS-LHS)) mob = m_set[m_id] return mob def fatality_factor(self,V): # Factor to adjust 'base' fatality prob idx = (f_table[self.iso2]['vaccine_%'] - V/self.N).abs().argmin() # Find idx to look up in fatality table factor = f_table[self.iso2]['fatality_ratio'][idx] return factor def sim_seir(self): df2 = self.df2 ix = pd.date_range(start=df2.index[0], end=default_maxT, freq='D') # Expand time-sample, to include forecast later df3 = df2.reindex(ix) x_init = self.get_initial_conditions() x_data = np.array(x_init) gamma_tilde_fc = self.df2['gamma_tilde'].values gamma_tilde_sm_fc = self.df2['gamma_tilde_sm'].values pdth_t_targ = [] # Death prob when vaccines are targeted pdth_t_base = [] # Base death prob if vaccines are given randomly pdth_t_fc = self.df2['pdth_t'].values pdth_t_base_fc = pdth_t_fc.copy() gamma_mob_fc = self.df2['gamma_mob'].values mob_fc = self.df2['google_smooth'].values # Load parameters if hasattr(self, 'best_params'): beta0, beta1, rho, rhos_1, rhos_2 = self.best_params else: df_param = pd.read_csv(f'../params/{param_load_folder}/param_est.csv') beta0, beta1, rho, rhos_1, rhos_2 = df_param[self.iso2] for t in range(self.maxT): factor = self.fatality_factor(x_init[-1]) eta = self.target_weight if t<len(self.df2): # In sample pdth_t = pdth_t_fc[t] pdth_base = pdth_t/(eta*factor + 1-eta) pdth_targ = factor*pdth_base # if t==len(self.df2): # Parse pdth_base of hospitalised/N # y = pdth_t_base # X = self.df2['HD_HR'].shift(30) # Use lagged hospitalised as the predictor # X = sm.add_constant(X) # reg_pdth = sm.OLS(y,X, missing='drop').fit() # thetas = reg_pdth.params # self.best_theta = thetas # pdb.set_trace() # pdth_t_basex = y - thetas[0] - thetas[1]*X # Base death prob, parsed of hospitalisation wave # self.df2['pdth_base'] = pdth_t_base # self.df2['pdth_base_x'] = pdth_t_basex if t>len(self.df2)-1: # Out of sample # Death probability if self.pdth_assump == 'martingale': # Martingale death rate pdth_base = pdth_t_base[-1] elif self.pdth_assump == 'treatment': # Death prob slowly declines to assumed minimum and assumed halflife pdth_base = self.pdth_theta*pdth_t_base[-1] + (1-self.pdth_theta)*self.pdth_min pdth_base = max(pdth_base, self.pdth_min) # To get around pdth=0 for countries with very few cases pdth_t = (eta*factor + 1-eta)*pdth_base pdth_targ = factor*pdth_base # Gamma_tilde if self.gamma_tilde_model == 'AR1': gamma_tilde = rho*gamma_tilde_sm_fc[t-1] elif self.gamma_tilde_model == 'AR2': gamma_tilde = rhos_1*gamma_tilde_sm_fc[t-1] + rhos_2*gamma_tilde_sm_fc[t-2] elif self.gamma_tilde_model =='shock': if t < len(self.df2) + self.gamma_shock_length: gamma_tilde = gamma_tilde_sm_fc[len(self.df2)-1] + self.gamma_shock_depth else: gamma_tilde = rho*gamma_tilde_sm_fc[t-1] # Mobility and overall gamma_t mob_t = self.mobility_choice(x_init, gamma_tilde, pdth_t) mob_t = max(mob_t, max_lockdown) gamma_mob_t = beta0*np.exp(beta1*mob_t) gamma_t = gamma_tilde + gamma_mob_t # Append to data array gamma_tilde_sm_fc = np.append(gamma_tilde_sm_fc, gamma_tilde) gamma_tilde_fc = np.append(gamma_tilde_fc, gamma_tilde) gamma_mob_fc = np.append(gamma_mob_fc, gamma_mob_t) mob_fc = np.append(mob_fc, mob_t) pdth_t_fc = np.append(pdth_t_fc, pdth_t) pdth_t_base.append(pdth_base) pdth_t_targ.append(pdth_targ) # For in sample, use 'true' inputs gamma_t = gamma_tilde_fc[t] + gamma_mob_fc[t] p_dth = pdth_t_fc[t] if t < range(self.maxT)[-1]: # Stop forecasting at the final period x_next = self.step_seir(t, x_init, gamma_t, p_dth) x_data = np.vstack((x_data, np.array(x_next))) x_init = x_next # Fill dataframe col_temp = ['S', 'E', 'I', 'AR', 'DHR', 'DQR', 'AD', 'DHD', 'DQD', 'R', 'D', 'TH', 'DVR', 'DVD', 'DD', 'DT', 'V'] df4 = pd.DataFrame(x_data, columns=col_temp, index=df3.index) df3 = df3.merge(df4, how='left', left_index=True, right_index=True) df3['gamma_tilde_fc'] = gamma_tilde_fc df3['gamma_mob_fc'] = gamma_mob_fc df3['gamma_t_fc'] = df3['gamma_tilde_fc'] + df3['gamma_mob_fc'] df3['mob_fc'] = mob_fc df3['pdth_t_fc'] = pdth_t_fc df3['pdth_t_base'] = np.array(pdth_t_base) df3['pdth_t_targ'] = np.array(pdth_t_targ) df3[['S_N','I_N','DT_N','DD_N','V_N']] = df3[['S','I','DT','DD','V']]/self.N self.df3 = df3 return df3 # ------------------ 5. Predict and plot --------------------- def plot_all(self, saveplot=False): df = self.df3 transpa = 0.0 fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(15,8), constrained_layout=True) # df_bar = df_bar0[['GDP lost','Total deaths']] # df_bar.plot(kind='bar', ax=ax[1,2], secondary_y='Total deaths', rot=0, legend=False) # ax[1,2].set_ylabel('percent') # ax[1,2].right_ax.set_ylabel('per million') # ax[1,2].set_title('Losses of lives and output',fontsize='x-large') # L = [mpatches.Patch(color=c, label=col) # for col,c in zip( ('GDP loss','Deaths (rhs)'), plt.rcParams['axes.prop_cycle'].by_key()['color'])] # ax[1,2] = plt.legend(handles=L, loc=1, framealpha=transpa) ax[0,0].plot(df.index, 100*df['total_cases']/self.N, linewidth = 3, label='Case data', color='blue') ax[0,0].plot(df.index, 100*df['DT']/self.N, label='$DT_t$', color='red') ax[0,0].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[0,0].set_title('Cases',fontsize='x-large') ax[0,0].set(ylabel = '% of population') ax2 = ax[0,0].twinx() ax2.plot(df.index, 100*df['I']/self.N, label='$I_t$ (rhs)',color='green',linestyle='--') lines, labels = ax[0,0].get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc='center right', framealpha=transpa,fontsize='x-large') #ax2.set(ylabel='% of population') ax[0,1].plot(df.index, 100*df['total_deaths']/self.N, linewidth = 3, label='Death data', color='blue') ax[0,1].plot(df.index, 100*df['DD']/self.N, label='$DD_t$', color='red') ax[0,1].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[0,1].set_title('Deaths',fontsize='x-large') ax[0,1].set(ylabel='% of population') ax[0,1].legend(loc='best', framealpha=transpa ,fontsize='x-large') ax[0,2].plot(df.index, 100*df['S']/self.N, label='$S_t$',color='red') ax[0,2].plot(df.index, 100*df['V']/self.N, label='$V_t$',color='red',linestyle=':') ax[0,2].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[0,2].set_title('Susceptible & vaccinated',fontsize='x-large') ax[0,2].legend(loc='best',framealpha=transpa ,fontsize='x-large') ax[0,2].set(ylabel='% of population') ax[1,0].plot(df.index, df['gamma_t'], label=r'$\gamma_t$',color='red') ax[1,0].plot(df.index, df['gamma_mob'], label=r'$\gamma^{m}_t$', color ='blue') ax[1,0].plot(df.index, df['gamma_tilde'], label=r'$\gamma^{d}$', color='orange') ax[1,0].plot(df.index, df['gamma_t_fc'], color='red',linestyle=':') ax[1,0].plot(df.index, df['gamma_mob_fc'], color ='blue',linestyle=':') ax[1,0].plot(df.index, df['gamma_tilde_fc'], color='orange',linestyle=':') ax[1,0].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[1,0].set_title('Infection rate',fontsize='x-large') ax[1,0].legend(loc='best',framealpha=transpa ,fontsize='x-large') ax[1,1].plot(df.index, 100*df['google_smooth'], linewidth = 3, label='Google mobility', color='blue') ax[1,1].plot(df.index, 100*df['mob_fc'], label='Model', color='red') ax[1,1].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[1,1].legend(loc=0,framealpha=transpa ,fontsize='x-large') ax[1,1].set_title('Activity',fontsize='x-large') ax[1,1].set(ylabel='% deviations from norm') ax[1,2].plot(df.index, 100*df['pdth_t'], label='Death probability', linewidth=3, color='blue') ax[1,2].plot(df.index, 100*df['pdth_t_fc'], color='black', label='Forecast') ax[1,2].plot(df.index, 100*df['pdth_t_base'], color='black', linestyle='dashed', label='Random vaccines') ax[1,2].plot(df.index, 100*df['pdth_t_targ'], color='black', linestyle=':', label='Targeted vaccines') ax[1,2].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[1,2].legend(loc=0,framealpha=transpa ,fontsize='x-large') ax[1,2].set_title('Death probability',fontsize='x-large') ax[1,2].set(ylabel='%') plt.setp(ax[0,0].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[0,1].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[0,2].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[1,0].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[1,1].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[1,2].get_xticklabels(), rotation=30, horizontalalignment='right') cname = coco.convert(names=self.iso2,to='name_short') fig.suptitle(f'{cname}-{self.vac_assump}-{self.reinfect}',fontsize='xx-large') if saveplot: Path(f'../pics/fig_{date.today()}').mkdir(exist_ok=True) fig.savefig(f'../pics/fig_{date.today()}/{self.iso2}-{self.policy}-{self.gamma_tilde_model}-{self.vac_assump}-{self.reinfect}.png') return fig def plot_portrait(self, saveplot=False): df = self.df3 transpa = 0.0 fig, ax = plt.subplots(nrows=3, ncols=2, figsize=(10,12), constrained_layout=True) ax[0,0].plot(df.index, 100*df['total_cases']/self.N, linewidth = 3, label='Case data', color='blue') ax[0,0].plot(df.index, 100*df['DT']/self.N, label='$DT_t$', color='red') ax[0,0].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[0,0].set_title('Cases',fontsize='x-large') ax[0,0].set(ylabel = '% of population') ax2 = ax[0,0].twinx() ax2.plot(df.index, 100*df['I']/self.N, label='$I_t$ (rhs)',color='green',linestyle='--') ax2.grid(None) lines, labels = ax[0,0].get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc='center right', framealpha=transpa,fontsize='x-large') #ax2.set(ylabel='% of population') ax[0,1].plot(df.index, 100*df['total_deaths']/self.N, linewidth = 3, label='Death data', color='blue') ax[0,1].plot(df.index, 100*df['DD']/self.N, label='$DD_t$', color='red') ax[0,1].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[0,1].set_title('Deaths',fontsize='x-large') ax[0,1].set(ylabel='% of population') ax[0,1].legend(loc='best', framealpha=transpa ,fontsize='x-large') ax[1,0].plot(df.index, 100*df['S']/self.N, label='$S_t$',color='red') ax[1,0].plot(df.index, 100*df['V']/self.N, label='$V_t$',color='red',linestyle=':') ax[1,0].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[1,0].set_title('Susceptible & vaccinated',fontsize='x-large') ax[1,0].legend(loc='best',framealpha=transpa ,fontsize='x-large') ax[1,0].set(ylabel='% of population') ax[1,1].plot(df.index, df['gamma_t'], label=r'$\gamma_t$',color='red') ax[1,1].plot(df.index, df['gamma_mob'], label=r'$\gamma^{m}_t$', color ='blue') ax[1,1].plot(df.index, df['gamma_tilde'], label=r'$\gamma^{d}$', color='orange') ax[1,1].plot(df.index, df['gamma_t_fc'], color='red',linestyle=':') ax[1,1].plot(df.index, df['gamma_mob_fc'], color ='blue',linestyle=':') ax[1,1].plot(df.index, df['gamma_tilde_fc'], color='orange',linestyle=':') ax[1,1].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[1,1].set_title('Infection rate',fontsize='x-large') ax[1,1].legend(loc='best',framealpha=transpa ,fontsize='x-large') ax[2,0].plot(df.index, 100*df['google_smooth'], linewidth = 3, label='Google mobility', color='blue') ax[2,0].plot(df.index, 100*df['mob_fc'], label='Model', color='red') ax[2,0].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[2,0].legend(loc=0,framealpha=transpa ,fontsize='x-large') ax[2,0].set_title('Mobility',fontsize='x-large') ax[2,0].set(ylabel='% deviations from norm') ax[2,1].plot(df.index, 100*df['pdth_t'], label='Death probability', linewidth=3, color='blue') ax[2,1].plot(df.index, 100*df['pdth_t_fc'], color='black', label='Forecast') ax[2,1].plot(df.index, 100*df['pdth_t_base'], color='black', linestyle='dashed', label='Random vaccines') ax[2,1].plot(df.index, 100*df['pdth_t_targ'], color='black', linestyle=':', label='Targeted vaccines') ax[2,1].axvline(df.index[self.T], linewidth = 2, color='gray', linestyle=':') ax[2,1].legend(loc=0,framealpha=transpa ,fontsize='x-large') ax[2,1].set_title('Death probability',fontsize='x-large') ax[2,1].set(ylabel='%') plt.setp(ax[0,0].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[0,1].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[1,0].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[1,1].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[2,0].get_xticklabels(), rotation=30, horizontalalignment='right') plt.setp(ax[2,1].get_xticklabels(), rotation=30, horizontalalignment='right') cname = coco.convert(names=self.iso2,to='name_short') fig.suptitle(f'{cname}',fontsize=18) if saveplot: Path(f'../pics/fig_{date.today()}').mkdir(exist_ok=True) fig.savefig(f'../pics/fig_{date.today()}/Portrait-{self.iso2}-{self.policy}-{self.gamma_tilde_model}-{self.vac_assump}-{self.reinfect}.pdf') return fig # --------------------------------------------- # Calling functions # --------------------------------------------- # ----------------------------------------- # x. Prelim parameters estimation # Estimate k_star and save in file (only need to do this once) def estimate_kstar(cset=['US']): dict = {'Parameter': ['kstar']} for c in cset: tmp = solveCovid(c) tmp.prelim() kstar = tmp.fit_gamma0() dict[c] = kstar df = pd.DataFrame(dict) df.to_csv(f'../params/param_fixed/kstar.csv',index=False) return df # ------------------------- # x. Run complete package under scenarios: estimate, forecast, plot, save def run_baseline(cset=['US']): p_dict = {'Parameters': ['beta0','beta1','rho','rhos_1','rhos_2','phi']} for c in cset: tmp = solveCovid(c) tmp.prelim() tmp.gamma_t_compute() tmp.fitmodel() p_dict[c] = np.append(tmp.best_params, 1e9*tmp.phi) tmp.sim_seir() tmp.plot_all(saveplot='False') tmp.df3.to_csv(f'../output/{out_save_folder}/df3_{tmp.iso2}.csv') pd.DataFrame(p_dict).to_csv(f'../params/{param_save_folder}/param_est.csv',float_format='%.4f',index=False) def run_gammashock(cset=['US']): for c in cset: tmp = solveCovid(c) tmp.prelim() tmp.gamma_t_compute() tmp.fitmodel() tmp.gamma_tilde_model = 'shock' tmp.sim_seir() tmp.plot_all(saveplot=True) def run_vaccines(cset=['US'],vac_assump='vac_worse'): for c in cset: tmp = solveCovid(c) tmp.vac_assump = vac_assump tmp.prelim() tmp.gamma_t_compute() tmp.fitmodel() tmp.sim_seir() tmp.plot_all(saveplot=True) def run_reinfect(cset=['US'],reinfect = 'reinfect'): for c in cset: tmp = solveCovid(c) tmp.reinfect = reinfect tmp.prelim() tmp.gamma_t_compute() tmp.fitmodel() tmp.sim_seir() tmp.plot_all(saveplot=True) def run_scenarios(cset=['US']): # Save class objects under various scenarios so we could draw plots across countries/scenarios p_dict = {'Parameters': ['beta0','beta1','rho','rhos_1','rhos_2','phi']} for c in cset: #Baseline tmp = solveCovid(c) tmp.prelim() tmp.gamma_t_compute() tmp.fitmodel() p_dict[c] = np.append(tmp.best_params, 1e9*tmp.phi) tmp.sim_seir() tmp.plot_all(saveplot=True) name = f'../output/{out_save_folder}/{c}_baseline.pkl' pickle.dump(tmp,open(name,'wb')) # Vaccines t_vac = solveCovid(c) t_vac.vac_assump = 'vac_worse' t_vac.prelim() t_vac.gamma_t_compute() t_vac.fitmodel() t_vac.sim_seir() t_vac.plot_all(saveplot=True) name = f'../output/{out_save_folder}/{c}_vacworse.pkl' pickle.dump(t_vac,open(name,'wb')) # Spikes t_spike = solveCovid(c) t_spike.prelim() t_spike.gamma_t_compute() t_spike.fitmodel() t_spike.gamma_tilde_model = 'shock' t_spike.sim_seir() t_spike.plot_all(saveplot=True) name = f'../output/{out_save_folder}/{c}_shock.pkl' pickle.dump(t_spike,open(name,'wb')) # Reinfection t_reinfect = solveCovid(c) t_reinfect.reinfect = 'reinfect' t_reinfect.prelim() t_reinfect.gamma_t_compute() t_reinfect.fitmodel() t_reinfect.sim_seir() t_reinfect.plot_all(saveplot=True) name = f'../output/{out_save_folder}/{c}_reinfect.pkl' pickle.dump(t_reinfect,open(name,'wb')) # Better t_better = solveCovid(c) t_better.vac_assump = 'vac_better' # (a) 30% Faster vaccines t_better.target_weight = 0.9 # (b) More targeted t_better.prelim() t_better.gamma_t_compute() t_better.fitmodel() t_better.sim_seir() t_better.plot_all(saveplot=True) name = f'../output/{out_save_folder}/{c}_better.pkl' pickle.dump(t_better,open(name,'wb')) pd.DataFrame(p_dict).to_csv(f'../params/{param_save_folder}/param_est.csv',float_format='%.4f',index=False) def save_results(cset=['US']): # Unpack pickle and save all results into an excel with pd.ExcelWriter(f'../output/{out_save_folder}/output_all.xlsx') as writer: for c in cset: print(f'Loading pickle for {c}') tmp = pickle.load(open(f'../output/{out_load_folder}/{c}_baseline.pkl','rb')) t_vac = pickle.load(open(f'../output/{out_load_folder}/{c}_vacworse.pkl','rb')) t_spike = pickle.load(open(f'../output/{out_load_folder}/{c}_shock.pkl','rb')) t_reinfect = pickle.load(open(f'../output/{out_load_folder}/{c}_reinfect.pkl','rb')) #t_better = pickle.load(open(f'../output/{out_load_folder}/{c}_better.pkl','rb')) tmp.df3.to_excel(writer, sheet_name=f'{c}_base') t_vac.df3.to_excel(writer, sheet_name=f'{c}_vacworse') t_spike.df3.to_excel(writer, sheet_name=f'{c}_shock') t_reinfect.df3.to_excel(writer, sheet_name=f'{c}_reinfect') #t_better.df3.to_excel(writer, sheet_name=f'{c}_better') # --------------------------------------------------- # x. Plotting functions # ***** Utilities ***** def scatter1(x,y,xlab,ylab,df): x1 = df[x] y1 = df[y] fig, ax = plt.subplots(figsize=(10,8)) ax.scatter(x1,y1,marker='o',facecolors='none', edgecolors='none') for i, label in enumerate(df.index): ax.annotate(label, (x1.iloc[i], y1.iloc[i]), size=16) ax.plot(np.unique(x1), np.poly1d(np.polyfit(x1, y1, 1))(np.unique(x1)), color='black') ax.set_xlabel(xlab,size=20) ax.set_ylabel(ylab,size=20) plt.xticks(fontsize= 20) plt.yticks(fontsize= 20) return fig, ax def scatter2(x,y,x2,y2,xlab,ylab,df): x1 = df[x] y1 = df[y] x2 = df[x2] y2 = df[y2] fig, ax = plt.subplots(figsize=(10,8)) ax.scatter(x1,y1,marker='o',facecolors='none', edgecolors='none') for i, label in enumerate(df.index): ax.annotate(label, (x1.iloc[i], y1.iloc[i]), size=16, color='gray') ax.plot(np.unique(x1), np.poly1d(np.polyfit(x1, y1, 1))(np.unique(x1)), color='gray') ax.set_xlabel(xlab,size=20) ax.set_ylabel(ylab,size=20) # Super impose with a new set ax.scatter(x2,y2,marker='o',facecolors='none', edgecolors='none') for i, label in enumerate(df.index): ax.annotate(label, (x2.iloc[i], y2.iloc[i]), size=16, color='blue') ax.plot(np.unique(x2), np.poly1d(np.polyfit(x2, y2, 1))(np.unique(x2)), color='blue') ax.set_xlabel(xlab,size=20) ax.set_ylabel(ylab,size=20) plt.xticks(fontsize= 20) plt.yticks(fontsize= 20) return fig, ax def all_output(cset=['US','DE']): data_col = ['Mob 2021','Mob fc', 'GDP 2021','GDP fc', 'dDeath 2021','dDeath fc', 'dD/mn 2021','dD/mn fc', 'Mob 2021 3rdwave', 'Mob fc 3rdwave', 'GDP 2021 3rdwave', 'GDP fc 3rdwave', 'dDeath 2021 3rdwave', 'dDeath fc 3rdwave', 'dD/mn 2021 3rdwave', 'dD/mn fc 3rdwave', 'Mob 2021 vacworse', 'Mob fc vacworse', 'GDP 2021 vacworse', 'GDP fc vacworse', 'dDeath 2021 vacworse', 'dDeath fc vacworse', 'dD/mn 2021 vacworse', 'dD/mn fc vacworse', 'Mob 2021 reinfect', 'Mob fc reinfect', 'GDP 2021 reinfect', 'GDP fc reinfect', 'dDeath 2021 reinfect', 'dDeath fc reinfect', 'dD/mn 2021 reinfect', 'dD/mn fc reinfect', # 'Mob 2021 better', 'Mob fc better', # 'GDP 2021 better', 'GDP fc better', # 'dDeath 2021 better', 'dDeath fc better', # 'dD/mn 2021 better', 'dD/mn fc better', ] data = {} df_yratio = pd.read_csv(f'../output/growth-mob.csv', index_col=0) for c in cset: tmp = pickle.load(open(f'../output/{out_load_folder}/{c}_baseline.pkl','rb')) tmp1 = pickle.load(open(f'../output/{out_load_folder}/{c}_shock.pkl','rb')) tmp2 = pickle.load(open(f'../output/{out_load_folder}/{c}_vacworse.pkl','rb')) tmp3 = pickle.load(open(f'../output/{out_load_folder}/{c}_reinfect.pkl','rb')) # tmp4 = pickle.load(open(f'../output/{out_load_folder}/{c}_better.pkl','rb')) cnum = tmp.df3.index.get_loc('2020-12-31')+1 d = tmp.df3['total_cases'].last_valid_index() dnum = tmp.df3.index.get_loc(d)+1 mob_2021 = tmp.df3['mob_fc'].iloc[cnum:].mean() # Average mobility for 2021 mob_fc = tmp.df3['mob_fc'].iloc[dnum:].mean() # Average mobility from current date till year end GDP_2021 = 100*mob_2021*df_yratio.loc[c]['ym_ratio'] GDP_fc = 100*mob_fc*df_yratio.loc[c]['ym_ratio'] dD_2021 = tmp.df3['DD'][-1] - tmp.df3['DD'][cnum] dD_fc = tmp.df3['DD'][-1] - tmp.df3['DD'][dnum] dD_mn_2021 = 1000000*dD_2021/tmp.N dD_mn_fc = 1000000*dD_fc/tmp.N mob_2021_shock = tmp1.df3['mob_fc'].iloc[cnum:].mean() # Average mobility for 2021 mob_fc_shock = tmp1.df3['mob_fc'].iloc[dnum:].mean() # Average mobility from current date till year end GDP_2021_shock = 100*mob_2021_shock*df_yratio.loc[c]['ym_ratio'] GDP_fc_shock = 100*mob_fc_shock*df_yratio.loc[c]['ym_ratio'] dD_2021_shock = tmp1.df3['DD'][-1] - tmp1.df3['DD'][cnum] dD_fc_shock = tmp1.df3['DD'][-1] - tmp1.df3['DD'][dnum] dD_mn_2021_shock = 1000000*dD_2021_shock/tmp.N dD_mn_fc_shock = 1000000*dD_fc_shock/tmp.N mob_2021_vacworse = tmp2.df3['mob_fc'].iloc[cnum:].mean() # Average mobility for 2021 mob_fc_vacworse = tmp2.df3['mob_fc'].iloc[dnum:].mean() # Average mobility from current date till year end GDP_2021_vacworse = 100*mob_2021_vacworse*df_yratio.loc[c]['ym_ratio'] GDP_fc_vacworse = 100*mob_fc_vacworse*df_yratio.loc[c]['ym_ratio'] dD_2021_vacworse = tmp2.df3['DD'][-1] - tmp2.df3['DD'][cnum] dD_fc_vacworse = tmp2.df3['DD'][-1] - tmp2.df3['DD'][dnum] dD_mn_2021_vacworse = 1000000*dD_2021_vacworse/tmp.N dD_mn_fc_vacworse = 1000000*dD_fc_vacworse/tmp.N mob_2021_reinfect = tmp3.df3['mob_fc'].iloc[cnum:].mean() # Average mobility for 2021 mob_fc_reinfect = tmp3.df3['mob_fc'].iloc[dnum:].mean() # Average mobility from current date till year end GDP_2021_reinfect = 100*mob_2021_reinfect*df_yratio.loc[c]['ym_ratio'] GDP_fc_reinfect = 100*mob_fc_reinfect*df_yratio.loc[c]['ym_ratio'] dD_2021_reinfect = tmp3.df3['DD'][-1] - tmp3.df3['DD'][cnum] dD_fc_reinfect = tmp3.df3['DD'][-1] - tmp3.df3['DD'][dnum] dD_mn_2021_reinfect = 1000000*dD_2021_reinfect/tmp.N dD_mn_fc_reinfect = 1000000*dD_fc_reinfect/tmp.N # mob_2021_better = tmp4.df3['mob_fc'].iloc[cnum:].mean() # Average mobility for 2021 # mob_fc_better = tmp4.df3['mob_fc'].iloc[dnum:].mean() # Average mobility from current date till year end # GDP_2021_better = 100*mob_2021_better*df_yratio.loc[c]['ym_ratio'] # GDP_fc_better = 100*mob_fc_better*df_yratio.loc[c]['ym_ratio'] # dD_2021_better = tmp4.df3['DD'][-1] - tmp4.df3['DD'][cnum] # dD_fc_better = tmp4.df3['DD'][-1] - tmp4.df3['DD'][dnum] # dD_mn_2021_better = 1000000*dD_2021_better/tmp.N # dD_mn_fc_better = 1000000*dD_fc_better/tmp.N data[c] = [mob_2021,mob_fc, GDP_2021,GDP_fc, dD_2021,dD_fc, dD_mn_2021,dD_mn_fc, mob_2021_shock, mob_fc_shock, GDP_2021_shock, GDP_fc_shock, dD_2021_shock, dD_fc_shock, dD_mn_2021_shock, dD_mn_fc_shock, mob_2021_vacworse, mob_fc_vacworse, GDP_2021_vacworse, GDP_fc_vacworse, dD_2021_vacworse, dD_fc_vacworse, dD_mn_2021_vacworse, dD_mn_fc_vacworse, mob_2021_reinfect, mob_fc_reinfect, GDP_2021_reinfect, GDP_fc_reinfect, dD_2021_reinfect, dD_fc_reinfect, dD_mn_2021_reinfect, dD_mn_fc_reinfect, # mob_2021_better, mob_fc_better, # GDP_2021_better, GDP_fc_better, # dD_2021_better, dD_fc_better, # dD_mn_2021_better, dD_mn_fc_better, ] df_out = pd.DataFrame.from_dict(data, orient='index', columns=data_col) name = f'../output/{out_save_folder}/all_output.pkl' pickle.dump(df_out,open(name,'wb')) with pd.ExcelWriter(f'../output/{out_save_folder}/output_condensed.xlsx') as writer: df_out.to_excel(writer, sheet_name='output') return df_out def update_table(cset=['US','DE']): data_col = ['Mobility 2021','Mobility, now to mid 2022', 'Deaths/mn 2021','Deaths/mn, now to mid 2022', ] data = {} for c in cset: tmp = pickle.load(open(f'../output/{out_load_folder}/{c}_baseline.pkl','rb')) cnum = tmp.df3.index.get_loc('2021-01-31') cnum2 = tmp.df3.index.get_loc('2021-12-31') d = tmp.df3['total_cases'].last_valid_index() dnum = tmp.df3.index.get_loc(d)+1 mob_2021 = tmp.df3['mob_fc'].iloc[cnum:cnum2].mean() # Average mobility for 2021 mob_fc = tmp.df3['mob_fc'].iloc[dnum:].mean() # Average mobility from current date till year end dD_2021 = tmp.df3['DD'][cnum2] - tmp.df3['DD'][cnum] dD_fc = tmp.df3['DD'][-1] - tmp.df3['DD'][dnum] dD_mn_2021 = 1000000*dD_2021/tmp.N dD_mn_fc = 1000000*dD_fc/tmp.N data[c] = [100*mob_2021,100*mob_fc, dD_mn_2021,dD_mn_fc, ] df_out =
pd.DataFrame.from_dict(data, orient='index', columns=data_col)
pandas.DataFrame.from_dict
# CPTAC Images Join import pandas as pd import numpy as np imglist =
pd.read_csv('../CPTAC-LUAD-HEslide-filename-mapping_Jan2019.csv', header=0)
pandas.read_csv
import streamlit as st import pandas as pd import numpy as np import sklearn.neighbors import pydeck as pdk import seaborn as sns from util import config from util import mapping from util import trip_data @st.cache(suppress_st_warning=True) def load_data(): st.write('Loading data...') trips = pd.read_feather(config.PROCESSED_DATA_PATH + 'trips_scaled.feather') trips.set_index('rte_id', inplace=True) gridpts_at_rte_500 = pd.read_feather(config.PROCESSED_DATA_PATH + 'gridpts_at_rte_500.feather') gridpts_at_rte_500.set_index('rte_id', inplace=True) grid_pts_500 =
pd.read_feather(config.MODEL_PATH + 'grid_points_500.feather')
pandas.read_feather
""" Utilities """ from microbepy.common import combination_iterator from microbepy.common import config from microbepy.common import constants as cn from microbepy.common.equivalence_class import EquivalenceClass from microbepy.common import schema import collections import math import matplotlib.cm as cm import numpy as np import os import pandas as pd from sklearn import linear_model import sqlite3 as sql import sys import types DATA_DIR = "Data" ALT_DATA_DIR = 'data_base' # Directory if project is installed REFERENCE_DIR = "reference" DATA_MODEL_DIR = "data_model" DATA_DIRECTORIES = set([DATA_DIR, ALT_DATA_DIR]) GIT_DIR = ".git" PYTHON_SUBDIRECTORIES = [ "statistics", "model", "correlation", "data", "plot", "search", "common", ] SPECIES = [cn.SPECIES_MIX_DVH, cn.SPECIES_MIX_MMP] TOLERANCE = 0.001 GENE_PREFIXES = ['MMP', 'DVU'] SMALL_DETERMINANT = 1e-6 TABLES_GENOTYPE_PHENOTYPE = [ cn.TABLE_CULTURE, cn.TABLE_MUTATION, cn.TABLE_ISOLATE, cn.TABLE_CULTURE_ISOLATE_LINK, cn.TABLE_ISOLATE_MUTATION_LINK, cn.TABLE_GENE_DESCRIPTION, ] Venn = collections.namedtuple('Venn', ['both', 'only1', 'only2']) def isNumber(obj): try: _ = float(obj) return True except: return False def isStr(obj): """ :return bool: True if string or unicode """ type_string = str(type(obj)) if 'str' in type_string or 'unicode' in type_string: return True else: return False def toNumber(obj): """ Attempts to convert object to a number. First an int, then a float. If all fail, returns np.nan. """ for typ in [int, float]: try: val = typ(obj) return val except: pass return np.nan def isStr(obj): """ :return bool: True if string or bytes """ type_string = str(type(obj)) if 'str' in type_string or 'bytes' in type_string: return True else: return False def isFloatsEqual(fp1, fp2, tolerance=TOLERANCE): """ Tests for approximate equality between two floating points. :param float fp1: :param float fp2: :param float tolerance: a positive number less than 1 :return bool: """ if fp2 == 0: if fp1 == 0: return True else: return False return (fp1 - fp2)/fp2 < tolerance def getPath(path_initial, path_last): """ Constructs a path from the initial segment and the termination (path_list). :param list-of-str path_initial: :param str/None pat_list: :return str: """ def makeItem(item): """ Constructs a list containing either just the single item (if it's non-None) or an empty list. :param object item: :return list: """ if item is None: return [] else: return [item] path_elements = list(path_initial) addendum = makeItem(path_last) path_elements.extend(addendum) # path = path_elements[0] if len(path_elements) > 1: for ele in path_elements[1:]: path = os.path.join(path, ele) return path def getDataModelPath(filename): """ :return str path: path to data model. :param str filename or None: name of file in sequence data if None, returns the path to the directory """ if cn.IS_TEST: return cn.TEST_PATH else: try: path = getIdentifiedDirectory(key_directory=GIT_DIR) result = getPath([path, DATA_DIR, DATA_MODEL_DIR], filename) except ValueError: path = getIdentifiedDirectory(key_directory=ALT_DATA_DIR) result = getPath([path, ALT_DATA_DIR], filename) return result def getReferenceDataPath(filename): """ :return str path: path to processed data :param str filename or None: name of file in sequence data if None, returns the path to the directory """ root_directory = getIdentifiedDirectory() return getPath([root_directory, DATA_DIR, REFERENCE_DIR], filename) def getSequenceDataPath(filename): """ Provides a path to the sequence data. :param str filename or None: name of file if None, returns the path to the directory """ return getPath([getRootDataDirectory(), "sequence_data"], filename) def getRateYieldDataPath(filename): """ Provides a path to the rate-yield data. :param str filename or None: name of file if None, returns the path to the directory """ return getPath([getRootDataDirectory(), "growth_data", "rate_yield"], filename) def getODTimeseriesDataPath(filename): """ Provides a path to the rate-yield data. :param str filename or None: name of file if None, returns the path to the directory """ return getPath([getRootDataDirectory(), "growth_data", "OD_timeseries"], filename) def getGeneNamesFromList(columns): """ :param list-of-str columns: list of names, some of which are genes :return list-of-str: """ names = [] for pfx in GENE_PREFIXES: pfx_len = len(pfx) for ele in columns: if not isNull(ele): if ele[0:pfx_len] == pfx: names.append(ele) return names def isStr(v): if isinstance(v, str): return True if isinstance(v, bytes): return True def messageConsole(msg): print("*** %s" % msg) def isNan(v): if isinstance(v, float): return np.isnan(v) else: return False def isNull(v): if isNan(v): return True singleton_types = [str, int, bytes, type(None)] if any([isinstance(v, t) for t in singleton_types]): if v is None: return True if (v == "None") or (v == "none") or (v == "nan"): return True return False def isNanInDataFrame(df, nan_columns=None): """ :param pd.DataFrame df: :return bool, list-of-str: list of nan columns """ if nan_columns is None: nan_columns = [] columns = [] for col in df.columns.tolist(): if col in nan_columns: continue if any([isNan(x) for x in df[col].tolist()]): columns.append(col) if len(columns) == 0: return False, columns else: return True, columns def replaceNan(df, columns=None, value=0): """ Replaces nan values in specified columns of a dataframe. :param pd.DataFramed df: :param list-of-str columns: columns to be transformed :param object value: """ if columns is None: columns = df.columns.tolist() for column in columns: new_values = [value if isNan(x) else x for x in df[column]] df[column] = new_values def getColorMap(num_colors=20): """ :return list-of-color: """ # generate data N = num_colors x = np.random.random(size=N) * 100 y = np.random.random(size=N) * 100 radii = np.random.random(size=N) * 1.5 # get a colormap from matplotlib colormap =cm.get_cmap("gist_rainbow") #choose any matplotlib colormap here # define maximum and minimum for cmap colorspan=[40,140] # create a color channel with a value between 0 and 1 # outside the colorspan the value becomes 0 (left) and 1 (right) cmap_input=np.interp(np.sqrt(x*x+y*y),colorspan,[0,1],left=0,right=1) # use colormap to generate rgb-values # second value is alfa (not used) # third parameter gives int if True, otherwise float A_color=colormap(cmap_input,1,True) # convert to hex to fit to bokeh bokeh_colors = ["#%02x%02x%02x" % (r, g, b) for r, g, b in A_color[:,0:3]] return bokeh_colors def getColumnsFromDataFrame(df, columns): """ :return pd.DataFrame: has the specified columns :raises ValueError: column not present """ trues = [c in df.columns.tolist() for c in columns] if not all(trues): raise ValueError("Column not present in DataFrame") return pd.DataFrame(df[columns]) def changeColumnValues(df, func): """ Change values in the columns. :param DataFrame df: :param Function func: Inputs: column (str), value (float) Output: float """ for col in df.columns: values = df[col].tolist() new_values = [func(col, v) for v in values] df[col] = new_values def setNoneList(values): """ :param list/None values: :return list """ if values is None: return [] else: return values def getColumnType(column): """ Finds the type for a column :param str column: :return type: """ for column_schema in cn.TABLE_SCHEMAS.column_schemas.getSchemas(): if column == column_schema.name: return column_schema.data_type raise RuntimeError("Column %s is not typed" % column) def cleanDF(df, is_reset_index=False): """ Removes duplicates and stray columns. Removes all columns of the form "index_". :param pd.DataFrame df: """ df.drop_duplicates(inplace=True) df = pruneNullRows(df) if is_reset_index: resetIndex(df) remove_column = "%s_" % cn.INDEX for column in df.columns: if (column.find(remove_column) == 0) \ or (column == cn.INDEX): del df[column] return df def resetIndex(df): """ Resets the index handling stray columns. :param pd.DataFrame df: """ LEVEL_0 = 'level_0' columns = df.columns if LEVEL_0 in columns: del df[LEVEL_0] df.reset_index(inplace=True) if LEVEL_0 in columns: del df[LEVEL_0] def standardize(df, columns=None): """ Standardizes a numeric column in a dataframe. :param pd.DataFrame df: :param list-of-str columns """ if columns is None: columns = df.columns for column in columns: std = np.std(df[column]) avg = np.mean(df[column]) if np.isclose(std, 0): df[column] = 0 else: df[column] = (df[column] - avg)/std def deleteColumns(df, columns, is_drop_duplicates=True): """ Deletes columns from the DataFrame, if they are present. :param pd.DataFrame df: :param list-of-str columns: :param bool is_drop_duplicates: """ for column in columns: if column in df.columns: del df[column] if is_drop_duplicates: df.drop_duplicates(inplace=True) def trimDF(df, keep_columns=None, delete_columns=None): """ Keeps/deletes columns in a dataframe. Exactly one of keep_columns/delete_columns can be non-None. :param pd.DataFrame df: :param list-of-str keep_columns: Columns to keep :param list-of-str delete_columns: Columns to delete :return pd.DataFrame: """ if keep_columns is None and delete_columns is None: raise ValueError("Invalid parameters.") if not keep_columns is None and not delete_columns is None: raise ValueError("Invalid parameters.") if keep_columns is not None: df_result = df[keep_columns].copy(deep=True) if delete_columns is not None: df_result = df.copy(deep=True) deleteColumns(df_result, delete_columns, is_drop_duplicates=True) df_result.drop_duplicates(inplace=True) return df_result def makeNullRow(df, null=np.nan): """ Creates a row of null values to the dataframe. :param object null: value in row :return dict: row """ row = {} for column in df.columns.tolist(): row[column] = null return row def addNullRow(df, null=np.nan): """ Adds a row of null values to the dataframe. :param object null: value in row :return pd.DataFrame: """ return df.append(makeNullRow(df), ignore_index=True) def getDBPath(): """ The correct choice of a path depends on the runtime environment: 1. Running with .microbepy/config.yml in the home directory (includes case of being installed) SQLDB_PATH: <the path> 2. Running within the microbepy project: microbepy/Data/data_model/sythetic.db 3. Running as a subproject: <containing project>/Data/data_model/microbepy.db :return str: :raises KeyError: configuration file exists but no DB path :raises ValueError: cannot find .git file for project root """ try: path = config.get(key=cn.SQLDB_PATH_NAME) except KeyError: path = None if path is None: try: gitbase_path = getIdentifiedDirectory(key_directory=GIT_DIR) except: raise ValueError("Cannot find project directory.") path = getPath([gitbase_path, "Data", "data_model"], cn.SYNTHETIC_DB) return path def getDBConnection(path=None): if path is None: path = getDBPath() try: conn = sql.connect(path) except: raise ValueError("Invalid path to DB: %s" % path) return conn def getDuplicates(values): """ :param list-of-object values: :return list-of-object: """ result = list(values) [result.remove(x) for x in set(values)] return result def typeDF(df, columns=None): """ Ensures that column values are of the correct type. :param list-of-str columns: :return pd.DataFrame: """ if columns is None: columns = list(df.columns) for column in columns: typ = getColumnType(column) values = df[column] df[column] = [np.nan if isNull(v) else typ(v) for v in values] return df def removeDuplicateColumns(df): """ Removes columns that have a duplicate name. :return pd.DataFrame: """ duplicates = getDuplicates(df.columns) done = False idx = 0 df_result = df.copy() additions_dict = {} while not done: if idx >= len(df_result.columns): done = True break column = df_result.columns[idx] if column in duplicates: df1 = df_result[column] values = df1.iloc[:,1] del df_result[column] duplicates.remove(column) additions_dict[column] = values else: idx += 1 df_add = pd.DataFrame(additions_dict) df_result = pd.concat([df_result, df_add], axis=1, sort=True) return df_result def makeVenn(group1, group2): """ Constructs the Venn regions for two groups: both - overlap between the groups only1 - only n group 1 only2 - only n group 2 :param list-of-object group1: :param list-of-object group2: :return Venn: """ set1 = set(group1) set2 = set(group2) return Venn( both=set1.intersect(set2), only1=set1.difference(set2), only2=set2.difference(set1), ) def selNonNull(values1, values2): """ Selects the non-null value of the two lists in its position. :param list-of-object values1: :param list-of-object values2: :param list-of-object result: """ if len(values1) != len(values2): raise ValueError("Inputs must have the same length.") pairs = zip(values1, values2) result = [] for x,y in pairs: if x == y: result.append(x) elif isNull(x): result.append(y) elif isNull(y): result.append(x) else: msg = "Inputs must be identical if in the same position and non-null." raise ValueError(msg) return result def mergeRowsColumns(df1, df2, merge_column): """ Merges the two dataframes, combining both rows and columns. Column values are appended where the dataframes have the same columns. nan values are added to columns where the column is not present in a dataframe. :param pd.DataFrame df1: :param pd.DataFrame df2: :param str merge_column: column on which the merge is done :return pd.DataFrame: Has columns df1.columns + df2.columns """ LEFT = "__left" RIGHT = "__right" df_1 = removeDuplicateColumns(df1) cleanDF(df_1) df_2 = removeDuplicateColumns(df2) cleanDF(df_2) df_result = df_1.merge(df_2, on=merge_column, how='outer', suffixes=(LEFT, RIGHT)) # Merge the overlapping columns left_overlaps = [c for c in df_result.columns if c[-len(LEFT):] == LEFT] left_overlaps.sort() right_overlaps = [c for c in df_result.columns if c[-len(RIGHT):] == RIGHT] right_overlaps.sort() pairs = zip(left_overlaps, right_overlaps) for left, right in pairs: values = selNonNull(df_result[left], df_result[right]) pos = left.find(LEFT) column = left[0:pos] del df_result[left] del df_result[right] df_result[column] = values # Finalize result cleanDF(df_result) return df_result def readSQL(cmd, path=None): """ Creates a dataframe for the SQL query. 1. Duplicate column names (ending with ':n') are merged. 2. Deletes columns that begin with 'index' 3. None values have a consistent representation :param str/TableSchema cmd: SQL query command or TableSchema, if want the entire table :param str path: path to database :return pd.DataFrame: """ SEP = ":" if isinstance(cmd, schema.TableSchema): sql_cmd = "SELECT * FROM %s" % cmd.name else: sql_cmd = cmd conn = getDBConnection(path=path) df_result = pd.read_sql(sql_cmd, conn) conn.close() done = False while not done: duplicates = [c for c in df_result.columns if c.count(SEP) > 0] if len(duplicates) == 0: done = True break column = duplicates[0] pos = column.find(SEP) column = column[:pos] columns = [c for c in df_result.columns if c.count(column) > 0] # Delete index columns if column in ['level_0', cn.INDEX]: for col in columns: del df_result[col] # Merge other columns else: col_first = columns[0] values = df_result[col_first].tolist() del df_result[col_first] columns = columns[1:] for col in columns: try: values = selNonNull(values, df_result[col].tolist()) except: import pdb; pdb.set_trace() del df_result[col] df_result[column] = values df_result = unifyNullValues(df_result) return df_result def unifyNullValues(df_value): """ Makes all null df_value cn.NONE. :param pd.DataFrame df_value: :return pd.DataFrame: """ return df_value.fillna(value=np.nan) #return df_value.applymap(lambda v: cn.NONE if isNull(v) else v) def pruneNullRows(df): """ Removes rows that are all nulls. :param pd.DataFrame df: This is done in place to avoid storage problems with large dataframes. :return pd.DataFrame: """ return df.dropna(axis=0, how='all') def pruneRowsWithNullColumns(df, columns): """ Deletes rows where there is a null value in any of a list of columns. :param pd.DataFrame df: :param list-of-str colums: :return pd.DataFrame: """ def check(row): return not any([isNull(row[c]) for c in columns]) # sel = df.apply(check, axis=1) return pd.DataFrame(df.loc[sel]) def coerceDF(df): """ Coerces the columns to their type if the type is known. :param pd.DataFrame df: :return pd.DataFrame: """ df_result = df.copy(deep=True) for column in df_result.columns: try: schema = cn.TABLE_SCHEMAS.column_schemas.getSchema(column) if schema.data_type in [float, int, bool]: df_result[column] = pd.to_numeric(df_result[column]) # Get an exception if the column type is unknown except ValueError: pass return df_result def appendUnique(values, value): """ Adds value to values if it is not already present. :param list-of-object values: :param object value: :return list-of-object: """ new_values = list(values) if not value in new_values: new_values.append(value) return new_values def mergeLeft(df1, df2, merge_column): """ Does a left join properly handling null values (which pandas does not do). :param pd.DataFrame df1: left dataframe :param pd.DataFrame df2: :param str merge_column: column on which the merge is done :return pd.DataFrame: Assumes that the only overlap in column names is the merge_column """ overlaps = set(df1.columns).intersection(df2.columns) if overlaps != set([merge_column]): raise ValueError ("Must only have the merge column in common!") # Find the null values on the left sel = [not x for x in df1[merge_column].isnull()] df_left = df1[sel] # Merge non-null values df_result = df_left.merge(df2, on=merge_column, how='left') # Include the omitted rows as null columns sel = [x for x in df1[merge_column].isnull()] df_null = df1[sel].copy() for column in df2.columns: if column != merge_column: df_null[column] = cn.NONE # Add the missing rows df_result = pd.concat([df_result, df_null], sort=True) # Finalize result cleanDF(df_result) return df_result def unpivot(df, label_column='label', value_column='value'): """ Converts a pivoted dataframe into one with a column of labels. :param pd.DataFrame: DF with values in cells and value labels in columns :param str label_column: name of the label column on output :param str value_column: name of the value column on output :return pd.DataFrame: label_column, value_column """ return pd.melt(df, var_name=label_column, value_vars=df.columns, value_name=value_column) def makeMatrix(df, row_name=cn.KEY_ISOLATE, column_name=cn.KEY_MUTATION, value_name=cn.COUNT, default_value=0.0, ): """ Creates a data matrix that consists of only a column of row names, a column of column name, and a column of values. :param pd.DataFrame df: :param str row_name: name of the column in df used for row values :param str column_name: name of column whose values are used as column names in the matrix :param str value_name: name of the column from which values are obtained. :param float default_value: used for missing values """ df_sub = df[[row_name, column_name, value_name]].copy() df_sub.drop_duplicates(inplace=True) sel = df_sub.apply( lambda r: (not isNull(r[column_name])) and (not isNull(r[row_name])), axis=1 ) df_sub = df_sub.loc[sel] df_result = df_sub.pivot_table(index=row_name, columns=column_name, values=value_name) df_result = df_result.applymap(lambda x: 0 if isNull(x) else x) return df_result def set2list(aSet): return [x for x in aSet] def removeDuplicatesFromList(values): """ Trims the list to remove duplicates. List elements may be a string or a list of strings or int. Order is not preserved. :param list-of-str or list-of-list-of-other values: :return list-of-inputtype: """ if isStr(values[0]) or isNumber(values[0]): new_values = set(values) return set2list(new_values) else: df =
pd.DataFrame(values)
pandas.DataFrame
import matplotlib #matplotlib.use('agg') import pandas as pd import numpy as np import matplotlib.pyplot as plt import cmocean ##### # The following section is a little brittle due to hardcoded names, but we'll fix # that later. Code copy pasted from jupyter notebook. ##### def all_plots(df): '''Create and output all plots''' btl_t1_residuals_pressure_plot(df) btl_t2_residuals_pressure_plot(df) t1_t2_residuals_pressure_plot(df) btl_t1_residuals_station_plot(df) btl_t2_residuals_station_plot(df) t1_t2_residuals_station_plot(df) btl_t1_residuals_station_deep_plot(df) btl_t2_residuals_station_deep_plot(df) t1_t2_residuals_station_deep_plot(df) btl_c1_residuals_pressure_plot(df) btl_c2_residuals_pressure_plot(df) c1_c2_residuals_pressure_plot(df) btl_c1_residuals_station_plot(df) btl_c2_residuals_station_plot(df) c1_c2_residuals_station_plot(df) btl_c1_residuals_station_deep_plot(df) btl_c2_residuals_station_deep_plot(df) c1_c2_residuals_station_deep_plot(df) c_t_coherence_plot(df) btl_c1_residuals_compare_plot(df) btl_c2_residuals_compare_plot(df) c1_c2_residuals_compare_plot(df) btl_c1_residuals_station_uncorrected_plot(df) btl_c2_residuals_station_uncorrected_plot(df) c1_c2_residuals_station_uncorrected_plot(df) btl_sal_pressure_plot(df) btl_sal_station_plot(df) btl_sal_station_deep_plot(df) btl_oxy_residuals_pressure_plot(df) btl_oxy_residuals_station_plot(df) btl_oxy_residuals_station_deep_plot(df) btl_oxy_residuals_temperature_plot(df) btl_oxy_residuals_station_temperature_plot(df) btl_oxy_residuals_station_deep_temperature_plot(df) btl_oxy_residuals_pressure_concentration_plot(df) btl_oxy_residuals_station_concentration_plot(df) return None ################################################################# ##### Here lies the temperature plots, long may they rest. ##### ################################################################# def btl_t1_residuals_pressure_plot(reft_vals, t1_vals, press, stnno): reft_t1 = reft_vals - t1_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(reft_t1, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-0.02,0.02) ax.set_title('REFTMP-CTDTMP1 vs CTDPRS') ax.set_xlabel('T1 Residual (T90 C)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/reftmp_t1_p.svg', format='svg') fig.savefig('./data/images/reftmp_t1_p.pdf', format='pdf') plt.close() return None def btl_t2_residuals_pressure_plot(reft_vals, t2_vals, press, stnno): reft_t2 = reft_vals - t2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(reft_t2, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-0.02,0.02) ax.set_title('REFTMP-CTDTMP2 vs CTDPRS') ax.set_xlabel('T2 Residual (T90 C)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/reftmp_t2_p.svg', format='svg') fig.savefig('./data/images/reftmp_t2_p.pdf', format='pdf') plt.close() return None def t1_t2_residuals_pressure_plot(t1_vals, t2_vals, press, stnno): t1_t2 = t1_vals - t2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(t1_t2, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-0.02,0.02) ax.set_title('CTDTMP1-CTDTMP2 vs CTDPRS') ax.set_xlabel('T1-T2 Residual (T90 C)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/t1_t2_p.svg', format='svg') fig.savefig('./data/images/t1_t2_p.pdf', format='pdf') plt.close() return None def btl_t1_residuals_station_plot(reft_vals, t1_vals, press, stnno): reft_t1 = reft_vals - t1_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, reft_t1, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('REFTMP-CTDTMP1 vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('T1 Residual (T90 C)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/reftmp_t1_stn.svg', format='svg') fig.savefig('./data/images/reftmp_t1_stn.pdf', format='pdf') plt.close() return None def btl_t2_residuals_station_plot(t1_vals, t2_vals, press, stnno): t1_t2 = t1_vals - t2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, t1_t2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('REFTMP-CTDTMP2 vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('T2 Residual (T90 C)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/reftmp_t2_stn.svg', format='svg') fig.savefig('./data/images/reftmp_t2_stn.pdf', format='pdf') plt.close() return None def t1_t2_residuals_station_plot(t1_vals, t2_vals, press, stnno): t1_t2 = t1_vals - t2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, t1_t2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('CTDTMP1-CTDTMP2 vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('T1-T2 Residual (T90 C)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/t1_t2_stn.svg', format='svg') fig.savefig('./data/images/t1_t2_stn.pdf', format='pdf') plt.close() return None def btl_t1_residuals_station_deep_plot(reft_vals, t1_vals, press, stnno): df = pd.DataFrame() df['CTDPRS'] = press df['REFT_T1'] = reft_vals - t1_vals df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['REFT_T1'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('REFTMP-CTDTMP1 (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('T1 Residual (T90 C)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/reftmp_t1_stn_deep.svg', format='svg') fig.savefig('./data/images/reftmp_t1_stn_deep.pdf', format='pdf') plt.close() return None def btl_t2_residuals_station_deep_plot(reft_vals, t2_vals, press, stnno): df = pd.DataFrame() df['CTDPRS'] = press df['REFT_T2'] = reft_vals - t2_vals df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['REFT_T2'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('REFTMP-CTDTMP2 (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('T2 Residual (T90 C)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/reftmp_t2_stn_deep.svg', format='svg') fig.savefig('./data/images/reftmp_t2_stn_deep.pdf', format='pdf') plt.close() return None def t1_t2_residuals_station_deep_plot(t1_vals, t2_vals, press, stnno): df = pd.DataFrame() df['CTDPRS'] = press df['T1_T2'] = t1_vals - t2_vals df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['T1_T2'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('CTDTMP1-CTDTMP2 (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('T1-T2 Residual (T90 C)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/t1_t2_stn_deep.svg', format='svg') fig.savefig('./data/images/t1_t2_stn_deep.pdf', format='pdf') plt.close() return None ################################################################# ##### Here lies the conductivity plots, long may they rest. ##### ################################################################# def btl_c1_residuals_pressure_plot(refc_vals, c1_vals, press, stnno): refc_c1 = refc_vals - c1_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(refc_c1, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-0.02,0.02) ax.set_title('BTLCOND-CTDCOND1 vs CTDPRS') ax.set_xlabel('C1 Residual (mS/cm)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/btlcond_c1_p.svg', format='svg') fig.savefig('./data/images/btlcond_c1_p.pdf', format='pdf') plt.close() return None def btl_c2_residuals_pressure_plot(refc_vals, c2_vals, press, stnno): refc_c2 = refc_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(refc_c2, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_title('BTLCOND-CTDCOND2 vs CTDPRS') ax.set_xlabel('C2 Residual (mS/cm)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/btlcond_c2_p.svg', format='svg') fig.savefig('./data/images/btlcond_c2_p.pdf', format='pdf') plt.close() return None def c1_c2_residuals_pressure_plot(c1_vals, c2_vals, press, stnno): c1_c2 = c1_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(c1_c2, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-0.02,0.02) ax.set_title('CTDCOND1-CTDCOND2 vs CTDPRS') ax.set_xlabel('C1-C2 Residual (mS/cm)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/c1_c2_p.svg', format='svg') fig.savefig('./data/images/c1_c2_p.pdf', format='pdf') plt.close() return None def btl_c1_residuals_station_plot(refc_vals, c1_vals, press, stnno): refc_c1 = refc_vals - c1_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, refc_c1, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND-CTDCOND1 vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C1 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c1_stn.svg', format='svg') fig.savefig('./data/images/btlcond_c1_stn.pdf', format='pdf') plt.close() return None def btl_c2_residuals_station_plot(refc_vals, c2_vals, press, stnno): refc_c2 = refc_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, refc_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND-CTDCOND2 vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c2_stn.svg', format='svg') fig.savefig('./data/images/btlcond_c2_stn.pdf', format='pdf') plt.close() return None def c1_c2_residuals_station_plot(c1_vals, c2_vals, press, stnno): c1_c2 = c1_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, c1_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('CTDCOND1-CTDCOND2 vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C1-C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/c1_c2_stn.svg', format='svg') fig.savefig('./data/images/c1_c2_stn.pdf', format='pdf') plt.close() return None def btl_c1_residuals_station_deep_plot(refc_vals, c1_vals, press, stnno): df = pd.DataFrame() df['CTDPRS'] = press df['REFT_C1'] = refc_vals - c1_vals df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['REFT_C1'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND-CTDCOND1 (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C1 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c1_stn_deep.svg', format='svg') fig.savefig('./data/images/btlcond_c1_stn_deep.pdf', format='pdf') plt.close() return None def btl_c2_residuals_station_deep_plot(refc_vals, c2_vals, press, stnno): df = pd.DataFrame() df['CTDPRS'] = press df['REFT_C2'] = refc_vals - c2_vals df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['REFT_C2'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND-CTDCOND2 (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c2_stn_deep.svg', format='svg') fig.savefig('./data/images/btlcond_c2_stn_deep.pdf', format='pdf') plt.close() return None def c1_c2_residuals_station_deep_plot(c1_vals, c2_vals, press, stnno): df = pd.DataFrame() df['CTDPRS'] = press df['C1_C2'] = c1_vals - c2_vals df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['C1_C2'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('CTDCOND1-CTDCOND2 (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C1-C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/c1_c2_stn_deep.svg', format='svg') fig.savefig('./data/images/c1_c2_stn_deep.pdf', format='pdf') plt.close() return None def c_t_coherence_plot(t1_vals, t2_vals, c1_vals, c2_vals, press): t1_t2 = t1_vals - t2_vals c1_c2 = c1_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(t1_t2, c1_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_xlim(-0.02,0.02) ax.set_title('T1-T2 vs C1-C2') ax.set_xlabel('T1-T2 Residual (T90 C)') ax.set_ylabel('C1-C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/c_t_coherence_p.svg', format='svg') fig.savefig('./data/images/c_t_coherence_p.pdf', format='pdf') plt.close() return None def btl_c1_residuals_compare_plot(refc_vals, c1_vals, press): refc_c1 = refc_vals - c1_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(refc_vals, refc_c1, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND vs BTLCOND-CTDCOND1') ax.set_xlabel('Reference Conductivity (mS/cm)') ax.set_ylabel('C1 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c1_compare.svg', format='svg') fig.savefig('./data/images/btlcond_c1_compare.pdf', format='pdf') plt.close() return None def btl_c2_residuals_compare_plot(refc_vals, c2_vals, press): refc_c2 = refc_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(refc_vals, refc_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND vs BTLCOND-CTDCOND2') ax.set_xlabel('Reference Conductivity (mS/cm)') ax.set_ylabel('C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c2_compare.svg', format='svg') fig.savefig('./data/images/btlcond_c2_compare.pdf', format='pdf') plt.close() return None def c1_c2_residuals_compare_plot(refc_vals, c1_vals, c2_vals, press): c1_c2 = c1_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(refc_vals, c1_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND vs CTDCOND1-CTDCOND2') ax.set_xlabel('Reference Conductivity (mS/cm)') ax.set_ylabel('C1-C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/c1_c2_compare.svg', format='svg') fig.savefig('./data/images/c1_c2_compare.pdf', format='pdf') plt.close() return None def btl_c1_residuals_station_uncorrected_plot(refc_vals, c1_vals, press, stnno): refc_c1 = refc_vals - c1_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, refc_c1, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND-CTDCOND1 (Uncorrected) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C1 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c1_stn_uncorrected.svg', format='svg') fig.savefig('./data/images/btlcond_c1_stn_uncorrected.pdf', format='pdf') plt.close() return None def btl_c2_residuals_station_uncorrected_plot(refc_vals, c2_vals, press, stnno): refc_c2 = refc_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, refc_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('BTLCOND-CTDCOND2 (Uncorrected) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlcond_c2_stn_uncorrected.svg', format='svg') fig.savefig('./data/images/btlcond_c2_stn_uncorrected.pdf', format='pdf') plt.close() return None def c1_c2_residuals_station_uncorrected_plot(c1_vals, c2_vals, press, stnno): c1_c2 = c1_vals - c2_vals fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, c1_c2, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('CTDCOND1-CTDCOND2 (Uncorrected) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('C1-C2 Residual (mS/cm)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/c1_c2_stn_uncorrected.svg', format='svg') fig.savefig('./data/images/c1_c2_stn_uncorrected.pdf', format='pdf') plt.close() return None def btl_sal_pressure_plot(btl_sal, ctd_sal, press, stnno): sal_res = btl_sal - ctd_sal fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(sal_res,-press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-0.02,0.02) ax.set_title('SALNTY-CTDSAL vs CTDPRS') ax.set_xlabel('CTDSAL Residual (mPSU)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/btlsal_sal_p.svg', format='svg') fig.savefig('./data/images/btlsal_sal_p.pdf', format='pdf') plt.close() return None def btl_sal_station_plot(btl_sal, ctd_sal, press, stnno): sal_res = btl_sal - ctd_sal fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno, sal_res, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('SALNTY-CTDSAL vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('CTDSAL Residual (mPSU)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlsal_sal_stn.svg', format='svg') fig.savefig('./data/images/btlsal_sal_stn.pdf', format='pdf') plt.close() return None def btl_sal_station_deep_plot(btl_sal, ctd_sal, press, stnno): sal_res = btl_sal - ctd_sal df = pd.DataFrame() df['CTDPRS'] = press df['BTL_SAL'] = sal_res df['STNNBR'] = stnno df_deep = df[df['CTDPRS'] > 2000] fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(df_deep['STNNBR'], df_deep['BTL_SAL'], marker='+', c=df_deep['CTDPRS'], cmap=plt.cm.viridis_r) ax.set_ylim(-0.01,0.01) ax.set_title('SALNTY-CTDSAL (>2000 db) vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('CTDSAL Residual (mPSU)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btlsal_sal_stn_deep.svg', format='svg') fig.savefig('./data/images/btlsal_sal_stn_deep.pdf', format='pdf') plt.close() return None ################################################################# ######## Here lies the oxygen plots, long may they rest. ######## ################################################################# def btl_oxy_residuals_pressure_plot(ref_oxy, ctdoxy, press, stnno): btl_o = ref_oxy - ctdoxy fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(btl_o, -press, marker='+', c=stnno, cmap=plt.cm.tab20c_r) ax.set_xlim(-10,10) ax.set_title('OXYGEN-CTDOXY vs CTDPRS') ax.set_xlabel('CTDOXY Residual (umol/kg)') ax.set_ylabel('Pressure (dbar)') cbar = fig.colorbar(cm) cbar.set_label('Station Number') fig.savefig('./data/images/btl_oxy_p.svg', format='svg') fig.savefig('./data/images/btl_oxy_p.pdf', format='pdf') plt.close() return None def btl_oxy_residuals_station_plot(ref_oxy, ctdoxy, press, stnno): btl_o = ref_oxy - ctdoxy fig = plt.figure() ax = fig.add_subplot(1,1,1) cm = ax.scatter(stnno,btl_o, marker='+', c=press, cmap=plt.cm.viridis_r) ax.set_ylim(-10,10) ax.set_title('OXYGEN-CTDOXY vs STNNBR') ax.set_xlabel('Station Number') ax.set_ylabel('CTDOXY Residual (umol/kg)') cbar = fig.colorbar(cm) cbar.set_label('Pressure (dbar)') fig.savefig('./data/images/btl_oxy_stn.svg', format='svg') fig.savefig('./data/images/btl_oxy_stn.pdf', format='pdf') plt.close() return None def btl_oxy_residuals_station_deep_plot(ref_oxy, ctdoxy, press, stnno): df =
pd.DataFrame()
pandas.DataFrame
""" Obtains category distributions for included and excluded patients. """ from click import * from logging import * import pandas as pd @command() @option("--all-input", required=True, help="the CSV file to read all diagnoses from") @option( "--included-input", required=True, help="the CSV file to read diagnoses for included patients from", ) @option("--output", required=True, help="the CSV file to write counts to") def main(all_input, included_input, output): basicConfig(level=DEBUG) # Load data. info("Loading all diagnoses") X_all =
pd.read_csv(all_input, index_col="subject_id")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon ‎May 21 21:08:09 2018 @author: <NAME> """ # System Utilities import os import io import sys import gc import traceback # Email and Text processing import email from email.header import decode_header import re import uuid # unique ID # Data handling and analytics tools import pandas as pd import numpy as np from timeit import default_timer as timer def FileObject2String(FileBytes, FileName='PDF'): print(FileName) Text = '' return Text ############################################################################### #Data Cleanup def RemoveTagsFormats(Text): if Text!='': # apply rules in given order! rules = [ { r'[\x20][\x20]+' : u' '}, # Remove Consecutive spaces { r'\s*<br\s*/?>\s*' : u'\n'}, # Convert <br> to Newline { r'</(p|h\d)\s*>\s*' : u'\n\n'}, # Add double newline after </p>, </div> and <h1/> { r'<head>.*<\s*(/head|body)[^>]*>' : u'' }, # Remove everything from <head> to </head> { r'<script>.*<\s*/script[^>]*>' : u'' }, # Remove evrything from <script> to </script> (javascipt) { r'<style>.*<\s*/style[^>]*>' : u'' }, # Remove evrything from <style> to </style> (stypesheet) { r'<[^<]*?/?>' : u'' }, # remove remaining tags ] for rule in rules: for (pattern,sub) in rule.items(): Text = re.sub(pattern, sub, Text) #https://www.w3schools.com/charsets/ref_html_entities_4.asp #https://docs.python.org/3/library/html.entities.html#html.entities.html5 Entity={ '&lt;' :'<', '&gt;' :'>', '&nbsp;' :' ', '& nbsp;' :' ', '&n bsp;' :' ', '&nb sp;' :' ', '&nbs p;' :' ', '&quot;' :'"', 'cent;' :u'\xA2', '&pound;' :u'\xA3', '&copy;' :u'\xA9', '&reg;' :u'\xAE', '&plusmn;':u'\xB1', '&frac14;':u'\xBC', '&frac12;':u'\xBD', '&frac34;':u'\xBE', '&times;' :u'\xD7', '&prime;' :u'\x2032', '&Prime' :u'\x2033', '&lowast;':u'\x2217', '&ne;' :u'\x2260', '&trade;' :u'\x2122', '&#8211;' :u'\x8211', '&#8217;' :u'\x8217', '&amp;' :'&', } for (pattern,sub) in Entity.items(): Text = Text.replace(pattern, sub) #Text=re.sub('[\x20][\x20]+' , ' ', Text) #Text=re.sub('[\n][\n]+' , '\n', Text) #Text=re.sub('[\t][\t]+' , '\t', Text) Text=re.sub('[\r][\r]+' , '\r', Text) Text=re.sub('[\n][\s]*[\n]+' , '\n', Text) Text=re.sub('^[\s]+' , '', Text) Text=re.sub('[\n][\s]+$' , '', Text) else: pass return Text ############################################################################### #RegEx EMAIL_FORMAT = re.compile(r'([\w\.-]+@[\w\.-]+\.\w+)') NAME_EMAIL_FORMAT = re.compile(r'\W*(.*?)\W*([\w\.-]+@[\w\.-]+\.\w+)') DOMAIN_FORMAT = re.compile(r'@([\w\.-]+)') MESSAGID_FORMAT = re.compile(r'<(.*?)>') REFERENCES_FORMAT = re.compile(r'[,<](.*?)[,>]') #This need to be revised. in the case of '<ABC>,<DEF>' if will return '<DEF' ############################################################################### ############################################################################### def DecodeEmailItem(Text): try: if Text!=None: dc = decode_header(Text) ItemValue = dc[0][0] Encoding = dc[0][1] if Encoding!=None: Text = ItemValue.decode(Encoding) else: pass else: pass except: pass return Text ############################################################################### ############################################################################### # Function parsing a single email ############################################################################### def ParseEmail(EmlFilePath, EmailID=None, HeaderFields = None, Attachments=None, WorkingDir = ''): ########################################################################### # Set Header Feilds if HeaderFields == None: HeaderFields = ['DATE', 'FROM', 'TO', 'CC', 'BCC', 'SUBJECT', 'CONTENT-LANGUAGE', 'MESSAGE-ID', 'IN-REPLY-TO', 'REFERENCES', 'RETURN-PATH', 'X-MS-HAS-ATTACH', 'X-ORIGINATING-IP'] else: pass # Set Email ID if EmailID == None: try: EmailID = str(uuid.uuid1()) except: pass else: pass ########################################################################### # Extract Header HEADER_ITEM = pd.DataFrame(data=[[EmailID, EmlFilePath]], columns=['EmailID', 'FileName']) try: Email = email.message_from_file(open(EmlFilePath)) for item in HeaderFields: HEADER_ITEM[item] = DecodeEmailItem(Email.get(item)) except: pass ########################################################################### # References MSGID_ITEMS = pd.DataFrame(data=[], columns=['EmailID', 'Designation', 'MESSAGE-ID']) try: MID = pd.DataFrame(data=re.findall(MESSAGID_FORMAT, HEADER_ITEM['MESSAGE-ID'].values[0]), columns=['MESSAGE-ID']) MID['Designation'] = 0 MID['Order'] = (MID.index+1).astype('int') except: pass try: MID = pd.DataFrame(data=re.findall(MESSAGID_FORMAT, HEADER_ITEM['IN-REPLY-TO'].values[0]), columns=['MESSAGE-ID']) MID['Designation'] = 1 MID['Order'] = (MID.index+1).astype('int') except: pass try: MID = pd.DataFrame(data=re.findall(REFERENCES_FORMAT, HEADER_ITEM['REFERENCES'].values[0]), columns=['MESSAGE-ID']) MID['Designation'] = 2 MID['Order'] = (MID.index+1).astype('int') except: pass MSGID_ITEMS['EmailID'] = EmailID del(MID) ########################################################################### # Addresses ADDRESS_ITEMS = pd.DataFrame(data=[], columns=['EmailID', 'Designation', 'Order', 'Name', 'Address' ]) try: ADD = pd.DataFrame(data=re.findall(NAME_EMAIL_FORMAT, HEADER_ITEM['FROM'].values[0]),columns=['Name', 'Address']) ADD['Designation']=0 ADD['Order'] = (ADD.index+1).astype('int') ADDRESS_ITEMS = ADDRESS_ITEMS.append(ADD, ignore_index=False, sort=False) except: pass try: ADD = pd.DataFrame(data=re.findall(NAME_EMAIL_FORMAT, HEADER_ITEM['TO'].values[0]),columns=['Name', 'Address']) ADD['Designation']=1 ADD['Order'] = (ADD.index+1).astype('int') ADDRESS_ITEMS = ADDRESS_ITEMS.append(ADD, ignore_index=False, sort=False) except: pass try: ADD = pd.DataFrame(data=re.findall(NAME_EMAIL_FORMAT, HEADER_ITEM['CC'].values[0]),columns=['Name', 'Address']) ADD['Designation']=2 ADD['Order'] = (ADD.index+1).astype('int') ADDRESS_ITEMS = ADDRESS_ITEMS.append(ADD, ignore_index=False, sort=False) except: pass try: ADD = pd.DataFrame(data=re.findall(NAME_EMAIL_FORMAT, HEADER_ITEM['BCC'].values[0]),columns=['Name', 'Address']) ADD['Designation']=3 ADD['Order'] = (ADD.index+1).astype('int') ADDRESS_ITEMS = ADDRESS_ITEMS.append(ADD, ignore_index=False, sort=False) except: pass ADDRESS_ITEMS['EmailID'] = EmailID del(ADD) ########################################################################### # Content ContentID = 0 ContentParts = [] #Array of contents BodyTextContentParts = [] ########################################################################### # Attchments AttachmentParts = [] #Array of attchments ########################################################################### # # Extarct Email Content try: for part in Email.walk(): ContentMainType = part.get_content_maintype() ContentSubType = part.get_content_subtype() if ContentMainType != 'multipart': #At the loweset level in the content hirachy isBodyText=False ContentID = ContentID + 1 ContentString='' ContentDisposition = part.get_content_disposition() ContentFileName = DecodeEmailItem(part.get_filename()) try: ContentTransferEncoding = part.get('Content-Transfer-Encoding').upper() except: ContentTransferEncoding = 'QUOTED-PRINTABLE' try: MIMEContentID = re.findall(MESSAGID_FORMAT, part.get('Content-ID'))[0] except: MIMEContentID = None ContentType = '[{}/{}]'.format(ContentMainType, ContentSubType) if ContentMainType == 'text' and (ContentSubType == 'plain' or ContentSubType == 'html'): try: CharSet = part.get_content_charset() except: CharSet = 'iso8859_15' try: ContentString = part.get_payload(decode=True).decode(encoding=CharSet) ContentString = RemoveTagsFormats(ContentString) #RemoveHTML(ContentString) isBodyText = True except: pass #-------------------------------------------------------------- elif ContentMainType == 'message' and ContentSubType == 'rfc822': try: ContentString = DecodeEmailItem(part.get('SUBJECT')) isBodyText = True except: pass #Record MessageID #Append Subject, Text Body #Seperate from next selection tasks pass #-------------------------------------------------------------- elif ContentMainType == 'audio' or ContentMainType == 'video': pass elif ContentMainType == 'application' and (ContentSubType == 'zip' or ContentSubType == 'x-7z-compressed' or ContentSubType=='x-rar-compressed'): pass elif (ContentDisposition == 'attachment' or ContentDisposition == 'inline') or ContentFileName != None: if Attachments != None: if ContentFileName == None: #Add condition not to exclude inline and attachemnt ContentFileName = '<< FileName Blanck >>' else: AttachmentFileName = 'E{}A{}_{}'.format(EmailID, ContentID, ContentFileName) #print(AttachmentFileName) try: startTime = timer() AttachmentFileData = part.get_payload(decode=True) #-------------------------------------------------------------- if Attachments == 'save': file = open('{}\\{}'.format(WorkingDir,AttachmentFileName), 'wb') file.write(AttachmentFileData) file.close() #-------------------------------------------------------------- if Attachments == 'extract': if ContentTransferEncoding=='BASE64': pass else: AttachmentFileData = AttachmentFileData.encode() FileBytes=io.BytesIO(AttachmentFileData) ByteLength = len(AttachmentFileData)/1024 #File size in Kilobytes by byte length if ByteLength<=51200: AttachmentText = FileObject2String(FileBytes, AttachmentFileName) else: AttachmentText = '' ExecuteTime = timer() - startTime ContentFileSize=int(FileBytes.seek(0,2)/1024) #File size in Kilobytes AttachmentParts.append([EmailID, ContentID, ContentFileName, ContentFileSize, ContentType, MIMEContentID, ExecuteTime, AttachmentText]) FileBytes.close() #-------------------------------------------------------------- except: pass else: pass else: pass ContentParts.append([EmailID, ContentID, ContentType, ContentDisposition, ContentFileName, MIMEContentID]) if isBodyText == True: BodyTextContentParts.append([EmailID, ContentID, ContentType, ContentString]) else: pass ####################################################################### #Update Header with content Info summar HEADER_ITEM['ContentCount'] = ContentID # Last content ID (start 1, 0 if none) HEADER_ITEM['FileReadError'] = 0 #Create content andd attchemnt CONTENT_ITEMS = pd.DataFrame(data=ContentParts, columns=['EmailID', 'ContentID', 'ContentType', 'ContentDisposition', 'ContentFileName', 'MIMEContentID']) BODY_TEXT_ITEMS = pd.DataFrame(data=BodyTextContentParts, columns=['EmailID', 'ContentID', 'ContentType', 'ContentString']) ATTACHMENT_ITEMS = pd.DataFrame(data=AttachmentParts, columns=['EmailID', 'ContentID', 'ContentFileName', 'ContentFileSize', 'ContentType', 'MIMEContentID', 'ExecuteTime', 'AttachmentText']) ####################################################################### except: print('ParseEmail Exception Occured: {}'.format(traceback.format_exc())) HEADER_ITEM= pd.DataFrame(data=[[EmailID, EmlFilePath, 0, 1]], columns=['EmailID', 'FileName', 'ContentCount', 'FileReadError']) BODY_TEXT_ITEMS = pd.DataFrame() CONTENT_ITEMS = pd.DataFrame() ATTACHMENT_ITEMS =
pd.DataFrame()
pandas.DataFrame
""" Author: <NAME> Created: 27/08/2020 11:13 AM """ import pandas as pd import os import numpy as np from supporting_functions.conversions import convert_RH_vpa from supporting_functions.woodward_2020_params import get_woodward_mean_full_params test_dir = os.path.join(os.path.dirname(__file__), 'test_data') def establish_peyman_input(return_pet=False): # use the scott farm so that it doesn't need irrigation # time period [2010 - 2013) # load weather data weather_path = os.path.join(test_dir, 'hamilton_ruakura_ews2010-2013_{}.csv') pressure = pd.read_csv(os.path.join(test_dir, 'hamilton_AWS_pressure.csv'), skiprows=8).loc[:, ['year', 'doy', 'pmsl']].set_index(['year', 'doy']) rain = pd.read_csv(weather_path.format('rain')).loc[:, ['year', 'doy', 'rain']].set_index(['year', 'doy']) temp = pd.read_csv(weather_path.format('temp')).loc[:, ['year', 'doy', 'tmax', 'tmin']].set_index(['year', 'doy']) rad = pd.read_csv(weather_path.format('rad')).loc[:, ['year', 'doy', 'radn']].set_index(['year', 'doy']) wind = pd.read_csv(weather_path.format('wind')).loc[:, ['year', 'doy', 'wind']].set_index(['year', 'doy']) pet = pd.read_csv(weather_path.format('pet')).loc[:, ['year', 'doy', 'pet']].set_index(['year', 'doy']) rh = pd.read_csv(weather_path.format('rh')).loc[:, ['year', 'doy', 'rh']] rh.loc[:, 'rh'] = pd.to_numeric(rh.rh, errors='coerce') rh = rh.groupby(['year', 'doy']).mean() dates = pd.Series(pd.date_range('2010-01-01', '2012-12-31')) matrix_weather = pd.DataFrame({'year': dates.dt.year, 'doy': dates.dt.dayofyear, 'to_delete': 1}).set_index(['year', 'doy']) matrix_weather = pd.merge(matrix_weather, temp, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, rain, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, rad, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, rh, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, wind, how='outer', left_index=True, right_index=True) matrix_weather =
pd.merge(matrix_weather, pet, how='outer', left_index=True, right_index=True)
pandas.merge
""" The training function used in the finetuning task. """ import csv import logging import os import pickle import time from argparse import Namespace from logging import Logger from typing import List import numpy as np import pandas as pd import torch from torch.optim.lr_scheduler import ExponentialLR from torch.utils.data import DataLoader from grover.data import MolCollator from grover.data import StandardScaler from grover.util.metrics import get_metric_func from grover.util.nn_utils import initialize_weights, param_count from grover.util.scheduler import NoamLR from grover.util.utils import build_optimizer, build_lr_scheduler, makedirs, load_checkpoint, get_loss_func, \ save_checkpoint, build_model from grover.util.utils import get_class_sizes, get_data, split_data, get_task_names from task.predict import predict, evaluate, evaluate_predictions def train(epoch, model, data, loss_func, optimizer, scheduler, shared_dict, args: Namespace, n_iter: int = 0, logger: logging.Logger = None): """ Trains a model for an epoch. :param model: Model. :param data: A MoleculeDataset (or a list of MoleculeDatasets if using moe). :param loss_func: Loss function. :param optimizer: An Optimizer. :param scheduler: A learning rate scheduler. :param args: Arguments. :param n_iter: The number of iterations (training examples) trained on so far. :param logger: A logger for printing intermediate results. :param writer: A tensorboardX SummaryWriter. :return: The total number of iterations (training examples) trained on so far. """ # debug = logger.debug if logger is not None else print model.train() # data.shuffle() loss_sum, iter_count = 0, 0 cum_loss_sum, cum_iter_count = 0, 0 mol_collator = MolCollator(shared_dict=shared_dict, args=args) num_workers = 4 if type(data) == DataLoader: mol_loader = data else: mol_loader = DataLoader(data, batch_size=args.batch_size, shuffle=True, num_workers=num_workers, collate_fn=mol_collator) for _, item in enumerate(mol_loader): _, batch, features_batch, mask, targets = item if next(model.parameters()).is_cuda: mask, targets = mask.cuda(), targets.cuda() class_weights = torch.ones(targets.shape) if args.cuda: class_weights = class_weights.cuda() # Run model model.zero_grad() preds = model(batch, features_batch) loss = loss_func(preds, targets) * class_weights * mask loss = loss.sum() / mask.sum() loss_sum += loss.item() iter_count += args.batch_size cum_loss_sum += loss.item() cum_iter_count += 1 loss.backward() optimizer.step() if isinstance(scheduler, NoamLR): scheduler.step() n_iter += args.batch_size #if (n_iter // args.batch_size) % args.log_frequency == 0: # lrs = scheduler.get_lr() # loss_avg = loss_sum / iter_count # loss_sum, iter_count = 0, 0 # lrs_str = ', '.join(f'lr_{i} = {lr:.4e}' for i, lr in enumerate(lrs)) return n_iter, cum_loss_sum / cum_iter_count def run_training(args: Namespace, time_start, logger: Logger = None) -> List[float]: """ Trains a model and returns test scores on the model checkpoint with the highest validation score. :param args: Arguments. :param logger: Logger. :return: A list of ensemble scores for each task. """ if logger is not None: debug, info = logger.debug, logger.info else: debug = info = print # pin GPU to local rank. idx = args.gpu if args.gpu is not None: torch.cuda.set_device(idx) features_scaler, scaler, shared_dict, test_data, train_data, val_data = load_data(args, debug, logger) metric_func = get_metric_func(metric=args.metric) # Set up test set evaluation test_smiles, test_targets = test_data.smiles(), test_data.targets() sum_test_preds = np.zeros((len(test_smiles), args.num_tasks)) # Train ensemble of models for model_idx in range(args.ensemble_size): # Tensorboard writer save_dir = os.path.join(args.save_dir, f'model_{model_idx}') makedirs(save_dir) # Load/build model if args.checkpoint_paths is not None: if len(args.checkpoint_paths) == 1: cur_model = 0 else: cur_model = model_idx debug(f'Loading model {cur_model} from {args.checkpoint_paths[cur_model]}') model = load_checkpoint(args.checkpoint_paths[cur_model], current_args=args, logger=logger) else: debug(f'Building model {model_idx}') model = build_model(model_idx=model_idx, args=args) if args.fine_tune_coff != 1 and args.checkpoint_paths is not None: debug("Fine tune fc layer with different lr") initialize_weights(model_idx=model_idx, model=model.ffn, distinct_init=args.distinct_init) # Get loss and metric functions loss_func = get_loss_func(args, model) optimizer = build_optimizer(model, args) debug(model) debug(f'Number of parameters = {param_count(model):,}') if args.cuda: debug('Moving model to cuda') model = model.cuda() # Ensure that model is saved in correct location for evaluation if 0 epochs save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args) # Learning rate schedulers scheduler = build_lr_scheduler(optimizer, args) # Bulid data_loader shuffle = True mol_collator = MolCollator(shared_dict={}, args=args) train_data = DataLoader(train_data, batch_size=args.batch_size, shuffle=shuffle, num_workers=10, collate_fn=mol_collator) # Run training best_score = float('inf') if args.minimize_score else -float('inf') best_epoch, n_iter = 0, 0 min_val_loss = float('inf') for epoch in range(args.epochs): s_time = time.time() n_iter, train_loss = train( epoch=epoch, model=model, data=train_data, loss_func=loss_func, optimizer=optimizer, scheduler=scheduler, args=args, n_iter=n_iter, shared_dict=shared_dict, logger=logger ) t_time = time.time() - s_time s_time = time.time() val_scores, val_loss = evaluate( model=model, data=val_data, loss_func=loss_func, num_tasks=args.num_tasks, metric_func=metric_func, batch_size=args.batch_size, dataset_type=args.dataset_type, scaler=scaler, shared_dict=shared_dict, logger=logger, args=args ) v_time = time.time() - s_time # Average validation score avg_val_score = np.nanmean(val_scores) # Logged after lr step if isinstance(scheduler, ExponentialLR): scheduler.step() if args.show_individual_scores: # Individual validation scores for task_name, val_score in zip(args.task_names, val_scores): debug(f'Validation {task_name} {args.metric} = {val_score:.6f}') print('Epoch: {:04d}'.format(epoch), 'loss_train: {:.6f}'.format(train_loss), 'loss_val: {:.6f}'.format(val_loss), f'{args.metric}_val: {avg_val_score:.4f}', # 'auc_val: {:.4f}'.format(avg_val_score), 'cur_lr: {:.5f}'.format(scheduler.get_lr()[-1]), 't_time: {:.4f}s'.format(t_time), 'v_time: {:.4f}s'.format(v_time)) if args.tensorboard: writer.add_scalar('loss/train', train_loss, epoch) writer.add_scalar('loss/val', val_loss, epoch) writer.add_scalar(f'{args.metric}_val', avg_val_score, epoch) # Save model checkpoint if improved validation score if args.select_by_loss: if val_loss < min_val_loss: min_val_loss, best_epoch = val_loss, epoch save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args) else: if args.minimize_score and avg_val_score < best_score or \ not args.minimize_score and avg_val_score > best_score: best_score, best_epoch = avg_val_score, epoch save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args) if epoch - best_epoch > args.early_stop_epoch: break ensemble_scores = 0.0 # Evaluate on test set using model with best validation score if args.select_by_loss: info(f'Model {model_idx} best val loss = {min_val_loss:.6f} on epoch {best_epoch}') else: info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}') model = load_checkpoint(os.path.join(save_dir, 'model.pt'), cuda=args.cuda, logger=logger) test_preds, _ = predict( model=model, data=test_data, loss_func=loss_func, batch_size=args.batch_size, logger=logger, shared_dict=shared_dict, scaler=scaler, args=args ) test_scores = evaluate_predictions( preds=test_preds, targets=test_targets, num_tasks=args.num_tasks, metric_func=metric_func, dataset_type=args.dataset_type, logger=logger ) if len(test_preds) != 0: sum_test_preds += np.array(test_preds, dtype=float) # Average test score avg_test_score = np.nanmean(test_scores) info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}') if args.show_individual_scores: # Individual test scores for task_name, test_score in zip(args.task_names, test_scores): info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}') # Evaluate ensemble on test set avg_test_preds = (sum_test_preds / args.ensemble_size).tolist() ensemble_scores = evaluate_predictions( preds=avg_test_preds, targets=test_targets, num_tasks=args.num_tasks, metric_func=metric_func, dataset_type=args.dataset_type, logger=logger ) ind = [['preds'] * args.num_tasks + ['targets'] * args.num_tasks, args.task_names * 2] ind = pd.MultiIndex.from_tuples(list(zip(*ind))) data = np.concatenate([np.array(avg_test_preds), np.array(test_targets)], 1) test_result =
pd.DataFrame(data, index=test_smiles, columns=ind)
pandas.DataFrame
# -*- coding: utf-8 -*- import demjson import logging import pandas as pd import requests from zvt.api.common import generate_kdata_id from zvt.recorders.consts import EASTMONEY_ETF_NET_VALUE_HEADER from zvt.api.technical import get_kdata from zvt.domain import Index, Provider, SecurityType, StoreCategory, TradingLevel, Index1DKdata from zvt.recorders.recorder import ApiWrapper, FixedCycleDataRecorder, TimeSeriesFetchingStyle from zvt.utils.time_utils import to_time_str from zvt.utils.utils import init_process_log logger = logging.getLogger(__name__) class MyApiWrapper(ApiWrapper): def request(self, url=None, method='post', param=None, path_fields=None): security_item = param['security_item'] size = param['size'] url = url.format(security_item.exchange, security_item.code, size) response = requests.get(url) response_json = demjson.decode(response.text) if response_json is None or len(response_json) == 0: return [] df = pd.DataFrame(response_json) df.rename(columns={'day': 'timestamp'}, inplace=True) df['timestamp'] = pd.to_datetime(df['timestamp']) df['name'] = security_item.name df['provider'] = Provider.SINA.value df['level'] = param['level'] return df.to_dict(orient='records') class ChinaETFDayKdataRecorder(FixedCycleDataRecorder): meta_provider = Provider.EXCHANGE meta_schema = Index provider = Provider.SINA store_category = StoreCategory.index_1d_kdata data_schema = Index1DKdata url = 'http://money.finance.sina.com.cn/quotes_service/api/json_v2.php/CN_MarketData.getKLineData?' \ 'symbol={}{}&scale=240&&datalen={}&ma=no' api_wrapper = MyApiWrapper() def __init__(self, security_type=SecurityType.index, exchanges=['sh', 'sz'], codes=None, batch_size=10, force_update=False, sleeping_time=5, fetching_style=TimeSeriesFetchingStyle.end_size, default_size=2000, contain_unfinished_data=False, level=TradingLevel.LEVEL_1DAY, one_shot=True) -> None: super().__init__(security_type, exchanges, codes, batch_size, force_update, sleeping_time, fetching_style, default_size, contain_unfinished_data, level, one_shot) def get_data_map(self): return {} def generate_domain_id(self, security_item, original_data): return generate_kdata_id(security_id=security_item.id, timestamp=original_data['timestamp'], level=self.level) def generate_request_param(self, security_item, start, end, size, timestamp): # 此 url 不支持分页,如果超过我们想取的条数,则只能取最大条数 if start is None or size > self.default_size: size = 8000 return { 'security_item': security_item, 'level': self.level.value, 'size': size } def on_finish(self, security_item): kdatas = get_kdata(security_id=security_item.id, level=TradingLevel.LEVEL_1DAY.value, order=Index1DKdata.timestamp.asc(), return_type='domain', session=self.session, filters=[Index1DKdata.cumulative_net_value.is_(None)]) if kdatas and len(kdatas) > 0: start = kdatas[0].timestamp end = kdatas[-1].timestamp # 从东方财富获取基金累计净值 df = self.fetch_cumulative_net_value(security_item, start, end) if df is not None and not df.empty: for kdata in kdatas: if kdata.timestamp in df.index: kdata.cumulative_net_value = df.loc[kdata.timestamp, 'LJJZ'] kdata.change_pct = df.loc[kdata.timestamp, 'JZZZL'] self.session.commit() self.logger.info(f'{security_item.code} - {security_item.name}累计净值更新完成...') def fetch_cumulative_net_value(self, security_item, start, end) -> pd.DataFrame: query_url = 'http://api.fund.eastmoney.com/f10/lsjz?' \ 'fundCode={}&pageIndex={}&pageSize=200&startDate={}&endDate={}' page = 1 df = pd.DataFrame() while True: url = query_url.format(security_item.code, page, to_time_str(start), to_time_str(end)) response = requests.get(url, headers=EASTMONEY_ETF_NET_VALUE_HEADER) response_json = demjson.decode(response.text) response_df = pd.DataFrame(response_json['Data']['LSJZList']) # 最后一页 if response_df.empty: break response_df['FSRQ'] = pd.to_datetime(response_df['FSRQ']) response_df['JZZZL'] = pd.to_numeric(response_df['JZZZL'], errors='coerce') response_df['LJJZ'] = pd.to_numeric(response_df['LJJZ'], errors='coerce') response_df = response_df.fillna(0) response_df.set_index('FSRQ', inplace=True, drop=True) df =
pd.concat([df, response_df])
pandas.concat
import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd import multiprocessing as mp import pandas.io.data as web import matplotlib.pyplot as plt def compTrade(dt): d=0.001 dt['reg']=np.where(dt['dmacd']>d,1,0) dt['reg']=np.where(dt['dmacd']<-d,-1,dt['reg']) dt['strategy']=dt['reg'].shift(1)*dt['market'] return dt def getSymbols(h5): l=[] for c in h5.keys(): l.append(h5[c]['Adj Close'].columns.values) return [item for items in l for item in items] def getClose(h5,sym): df =
pd.DataFrame()
pandas.DataFrame
""" """ __author__ = "" __version__ = "" import os import json from uuid import UUID from flask import g import pandas as pd # Function to save the recieved JSON file to disk def jsonDump(name, struct, dir = os.getcwd() + "\\"): print('JSON dump') # Open a file for writing, filename will always be unique so append functions uneccessary with open(dir + name, 'w') as f: # Save the JSON to a JSON file on disk json.dump(struct, f) # Function to save the processed data to a CSV def csvDump(fileName, struct, index_set = False, index_label_usr = False, dir = os.getcwd() + "\\"): if os.path.exists(dir + fileName + '.csv'): print('CSV Append') with open(dir + fileName + '.csv', 'a', encoding="utf-8", newline="") as fd: struct.to_csv(fd, header=False, index=index_set) else: print('CSV Create') struct.to_csv(dir + fileName + '.csv', header=True, index=index_set, index_label = index_label_usr) # Convert returned strings from the DB into GUID def strToUUID(struct): # Remove the leading and trailing characters from the ID struct = struct.replace("[('", "") struct = struct.replace("', )]", "") # Convert trimmed string into a GUID (UUID) g.strUUID = UUID(struct) # Return to calling function return g.strUUID # Function for splitting dataframes with concatonated values into multiple rows # Solution provided by user: zouweilin # Solution link: https://gist.github.com/jlln/338b4b0b55bd6984f883 # Modified to use a delimeter regex pattern, so rows can be split using different delimeters # TODO: #2 Fix 'pop from empty stack' error while parsing through sensors without a split import re def split_dataframe_rows(df,column_selectors, delimiters): # we need to keep track of the ordering of the columns print('Splitting rows...') regexPattern = "|".join(map(re.escape,delimiters)) def _split_list_to_rows(row,row_accumulator,column_selector,regexPattern): split_rows = {} max_split = 0 for column_selector in column_selectors: split_row = re.split(regexPattern,row[column_selector]) split_rows[column_selector] = split_row if len(split_row) > max_split: max_split = len(split_row) for i in range(max_split): new_row = row.to_dict() for column_selector in column_selectors: try: new_row[column_selector] = split_rows[column_selector].pop(0) except IndexError: new_row[column_selector] = '' row_accumulator.append(new_row) new_rows = [] df.apply(_split_list_to_rows,axis=1,args = (new_rows,column_selectors,regexPattern)) new_df = pd.DataFrame(new_rows, columns=df.columns) return new_df # Monnit data contains trailing values on sensors with more than one measurand, # and needs to be processed out before properly splitting. # This function should check the name of the sensors for a list of known sensor # types and remove the trailing values. def rmTrailingValues(df, sensors): print ('Removing trailing values from sensors') # Pre-compile the regex statement for the used sensors using the list of sensors provided via paraeter p = re.compile('|'.join(map(re.escape, sensors)), flags=re.IGNORECASE) # Locate any entries that begin with the sensor names provided in the list # using the prepared regex and remove 4 characters from the raw data variable #df.loc[[bool(p.match(x)) for x in df['sensorName']], ['rawData']] = df['rawData'].str[:-4] df.loc[[bool(p.match(x)) for x in df['sensorName']], ['rawData']] = df.loc[[bool(p.match(x)) for x in df['sensorName']], 'rawData'].astype('str').str[:-4] return df # Multiple networks can be configured on the Monnit system. # This function will filter out unwanted networks by keeping # networks with the IDs that are passed to the function. def filterNetwork(df, networkID): print('Filtering out unwanted network') df = df[df.networkID == networkID] return df def aqProcessing(df): print("Processing AQ sensor data") # Add an additional '0' to dataValue and rawData columns to preserve varible ordering when the variable is split df.loc[(df.plotLabels == '?g/m^3|PM1|PM2.5|PM10'), 'dataValue'] = "0|" + df.loc[(df.plotLabels == '?g/m^3|PM1|PM2.5|PM10'), 'dataValue'] df.loc[(df.plotLabels == '?g/m^3|PM1|PM2.5|PM10'), 'rawData'] = "0%7c" + df.loc[(df.plotLabels == '?g/m^3|PM1|PM2.5|PM10'), 'rawData'] # Add another occurance of 'Micrograms' to the dataType column to prevent Null entries upon splitting the dataframe. df.loc[(df.dataType == 'Micrograms|Micrograms|Micrograms'), 'dataType'] = 'Micrograms|Micrograms|Micrograms|Micrograms' # Create a dataframe from Air Quality entries includedColumns = df.loc[df['plotLabels']=='?g/m^3|PM1|PM2.5|PM10'] for i, x in includedColumns.iterrows(): # Split the data so it can be re-rodered rawDataList = x.rawData.split('%7c') # Re-order the processed data into the proper order (PM1, 2.5, 10) and insert the original split delimiter includedColumns.loc[i, 'rawData'] = str(rawDataList[0]) + '%7c' + str(rawDataList[3]) + '%7c' + str(rawDataList[1]) + '%7c' + str(rawDataList[2]) # Overrite the air quality data with the modified data that re-orders the variables df = includedColumns.combine_first(df) return df # Split the data by sensor ID and export the data to separate CSV # files and an XLSX file with separate worksheets per sensor def sortSensors(df, col): print('Sorting and cleaning sensors') # Sort the values in the dataframe by their sensor ID df.sort_values(by = [col], inplace = True) # Set the DF index to the sensor IDs df.set_index(keys = [col], drop = False, inplace = True) # Remove existing index names df.index.name = None return df # Pivot passed in DF to make analysis easier. # 'values', 'index', and 'columns', are all lists of variables def pivotTable(df, values, index, columns, aggFunc): print('Pivoting data...') #df = pd.pivot_table(df, values=['rawData', 'dataValue', 'plotValues'], index=['sensorID'], columns=['dataType', 'plotLabels'], aggfunc=np.sum) df =
pd.pivot_table(df, values=values, index=index, columns=columns, aggfunc=aggFunc)
pandas.pivot_table
import pandas as pd import numpy as np import re ## Different than what was expected, creating a unique for for every DF column ## performed a slower execution than having different fors for each DF column def cleanInvalidDFEntries(id_key,stamp,actor_column,verb_column,object_column): day = [] # Check which day of the week the timestamp represent day_shift = [] # Check which shift of the day the time stamp represent: night, morning, afternoon actor = [] # List of respective actor's name lang = [] # List of respective language of the verb action = [] # List of verbs object_aim = [] # List of afected object for i in range(len(id_key)): # Test which part of the day is and add it to the list day.append(stamp[i].day_name()) # Check which day of the week is if stamp[i].hour < 6 or stamp[i].hour >= 20: day_shift.append('night') elif stamp[i].hour >= 6 and stamp[i].hour < 12: day_shift.append('morning') else: day_shift.append('afternoon') # Grab the raw actor text in the CSV file as str, convert it to dict and collect the actor's name if not (actor_column[i] is np.nan): # Check if actor's name exists, if not, add a NaN which will be purged later if 'name' in actor_column[i].keys(): # Dict format: {'name':'person'}. Check if the key 'name' exists if actor_column[i]['name'] != "": actor.append(actor_column[i]['name']) # This line appends the actor of the current iteration else: actor.append(np.nan) else: actor.append(np.nan) else: actor.append(np.nan) # Grab the raw verb text in the CSV file as str, convert it to dict and collect the verb and the language if not (verb_column[i] is np.nan): if 'id' in verb_column[i].keys(): # dict format: {'display': {'language':'verb'}}. Check if 'display' exists if verb_column[i]['id'] != "": action.append(re.split("/",verb_column[i]['id'])[-1]) # collects the verb in the current iteration and append it, NaN otherwise else: action.append(np.nan) else: action.append(np.nan) if 'display' in verb_column[i].keys(): # dict format: {'display': {'language':'verb'}}. Check if 'display' exists if verb_column[i]['display'][list(verb_column[i]['display'].keys())[0]] != "": lang.append(list(verb_column[i]['display'].keys())[0]) # this line appends the language value to the lang list, NaN otherwise else: lang.append(np.nan) else: lang.append(np.nan) else: action.append(np.nan) lang.append(np.nan) # Grab the raw verb text in the CSV file as str, convert it to dict and collect the object if not (object_column[i] is np.nan): # dict format: {'definition':{'name':{'es-US':'object'}}} if 'definition' in object_column[i].keys(): # check if the key 'definition' exists. Appends NaN otherwise if 'name' in object_column[i]['definition'].keys(): # check if the key 'name' exists. Appends NaN otherwise if object_column[i]['definition'][list(object_column[i]['definition'].keys())[0]] \ [list(object_column[i]['definition'][list(object_column[i]['definition'].keys())[0]].keys())[0]] != "": object_aim.append(object_column[i]['definition'] # This line appends the object of the current iteration [list(object_column[i]['definition'].keys())[0]] [list(object_column[i]['definition'][list(object_column[i]['definition'].keys())[0]].keys())[0]]) else: object_aim.append(np.nan) else: object_aim.append(np.nan) else: object_aim.append(np.nan) else: object_aim.append(np.nan) d =
pd.DataFrame(data={'id':id_key,'timestamp':stamp,'weekday':day,'dayshift':day_shift,'actor':actor,'verb':action,'object':object_aim,'language':lang})
pandas.DataFrame
from openff.toolkit.typing.engines.smirnoff import ForceField from openff.toolkit.topology import Molecule, Topology from biopandas.pdb import PandasPdb import matplotlib.pyplot as plt from operator import itemgetter from mendeleev import element from simtk.openmm import app from scipy import optimize import subprocess as sp from sys import stdout import pandas as pd import numpy as np import statistics import itertools import parmed import pickle import shutil import simtk import scipy import time import math import sys import ast import re import os BOHRS_PER_ANGSTROM = 0.529 HARTREE_PER_KCAL_MOL = 627.509391 #kcal/mol * A^2 to kJ/mol * nm^2 KCAL_MOL_PER_KJ_MOL = 4.184 ANGSTROMS_PER_NM = 10.0 RADIANS_PER_DEGREE = np.pi / 180.0 method_basis_scale_dict = { "HF STO-3G": 0.817, "HF 3-21G": 0.906, "HF 3-21G*": 0.903, "HF 6-31G": 0.903, "HF 6-31G*": 0.899, "HF 6-31G**": 0.903, "HF 6-31+G**": 0.904, "HF 6-311G*": 0.904, "HF 6-311G**": 0.909, "HF TZVP": 0.909, "HF cc-pVDZ": 0.908, "HF cc-pVTZ": 0.91, "HF cc-pVQZ": 0.908, "HF aug-cc-pVDZ": 0.911, "HF aug-cc-pVTZ": 0.91, "HF aug-cc-pVQZ": 0.909, "HF daug-cc-pVDZ": 0.912, "HF daug-cc-pVTZ": 0.905, "ROHF 3-21G": 0.907, "ROHF 3-21G*": 0.909, "ROHF 6-31G": 0.895, "ROHF 6-31G*": 0.89, "ROHF 6-31G**": 0.855, "ROHF 6-31+G**": 0.856, "ROHF 6-311G*": 0.856, "ROHF 6-311G**": 0.913, "ROHF cc-pVDZ": 0.861, "ROHF cc-pVTZ": 0.901, "LSDA STO-3G": 0.896, "LSDA 3-21G": 0.984, "LSDA 3-21G*": 0.982, "LSDA 6-31G": 0.98, "LSDA 6-31G*": 0.981, "LSDA 6-31G**": 0.981, "LSDA 6-31+G**": 0.985, "LSDA 6-311G*": 0.984, "LSDA 6-311G**": 0.988, "LSDA TZVP": 0.988, "LSDA cc-pVDZ": 0.989, "LSDA cc-pVTZ": 0.989, "LSDA aug-cc-pVDZ": 0.989, "LSDA aug-cc-pVTZ": 0.991, "BLYP STO-3G": 0.925, "BLYP 3-21G": 0.995, "BLYP 3-21G*": 0.994, "BLYP 6-31G": 0.992, "BLYP 6-31G*": 0.992, "BLYP 6-31G**": 0.992, "BLYP 6-31+G**": 0.995, "BLYP 6-311G*": 0.998, "BLYP 6-311G**": 0.996, "BLYP TZVP": 0.998, "BLYP cc-pVDZ": 1.002, "BLYP cc-pVTZ": 0.997, "BLYP aug-cc-pVDZ": 0.998, "BLYP aug-cc-pVTZ": 0.997, "B1B95 STO-3G": 0.883, "B1B95 3-21G": 0.957, "B1B95 3-21G*": 0.955, "B1B95 6-31G": 0.954, "B1B95 6-31G*": 0.949, "B1B95 6-31G**": 0.955, "B1B95 6-31+G**": 0.957, "B1B95 6-311G*": 0.959, "B1B95 6-311G**": 0.96, "B1B95 TZVP": 0.957, "B1B95 cc-pVDZ": 0.961, "B1B95 cc-pVTZ": 0.957, "B1B95 aug-cc-pVDZ": 0.958, "B1B95 aug-cc-pVTZ": 0.959, "B3LYP STO-3G": 0.892, "B3LYP 3-21G": 0.965, "B3LYP 3-21G*": 0.962, "B3LYP 6-31G": 0.962, "B3LYP 6-31G*": 0.96, "B3LYP 6-31G**": 0.961, "B3LYP 6-31+G**": 0.964, "B3LYP 6-311G*": 0.966, "B3LYP 6-311G**": 0.967, "B3LYP TZVP": 0.965, "B3LYP cc-pVDZ": 0.97, "B3LYP cc-pVTZ": 0.967, "B3LYP cc-pVQZ": 0.969, "B3LYP aug-cc-pVDZ": 0.97, "B3LYP aug-cc-pVTZ": 0.968, "B3LYP aug-cc-pVQZ": 0.969, "B3PW91 STO-3G": 0.885, "B3PW91 3-21G": 0.961, "B3PW91 3-21G*": 0.959, "B3PW91 6-31G": 0.958, "B3PW91 6-31G*": 0.957, "B3PW91 6-31G**": 0.958, "B3PW91 6-31+G**": 0.96, "B3PW91 6-311G*": 0.963, "B3PW91 6-311G**": 0.963, "B3PW91 TZVP": 0.964, "B3PW91 cc-pVDZ": 0.965, "B3PW91 cc-pVTZ": 0.962, "B3PW91 aug-cc-pVDZ": 0.965, "B3PW91 aug-cc-pVTZ": 0.965, "mPW1PW91 STO-3G": 0.879, "mPW1PW91 3-21G": 0.955, "mPW1PW91 3-21G*": 0.95, "mPW1PW91 6-31G": 0.947, "mPW1PW91 6-31G*": 0.948, "mPW1PW91 6-31G**": 0.952, "mPW1PW91 6-31+G**": 0.952, "mPW1PW91 6-311G*": 0.954, "mPW1PW91 6-311G**": 0.957, "mPW1PW91 TZVP": 0.954, "mPW1PW91 cc-pVDZ": 0.958, "mPW1PW91 cc-pVTZ": 0.959, "mPW1PW91 aug-cc-pVDZ": 0.958, "mPW1PW91 aug-cc-pVTZ": 0.958, "PBEPBE STO-3G": 0.914, "PBEPBE 3-21G": 0.991, "PBEPBE 3-21G*": 0.954, "PBEPBE 6-31G": 0.986, "PBEPBE 6-31G*": 0.986, "PBEPBE 6-31G**": 0.986, "PBEPBE 6-31+G**": 0.989, "PBEPBE 6-311G*": 0.99, "PBEPBE 6-311G**": 0.991, "PBEPBE TZVP": 0.989, "PBEPBE cc-pVDZ": 0.994, "PBEPBE cc-pVTZ": 0.993, "PBEPBE aug-cc-pVDZ": 0.994, "PBEPBE aug-cc-pVTZ": 0.994, "PBE1PBE STO-3G": 0.882, "PBE1PBE 3-21G": 0.96, "PBE1PBE 3-21G*": 0.96, "PBE1PBE 6-31G": 0.956, "PBE1PBE 6-31G*": 0.95, "PBE1PBE 6-31G**": 0.953, "PBE1PBE 6-31+G**": 0.955, "PBE1PBE 6-311G*": 0.959, "PBE1PBE 6-311G**": 0.959, "PBE1PBE TZVP": 0.96, "PBE1PBE cc-pVDZ": 0.962, "PBE1PBE cc-pVTZ": 0.961, "PBE1PBE aug-cc-pVDZ": 0.962, "PBE1PBE aug-cc-pVTZ": 0.962, "HSEh1PBE STO-3G": 0.883, "HSEh1PBE 3-21G": 0.963, "HSEh1PBE 3-21G*": 0.96, "HSEh1PBE 6-31G": 0.957, "HSEh1PBE 6-31G*": 0.951, "HSEh1PBE 6-31G**": 0.954, "HSEh1PBE 6-31+G**": 0.955, "HSEh1PBE 6-311G*": 0.96, "HSEh1PBE 6-311G**": 0.96, "HSEh1PBE TZVP": 0.96, "HSEh1PBE cc-pVDZ": 0.962, "HSEh1PBE cc-pVTZ": 0.961, "HSEh1PBE aug-cc-pVDZ": 0.962, "HSEh1PBE aug-cc-pVTZ": 0.962, "TPSSh 3-21G": 0.969, "TPSSh 3-21G*": 0.966, "TPSSh 6-31G": 0.962, "TPSSh 6-31G*": 0.959, "TPSSh 6-31G**": 0.959, "TPSSh 6-31+G**": 0.963, "TPSSh 6-311G*": 0.963, "TPSSh TZVP": 0.964, "TPSSh cc-pVDZ": 0.972, "TPSSh cc-pVTZ": 0.968, "TPSSh aug-cc-pVDZ": 0.967, "TPSSh aug-cc-pVTZ": 0.965, "B97D3 3-21G": 0.983, "B97D3 6-31G*": 0.98, "B97D3 6-31+G**": 0.983, "B97D3 6-311G**": 0.986, "B97D3 TZVP": 0.986, "B97D3 cc-pVDZ": 0.992, "B97D3 cc-pVTZ": 0.986, "B97D3 aug-cc-pVTZ": 0.985, "MP2 STO-3G": 0.872, "MP2 3-21G": 0.955, "MP2 3-21G*": 0.951, "MP2 6-31G": 0.957, "MP2 6-31G*": 0.943, "MP2 6-31G**": 0.937, "MP2 6-31+G**": 0.941, "MP2 6-311G*": 0.95, "MP2 6-311G**": 0.95, "MP2 TZVP": 0.948, "MP2 cc-pVDZ": 0.953, "MP2 cc-pVTZ": 0.95, "MP2 cc-pVQZ": 0.948, "MP2 aug-cc-pVDZ": 0.959, "MP2 aug-cc-pVTZ": 0.953, "MP2 aug-cc-pVQZ": 0.95, "MP2=FULL STO-3G": 0.889, "MP2=FULL 3-21G": 0.955, "MP2=FULL 3-21G*": 0.948, "MP2=FULL 6-31G": 0.95, "MP2=FULL 6-31G*": 0.942, "MP2=FULL 6-31G**": 0.934, "MP2=FULL 6-31+G**": 0.939, "MP2=FULL 6-311G*": 0.947, "MP2=FULL 6-311G**": 0.949, "MP2=FULL TZVP": 0.953, "MP2=FULL cc-pVDZ": 0.95, "MP2=FULL cc-pVTZ": 0.949, "MP2=FULL cc-pVQZ": 0.957, "MP2=FULL aug-cc-pVDZ": 0.969, "MP2=FULL aug-cc-pVTZ": 0.951, "MP2=FULL aug-cc-pVQZ": 0.956, "MP3 STO-3G": 0.894, "MP3 3-21G": 0.968, "MP3 3-21G*": 0.965, "MP3 6-31G": 0.966, "MP3 6-31G*": 0.939, "MP3 6-31G**": 0.935, "MP3 6-31+G**": 0.931, "MP3 TZVP": 0.935, "MP3 cc-pVDZ": 0.948, "MP3 cc-pVTZ": 0.945, "MP3=FULL 6-31G*": 0.938, "MP3=FULL 6-31+G**": 0.932, "MP3=FULL TZVP": 0.934, "MP3=FULL cc-pVDZ": 0.94, "MP3=FULL cc-pVTZ": 0.933, "B2PLYP 6-31G*": 0.949, "B2PLYP 6-31+G**": 0.952, "B2PLYP TZVP": 0.954, "B2PLYP cc-pVDZ": 0.958, "B2PLYP cc-pVTZ": 0.959, "B2PLYP cc-pVQZ": 0.957, "B2PLYP aug-cc-pVTZ": 0.961, "B2PLYP=FULL 3-21G": 0.952, "B2PLYP=FULL 6-31G*": 0.948, "B2PLYP=FULL 6-31+G**": 0.951, "B2PLYP=FULL TZVP": 0.954, "B2PLYP=FULL cc-pVDZ": 0.959, "B2PLYP=FULL cc-pVTZ": 0.956, "B2PLYP=FULL aug-cc-pVDZ": 0.962, "B2PLYP=FULL aug-cc-pVTZ": 0.959, "CID 3-21G": 0.932, "CID 3-21G*": 0.931, "CID 6-31G": 0.935, "CID 6-31G*": 0.924, "CID 6-31G**": 0.924, "CID 6-31+G**": 0.924, "CID 6-311G*": 0.929, "CID cc-pVDZ": 0.924, "CID cc-pVTZ": 0.927, "CISD 3-21G": 0.941, "CISD 3-21G*": 0.934, "CISD 6-31G": 0.938, "CISD 6-31G*": 0.926, "CISD 6-31G**": 0.918, "CISD 6-31+G**": 0.922, "CISD 6-311G*": 0.925, "CISD cc-pVDZ": 0.922, "CISD cc-pVTZ": 0.93, "QCISD 3-21G": 0.969, "QCISD 3-21G*": 0.961, "QCISD 6-31G": 0.964, "QCISD 6-31G*": 0.952, "QCISD 6-31G**": 0.941, "QCISD 6-31+G**": 0.945, "QCISD 6-311G*": 0.957, "QCISD 6-311G**": 0.954, "QCISD TZVP": 0.955, "QCISD cc-pVDZ": 0.959, "QCISD cc-pVTZ": 0.956, "QCISD aug-cc-pVDZ": 0.969, "QCISD aug-cc-pVTZ": 0.962, "CCD 3-21G": 0.972, "CCD 3-21G*": 0.957, "CCD 6-31G": 0.96, "CCD 6-31G*": 0.947, "CCD 6-31G**": 0.938, "CCD 6-31+G**": 0.942, "CCD 6-311G*": 0.955, "CCD 6-311G**": 0.955, "CCD TZVP": 0.948, "CCD cc-pVDZ": 0.957, "CCD cc-pVTZ": 0.934, "CCD aug-cc-pVDZ": 0.965, "CCD aug-cc-pVTZ": 0.957, "CCSD 3-21G": 0.943, "CCSD 3-21G*": 0.943, "CCSD 6-31G": 0.943, "CCSD 6-31G*": 0.944, "CCSD 6-31G**": 0.933, "CCSD 6-31+G**": 0.934, "CCSD 6-311G*": 0.954, "CCSD TZVP": 0.954, "CCSD cc-pVDZ": 0.947, "CCSD cc-pVTZ": 0.941, "CCSD cc-pVQZ": 0.951, "CCSD aug-cc-pVDZ": 0.963, "CCSD aug-cc-pVTZ": 0.956, "CCSD aug-cc-pVQZ": 0.953, "CCSD=FULL 6-31G*": 0.95, "CCSD=FULL TZVP": 0.948, "CCSD=FULL cc-pVTZ": 0.948, "CCSD=FULL aug-cc-pVTZ": 0.951, } element_list = [ ["1 ", "H ", "Hydrogen"], ["2 ", "He", "Helium"], ["3 ", "Li", "Lithium"], ["4 ", "Be", "Beryllium"], ["5 ", "B ", "Boron"], ["6 ", "C ", "Carbon"], ["7 ", "N ", "Nitrogen"], ["8 ", "O ", "Oxygen"], ["9 ", "F ", "Fluorine"], ["10", "Ne", "Neon"], ["11", "Na", "Sodium"], ["12", "Mg", "Magnesium"], ["13", "Al", "Aluminum"], ["14", "Si", "Silicon"], ["15", "P ", "Phosphorus"], ["16", "S ", "Sulfur"], ["17", "Cl", "Chlorine"], ["18", "Ar", "Argon"], ["19", "K ", "Potassium"], ["20", "Ca", "Calcium"], ["21", "Sc", "Scandium"], ["22", "Ti", "Titanium"], ["23", "V ", "Vanadium"], ["24", "Cr", "Chromium"], ["25", "Mn", "Manganese"], ["26", "Fe", "Iron"], ["27", "Co", "Cobalt"], ["28", "Ni", "Nickel"], ["29", "Cu", "Copper"], ["30", "Zn", "Zinc"], ["31", "Ga", "Gallium"], ["32", "Ge", "Germanium"], ["33", "As", "Arsenic"], ["34", "Se", "Selenium"], ["35", "Br", "Bromine"], ["36", "Kr", "Krypton"], ["37", "Rb", "Rubidium"], ["38", "Sr", "Strontium"], ["39", "Y ", "Yttrium"], ["40", "Zr", "Zirconium"], ["41", "Nb", "Niobium"], ["42", "Mo", "Molybdenum"], ["43", "Tc", "Technetium"], ["44", "Ru", "Ruthenium"], ["45", "Rh", "Rhodium"], ["46", "Pd", "Palladium"], ["47", "Ag", "Silver"], ["48", "Cd", "Cadmium"], ["49", "In", "Indium"], ["50", "Sn", "Tin"], ["51", "Sb", "Antimony"], ["52", "Te", "Tellurium"], ["53", "I ", "Iodine"], ["54", "Xe", "Xenon"], ["55", "Cs", "Cesium"], ["56", "Ba", "Barium"], ["57", "La", "Lanthanum"], ["58", "Ce", "Cerium"], ["59", "Pr", "Praseodymium"], ["60", "Nd", "Neodymium"], ["61", "Pm", "Promethium"], ["62", "Sm", "Samarium"], ["63", "Eu", "Europium"], ["64", "Gd", "Gadolinium"], ["65", "Tb", "Terbium"], ["66", "Dy", "Dysprosium"], ["67", "Ho", "Holmium"], ["68", "Er", "Erbium"], ["69", "Tm", "Thulium"], ["70", "Yb", "Ytterbium"], ["71", "Lu", "Lutetium"], ["72", "Hf", "Hafnium"], ["73", "Ta", "Tantalum"], ["74", "W ", "Tungsten"], ["75", "Re", "Rhenium"], ["76", "Os", "Osmium"], ["77", "Ir", "Iridium"], ["78", "Pt", "Platinum"], ["79", "Au", "Gold"], ["80", "Hg", "Mercury"], ["81", "Tl", "Thallium"], ["82", "Pb", "Lead"], ["83", "Bi", "Bismuth"], ["84", "Po", "Polonium"], ["85", "At", "Astatine"], ["86", "Rn", "Radon"], ["87", "Fr", "Francium"], ["88", "Ra", "Radium"], ["89", "Ac", "Actinium"], ["90", "Th", "Thorium"], ["91", "Pa", "Protactinium"], ["92", "U ", "Uranium"], ["93", "Np", "Neptunium"], ["94", "Pu", "Plutonium"], ["95", "Am", "Americium"], ["96", "Cm", "Curium"], ["97", "Bk", "Berkelium"], ["98", "Cf", "Californium"], ["99", "Es", "Einsteinium"], ] def get_vibrational_scaling(functional, basis_set): """ Returns vibrational scaling factor given the functional and the basis set for the QM engine. Parameters ---------- functional: str Functional basis_set: str Basis set Returns ------- vib_scale: float Vibrational scaling factor corresponding to the given the basis_set and the functional. Examples -------- >>> get_vibrational_scaling("QCISD", "6-311G*") 0.957 """ vib_scale = method_basis_scale_dict.get(functional + " " + basis_set) return vib_scale def unit_vector_N(u_BC, u_AB): """ Calculates unit normal vector perpendicular to plane ABC. Parameters ---------- u_BC : (.. , 1, 3) array Unit vector from atom B to atom C. u_AB : (..., 1, 3) array Unit vector from atom A to atom B. Returns ------- u_N : (..., 1, 3) array Unit normal vector perpendicular to plane ABC. Examples -------- >>> u_BC = [0.34040355, 0.62192853, 0.27011169] >>> u_AB = [0.28276792, 0.34232697, 0.02370306] >>> unit_vector_N(u_BC, u_AB) array([-0.65161629, 0.5726879 , -0.49741811]) """ cross_product = np.cross(u_BC, u_AB) norm_u_N = np.linalg.norm(cross_product) u_N = cross_product / norm_u_N return u_N def delete_guest_angle_params(guest_qm_params_file="guest_qm_params.txt"): """ """ f_params = open(guest_qm_params_file, "r") lines_params = f_params.readlines() for i in range(len(lines_params)): if "Begin writing the Angle Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Angle Parameters" in lines_params[i]: to_end = int(i) lines_selected = lines_params[:to_begin] + lines_params[to_end + 1 :] with open(guest_qm_params_file, "w") as f_: f_.write("".join(lines_selected)) return def remove_bad_angle_params( guest_qm_params_file="guest_qm_params.txt", angle=1.00, k_angle=500): with open(guest_qm_params_file, "r") as f_params: lines_params = f_params.readlines() for i in range(len(lines_params)): if "Begin writing the Angle Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Angle Parameters" in lines_params[i]: to_end = int(i) angle_params = lines_params[to_begin + 1 : to_end] lines_to_omit = [] for i in angle_params: if float(re.findall(r"[-+]?\d+[.]?\d*", i)[0]) < float(angle) or float( re.findall(r"[-+]?\d+[.]?\d*", i)[1] ) > float(k_angle): lines_to_omit.append(i) for b in lines_to_omit: lines_params.remove(b) with open(guest_qm_params_file, "w") as file: for j in lines_params: file.write(j) def get_num_host_atoms(host_pdb): """ Reads the host PDB file and returns the total number of atoms. """ ppdb = PandasPdb() ppdb.read_pdb(host_pdb) no_host_atoms = ppdb.df["ATOM"].shape[0] return no_host_atoms def change_names(inpcrd_file, prmtop_file, pdb_file): command = "cp -r " + inpcrd_file + " system_qmmmrebind.inpcrd" os.system(command) command = "cp -r " + prmtop_file + " system_qmmmrebind.prmtop" os.system(command) command = "cp -r " + pdb_file + " system_qmmmrebind.pdb" os.system(command) def copy_file(source, destination): """ Copies a file from a source to the destination. """ shutil.copy(source, destination) def get_openmm_energies(system_pdb, system_xml): """ Returns decomposed OPENMM energies for the system. Parameters ---------- system_pdb : str Input PDB file system_xml : str Forcefield file in XML format """ pdb = simtk.openmm.app.PDBFile(system_pdb) ff_xml_file = open(system_xml, "r") system = simtk.openmm.XmlSerializer.deserialize(ff_xml_file.read()) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation(pdb.topology, system, integrator) simulation.context.setPositions(pdb.positions) state = simulation.context.getState( getEnergy=True, getParameters=True, getForces=True ) force_group = [] for i, force in enumerate(system.getForces()): force_group.append(force.__class__.__name__) forcegroups = {} for i in range(system.getNumForces()): force = system.getForce(i) force.setForceGroup(i) forcegroups[force] = i energies = {} for f, i in forcegroups.items(): energies[f] = ( simulation.context.getState(getEnergy=True, groups=2 ** i) .getPotentialEnergy() ._value ) decomposed_energy = [] for key, val in energies.items(): decomposed_energy.append(val) df_energy_openmm = pd.DataFrame( list(zip(force_group, decomposed_energy)), columns=["Energy_term", "Energy_openmm_params"], ) energy_values = [ list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "HarmonicBondForce" ].values[0] )[1], list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "HarmonicAngleForce" ].values[0] )[1], list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "PeriodicTorsionForce" ].values[0] )[1], list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "NonbondedForce" ].values[0] )[1], ] energy_group = [ "HarmonicBondForce", "HarmonicAngleForce", "PeriodicTorsionForce", "NonbondedForce", ] df_energy_open_mm = pd.DataFrame( list(zip(energy_group, energy_values)), columns=["Energy_term", "Energy_openmm_params"], ) df_energy_open_mm = df_energy_open_mm.set_index("Energy_term") print(df_energy_open_mm) def u_PA_from_angles(atom_A, atom_B, atom_C, coords): """ Returns the vector in the plane A,B,C and perpendicular to AB. Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). coords : (..., N, 3) array An array which contains the coordinates of all the N atoms. """ diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB u_N = unit_vector_N(u_CB, u_AB) u_PA = np.cross(u_N, u_AB) norm_PA = np.linalg.norm(u_PA) u_PA = u_PA / norm_PA return u_PA def force_angle_constant( atom_A, atom_B, atom_C, bond_lengths, eigenvalues, eigenvectors, coords, scaling_1, scaling_2, ): """ Calculates force constant according to Equation 14 of Seminario calculation paper; returns angle (in kcal/mol/rad^2) and equilibrium angle (in degrees). Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). bond_lengths : (N, N) array An N * N array containing the bond lengths for all the possible pairs of atoms. eigenvalues : (N, N, 3) array A numpy array of shape (N, N, 3) containing eigenvalues of the hessian matrix, where N is the total number of atoms. eigenvectors : (3, 3, N, N) array A numpy array of shape (3, 3, N, N) containing eigenvectors of the hessian matrix. coords : (N, 3) array A numpy array of shape (N, 3) having the X, Y and Z coordinates of all N atoms. scaling_1 : float Factor to scale the projections of eigenvalues for AB. scaling_2 : float Factor to scale the projections of eigenvalues for BC. Returns ------- k_theta : float Force angle constant calculated using modified seminario method. k_0 : float Equilibrium angle between AB and BC. """ # Vectors along bonds calculated diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB # Bond lengths and eigenvalues found bond_length_AB = bond_lengths[atom_A, atom_B] eigenvalues_AB = eigenvalues[atom_A, atom_B, :] eigenvectors_AB = eigenvectors[0:3, 0:3, atom_A, atom_B] bond_length_BC = bond_lengths[atom_B, atom_C] eigenvalues_CB = eigenvalues[atom_C, atom_B, :] eigenvectors_CB = eigenvectors[0:3, 0:3, atom_C, atom_B] # Normal vector to angle plane found u_N = unit_vector_N(u_CB, u_AB) u_PA = np.cross(u_N, u_AB) norm_u_PA = np.linalg.norm(u_PA) u_PA = u_PA / norm_u_PA u_PC = np.cross(u_CB, u_N) norm_u_PC = np.linalg.norm(u_PC) u_PC = u_PC / norm_u_PC sum_first = 0 sum_second = 0 # Projections of eigenvalues for i in range(0, 3): eig_AB_i = eigenvectors_AB[:, i] eig_BC_i = eigenvectors_CB[:, i] sum_first = sum_first + ( eigenvalues_AB[i] * abs(dot_product(u_PA, eig_AB_i)) ) sum_second = sum_second + ( eigenvalues_CB[i] * abs(dot_product(u_PC, eig_BC_i)) ) # Scaling due to additional angles - Modified Seminario Part sum_first = sum_first / scaling_1 sum_second = sum_second / scaling_2 # Added as two springs in series k_theta = (1 / ((bond_length_AB ** 2) * sum_first)) + ( 1 / ((bond_length_BC ** 2) * sum_second) ) k_theta = 1 / k_theta k_theta = -k_theta # Change to OPLS form k_theta = abs(k_theta * 0.5) # Change to OPLS form # Equilibrium Angle theta_0 = math.degrees(math.acos(np.dot(u_AB, u_CB))) # If the vectors u_CB and u_AB are linearly dependent u_N cannot be defined. # This case is dealt with here : if abs(sum((u_CB) - (u_AB))) < 0.01 or ( abs(sum((u_CB) - (u_AB))) > 1.99 and abs(sum((u_CB) - (u_AB))) < 2.01 ): scaling_1 = 1 scaling_2 = 1 [k_theta, theta_0] = force_angle_constant_special_case( atom_A, atom_B, atom_C, bond_lengths, eigenvalues, eigenvectors, coords, scaling_1, scaling_2, ) return k_theta, theta_0 def dot_product(u_PA, eig_AB): """ Returns the dot product of two vectors. Parameters ---------- u_PA : (..., 1, 3) array Unit vector perpendicular to AB and in the plane of A, B, C. eig_AB : (..., 3, 3) array Eigenvectors of the hessian matrix for the bond AB. """ x = 0 for i in range(0, 3): x = x + u_PA[i] * eig_AB[i].conjugate() return x def force_angle_constant_special_case( atom_A, atom_B, atom_C, bond_lengths, eigenvalues, eigenvectors, coords, scaling_1, scaling_2, ): """ Calculates force constant according to Equation 14 of Seminario calculation paper when the vectors u_CB and u_AB are linearly dependent and u_N cannot be defined. It instead takes samples of u_N across a unit sphere for the calculation; returns angle (in kcal/mol/rad^2) and equilibrium angle in degrees. Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). bond_lengths : (N, N) array An N * N array containing the bond lengths for all the possible pairs of atoms. eigenvalues : (N, N, 3) array A numpy array of shape (N, N, 3) containing eigenvalues of the hessian matrix, where N is the total number of atoms. eigenvectors : (3, 3, N, N) array A numpy array of shape (3, 3, N, N) containing eigenvectors of the hessian matrix. coords : (N, 3) array A numpy array of shape (N, 3) having the X, Y, and Z coordinates of all N atoms. scaling_1 : float Factor to scale the projections of eigenvalues for AB. scaling_2 : float Factor to scale the projections of eigenvalues for BC. Returns ------- k_theta : float Force angle constant calculated using modified seminario method. k_0 : float Equilibrium angle between AB and BC. """ # Vectors along bonds calculated diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB # Bond lengths and eigenvalues found bond_length_AB = bond_lengths[atom_A, atom_B] eigenvalues_AB = eigenvalues[atom_A, atom_B, :] eigenvectors_AB = eigenvectors[0:3, 0:3, atom_A, atom_B] bond_length_BC = bond_lengths[atom_B, atom_C] eigenvalues_CB = eigenvalues[atom_C, atom_B, :] eigenvectors_CB = eigenvectors[0:3, 0:3, atom_C, atom_B] k_theta_array = np.zeros((180, 360)) # Find force constant with varying u_N (with vector uniformly # sampled across a sphere) for theta in range(0, 180): for phi in range(0, 360): r = 1 u_N = [ r * math.sin(math.radians(theta)) * math.cos(math.radians(theta)), r * math.sin(math.radians(theta)) * math.sin(math.radians(theta)), r * math.cos(math.radians(theta)), ] u_PA = np.cross(u_N, u_AB) u_PA = u_PA / np.linalg.norm(u_PA) u_PC = np.cross(u_CB, u_N) u_PC = u_PC / np.linalg.norm(u_PC) sum_first = 0 sum_second = 0 # Projections of eigenvalues for i in range(0, 3): eig_AB_i = eigenvectors_AB[:, i] eig_BC_i = eigenvectors_CB[:, i] sum_first = sum_first + ( eigenvalues_AB[i] * abs(dot_product(u_PA, eig_AB_i)) ) sum_second = sum_second + ( eigenvalues_CB[i] * abs(dot_product(u_PC, eig_BC_i)) ) # Added as two springs in series k_theta_ij = (1 / ((bond_length_AB ** 2) * sum_first)) + ( 1 / ((bond_length_BC ** 2) * sum_second) ) k_theta_ij = 1 / k_theta_ij k_theta_ij = -k_theta_ij # Change to OPLS form k_theta_ij = abs(k_theta_ij * 0.5) # Change to OPLS form k_theta_array[theta, phi] = k_theta_ij # Removes cases where u_N was linearly dependent of u_CB or u_AB. # Force constant used is taken as the mean. k_theta = np.mean(np.mean(k_theta_array)) # Equilibrium Angle independent of u_N theta_0 = math.degrees(math.cos(np.dot(u_AB, u_CB))) return k_theta, theta_0 def force_constant_bond(atom_A, atom_B, eigenvalues, eigenvectors, coords): """ Calculates the bond force constant for the bonds in the molecule according to equation 10 of seminario paper, given the bond atoms' indices and the corresponding eigenvalues, eigenvectors and coordinates matrices. Parameters ---------- atom_A : int Index of Atom A. atom_B : int Index of Atom B. eigenvalues : (N, N, 3) array A numpy array of shape (N, N, 3) containing eigenvalues of the hessian matrix, where N is the total number of atoms. eigenvectors : (3, 3, N, N) array A numpy array of shape (3, 3, N, N) containing the eigenvectors of the hessian matrix. coords : (N, 3) array A numpy array of shape (N, 3) having the X, Y, and Z coordinates of all N atoms. Returns -------- k_AB : float Bond Force Constant value for the bond with atoms A and B. """ # Eigenvalues and eigenvectors calculated eigenvalues_AB = eigenvalues[atom_A, atom_B, :] eigenvectors_AB = eigenvectors[:, :, atom_A, atom_B] # Vector along bond diff_AB = np.array(coords[atom_B, :]) - np.array(coords[atom_A, :]) norm_diff_AB = np.linalg.norm(diff_AB) unit_vectors_AB = diff_AB / norm_diff_AB k_AB = 0 # Projections of eigenvalues for i in range(0, 3): dot_product = abs(np.dot(unit_vectors_AB, eigenvectors_AB[:, i])) k_AB = k_AB + (eigenvalues_AB[i] * dot_product) k_AB = -k_AB * 0.5 # Convert to OPLS form return k_AB def u_PA_from_angles(atom_A, atom_B, atom_C, coords): """ Returns the vector in the plane A,B,C and perpendicular to AB. Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). coords : (..., N, 3) array An array containing the coordinates of all the N atoms. Returns ------- u_PA : (..., 1, 3) array Unit vector perpendicular to AB and in the plane of A, B, C. """ diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB u_N = unit_vector_N(u_CB, u_AB) u_PA = np.cross(u_N, u_AB) norm_PA = np.linalg.norm(u_PA) u_PA = u_PA / norm_PA return u_PA def reverse_list(lst): """ Returns the reversed form of a given list. Parameters ---------- lst : list Input list. Returns ------- reversed_list : list Reversed input list. Examples -------- >>> lst = [5, 4, 7, 2] >>> reverse_list(lst) [2, 7, 4, 5] """ reversed_list = lst[::-1] return reversed_list def uniq(input_): """ Returns a list with only unique elements from a list containing duplicate / repeating elements. Parameters ---------- input_ : list Input list. Returns ------- output : list List with only unique elements. Examples -------- >>> lst = [2, 4, 2, 9, 10, 35, 10] >>> uniq(lst) [2, 4, 9, 10, 35] """ output = [] for x in input_: if x not in output: output.append(x) return output def search_in_file(file: str, word: str) -> list: """ Search for the given string in file and return lines containing that string along with line numbers. Parameters ---------- file : str Input file. word : str Search word. Returns ------- list_of_results : list List of lists with each element representing the line number and the line contents. """ line_number = 0 list_of_results = [] with open(file, "r") as f: for line in f: line_number += 1 if word in line: list_of_results.append((line_number, line.rstrip())) return list_of_results def list_to_dict(lst): """ Converts an input list with mapped characters (every odd entry is the key of the dictionary and every even entry adjacent to the odd entry is its correponding value) to a dictionary. Parameters ---------- lst : list Input list. Returns ------- res_dct : dict A dictionary with every element mapped with its successive element starting from index 0. Examples -------- >>> lst = [5, 9, 3, 6, 2, 7] >>> list_to_dict(lst) {5: 9, 3: 6, 2: 7} """ res_dct = {lst[i]: lst[i + 1] for i in range(0, len(lst), 2)} return res_dct def scale_list(list_): """ Returns a scaled list with the minimum value subtracted from each element of the corresponding list. Parameters ---------- list_ : list Input list. Returns ------- scaled_list : list Scaled list. Examples -------- >>> list_ = [6, 3, 5, 11, 3, 2, 8, 6] >>> scale_list(list_) [4, 1, 3, 9, 1, 0, 6, 4] """ scaled_list = [i - min(list_) for i in list_] return scaled_list def list_kJ_kcal(list_): """ Convert the elements in the list from kiloJoules units to kiloCalories units. Parameters ---------- list_ : list List with elements in units of kJ. Returns ------- converted_list : list List with elements in units of kcal. Examples -------- >>> list_ = [6, 3, 5] >>> list_kJ_kcal(list_) [1.4340344168260037, 0.7170172084130019, 1.1950286806883366] """ converted_list = [i / 4.184 for i in list_] return converted_list def list_hartree_kcal(list_): """ Convert the elements in the list from hartree units to kiloCalories units. Parameters ---------- list_ : list List with elements in units of hartree. Returns ------- converted_list : list List with elements in units of kcal. Examples -------- >>> list_ = [6, 3, 5] >>> list_hartree_kcal(list_) [3765.0564000000004, 1882.5282000000002, 3137.547] """ converted_list = [i * 627.5094 for i in list_] return converted_list def torsiondrive_input_to_xyz(psi_input_file, xyz_file): """ Returns an xyz file from a torsiondrive formatted input file. Parameters ---------- psi_input_file : str Input file for the psi4 QM engine. xyz_file : str XYZ format file to write the coords of the system. """ with open(psi_input_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "molecule {" in lines[i]: to_begin = int(i) if "set {" in lines[i]: to_end = int(i) xyz_lines = lines[to_begin + 2 : to_end - 1] with open(xyz_file, "w") as f: f.write(str(len(xyz_lines)) + "\n") f.write(xyz_file + "\n") for i in xyz_lines: f.write(i) def xyz_to_pdb(xyz_file, coords_file, template_pdb, system_pdb): """ Converts a XYZ file to a PDB file. Parameters ---------- xyz_file : str XYZ file containing the coordinates of the system. coords_file : str A text file containing the coordinates part of XYZ file. template_pdb : str A pdb file to be used as a template for the required PDB. system_pdb : str Output PDB file with the coordinates updated in the template pdb using XYZ file. """ with open(xyz_file, "r") as f: lines = f.readlines() needed_lines = lines[2:] with open(coords_file, "w") as f: for i in needed_lines: f.write(i) df = pd.read_csv(coords_file, header=None, delimiter=r"\s+") df.columns = ["atom", "x", "y", "z"] ppdb = PandasPdb() ppdb.read_pdb(template_pdb) ppdb.df["ATOM"]["x_coord"] = df["x"] ppdb.df["ATOM"]["y_coord"] = df["y"] ppdb.df["ATOM"]["z_coord"] = df["z"] ppdb.to_pdb(system_pdb) def generate_xml_from_pdb_sdf(system_pdb, system_sdf, system_xml): """ Generates an openforcefield xml file from the pdb file. Parameters ---------- system_pdb : str Input PDB file. system_sdf : str SDF file of the system. system_xml : str XML force field file generated using PDB and SDF files. """ # command = "babel -ipdb " + system_pdb + " -osdf " + system_sdf command = "obabel -ipdb " + system_pdb + " -osdf -O " + system_sdf os.system(command) # off_molecule = openforcefield.topology.Molecule(system_sdf) off_molecule = Molecule(system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def generate_xml_from_charged_pdb_sdf( system_pdb, system_init_sdf, system_sdf, num_charge_atoms, index_charge_atom_1, charge_atom_1, system_xml, ): """ Generates an openforcefield xml file from the pdb file via SDF file and openforcefield. Parameters ---------- system_pdb : str Input PDB file. system_init_sdf : str SDF file for the system excluding charge information. system_sdf : str SDF file of the system. num_charge_atoms : int Total number of charged atoms in the PDB. index_charge_atom_1 : int Index of the first charged atom. charge_atom_1 : float Charge on first charged atom. system_xml : str XML force field file generated using PDB and SDF files. """ # command = "babel -ipdb " + system_pdb + " -osdf " + system_init_sdf command = "obabel -ipdb " + system_pdb + " -osdf -O " + system_init_sdf os.system(command) with open(system_init_sdf, "r") as f1: filedata = f1.readlines() filedata = filedata[:-2] with open(system_sdf, "w+") as out: for i in filedata: out.write(i) line_1 = ( "M CHG " + str(num_charge_atoms) + " " + str(index_charge_atom_1) + " " + str(charge_atom_1) + "\n" ) line_2 = "M END" + "\n" line_3 = "$$$$" out.write(line_1) out.write(line_2) out.write(line_3) # off_molecule = openforcefield.topology.Molecule(system_sdf) off_molecule = Molecule(system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def get_dihedrals(qm_scan_file): """ Returns dihedrals from the torsiondrive scan file. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. Returns ------- dihedrals : list List of all the dihedral values from the qm scan file. """ with open(qm_scan_file, "r") as f: lines = f.readlines() energy_dihedral_lines = [] for i in range(len(lines)): if "Dihedral" in lines[i]: energy_dihedral_lines.append(lines[i]) dihedrals = [] for i in energy_dihedral_lines: energy_dihedral = i energy_dihedral = re.findall(r"[-+]?\d+[.]?\d*", energy_dihedral) dihedral = float(energy_dihedral[0]) dihedrals.append(dihedral) return dihedrals def get_qm_energies(qm_scan_file): """ Returns QM optimized energies from the torsiondrive scan file. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. Returns ------- qm_energies : list List of all the qm optimiseed energies extracted from the torsiondrive scan file. """ with open(qm_scan_file, "r") as f: lines = f.readlines() energy_dihedral_lines = [] for i in range(len(lines)): if "Dihedral" in lines[i]: energy_dihedral_lines.append(lines[i]) qm_energies = [] for i in energy_dihedral_lines: energy_dihedral = i energy_dihedral = re.findall(r"[-+]?\d+[.]?\d*", energy_dihedral) energy = float(energy_dihedral[1]) qm_energies.append(energy) return qm_energies def generate_mm_pdbs(qm_scan_file, template_pdb): """ Generate PDBs from the torsiondrive scan file based on a template PDB. """ with open(qm_scan_file, "r") as f: lines = f.readlines() energy_dihedral_lines = [] for i in range(len(lines)): if "Dihedral" in lines[i]: energy_dihedral_lines.append(lines[i]) dihedrals = [] for i in energy_dihedral_lines: energy_dihedral = i energy_dihedral = re.findall(r"[-+]?\d+[.]?\d*", energy_dihedral) dihedral = float(energy_dihedral[0]) dihedrals.append(dihedral) lines_markers = [] for i in range(len(lines)): if "Dihedral" in lines[i]: lines_markers.append(i) lines_markers.append(len(lines) + 1) for i in range(len(lines_markers) - 1): # pdb_file_to_write = str(dihedrals[i]) + ".pdb" if dihedrals[i] > 0: pdb_file_to_write = "plus_" + str(abs(dihedrals[i])) + ".pdb" if dihedrals[i] < 0: pdb_file_to_write = "minus_" + str(abs(dihedrals[i])) + ".pdb" to_begin = lines_markers[i] to_end = lines_markers[i + 1] lines_to_write = lines[to_begin + 1 : to_end - 1] x_coords = [] y_coords = [] z_coords = [] for i in lines_to_write: coordinates = i coordinates = re.findall(r"[-+]?\d+[.]?\d*", coordinates) x = float(coordinates[0]) y = float(coordinates[1]) z = float(coordinates[2]) x_coords.append(x) y_coords.append(y) z_coords.append(z) ppdb = PandasPdb() ppdb.read_pdb(template_pdb) ppdb.df["ATOM"]["x_coord"] = x_coords ppdb.df["ATOM"]["y_coord"] = y_coords ppdb.df["ATOM"]["z_coord"] = z_coords ppdb.to_pdb(pdb_file_to_write) def remove_mm_files(qm_scan_file): """ Delete all generated PDB files. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. """ mm_pdb_list = [] for i in get_dihedrals(qm_scan_file): if i > 0: pdb_file = "plus_" + str(abs(i)) + ".pdb" if i < 0: pdb_file = "minus_" + str(abs(i)) + ".pdb" mm_pdb_list.append(pdb_file) for i in mm_pdb_list: command = "rm -rf " + i os.system(command) command = "rm -rf " + i[:-4] + ".inpcrd" os.system(command) command = "rm -rf " + i[:-4] + ".prmtop" os.system(command) def get_non_torsion_mm_energy(system_pdb, load_topology, system_xml): """ Returns sum of all the non-torsional energies (that includes HarmonicBondForce, HarmonicAngleForce and NonBondedForce) of the system from the PDB file given the topology and the forcefield file. Parameters ---------- system_pdb : str System PDB file to load the openmm system topology and coordinates. load_topology : {"openmm", "parmed"} Argument to specify how to load the topology. system_xml : str XML force field file for the openmm system. Returns ------- Sum of all the non-torsional energies of the system. """ system_prmtop = system_pdb[:-4] + ".prmtop" system_inpcrd = system_pdb[:-4] + ".inpcrd" if load_topology == "parmed": openmm_system = parmed.openmm.load_topology( parmed.load_file(system_pdb, structure=True).topology, parmed.load_file(system_xml), ) if load_topology == "openmm": openmm_system = parmed.openmm.load_topology( simtk.openmm.app.PDBFile(system_pdb).topology, parmed.load_file(system_xml), ) openmm_system.save(system_prmtop, overwrite=True) openmm_system.coordinates = parmed.load_file( system_pdb, structure=True ).coordinates openmm_system.save(system_inpcrd, overwrite=True) parm = parmed.load_file(system_prmtop, system_inpcrd) prmtop_energy_decomposition = parmed.openmm.energy_decomposition_system( parm, parm.createSystem() ) # print(prmtop_energy_decomposition) prmtop_energy_decomposition_value_no_torsion = [ list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicBondForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicAngleForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("NonbondedForce"), ] return sum(prmtop_energy_decomposition_value_no_torsion) def get_mm_potential_energies(qm_scan_file, load_topology, system_xml): """ Returns potential energy of the system from the PDB file given the topology and the forcefield file. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. load_topology : {"openmm", "parmed"} Argument to spcify how to load the topology. system_xml : str XML file to load the openmm system. Returns ------- mm_potential_energies : list List of all the non torsion mm energies for the generated PDB files. """ mm_pdb_list = [] for i in get_dihedrals(qm_scan_file): if i > 0: pdb_file = "plus_" + str(abs(i)) + ".pdb" if i < 0: pdb_file = "minus_" + str(abs(i)) + ".pdb" mm_pdb_list.append(pdb_file) for i in mm_pdb_list: mm_pdb_file = i mm_potential_energies = [] for i in mm_pdb_list: mm_pdb_file = i mm_energy = get_non_torsion_mm_energy( system_pdb=i, load_topology=load_topology, system_xml=system_xml, ) mm_potential_energies.append(mm_energy) return mm_potential_energies def list_diff(list_1, list_2): """ Returns the difference between two lists as a list. Parameters ---------- list_1 : list First list list_2 : list Second list. Returns ------- diff_list : list List containing the diferences between the elements of the two lists. Examples -------- >>> list_1 = [4, 2, 8, 3, 0, 6, 7] >>> list_2 = [5, 3, 1, 5, 6, 0, 4] >>> list_diff(list_1, list_2) [-1, -1, 7, -2, -6, 6, 3] """ diff_list = [] zipped_list = zip(list_1, list_2) for list1_i, list2_i in zipped_list: diff_list.append(list1_i - list2_i) return diff_list def dihedral_energy(x, k1, k2, k3, k4=0): """ Expression for the dihedral energy. """ energy_1 = k1 * (1 + np.cos(1 * x * 0.01745)) energy_2 = k2 * (1 - np.cos(2 * x * 0.01745)) energy_3 = k3 * (1 + np.cos(3 * x * 0.01745)) energy_4 = k4 * (1 - np.cos(4 * x * 0.01745)) dihedral_energy = energy_1 + energy_2 + energy_3 + energy_4 return dihedral_energy def error_function(delta_qm, delta_mm): """ Root Mean Squared Error. """ squared_error = np.square(np.subtract(delta_qm, delta_mm)) mean_squared_error = squared_error.mean() root_mean_squared_error = math.sqrt(mean_squared_error) return root_mean_squared_error def error_function_boltzmann(delta_qm, delta_mm, T): """ Boltzmann Root Mean Squared Error. """ kb = 3.297623483 * 10 ** (-24) # in cal/K delta_qm_boltzmann_weighted = [np.exp(-i / (kb * T)) for i in delta_qm] squared_error = ( np.square(np.subtract(delta_qm, delta_mm)) * delta_qm_boltzmann_weighted ) mean_squared_error = squared_error.mean() root_mean_squared_error = math.sqrt(mean_squared_error) return root_mean_squared_error def gen_init_guess(qm_scan_file, load_topology, system_xml): """ Initial guess for the torsional parameter. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. load_topology : {"openmm", "parmed"} Argument to speify how to load the topology. system_xml : str XML force field file for the system. Returns ------- k_init_guess : list Initial guess for the torsional parameters. """ x = get_dihedrals(qm_scan_file) y = scale_list( list_=get_mm_potential_energies( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, ) ) init_vals = [0.0, 0.0, 0.0, 0.0] k_init_guess, covar = scipy.optimize.curve_fit( dihedral_energy, x, y, p0=init_vals ) for i in range(len(k_init_guess)): if k_init_guess[i] < 0: k_init_guess[i] = 0 return k_init_guess def objective_function(k_array, x, delta_qm): """ Objective function for the torsional parameter fitting. """ delta_mm = dihedral_energy( x, k1=k_array[0], k2=k_array[1], k3=k_array[2], k4=k_array[3] ) loss_function = error_function(delta_qm, delta_mm) return loss_function def fit_params(qm_scan_file, load_topology, system_xml, method): """ Optimization of the objective function. """ k_guess = gen_init_guess( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, ) x_data = np.array(get_dihedrals(qm_scan_file)) delta_qm = np.array( scale_list(list_hartree_kcal(list_=get_qm_energies(qm_scan_file))) ) optimise = scipy.optimize.minimize( objective_function, k_guess, args=(x_data, delta_qm), method=method, bounds=[(0.00, None), (0.00, None), (0.00, None), (0.00, None),], ) return optimise.x def get_tor_params( qm_scan_file, template_pdb, load_topology, system_xml, method ): """ Returns the fitted torsional parameters. """ qm_e = get_qm_energies(qm_scan_file=qm_scan_file) qm_e_kcal = list_hartree_kcal(qm_e) delta_qm = scale_list(qm_e_kcal) generate_mm_pdbs(qm_scan_file=qm_scan_file, template_pdb=template_pdb) mm_pe_no_torsion_kcal = get_mm_potential_energies( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, ) delta_mm = scale_list(mm_pe_no_torsion_kcal) opt_param = fit_params( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, method=method, ) return opt_param def get_torsional_lines( template_pdb, system_xml, qm_scan_file, load_topology, method, dihedral_text_file, ): """ Returns the torsional lines for the XML forcefield file. """ opt_param = get_tor_params( qm_scan_file=qm_scan_file, template_pdb=template_pdb, load_topology=load_topology, system_xml=system_xml, method=method, ) dihedral_text = open(dihedral_text_file, "r") dihedral_text_lines = dihedral_text.readlines() atom_numbers = dihedral_text_lines[-1] atom_index_from_1 = [ int(re.findall(r"\d+", atom_numbers)[0]), int(re.findall(r"\d+", atom_numbers)[1]), int(re.findall(r"\d+", atom_numbers)[2]), int(re.findall(r"\d+", atom_numbers)[3]), ] atom_index = [i - 1 for i in atom_index_from_1] atom_index_lines = ( " " + "p1=" + '"' + str(atom_index[0]) + '"' + " " + "p2=" + '"' + str(atom_index[1]) + '"' + " " + "p3=" + '"' + str(atom_index[2]) + '"' + " " + "p4=" + '"' + str(atom_index[3]) + '"' + " " ) tor_lines = [] for i in range(len(opt_param)): line_to_append = ( " " + "<Torsion " + "k=" + '"' + str(round(opt_param[i], 8)) + '"' + atom_index_lines + "periodicity=" + '"' + str(i + 1) + '"' + " " + "phase=" + '"' + "0" + '"' + "/>" ) # print(line_to_append) tor_lines.append(line_to_append) return tor_lines def singular_resid(pdbfile, qmmmrebind_init_file): """ Returns a PDB file with chain ID = A Parameters ---------- pdbfile: str Input PDB file qmmmrebind_init_file: str Output PDB file """ ppdb = PandasPdb().read_pdb(pdbfile) ppdb.df["HETATM"]["chain_id"] = "A" ppdb.df["ATOM"]["chain_id"] = "A" ppdb.to_pdb( path=qmmmrebind_init_file, records=None, gz=False, append_newline=True ) def relax_init_structure( pdbfile, prmtopfile, qmmmrebindpdb, sim_output="output.pdb", sim_steps=100000, ): """ Minimizing the initial PDB file with the given topology file Parameters ---------- pdbfile: str Input PDB file. prmtopfile : str Input prmtop file. qmmmrebind_init_file: str Output PDB file. sim_output: str Simulation output trajectory file. sim_steps: int MD simulation steps. """ prmtop = simtk.openmm.app.AmberPrmtopFile(prmtopfile) pdb = simtk.openmm.app.PDBFile(pdbfile) system = prmtop.createSystem( nonbondedMethod=simtk.openmm.app.PME, nonbondedCutoff=1 * simtk.unit.nanometer, constraints=simtk.openmm.app.HBonds, ) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation( prmtop.topology, system, integrator ) simulation.context.setPositions(pdb.positions) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.minimizeEnergy(maxIterations=10000000) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.reporters.append( simtk.openmm.app.PDBReporter(sim_output, int(sim_steps / 10)) ) simulation.reporters.append( simtk.openmm.app.StateDataReporter( stdout, int(sim_steps / 10), step=True, potentialEnergy=True, temperature=True, ) ) simulation.reporters.append( simtk.openmm.app.PDBReporter(qmmmrebindpdb, sim_steps) ) simulation.step(sim_steps) command = "rm -rf " + sim_output os.system(command) def truncate(x): """ Returns a float or an integer with an exact number of characters. Parameters ---------- x: str input value """ if len(str(int(float(x)))) == 1: x = format(x, ".8f") if len(str(int(float(x)))) == 2: x = format(x, ".7f") if len(str(int(float(x)))) == 3: x = format(x, ".6f") if len(str(int(float(x)))) == 4: x = format(x, ".5f") if len(str(x)) > 10: x = round(x, 10) return x def add_vectors_inpcrd(pdbfile, inpcrdfile): """ Adds periodic box dimensions to the inpcrd file Parameters ---------- pdbfile: str PDB file containing the periodic box information. inpcrdfile: str Input coordinate file. """ pdbfilelines = open(pdbfile, "r").readlines() for i in pdbfilelines: if "CRYST" in i: vector_list = re.findall(r"[-+]?\d*\.\d+|\d+", i) vector_list = [float(i) for i in vector_list] vector_list = vector_list[1 : 1 + 6] line_to_add = ( " " + truncate(vector_list[0]) + " " + truncate(vector_list[1]) + " " + truncate(vector_list[2]) + " " + truncate(vector_list[3]) + " " + truncate(vector_list[4]) + " " + truncate(vector_list[5]) ) print(line_to_add) with open(inpcrdfile, "a+") as f: f.write(line_to_add) def add_dim_prmtop(pdbfile, prmtopfile): """ Adds periodic box dimensions flag in the prmtop file. Parameters ---------- prmtopfile: str Input prmtop file. pdbfile: str PDB file containing the periodic box information. """ pdbfilelines = open(pdbfile, "r").readlines() for i in pdbfilelines: if "CRYST" in i: vector_list = re.findall(r"[-+]?\d*\.\d+|\d+", i) vector_list = [float(i) for i in vector_list] vector_list = vector_list[1 : 1 + 6] vector_list = [i / 10 for i in vector_list] vector_list = [truncate(i) for i in vector_list] vector_list = [i + "E+01" for i in vector_list] line3 = ( " " + vector_list[3] + " " + vector_list[0] + " " + vector_list[1] + " " + vector_list[2] ) print(line3) line1 = "%FLAG BOX_DIMENSIONS" line2 = "%FORMAT(5E16.8)" with open(prmtopfile) as f1, open("intermediate.prmtop", "w") as f2: for line in f1: if line.startswith("%FLAG RADIUS_SET"): line = line1 + "\n" + line2 + "\n" + line3 + "\n" + line f2.write(line) command = "rm -rf " + prmtopfile os.system(command) command = "mv intermediate.prmtop " + prmtopfile os.system(command) def add_period_prmtop(parm_file, ifbox): """ Changes the value of IFBOX if needed for the prmtop / parm file. Set to 1 if standard periodic box and 2 when truncated octahedral. """ with open(parm_file) as f: parm_lines = f.readlines() lines_contain = [] for i in range(len(parm_lines)): if parm_lines[i].startswith("%FLAG POINTERS"): lines_contain.append(i + 4) line = parm_lines[lines_contain[0]] line_new = "%8s %6s %6s %6s %6s %6s %6s %6s %6s %6s" % ( re.findall(r"\d+", line)[0], re.findall(r"\d+", line)[1], re.findall(r"\d+", line)[2], re.findall(r"\d+", line)[3], re.findall(r"\d+", line)[4], re.findall(r"\d+", line)[5], re.findall(r"\d+", line)[6], str(ifbox), re.findall(r"\d+", line)[8], re.findall(r"\d+", line)[9], ) parm_lines[lines_contain[0]] = line_new + "\n" with open(parm_file, "w") as f: for i in parm_lines: f.write(i) def add_solvent_pointers_prmtop(non_reparams_file, reparams_file): """ Adds the flag solvent pointers to the topology file. """ f_non_params = open(non_reparams_file, "r") lines_non_params = f_non_params.readlines() for i in range(len(lines_non_params)): if "FLAG SOLVENT_POINTERS" in lines_non_params[i]: to_begin = int(i) solvent_pointers = lines_non_params[to_begin : to_begin + 3] file = open(reparams_file, "a") for i in solvent_pointers: file.write(i) def prmtop_calibration( prmtopfile="system_qmmmrebind.prmtop", inpcrdfile="system_qmmmrebind.inpcrd", ): """ Standardizes the topology files Parameters ---------- prmtopfile: str Input prmtop file. inpcrdfile: str Input coordinate file. """ parm = parmed.load_file(prmtopfile, inpcrdfile) parm_1 = parmed.tools.actions.changeRadii(parm, "mbondi3") parm_1.execute() parm_2 = parmed.tools.actions.setMolecules(parm) parm_2.execute() parm.save(prmtopfile, overwrite=True) def run_openmm_prmtop_inpcrd( pdbfile="system_qmmmrebind.pdb", prmtopfile="system_qmmmrebind.prmtop", inpcrdfile="system_qmmmrebind.inpcrd", sim_output="output.pdb", sim_steps=10000, ): """ Runs OpenMM simulation with inpcrd and prmtop files. Parameters ---------- pdbfile: str Input PDB file. prmtopfile: str Input prmtop file. inpcrdfile: str Input coordinate file. sim_output: str Output trajectory file. sim_steps: int Simulation steps. """ prmtop = simtk.openmm.app.AmberPrmtopFile(prmtopfile) inpcrd = simtk.openmm.app.AmberInpcrdFile(inpcrdfile) system = prmtop.createSystem( nonbondedCutoff=1 * simtk.unit.nanometer, constraints=simtk.openmm.app.HBonds, ) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation( prmtop.topology, system, integrator ) if inpcrd.boxVectors is None: add_vectors_inpcrd( pdbfile=pdbfile, inpcrdfile=inpcrdfile, ) if inpcrd.boxVectors is not None: simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors) print(inpcrd.boxVectors) simulation.context.setPositions(inpcrd.positions) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.minimizeEnergy(maxIterations=1000000) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.reporters.append( simtk.openmm.app.PDBReporter(sim_output, int(sim_steps / 10)) ) simulation.reporters.append( simtk.openmm.app.StateDataReporter( stdout, int(sim_steps / 10), step=True, potentialEnergy=True, temperature=True, ) ) simulation.step(sim_steps) def run_openmm_prmtop_pdb( pdbfile="system_qmmmrebind.pdb", prmtopfile="system_qmmmrebind.prmtop", sim_output="output.pdb", sim_steps=10000, ): """ Runs OpenMM simulation with pdb and prmtop files. Parameters ---------- pdbfile: str Input PDB file. prmtopfile: str Input prmtop file. sim_output: str Output trajectory file. sim_steps: int Simulation steps. """ prmtop = simtk.openmm.app.AmberPrmtopFile(prmtopfile) pdb = simtk.openmm.app.PDBFile(pdbfile) system = prmtop.createSystem( nonbondedCutoff=1 * simtk.unit.nanometer, constraints=simtk.openmm.app.HBonds, ) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation( prmtop.topology, system, integrator ) simulation.context.setPositions(pdb.positions) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.minimizeEnergy(maxIterations=1000000) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.reporters.append( simtk.openmm.app.PDBReporter(sim_output, int(sim_steps / 10)) ) simulation.reporters.append( simtk.openmm.app.StateDataReporter( stdout, int(sim_steps / 10), step=True, potentialEnergy=True, temperature=True, ) ) simulation.step(sim_steps) def move_qmmmmrebind_files( prmtopfile="system_qmmmrebind.prmtop", inpcrdfile="system_qmmmrebind.inpcrd", pdbfile="system_qmmmrebind.pdb", ): """ Moves QMMMReBind generated topology and parameter files to a new directory . Parameters ---------- prmtopfile: str QMMMReBind generated prmtop file. inpcrdfile: str QMMMReBind generated inpcrd file. pdbfile: str QMMMReBind generated PDB file. """ current_pwd = os.getcwd() command = "rm -rf reparameterized_files" os.system(command) command = "mkdir reparameterized_files" os.system(command) shutil.copy( current_pwd + "/" + prmtopfile, current_pwd + "/" + "reparameterized_files" + "/" + prmtopfile, ) shutil.copy( current_pwd + "/" + inpcrdfile, current_pwd + "/" + "reparameterized_files" + "/" + inpcrdfile, ) shutil.copy( current_pwd + "/" + pdbfile, current_pwd + "/" + "reparameterized_files" + "/" + pdbfile, ) def move_qm_files(): """ Moves QM engine generated files to a new directory . """ current_pwd = os.getcwd() command = "rm -rf qm_data" os.system(command) command = "mkdir qm_data" os.system(command) command = "cp -r " + "*.com* " + current_pwd + "/" + "qm_data" os.system(command) command = "cp -r " + "*.log* " + current_pwd + "/" + "qm_data" os.system(command) command = "cp -r " + "*.chk* " + current_pwd + "/" + "qm_data" os.system(command) command = "cp -r " + "*.fchk* " + current_pwd + "/" + "qm_data" os.system(command) def move_qmmmrebind_files(): """ Moves all QMMMREBind files to a new directory. """ current_pwd = os.getcwd() command = "rm -rf qmmmrebind_data" os.system(command) command = "mkdir qmmmrebind_data" os.system(command) command = "mv " + "*.sdf* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.txt* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.pdb* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.xml* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.chk* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.fchk* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.com* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.log* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.inpcrd* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.prmtop* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.parm7* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.out* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*run_command* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.dat* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.xyz* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) class PrepareQMMM: """ A class used to segregate the QM and MM regions. This class contain methods to remove the solvent, ions and all entities that are exclusive of receptor and the ligand. It also defines the Quantum Mechanical (QM) region and the Molecular Mechanical (MM) region based upon the distance of the ligand from the receptor and the chosen number of receptor residues. It is also assumed that the initial PDB file will have the receptor followed by the ligand. ... Attributes ---------- init_pdb : str Initial PDB file containing the receptor-ligand complex with solvent, ions, etc. cleaned_pdb : str Formatted PDB file containing only the receptor and the ligand. guest_init_pdb : str A separate ligand PDB file with atom numbers not beginning from 1. host_pdb : str A separate receptor PDB file with atom numbers beginning from 1. guest_resname : str Three letter residue ID for the ligand. guest_pdb : str, optional Ligand PDB file with atom numbers beginning from 1. guest_xyz : str, optional A text file of the XYZ coordinates of the ligand. distance : float, optional The distance required to define the QM region of the receptor. This is the distance between the atoms of the ligand and the atoms of the receptor. residue_list : str, optional A text file of the residue numbers of the receptor within the proximity (as defined by the distance) from the ligand. host_qm_atoms : str, optional A text file of the atom numbers of the receptors in the QM region. host_mm_atoms : str, optional A text file of the atom numbers of the receptors in the MM region (all atoms except atoms in the QM region) host_qm_pdb : str, optional PDB file for the receptor's QM region. host_mm_pdb : str, optional PDB file for the receptor's MM region. qm_pdb : str, optional PDB file for the QM region (receptor's QM region and the ligand). mm_pdb : str, optional PDB file for the MM region. host_mm_region_I_atoms : str, optional A text file of the atom numbers of the receptors in the MM region preceeding the QM region. host_mm_region_II_atoms : str, optional A text file of the atom numbers of the receptors in the MM region following the QM region. host_mm_region_I_pdb : str, optional PDB file of the receptor in the MM region preceeding the QM region. host_mm_region_II_pdb : str, optional PDB file of the receptor in the MM region following the QM region. num_residues : int, optional Number of residues required in the QM region of the receptor. """ def __init__( self, init_pdb, distance, num_residues, guest_resname, cleaned_pdb="system.pdb", guest_init_pdb="guest_init.pdb", host_pdb="host.pdb", guest_pdb="guest_init_II.pdb", guest_xyz="guest_coord.txt", residue_list="residue_list.txt", host_qm_atoms="host_qm.txt", host_mm_atoms="host_mm.txt", host_qm_pdb="host_qm.pdb", host_mm_pdb="host_mm.pdb", qm_pdb="qm.pdb", mm_pdb="mm.pdb", host_mm_region_I_atoms="host_mm_region_I.txt", host_mm_region_II_atoms="host_mm_region_II.txt", host_mm_region_I_pdb="host_mm_region_I.pdb", host_mm_region_II_pdb="host_mm_region_II.pdb", ): self.init_pdb = init_pdb self.distance = distance self.num_residues = num_residues self.guest_resname = guest_resname self.cleaned_pdb = cleaned_pdb self.guest_init_pdb = guest_init_pdb self.host_pdb = host_pdb self.guest_pdb = guest_pdb self.guest_xyz = guest_xyz self.residue_list = residue_list self.host_qm_atoms = host_qm_atoms self.host_mm_atoms = host_mm_atoms self.host_qm_pdb = host_qm_pdb self.host_mm_pdb = host_mm_pdb self.qm_pdb = qm_pdb self.mm_pdb = mm_pdb self.host_mm_region_I_atoms = host_mm_region_I_atoms self.host_mm_region_II_atoms = host_mm_region_II_atoms self.host_mm_region_I_pdb = host_mm_region_I_pdb self.host_mm_region_II_pdb = host_mm_region_II_pdb def clean_up(self): """ Reads the given PDB file, removes all entities except the receptor and ligand and saves a new pdb file. """ ions = [ "Na+", "Cs+", "K+", "Li+", "Rb+", "Cl-", "Br-", "F-", "I-", "Ca2", ] intermediate_file_1 = self.cleaned_pdb[:-4] + "_intermediate_1.pdb" intermediate_file_2 = self.cleaned_pdb[:-4] + "_intermediate_2.pdb" command = ( "pdb4amber -i " + self.init_pdb + " -o " + intermediate_file_1 + " --noter --dry" ) os.system(command) to_delete = ( intermediate_file_1[:-4] + "_nonprot.pdb", intermediate_file_1[:-4] + "_renum.txt", intermediate_file_1[:-4] + "_sslink", intermediate_file_1[:-4] + "_water.pdb", ) os.system("rm -rf " + " ".join(to_delete)) with open(intermediate_file_1) as f1, open( intermediate_file_2, "w") as f2: for line in f1: if not any(ion in line for ion in ions): f2.write(line) with open(intermediate_file_2, "r") as f1: filedata = f1.read() filedata = filedata.replace("HETATM", "ATOM ") with open(self.cleaned_pdb, "w") as f2: f2.write(filedata) command = "rm -rf " + intermediate_file_1 + " " + intermediate_file_2 os.system(command) def create_host_guest(self): """ Saves separate receptor and ligand PDB files. """ with open(self.cleaned_pdb) as f1, open(self.host_pdb, "w") as f2: for line in f1: if not self.guest_resname in line and not "CRYST1" in line: f2.write(line) with open(self.cleaned_pdb) as f1, open( self.guest_init_pdb, "w" ) as f2: for line in f1: if self.guest_resname in line or "END" in line: f2.write(line) def realign_guest(self): """ Saves a ligand PDB file with atom numbers beginning from 1. """ ppdb = PandasPdb() ppdb.read_pdb(self.guest_init_pdb) to_subtract = min(ppdb.df["ATOM"]["atom_number"]) - 1 ppdb.df["ATOM"]["atom_number"] = ( ppdb.df["ATOM"]["atom_number"] - to_subtract ) intermediate_file_1 = self.guest_pdb[:-4] + "_intermediate_1.pdb" intermediate_file_2 = self.guest_pdb[:-4] + "_intermediate_2.pdb" ppdb.to_pdb(path=intermediate_file_1) command = ( "pdb4amber -i " + intermediate_file_1 + " -o " + intermediate_file_2 ) os.system(command) to_delete = ( intermediate_file_2[:-4] + "_nonprot.pdb", intermediate_file_2[:-4] + "_renum.txt", intermediate_file_2[:-4] + "_sslink", ) os.system("rm -rf " + " ".join(to_delete)) with open(intermediate_file_2, "r") as f1: filedata = f1.read() filedata = filedata.replace("HETATM", "ATOM ") with open(self.guest_pdb, "w") as f2: f2.write(filedata) command = "rm -rf " + intermediate_file_1 + " " + intermediate_file_2 os.system(command) def get_guest_coord(self): """ Saves a text file of the XYZ coordinates of the ligand. """ ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) xyz = ppdb.df["ATOM"][["x_coord", "y_coord", "z_coord"]] xyz_to_list = xyz.values.tolist() np.savetxt(self.guest_xyz, xyz_to_list) def get_qm_resids(self): """ Saves a text file of the residue numbers of the receptor within the proximity (as defined by the distance) from the ligand. """ guest_coord_list = np.loadtxt(self.guest_xyz) host_atom_list = [] for i in range(len(guest_coord_list)): reference_point = guest_coord_list[i] # TODO: move reads outside of loop ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) distances = ppdb.distance(xyz=reference_point, records=("ATOM")) all_within_distance = ppdb.df["ATOM"][ distances < float(self.distance) ] host_df = all_within_distance["atom_number"] host_list = host_df.values.tolist() host_atom_list.append(host_list) host_atom_list = list(itertools.chain(*host_atom_list)) host_atom_list = set(host_atom_list) host_atom_list = list(host_atom_list) host_atom_list.sort() ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) df = ppdb.df["ATOM"][["atom_number", "residue_number", "residue_name"]] index_list = [] for i in host_atom_list: indices = np.where(df["atom_number"] == i) indices = list(indices)[0] indices = list(indices) index_list.append(indices) index_list = list(itertools.chain.from_iterable(index_list)) df1 = df.iloc[ index_list, ] # TODO: make it write list of integers resid_num = list(df1.residue_number.unique()) np.savetxt(self.residue_list, resid_num, fmt="%i") def get_host_qm_mm_atoms(self): """ Saves a text file of the atom numbers of the receptors in the QM region and MM region separately. """ resid_num = np.loadtxt(self.residue_list) # approximated_res_list = [int(i) for i in resid_num] approximated_res_list = [] # TODO: what is this doing? for i in range( int(statistics.median(resid_num)) - int(int(self.num_residues) / 2), int(statistics.median(resid_num)) + int(int(self.num_residues) / 2), ): approximated_res_list.append(i) ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) df = ppdb.df["ATOM"][["atom_number", "residue_number", "residue_name"]] host_index_nested_list = [] for i in approximated_res_list: indices = np.where(df["residue_number"] == i) #TODO: the program seems to error when this line is removed, which # makes no sense. indices = list(indices)[0] indices = list(indices) host_index_nested_list.append(indices) host_index_list = list( itertools.chain.from_iterable(host_index_nested_list) ) df_atom = df.iloc[host_index_list] df_atom_number = df_atom["atom_number"] host_atom_list = df_atom_number.values.tolist() selected_atoms = [] selected_atoms.extend(host_atom_list) ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) len_atoms = [] for i in range(len(ppdb.df["ATOM"])): len_atoms.append(i + 1) non_selected_atoms = list(set(len_atoms).difference(selected_atoms)) assert len(non_selected_atoms) + len(selected_atoms) == len(len_atoms),\ "Sum of the atoms in the selected and non-selected region "\ "does not equal the length of list of total atoms." np.savetxt(self.host_qm_atoms, selected_atoms, fmt="%i") np.savetxt(self.host_mm_atoms, non_selected_atoms, fmt="%i") def save_host_pdbs(self): """ Saves a PDB file for the receptor's QM region and MM region separately. """ selected_atoms = np.loadtxt(self.host_qm_atoms) # TODO: not necessary if savetxt writes in integers selected_atoms = [int(i) for i in selected_atoms] ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) for i in selected_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_mm_pdb, records=None, gz=False, append_newline=True, ) non_selected_atoms = np.loadtxt(self.host_mm_atoms) non_selected_atoms = [int(i) for i in non_selected_atoms] ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) for i in non_selected_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_qm_pdb, records=None, gz=False, append_newline=True, ) def get_host_mm_region_atoms(self): """ Saves a text file for the atoms of the receptor's MM region preceding the QM region and saves another text file for the atoms of the receptor's MM region folllowing the QM region. """ resid_num = np.loadtxt(self.residue_list) approximated_res_list = [] for i in range( int(statistics.median(resid_num)) - int(int(self.num_residues) / 2), int(statistics.median(resid_num)) + int(int(self.num_residues) / 2), ): approximated_res_list.append(i) # print(approximated_res_list) ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) df = ppdb.df["ATOM"][["residue_number"]] res_list = list(set(df["residue_number"].to_list())) res_mm_list = list(set(res_list).difference(approximated_res_list)) # print(res_mm_list) res_mm_region_I_list = [] # TODO: This can probably be made into a single loop by comparing i # to the maximum value within approximated_res_list for i in res_mm_list: for j in approximated_res_list: if i < j: res_mm_region_I_list.append(i) res_mm_region_I_list = list(set(res_mm_region_I_list)) res_mm_region_II_list = list( set(res_mm_list).difference(res_mm_region_I_list) ) # print(res_mm_region_II_list) ppdb.read_pdb(self.host_mm_pdb) df = ppdb.df["ATOM"][["atom_number", "residue_number", "residue_name"]] mm_region_I_index_nested_list = [] for i in res_mm_region_I_list: indices = np.where(df["residue_number"] == i) # TODO: again, this is strange code indices = list(indices)[0] indices = list(indices) mm_region_I_index_nested_list.append(indices) mm_region_I_index_list = list( itertools.chain.from_iterable(mm_region_I_index_nested_list) ) df_atom = df.iloc[mm_region_I_index_list] df_atom_number = df_atom["atom_number"] mm_region_I_atom_list = df_atom_number.values.tolist() mm_region_I_atoms = [] mm_region_I_atoms.extend(mm_region_I_atom_list) mm_region_II_index_nested_list = [] for i in res_mm_region_II_list: indices = np.where(df["residue_number"] == i) # TODO: again, this is strange code indices = list(indices)[0] indices = list(indices) mm_region_II_index_nested_list.append(indices) mm_region_II_index_list = list( itertools.chain.from_iterable(mm_region_II_index_nested_list) ) df_atom = df.iloc[mm_region_II_index_list] df_atom_number = df_atom["atom_number"] mm_region_II_atom_list = df_atom_number.values.tolist() mm_region_II_atoms = [] mm_region_II_atoms.extend(mm_region_II_atom_list) ppdb.read_pdb(self.host_mm_pdb) len_atoms = [] for i in range(len(ppdb.df["ATOM"])): len_atoms.append(i + 1) assert len(mm_region_I_atoms) + len(mm_region_II_atoms) == len(len_atoms),\ "Sum of the atoms in the selected and non-selected region "\ "does not equal the length of list of total atoms." np.savetxt(self.host_mm_region_I_atoms, mm_region_I_atoms, fmt="%i") np.savetxt(self.host_mm_region_II_atoms, mm_region_II_atoms, fmt="%i") def save_host_mm_regions_pdbs(self): """ Saves a PDB file for the receptor's MM region preceding the QM region and saves another PDB file for the receptor's MM region folllowing the QM region. """ mm_region_I_atoms = np.loadtxt(self.host_mm_region_I_atoms) mm_region_I_atoms = [int(i) for i in mm_region_I_atoms] mm_region_II_atoms = np.loadtxt(self.host_mm_region_II_atoms) mm_region_II_atoms = [int(i) for i in mm_region_II_atoms] # NOTE: this is a slightly confusing way to define the atoms to # write to a PDB - the members that are *not* in a section, rather # than the members that are. ppdb = PandasPdb() ppdb.read_pdb(self.host_mm_pdb) for i in mm_region_II_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_mm_region_I_pdb, records=None, gz=False, append_newline=True, ) ppdb = PandasPdb() ppdb.read_pdb(self.host_mm_pdb) for i in mm_region_I_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_mm_region_II_pdb, records=None, gz=False, append_newline=True, ) def get_qm_mm_regions(self): """ Saves separate PDB files for the QM and MM regions. QM regions comprise the QM region of the receptor and the entire ligand where the MM region comprise the non-selected QM regions of the receptor. """ with open(self.host_qm_pdb) as f1, open(self.qm_pdb, "w") as f2: for line in f1: if "ATOM" in line: f2.write(line) with open(self.guest_pdb) as f1, open(self.qm_pdb, "a") as f2: for line in f1: if "ATOM" in line: f2.write(line) f2.write("END") with open(self.host_mm_pdb) as f1, open(self.mm_pdb, "w") as f2: for line in f1: if "ATOM" in line: f2.write(line) f2.write("END") class PrepareGaussianGuest: """ A class used to prepare the QM engine input file (Gaussian) for the ligand and run QM calculations with appropriate keywords. This class contain methods to write an input file (.com extension) for the QM engine. It then runs a QM calculation with the given basis set and functional. Checkpoint file is then converted to a formatted checkpoint file. Output files (.log, .chk, and .fhck) will then be used to extract ligand's force field parameters. ... Attributes ---------- charge : int, optional Charge of the ligand. multiplicity: int, optional Spin Multiplicity (2S+1) of the ligand where S represents the total spin of the ligand. guest_pdb: str, optional Ligand PDB file with atom numbers beginning from 1. n_processors : int, optional Number of processors to be used for Gaussian program to run and set in %NProcShared command of Gaussian. memory : int, optional Memory (in GB) to be used set in %Mem command of Gaussian. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. optimisation: str, optional set to "OPT" to perform a geometry optimization on the ligand specified in the system; else set to an empty string. frequency: str, optional set to "FREQ" for Gaussian to perform a frequency calculation; else set to an empty string. add_keywords_I: str, optional Specifies the integration grid. add_keywords_II: str, optional Specifies the QM engine to select one of the methods for analyzing the electron density of the system. Methods used are based on fitting the molecular electrostatic potential. Methods used are : POP=CHELPG (Charges from Electrostatic Potentials using a Grid based method) and POP=MK (Merz-Singh-Kollman scheme) add_keywords_III: str, optional Used to include the IOp keyword (to set the internal options to specific values) in the Gaussian command. gauss_out_file: str, optional This file contains the output script obtained after running the Gaussian QM calculation. fchk_out_file: str, optional Formatted checkpoint file obtained from the checkpoint file using formchk command. """ def __init__( self, charge=0, multiplicity=1, guest_pdb="guest_init_II.pdb", n_processors=12, memory=50, functional="B3LYP", basis_set="6-31G", optimisation="OPT", frequency="FREQ", add_keywords_I="INTEGRAL=(GRID=ULTRAFINE)", add_keywords_II="POP(MK,READRADII)", add_keywords_III="IOP(6/33=2,6/42=6)", gauss_out_file="guest.out", fchk_out_file="guest_fchk.out", ): self.charge = charge self.multiplicity = multiplicity self.guest_pdb = guest_pdb self.n_processors = n_processors self.memory = memory self.functional = functional self.basis_set = basis_set self.optimisation = optimisation self.frequency = frequency self.gauss_out_file = gauss_out_file self.fchk_out_file = fchk_out_file self.add_keywords_I = add_keywords_I self.add_keywords_II = add_keywords_II self.add_keywords_III = add_keywords_III def write_input(self): """ Writes a Gaussian input file for the ligand. """ command_line_1 = "%Chk = " + self.guest_pdb[:-4] + ".chk" command_line_2 = "%Mem = " + str(self.memory) + "GB" command_line_3 = "%NProcShared = " + str(self.n_processors) command_line_4 = ( "# " + self.functional + " " + self.basis_set + " " + self.optimisation + " " + self.frequency + " " + self.add_keywords_I + " " + self.add_keywords_II + " " + self.add_keywords_III ) command_line_5 = " " command_line_6 = self.guest_pdb[:-4] + " " + "gaussian input file" command_line_7 = " " command_line_8 = str(self.charge) + " " + str(self.multiplicity) ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) df = ppdb.df["ATOM"] df_1 = ppdb.df["ATOM"]["element_symbol"] df_1.columns = ["atom"] df_2 = df[["x_coord", "y_coord", "z_coord"]] df_merged = pd.concat([df_1, df_2], axis=1) command_line_9 = df_merged.to_string(header=False, index=False) command_line_10 = " " command = [ command_line_1, command_line_2, command_line_3, command_line_4, command_line_5, command_line_6, command_line_7, command_line_8, command_line_9, command_line_10, ] commands = "\n".join(command) with open(self.guest_pdb[:-4] + ".com", "w") as f: f.write(commands) def run_gaussian(self): """ Runs the Gaussian QM calculation for the ligand locally. """ execute_command = ( "g16" + " < " + self.guest_pdb[:-4] + ".com" + " > " + self.guest_pdb[:-4] + ".log" ) with open(self.gauss_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) def get_fchk(self): """ Converts the Gaussian checkpoint file (.chk) to a formatted checkpoint file (.fchk). """ execute_command = ( "formchk" + " " + self.guest_pdb[:-4] + ".chk" + " " + self.guest_pdb[:-4] + ".fchk" ) with open(self.fchk_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) class PrepareGaussianHostGuest: """ A class used to prepare the QM engine input file (Gaussian) for the receptor - ligand complex and run the QM calculations with the appropriate keywords. This class contain methods to write an input file (.com extension) for the QM engine for the receptor - ligand complex. It then runs a QM calculation with the given basis set and functional. Checkpoint file is then converted to a formatted checkpoint file. Output files (.log, .chk, and .fhck) will then be used to extract charges for the ligand and the receptor. ... Attributes ---------- charge : int, optional Total charge of the receptor - ligand complex. multiplicity : int, optional Spin Multiplicity (2S+1) of the ligand where S represents the total spin of the ligand. guest_pdb : str, optional Ligand PDB file with atom numbers beginning from 1. host_qm_pdb : str, optional PDB file for the receptor's QM region. n_processors : int, optional Number of processors to be used for Gaussian program to run and set in %NProcShared command of Gaussian. memory : int, optional Memory (in GB) to be used set in %Mem command of Gaussian. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. optimisation: str, optional set to "OPT" to perform a geometry optimization on the ligand specified in the system; else set to an empty string. frequency: str, optional set to "FREQ" for Gaussian to perform a frequency calculation; else set to an empty string. add_keywords_I: str, optional Specifies the integration grid. add_keywords_II: str, optional Specifies the QM engine to select one of the methods for analyzing the electron density of the system. Methods used are based on fitting the molecular electrostatic potential. Methods used are : POP=CHELPG (Charges from Electrostatic Potentials using a Grid based method) and POP=MK (Merz-Singh-Kollman scheme) add_keywords_III: str, optional Used to include the IOp keyword (to set the internal options to specific values) in the Gaussian command. gauss_system_out_file : str, optional This file contains the output script obtained after running the Gaussian QM calculation. fchk_system_out_file : str, optional Formatted checkpoint file obtained from the checkpoint file using formchk command. host_guest_input : str, optional Gaussian input file (.com extension) for the receptor - ligand QM region. qm_guest_charge_parameter_file : str, optional File containing the charges of ligand atoms and their corresponding atoms. Charge obtained are the polarised charged due to the surrounding receptor's region. qm_host_charge_parameter_file : str, optional File containing the charges of the QM region of the receptor. qm_guest_atom_charge_parameter_file : str, optional File containing the charges of ligand atoms. Charge obtained are the polarised charged due to the surrounding receptor's region. """ def __init__( self, charge=0, multiplicity=1, guest_pdb="guest_init_II.pdb", host_qm_pdb="host_qm.pdb", n_processors=12, memory=50, functional="B3LYP", basis_set="6-31G", optimisation="", frequency="", add_keywords_I="INTEGRAL=(GRID=ULTRAFINE)", add_keywords_II="POP(MK,READRADII)", add_keywords_III="IOP(6/33=2,6/42=6) SCRF=PCM", gauss_system_out_file="system_qm.out", fchk_system_out_file="system_qm_fchk.out", host_guest_input="host_guest.com", qm_guest_charge_parameter_file="guest_qm_surround_charges.txt", qm_host_charge_parameter_file="host_qm_surround_charges.txt", qm_guest_atom_charge_parameter_file="guest_qm_atom_surround_charges.txt", ): self.charge = charge self.multiplicity = multiplicity self.guest_pdb = guest_pdb self.host_qm_pdb = host_qm_pdb self.n_processors = n_processors self.memory = memory self.functional = functional self.basis_set = basis_set self.optimisation = optimisation self.frequency = frequency self.add_keywords_I = add_keywords_I self.add_keywords_II = add_keywords_II self.add_keywords_III = add_keywords_III self.gauss_system_out_file = gauss_system_out_file self.fchk_system_out_file = fchk_system_out_file self.host_guest_input = host_guest_input self.qm_guest_charge_parameter_file = qm_guest_charge_parameter_file self.qm_host_charge_parameter_file = qm_host_charge_parameter_file self.qm_guest_atom_charge_parameter_file = ( qm_guest_atom_charge_parameter_file ) def write_input(self): """ Writes a Gaussian input file for the receptor - ligand QM region. """ command_line_1 = "%Chk = " + self.host_guest_input[:-4] + ".chk" command_line_2 = "%Mem = " + str(self.memory) + "GB" command_line_3 = "%NProcShared = " + str(self.n_processors) command_line_4 = ( "# " + self.functional + " " + self.basis_set + " " + self.optimisation + " " + self.frequency + " " + self.add_keywords_I + " " + self.add_keywords_II + " " + self.add_keywords_III ) command_line_5 = " " command_line_6 = "Gaussian Input File" command_line_7 = " " command_line_8 = str(self.charge) + " " + str(self.multiplicity) ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) df = ppdb.df["ATOM"] df_1 = ppdb.df["ATOM"]["element_symbol"] df_1.columns = ["atom"] df_3 = df[["x_coord", "y_coord", "z_coord"]] df_2 = pd.Series(["0"] * len(df), name="decide_freeze") df_merged_1 =
pd.concat([df_1, df_2, df_3], axis=1)
pandas.concat
import unittest import numpy as np import pandas as pd from numpy import testing as nptest from operational_analysis.toolkits import power_curve from operational_analysis.toolkits.power_curve.parametric_forms import * noise = 0.1 class TestPowerCurveFunctions(unittest.TestCase): def setUp(self): np.random.seed(42) params = [1300, -7, 11, 2, 0.5] self.x = pd.Series(np.random.random(100) * 30) self.y = pd.Series(logistic5param(self.x, *params) + np.random.random(100) * noise) def test_IEC(self): # Create test data using logistic5param form curve = power_curve.IEC(self.x, self.y) y_pred = curve(self.x) # Does the IEC power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=1, atol=noise * 2, err_msg="Power curve did not properly fit.") def test_logistic_5_param(self): # Create test data using logistic5param form curve = power_curve.logistic_5_parametric(self.x, self.y) y_pred = curve(self.x) # Does the logistic-5 power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=1, atol=noise * 2, err_msg="Power curve did not properly fit.") def test_gam(self): # Create test data using logistic5param form curve = power_curve.gam(windspeed_column = self.x, power_column = self.y, n_splines = 20) y_pred = curve(self.x) # Does the spline-fit power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=0.05, atol = 20, err_msg="Power curve did not properly fit.") def test_3paramgam(self): # Create test data using logistic5param form winddir = np.random.random(100) airdens = np.random.random(100) curve = power_curve.gam_3param(windspeed_column = self.x, winddir_column=winddir, airdens_column=airdens, power_column = self.y, n_splines = 20) y_pred = curve(self.x, winddir, airdens) # Does the spline-fit power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=0.05, atol = 20, err_msg="Power curve did not properly fit.") def tearDown(self): pass class TestParametricForms(unittest.TestCase): def setUp(self): pass def test_logistic5parameter(self): y_pred = logistic5param(np.array([1., 2., 3.]), *[1300., -7., 11., 2., 0.5]) y = np.array([2.29403585, 5.32662505, 15.74992462]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.") y_pred = logistic5param(np.array([1, 2, 3]), *[1300., -7., 11., 2., 0.5]) y = np.array([2.29403585, 5.32662505, 15.74992462]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not handle integer inputs properly.") y_pred = logistic5param(np.array([0.01, 0.0]), 1300, 7, 11, 2, 0.5) y = np.array([ 1300.0 , 1300.0 ]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not handle zero properly (b>0).") y_pred = logistic5param(np.array([0.01, 0.0]), 1300, -7, 11, 2, 0.5) y = np.array([ 2.0 , 2.0 ]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not handle zero properly (b<0).") def test_logistic5parameter_capped(self): # Numpy array + Lower Bound y_pred = logistic5param_capped(np.array([1., 2., 3.]), *[1300., -7., 11., 2., 0.5], lower=5., upper=20.) y = np.array([5., 5.32662505, 15.74992462]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.") # Numpy array + Upper and Lower Bound y_pred = logistic5param_capped(np.array([1., 2., 3.]), *[1300., -7., 11., 2., 0.5], lower=5., upper=10.) y = np.array([5., 5.32662505, 10.]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.") # Pandas Series + Upper and Lower Bound y_pred = logistic5param_capped(
pd.Series([1., 2., 3.])
pandas.Series
from argparse import ArgumentParser from pathlib import Path from typing import Tuple import pandas as pd from sklearn.model_selection import train_test_split def split_metadata(original_metadata: pd.DataFrame, train_fraction: float, random_state: int) -> Tuple[pd.DataFrame, pd.DataFrame]: image_ids =
pd.unique(original_metadata['image_id'])
pandas.unique
from warnings import catch_warnings, simplefilter import numpy as np from numpy.random import randn import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna) from pandas.util import testing as tm @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") class TestMultiIndexSetItem(object): def test_setitem_multiindex(self): with catch_warnings(record=True): for index_fn in ('ix', 'loc'): def assert_equal(a, b): assert a == b def check(target, indexers, value, compare_fn, expected=None): fn = getattr(target, index_fn) fn.__setitem__(indexers, value) result = fn.__getitem__(indexers) if expected is None: expected = value compare_fn(result, expected) # GH7190 index = MultiIndex.from_product([np.arange(0, 100), np.arange(0, 80)], names=['time', 'firm']) t, n = 0, 2 df = DataFrame(np.nan, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=0, compare_fn=assert_equal) df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=1, compare_fn=assert_equal) df = DataFrame(columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=2, compare_fn=assert_equal) # gh-7218: assigning with 0-dim arrays df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=np.array(3), compare_fn=assert_equal, expected=3, ) # GH5206 df = DataFrame(np.arange(25).reshape(5, 5), columns='A,B,C,D,E'.split(','), dtype=float) df['F'] = 99 row_selection = df['A'] % 2 == 0 col_selection = ['B', 'C'] with catch_warnings(record=True): df.ix[row_selection, col_selection] = df['F'] output = DataFrame(99., index=[0, 2, 4], columns=['B', 'C']) with catch_warnings(record=True): tm.assert_frame_equal(df.ix[row_selection, col_selection], output) check(target=df, indexers=(row_selection, col_selection), value=df['F'], compare_fn=tm.assert_frame_equal, expected=output, ) # GH11372 idx = MultiIndex.from_product([ ['A', 'B', 'C'], date_range('2015-01-01', '2015-04-01', freq='MS')]) cols = MultiIndex.from_product([ ['foo', 'bar'], date_range('2016-01-01', '2016-02-01', freq='MS')]) df = DataFrame(np.random.random((12, 4)), index=idx, columns=cols) subidx = MultiIndex.from_tuples( [('A',
Timestamp('2015-01-01')
pandas.Timestamp
import os import glob import numpy as np import pandas as pd from keras import backend as K from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers.advanced_activations import PReLU from keras.layers.core import Dense, Dropout from keras.layers.normalization import BatchNormalization from keras.models import Sequential from keras.optimizers import Adam from sklearn.model_selection import ShuffleSplit from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler # Data Set DATASET_FOLDER_PATH = "./" INPUT_FOLDER_PATH = os.path.join(DATASET_FOLDER_PATH, "input") TRAIN_FILE_PATH = os.path.join(INPUT_FOLDER_PATH, "train.csv") TEST_FILE_PATH = os.path.join(INPUT_FOLDER_PATH, "test.csv") SUBMISSION_FOLDER_PATH = os.path.join(DATASET_FOLDER_PATH, "submission") ID_COLUMN_NAME = "id" LABEL_COLUMN_NAME = "loss" # Model Structure BLOCK_NUM = 3 DENSE_DIM = 512 DROPOUT_RATIO = 0.5 # Training Procedure CROSS_VALIDATION_NUM = 10 MAXIMUM_EPOCH_NUM = 1000000 EARLYSTOPPING_PATIENCE = 20 TRAIN_BATCH_SIZE = 32 TEST_BATCH_SIZE = 1024 def load_data(): # Read file content train_file_content =
pd.read_csv(TRAIN_FILE_PATH)
pandas.read_csv
# -*- coding: utf-8 -*- import os import logging import tempfile import uuid import shutil import numpy as np import pandas as pd from rastertodataframe import util, tiling log = logging.getLogger(__name__) def raster_to_dataframe(raster_path, vector_path=None): """Convert a raster to a Pandas DataFrame. Parameters ---------- raster_path : str Path to raster file. vector_path : str Optional path to vector file. If given, raster pixels will be extracted from features in the vector. If None, all raster pixels are converted to a DataFrame. Returns ------- pandas.core.frame.DataFrame """ # Placeholders for possible temporary files. temp_dir = vector_mask_fname = None # Get raster band names. ras = util.open_raster(raster_path) raster_band_names = util.get_raster_band_names(ras) # Create a mask from the pixels touched by the vector. if vector_path is not None: # Create a temporary directory for files. temp_dir = tempfile.mkdtemp() vec_with_fid = os.path.join(temp_dir, '{}'.format(uuid.uuid1())) # Add a dummy feature ID column to the vector. # This is not always present in OGR features. vec_gdf = util.open_vector(vector_path, with_geopandas=True) mask_values = list(range(1, len(vec_gdf) + 1)) vec_gdf['__fid__'] =
pd.Series(mask_values)
pandas.Series
# heartparser.py # Author: <NAME> # # This script parses the Apple Health export xml file for Heart Rate and # Blood Pressure data and produces graphs of the data for given date ranges. import numpy as np from datetime import date, datetime, timedelta as td from matplotlib import pyplot, dates as mdates from matplotlib.ticker import FormatStrFormatter from openpyxl import load_workbook from pandas import DataFrame, ExcelWriter, Index from seaborn import lmplot, regplot from xml.dom import minidom def main(): dates = ["2016-12-11", "2017-01-05"] datelist = makedatelist(dates) xmldoc = minidom.parse('export.xml') recordlist = xmldoc.getElementsByTagName('Record') plotheartrate(dates, datelist, recordlist) plotbp(dates, datelist, recordlist) def plotheartrate(dates, datelist, recordlist): # This module parses the heart rate data from the xml file and calls # the plotting function. category = "HKQuantityTypeIdentifierHeartRate" df_hr = parse(category, recordlist) df_hr.columns = ['Time', 'Heart Rate (bpm)'] df_weekhr = weeklyhr(datelist, df_hr) for i in range(52): maxnum = df_weekhr[df_weekhr['Week'] == i].max() print(maxnum) makehrplot(dates, df_weekhr) def weeklyhr(datelist, df_hr): # This module filters through df_hr and returns a dataframe containing # weekly heart rate values. list_weekhr = [] dict_weekday = {} for di in range(len(datelist)): year = int(datelist[di][:4]) month = int(datelist[di][5:7]) day = int(datelist[di][8:10]) weekj = date(year, month, day).isocalendar()[1] if weekj not in dict_weekday: dict_weekday[weekj] = mdates.date2num(datetime(year, month, day)) try: i = df_hr.index.get_loc(datelist[di]) di_hr = df_hr.get_value(i, 1, takeable=True) list_weekhr.append({ 'Date': mdates.date2num(datetime(year, month, day)), 'PlotDate': dict_weekday[weekj], 'Week': weekj, 'Heart Rate (bpm)': float(di_hr) }) except: pass df_weekhr =
DataFrame(list_weekhr)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from numpy import nan import numpy as np from pandas import compat from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameConvertTo(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_to_dict(self): test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } recons_data = DataFrame(test_data).to_dict() for k, v in
compat.iteritems(test_data)
pandas.compat.iteritems
from scipy.spatial.distance import cosine from scipy.stats import pearsonr import numpy as np import pandas as pd def metric_for_similarity_f(b, metric="euclidean"): if metric == "euclidean": return lambda a:np.sqrt(np.sum((a-b)**2))#L2 elif metric == "cosine": return lambda a:cosine(a,b)#cosine distance elif metric == "-dot": return lambda a:- np.dot(a,b) elif metric == "1-pearson": return lambda a:1.0 - pearsonr(a,b)[0] else: raise RuntimeError("Invalid metric!") #def display(simple_array, num): # k = len(simple_array); # plt.figure(num); # plt.plot(range(k), simple_array); def get_topk_similar(reference_id, data_part, metric, gen_id_to_account, k=10, verbose=True): snapshot_id, feats, relevance_labels = data_part snapshot_df = feats.set_index(0) row_count = snapshot_df.shape[0] distances = [] #compute each distance rep_of_reference = np.array(snapshot_df.loc[reference_id]) indices = snapshot_df.index metric_f = metric_for_similarity_f(rep_of_reference, metric) for idx, row in enumerate(snapshot_df.values): if indices[idx] != reference_id: distance = metric_f(row) distances.append( (indices[idx], distance) ) rdf =
pd.DataFrame(distances, columns=["id","dist"])
pandas.DataFrame
# The test is referenced from https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html import time import hdbscan import warnings import sklearn.cluster import scipy.cluster import sklearn.datasets import numpy as np import pandas as pd import seaborn as sns from numpy.linalg import norm from classix.aggregation_test import aggregate from classix import CLASSIX from quickshift.QuickshiftPP import * from sklearn import metrics import matplotlib.pyplot as plt from threadpoolctl import threadpool_limits np.random.seed(0) def benchmark_algorithm_tdim(dataset_dimensions, cluster_function, function_args, function_kwds, dataset_size=10000, dataset_n_clusters=10, max_time=45, sample_size=10, algorithm=None): # Initialize the result with NaNs so that any unfilled entries # will be considered NULL when we convert to a pandas dataframe at the end result_time = np.nan * np.ones((len(dataset_dimensions), sample_size)) result_ar = np.nan * np.ones((len(dataset_dimensions), sample_size)) result_ami = np.nan * np.ones((len(dataset_dimensions), sample_size)) for index, dimension in enumerate(dataset_dimensions): for s in range(sample_size): # Use sklearns make_blobs to generate a random dataset with specified size # dimension and number of clusters # set cluster_std=0.1 to ensure clustering rely less on tuning parameters. data, labels = sklearn.datasets.make_blobs(n_samples=dataset_size, n_features=dimension, centers=dataset_n_clusters, cluster_std=1) # Start the clustering with a timer start_time = time.time() cluster_function.fit(data, *function_args, **function_kwds) time_taken = time.time() - start_time if algorithm == "Quickshift++": preds = cluster_function.memberships else: preds = cluster_function.labels_ # print("labels num:", len(np.unique(preds))) ar = metrics.adjusted_rand_score(labels, preds) ami = metrics.adjusted_mutual_info_score(labels, preds) # If we are taking more than max_time then abort -- we don't # want to spend excessive time on slow algorithms if time_taken > max_time: # Luckily, it won't happens in our experiment. result_time[index, s] = time_taken result_ar[index, s] = ar result_ami[index, s] = ami return pd.DataFrame(np.vstack([dataset_dimensions.repeat(sample_size), result_time.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_dimensions.repeat(sample_size), result_ar.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_dimensions.repeat(sample_size), result_ami.flatten()]).T, columns=['x','y']) else: result_time[index, s] = time_taken result_ar[index, s] = ar result_ami[index, s] = ami # Return the result as a dataframe for easier handling with seaborn afterwards return pd.DataFrame(np.vstack([dataset_dimensions.repeat(sample_size), result_time.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_dimensions.repeat(sample_size), result_ar.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_dimensions.repeat(sample_size), result_ami.flatten()]).T, columns=['x','y']) def benchmark_algorithm_tsize(dataset_sizes, cluster_function, function_args, function_kwds, dataset_dimension=10, dataset_n_clusters=10, max_time=45, sample_size=10, algorithm=None): # Initialize the result with NaNs so that any unfilled entries # will be considered NULL when we convert to a pandas dataframe at the end result_time = np.nan * np.ones((len(dataset_sizes), sample_size)) result_ar = np.nan * np.ones((len(dataset_sizes), sample_size)) result_ami = np.nan * np.ones((len(dataset_sizes), sample_size)) for index, size in enumerate(dataset_sizes): for s in range(sample_size): # Use sklearns make_blobs to generate a random dataset with specified size # dimension and number of clusters # set cluster_std=0.1 to ensure clustering rely less on tuning parameters. data, labels = sklearn.datasets.make_blobs(n_samples=size, n_features=dataset_dimension, centers=dataset_n_clusters, cluster_std=1) # Start the clustering with a timer start_time = time.time() cluster_function.fit(data, *function_args, **function_kwds) time_taken = time.time() - start_time if algorithm == "Quickshift++": preds = cluster_function.memberships else: preds = cluster_function.labels_ # print("labels num:", len(np.unique(preds))) ar = metrics.adjusted_rand_score(labels, preds) ami = metrics.adjusted_mutual_info_score(labels, preds) # If we are taking more than max_time then abort -- we don't # want to spend excessive time on slow algorithms if time_taken > max_time: # Luckily, it won't happens in our experiment. result_time[index, s] = time_taken result_ar[index, s] = ar result_ami[index, s] = ami return pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result_time.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result_ar.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result_ami.flatten()]).T, columns=['x','y']) else: result_time[index, s] = time_taken result_ar[index, s] = ar result_ami[index, s] = ami # Return the result as a dataframe for easier handling with seaborn afterwards return pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result_time.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result_ar.flatten()]).T, columns=['x','y']), \ pd.DataFrame(np.vstack([dataset_sizes.repeat(sample_size), result_ami.flatten()]).T, columns=['x','y']) def rn_gaussian_dim(): warnings.filterwarnings("ignore") sns.set_context('poster') sns.set_palette('Paired', 10) sns.set_color_codes() dataset_dimensions = np.hstack([np.arange(1, 11) * 10]) np.random.seed(0) with threadpool_limits(limits=1, user_api='blas'): k_means = sklearn.cluster.KMeans(n_clusters=10, init='k-means++') k_means_time, k_means_ar, k_means_ami = benchmark_algorithm_tdim(dataset_dimensions, k_means, (), {}) dbscan = sklearn.cluster.DBSCAN(eps=10, min_samples=1, n_jobs=1, algorithm='ball_tree') dbscan_btree_time, dbscan_btree_ar, dbscan_btree_ami = benchmark_algorithm_tdim(dataset_dimensions, dbscan, (), {}) dbscan = sklearn.cluster.DBSCAN(eps=10, min_samples=1, n_jobs=1, algorithm='kd_tree') dbscan_kdtree_time, dbscan_kdtree_ar, dbscan_kdtree_ami = benchmark_algorithm_tdim(dataset_dimensions, dbscan, (), {}) hdbscan_ = hdbscan.HDBSCAN(algorithm='best', core_dist_n_jobs=1) hdbscan_time, hdbscan_ar, hdbscan_ami = benchmark_algorithm_tdim(dataset_dimensions, hdbscan_, (), {}) classix = CLASSIX(sorting='pca', radius=0.3, minPts=5, group_merging='distance', verbose=0) classix_time, classix_ar, classix_ami = benchmark_algorithm_tdim(dataset_dimensions, classix, (), {}) quicks = QuickshiftPP(k=20, beta=0.7) quicks_time, quicks_ar, quicks_ami = benchmark_algorithm_tdim(dataset_dimensions, quicks, (), {}, algorithm='Quickshift++') k_means_time.to_csv("results/exp1/gd_kmeans_time.csv",index=False) dbscan_kdtree_time.to_csv("results/exp1/gd_dbscan_kdtree_time.csv",index=False) dbscan_btree_time.to_csv("results/exp1/gd_dbscan_btree_time.csv",index=False) hdbscan_time.to_csv("results/exp1/gd_hdbscan_time.csv",index=False) classix_time.to_csv("results/exp1/gd_classix_time.csv",index=False) quicks_time.to_csv("results/exp1/gd_quicks_time.csv",index=False) k_means_ar.to_csv("results/exp1/gd_kmeans_ar.csv",index=False) dbscan_kdtree_ar.to_csv("results/exp1/gd_dbscan_kdtree_ar.csv",index=False) dbscan_btree_ar.to_csv("results/exp1/gd_dbscan_btree_ar.csv",index=False) hdbscan_ar.to_csv("results/exp1/gd_hdbscan_ar.csv",index=False) classix_ar.to_csv("results/exp1/gd_classix_ar.csv",index=False) quicks_ar.to_csv("results/exp1/gd_quicks_ar.csv",index=False) def rn_gaussian_size(): warnings.filterwarnings("ignore") sns.set_context('poster') sns.set_palette('Paired', 10) sns.set_color_codes() np.random.seed(0) dataset_sizes = np.hstack([np.arange(1, 11) * 5000]) np.random.seed(0) with threadpool_limits(limits=1, user_api='blas'): k_means = sklearn.cluster.KMeans(n_clusters=10, init='k-means++') k_means_time, k_means_ar, k_means_ami = benchmark_algorithm_tsize(dataset_sizes, k_means, (), {}) dbscan = sklearn.cluster.DBSCAN(eps=3, min_samples=1, n_jobs=1, algorithm='ball_tree') dbscan_btree_time, dbscan_btree_ar, dbscan_btree_ami = benchmark_algorithm_tsize(dataset_sizes, dbscan, (), {}) dbscan = sklearn.cluster.DBSCAN(eps=3, min_samples=1, n_jobs=1, algorithm='kd_tree') dbscan_kdtree_time, dbscan_kdtree_ar, dbscan_kdtree_ami = benchmark_algorithm_tsize(dataset_sizes, dbscan, (), {}) hdbscan_ = hdbscan.HDBSCAN(algorithm='best', core_dist_n_jobs=1) hdbscan_time, hdbscan_ar, hdbscan_ami = benchmark_algorithm_tsize(dataset_sizes, hdbscan_, (), {}) classix = CLASSIX(sorting='pca', radius=0.3, minPts=5, group_merging='distance', verbose=0) classix_time, classix_ar, classix_ami = benchmark_algorithm_tsize(dataset_sizes, classix, (), {}) quicks = QuickshiftPP(k=20, beta=0.7) quicks_time, quicks_ar, quicks_ami = benchmark_algorithm_tsize(dataset_sizes, quicks, (), {}, algorithm='Quickshift++') k_means_time.to_csv("results/exp1/gs_kmeans_time.csv",index=False) dbscan_kdtree_time.to_csv("results/exp1/gs_dbscan_kdtree_time.csv",index=False) dbscan_btree_time.to_csv("results/exp1/gs_dbscan_btree_time.csv",index=False) hdbscan_time.to_csv("results/exp1/gs_hdbscan_time.csv",index=False) classix_time.to_csv("results/exp1/gs_classix_time.csv",index=False) quicks_time.to_csv("results/exp1/gs_quicks_time.csv",index=False) k_means_ar.to_csv("results/exp1/gs_kmeans_ar.csv",index=False) dbscan_kdtree_ar.to_csv("results/exp1/gs_dbscan_kdtree_ar.csv",index=False) dbscan_btree_ar.to_csv("results/exp1/gs_dbscan_btree_ar.csv",index=False) hdbscan_ar.to_csv("results/exp1/gs_hdbscan_ar.csv",index=False) classix_ar.to_csv("results/exp1/gs_classix_ar.csv",index=False) quicks_ar.to_csv("results/exp1/gs_quicks_ar.csv",index=False) def run_gassian_plot(): # -------------------------------dim k_means_time = pd.read_csv("results/exp1/gd_kmeans_time.csv") dbscan_kdtree_time = pd.read_csv("results/exp1/gd_dbscan_kdtree_time.csv") dbscan_btree_time = pd.read_csv("results/exp1/gd_dbscan_btree_time.csv") hdbscan_time = pd.read_csv("results/exp1/gd_hdbscan_time.csv") classix_time = pd.read_csv("results/exp1/gd_classix_time.csv") quicks_time = pd.read_csv("results/exp1/gd_quicks_time.csv") k_means_ar = pd.read_csv("results/exp1/gd_kmeans_ar.csv") dbscan_kdtree_ar = pd.read_csv("results/exp1/gd_dbscan_kdtree_ar.csv") dbscan_btree_ar = pd.read_csv("results/exp1/gd_dbscan_btree_ar.csv") hdbscan_ar = pd.read_csv("results/exp1/gd_hdbscan_ar.csv") classix_ar = pd.read_csv("results/exp1/gd_classix_ar.csv") quicks_ar = pd.read_csv("results/exp1/gd_quicks_ar.csv") plt.figure(figsize=(12,8)) plt.style.use('bmh') sns.set(font_scale=1.8) sns.set_style("whitegrid") plt.rcParams['axes.facecolor'] = 'white' # plt.rc('font', family='serif') ax = sns.lineplot(data=k_means_time, x="x", y="y", marker='v', markersize=13, label='k-means++', linestyle="-", linewidth=6) ax = sns.lineplot(data=dbscan_kdtree_time, x="x", y="y", marker='s', markersize=13, label='DBSCAN (kd-tree)', linestyle="--", linewidth=6) ax = sns.lineplot(data=dbscan_btree_time, x="x", y="y", marker='o', markersize=13, label='DBSCAN (ball tree)', linestyle=":", linewidth=6) ax = sns.lineplot(data=hdbscan_time, x="x", y="y", marker='<', markersize=13, label='HDBSCAN', linestyle="-", linewidth=6) ax = sns.lineplot(data=classix_time, x="x", y="y", marker='*', markersize=17, label='CLASSIX', linestyle="--", linewidth=6) ax = sns.lineplot(data=quicks_time, x="x", y="y", marker='p', markersize=17, label='Quickshift++', linestyle=(0, (3, 1, 1, 1, 1, 1)), linewidth=6) ax.set(xlabel='dimensions', ylabel='time (s)', title="Gaussian blobs (n=10000)") plt.tick_params(axis='both', labelsize=22) plt.savefig('results/exp1/gaussian_dim_time.pdf', bbox_inches='tight') plt.figure(figsize=(12,8)) plt.style.use('bmh') sns.set(font_scale=1.8) sns.set_style("whitegrid") plt.rcParams['axes.facecolor'] = 'white' # plt.rc('font', family='serif') ax = sns.lineplot(data=k_means_ar, x="x", y="y", marker='v', markersize=13, label='k-means++', linestyle="-", linewidth=6) ax = sns.lineplot(data=dbscan_kdtree_ar, x="x", y="y", marker='s', markersize=13, label='DBSCAN (kd-tree)', linestyle="--", linewidth=6) ax = sns.lineplot(data=dbscan_btree_ar, x="x", y="y", marker='o', markersize=13, label='DBSCAN (ball tree)', linestyle=":", linewidth=6) ax = sns.lineplot(data=hdbscan_ar, x="x", y="y", marker='<', markersize=13, label='HDBSCAN', linestyle="-", linewidth=6) ax = sns.lineplot(data=classix_ar, x="x", y="y", marker='*', markersize=17, label='CLASSIX', linestyle="--", linewidth=6) ax = sns.lineplot(data=quicks_ar, x="x", y="y", marker='p', markersize=17, label='Quickshift++', linestyle=(0, (3, 1, 1, 1, 1, 1)), linewidth=6) ax.set(xlabel='dimensions', ylabel='adjusted Rand index', title="Gaussian blobs (n=10000)") ax.set(ylim=(-.1, 1.1)) plt.tick_params(axis='both', labelsize=22) plt.savefig('results/exp1/gaussian_dim_ar.pdf', bbox_inches='tight') # -------------------------------size k_means_time = pd.read_csv("results/exp1/gs_kmeans_time.csv") dbscan_kdtree_time = pd.read_csv("results/exp1/gs_dbscan_kdtree_time.csv") dbscan_btree_time = pd.read_csv("results/exp1/gs_dbscan_btree_time.csv") hdbscan_time = pd.read_csv("results/exp1/gs_hdbscan_time.csv") classix_time = pd.read_csv("results/exp1/gs_classix_time.csv") quicks_time = pd.read_csv("results/exp1/gs_quicks_time.csv") k_means_ar = pd.read_csv("results/exp1/gs_kmeans_ar.csv") dbscan_kdtree_ar = pd.read_csv("results/exp1/gs_dbscan_kdtree_ar.csv") dbscan_btree_ar = pd.read_csv("results/exp1/gs_dbscan_btree_ar.csv") hdbscan_ar =
pd.read_csv("results/exp1/gs_hdbscan_ar.csv")
pandas.read_csv
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import sklearn #import gensim import scipy import numpy import json import nltk from nltk.stem import PorterStemmer from nltk.tokenize import sent_tokenize, word_tokenize import sys import csv import os from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk import load from sklearn.feature_extraction.text import CountVectorizer from sklearn import tree from scipy.sparse import coo_matrix, hstack, vstack from sklearn.metrics import accuracy_score, classification_report from sklearn.ensemble import RandomForestClassifier from sklearn import svm from sklearn.neural_network import MLPClassifier gp_df = pd.read_csv('gap_phase2_wCV.tsv', delimiter='\t') numerical_features = gp_df.loc[:,['Pronoun-offset', 'A-offset', 'B-offset', 'offsetPronoun-A', 'offsetPronoun-B', 'pre_predict-A', 'pre_predict-B', 'pre_predict-N', 'tar_predict-A', 'tar_predict-B', 'tar_predict-N', ]] cat_features = pd.get_dummies(gp_df.loc[:,['PronounNum', 'SentenceClass']].astype('category'),drop_first=True) labels = gp_df.loc[:, 'PronounClass'] ids = gp_df.loc[:, 'ID'] features = pd.concat([numerical_features,cat_features], axis=1) clfANN = MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.95, beta_2=0.9995, early_stopping=False, epsilon=1e-05, hidden_layer_sizes=(100,100), learning_rate='constant', learning_rate_init=0.015, max_iter=3000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=0, shuffle=True, solver='adam', tol=0.001, validation_fraction=0.1, verbose=False, warm_start=False) clfANN.fit(features, labels) results = pd.DataFrame(clfANN.predict_proba(features)) finaldf =
pd.concat([ids,results], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # #### functions in this script are created searching for keywords related measures import pandas as pd from nltk import tokenize from iteration_utilities import deepflatten import re import statistics as stat def hasNumbers(inputString): '''check if string has numbers''' return any(char.isdigit() for char in inputString) def split_para(paragraph): ''' Input: paragraph string Usage: splitting paragraph into segmentations, splitters are ",;" "with", "and" Output: list of spliited sentences ''' try: sents = tokenize.sent_tokenize(paragraph) except TypeError: print('expecting a string input') sents_new = list(map(lambda x:x.split('with '), sents)) sents_new = list(deepflatten(sents_new,types=list)) ##flatten list of lists sents_new = list(map(lambda x:x.split(' and '), sents_new)) sents_new = list(deepflatten(sents_new,types=list)) sents_new = list(map(lambda x:x.split('surround'), sents_new)) sents_new = list(deepflatten(sents_new,types=list)) sents_new = list(map(lambda x:x.split(' but '), sents_new)) sents_new = list(deepflatten(sents_new,types=list)) return sents_new def size_determ(rgx,keyword,sent): ''' Input: rgx: list of regex patterns keyword: keyword to look for sent: sentence Output: return 1 if any rgx pattern along with keyword appears in sentence, else 0 ''' if rgx!=[]: for i in rgx: if i.findall(sent)!=[]: return 1 if keyword in sent and hasNumbers(sent)==True: return 1 else: return 0 ## no size determination def apply_f(a,f): ''' Input: a: list of lists f: function Usage: apply function to each string element in list of lists ''' if isinstance(a,list): return list(map(lambda t:apply_f(t,f), a)) else: return f(a) def rm_post_culture(sent): ''' Input: sent: sentence Usage: exclude segments about post culture/after culture ''' if "post culture" in sent or "after culture" in sent: return "" else: return sent def match_numbers(lst1,match_or_not): ''' Input: lst1: list of measurements mactch_or_not: binary indicators from function size_determ(); 0 means no related measurement, 1 otherwise Output: list of valid measurements related to keywords ''' if match_or_not!=0: return lst1 elif lst1==['0','0']: return lst1 else: return [] def no_measures(rgx_lst, sent_lst,measure_lst): ''' Input: rgx_lst: list of regex patterns to look for (ex: no infiltrate) sent_lst: list of splitted segments measure_lst: list of measurements found within sent_lst Output: measure_lst as 0 if any regex pattern matched, else stay the same ''' for j in rgx_lst: for i in range(0,len(sent_lst)): if j.findall(sent_lst[i])!=[]: measure_lst[i]=['0','0'] return measure_lst def rm_specialfmt(lst): ''' Input: lst: list of numerical tokens matched Usage: deleting unwanted numerical measures such as time, data, percentage and so on Output: list of validated numerical measures ''' re_time = re.compile(r'\d+\:\d+') re_date = re.compile(r'\d+\/\d+\/\d+') re_time1 = re.compile(r'\d+\-\d+') re_pct = re.compile(r'\d+%') re_number = re.compile(r'\d{3,}') re_plus = re.compile(r'\d+\+') if len(lst)==0: return lst else: new = [x for x in lst if not re_time.search(x) \ and not re_date.search(x) and not re_pct.search(x) \ and not re_number.search(x) and not re_time1.search(x) and not re_plus.search(x)] return new def assign_values(dat,col_inp,col1,col2): ''' Input: dat: dataframe col_inp: text column col1: column name for left eye measurement col2: column name for right eye measurement Usage: aggregate above functions, and assign values to dataframe column Output: a panda dataframe ''' dat[col1] = pd.Series(['na']*len(dat),index=dat.index) dat[col2] = pd.Series(['na']*len(dat),index=dat.index) for i in dat.index: if dat.loc[i,col_inp]==[]: dat.loc[i,col1]='na' dat.loc[i,col2]='na' elif len(dat.loc[i,col_inp])==1: new = rm_specialfmt(dat.loc[i,col_inp][0]) if len(new) >= 2: dat.loc[i,col1]=new[0] dat.loc[i,col2]=new[1] elif len(new) == 1: dat.loc[i,col1]=new[0] dat.loc[i,col2]=new[0] elif len(new) == 0: dat.loc[i,col1]='na' dat.loc[i,col2]='na' elif dat.loc[i,col_inp]!='na' and len(dat.loc[i,col_inp]) >= 2: measures = [] for lsts in range(0,len(dat.loc[i,col_inp])): measures.append(rm_specialfmt(dat.loc[i,col_inp][lsts])) measures=apply_f(measures,eval) measures = list(filter(None, measures)) if measures == []: dat.loc[i,col1]='na' dat.loc[i,col2]='na' else: mean = list(map(stat.mean,measures)) idx = mean.index(max(mean)) if len(measures[idx])>=2: dat.loc[i,col1]=measures[idx][0] dat.loc[i,col2]=measures[idx][1] elif len(measures[idx])==1: dat.loc[i,col1]=measures[idx][0] dat.loc[i,col2]=measures[idx][0] return dat def reduce(dat, inp_col): ''' input: dat: dataframe inp_col: text column usage: take the maximum measure if there are more than one related measures output: a panda dataframe ''' for i in dat[dat[inp_col].apply(lambda x:len(x)>=2)].index.tolist(): measures=apply_f(dat.loc[i,inp_col],eval) measures = list(filter(None, measures)) if measures == []: dat.loc[i,inp_col]='na' else: mean = list(map(stat.mean,measures)) idx = mean.index(max(mean)) dat.loc[i,inp_col] = str([measures[idx]]) return dat ## commonly appeared 0 cases in the training set, ex: no defect, healed defect key_wd = "<PASSWORD>" ed_rgx = [re.compile(r'no (\w* ){0,}defect|without (\w* ){0,}defect'), re.compile(r'epi\w+ ((?!not)\w*(%)? ){0,}intact|intact (\w* ){0,}epi\w+'), re.compile(r'epi\w+ (defect)? ((?!nearly)(?!almost)\w* ){0,}healed|healed (epi\w+)? defect'), re.compile(r'epithelial defect ((?!almost)(?!mostly)\w* ){0,}resolved|resolved (\w* ){0,}(epithelial )?defect'), re.compile(r'(no|without|resolved|negative) (\w* ){0,}stain(ing)?'), re.compile(r'epi\w+ irregularity'), re.compile(r'pinpoint (\w* ){0,}epithelial defect'), re.compile(r'(\w*(?!no) ){0,}epithelial erosion'),re.compile(r'pinpoint (\w*(?!no) ){0,}stain'), re.compile(r'punctate (\w* ){0,}epi\w+ defect'),re.compile(r'epithelium healed'), re.compile(r'punctate stain'),re.compile(r'defect (\w*(?!no) ){0,}closed')] inf_rgx = [re.compile(r'no (\w* ){0,}infiltrat\w+|without (\w*(?!defect) ){0,}infiltrat'), re.compile(r'infiltrat\w+ ((?!nearly)(?!almost)\w* ){0,}healed|healed (\w* ){0,}infiltrat\w+'), re.compile(r'infiltrat\w+ ((?!almost)(?!mostly)\w* ){0,}resolved|resolved (\w* ){0,}infiltrat'), re.compile(r'punctate( \w*){0,}\/?infiltrat\w+'),re.compile(r'punctate (\w* ){0,}infiltrat\w+'), re.compile(r'pinpoint (\w* ){0,}infiltrat\w+')] ## match numerical measurements re_float = re.compile(r'\d*\.?\/?\:?\-?\/?\d+\/?\d*\%?') def measure_or_not(sents,rgx,kwd): ''' input: sents: string of sentences rgx: regex pattern of 0 cases kwd: keyword you are looking for, ex: defect, infiltrate output: list of binarys indicating whether each segment has related measures to the keyword or not ''' sent_lst = split_para(sents) sent_lst = apply_f(sent_lst,rm_post_culture) measure = list(map(lambda x: size_determ(rgx,kwd,x), sent_lst)) measure = list(map(lambda x: 1 if x >=1 else 0, measure)) return measure def measure(sents, kwd, rgx,re_float=re_float): ''' input: sents: string of sentences kwd: keyword you are looking for, ex: defect, infiltrate rgx: regex pattern of 0 cases re_float: regex matching any numerical tokens output: list of lists for the numerical measures found at segment level ''' sent_lst = split_para(sents) sent_lst = apply_f(sent_lst,rm_post_culture) ## splitted segments measure_01 = measure_or_not(sents,rgx,kwd) ## binary indicator size = apply_f(sent_lst, lambda t: re.findall(re_float, t)) ## all numerical tokens size = no_measures(rgx, sent_lst, size) ## find 0 cases and assign measurement as 0 new_size=[] for i in range(0,len(size)): new_size.append(match_numbers(size[i], measure_01[i])) results = list(map(lambda x:rm_specialfmt(x), new_size)) ## remove unwanted numerical tokens results = list(filter(None,results)) ## take the first 2 measures if found multiple results = list(map(lambda x: x[:2] if len(x)>=2 else [x[0],x[0]], results)) return results def measure_max(sents, kwd, rgx,re_float=re_float): ''' input: sents: string of sentences kwd: keyword you are looking for, ex: defect, infiltrate rgx: regex pattern of 0 cases re_float: regex matching any numerical tokens output: dictionary for the numerical measures related to kwd at encounter level ''' measures = measure(sents, kwd,rgx, re_float=re_float) if measures == None: return {kwd: (None,None)} measures = apply_f(measures,eval) if len(measures)==1 and type(measures[0])==list: return {kwd: tuple(measures[0])} elif len(measures)>=2: mean = list(map(stat.mean,measures)) idx = mean.index(max(mean)) return {kwd: tuple(measures[idx])} else: return {kwd: (None,None)} def measure_size(sents,re_float=re_float, rgx=[ed_rgx,inf_rgx]): ''' input: sents: string of sentences rgx: regex pattern of 0 cases re_float: regex matching any numerical tokens output: dictionary of valid measurements at encounter level, both defect and infiltrate ''' ed_rgx = rgx[0] inf_rgx = rgx[1] ed_size=measure_max(sents, 'defect',re_float=re_float, rgx=ed_rgx).get('defect') st_size=measure_max(sents, 'stain',re_float=re_float, rgx=ed_rgx).get('stain') if ed_size==(None,None) and st_size!=(None,None): ed_size=st_size inf_size=measure_max(sents, 'infiltrat',re_float=re_float, rgx=inf_rgx).get('infiltrat') uc_size=measure_max(sents, 'ulcer',re_float=re_float, rgx=inf_rgx).get('ulcer') if inf_size==(None,None) and uc_size!=(None,None): inf_size=uc_size sents = sents.replace("'","") if re.findall(r'defect[\s\w*]*\,? [\w*\s]*with[\s\w*]* infiltrate', sents)!=[] and ed_size==(None,None) and inf_size!=(None,None): ed_size=inf_size if re.findall(r'defect[\s\w*]*\,? [\w*\s]*with[\s\w*]* infiltrate', sents)!=[] and ed_size!=(None,None) and inf_size==(None,None): inf_size=ed_size if re.findall(r'infiltrate[\s\w*]*\,? [\w*\s]*with[\s\w*]* defect', sents)!=[] and ed_size!=(None,None) and inf_size==(None,None): inf_size=ed_size if re.findall(r'infiltrate[\s\w*]*\,? [\w*\s]*with[\s\w*]* defect', sents)!=[] and ed_size==(None,None) and inf_size!=(None,None): ed_size=inf_size return{'defect':ed_size, 'infiltrate': inf_size} ## example: sent = '''3+ superficial punctate keratitis diffusely over graft; epithelial defect measuring 4.8 mm vertically x 2.1 mm horizontally with no stromal infiltrate underlying defect; small epithelial defect over central axis measuring x 0.9 mm vertical x 1.0 mm horizontal ; moderate diffuse stromal edema with descemet folds ; superficial stuck-on-appearing plaque-like opacities diffusely on graft with hazy borders, no significant corneal thinning''' print(measure_size(sent)) print(measure_max(sent, 'infiltrate',inf_rgx,re_float=re_float)) print(measure_max(sent, 'defect',ed_rgx,re_float=re_float)) ## on the whole dataframe inp_path = 'df_corrected.csv' out_path = 'measured.csv' left_eye_col = 'corrected_left' ## output smart text column after spelling correction: left eyes right_eye_col = 'corrected_right' ## output smart text column after spelling correction: right eyes #dat=open(dat_inp,errors='ignore') #dat=dat.read() #test = StringIO(dat) df = pd.read_csv(inp_path, sep=",",na_values=" ") df['description'] = df[left_eye_col] + '. ' + df[right_eye_col] df['description'] = pd.Series([re.sub(r'(\d+\:?\d*)-(\d+\:?\d*)','\1 - \2', x) for x in df.description.values.tolist()], index = df.index) measures = [measure_size(x) for x in df.description.values.tolist()] df['ed_measure1'] = pd.Series([x['defect'][0] for x in measures]) df['ed_measure2'] =
pd.Series([x['defect'][1] for x in measures])
pandas.Series
import numpy as np import pandas as pd import scipy.sparse as sp import sklearn.preprocessing as pp from math import exp from heapq import heappush, heappop # conventional i2i class CosineSimilarity(): # expects DataFrame, loaded from ratings.csv def __init__(self, df, limit=20): self.limit = limit # no need for timestamp here df = df.drop(labels = 'timestamp', axis = 1) # let's see what's the mean rating for each movie, df_mean = df.groupby(['movieId'], sort = False).mean().rename(columns = {'rating': 'mean'}) # join mean values to original DataFrame df = df.join(df_mean, on = 'movieId', sort = False) # and subtract mean values from each rating, # so that rating of 0 becomes neutral df['rating'] = df['rating'] - df['mean'] # ok? now pivot original DataFrame so that it becomes a feature/document matrix # and fill all NaNs (where a user hasn't rated a movie) with zeros, which is legal now df = df.pivot_table(index = 'userId', columns = 'movieId', values = 'rating').fillna(0) # if there were movies, having only equal ratings (ie, all 4.0) # then we can't really recommend anything to them, hence removing df = df.loc[:, (df != 0).any(axis = 0)] # here we go, let's turn DataFrame into sparse matrix, normalize ratings, cnm = pp.normalize(sp.csr_matrix(df.values), axis = 0) # calculate recommendations and turn sparse matrix back into DataFrame, # having movieId index, movieId columns and values, representing relevance of A to B self.recs = pd.DataFrame((cnm.T * cnm).todense(), columns=df.columns, index=df.columns) # retrieves "limit" of recommendations for given movie_id out of precalculated DataFrame def recommend(self, movie_id): if not movie_id in self.recs.index.values: return
pd.DataFrame([], columns=['movieId'])
pandas.DataFrame
# Jun. 28th, 2020 # Score: 0.14508 import torch from torch import nn from torch.nn import init import torch.utils.data as Data import pandas as pd from modules import base def get_net(feature_num): hidden_num = 32, 8 drop_prob = .001 net = nn.Sequential( nn.Linear(feature_num, hidden_num[0]), nn.ReLU(), nn.Dropout(drop_prob), nn.Linear(hidden_num[0], hidden_num[1]), nn.ReLU(), nn.Linear(hidden_num[1], 1) ) for params in net.parameters(): init.normal_(params, mean=0, std=.01) return net def log_rmse(net, features, labels, loss): with torch.no_grad(): clipped_preds = torch.max(net(features), torch.tensor(1.0)) rmse = torch.sqrt(loss(clipped_preds.log(), labels.log())) return rmse.item() def train(net, train_features, train_labels, test_features, test_labels, loss, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] dataset = Data.TensorDataset(train_features, train_labels) train_iter = Data.DataLoader(dataset, batch_size, shuffle=True) optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay) net = net.float() num_epochs = 0 while True: for X, y in train_iter: ls = loss(net(X.float()), y.float()) optimizer.zero_grad() ls.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels, loss)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels, loss)) num_epochs += 1 if len(train_ls) > 1: if abs(train_ls[-1] - train_ls[-2]) < 1e-3: break return train_ls, test_ls, num_epochs def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None X_valid, y_valid = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat((X_train, X_part), dim=0) y_train = torch.cat((y_train, y_part), dim=0) return X_train, y_train, X_valid, y_valid def k_fold(k, X_train, y_train, learning_rate, weight_decay, batch_size): loss = nn.MSELoss() train_loss_sum, valid_loss_sum = 0, 0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) net = get_net(X_train.shape[1]) train_ls, valid_ls, num_epochs = train(net, *data, loss, learning_rate, weight_decay, batch_size) train_loss_sum += train_ls[-1] valid_loss_sum += valid_ls[-1] if i == k - 1: base.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse', range(1, num_epochs + 1), valid_ls, ['train', 'valid']) print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1])) return train_loss_sum / k, valid_loss_sum / k def train_and_pred(train_features, test_features, train_labels, test_data, lr, weight_decay, batch_size): loss = nn.MSELoss() net = get_net(train_features.shape[1]) train_ls, _, num_epochs = train(net, train_features, train_labels, None, None, loss, lr, weight_decay, batch_size) base.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse') print('train rmse %f' % train_ls[-1]) preds = net(test_features).detach().numpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('./submission.csv', index=False) def main(): torch.set_default_tensor_type(torch.FloatTensor) path = './data' train_data = pd.read_csv(path + '/train.csv') test_data = pd.read_csv(path + '/test.csv') all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:])) # data preprocessing numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index all_features[numeric_features] = all_features[numeric_features].apply( lambda x: (x - x.mean()) / (x.std())) all_features[numeric_features] = all_features[numeric_features].fillna(0) all_features =
pd.get_dummies(all_features, dummy_na=True)
pandas.get_dummies
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data =
pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner')
pandas.concat
import os import pickle from functools import reduce from tqdm import tqdm from datetime import datetime from dateutil.relativedelta import relativedelta import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn import metrics from sklearn.metrics import roc_auc_score, plot_precision_recall_curve import matplotlib.pyplot as plt def optimal_binning_boundary(x: pd.Series, y: pd.Series, nan: float = -999.) -> list: ''' 利用决策树获得最优分箱的边界值列表 ''' boundary = [] # 待return的分箱边界值列表 x = x.fillna(nan).values # 填充缺失值 y = y.values clf = DecisionTreeClassifier(criterion='entropy', #“信息熵”最小化准则划分 max_leaf_nodes=6, # 最大叶子节点数 min_samples_leaf=0.05) # 叶子节点样本数量最小占比 clf.fit(x.reshape(-1, 1), y) # 训练决策树 n_nodes = clf.tree_.node_count children_left = clf.tree_.children_left children_right = clf.tree_.children_right threshold = clf.tree_.threshold for i in range(n_nodes): if children_left[i] != children_right[i]: # 获得决策树节点上的划分边界值 boundary.append(threshold[i]) boundary.sort() min_x = x.min() max_x = x.max() + 0.1 # +0.1是为了考虑后续groupby操作时,能包含特征最大值的样本 boundary = [min_x] + boundary + [max_x] return boundary def ks_table(y_predict, y_true, ascending=False, is_cate=False, sep=None, nbins=10): """ 计算KS分层表 :param y_predict: list, array, pandas.Series, 预测的概率或打分 :param y_true: list, array, pandas.Series, 真实的标签, 1或0, 只支持二分类 :param ascending: boolean, default False, 对y_predict排序的方式。 为False则降序排序,此时y_predict越大表示y_true为1(坏客户)的概率越大,一般适用于预测概率; 为True则升序排序,此时y_predict越小表示y_true为1(坏客户)的概率越大,一般适用于标准分; :param sep: list, default None, 预设的分割点 :return: Pandas.DataFrame, 结果KS分层表 """ if len(y_predict) < 10: return None if not isinstance(y_predict, pd.Series): y_predict = pd.Series(y_predict) if not isinstance(y_true, pd.Series): y_true = pd.Series(y_true) y_predict = y_predict.reset_index(drop=True) y_true = y_true.reset_index(drop=True) data =
pd.concat([y_predict, y_true], axis=1)
pandas.concat
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, delta, box): # only test adding/sub offsets as + is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + delta tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, delta, box): # only test adding/sub offsets as - is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="Index fails to return " "NotImplemented on " "reverse op", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box_df_fail): # GH#18849 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box_df_fail): # GH#18824, GH#19744 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_df_fail): # GH#18824 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="object dtype Series " "fails to return " "NotImplemented", strict=True, raises=TypeError)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box): # GH#18849 box2 = Series if box is pd.Index else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_df_fail): # GH#18824 box = box_df_fail # DataFrame tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_df_fail): box = box_df_fail # DataFrame op returns object instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, delta, box): if box is pd.DataFrame and not isinstance(delta, pd.DateOffset): pytest.xfail(reason="returns m8[ns] instead of raising") rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng * delta def test_tdi_mul_int_array_zerodim(self, box_df_fail): box = box_df_fail # DataFrame op returns object dtype rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 0.1)) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * Series(rng5f + 0.1) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_df_fail): # RangeIndex fails to return NotImplemented, for others # DataFrame tries to broadcast incorrectly box = box_df_fail tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__ def test_td64arr_div_nat_invalid(self, box_df_fail): # don't allow division by NaT (maybe could in the future) box = box_df_fail # DataFrame returns all-NaT instead of raising rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng / pd.NaT def test_td64arr_div_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx / 1 tm.assert_equal(result, idx) def test_tdi_div_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) def test_tdi_div_tdlike_scalar_with_nat(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly returns " "m8[ns] instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_floordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 =
tm.box_expected(td1, box)
pandas.util.testing.box_expected
""" Original code based on Kaggle competition Modified to take 3-channel input """ from __future__ import division import numpy as np from keras.models import Model from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Cropping2D from keras import backend as K import keras import h5py from keras.layers.normalization import BatchNormalization from keras.optimizers import Nadam from keras.callbacks import History import pandas as pd from keras.backend import binary_crossentropy import datetime import os import random import threading import tensorflow as tf from keras.models import model_from_json from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) img_rows = 112 img_cols = 112 smooth = 1e-12 num_channels = 3 num_mask_channels = 1 random.seed(0) def jaccard_coef(y_true, y_pred): intersection = K.sum(y_true * y_pred, axis=[0, -1, -2]) sum_ = K.sum(y_true + y_pred, axis=[0, -1, -2]) jac = (intersection + smooth) / (sum_ - intersection + smooth) return K.mean(jac) def jaccard_coef_int(y_true, y_pred): y_pred_pos = K.round(K.clip(y_pred, 0, 1)) intersection = K.sum(y_true * y_pred_pos, axis=[0, -1, -2]) sum_ = K.sum(y_true + y_pred_pos, axis=[0, -1, -2]) jac = (intersection + smooth) / (sum_ - intersection + smooth) return K.mean(jac) def jaccard_coef_loss(y_true, y_pred): return -K.log(jaccard_coef(y_true, y_pred)) + binary_crossentropy(y_pred, y_true) def get_unet0(): inputs = Input((num_channels, img_rows, img_cols)) skip1 = Convolution2D(12, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(inputs) conv1 = Convolution2D(12, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(inputs) conv1 = BatchNormalization(mode=0, axis=1)(conv1) conv1 = keras.layers.advanced_activations.ELU()(conv1) conv1 = Convolution2D(12, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv1) conv1 = BatchNormalization(mode=0, axis=1)(conv1) conv1 = keras.layers.Add()([conv1,skip1]) conv1 = keras.layers.advanced_activations.ELU()(conv1) pool1 = MaxPooling2D(pool_size=(2, 2),dim_ordering='th')(conv1) skip2 = Convolution2D(24, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(pool1) conv2 = Convolution2D(24, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(pool1) conv2 = BatchNormalization(mode=0, axis=1)(conv2) conv2 = keras.layers.advanced_activations.ELU()(conv2) conv2 = Convolution2D(24, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv2) conv2 = BatchNormalization(mode=0, axis=1)(conv2) conv2 = keras.layers.Add()([conv2,skip2]) conv2 = keras.layers.advanced_activations.ELU()(conv2) pool2 = MaxPooling2D(pool_size=(2, 2),dim_ordering='th')(conv2) skip3 = Convolution2D(48, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(pool2) conv3 = Convolution2D(48, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(pool2) conv3 = BatchNormalization(mode=0, axis=1)(conv3) conv3 = keras.layers.advanced_activations.ELU()(conv3) conv3 = Convolution2D(48, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv3) conv3 = BatchNormalization(mode=0, axis=1)(conv3) conv3 = keras.layers.Add()([conv3,skip3]) conv3 = keras.layers.advanced_activations.ELU()(conv3) pool3 = MaxPooling2D(pool_size=(2, 2),dim_ordering='th')(conv3) skip4 = Convolution2D(96, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(pool3) conv4 = Convolution2D(96, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(pool3) conv4 = BatchNormalization(mode=0, axis=1)(conv4) conv4 = keras.layers.advanced_activations.ELU()(conv4) conv4 = Convolution2D(96, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv4) conv4 = BatchNormalization(mode=0, axis=1)(conv4) conv4 = keras.layers.Add()([conv4,skip4]) conv4 = keras.layers.advanced_activations.ELU()(conv4) pool4 = MaxPooling2D(pool_size=(2, 2),dim_ordering='th')(conv4) skip5 = Convolution2D(192, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(pool4) conv5 = Convolution2D(192, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(pool4) conv5 = BatchNormalization(mode=0, axis=1)(conv5) conv5 = keras.layers.advanced_activations.ELU()(conv5) conv5 = Convolution2D(192, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv5) conv5 = BatchNormalization(mode=0, axis=1)(conv5) conv5 = keras.layers.Add()([conv5,skip5]) conv5 = keras.layers.advanced_activations.ELU()(conv5) up6 = merge([UpSampling2D(size=(2, 2),dim_ordering='th')(conv5), conv4], mode='concat', concat_axis=1) skip6 = Convolution2D(96, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(up6) conv6 = Convolution2D(96, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(up6) conv6 = BatchNormalization(mode=0, axis=1)(conv6) conv6 = keras.layers.advanced_activations.ELU()(conv6) conv6 = Convolution2D(96, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv6) conv6 = BatchNormalization(mode=0, axis=1)(conv6) conv6 = keras.layers.Add()([conv6,skip6]) conv6 = keras.layers.advanced_activations.ELU()(conv6) up7 = merge([UpSampling2D(size=(2, 2),dim_ordering='th')(conv6), conv3], mode='concat', concat_axis=1) skip7 = Convolution2D(48, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(up7) conv7 = Convolution2D(48, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(up7) conv7 = BatchNormalization(mode=0, axis=1)(conv7) conv7 = keras.layers.advanced_activations.ELU()(conv7) conv7 = Convolution2D(48, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv7) conv7 = BatchNormalization(mode=0, axis=1)(conv7) conv7 = keras.layers.Add()([conv7,skip7]) conv7 = keras.layers.advanced_activations.ELU()(conv7) up8 = merge([UpSampling2D(size=(2, 2),dim_ordering='th')(conv7), conv2], mode='concat', concat_axis=1) skip8 = Convolution2D(24, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(up8) conv8 = Convolution2D(24, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(up8) conv8 = BatchNormalization(mode=0, axis=1)(conv8) conv8 = keras.layers.advanced_activations.ELU()(conv8) conv8 = Convolution2D(24, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv8) conv8 = BatchNormalization(mode=0, axis=1)(conv8) conv8 = keras.layers.Add()([conv8,skip8]) conv8 = keras.layers.advanced_activations.ELU()(conv8) up9 = merge([UpSampling2D(size=(2, 2),dim_ordering='th')(conv8), conv1], mode='concat', concat_axis=1) skip9 = Convolution2D(12, 1, 1, border_mode='same', init='he_uniform',dim_ordering='th')(up9) conv9 = Convolution2D(12, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(up9) conv9 = BatchNormalization(mode=0, axis=1)(conv9) conv9 = keras.layers.advanced_activations.ELU()(conv9) conv9 = Convolution2D(12, 3, 3, border_mode='same', init='he_uniform',dim_ordering='th')(conv9) conv9 = keras.layers.Add()([conv9,skip9]) crop9 = Cropping2D(cropping=((16, 16), (16, 16)),dim_ordering='th')(conv9) conv9 = BatchNormalization(mode=0, axis=1)(crop9) conv9 = keras.layers.advanced_activations.ELU()(conv9) conv10 = Convolution2D(num_mask_channels, 1, 1, activation='sigmoid',dim_ordering='th')(conv9) model = Model(input=inputs, output=conv10) return model def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def form_batch(X, y, batch_size): X_batch = np.zeros((batch_size, num_channels, img_rows, img_cols)) y_batch = np.zeros((batch_size, num_mask_channels, img_rows, img_cols)) X_height = X.shape[2] X_width = X.shape[3] for i in range(batch_size): random_width = random.randint(0, X_width - img_cols - 1) random_height = random.randint(0, X_height - img_rows - 1) random_image = random.randint(0, X.shape[0] - 1) y_batch[i] = y[random_image, :, random_height: random_height + img_rows, random_width: random_width + img_cols] X_batch[i] = np.array(X[random_image, :, random_height: random_height + img_rows, random_width: random_width + img_cols]) return X_batch, y_batch class threadsafe_iter: """Takes an iterator/generator and makes it thread-safe by serializing call to the `next` method of given iterator/generator. """ def __init__(self, it): self.it = it self.lock = threading.Lock() def __iter__(self): return self def next(self): with self.lock: return self.it.next() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): yield threadsafe_iter(f(*a, **kw)) return g def batch_generator(X, y, batch_size, horizontal_flip=False, vertical_flip=False, swap_axis=False): while True: X_batch, y_batch = form_batch(X, y, batch_size) for i in range(X_batch.shape[0]): xb = X_batch[i] yb = y_batch[i] if horizontal_flip: if np.random.random() < 0.5: xb = flip_axis(xb, 1) yb = flip_axis(yb, 1) if vertical_flip: if np.random.random() < 0.5: xb = flip_axis(xb, 2) yb = flip_axis(yb, 2) if swap_axis: if np.random.random() < 0.5: xb = xb.swapaxes(1, 2) yb = yb.swapaxes(1, 2) X_batch[i] = xb y_batch[i] = yb yield X_batch, y_batch[:, :, 16:16 + img_rows - 32, 16:16 + img_cols - 32] def save_model(model, cross): json_string = model.to_json() if not os.path.isdir('cache'): os.mkdir('cache') json_name = 'architecture_resnet' + cross + '.json' weight_name = 'model_weights_resnet' + cross + '.h5' open(os.path.join('cache', json_name), 'w').write(json_string) model.save_weights(os.path.join('cache', weight_name), overwrite=True) def save_history(history, suffix): filename = 'history/history_' + suffix + '.csv'
pd.DataFrame(history.history)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib import os from glob import glob import sys import gc from scipy.optimize import curve_fit from astropy.table import Table import astropy.io.fits as fits from astropy.timeseries import LombScargle, BoxLeastSquares import exoplanet as xo # import pymc3 as pm # import theano.tensor as tt from stuff import FINDflare, EasyE, IRLSSpline matplotlib.rcParams.update({'font.size':18}) matplotlib.rcParams.update({'font.family':'serif'}) ftype = '.pdf' # tess_dir = '/data/epyc/data/tess/' # tess_dir = '/Users/james/Desktop/tess/' # # sectors = ['sector001', 'sector002', 'sector003', 'sector004', 'sector005', 'sector006'] # # # just in case glob wants to re-order things, be sure grab them in Sector order # sect1 = glob(tess_dir + sectors[0] + '/*.fits', recursive=True) # sect2 = glob(tess_dir + sectors[1] + '/*.fits', recursive=True) # sect3 = glob(tess_dir + sectors[2] + '/*.fits', recursive=True) # sect4 = glob(tess_dir + sectors[3] + '/*.fits', recursive=True) # sect5 = glob(tess_dir + sectors[4] + '/*.fits', recursive=True) # sect6 = glob(tess_dir + sectors[5] + '/*.fits', recursive=True) # # files = sect1 + sect2 + sect3 + sect4 + sect5 + sect6 # # make into an array for looping later! # s_lens = [len(sect1), len(sect2), len(sect3), len(sect4), len(sect5), len(sect6)] # print(s_lens, len(files)) def BasicActivity(sector, tess_dir = '/Users/james/Desktop/tess/', run_dir = '/Users/james/Desktop/helloTESS/', clobber=False): ''' Run the basic set of tools on every light curve Produce a diagnostic plot for each light curve Save a file on Rotation stats and a file on Flare stats ''' print('running ' + tess_dir + sector) files_i = glob(tess_dir + sector + '/*.fits', recursive=True) print(str(len(files_i)) + ' .fits files found') # arrays to hold outputs per_out = np.zeros(len(files_i)) -1 per_amp = np.zeros(len(files_i)) -1 per_med = np.zeros(len(files_i)) -1 per_std = np.zeros(len(files_i)) -1 ACF_1pk = np.zeros(len(files_i)) -1 ACF_1dt = np.zeros(len(files_i)) -1 blsPeriod = np.zeros(len(files_i)) -1 blsAmpl = np.zeros(len(files_i)) -1 EclNum = np.zeros(len(files_i)) -1 EclDep = np.zeros(len(files_i)) -1 FL_id = np.array([]) FL_t0 = np.array([]) FL_t1 = np.array([]) FL_f0 = np.array([]) FL_f1 = np.array([]) if not os.path.isdir(run_dir + 'figures/' + sector): os.makedirs(run_dir + 'figures/' + sector) plt.ioff() for k in range(len(files_i)): # print(files_i[k]) if k % 1000 == 0: print(str(k) + '/'+str(len(files_i))) tbl = -1 df_tbl = -1 try: tbl = Table.read(files_i[k], format='fits') df_tbl = tbl.to_pandas() except (OSError, KeyError, TypeError, ValueError): print('k=' + str(k) + ' bad file: ' + files_i[k]) # this is a bit clumsy, but it made sense at the time when trying to chase down some bugs... if tbl != -1: # make harsh quality cuts, and chop out a known bad window of time (might add more later) AOK = (tbl['QUALITY'] == 0) & ((tbl['TIME'] < 1347) | (tbl['TIME'] > 1350)) med = np.nanmedian(df_tbl['PDCSAP_FLUX'][AOK]) # ACF w/ Exoplanet package acf = xo.autocorr_estimator(tbl['TIME'][AOK], tbl['PDCSAP_FLUX'][AOK] / med, yerr=tbl['PDCSAP_FLUX_ERR'][AOK] / med, min_period=0.07, max_period=27, max_peaks=2) if len(acf['peaks']) > 0: ACF_1dt[k] = acf['peaks'][0]['period'] ACF_1pk[k] = acf['autocorr'][1][np.where((acf['autocorr'][0] == acf['peaks'][0]['period']))[0]][0] s_window = int(ACF_1dt[k] / np.abs(np.nanmedian(np.diff(tbl['TIME']))) / 6.) else: s_window = 128 # do a running median for a basic smooth # smo = (df_tbl['PDCSAP_FLUX'][AOK].rolling(128, center=True).median() + df_tbl['PDCSAP_FLUX'][AOK].rolling(256, center=True).median()) / 2. smo = df_tbl['PDCSAP_FLUX'][AOK].rolling(s_window, center=True).median() # make an output plot for every file figname = run_dir + 'figures/' + sector + '/' + files_i[k].split('/')[-1] + '.jpeg' #run_dir + 'figures/longerP/' + TICs[0].split('-')[2] + '.jpeg' makefig = ((not os.path.exists(figname)) | clobber) if makefig: plt.figure(figsize=(12,9)) plt.errorbar(tbl['TIME'][AOK], tbl['PDCSAP_FLUX'][AOK]/med, yerr=tbl['PDCSAP_FLUX_ERR'][AOK]/med, linestyle=None, alpha=0.15, label='PDC_FLUX') plt.plot(tbl['TIME'][AOK], smo/med, label=str(s_window)+'pt MED') if (ACF_1dt[k] > 0): plt.plot(tbl['TIME'][AOK], np.nanstd(smo / med) * ACF_1pk[k] * np.sin(tbl['TIME'][AOK] / ACF_1dt[k] * 2 * np.pi) + 1, label='ACF=' + format(ACF_1dt[k], '6.3f') + 'd, pk=' + format(ACF_1pk[k], '6.3f'), lw=2, alpha=0.7) # plt.errorbar(tbl['TIME'][AOK], tbl['SAP_FLUX'][AOK]/Smed, yerr=tbl['SAP_FLUX_ERR'][AOK]/Smed, # linestyle=None, alpha=0.25, label='SAP_FLUX') # require at least 1000 good datapoints for analysis if sum(AOK) > 1000: # find OK points in the smoothed LC SOK = np.isfinite(smo) # do some SPLINE'ing # spl = IRLSSpline(df_tbl['TIME'].values[AOK][SOK], df_tbl['PDCSAP_FLUX'].values[AOK][SOK] / med, # df_tbl['PDCSAP_FLUX_ERR'].values[AOK][SOK] / med) # flares FL = FINDflare((df_tbl['PDCSAP_FLUX'][AOK][SOK] - smo[SOK])/med, df_tbl['PDCSAP_FLUX_ERR'][AOK][SOK]/med, N1=4, N2=2, N3=5, avg_std=False) if np.size(FL) > 0: for j in range(len(FL[0])): FL_id = np.append(FL_id, k) FL_t0 = np.append(FL_t0, FL[0][j]) FL_t1 = np.append(FL_t1, FL[1][j]) FL_f0 = np.append(FL_f0, med) FL_f1 = np.append(FL_f1, np.nanmax(tbl['PDCSAP_FLUX'][AOK][SOK][(FL[0][j]):(FL[1][j]+1)])) if makefig: if np.size(FL) > 0: for j in range(len(FL[0])): plt.scatter(tbl['TIME'][AOK][SOK][(FL[0][j]):(FL[1][j]+1)], tbl['PDCSAP_FLUX'][AOK][SOK][(FL[0][j]):(FL[1][j]+1)] / med, color='r', label='_nolegend_') plt.scatter([],[], color='r', label='Flare?') # Lomb Scargle LS = LombScargle(df_tbl['TIME'][AOK], df_tbl['PDCSAP_FLUX'][AOK]/med, dy=df_tbl['PDCSAP_FLUX_ERR'][AOK]/med) frequency, power = LS.autopower(minimum_frequency=1./40., maximum_frequency=1./0.1, samples_per_peak=7) best_frequency = frequency[np.argmax(power)] per_out[k] = 1./best_frequency per_amp[k] = np.nanmax(power) per_med[k] = np.nanmedian(power) per_std[k] = np.nanstd(smo[SOK]/med) if np.nanmax(power) > 0.05: LSmodel = LS.model(df_tbl['TIME'][AOK], best_frequency) if makefig: plt.plot(df_tbl['TIME'][AOK], LSmodel, label='L-S P='+format(1./best_frequency, '6.3f')+'d, pk='+format(np.nanmax(power), '6.3f')) # here is where a simple Eclipse (EB) finder goes # EE = EasyE(smo[SOK]/med, df_tbl['PDCSAP_FLUX_ERR'][AOK][SOK]/med, # N1=5, N2=3, N3=2) EE = EasyE(df_tbl['PDCSAP_FLUX'][AOK][SOK]/med - smo[SOK]/med, df_tbl['PDCSAP_FLUX_ERR'][AOK][SOK] / med, N1=5, N2=2.5, N3=2.5) # N1 datapoints long, and # N2 times below the stddev, and # N3 times below the error if (np.size(EE) > 0): # need to test if EE outputs look periodic-ish, or just junk... noE = np.arange(len(SOK)) for j in range(len(EE[0])): if makefig: plt.scatter(tbl['TIME'][AOK][SOK][(EE[0][j]):(EE[1][j]+1)], df_tbl['PDCSAP_FLUX'][AOK][SOK][(EE[0][j]):(EE[1][j]+1)] / med, color='k', marker='s', s=5, alpha=0.75, label='_nolegend_') noE[(EE[0][j]):(EE[1][j]+1)] = -1 EclDep[k] = EclDep[k] + np.nanmin(df_tbl['PDCSAP_FLUX'][AOK][SOK][(EE[0][j]):(EE[1][j] + 1)] / med - smo[SOK][(EE[0][j]):(EE[1][j] + 1)]/med) if makefig: plt.scatter([],[], color='k', marker='s', s=5, alpha=0.75, label='Ecl: '+str(len(EE[0]))) EclNum[k] = len(EE[0]) EclDep[k] = EclDep[k] / np.float(len(EE[0])) okE = np.where((noE > -1))[0] else: okE = np.arange(len(SOK)) # do some GP'ing, from: # https://exoplanet.dfm.io/en/stable/tutorials/stellar-variability/ # if False: # with pm.Model() as model: # # # The mean flux of the time series # mean = pm.Normal("mean", mu=1.0, sd=10.0) # # # A jitter term describing excess white noise # # print(AOK.shape, SOK.shape, okE.shape) # yerr = df_tbl['PDCSAP_FLUX_ERR'].values[AOK][SOK] / med # y = df_tbl['PDCSAP_FLUX'].values[AOK][SOK] / med # x = df_tbl['TIME'].values[AOK][SOK] # # logs2 = pm.Normal("logs2", mu=2 * np.log(np.min(yerr)), sd=5.0) # # # The parameters of the RotationTerm kernel # logamp = pm.Normal("logamp", mu=np.log(np.var(y)), sd=5.0) # logperiod = pm.Normal("logperiod", mu=np.log(acf['peaks'][0]['period']), sd=5.0) # logQ0 = pm.Normal("logQ0", mu=1.0, sd=10.0) # logdeltaQ = pm.Normal("logdeltaQ", mu=2.0, sd=10.0) # mix = pm.Uniform("mix", lower=0, upper=1.0) # # # Track the period as a deterministic # period = pm.Deterministic("period", tt.exp(logperiod)) # # # Set up the Gaussian Process model # kernel = xo.gp.terms.RotationTerm( # log_amp=logamp, # period=period, # log_Q0=logQ0, # log_deltaQ=logdeltaQ, # mix=mix # ) # gp = xo.gp.GP(kernel, x, yerr ** 2 + tt.exp(logs2), J=4) # # # Compute the Gaussian Process likelihood and add it into the # # the PyMC3 model as a "potential" # pm.Potential("loglike", gp.log_likelihood(y - mean)) # # # Compute the mean model prediction for plotting purposes # pm.Deterministic("pred", gp.predict()) # # # Optimize to find the maximum a posteriori parameters # map_soln = xo.optimize(start=model.test_point) # # gpspl = map_soln["pred"] # plt.plot(df_tbl['TIME'].values[AOK][SOK], gpspl+1, label='GP') # add BLS bls = BoxLeastSquares(df_tbl['TIME'][AOK][SOK], smo[SOK]/med, dy=df_tbl['PDCSAP_FLUX_ERR'][AOK][SOK]/med) blsP = bls.autopower([0.05], method='fast', objective='snr', minimum_n_transit=3, minimum_period=0.1, maximum_period=15, frequency_factor=1.5) blsPer = blsP['period'][np.argmax(blsP['power'])] if ((np.nanmax(blsP['power']) > 2.5*np.nanstd(blsP['power']) + np.nanmedian(blsP['power']) ) & # (np.nanmax(blsP['power']) > 10.) & (blsPer < 0.95 * np.nanmax(blsP['period'])) ): blsPeriod[k] = blsPer blsAmpl[k] = np.nanmax(blsP['power']) if makefig: plt.plot([],[], ' ', label='BLS='+format(blsPer, '6.3f')+'d, snr='+format(np.nanmax(blsP['power']), '6.3f')) if makefig: # plt.plot(df_tbl['TIME'].values[AOK][SOK], spl, label='spl') plt.title(files_i[k].split('/')[-1] + ' k='+str(k), fontsize=12) plt.ylabel('Flux') plt.xlabel('BJD - 2457000 (days)') plt.legend(fontsize=10) # plt.show() plt.savefig(figname, bbox_inches='tight', pad_inches=0.25, dpi=100) plt.close() # reset the data again, not needed, but juuuuuust in case del tbl del df_tbl del AOK gc.collect() # write per-sector output files ALL_TIC =
pd.Series(files_i)
pandas.Series
# -*- coding: utf-8 -*- # author: <NAME> # Email: <EMAIL> from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from __future__ import generators from __future__ import with_statement import re from bs4 import BeautifulSoup from concurrent import futures import os import sys import traceback import time import datetime import pandas as pd import requests import json import shutil import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from fake_useragent import UserAgent from openpyxl import load_workbook import smtplib from email.mime.text import MIMEText from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.header import Header ############ 全局变量初始化 ############## HEADERS = dict() # 并发线程数 NUM_THREADS = None # 城市选择 city_dict = { "成都": "cd", "北京": "bj", "上海": "sh", "广州": "gz", "深圳": "sz", "南京": "nj", "合肥": "hf", "杭州": "hz", } # 是否打印HTTP错误 PRINT = True if ((len(sys.argv) > 1) and (sys.argv[1] == 'true')) else False # 伪造User-Agent库初始化 ua = UserAgent() # 不使用代理 proxies = None WORKPATH="/home/frank/workspace/lianjia/data" CITY = city_dict["北京"] """ HTTP GET 操作封装 """ def get_bs_obj_from_url(http_url): done = False exception_time = 0 HEADERS["User-Agent"] = ua.random while not done: try: if PRINT: print("正在获取 {}".format(http_url)) r = requests.get(http_url, headers=HEADERS, proxies=proxies, timeout=3) bs_obj = BeautifulSoup(r.text, "lxml") done = True except Exception as e: if PRINT: print(e) exception_time += 1 time.sleep(1) if exception_time > 10: return None return bs_obj """ 判断一个字符串是否可以转成数字 """ def is_number(s): try: float(s) return True except ValueError: return False def esf_mkdir(path): path=path.strip() path=path.rstrip("\\") isExists=os.path.exists(path) if not isExists: os.makedirs(path) print("{} create successfully.".format(path)) return True else: print("{} already exist.".format(path)) return False def get_district_from_city(city): print("---get {} districts---".format(city)) city_url = "http://{}.lianjia.com".format(city) http_url = city_url + "/ershoufang" bs_obj = get_bs_obj_from_url(http_url) parent_div = bs_obj.find("div", {"data-role": "ershoufang"}) a_list = parent_div.find_all("a") district_list = [a.attrs["href"].replace("/ershoufang/", "")[:-1] for a in a_list if a.attrs['href'].startswith("/ershoufang")] print("---total {} districts---".format(len(district_list))) return district_list def get_district_name_from_city(city): print("---get {} districts---".format(city)) city_url = "http://{}.lianjia.com".format(city) http_url = city_url + "/ershoufang" bs_obj = get_bs_obj_from_url(http_url) parent_div = bs_obj.find("div", {"data-role": "ershoufang"}) a_list = parent_div.find_all("a") name_list = [a.get_text() for a in a_list if a.attrs['href'].startswith("/ershoufang")] print("---total {} districts---".format(len(name_list))) return name_list def get_esf_from_district(city, district): http_url = "http://{}.lianjia.com/ershoufang/{}".format(city, district) bs_obj = get_bs_obj_from_url(http_url) esf_list = [] try: total_esf_num = int(bs_obj.find("h2", {"class": "total fl"}).find("span").get_text()) except Exception as e: #try again try: bs_obj = get_bs_obj_from_url(http_url) total_esf_num = int(bs_obj.find("h2", {"class": "total fl"}).find("span").get_text()) except Exception as e: return esf_list print("---district {} total ershoufang numbers: {}---".format(district, total_esf_num)) if total_esf_num == 0: print("---district {} total get {}/{}---\n".format(district, len(esf_list), total_esf_num)) return esf_list for price in range(1, 9): esf_list_partial = get_esf_id_in_price(city, district, price) if esf_list_partial is not None and len(esf_list_partial) > 0: esf_list += esf_list_partial print("---district {} total get {}/{}---\n".format(district, len(esf_list), total_esf_num)) return esf_list def get_esf_id_in_price(city, district, price): http_url = "http://{}.lianjia.com/ershoufang/{}/p{}".format(city, district, price) bs_obj = get_bs_obj_from_url(http_url) total_esf_num = 0 try: total_esf_num = int(bs_obj.find("h2", {"class": "total fl"}).find("span").get_text()) except Exception as e: print(" price {} get error.".format(price)) pass #print("------price {} total : {}---".format(price, total_esf_num)) esf_list = [] if total_esf_num == 0: print(" price {} finish---done.".format(price)) return esf_list try: page_box = bs_obj.find("div", {"class": "page-box house-lst-page-box"}) total_pages = int(json.loads(page_box.attrs["page-data"])["totalPage"]) except Exception as e: print(" price {} page get error.".format(price)) return esf_list with futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor: future_list = [] for page_no in range(1, total_pages + 1): future_list.append(executor.submit(get_esf_id_in_page, city, district, price, page_no)) fail_list = [] count = 0 for future in futures.as_completed(future_list): page_no, esf_list_partial = future.result() if esf_list_partial is None or len(esf_list_partial) == 0: fail_list.append(page_no) else: esf_list += esf_list_partial count += 1 sys.stdout.write("\r price {} finish {}/{}".format(price, len(esf_list), total_esf_num)) for page_no in fail_list: _, esf_list_partial = get_esf_id_in_page(city, district, price, page_no) if esf_list_partial is not None and len(esf_list_partial) > 0: esf_list += esf_list_partial count += 1 sys.stdout.write("\r price {} finish {}/{}".format(price, len(esf_list), total_esf_num)) print("---done.") return esf_list def get_esf_id_in_page(city, district, price, page_no): http_url = "http://{}.lianjia.com/ershoufang/{}/pg{}p{}".format(city, district, page_no, price) bs_obj = get_bs_obj_from_url(http_url) if bs_obj is None: print("get ershoufang id, price {} page {} is none".format(price, page_no)) return None parent_list = bs_obj.find_all("li", {"class": "clear"}) esf_list = [] if not (len(parent_list) == 0): for li in parent_list: esf_url = str(li.find("div", {"class": "title"}).find("a").attrs["href"]) esf_id = "".join(list(filter(str.isdigit, esf_url))) esf_list.append(esf_id) return page_no, esf_list def get_esf_of_city(city): district_list = get_district_from_city(city) esf_list = [] for district in district_list: esf_of_district = get_esf_from_district(city, district) esf_list += esf_of_district esf_list = sorted(set(esf_list), key=esf_list.index) return esf_list def get_esf_info(city, esf_id): http_url = "https://{}.lianjia.com/ershoufang/{}.html".format(city, esf_id) bs_obj = get_bs_obj_from_url(http_url) df = pd.DataFrame() if bs_obj is not None: try: test = bs_obj.find("div", {"class": "icon-404 icon fl"}) if test is not None: return esf_id, df total_price = bs_obj.find("span", {"class": "total"}).get_text() if not is_number(total_price): return esf_id, df unit_price = bs_obj.find("div", {"class": "unitPrice"}).get_text().replace("元/平米", "") huxing = bs_obj.find("div", {"class": "room"}).find("div", {"class": "mainInfo"}).get_text() xiaoqu = bs_obj.find("div", {"class": "communityName"}).find("a").get_text() area_info = bs_obj.find("div", {"class": "areaName"}).find_all("a") chengqu = area_info[0].get_text() quyu = area_info[1].get_text() base_info = bs_obj.find("div", {"class": "newwrap baseinform"}) # 基本属性 base = base_info.find("div", {"class": "base"}).get_text() louceng = None if "所在楼层" not in base else base.split("所在楼层")[1].split("(")[0] zonglouceng = None if "所在楼层" not in base else base.split("(共")[1].split("层")[0] jianzhumianji = None if "建筑面积" not in base else base.split("建筑面积")[1].split("㎡")[0] if not is_number(jianzhumianji): return esf_id, df huxingjiegou = None if "户型结构" not in base else base.split("户型结构")[1].split("\n")[0] if "套内面积" not in base: taoneimianji = None elif "暂无数据" in base.split("套内面积")[1].split("\n")[0]: taoneimianji = None else: taoneimianji = base.split("套内面积")[1].split("㎡")[0] jianzhuleixing = None if "建筑类型" not in base else base.split("建筑类型")[1].split("\n")[0] chaoxiang = None if "房屋朝向" not in base else base.split("房屋朝向")[1].split("\n")[0] jianzhujiegou = None if "建筑结构" not in base else base.split("建筑结构")[1].split("\n")[0] zhuangxiu = None if "装修情况" not in base else base.split("装修情况")[1].split("\n")[0] tihubili = None if "梯户比例" not in base else base.split("梯户比例")[1].split("\n")[0] gongnuan = None if "供暖方式" not in base else base.split("供暖方式")[1].split("\n")[0] dianti = None if "配备电梯" not in base else base.split("配备电梯")[1].split("\n")[0] chanquan = None if "产权年限" not in base else base.split("产权年限")[1].split("\n")[0] yongshui = "商水" if base_info.find(text="商水") is not None else "民水" yongdian = "商电" if base_info.find(text="商电") is not None else "民电" # 交易属性 trans = base_info.find("div", {"class": "transaction"}).get_text() guapaishijian = None if "挂牌时间" not in trans else trans.split("挂牌时间")[1].strip().split("\n")[0] jiaoyiquanshu = None if "交易权属" not in trans else trans.split("交易权属")[1].strip().split("\n")[0] fangwuyongtu = None if "房屋用途" not in trans else trans.split("房屋用途")[1].strip().split("\n")[0] fangwunianxian = None if "房屋年限" not in trans else trans.split("房屋年限")[1].strip().split("\n")[0] chanquansuoshu = None if "产权所属" not in trans else trans.split("产权所属")[1].strip().split("\n")[0] diyaxinxi = None if "抵押信息" not in trans else trans.split("抵押信息")[1].strip().split("\n")[0] df = pd.DataFrame(index=[esf_id], data=[[http_url, chengqu, quyu, xiaoqu, huxing, total_price, unit_price, jianzhumianji, taoneimianji, chaoxiang, louceng, zonglouceng, huxingjiegou, jianzhuleixing, jianzhujiegou, fangwuyongtu, jiaoyiquanshu, fangwunianxian, guapaishijian, zhuangxiu, tihubili, gongnuan, dianti, chanquan, yongshui, yongdian, chanquansuoshu, diyaxinxi]], columns=["URL", "城区", "片区", "小区", "户型", "总价", "单价", "建筑面积", "套内面积", "朝向", "楼层", "总楼层", "户型结构", "建筑类型", "建筑结构", "房屋用途", "交易权属", "房屋年限", "挂牌时间", "装修", "梯户比例", "供暖", "配备电梯", "产权", "用水", "用电", "产权所属", "抵押信息"]) except Exception as e: print("[E]: get_esf_info, esf_id =", esf_id, e) traceback.print_exc() pass return esf_id, df def get_esf_info_from_esf_list(city, esf_list): df_esf_info = pd.DataFrame() count = 0 pct = 0 with futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor: future_list = [] for esf in esf_list: future_list.append(executor.submit(get_esf_info, city, esf)) fail_list = [] #print(" ") for future in futures.as_completed(future_list): esf, df_info_partial = future.result() if len(df_info_partial) == 0: fail_list.append(esf) else: df_esf_info = df_esf_info.append(df_info_partial) count += 1 sys.stdout.write("\rget ershoufang info: {}/{}".format(count, len(esf_list))) for esf in fail_list: _, df_info_partial = get_esf_info(city, esf) if len(df_info_partial) > 0: df_esf_info = df_esf_info.append(df_info_partial) count += 1 sys.stdout.write("\rget ershoufang info: {}/{}".format(count, len(esf_list))) print(" ") return df_esf_info def compare_two_list(new_esf_list, old_esf_list): add_list = [] remove_list = [] same_list = [] for esf_id in new_esf_list: if esf_id not in old_esf_list: add_list.append(esf_id) else: same_list.append(esf_id) for esf_id in old_esf_list: if esf_id not in new_esf_list: remove_list.append(esf_id) return add_list, remove_list, same_list def excel_add_sheet(dataframe, filename, sheetname, indexname): excelwriter = pd.ExcelWriter(filename) book = load_workbook(excelwriter.path) excelwriter.book = book dataframe.to_excel(excelwriter, sheetname, index_label=indexname) excelwriter.close() return def get_price_changed_esf_info(same_list, new_esf_info, old_esf_info): df_jiang = pd.DataFrame() df_zhang = pd.DataFrame() count = 0 for esf_id in same_list: try: new_price = new_esf_info.loc[[esf_id]]["总价"].values[0] old_price = old_esf_info.loc[[esf_id]]["总价"].values[0] old_unit_price = old_esf_info.loc[esf_id]["单价"] new_info = new_esf_info.loc[[esf_id]] if new_price > old_price: new_info.insert(loc=6, column="原总价", value=old_price) new_info.insert(loc=7, column="涨价", value=(new_price-old_price)) zhangfu=format(((new_price-old_price)/old_price), '.2%') new_info.insert(loc=8, column="涨幅", value=zhangfu) new_info.insert(loc=10, column="原单价", value=old_unit_price) df_zhang = df_zhang.append(new_info) elif new_price < old_price: new_info.insert(loc=6, column="原总价", value=old_price) new_info.insert(loc=7, column="降价", value=(old_price-new_price)) diefu=format(((old_price-new_price)/old_price), '.2%') new_info.insert(loc=8, column="降幅", value=diefu) new_info.insert(loc=10, column="原单价", value=old_unit_price) df_jiang = df_jiang.append(new_info) else: pass except Exception as e: print("[E]: get_price_changed, esf_id =", esf_id, e) pass count += 1 sys.stdout.write("\rget price change info: {}/{}".format(count, len(same_list))) print(" ") return df_jiang, df_zhang def get_chengjiao_yesterday(city): district_list = get_district_from_city(city) chengjiao = 0 for district in district_list: http_url = 'https://{}.lianjia.com/fangjia/{}'.format(city, district) bs_obj = get_bs_obj_from_url(http_url) if bs_obj is None: chengjiao += 0 continue item = bs_obj.find("div", {"class": "item item-1-2"}) if item is None: chengjiao += 0 continue num = item.find("div", {"class": "num"}).find("span").get_text() chengjiao += (0 if "暂无数据" in num else int(num)) return chengjiao def get_lianjia_fangjia_info(city): try: http_url = 'https://{}.lianjia.com/fangjia'.format(city) bs_obj = get_bs_obj_from_url(http_url) tongji = bs_obj.find("div", {"class": "box-l-b"}) lj_all = tongji.find_all("div", {"class": "num"}) lj_new = lj_all[0].get_text() lj_ren = lj_all[1].get_text() lj_kan = lj_all[2].get_text() except Exception as e: lj_new, lj_ren, lj_kan = get_lianjia_fangjia_info(city) return lj_new, lj_ren, lj_kan def get_tongji_info(city, filename): lj_new, lj_ren, lj_kan = get_lianjia_fangjia_info(city) chengjiao = get_chengjiao_yesterday(city) new_str = datetime.date.today().strftime('%Y-%m-%d') total_info = pd.read_excel(filename, sheet_name="total", index_col=0) total_list = total_info.index.values new_info = pd.read_excel(filename, sheet_name="新上", index_col=0) new_list = new_info.index.values rm_info = pd.read_excel(filename, sheet_name="下架", index_col=0) rm_list = rm_info.index.values jiang_info = pd.read_excel(filename, sheet_name="降价", index_col=0) jiang_list = jiang_info.index.values zhang_info = pd.read_excel(filename, sheet_name="涨价", index_col=0) zhang_list = zhang_info.index.values junjia = format(sum(total_info['总价']) * 10000 / sum(total_info['建筑面积']), '.2f') jiangfu = (jiang_info['降幅'].str.strip("%").astype(float)/100) if len(jiang_list) else 0 junjiang = (format(sum(jiangfu) / len(jiangfu), '.2%')) if len(jiang_list) else 0 zhangfu = (zhang_info['涨幅'].str.strip("%").astype(float)/100) if len(zhang_list) else 0 junzhang = (format(sum(zhangfu) / len(zhangfu), '.2%')) if len(zhang_list) else 0 data=[[len(total_list), junjia, chengjiao, len(new_list), len(rm_list), len(jiang_list), junjiang, len(zhang_list), junzhang, lj_new, lj_ren, lj_kan]] columns=['总数', '均价', '成交', '上架', '下架', '降价', '降幅', '涨价', '涨幅', '新上', '新客户', '带看'] name_list = get_district_name_from_city(city) for name in name_list: chengqu = total_info[total_info['城区']==name] avg_price = format(sum(chengqu['总价']) * 10000 / sum(chengqu['建筑面积']), '.2f') if len(chengqu) else 0 data[0].append(avg_price) columns.append(name) info = pd.DataFrame(index=[new_str], data=data, columns=columns) return info def get_email_content(info): content = '本期统计信息:\n' content += '线上总套数:{}套,'.format(info['总数'].values[0]) content += '均价:{}元/平米\n'.format(info['均价'].values[0]) content += '昨日成交数:{}套\n'.format(info['成交'].values[0]) content += '新上房源数:{}套\n'.format(info['上架'].values[0]) content += '下架房源数:{}套\n'.format(info['下架'].values[0]) content += '降价房源数:{}套,'.format(info['降价'].values[0]) content += '均降:{}\n'.format(info['降幅'].values[0]) content += '涨价房源数:{}套,'.format(info['涨价'].values[0]) content += '均涨:{}\n'.format(info['涨幅'].values[0]) content += '\n' content += '链家统计信息:\n' content += '新增房源数:{}套\n'.format(info['新上'].values[0]) content += '新增客户数:{}人\n'.format(info['新客户'].values[0]) content += '新增带看数:{}次\n'.format(info['带看'].values[0]) return content def addimg(src, imgid): fp = open(src, 'rb') msgImage = MIMEImage(fp.read()) fp.close() msgImage.add_header('Content-ID', imgid) return msgImage def send_email(content, filename): sender = '<EMAIL>' receivers = ['<EMAIL>'] key = open('../key', 'r').read() message = MIMEMultipart() message['From'] = sender message['Subject'] = Header(filename, 'utf-8') #message.attach(MIMEText(content, 'plain', 'utf-8')) html = '<p>{}</p>'.format(content.replace('\n', '<br>')) html += '<p><img src="cid:image1"></p>' html += '<p><img src="cid:image2"></p>' message.attach(MIMEText(html, 'html', 'utf-8')) message.attach(addimg("total.jpg","image1")) message.attach(addimg("chengqu.jpg","image2")) att = MIMEText(open(filename, 'rb').read(), 'base64', 'utf-8') att["Content-Type"] = 'application/octet-stream' att_str = 'attachment; filename={}'.format(filename) att["Content-Disposition"] = att_str message.attach(att) try: smtpObj = smtplib.SMTP('smtp.qq.com') smtpObj.login(sender, key) smtpObj.sendmail(sender, receivers, message.as_string()) print("send email successfully.") except smtplib.SMTPException: print("send email failed.") return def get_tongji_plot(filename): info =
pd.read_excel(filename, sheet_name="统计", index_col=0)
pandas.read_excel
import fileinput import pandas as pd import numpy as np import drep import os import shutil import json import re from PyPDF2 import PdfFileReader from .dprint import dprint from .config import _globals pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth', 80) TAGS = [tag + '_TAG' for tag in ['JSON', 'COLUMNS', 'FIGURES', 'WARNINGS', 'CMD']] class HTMLBuilder(): def __init__(self, binnedContigs_l, dRep_cmd, dRep_workDir, html_dir): self.binnedContigs_l = binnedContigs_l self.dRep_cmd = dRep_cmd self.dRep_workDir = dRep_workDir self.html_dir = html_dir self.html_path = os.path.join(html_dir, 'dRep_dereplicate_report.html') self.figures_dir = os.path.join(html_dir, 'figures') self.replacements = dict() self._build() def _build(self): self._build_command() self._build_summary() self._build_figures() self._build_warnings() for line in fileinput.input(self.html_path, inplace=True): line_stripped = line.strip() if line_stripped in TAGS and line_stripped in self.replacements: print(self.replacements[line_stripped]) else: print(line, end='') def _build_command(self): self.replacements['CMD_TAG'] = self.dRep_cmd def _build_summary(self): '''Build data frame from dRep output''' ignoreGenomeQuality = '--ignoreGenomeQuality' in self.dRep_cmd ### ### Initialize dataframe with names and NaNs names = ['BinnedContigs Name', 'Bin Name', 'File Name'] attr = ['Length', 'N50', 'GC', 'Completeness', 'Contamination', 'Strain Heterogeneity'] preproc = ['Length Filtered'] res = ['CheckM Filtered', 'Prim/Sec Cluster', 'Dereplicated'] attr_chdb = ['Genome size (bp)', 'N50 (scaffolds)', 'GC', 'Completeness', 'Contamination', 'Strain heterogeneity'] # Chdb.csv header names corresponding to attr if not ignoreGenomeQuality: columns = names + attr[:3] + preproc + attr[3:] + res else: columns = names + attr[:3] + preproc + res[1:] smmr = pd.DataFrame(columns=columns) for binnedContigs in self.binnedContigs_l: for bin_name in binnedContigs.original_bin_name_list: smmr.loc[len(smmr)] = [binnedContigs.name, bin_name, binnedContigs.transform_bin_name(bin_name)] + [np.nan] * (len(columns) - len(names)) ### ### Insert genome attribute info smmr = smmr.set_index('File Name') # read drep's data tables with the transformed bin/genome/file name as index bdb = pd.read_csv(os.path.join(self.dRep_workDir, 'data_tables/Bdb.csv'), index_col='genome') # has all genomes that passed length then completeness/contamination filter cdb = pd.read_csv(os.path.join(self.dRep_workDir, 'data_tables/Cdb.csv'), index_col='genome') # '' wdb = pd.read_csv(os.path.join(self.dRep_workDir, 'data_tables/Wdb.csv'), index_col='genome') # has all genomes that passed length filter then completeness/contamination filter then dereplication if not ignoreGenomeQuality: chdb = pd.read_csv(os.path.join(self.dRep_workDir, 'data_tables/Chdb.csv'), index_col='Bin Id') # has all genomes that passed length filter # get custom stats for each BinnedContigs and concat with file name as index df_stats_l = [] for binnedContigs in self.binnedContigs_l: df_stats = pd.DataFrame.from_dict(binnedContigs.stats['bin_stats'], orient='index') df_stats_l.append(df_stats) df_stats =
pd.concat(df_stats_l)
pandas.concat
# column deletion using del operator and pop method of pandas dataframe import pandas as pd import numpy as np d={'one':
pd.Series([1,2,3],index=['a','b','c'])
pandas.Series
import numpy as np import matplotlib.pyplot as plt from glob import glob from skimage.io import imread, imsave from skimage.transform import resize import pandas as pd import os from tqdm import tqdm root_dir = "./birds" save_dir = "./birds_preprocessed/" IMG_SIZE = 64 # utility functions -> from STACKGAN birds pre-processing code def cropper(img, bbox): imsiz = img.shape center_x = int((2 * bbox[0] + bbox[2]) / 2) center_y = int((2 * bbox[1] + bbox[3]) / 2) R = int(np.maximum(bbox[2], bbox[3]) * 0.75) y1 = np.maximum(0, center_y - R) y2 = np.minimum(imsiz[0], center_y + R) x1 = np.maximum(0, center_x - R) x2 = np.minimum(imsiz[1], center_x + R) img_cropped = img[y1:y2, x1:x2, :] return img_cropped # start code here df_images = pd.read_csv(root_dir+"/CUB_200_2011/images.txt",header=None, sep=" ",names=["id","image"]) df_train_ids = pd.read_csv(root_dir+"/CUB_200_2011/train_test_split.txt",header=None, sep=" ", names=["id", "is_train"]) df_bbox = pd.read_csv(root_dir+"/CUB_200_2011/bounding_boxes.txt",header=None, sep=" ", names=["id", "x", "y", "width", "height"] ).astype("int") df = pd.merge(df_images, df_train_ids, on="id") df =
pd.merge(df, df_bbox, on="id")
pandas.merge
import hashlib import pandas as pd from pandas import DataFrame from pathlib import Path from struct import calcsize from struct import unpack from tqdm import tqdm from jotdx.consts import MARKET_BJ from jotdx.consts import MARKET_SH from jotdx.consts import MARKET_SZ from jotdx.logger import logger def get_stock_markets(symbols=None): results = [] assert isinstance(symbols, list), 'stock code need list type' if isinstance(symbols, list): for symbol in symbols: results.append([get_stock_market(symbol, string=False), symbol.strip('sh').strip('sz')]) return results def get_stock_market(symbol='', string=False): """ 判断股票ID对应的证券市场匹配规则 ['50', '51', '60', '90', '110'] 为 sh ['00', '12','13', '18', '15', '16', '18', '20', '30', '39', '115'] 为 sz ['5', '6', '9'] 开头的为 sh, 其余为 sz :param string: False 返回市场ID,否则市场缩写名称 :param symbol: 股票ID, 若以 'sz', 'sh' 开头直接返回对应类型,否则使用内置规则判断 :return 'sh' or 'sz' """ assert isinstance(symbol, str), 'stock code need str type' market = 'sh' if symbol.startswith(('sh', 'sz', 'SH', 'SZ')): market = symbol[:2].lower() elif symbol.startswith(('50', '51', '60', '68', '90', '110', '113', '132', '204')): market = 'sh' elif symbol.startswith(('00', '12', '13', '18', '15', '16', '18', '20', '30', '39', '115', '1318')): market = 'sz' elif symbol.startswith(('5', '6', '9', '7')): market = 'sh' elif symbol.startswith(('4', '8')): market = 'bj' if string is False: if market == 'sh': market = MARKET_SH if market == 'sz': market = MARKET_SZ if market == 'bj': market = MARKET_BJ logger.debug(f'market=>{market}') return market def gpcw(filepath): cw_file = open(filepath, 'rb') header_size = calcsize('<3h1H3L') stock_item_size = calcsize('<6s1c1L') data_header = cw_file.read(header_size) stock_header = unpack('<3h1H3L', data_header) max_count = stock_header[3] for idx in range(0, max_count): cw_file.seek(header_size + idx * calcsize('<6s1c1L')) si = cw_file.read(stock_item_size) stock_item = unpack('<6s1c1L', si) code = stock_item[0].decode() foa = stock_item[2] cw_file.seek(foa) info_data = cw_file.read(calcsize('<264f')) cw_info = unpack('<264f', info_data) logger.debug(f'{code}, {cw_info}') return code, cw_info def md5sum(downfile): """ 文件的 md5 哈希值 :param downfile: 文件路径 :return: mixed """ try: md5_l = hashlib.md5() md5_l.update(Path(downfile).read_bytes()) return md5_l.hexdigest() except (IOError, FileNotFoundError) as e: logger.error(f'无法读取文件: {downfile}') logger.debug(e) return None def to_data(v, **kwargs): """ 数值转换为 pd.DataFrame :param v: mixed :return: pd.DataFrame """ symbol = kwargs.get('symbol') adjust = kwargs.get('adjust', None) client = kwargs.get('client', None) if adjust in ['01', 'qfq', 'before']: adjust = 'qfq' elif adjust in ['02', 'hfq', 'after']: adjust = 'hfq' else: adjust = None # 空值 if not v: return pd.DataFrame(data=[]) # DataFrame if isinstance(v, DataFrame): result = v # 列表 elif isinstance(v, list): result = pd.DataFrame(data=v) if len(v) else None # 字典 elif isinstance(v, dict): result =
pd.DataFrame(data=[v])
pandas.DataFrame
import numpy import matplotlib.pyplot as plt import pandas from pandas import DataFrame import math import yfinance as yf from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from sklearn import model_selection from sklearn.metrics import confusion_matrix from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import tensorflow as tf import sys import os import time import random import requests from datetime import datetime import hashlib import hmac from urllib.parse import urlparse import json #GETS NEW DATA FOR BTC PRICE FROM YAHOO FINANCE crypto = "BTC-USD" #crypto = "ETH-USD" btc = yf.Ticker(crypto) history = btc.history(period='1mo',interval="90m") history.to_csv('out.csv') #tickerdata = pandas.read_csv('BTCUSDT.csv') #tickerdata = DataFrame(tickerdata) #print(tickerdata.values[1]) #TESTING futuretime = 1 def predictdata(tickerdata): global futuretime scaler = MinMaxScaler(feature_range = (0,1)) scaler1 = MinMaxScaler(feature_range = (0,1)) #i = 0 dataset = DataFrame() dataset1 = DataFrame() for i in range(1,len(tickerdata)): if i <= int(len(tickerdata) * 0.6): dataset = dataset.append(tickerdata.iloc[i]) if i >= int(len(tickerdata) * 0.6): dataset1 = dataset1.append(tickerdata.iloc[i]) #file = open("1minprices.txt","r") #newdata = file.readlines() #file.close() #for item in newdata: dataset = DataFrame(dataset) dataset = scaler.fit_transform(dataset) dataset1 = DataFrame(dataset1) dataset1 = scaler1.fit_transform(dataset1) #PRINTS REAL DATA FOR COMPARISON print(dataset1[0]) #plt.plot(dataset) #plt.plot(dataset1) #plt.show() #INITIATES NETWORK mind = Sequential() trainx = [] trainy = [] testx = [] testy = [] #AMOUNT OF TIME ALGO SHOULD SEE IN THE PAST #(IF DATA IS 1 DAY DATA, THEN 1 TIME STEP = 1 DAY) timesteps = 30 #ADDS ITEMS TO TRAINING DATASET for i in range(timesteps, len(dataset)): trainx.append(dataset[i-timesteps:i, :]) trainy.append(dataset[i]) trainx = numpy.array(trainx) trainy = numpy.array(trainy) #ADDS ITEMS TO TEST DATASET for i in range(timesteps, len(dataset1)): testx.append(dataset1[i-timesteps:i, :]) testy.append(dataset1[i]) testx = numpy.array(testx) testy = numpy.array(testy) print(trainx.shape) #BUILDS AND COMPILES MODEL mind.add(LSTM(50, return_sequences=True,input_shape=(trainx.shape[1], trainx.shape[2]) )) mind.add(Dropout(0.6)) mind.add(LSTM(50, return_sequences=True )) mind.add(Dropout(0.6)) mind.add(LSTM(50, return_sequences=True )) mind.add(Dropout(0.6)) mind.add(LSTM(50)) mind.add(Dropout(0.6)) mind.add(Dense(1,activation='linear')) mind.compile(loss='mean_squared_error', optimizer='adam') os.system('cls') #SAVE WEIGHTS #cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1) #TRAINS ALGO mind.fit(trainx, trainy, epochs=5, batch_size=60)#,callbacks=[cp_callback] os.system('cls') #FEED IN TESTX (60 timesteps or days) #FOR LOOP THAT FEEDS PREDICTED NEW DATA BACK INTO DATASET #TO GET THE PREDICTED FORCAST datasettemp = dataset1 for i in range(futuretime): trainprediction = mind.predict(testx) testx = [] datasettemp = numpy.append(datasettemp,trainprediction[int(len(trainprediction) - 1)][0]) datasettemp = datasettemp.reshape(datasettemp.shape[0], 1) print("Predicted Price: "+str(datasettemp[ int(len(datasettemp)-1) ])) for i in range(timesteps, len(datasettemp)): testx.append(datasettemp[i-timesteps:i, :]) testx = numpy.array(testx) #CONVERTS STANDARDIZED DATA TO NORMAL DATA trainprediction = scaler1.inverse_transform(trainprediction) datasettocompare = scaler1.inverse_transform(dataset1) return trainprediction, datasettocompare #COMPARES TODAY'S ESTIMATED PRICE AND X DAY'S PREDICTED PRICE TO GET #PREDICTED PRICE MOVEMENT #BUY AND SELL API #30 BTCUSD = 1 BTCUSDT def generate_signature(secret, http_method, url, expires, data): # parse relative path parsedURL = urlparse(url) path = parsedURL.path if parsedURL.query: path = path + '?' + parsedURL.query if isinstance(data, (bytes, bytearray)): data = data.decode('utf8') print("Computing HMAC: %s" % http_method + path + str(expires) + data) message = http_method + path + str(expires) + data signature = hmac.new(bytes(secret, 'utf8'), bytes(message, 'utf8'), digestmod=hashlib.sha256).hexdigest() return signature file = open("api.txt","r") keys = file.read() file.close() apikey = keys.split(":")[0].strip().replace("\n","").replace("\r","") apisecret = keys.split(":")[1].strip().replace("\n","").replace("\r","") def cancelorder(theid): try: global apikey global apisecret for _ in range(3): timestamp = datetime.now().timestamp() expires = int(round(timestamp) + 5) authkey = generate_signature(apisecret,'DELETE',str("https://api.basefex.com/orders/")+str(theid),expires, '') hed={'api-expires':str(expires),'api-key':apikey,'api-signature':authkey} requests.delete(str("https://api.basefex.com/orders/")+str(theid), headers=hed) time.sleep(1) except: print("Random error, trying again") def getopentrades(symbol, status, side): try: global apikey global apisecret timestamp = datetime.now().timestamp() expires = int(round(timestamp) + 5) authkey = generate_signature(apisecret,'GET',str('/orders/count?status='+str(status)+'&side='+str(side)+'&symbol='+str(symbol)),expires, '') hed={'api-expires':str(expires),'api-key':apikey,'api-signature':authkey} response = requests.get("https://api.basefex.com/orders/count?status="+str(status)+"&side="+str(side)+"&symbol="+str(symbol), headers=hed) print(response.text) orders = str(str(response.text).split('"count":')[1].split("}")[0].strip()) orders = int(orders) return orders except: print("Random error, trying again") def tradesopen(symbol, side,previousamount): try: newamount = getopentrades(symbol,"FILLED",side) tradeson = None if newamount > previousamount: tradeson = True else: tradeson = False return tradeson except: print("Random error, trying again") def tradesnew(symbol, side,previousamount): try: newamount = getopentrades(symbol,"NEW",side) tradeson = None if newamount < previousamount or int(newamount) == 0: tradeson = True else: tradeson = False return tradeson except: print("Random error, trying again") def long(symbol,amount, price, numbuy, numsell): try: global apikey global apisecret args = {'size':str(amount), 'symbol':str(symbol), 'type':'LIMIT', 'side':'BUY', 'price':str(price)} timestamp = datetime.now().timestamp() expires = int(round(timestamp) + 5) authkey = generate_signature(apisecret,'POST','https://api.basefex.com/orders',expires, json.dumps(args)) hed={'api-expires':str(expires),'api-key':apikey,'api-signature':authkey} response = requests.post("https://api.basefex.com/orders", json=args, headers=hed) response = response.text print(response) time.sleep(3) numnewbuy = getopentrades(symbol,"NEW","BUY") numnewsell = getopentrades(symbol,"NEW","SELL") theid = str(str(response).split('"id":"')[1].split('",')[0].strip().replace("\r","").replace("\n","")) for _ in range(3): try: time.sleep(2) print("Checking for trade finished") if tradesopen(symbol,"BUY",numbuy) == True or tradesopen(symbol,"SELL",numsell) == True: print("long pos: Amount: "+str(amount)+" Symbol: "+str(symbol)+" Price: "+str(price)) return True except: print("Error longing, trying again") time.sleep(3) for _ in range(10): try: print("Error placing order in time. Cancelling") #Last check before cancelling if tradesopen(symbol,"BUY",numbuy) == True or tradesopen(symbol,"SELL",numsell) == True: return True cancelorder(theid) for _ in range(3): time.sleep(2) print("Checking for trade cancelled") if tradesnew(symbol,"BUY",numnewbuy) == True and tradesnew(symbol,"SELL",numnewsell) == True: if tradesopen(symbol,"BUY",numbuy) == True or tradesopen(symbol,"SELL",numsell) == True: return True print("Successfully cancelled trade") return False except: print("Error cancelling, trying again") except: print("Random error, trying again") def short(symbol,amount,price, numbuy, numsell): try: global apikey global apisecret args = {'size':str(amount), 'symbol':str(symbol), 'type':'LIMIT', 'side':'SELL', 'price':str(price)} timestamp = datetime.now().timestamp() expires = int(round(timestamp) + 5) authkey = generate_signature(apisecret,'POST','https://api.basefex.com/orders',expires, json.dumps(args)) hed={'api-expires':str(expires),'api-key':apikey,'api-signature':authkey} response = requests.post("https://api.basefex.com/orders", json=args, headers=hed) response = response.text print(response) time.sleep(3) numnewbuy = getopentrades(symbol,"NEW","BUY") numnewsell = getopentrades(symbol,"NEW","SELL") theid = str(str(response).split('"id":"')[1].split('",')[0].strip().replace("\r","").replace("\n","")) for _ in range(3): try: time.sleep(2) print("Checking for trade finished") if tradesopen(symbol,"BUY",numbuy) == True or tradesopen(symbol,"SELL",numsell) == True: print("short pos: Amount: "+str(amount)+" Symbol: "+str(symbol)+" Price: "+str(price)) return True except: print("Error shorting, trying again") time.sleep(3) for _ in range(10): try: print("Error placing order in time. Cancelling") #Last check before cancelling if tradesopen(symbol,"BUY",numbuy) == True or tradesopen(symbol,"SELL",numsell) == True: return True cancelorder(theid) for _ in range(3): time.sleep(2) print("Checking for trade cancelled") if tradesnew(symbol,"BUY",numnewbuy) == True and tradesnew(symbol,"SELL",numnewsell) == True: if tradesopen(symbol,"BUY",numbuy) == True or tradesopen(symbol,"SELL",numsell) == True: return True print("Successfully cancelled trade") return False except: print("Error cancelling, trying again") except: print("Random error, trying again") def closelong(symbol,amount, price, numbuy, numsell): try: global apikey global apisecret args = {'size':str(amount), 'symbol':str(symbol), 'type':'MARKET', 'side':'SELL', 'price':str(price)} timestamp = datetime.now().timestamp() expires = int(round(timestamp) + 5) authkey = generate_signature(apisecret,'POST','https://api.basefex.com/orders',expires, json.dumps(args)) hed={'api-expires':str(expires),'api-key':apikey,'api-signature':authkey} requests.post("https://api.basefex.com/orders", json=args, headers=hed) return True except: print("Random error, trying again") def closeshort(symbol,amount,price, numbuy, numsell): try: global apikey global apisecret args = {'size':str(amount), 'symbol':str(symbol), 'type':'MARKET', 'side':'BUY', 'price':str(price)} timestamp = datetime.now().timestamp() expires = int(round(timestamp) + 5) authkey = generate_signature(apisecret,'POST','https://api.basefex.com/orders',expires, json.dumps(args)) hed={'api-expires':str(expires),'api-key':apikey,'api-signature':authkey} requests.post("https://api.basefex.com/orders", json=args, headers=hed) return True except: print("Random error, trying again") def getmarketprice(contract): global apikey global apisecret for _ in range(5): try: response = requests.get("https://api.basefex.com/instruments/prices") price = str(str(response.text).split(contract)[1].split(',"price":')[1].split(".")[0]) return int(price) except Exception as WW: print("Exception with market price: "+str(WW)) #PREDICTS DATA def commitpredict(col): tickerdata = pandas.read_csv('out.csv',usecols=[col,]) tickerdata =
DataFrame(tickerdata)
pandas.DataFrame
import pandas as pd import scipy import numpy as np import seaborn as sns import matplotlib as mpl #from sinaplot import sinaplot import scanpy as sc from matplotlib import pyplot as plt import scanpy.external as sce import os import scipy.spatial.distance cwd = os.getcwd() print(cwd) def getLineagesFromChangeo(changeodb, print_summary): """subsets the changeo_db output by bracer by only those cells which are within lineages (non singletons)""" df = changeodb _df = df[df.CLONE != "None"] # get rid of unassigned cells (no BCR reconstructed) _df = (df.CLONE.value_counts() > 1) #find clones with more than 1 member if print_summary == True: print( "There are", len(_df[_df == 1]), "lineages with more than one member") CHANGEO_confidentlineages = df[df.CLONE.isin(_df[_df == 1].index)].sort_values('CLONE') CHANGEO_confidentlineages = CHANGEO_confidentlineages[CHANGEO_confidentlineages.CLONE != 'None'] if print_summary == True: print("number of cells in original dataframe", df.shape[0]) print("number of distinct Clones in original dataframe", df.drop_duplicates('CLONE').shape[0] -1) #subtract 1 for the 'None' entry print(CHANGEO_confidentlineages.shape[0]/df.shape[0], 'percent of cells in a lineage' ) return CHANGEO_confidentlineages # calculate distance metric def calculate_distance_metric(_clonal_comparison, df): # iterate, i know this is bad style.. for index, row in _clonal_comparison.iterrows(): # Cell to cell comparison cell1 = row['cell1'] cell2 = row['cell2'] # df.loc is an array that you make _clonal_comparison.loc[index, 'distance'] = distance.euclidean(df.loc[cell2, :].values, df.loc[cell1, :].values) return _clonal_comparison # get lineage correlations for all groups def calculateLineageCorrelations(counts_table, changeo_db, method): """ returns within lineage, amongst lineage, amongst all cells ie a list or series of correlations between different groupings of cells (all, sisters, within lineage etc.)""" if method == 'euclidean_distance': method = scipy.spatial.distance.euclidean lineage, within_lineage = calculateCorrelationsWithinLineage(changeo_db, counts_table, method) #TODO seemlessly incorporate the print summary logic (maybe i don't really even need it at this point) amongst_lineage = calculateCorrelations(counts_table[counts_table.index.isin(getLineagesFromChangeo(changeo_db, print_summary=False).CELL)], method) amongst_all_cells = calculateCorrelations(counts_table, method) return within_lineage, amongst_lineage, amongst_all_cells # lineage correlation functions def calculateCorrelations(df, method): # create empty list correlations_list = [] #transform matrix to take pearson correllation _pearsonCorrAll = df.T.corr(method=method) for i in range(len(_pearsonCorrAll)): correlations_list += list(_pearsonCorrAll.iloc[(i+1):,i]) correlations = pd.Series(correlations_list).dropna() return correlations def calculateCorrelationsWithinLineage(changeodb, counts_table, method): """idf is the dataframe used to index should be the changeo df, or minimally df with cell name and its clone information in columns, counts_table is the cell by gene counts table from which the vectors of comparison come""" idf = changeodb lineage_ziplist = [] correlations = [] #iterate through each unique lineage ID for clone in idf.CLONE.unique(): #get series of each cell in the lineage series_of_cells = idf.CELL[idf.CLONE == clone] #if the lineage is larger than 2 do the comparison if len(series_of_cells.unique()) < 2: pass else: #print(clone) lineage_counts_table = counts_table[counts_table.index.isin(series_of_cells)] correlation_matrix = lineage_counts_table.T.corr(method=method) ## subset array where no duplicate comparisons and no 1's mask = np.zeros_like(correlation_matrix, dtype=np.bool) mask[np.triu_indices_from(mask)] = True drop_dup = correlation_matrix.where(mask) drop_dup = drop_dup.values.flatten() drop_dup = drop_dup[drop_dup != 1] drop_dup = drop_dup[~np.isnan(drop_dup)] #not clear when and why I was getting nan's #it may be when I filter the gene counts data frame for good cells some of the clones don't make it correlations.extend(list(drop_dup)) lineage_ziplist.append(clone) return lineage_ziplist, correlations def makeHumanReadableSJTable(df_IGH, exon_start_dict): """Adds columns to the SJout file which aid in interpreting the various splice junctions accepts and SJout formatted file and a dictionary which maps coordinates to starting exons Returns: SJout dataframes with extra columns, 1 df for the ab transcription (J spliced to downstream constant region) and 1 with just the switch transcripts defined as transcripts where the splice donor to exon1 is not a J gene """ all_exon_starts = exon_start_dict _constant_regionspliceacceptors = df_IGH.copy() _J_genes_start_dict = {105865406: "IGHJ1", 105863197: "IGHJ6", 105864586: 'IGHJ3', 105865198: 'IGHJ2', 105864214: 'IGHJ4', 105863813: 'IGHJ5'} _constant_regionspliceacceptors['J_exon'] = _constant_regionspliceacceptors['end'] _constant_regionspliceacceptors['J_exon'] = _constant_regionspliceacceptors['J_exon'].map(_J_genes_start_dict).fillna(_constant_regionspliceacceptors.end) # adding exon column _constant_regionspliceacceptors['exon_start'] = _constant_regionspliceacceptors['start'].replace(all_exon_starts) # filter by more than 2 unique mapping reads _constant_regionspliceacceptors = _constant_regionspliceacceptors[_constant_regionspliceacceptors.unique_mapping > 2] _constant_regionspliceacceptors = _constant_regionspliceacceptors.fillna('none') #filter by more than 12 overhang (gets rid of E mapping artefact which TODO I should investigate #cast the column to string _constant_regionspliceacceptors['exon_start'] = _constant_regionspliceacceptors["exon_start"].astype(str) # splices to the J genes _J_tx_df = _constant_regionspliceacceptors[_constant_regionspliceacceptors['J_exon'].isin(_J_genes_start_dict.values())] #take only the first exon of each constant region, this way we know we are counting switch transcripts #filter out the splicing counts coming from the J genes to the first exon switch_tx_df = _constant_regionspliceacceptors[(_constant_regionspliceacceptors.exon_start.str.contains('exon1')) & (_constant_regionspliceacceptors.end < 105863197) # splice donor comes downstream of last J gene & (~_constant_regionspliceacceptors.exon_start.str.contains('3prime'))] #get rid of odd but possibly interesting splicing where the acceptor is the 3prime? This may be related to backwards recombination or antisense transcription? #filter out where J is the acceptor of the splice (possibly interesting but not interested right now) _J_tx_df = _J_tx_df[~_J_tx_df.exon_start.str.contains("IGHJ")] _J_tx_df['exon_simple'] = _J_tx_df['exon_start'].str.split('_', expand = True)[0] return _J_tx_df, switch_tx_df def addMetadataToAnnData(adata, changeodb_H, ab_tx): _adata = adata.copy() #_adata.obs = _adata.obs.reset_index() #split cell names which includes superfluous information about the Donor ID cell_names = _adata.obs.index.str[:-2] #set loom index to cell names _adata.obs.index = cell_names #Call Isotypes df_isotype_calls, x = callIsotypeByBracerSJout(changeodb_H, ab_tx, plot = False) #select most abundant isotype df_isotype_calls = df_isotype_calls.sort_values('unique_mapping', ascending=False).drop_duplicates(subset='cell') #make a cell column for merging dataframes _adata.obs['cell'] = _adata.obs.index #perform the merge to get isotype information in scanpy _adata.obs = pd.merge(_adata.obs, df_isotype_calls, left_on='cell', right_on='cell', how='left') # set index to cell _adata.obs.set_index('cell', inplace=True) #drop "cell" name from the index in df _adata.obs.index.name = None # make new changeodb_H column called cell to facilitate merging changeodb_H['cell'] = changeodb_H.loc[:,'CELL'] #Filter to only functional assemblies changeodb_H = changeodb_H[changeodb_H.FUNCTIONAL == True] # Drop any duplicates which would be possible doublets changeodb_H = changeodb_H.drop_duplicates(subset='cell') #perform the same merging dance as before _adata.obs['cell'] = _adata.obs.index _adata.obs = pd.merge(_adata.obs, changeodb_H, left_on= 'cell', right_on = 'cell', how = 'left') _adata.obs.set_index('cell', inplace = True) _adata.obs.index.name = None #_adata.obs = _adata.obs.fillna('no_assembly') return _adata def loadSJoutIGH(filename, metadata): df_sjout = pd.read_feather(filename) #filter dataframe to just the IGH locus print("filtering SJout to just IGH locus") df_IGH = df_sjout[(df_sjout['end'] > 105550000)] #load metadata about constant region exon coordinates and I exons df_exoncoordinates = pd.read_csv(metadata, header = None, names = ['exon', 'coordinate'] ) #Apply STAR vs. ENSMBL indexing correction df_exoncoordinates.loc[~df_exoncoordinates.exon.str.contains('exon1'), 'coordinate'] = df_exoncoordinates.coordinate+1 df_exoncoordinates.loc[df_exoncoordinates.exon.str.contains('IGHG3_exon1'), 'coordinate'] = df_exoncoordinates.coordinate+1 #load metadata about constant region exon coordinates and I exons #df_exoncoordinates = pd.read_csv(metadata, header = None, names = ['exon', 'coordinate'] ) zipper = zip(df_exoncoordinates.coordinate, df_exoncoordinates.exon) all_exon_starts = dict(list(zipper)) print("making SJTable human readable") ab_tx , switch_tx = makeHumanReadableSJTable(df_IGH, all_exon_starts) return ab_tx, switch_tx def loadChangeoDbH(filepath): changeo_db = pd.read_csv(filepath, index_col = 0) changeo_db = changeo_db[changeo_db.LOCUS == 'H'] changeo_db["CLONE"] = changeo_db['MERGE_CLONE'] #MERGE CLONE column was created in data combination process to make the column unique return changeo_db def loadData(SJout, loom_data, gene_counts, changeo_db): ab_tx, switch_tx = loadSJoutIGH(SJout) ### # Assemblies (Changeo) changeo_db_H = loadChangeoDbH(changeo_db) ### # Gene counts ### print("loading anndata") adata = 'placeholder' loom_adata = sc.read_loom(loom_data) adata = sc.read_h5ad(gene_counts) return ab_tx, switch_tx, adata, loom_adata, changeo_db_H def preprocessGeneCounts(gene_counts, num_counted_reads): print("filtering cells with less than", str(num_counted_reads), "counted reads") gene_counts_filtered = gene_counts[gene_counts.sum(axis=1) > num_counted_reads] # cell have more than 30000 mapped reads print("normalizing to counts per million") _CPM = gene_counts_filtered.div(gene_counts_filtered.sum(axis = 1), axis=0) * 1e6 # counts per million print("log base 2 transforming") _logCPM = np.log2(_CPM + 1) #log base 2p return _logCPM def preprocessScanpy(adata, num_counted_reads, num_genes, min_cells, n_neighbors, num_highly_variable): """ returns a new adata object that has been processed """ _adata = adata.copy() _adata.var_names_make_unique() print("making var_names unique") print("filtering cells with less than", num_counted_reads, "counted reads") sc.pp.filter_cells(_adata,min_counts=num_counted_reads) print("filtering cells with less than", num_genes, "genes detected") sc.pp.filter_cells(_adata,min_genes=num_genes) print("filtering genes detected in less than", min_cells) sc.pp.filter_genes(_adata,min_cells=min_cells) sc.pp.calculate_qc_metrics(_adata, inplace = True) print("normalizing by total counts per cell") sc.pp.normalize_total(_adata, exclude_highly_expressed=True) print("log transforming data") sc.pp.log1p(_adata, base=10) _adata.raw = _adata # Remove ERCCs which could drive clustering based on which batch was used or whether or not they were spiked in ERCCs = _adata.var.index[_adata.var.index.str.contains("ERCC-")].to_list() _adata = _adata[:, ~_adata.var.index.isin(ERCCs)] print("removed ERCC sequences from genes to cluster on") # Remove Immune Receptor Genes which could drive clustering immune_receptors = pd.read_csv('/home/mswift/B_cells/CSR/sc_RNAseq/data_tables/metadata/immune_receptor_genes_keepConstantRegion.csv', index_col=0) immune_receptors.columns = ['genes'] print("removing variable immune receptor genes which may drive clustering") _adata = _adata[:, ~_adata.var.index.isin(immune_receptors.genes)] print("calculating highly variable genes") sc.pp.highly_variable_genes(_adata, n_top_genes = num_highly_variable) sc.pp.scale(_adata) print("calculating PCA") sc.pp.pca(_adata) neighbors = n_neighbors print("creating neighbors graph with", n_neighbors) ## TODO some batch Correction? sc.pp.neighbors(_adata, n_neighbors=neighbors) print('umapping and tsne-ing') sc.tl.umap(_adata) sc.tl.tsne(_adata) return _adata def plotPointPlotLocus(IGH_locus_df, cell_list, color): """makes a point plot of the IGH locus where reach observation is a cell and an observation consists of counts for each of the genes at the IgH locus""" sns.set(style = "whitegrid", context = 'paper') IGH_locus_df = IGH_locus_df[IGH_locus_df.index.isin(cell_list)] ## Point Plot individual clones #Data munging point_plot_df = IGH_locus_df point_plot_df = point_plot_df.reset_index() point_plot_df = pd.melt(point_plot_df, value_vars = point_plot_df.columns[1:], id_vars = 'index') point_plot_df.columns = ['cell', 'exon', 'log CPM'] # plotting fig, ax = plt.subplots(1, 1, figsize=(6,3)) sns.set_palette(color) sns.pointplot(data = point_plot_df, x = 'exon', y ='log CPM', hue='cell', dodge =.2, join = True, legend=None, alpha = 0.5) ax.set_ylabel("log$_2$ CPM") ax.set_xlabel("") ax.legend_.remove() sns.pointplot(data = point_plot_df, x = 'exon', y ='log CPM', join = True, linestyles = "--", color = 'k') sns.despine() ax.set_ylabel("log$_2$ CPM") ax.set_xlabel("") sns.set_style("whitegrid", {'axes.grid' : False}) return fig, ax ## Scanpy helper functions: def getCellByGeneMatrix(adata): """input: adata return: df cell by gene""" # get matrix _x = pd.DataFrame(adata.X) # add column names (genes) _x.columns = adata.var_names # add row names (cells) _x = _x.set_index(adata.obs_names) return _x def getEmbeddingCoordinates(adata, embedding): #filtering for good cells embedding_key = 'X_' + embedding _df_embedding = sc.get.obs_df(adata, obsm_keys = [(embedding_key, 0), (embedding_key, 1)]) return _df_embedding def plotClonalCorrelations(gene_counts, changeodb_H, method): """ Accepts gene counts data frame with cells as rows and genes of interest as columns, Changeodb, and the method """ within_lineage, amongst_lineage, amongst_all_cells = calculateLineageCorrelations(gene_counts, changeodb_H, method) hist = plt.grid() if method == 'euclidean_distance': bins = np.linspace(0,40,30) else: bins = np.linspace(-1.1,1.1, 30) plt.hist(amongst_lineage, bins=bins, color = 'blue', label='Unrelated Pairs', density=True, histtype='stepfilled', alpha=0.5) #plt.hist(amongst_lineage, bins=bins, color = 'blue', label='Unrelated Pairs', density=True, histtype='step') # Pearson correlation hist for all pairs # Pearson correlation hist for related pairs plt.hist(within_lineage, bins=bins, color = 'red', label='Related Pairs', density=True, histtype='stepfilled', alpha = 0.5) #plt.hist(within_lineage, bins=bins, color = 'red', label='Related Pairs', density=True, histtype='step') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xlabel(method) plt.ylabel('Density') print("Mean Pearson correlation amongst all cells in grey:",amongst_all_cells.mean()) print("Mean Pearson correlation within lineages in red:", pd.Series(within_lineage).mean(), 'consisting of', pd.Series(within_lineage).shape[0], "comparisons") print("Mean Pearson correlation amongst all lineages in blue:", (pd.Series(amongst_lineage).mean()), 'consisting of', pd.Series(amongst_lineage).shape[0], "comparisons") print(scipy.stats.ks_2samp(within_lineage, amongst_lineage), 'KS-test result comparing amongst all lineages to within lineages') def plotLocusHeatmap(sj_out_df, isotype_call_df, row_colorby): """plots a clustermap using seaborn an sjout file and the isotype calls, rows can be colored by "condition" or by "isotype" """ sj_out_df = sj_out_df[sj_out_df.cell.isin(isotype_call_df.cell)] #collects all switch transcripts to each constant region exon even if they come from different I-exon coordinates sj_out_df.loc[:,'cell'] = sj_out_df.loc[:,'cell'].str.replace('-','_') sj_out_df = sj_out_df[sj_out_df.exon_start.str.contains('exon1')] sum_df = sj_out_df.groupby(['cell', 'exon_start']).sum() # log transform the uniquely mapping reads sum_df['unique_mapping_log2'] = np.log2(sum_df['unique_mapping']) #put data in long form df = sum_df.unique_mapping_log2.unstack().fillna(0) # make a condition column (for a color bar) _df = df.copy() _df['condition'], _df['cell'] = _df.index.str.split('_', 1).str # map color dictionary to condition column if row_colorby == 'condition': # hard coded condition color bar based on plate names from the cluster cultureConditionDict = {'P1': 'firebrick', 'D2': 'firebrick', 'MS': 'firebrick', 'CTY':'firebrick', 'IL6811':'firebrick', 'NaiveBcellsplate1':'midnightblue', 'NaiveBcellsplate2':'midnightblue', 'PASL':'green', 'AgSeqPooled': 'midnightblue'} row_colors = _df.condition.map(cultureConditionDict) #for isotype coloring but could be about something else if necessary #TODO: still some Nans in the row_colors that I'm unsure of where they are coming from else: _df["CELL"] = _df['condition'] + "_" + _df['cell'] isotypeColorDict = dict(zip(isotype_call_df['cell'], isotype_call_df['node_color'])) row_colors = _df.CELL.map(isotypeColorDict) #plot correlogram # plot return sns.clustermap(df, row_colors=row_colors), _df def callIsotypeBySJout(ab_tx, plot): #slow for large datasets # other approaches could be better # e.g https://stackoverflow.com/questions/15705630/get-the-rows-which-have-the-max-value-in-groups-using-groupby _df = ab_tx.copy(deep=True) # Parse Exon Start column # find the J to 1st constant region junction with max support (max unique mapping reads), this could be decreasing sensitivity by not calling cells in the act idx = _df.groupby(['cell'], sort=False)['unique_mapping'].transform(max) == _df['unique_mapping'] #filter sjout df by this isotype_calls_df = _df[idx] if plot == True: f, ax = plt.subplots(figsize=(6, 15)) ax = sns.barplot(data=isotype_calls_df.exon_simple.value_counts().to_frame('counts').reset_index(), y = 'index', x = 'counts') ax.set(xlabel="Isotypes called by splice junctions") ax.set() isotype_calls_df.loc[:,'ISOTYPE_by_splice'] = isotype_calls_df.loc[:,'exon_start'].str.split('_', expand=True)[0] isotype_list = ['None', 'IGHM', 'IGHD', 'IGHG3', 'IGHDM', 'IGHG1', 'IGHA2', 'IGHG2', 'IGHG4', 'IGHE', 'IGHA1', 'nan'] color_list = ['grey', 'green', 'green', 'red', 'green', 'black', 'blue', 'magenta', 'pink','cyan', 'blue', 'grey'] color_isotype_dict = dict(zip(isotype_list, color_list)) isotype_calls_df.loc[:,'node_color']= isotype_calls_df.ISOTYPE_by_splice.map(color_isotype_dict) return isotype_calls_df def callIsotypeByBracer(changeodb): changeodb_H = changeodb[changeodb.LOCUS == 'H'] f, ax = plt.subplots(figsize=(6, 15)) ax = sns.barplot(data=changeodb_H.ISOTYPE.value_counts().to_frame('counts').reset_index(), y = 'index', x ='counts') ax.set(xlabel="Isotypes called by BrACER assembly") ax.set() return changeodb_H def callIsotypeByBracerSJout(changeodb, ab_tx, plot): dfBracer = changeodb[changeodb.LOCUS == 'H'].copy() #only take functional Bracer assemblies (i.e. no stop codons thus the principal igh antibody being made) dfBracer = dfBracer[dfBracer.FUNCTIONAL == True] sj_out_df = ab_tx.copy() #make "CELL" column to facilitate merge with "cell" sj_out_df["CELL"] = sj_out_df.loc[:,"cell"] merged_df = pd.merge(dfBracer, sj_out_df, how='inner', on='CELL') #Take the the splice Junction calls where the J gene matches the J gene from the assembly _df = merged_df[merged_df.J_CALL == merged_df.J_exon][['J_exon', 'cell', 'ISOTYPE', 'exon_start', 'unique_mapping']] # find the J to 1st constant region junction with max support (max unique mapping reads) idx = _df.groupby(['cell'], sort=False)['unique_mapping'].transform(max) == _df['unique_mapping'] #filter sjout df by this isotype_calls_df = _df[idx] #Plot Bar plot of relative abundances of each isotype if plot == True: f, ax = plt.subplots(figsize=(6, 15)) ax = sns.barplot(data=isotype_calls_df.exon_start.value_counts().to_frame('counts').reset_index(), y = 'index', x = 'counts') ax.set(xlabel="Isotypes called by combined Bracer and SJ.out") ax.set() else: ax = None # Simplify the exon_start column for plotting/display purposes isotype_calls_df.loc[:,'ISOTYPE_by_splice'] = isotype_calls_df.loc[:,'exon_start'].str.split('_', expand=True)[0] isotype_list = ['None', 'IGHM', 'IGHD', 'IGHG3', 'IGHDM', 'IGHG1', 'IGHA2', 'IGHG2', 'IGHG4', 'IGHE', 'IGHA1', 'nan'] color_list = ['grey', 'green', 'green', 'red', 'green', 'black', 'blue', 'magenta', 'pink','cyan', 'blue', 'grey'] color_isotype_dict = dict(zip(isotype_list, color_list)) isotype_calls_df.loc[:,'node_color']= isotype_calls_df.ISOTYPE_by_splice.map(color_isotype_dict) return isotype_calls_df, ax def findActofSwitchingCells(ab_sjoutdf, threshold, changeodb_H, plot): """ab_sjoutdf is the df filtered for J gene splices, changeo_H is the changeo_db from bracer summarise, and threshold is defines the ratio of max counts supporting the major J to C splice junction divided by the sum of all J to C splice junctions returns an SJout like df with only cells putatively in the act""" #get rid of cells expressing IGHD(the dual expression of M and D confounds my filters) _df = ab_sjoutdf[~ab_sjoutdf.exon_start.str.contains("IGHD")].copy() _df = _df[_df.exon_start.str.contains("exon1")] #divide the max unique mapping J to C splicing junction by the sum of all J to C splicing junctions _x = _df.groupby('cell').max()/_df.groupby('cell').sum() # cells in the act will have a number less than 1 for this value act_cells = _x[_x.unique_mapping < threshold].index #cells possibly in the act because they have multiple constant regions to J gene splicing events _act_cells_df = _df[_df.cell.isin(act_cells)] #cross reference to the assembly in order to use only the productive H chain transcript changeo_merge = changeodb_H[['CELL', 'J_CALL', 'IN_FRAME', 'FUNCTIONAL']] changeo_merge.columns = ['cell', 'J_CALL', 'IN_FRAME', 'FUNCTIONAL'] merged_df = pd.merge(changeo_merge, _act_cells_df, on='cell', how='inner') productive_J_tx = merged_df[merged_df['J_CALL'].str.split('*', expand = True)[0] == merged_df['J_exon']] productive_J_tx = productive_J_tx[productive_J_tx.IN_FRAME == True] productive_J_tx = productive_J_tx[productive_J_tx.FUNCTIONAL == True] productive_J_tx = productive_J_tx[productive_J_tx.duplicated(subset=['cell', 'J_CALL'], keep=False)] #log transform counts productive_J_tx['log2_unique_mapping'] = np.log2(productive_J_tx['unique_mapping']) cells_in_act = productive_J_tx.drop_duplicates() #Plot if plot == True: f, ax = plt.subplots(figsize=(7, 20)) ax = sns.barplot(data = cells_in_act, y = 'cell', x = 'log2_unique_mapping', hue = 'exon_start') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad = 0) print(str(cells_in_act.cell.unique().shape[0]), 'cells in act of switching') return cells_in_act def plotSwitchAndAbtx(ab_tx, switch_tx, cell_list): """makes a point plot of the IGH locus where each observation is a cell and an observation consists of counts for each of the genes at the IgH locus""" #Make ab_tx dataframe long form (cell, exon_start, unique_mapping) _dfab = ab_tx[ab_tx.exon_start.str.contains('exon1')].copy() _dfab_sum = _dfab.groupby(['cell', 'exon_start']).sum() _dfab_sum['unique_mapping_log2'] = np.log2(_dfab_sum['unique_mapping']) _dfab_long = _dfab_sum.unique_mapping_log2.unstack().fillna(0) new_columns = [] for i in _dfab_long.columns: gene_name = i.split('_')[0] new_columns.append(gene_name) _dfab_long.columns = new_columns point_plot_df = _dfab_long point_plot_df = point_plot_df.reset_index() point_plot_df =
pd.melt(point_plot_df, value_vars = point_plot_df.columns[1:], id_vars = point_plot_df.columns[0])
pandas.melt
import PyPDF2 import csv from pathlib import Path import io import pandas import numpy from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage # def Cpk(usl, lsl, avg, sigma , cf, sigma_cf): # cpu = (usl - avg - (cf*sigma)) / (sigma_cf*sigma) # cpl = (avg - lsl - (cf*sigma)) / (sigma_cf*sigma) # cpk = numpy.min([cpu, cpl]) # return cpl,cpu,cpk def convert_pdf_to_txt(path): rsrcmgr = PDFResourceManager() retstr = io.BytesIO() codec = 'utf-8' laparams = LAParams() device = TextConverter(rsrcmgr, retstr, codec=codec, laparams=laparams) fp = open(path, 'rb') interpreter = PDFPageInterpreter(rsrcmgr, device) password = "" maxpages = 0 caching = True pagenos = set() for page in PDFPage.get_pages(fp, pagenos, maxpages=maxpages, password=password, caching=caching, check_extractable=True): interpreter.process_page(page) text = retstr.getvalue() fp.close() device.close() retstr.close() return text def filename_extraction(inp_filename): raw = inp_filename.split('_') dev = raw[1] volt = raw[2] temp = raw[3] condition = raw[4]+raw[5]+raw[6]+raw[7] return dev,volt,temp,condition ############################### User inputs ############################################### path_of_files = r'C:\Users\vind\OneDrive - Cypress Semiconductor\documents\python_codes\EYE_DIAG_ANALYZER\pdf_ccg3pa2_tt' pathlist = Path(path_of_files).glob('**/*.pdf') output_filename = 'out' automated_data_collection = 'yes' #'no' ################################# Program Begins ######################################### if automated_data_collection == 'no': with open(output_filename +'raw'+ '.csv', 'a', newline='') as csvfile: mywriter1 = csv.DictWriter(csvfile, dialect='excel', fieldnames=['rise_time_average', 'rise_time_minimum', 'rise_time_maximum', 'fall_time_average', 'fall_time_minimum', 'fall_time_maximum', 'bit_rate_average', 'bit_rate_minimum', 'bit_rate_maximum', 'voltage_swing_average', 'voltage_swing_minimum', 'voltage_swing_maximum', 'filename']) mywriter1.writeheader() for files in pathlist: ###################### extracting only measurement page of the pdf file ########################################## print(files.name) pdfFileObj = open(files,'rb') pdfReader = PyPDF2.PdfFileReader(pdfFileObj) pdfWriter = PyPDF2.PdfFileWriter() pdfReader.getNumPages() pageNum = 3 pageObj = pdfReader.getPage(pageNum) pdfWriter.addPage(pageObj) pdfOutput = open('temp.pdf', 'wb') pdfWriter.write(pdfOutput) pdfOutput.close() ######################### pdf to text conversion ################################ x= convert_pdf_to_txt('temp.pdf') text_extracted = x.split() counter_list = list(enumerate(text_extracted, 1)) rise_time_average = (counter_list[91])[1] fall_time_average = (counter_list[93])[1] bit_rate_average = (counter_list[97])[1] rise_time_minimum = (counter_list[145])[1] fall_time_minimum = (counter_list[147])[1] bit_rate_minimum = (counter_list[151])[1] rise_time_maximum = (counter_list[156])[1] fall_time_maximum = (counter_list[158])[1] bit_rate_maximum = (counter_list[162])[1] voltage_swing_average = (counter_list[131])[1] voltage_swing_minimum = (counter_list[170])[1] voltage_swing_maximum = (counter_list[174])[1] data_raw = [float(rise_time_average), float(rise_time_minimum), float(rise_time_maximum), float(fall_time_average), float(fall_time_minimum), float(fall_time_maximum), float(bit_rate_average), float(bit_rate_minimum), float(bit_rate_maximum), float(voltage_swing_average), float(voltage_swing_minimum), float(voltage_swing_maximum), files.name] print(data_raw) mywriter2 = csv.writer(csvfile, delimiter=',', dialect = 'excel') mywriter2.writerow(data_raw) ################## Analysis begins ##########################################
pandas.set_option('display.expand_frame_repr', False)
pandas.set_option
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp) tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_ops_error_str(self): # GH 13624 tdi = TimedeltaIndex(['1 day', '2 days']) for l, r in [(tdi, 'a'), ('a', tdi)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r with tm.assertRaises(TypeError): l == r with tm.assertRaises(TypeError): l != r def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i * i) for i in range(10)]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600, 'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:09') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew', 'kurt', 'sem', 'prod']: self.assertRaises(TypeError, getattr(td, op)) # GH 10040 # make sure NaT is properly handled by median() s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07')]) self.assertEqual(s.diff().median(), timedelta(days=4)) s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07'), Timestamp('2015-02-15')]) self.assertEqual(s.diff().median(), timedelta(days=6)) def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10, unit='s'), timedelta(seconds=10), np.timedelta64(10, 's'), np.timedelta64(10000000000, 'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1, seconds=10), np.timedelta64(1, 'D') + np.timedelta64(10, 's'), pd.offsets.Day() + pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 =
DataFrame(['00:00:02'])
pandas.DataFrame
from __future__ import print_function import zeep import numpy as np import pandas as pd import warnings _INFO = """PyIress documentation (GitHub): https://github.com/ceaza/pyiress""" WSDL_URL_GENERIC='http://127.0.0.1:51234/wsdl.aspx?un={username}&cp={companyname}&svc={service}&svr=&pw={password}' class PyIressException(Exception): pass class Iress(object): def __init__(self, companyname,username, password, service='IRESS',raise_on_error=True, show_request=False, proxy=None, **kwargs): """Establish a connection to the IRESS Web Services with Version 4 desktop. companyname / username / password - credentials for the Iress account. service - only service for desktop version is IRESS. raise_on_error - If True then error request will raise a "IressException", otherwise either empty dataframe or partially retrieved data will be returned show_request - If True, then every time a request string will be printed A custom WSDL url (if necessary for some reasons) could be provided via "url" parameter. """ import logging.config self.services=[service] self.show_request = show_request if self.show_request: logging.config.dictConfig({ 'version': 1, 'formatters': { 'verbose': { 'format': '%(name)s: %(message)s' } }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', }, }, 'loggers': { 'zeep.transports': { 'level': 'DEBUG', 'propagate': True, 'handlers': ['console'], }, } }) else: logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': True, }) self.raise_on_error = raise_on_error self.last_status = None # Will contain status of last request WSDL_URL = WSDL_URL_GENERIC.format(companyname=companyname,username=username,password=password,service=service) self._url = kwargs.pop('url', WSDL_URL) # Trying to connect try: self.client = zeep.Client(wsdl=WSDL_URL) except: raise PyIressException('Cannot Connect') # Create session login_details={'UserName':username, 'CompanyName':companyname, 'Password':password, 'ApplicationID':'app'} IRESSSessionStartInputHeader = {"Parameters":login_details} self.session=self.client.service.IRESSSessionStart(Input=IRESSSessionStartInputHeader) self.IRESSSessionKey=self.session.Result.DataRows.DataRow[0].IRESSSessionKey self.UserToken=self.session.Result.DataRows.DataRow[0].UserToken self.last_response = None self.header={'Header':{'SessionKey':self.IRESSSessionKey}} # Check available data sources if 'IRESS' not in self.services: warnings.warn("'IRESS' source is not available for given subscription!") @staticmethod def info(): print(_INFO) def sources(self): """Return available sources of data. Curretly only IRESS""" return self.services def version(self): """Return version of Iress Client.""" res = self.client.namespaces return res def _time_series(self,ticker,exchange,start_date,end_date,freq='daily'): ''' SecurityCode string Yes No The security code to filter by. Exchange string Yes No The exchange to filter by. DataSource string Yes No The data source to filter by. Frequency string No No The frequency type, one of 'daily', 'weekly', 'monthly', 'quarterly' or 'yearly'. TimeSeriesFromDate date No No The date to retrieve time series from. TimeSeriesToDate date No No The date to retrieve time series to. ''' parameters={'Parameters': {'SecurityCode': ticker, 'Exchange': exchange, 'Frequency':freq, 'TimeSeriesFromDate':start_date.strftime('%Y/%m/%d'), 'TimeSeriesToDate':end_date.strftime('%Y/%m/%d') } } inputs={**self.header, **parameters} res=self.client.service.TimeSeriesGet2(Input=inputs) try: data=zeep.helpers.serialize_object(res.Result.DataRows.DataRow) df=pd.DataFrame(data) # print(df.tail()) df['TimeSeriesDate']=pd.to_datetime(df.TimeSeriesDate) df=df.set_index('TimeSeriesDate') # print(df.columns) except: df=pd.DataFrame() return df def time_series(self,ticker,exchange,start_date,end_date,freq='daily',fields=[]): ''' SecurityCode string Yes No The security code to filter by. Exchange string Yes No The exchange to filter by. DataSource string Yes No The data source to filter by. Frequency string No No The frequency type, one of 'daily', 'weekly', 'monthly', 'quarterly' or 'yearly'. TimeSeriesFromDate date No No The date to retrieve time series from. TimeSeriesToDate date No No The date to retrieve time series to. Available fields - ['OpenPrice', 'HighPrice', 'LowPrice', 'ClosePrice', 'TotalVolume', 'TotalValue', 'TradeCount', 'AdjustmentFactor', 'MarketVWAP', 'ShortSold', 'ShortSoldPercent', 'ShortSellPosition', 'ShortSellPositionPercent', '_value_1', 'exchange'] ''' part_date=start_date data=pd.DataFrame() while part_date < pd.Timestamp(end_date): try: new_data=self._time_series(ticker,exchange,part_date,end_date,freq) data=pd.concat([data,new_data]) part_date = data.index.max() + pd.DateOffset(1,'D') except: break return data def dividends(self,ticker,exchange,start_date,end_date,freq=None,index_on='ExDividendDate'): ''' SecurityCode string Yes No The security code to filter by. Exchange string Yes No The exchange to filter by. DataSource string Yes No The data source to filter by. Frequency string No No The frequency type, one of 'daily', 'weekly', 'monthly', 'quarterly' or 'yearly'. TimeSeriesFromDate date No No The date to retrieve time series from. TimeSeriesToDate date No No The date to retrieve time series to. available fields = ['DividendAmount', 'AdjustedDividendAmount', 'FrankedPercent', 'PayableDate', 'BooksClosingDate', 'DividendType', 'ShareRate', 'DividendYield', 'DRPPrice', 'DividendDescription', 'DeclarationDate', 'STCCreditsPerShare', '_value_1', 'exchange'] ''' parameters={'Parameters': {'SecurityCode': ticker, 'Exchange': exchange, 'PayDateFrom':start_date.strftime('%Y/%m/%d'), 'PayDateTo':end_date.strftime('%Y/%m/%d') } } inputs={**self.header, **parameters} try: res=self.client.service.SecurityDividendGetBySecurity(Input=inputs) data=zeep.helpers.serialize_object(res.Result.DataRows.DataRow) df=pd.DataFrame(data) df[index_on]=pd.to_datetime(df[index_on]) df=df.set_index(index_on) except: df=
pd.DataFrame()
pandas.DataFrame
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if
is_bool(other)
pandas.core.dtypes.common.is_bool
# -*- coding: utf-8 -*- """ @author: <NAME> """ import numpy as np import pandas as pd def func_WVF(close, low, Lookback=22): WVF = np.zeros((len(close),1)) for i in range(Lookback, len(close)): highest_close_temp = close[i-22:i].max() WVF[i] = (1 - low.values[i] / highest_close_temp) * 100 WVF_df =
pd.DataFrame(WVF, index=close.index)
pandas.DataFrame
import pandas as pd import numpy as np from matplotlib import colors, cm, text, pyplot as plt import matplotlib.patches as patches import os import time from cmcrameri import cm from PIL import Image, ImageFont, ImageDraw, ImageEnhance from cmcrameri import cm import sqlite3 import glob import tempfile import zipfile import json import shutil # generate a tile for each frame, annotating intersecting precursor cuboids # loads the metadata from the specified zip file def load_precursor_cuboid_metadata(filename): temp_dir = tempfile.TemporaryDirectory().name with zipfile.ZipFile(filename, "r") as zf: zf.extractall(path=temp_dir) names = zf.namelist() with open('{}/{}'.format(temp_dir, names[0])) as json_file: metadata = json.load(json_file) # clean up the temp directory shutil.rmtree(temp_dir) return metadata MZ_MIN = 748 # default is 748 MZ_MAX = 766 # default is 766 SCAN_MIN = 350 # default is 1 SCAN_MAX = 850 # default is 920 RT_MIN = 2000 RT_MAX = 2200 PIXELS_X = 800 PIXELS_Y = 800 PIXELS_PER_MZ = PIXELS_X / (MZ_MAX - MZ_MIN) PIXELS_PER_SCAN = PIXELS_Y / (SCAN_MAX - SCAN_MIN) minimum_pixel_intensity = 1 maximum_pixel_intensity = 250 EXPERIMENT_NAME = 'P3856' TILES_BASE_DIR = '/home/ubuntu/precursor-cuboid-tiles' RUN_NAME = 'P3856_YHE211_1_Slot1-1_1_5104' CONVERTED_DATABASE_NAME = '/data2/experiments/P3856/converted-databases/exp-P3856-run-{}-converted.sqlite'.format(RUN_NAME) # font paths for overlay labels UBUNTU_FONT_PATH = '/usr/share/fonts/truetype/liberation/LiberationSans-Regular.ttf' MACOS_FONT_PATH = '/Library/Fonts/Arial.ttf' def pixel_x_from_mz(mz): pixel_x = int((mz - MZ_MIN) * PIXELS_PER_MZ) return pixel_x def pixel_y_from_scan(scan): pixel_y = int((scan - SCAN_MIN) * PIXELS_PER_SCAN) return pixel_y # load the raw data for the region of interest print('loading the raw data from {}'.format(CONVERTED_DATABASE_NAME)) db_conn = sqlite3.connect(CONVERTED_DATABASE_NAME) raw_df = pd.read_sql_query("select * from frames where frame_type == 0 and mz >= {} and mz <= {} and scan >= {} and scan <= {} and retention_time_secs >= {} and retention_time_secs <= {};".format(MZ_MIN, MZ_MAX, SCAN_MIN, SCAN_MAX, RT_MIN, RT_MAX), db_conn) db_conn.close() raw_df['pixel_x'] = raw_df.apply(lambda row: pixel_x_from_mz(row.mz), axis=1) raw_df['pixel_y'] = raw_df.apply(lambda row: pixel_y_from_scan(row.scan), axis=1) # sum the intensity of raw points that have been assigned to each pixel pixel_intensity_df = raw_df.groupby(by=['frame_id', 'pixel_x', 'pixel_y'], as_index=False).intensity.sum() print('intensity range {}..{}'.format(pixel_intensity_df.intensity.min(), pixel_intensity_df.intensity.max())) # create the colour map to convert intensity to colour colour_map = plt.get_cmap('ocean') # colour_map = cm.batlow norm = colors.LogNorm(vmin=minimum_pixel_intensity, vmax=maximum_pixel_intensity, clip=True) # aiming to get good colour variation in the lower range, and clipping everything else # calculate the colour to represent the intensity colours_l = [] for i in pixel_intensity_df.intensity.unique(): colours_l.append((i, colour_map(norm(i), bytes=True)[:3])) colours_df = pd.DataFrame(colours_l, columns=['intensity','colour']) pixel_intensity_df =
pd.merge(pixel_intensity_df, colours_df, how='left', left_on=['intensity'], right_on=['intensity'])
pandas.merge
# Given an ensemble of models, evolve a random sequence to fulfill an objective. # cf. https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html import keras from keras import backend as K from functools import partial import sys import os import pandas import numpy as np import random from numpy.random import choice, rand import ConfigParser import seq_evolution import seq_selection def debug_dists(seq1, seq2): return np.sqrt(np.sum((seq1 - seq2)**2)) DNA = seq_evolution.DNA class seq_evolution_class_gradient(seq_evolution.seq_evolution_class): def __init__(self, cfg): # prepare the models, populate the sequences, et cetera self.init_noise = float(cfg.get('Params','INIT_NOISE')) super(seq_evolution_class_gradient, self).__init__(cfg) self.loss_tensor_fx = self._get_loss_tensor_fx(cfg) # given a model, get an output tensor scores_fx_name = cfg.get('Functions','seq_scores_keras') if scores_fx_name == 'None': self.seq_scores_fx = None else: get_seq_scores_fx = eval(scores_fx_name) [seq_start, seq_end] = [int(q) for q in cfg.get('Params', 'SEQ_INDICES').strip().split(',')] self.seq_scores_fx = get_seq_scores_fx(self.models[0], seq_start, seq_end) iterates = [self._get_iterate_fx_from_model(q) for q in self.models] def _get_mean_grad(iterates, seq_scores_fx, input): iterate_outputs = [q(input) for q in iterates] losses = [p for (p,q) in iterate_outputs] grads = [q for (p,q) in iterate_outputs] #final_grad = K.mean(K.stack(grads, axis = 0), axis = 0) final_grad = np.mean(np.stack(grads, axis = 0), axis = 0) if seq_scores_fx != None: seq_losses, seq_grad = seq_scores_fx(input) losses += seq_losses final_grad += seq_grad return(losses, final_grad) # given an input, get a list of losses, and the mean gradient of the input, as Numpy arrays self.losses_and_grads = partial(_get_mean_grad, iterates, self.seq_scores_fx) # For gradient updates - keep from "updating" immutable bases self.mutable_mask = np.zeros(self.base_probs.shape[1]) self.mutable_mask[self.mutable] = 1. self.mutable_mask = self.mutable_mask[np.newaxis,:self.mutable_mask.shape[0]-self.shift+1, np.newaxis] def _get_loss_tensor_fx(self, cfg): def loss_wrapper(merge_outputs_keras, model_in): model_output = model_in.output loss = merge_outputs_keras(model_output) return(loss) merge_outputs_keras = eval(cfg.get('Functions','merge_outputs_keras')) # needs to be written in terms of the backend loss_tensor_fx = partial(loss_wrapper, merge_outputs_keras) return(loss_tensor_fx) # takes a model, returns a loss tensor # given a model, get a function taking an input tensor and returning loss and gradient tensors. def _get_iterate_fx_from_model(self, model_in): input_seq = model_in.input loss = self.loss_tensor_fx(model_in) grads = K.gradients(loss, input_seq)[0] # gradient at the input # following example, normalize gradient # cf. https://github.com/keras-team/keras/blob/master/examples/conv_filter_visualization.py normalize = lambda x: x / (K.sqrt(K.mean(K.square(x))) + K.epsilon()) grads = normalize(grads) iterate = K.function([input_seq], [loss, grads]) return(iterate) # raise all values to some power, and renormalize - # this encourages one value to dominate, approximating one-hot encoding. def _norm_bias(self, seqs, norm_power): print(np.min(seqs)) print(np.max(seqs)) seqs = np.power(seqs, norm_power[:,np.newaxis, np.newaxis]) seq_normalize = np.apply_along_axis(np.sum, 2, seqs)[...,np.newaxis] seqs = seqs/seq_normalize return(seqs) # given an ensemble of models and a list of sequences, update with the mean of gradients def _update_seq_ensemble(self, step, norm_power): seqs = self.seqs_iter losses, gradient = self.losses_and_grads([seqs]) losses = np.apply_along_axis(np.mean,0,np.stack(losses)) print(losses) gradient = np.multiply(gradient, self.mutable_mask) seqs += gradient*step[:,np.newaxis, np.newaxis] seqs = np.clip(seqs,0.,1.) # enforce between 0 and 1 seq_normalize = np.apply_along_axis(np.sum, 2, seqs)[...,np.newaxis] seqs = seqs/seq_normalize seqs = self._norm_bias(seqs, norm_power) self.seqs_iter = np.array(seqs) return(losses) def rand_range(self, shape_0, shape_1, min, max): r = rand(shape_0, shape_1)*(max - min) r = r + min return(r) def _generate_n_sequences(self, n): seqs = np.zeros((n,) + self.base_probs.shape) for i in range(self.base_probs.shape[1]): if(np.max(self.base_probs[:,i]) == 1.): seqs[:,:,i] = self.base_probs[:,i] else: probs = self.base_probs[:,i][np.newaxis,...] probs = np.repeat(probs, n, axis = 0) noise = self.rand_range(probs.shape[0], probs.shape[1], 1. - self.init_noise, 1. + self.init_noise) seqs[:,:,i] = probs*noise #noise = rand(probs.shape[0], probs.shape[1])*self.init_noise #seqs[:,:,i] = probs + noise normalize_arr = np.apply_along_axis(np.sum,1, seqs)[:,np.newaxis,:] seqs = seqs/normalize_arr return(seqs) def _populate_sequences(self): seqs = self._generate_n_sequences(self.num_seqs) self.seqs = seqs # In seq_evolve_to_threshold, we want to generate replacement sequences one at a time. def _populate_one_sequence(self): return( self._generate_n_sequences(1) ) # override method in parent class; update via gradient def iterate(self): # , params, iter_idx seqs_iter = np.swapaxes(self.seqs, 1, 2) removed_pad = seqs_iter[:,seqs_iter.shape[1]-self.shift+1:,:] self.seqs_iter = seqs_iter[:,:seqs_iter.shape[1]-self.shift+1,:] print('Iteration (0): ' + str(self.curr_iters[0])) losses = self._update_seq_ensemble(self.map_to_key('gradient_step'), self.map_to_key('normalize_power')) seqs_iter = np.concatenate([self.seqs_iter, removed_pad], axis = 1) self.seqs = np.swapaxes(seqs_iter, 1, 2) self.score_tracking.append(losses) def basic_iterative(self, num_iters): for i in range(num_iters): self.iterate() self.curr_iters += 1 def generate_report(self): seqs_out = self.de_onehot(self.seqs) ans = {'Seqs': seqs_out} orig_preds = self._test_sequences(self.seqs) self.seqs = self.round_seqs(self.seqs) final_preds = self._test_sequences(self.seqs) print(np.mean((final_preds - orig_preds)[:,1,:],axis=1)) print(final_preds.shape) for i,p in enumerate(self.output_names): for j in range(final_preds.shape[-1]): this_pred = final_preds[:,i,j] this_name = p + '_' + str(j) ans[this_name] = this_pred return(
pandas.DataFrame(ans)
pandas.DataFrame
import json import csv import glob import pandas as pd from pandas.core.series import Series from pandas.core.frame import DataFrame import matplotlib.pyplot as plt from matplotlib import cm # 日本語フォント設定 from matplotlib import rc jp_font = "Yu Gothic" rc('font', family=jp_font) def delete_duplicaion_index(input_list): """delete consecutive numbers in the list. Args: input_list (list): A continuous number exists. Returns: list: There is no continuous number. """ temp = 0 index = [] for i in input_list: if i - 1 == temp or i + 1 == temp: pass else: index.append(i) temp = i return index def plot_graph(pg_df, pg_title_text, pg_plane=True): """plot pandas DataFrame on the graph(s). Args: pg_df (pandas.DataFrame or pandas.Series): Data to be graphed. pg_title_text (str): title pg_plane (bool, optional): Choose between a single graph or multiple graphs. Defaults to True. """ fig = plt.figure(figsize=(10, 6)) if pg_plane: if type(pg_df) == DataFrame: ax_1 = fig.add_subplot() ax_2 = ax_1.twinx() # 色の設定 color_1 = cm.Set1.colors[1] color_2 = cm.Set1.colors[4] # 表示 # 色はcm, 前後の指示はzorder, 線幅はlinewidth # エラーが発生した場合はグラフは1個のみ表示 pg_df.iloc[:, 0].plot(ax=ax_1, color=color_1, zorder=-2, linewidth=2) pg_df.iloc[:, 1].plot(ax=ax_2, color=color_2, zorder=-1, linewidth=0.5) # グラフの凡例をまとめる handler_1, label_1 = ax_1.get_legend_handles_labels() handler_2, label_2 = ax_2.get_legend_handles_labels() _ = ax_2.legend(handler_1 + handler_2, label_1 + label_2) # タイトルとグリッド表示 _ = ax_1.set_title(pg_title_text) _ = ax_1.grid(True) elif type(pg_df) == Series: ax = fig.add_subplot() pg_df.plot(ax=ax) _ = ax.legend() # タイトルとグリッド表示 _ = ax.set_title(pg_title_text) _ = ax.grid(True) else: raise Exception("pandasの型式ではありません。") else: ax = fig.subplots(3, 3) plt.suptitle(pg_title_text) ax_f = ax.flatten() for i, m in enumerate(pg_df): ax_f[i].plot(pg_df[m]) _ = ax_f[i].set_title(m) _ = ax_f[i].grid(True) # グラフの重なりをなくす為に必要 plt.tight_layout() plt.show() class ExtractorData(): """concatenate csv files, extract specific data and save the results to excel. """ def __init__(self, json_file_path): """read json, set the variables, concatenate csv files and make dataframe. Args: json_file_path (str): path of the json file. """ # パラメータの取り出し with open(json_file_path, "r", encoding="utf-8") as setting: self._setting_dict = json.load(setting) # 設定jsonから変数へ読み込み # ファイル名 single_file_names = glob.glob(self._setting_dict["file"]["path"] + self._setting_dict["file"]["single"]) double_file_names = glob.glob(self._setting_dict["file"]["path"] + self._setting_dict["file"]["double"]) all_file_names = single_file_names + double_file_names # ラベル self._label_dict = self._setting_dict["label"] # 閾値 self._period_step = self._setting_dict["period"]["step"] self._period_start = self._setting_dict["period"]["start"] self._period_end = self._setting_dict["period"]["end"] # 初回プロットの範囲 self._1st_plot_range_start = self._setting_dict["1st_plot"]["start"] self._1st_plot_range_end = self._setting_dict["1st_plot"]["end"] # 抽出タイミング self._extract_dict = self._setting_dict["extract"] # 参照データの切り取りタイミング self._referance_1st = self._setting_dict["reference"]["1st"] # 結果データの読み込み temp_list = [] for i in all_file_names: print(i) temp = pd.read_csv(i, skiprows=70, encoding="cp932") temp_list.append(temp) # データフレームの結合 self._df_csv =
pd.concat(temp_list, ignore_index=False)
pandas.concat
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re import seaborn as sns; sns.set() import warnings; warnings.filterwarnings("ignore", category=UserWarning, module="matplotlib") from matplotlib.colors import ListedColormap from matplotlib.ticker import MaxNLocator from pylab import * from sklearn.metrics.pairwise import euclidean_distances import keywords rcParams['axes.titlesize'] = 9 rcParams['axes.titlepad'] = 2 # change if needed limit_plots = True limit_num = 50 # plot for this many users when limit_plots is True verbose = True similarity_threshold = 0.5 similarity_thresholds_list = np.linspace(0, 1, 55) # specify year and problem number unit = int(sys.argv[1]) pb = int(sys.argv[2]) u_pb = '{}-{}'.format(unit, pb) # in format 1-1, 5-3, etc # set substrings to count/track through user submission history substrs = keywords.python_keywords keyword_groups = keywords.python_keyword_colors # load user histories kw_occ_traj_path = '../../data/keyword_occurrence/trajectory/unit{}_pb{}_kw_occ_traj.csv' kw_occ_traj_df = pd.read_csv(kw_occ_traj_path.format(u_pb[0], u_pb[2]), index_col=None) # load sample solutions sample_sols = pd.read_csv('sample_sols.csv', index_col=None) # where to save plots save_dir = 'submission_history_plots' # saves in this_dir/problem_subfolder os.makedirs('{}/{}-{}'.format(save_dir, unit, pb), exist_ok=True) def main(): all_u_kw_occ_comments = pd.Series(kw_occ_traj_df.kw_occ_matrix.values, index=kw_occ_traj_df.user_id).to_dict() all_u_kw_occ_stripped = pd.Series(kw_occ_traj_df.stripped_kw_occ_matrix.values, index=kw_occ_traj_df.user_id).to_dict() all_u_exp = pd.Series(kw_occ_traj_df.user_exp.values, index=kw_occ_traj_df.user_id).to_dict() all_final_correct_bool = pd.Series(kw_occ_traj_df.final_correct_bool.values, index=kw_occ_traj_df.user_id).to_dict() plot_count = 0 make_plots = False similar_correct = 0 different_correct = 0 similar_incorrect = 0 different_incorrect = 0 exp_dict_counts = { 'absolutely_none' : [0, 0, 0, 0], 'other_language' : [0, 0, 0, 0], 'know_python' : [0, 0, 0, 0], 'veteran': [0, 0, 0, 0], 'no_response' : [0, 0, 0, 0] } for u_id in kw_occ_traj_df['user_id'].to_list(): if limit_plots and plot_count == limit_num: make_plots = False # heatmap using comments stripped counts stripped_counts = eval(all_u_kw_occ_stripped[u_id]) cols_as_subs = np.array(stripped_counts).T sub_name_cols = ['Sub {}'.format(i+1) for i in range(len(cols_as_subs[0]))] df_to_corr = pd.DataFrame(cols_as_subs, columns=sub_name_cols) sample = sample_sols.loc[sample_sols['problem']==u_pb, 'solution'].iloc[0] # extract df_to_corr['Sample'] = subs_substr_count([sample], substrs)[0] dist = df_to_corr.corr() # used for plotting dist_matrix = dist.to_numpy() # used for similarity count n = len(dist_matrix) sample_similarity = dist_matrix[n-1][n-2] exp_level = all_u_exp[u_id] # compare correctness, similarity to sample using sim threshold if all_final_correct_bool[u_id]: if sample_similarity >= similarity_threshold: similar_correct += 1 exp_dict_counts[exp_level][0] += 1 else: different_correct += 1 exp_dict_counts[exp_level][1] += 1 else: if sample_similarity >= 0.5: similar_incorrect += 1 exp_dict_counts[exp_level][2] += 1 else: different_incorrect += 1 exp_dict_counts[exp_level][3] += 1 if make_plots: # over time, including comments f1 = plt.figure() counts = eval(all_u_kw_occ_comments[u_id]) subs_df = pd.DataFrame(columns=(['Submission']+substrs), data=add_idx(counts)) ax = subs_df.set_index('Submission').plot(kind='bar', stacked=True, colormap=ListedColormap(sns.xkcd_palette(keyword_groups)), figsize=(8,6)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) f1_title = 'Keyword occurrences in submission history \n of user {} on Problem {}' plt.suptitle(f1_title.format(u_id, u_pb)) plt.savefig('{}/{}/{}_comments.png'.format(save_dir, u_pb, u_id), bbox_inches='tight') # heatmaps f2 = plt.figure() mask = np.zeros_like(dist) mask[np.triu_indices_from(mask)] = True # show only below diagonal sns.heatmap(dist, vmin=0.0, vmax=1.0, mask=mask, square=True, cmap='coolwarm', linewidths=.5) plt.yticks(rotation=0) plt.xticks(rotation=90) f2_title = 'Code submission history correlations \n of user {} on Problem {}' plt.suptitle(f2_title.format(u_id, u_pb)) plt.savefig('{}/{}/{}_heatmap.png'.format(save_dir, u_pb, u_id), bbox_inches='tight') # over time, comments stripped f3 = plt.figure() stripped_subs_df = pd.DataFrame(columns=(['Submission']+substrs), data=add_idx(stripped_counts)) ax = stripped_subs_df.set_index('Submission').plot(kind='bar', stacked=True, colormap=ListedColormap(sns.xkcd_palette(keyword_groups)), figsize=(8,6)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) f3_title = 'Term occurrences in comment-stripped submission history \n of user {} on Problem {}' plt.suptitle(f3_title.format(u_id, u_pb)) plt.xlabel('Submission on Problem {}'.format(u_pb), fontsize=18) plt.savefig('{}/{}/{}_stripped.png'.format(save_dir, u_pb, u_id), bbox_inches='tight') plt.close('all') plot_count += 1 if verbose: total_correct = float(similar_correct + different_correct) total_incorrect = float(similar_incorrect + different_incorrect) print('Total correct students: {}'.format(total_correct)) print('Total incorrect students: {} \n'.format(total_incorrect)) print('Correct students with similar solutions: {}'.format(similar_correct)) print('Percentage of correct: {} \n'.format(similar_correct/total_correct)) print('Correct students with very different solutions: {}'.format(different_correct)) print('Percentage of correct: {} \n'.format(different_correct/total_correct)) print('Incorrect students with similar solutions: {}'.format(similar_incorrect)) print('Percentage of incorrect: {} \n'.format(similar_incorrect/total_incorrect)) print('Incorrect students with very different solutions: {}'.format(different_incorrect)) print('Percentage of incorrect: {} \n'.format(different_incorrect/total_incorrect)) do_sim_cor_results(similar_correct, different_correct, similar_incorrect, different_incorrect, unit, pb, similarity_threshold) do_sim_cor_by_exp(exp_dict_counts, unit, pb, similarity_threshold) def subs_substr_count(submission_list, substr_list): ''' Counts desired substrings in each submission string. Both strings and substrings given in lists. :param submission_list: python list of code submissions, as strings :param substr_list: specifies strings for which to count occurrences in code ''' sub_substrs_matrix = [] for sub in submission_list: sub_substrs = [sub.count(substr) for substr in substr_list] sub_substrs_matrix.append(sub_substrs) return sub_substrs_matrix def add_idx(cts): ''' Prepends the 1-indexed index to each row in the 2D array cts :param cts: the 2D array representing the substring counts (mutator function - beware when using) ''' for i in range(len(cts)): cts[i] = [i+1] + cts[i] return cts def remove_comments_str(astr): ''' Removes comment lines and extra newlines from astr, returns astr. :param astr: input string to process ''' astr = re.sub(r'(#+)(.*)\r\n', '\r\n', astr) # single line comments - keep return astr = re.sub(r'\"\"\"[\s\S]*?\"\"\"', '', astr) # multiline comments astr = re.sub(r'(\r\n)+[\s]*\r\n', '\r\n', astr) # extra newlines return astr def do_sim_cor_results(sim_cor, diff_corr, sim_in, diff_in, unit, problem, sim_th): ''' Prints out numbers of students by similarity and correctness. Also saves results to a quadrant heatmap plot. :param : :param : :param : :param : ''' sim_cor_counts = {'correctness': ['correct', 'correct', 'incorrect', 'incorrect'], 'similarity':['similar', 'different', 'similar', 'different'], 'students': [sim_cor, diff_corr, sim_in, diff_in]} sim_cor_counts_df = pd.DataFrame(sim_cor_counts).pivot('correctness', 'similarity', 'students') cmap = sns.cubehelix_palette(light=0.95, as_cmap=True) ax = sns.heatmap(sim_cor_counts_df, cmap=cmap, annot=True, fmt='d') quad_plot_title = 'Student final submission counts \n by correctness-similarity for Problem {}-{} \n thresholded at {} similarity to sample' plt.title(quad_plot_title.format(unit, problem, sim_th)) os.makedirs('quad_plots', exist_ok=True) plt.savefig('quad_plots/sim_{}_cor_{}_{}'.format(int(sim_th*100), unit, pb)) def do_sim_cor_by_exp(experience_counts, unit, problem, sim_th): ''' ''' fig,axn = plt.subplots(2, 2, sharex=True, sharey=True) cbar_ax = fig.add_axes([.91, .3, .03, .4]) exp_is = {0:'absolutely_none', 1:'other_language', 2:'know_python', 3:'veteran'} for i, ax in enumerate(axn.flat): sim_cor_counts = {'correctness': ['correct', 'correct', 'incorrect', 'incorrect'], 'similarity':['similar', 'different', 'similar', 'different'], 'students': experience_counts[exp_is[i]]} exp_sim_cor_counts_df = pd.DataFrame(sim_cor_counts).pivot('correctness', 'similarity', 'students') exp_np = exp_sim_cor_counts_df.to_numpy() cmap = sns.cubehelix_palette(light=0.95, as_cmap=True) sns.heatmap(exp_sim_cor_counts_df, cmap=cmap, annot=exp_np/exp_np.sum(), fmt='.1%', ax=ax, cbar=i == 0, vmin = min(min(experience_counts.values())), vmax = max(max(experience_counts.values())), cbar_ax=None if i else cbar_ax, cbar_kws=dict(ticks=None)) ax.title.set_text(exp_is[i]) exp_plot_title = 'Correctness-similarity by experience for Problem {}-{}, thresholded at {} similarity to sample' plt.suptitle(exp_plot_title.format(unit, problem, sim_th), fontsize=10, y=0.99) fig.tight_layout(rect=[0, 0, .9, 1]) plt.title('students', fontsize=9) os.makedirs('quad_exp_plots', exist_ok=True) plt.savefig('quad_exp_plots/exp_sim_{}_cor_{}_{}'.format(int(sim_th*100), unit, pb)) def similarity_sweep(kw_occ_traj_df, sample_sols_df, sim_th_list, unit, problem): ''' ''' all_u_kw_occ_stripped =
pd.Series(kw_occ_traj_df.stripped_kw_occ_matrix.values, index=kw_occ_traj_df.user_id)
pandas.Series
from sklearn.metrics import roc_auc_score, accuracy_score, r2_score, mean_squared_error, mean_absolute_error from amlpp.conveyor import Conveyor from datetime import datetime from typing import List import pandas as pd import pickle import os ############################################################################## class Experimenter(): """ The class for working with the structure of experiments in the project Parameters ---------- experiment: str Experiment name """ def __init__(self, experiment:str): self.experiment = experiment self.path_experiment = "experiments/" + experiment if not os.path.exists(self.path_experiment): os.makedirs(self.path_experiment) self.model = None else: self.model = self._load_model() print("load model successful!" if self.model else "model not found!") def create_experiment(self, model:Conveyor, description_model:str, description_trainset:str): """ Creation of an experiment Parameters ---------- model: Conveyor Trained model description_model: str Description of the experiment, model, projects and other significant details description_trainset: str Name or path to training set """ with open(self.path_experiment + "/model", 'wb') as file: pickle.dump(model, file) self.model = model description = description_model description += f"\nTrainset: {description_trainset}" description += f"\nModel:\n{repr(self.model)}" self.add_description(self.path_experiment, description, 'w+') def make_experiment(self, X:pd.DataFrame, Y:pd.DataFrame, expr_description:str = "", expr_name:str = "", X_features:List[str] = [], feature_importances:bool = True): """Carrying out an experiment on a test dataset Parameters ---------- X_test : pd.DataFrame = None Test dataset, features (regressors) Y_test : pd.DataFrame = None Test dataset, targets description : str = "" Description of a specific test testset_name : str = "" Test dataset name, or description X_test_features : List [str] = None features from the test dataset that will be included in the result set feature_importances : bool = True Display charts or not scoring : bool = True save and print scoring table or not """ if self.model: date = datetime.now().strftime("%d-%m-%y %H-%M-%S") path_current_experiment = f"{self.path_experiment}/{date} - {expr_name}" os.makedirs(path_current_experiment) x_, y_ = self.model.transform(X, Y) predict = self.model.estimator.predict(x_) score = "" for metr in (r2_score, mean_squared_error, mean_absolute_error, roc_auc_score, accuracy_score): try: score += f"function - {metr.__name__} = {metr(y_, predict)}\n" except Exception as e: score += f"function - {metr.__name__} = ERROR: {e}\n" expr_name = f"({self.experiment}) {expr_name}" expr_description = f"{expr_description}\nScore:\n{score}" self.add_description(path_current_experiment, expr_description, 'w+') print(expr_description) result_data = X[X_features] if X_features else
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 01 10:00:58 2021 @author: <NAME> """ #------------------------------------------------------------------# # # # # # Imports # # # # # #------------------------------------------------------------------# from math import e import numpy as np import pandas as pd import os import time import glob import itertools from joblib import Parallel, delayed from generate_files import GenerateFiles import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import LogNorm import seaborn as sns import matplotlib.style as style style.use('seaborn-poster') #sets the size of the charts style.use('ggplot') from scipy import ndimage from astropy.io import fits from astropy.wcs import WCS from astropy.utils.data import get_pkg_data_filename from astropy.coordinates import SkyCoord, match_coordinates_sky import astropy.units as u from astropy.stats import mad_std import astrotools.healpytools as hpt import astropy_healpix as ahp from astropy.coordinates import ICRS from tqdm import tqdm from collections import Counter import warnings warnings.filterwarnings('ignore') import healpy as hp from hpproj import CutSky, to_coord import logging cs_logger = logging.getLogger('cutsky') cs_logger.setLevel(logging.WARNING) cs_logger.propagate = False hpproj_logger = logging.getLogger('hpproj') hpproj_logger.setLevel(logging.WARNING) mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) #------------------------------------------------------------------# # # # # # Functions # # # # # #------------------------------------------------------------------# class MakeData(object): """Class to create and preprocess input/output files from full sky-maps. """ def __init__(self, dataset, npix, loops, planck_path, milca_path, disk_radius=None, output_path=None): """ Args: dataset (str): file name for the cluster catalog that will used. Options are 'planck_z', 'planck_z_no-z', 'MCXC', 'RM30', 'RM50'. bands (list): list of full sky-maps that will be used for the input file. loops (int): number of times the dataset containing patches with at least one cluster within will be added again to training set with random variations (translations/rotations). Options are 100GHz','143GHz','217GHz','353GHz','545GHz','857GHz', and 'y-map'. More full sky-maps will be added later on (e.g. CO2, X-ray, density maps). planck_path (str): path to directory containing planck HFI 6 frequency maps. Files should be named as following 'HFI_SkyMap_100-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_353-psb-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_545-field-Int_2048_R3.00_full.fits', 'HFI_SkyMap_857-field-Int_2048_R3.00_full.fits'. milca_path (str): path to directory containing MILCA full sky map. File should be named 'milca_ymaps.fits'. disk_radius (float, optional): Disk radius that will be used to create segmentation masks for output files. Defaults to None. output_path (str, optional): Path to output directory. Output directory needs be created beforehand using 'python xcluster.py -m True' selecting same output directory in 'params.py'. If None, xcluster path will be used. Defaults to None. """ self.path = os.getcwd() + '/' self.dataset = dataset # 'planck_z', 'planck_z_no-z', 'MCXC', 'RM30', 'RM50' self.bands = ['100GHz','143GHz','217GHz','353GHz','545GHz','857GHz','y-map','CO','p-noise'] self.loops = loops self.n_labels = 2 maps = [] self.freq = 1022 self.planck_freq = 126 if '100GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_100-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 100', 'docontour': True})) # self.freq += 2 # self.planck_freq += 2 if '143GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 143', 'docontour': True})) # self.freq += 4 # self.planck_freq += 4 if '217GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_217-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 217', 'docontour': True})) # self.freq += 8 # self.planck_freq += 8 if '353GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_353-psb-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 353', 'docontour': True})) # self.freq += 16 # self.planck_freq += 16 if '545GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_545-field-Int_2048_R3.00_full.fits", {'legend': 'HFI 545', 'docontour': True})) # self.freq += 32 # self.planck_freq += 32 if '857GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_857-field-Int_2048_R3.00_full.fits", {'legend': 'HFI 857', 'docontour': True})) # self.freq += 64 # self.planck_freq += 64 if 'y-map' in self.bands: maps.append((milca_path + "milca_ymaps.fits", {'legend': 'MILCA y-map', 'docontour': True})) # self.freq += 128 if 'CO' in self.bands: maps.append((planck_path + "COM_CompMap_CO21-commander_2048_R2.00.fits", {'legend': 'CO', 'docontour': True})) # self.freq += 256 if 'p-noise' in self.bands: maps.append((planck_path + 'COM_CompMap_Compton-SZMap-milca-stddev_2048_R2.00.fits', {'legend': 'noise', 'docontour': True})) # self.freq += 512 maps.append((milca_path + "milca_ymaps.fits", {'legend': 'MILCA y-map', 'docontour': True})) #used for plots only self.maps = maps self.temp_path = self.path + 'to_clean/' self.disk_radius = disk_radius self.npix = npix #in pixels self.pixsize = 1.7 #in arcmin self.ndeg = (self.npix * self.pixsize)/60 #in deg self.nside = 2 if output_path is None: self.output_path = self.path + 'output/' + self.dataset + time.strftime("/%Y-%m-%d/") else: self.output_path = output_path + 'output/' + self.dataset + time.strftime("/%Y-%m-%d/") self.dataset_path = self.path + 'datasets/' + self.dataset + '/' self.planck_path = planck_path self.milca_path = milca_path self.test_regions = [[0, 360, 90, 70], [0, 120, 70, 40], [120, 240, 70, 40], [240, 360, 70, 40], [0, 120, 40, 18], [120, 240, 40, 18], [240, 360, 40, 18], [0, 120, -18, -40], [120, 240, -18, -40], [240, 360, -18, -40], [0, 120, -40, -70], [120, 240, -40, -70], [240, 360, -40, -70], [0, 360, -70, -90]] self.val_regions = [[0, 180, -20, -40], [0, 180, -20, -40], [0, 180, -20, -40], [0, 180, -20, -40], [0, 360, -40, -60], [0, 360, -40, -60], [0, 360, -40, -60], [0, 360, 60, 40], [0, 360, 60, 40], [0, 360, 60, 40], [0, 180, 40, 20], [0, 180, 40, 20], [0, 180, 40, 20], [0, 180, 40, 20]] def plot_psz2_clusters(self, healpix_path): """Saves plots containing patches for planck frequency maps and y-map. Function is deprecated and will be removed in later versions. Args: healpix_path (str): output path for plots (deprecated). """ maps = self.maps PSZ2 = fits.open(self.planck_path + 'PSZ2v1.fits') glon = PSZ2[1].data['GLON'] glat = PSZ2[1].data['GLAT'] freq = ['100GHz','143GHz','217GHz','353GHz','545GHz','857GHz', 'y-map'] for j in range(len(glon)): fig = plt.figure(figsize=(21,14), tight_layout=False) fig.suptitle(r'$glon=$ {:.2f} $^\circ$, $glat=$ {:.2f} $^\circ$'.format(glon[j], glat[j]), y=0.92, fontsize=20) cutsky = CutSky(maps, npix=self.npix, pixsize=self.pixsize, low_mem=False) coord = to_coord([glon[j], glat[j]]) result = cutsky.cut_fits(coord) for i,nu in enumerate(freq): ax = fig.add_subplot(3,4,1+i) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) HDU = result[i]['fits'] im = ax.imshow(HDU.data, origin="lower") w = WCS(HDU.header) sky = w.world_to_pixel_values(glon[j], glat[j]) segmentation = plt.Circle((sky[0], sky[1]), 2.5/1.7, color='white', alpha=0.1) ax.add_patch(segmentation) ax.axvline(sky[0], ymin=0, ymax=(self.npix//2-10)/self.npix, color='white', linestyle='--') ax.axvline(sky[0], ymin=(self.npix//2+10)/self.npix, ymax=1, color='white', linestyle='--') ax.axhline(sky[1], xmin=0, xmax=(self.npix//2-10)/self.npix, color='white', linestyle='--') ax.axhline(sky[1], xmin=(self.npix//2+10)/self.npix, xmax=1, color='white', linestyle='--') # ax.scatter(sky[0], sky[1], color='red') ax.set_title(r'%s'%nu) fig.colorbar(im, cax=cax, orientation='vertical') plt.savefig(healpix_path + 'PSZ2/PSZ2_skycut_%s.png'%j, bbox_inches='tight', transparent=False) plt.show() plt.close() def create_catalogs(self, plot=False): """Creates the following catalogs using 'PSZ2v1.fits', 'MCXC-Xray-clusters.fits', and 'redmapper_dr8_public_v6.3_catalog.fits' (see <NAME> 2018 for more details): planck_z (pd.DataFrame): dataframe with the following columns for PSZ2 clusters with known redshift: 'RA', 'DEC', 'GLON', 'GLAT', 'M500', 'R500', 'Y5R500', 'REDMAPPER', 'MCXC', 'Z' planck_no_z (pd.DataFrame): dataframe with the following columns for PSZ2 clusters with unknown redshift: 'RA', 'DEC', 'GLON', 'GLAT', 'M500', 'R500', 'Y5R500', 'REDMAPPER', 'MCXC' MCXC_no_planck (pd.DataFrame): dataframe with the following columns for MCXC clusters: 'RA', 'DEC', 'R500', 'M500', 'Z' RM50_no_planck (pd.DataFrame): dataframe with the following columns for RedMaPPer clusters with lambda>50: 'RA', 'DEC', 'LAMBDA', 'Z' RM30_no_planck (pd.DataFrame): dataframe with the following columns for RedMaPPer clusters with lambda>30: 'RA', 'DEC', 'LAMBDA', 'Z' Catalogs are saved in output_path + /catalogs/. Input catalogs are in planck_path. Args: plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ PSZ2 = fits.open(self.planck_path + 'PSZ2v1.fits') df_psz2 = pd.DataFrame(data={'RA': PSZ2[1].data['RA'].tolist(), 'DEC': PSZ2[1].data['DEC'].tolist(), 'GLON': PSZ2[1].data['GLON'].tolist(), 'GLAT':PSZ2[1].data['GLAT'].tolist(), 'M500': PSZ2[1].data['MSZ'].tolist(), 'R500': PSZ2[1].data['Y5R500'].tolist(), 'REDMAPPER': PSZ2[1].data['REDMAPPER'].tolist(), 'MCXC': PSZ2[1].data['MCXC'].tolist(), 'Z': PSZ2[1].data['REDSHIFT'].tolist()}) df_psz2 = df_psz2.replace([-1, -10, -99], np.nan) planck_no_z = df_psz2.query('Z.isnull()', engine='python') planck_z = df_psz2.query('Z.notnull()', engine='python') # planck_no_z = planck_no_z[['RA', 'DEC']].copy() # planck_z = planck_z[['RA', 'DEC']].copy() planck_no_z.to_csv(self.path + 'catalogs/planck_no-z' + '.csv', index=False) planck_z.to_csv(self.path + 'catalogs/planck_z' + '.csv', index=False) MCXC = fits.open(self.planck_path + 'MCXC-Xray-clusters.fits') MCXC_skycoord = SkyCoord(ra=MCXC[1].data['RA'].tolist(), dec=MCXC[1].data['DEC'].tolist(), unit=u.degree) MCXC_GLON = list(MCXC_skycoord.galactic.l.degree) MCXC_GLAT = list(MCXC_skycoord.galactic.b.degree) df_MCXC = pd.DataFrame(data={'RA': MCXC[1].data['RA'].tolist(), 'DEC': MCXC[1].data['DEC'].tolist(), 'R500': MCXC[1].data['RADIUS_500'].tolist(), 'M500': MCXC[1].data['MASS_500'].tolist(), 'GLON': MCXC_GLON, 'GLAT': MCXC_GLAT, 'Z': MCXC[1].data['REDSHIFT'].tolist()}) REDMAPPER = fits.open(self.planck_path + 'redmapper_dr8_public_v6.3_catalog.fits') REDMAPPER_skycoord = SkyCoord(ra=REDMAPPER[1].data['RA'].tolist(), dec=REDMAPPER[1].data['DEC'].tolist(), unit=u.degree) REDMAPPER_GLON = list(REDMAPPER_skycoord.galactic.l.degree) REDMAPPER_GLAT = list(REDMAPPER_skycoord.galactic.b.degree) df_REDMAPPER = pd.DataFrame(data={'RA': REDMAPPER[1].data['RA'].tolist(), 'DEC': REDMAPPER[1].data['DEC'].tolist(), 'LAMBDA': REDMAPPER[1].data['LAMBDA'].tolist(), 'GLON': REDMAPPER_GLON, 'GLAT': REDMAPPER_GLAT, 'Z': REDMAPPER[1].data['Z_SPEC'].tolist()}) df_REDMAPPER_30 = df_REDMAPPER.query("LAMBDA > 30") df_REDMAPPER_50 = df_REDMAPPER.query("LAMBDA > 50") ACT = fits.open(self.planck_path + 'sptecs_catalog_oct919_forSZDB.fits') SPT = fits.open(self.planck_path + 'DR5_cluster-catalog_v1.1_forSZDB.fits') df_act = pd.DataFrame(data={'RA': list(ACT[1].data['RA']), 'DEC': list(ACT[1].data['DEC']), 'GLON': list(ACT[1].data['GLON']), 'GLAT': list(ACT[1].data['GLAT'])}) df_spt = pd.DataFrame(data={'RA': list(SPT[1].data['RA']), 'DEC': list(SPT[1].data['DEC']), 'GLON': list(SPT[1].data['GLON']), 'GLAT': list(SPT[1].data['GLAT'])}) self.remove_duplicates_on_radec(df_MCXC, df_psz2, output_name='MCXC_no_planck', plot=plot) self.remove_duplicates_on_radec(df_REDMAPPER_30, df_psz2, output_name='RM30_no_planck', plot=plot) self.remove_duplicates_on_radec(df_REDMAPPER_50, df_psz2, output_name='RM50_no_planck', plot=plot) self.remove_duplicates_on_radec(df_act, df_psz2, output_name='ACT_no_planck', plot=plot) self.remove_duplicates_on_radec(df_spt, df_psz2, output_name='SPT_no_planck', plot=plot) PSZ2.close() MCXC.close() MCXC.close() REDMAPPER.close() ACT.close() SPT.close() def create_fake_source_catalog(self): PGCC = fits.open(self.planck_path + 'HFI_PCCS_GCC_R2.02.fits') df_pgcc = pd.DataFrame(data={'RA': list(PGCC[1].data['RA']), 'DEC': list(PGCC[1].data['DEC']), 'GLON': list(PGCC[1].data['GLON']), 'GLAT': list(PGCC[1].data['GLAT'])}) PGCC.close() df_pgcc.to_csv(self.path + 'catalogs/' + 'PGCC' + '.csv', index=False) df = pd.DataFrame(columns=['RA','DEC','GLON','GLAT']) bands = ['100GHz', '143GHz', '217GHz', '353GHz', '545GHz', '857GHz'] cs_100 = fits.open(self.planck_path + 'COM_PCCS_100_R2.01.fits') cs_143 = fits.open(self.planck_path + 'COM_PCCS_143_R2.01.fits') cs_217 = fits.open(self.planck_path + 'COM_PCCS_217_R2.01.fits') cs_353 = fits.open(self.planck_path + 'COM_PCCS_353_R2.01.fits') cs_545 = fits.open(self.planck_path + 'COM_PCCS_545_R2.01.fits') cs_857 = fits.open(self.planck_path + 'COM_PCCS_857_R2.01.fits') df_cs_100 = pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}) df_cs_100.to_csv(self.path + 'catalogs/' + 'cs_100' + '.csv', index=False) df_cs_143 = pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}) df_cs_143.to_csv(self.path + 'catalogs/' + 'cs_143' + '.csv', index=False) df_cs_217 = pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}) df_cs_217.to_csv(self.path + 'catalogs/' + 'cs_217' + '.csv', index=False) df_cs_353 = pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}) df_cs_353.to_csv(self.path + 'catalogs/' + 'cs_353' + '.csv', index=False) df_cs_545 = pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}) df_cs_545.to_csv(self.path + 'catalogs/' + 'cs_545' + '.csv', index=False) df_cs_857 = pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}) df_cs_857.to_csv(self.path + 'catalogs/' + 'cs_857' + '.csv', index=False) freq = 0 if '100GHz' in bands: freq += 2 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}))) if '143GHz' in bands: freq += 4 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}))) if '217GHz' in bands: freq += 8 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}))) if '353GHz' in bands: freq += 16 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}))) if '545GHz' in bands: freq += 32 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}))) if '857GHz' in bands: freq += 64 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}))) df = pd.concat((df_pgcc, df)) df = self.remove_duplicates_on_radec(df, with_itself=True, tol=2) df.to_csv(self.path + 'catalogs/' + 'False_SZ_catalog_f%s'%freq + '.csv', index=False) df = pd.DataFrame(columns=['RA','DEC','GLON','GLAT']) for L in range(1, len(bands)): for subset in tqdm(itertools.combinations(bands, L)): freq = 0 if '100GHz' in subset: freq += 2 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}))) if '143GHz' in subset: freq += 4 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}))) if '217GHz' in subset: freq += 8 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}))) if '353GHz' in subset: freq += 16 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}))) if '545GHz' in subset: freq += 32 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}))) if '857GHz' in subset: freq += 64 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}))) df = pd.concat((df_pgcc, df)) df = self.remove_duplicates_on_radec(df, with_itself=True, tol=2) df.to_csv(self.path + 'catalogs/' + 'False_SZ_catalog_f%s'%freq + '.csv', index=False) cs_100.close() cs_143.close() cs_217.close() cs_353.close() cs_545.close() cs_857.close() def remove_duplicates_on_radec(self, df_main, df_with_dup=None, output_name=None, with_itself=False, tol=5, plot=False): """"Takes two different dataframes with columns 'RA' & 'DEC' and performs a spatial coordinate match with a tol=5 arcmin tolerance. Saves a .csv file containing df_main without objects in common from df_with_dup. Args: df_main (pd.DataFrame): main dataframe. df_with_dup (pd.DataFrame): dataframe that contains objects from df_main. Defaults to None. output_name (str): name that will be used in the saved/plot file name. If None, no file will be saved. Defaults to None. with_itself (bool, optional): If True, the spatial coordinates match will be performed with df_main. Defaults to False. tol (int, optional): tolerance for spatial coordinates match in arcmin. Defaults to 5. plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ if with_itself == True: scatalog_sub = SkyCoord(ra=df_main['RA'].values, dec=df_main['DEC'].values, unit='deg') idx, d2d, _ = match_coordinates_sky(scatalog_sub, scatalog_sub, nthneighbor=2) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d = pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d}) df_main['ismatched'], df_main['ID'] = ismatched, idx df_main.query("ismatched == False", inplace=True) df_main.drop(columns=['ismatched', 'ID'], inplace=True) df_main = df_main.replace([-1, -10, -99], np.nan) if output_name is not None: df_main.to_csv(self.path + 'catalogs/' + output_name + '.csv', index=False) elif with_itself == False: assert df_with_dup is not None ID = np.arange(0, len(df_with_dup)) df_with_dup = df_with_dup[['RA', 'DEC']].copy() df_with_dup.insert(loc=0, value=ID, column='ID') scatalog_sub = SkyCoord(ra=df_main['RA'].values, dec=df_main['DEC'].values, unit='deg') pcatalog_sub = SkyCoord(ra=df_with_dup['RA'].values, dec=df_with_dup['DEC'].values, unit='deg') idx, d2d, _ = match_coordinates_sky(scatalog_sub, pcatalog_sub, nthneighbor=1) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d = pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d}) df_main['ismatched'], df_main['ID'] = ismatched, idx df_with_dup.drop(columns=['RA', 'DEC'], inplace=True) df_wo_dup = pd.merge(df_main, df_with_dup, indicator=True, on='ID', how='outer').query('_merge=="both"').drop('_merge', axis=1) df_wo_dup.query("ismatched == False", inplace=True) df_wo_dup.drop(columns=['ismatched', 'ID'], inplace=True) df_wo_dup = df_wo_dup.replace([-1, -10, -99], np.nan) if output_name is not None: df_wo_dup.to_csv(self.path + 'catalogs/' + output_name + '.csv', index=False) df_main = df_wo_dup.copy() if plot == True and output_name is not None: fig = plt.figure(figsize=(8,8), tight_layout=False) ax = fig.add_subplot(111) ax.set_facecolor('white') ax.grid(True, color='grey', lw=0.5) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.set_xlabel(r'$\mathrm{angular\;distance\;\left(arcmin\right)}$', fontsize=20) ax.set_ylabel(output_name, fontsize=20) ax.hist(np.array(df_d2d['d2d'].values)*60, bins = 400) ax.axvline(tol, color='k', linestyle='--') ax.set_xlim(0, 2*tol) plt.savefig(self.output_path + 'figures/' + 'd2d_' + output_name + '.png', bbox_inches='tight', transparent=False) plt.show() plt.close() return df_main def remove_duplicates_on_lonlat(self, df_main, df_with_dup=None, output_name=None, with_itself=False, tol=2, plot=False): """"Takes two different dataframes with columns 'GLON' & 'GLAT' and performs a spatial coordinate match with a tol=2 arcmin tolerance. Saves a .csv file containing df_main without objects in common from df_with_dup. Args: df_main (pd.DataFrame): main dataframe. output_name (str): name that will be used in the saved/plot file name. If None, no file will be saved. Defaults to None. df_with_dup (pd.DataFrame): dataframe that contains objects from df_main. Defaults to None. with_itself (bool, optional): If True, the spatial coordinates match will be performed with df_main. Defaults to False. tol (int, optional): tolerance for spatial coordinates match in arcmin. Defaults to 2. plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ if with_itself == True: scatalog_sub = SkyCoord(df_main['GLON'].values, df_main['GLAT'].values, unit='deg', frame='galactic') idx, d2d, _ = match_coordinates_sky(scatalog_sub, scatalog_sub, nthneighbor=2) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d =
pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import os import datetime import time import random import pandas as pd import numpy as np import re import torch from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler from tqdm import tqdm from transformers import ( AdamW, GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, get_linear_schedule_with_warmup ) class WebNLGNoSeq2Seq(Dataset): def __init__(self, tokenizer, max_source_length, max_target_length, type_path): super().__init__() self.tokenizer = tokenizer self.max_source_length = max_source_length self.max_target_length = max_target_length self.input_ids = [] self.attn_masks = [] self._build(type_path) def __len__(self): return len(self.input_ids) def __getitem__(self, index): return self.input_ids[index], self.attn_masks[index] def _build(self, type_path): if type_path == 'train': df = pd.read_csv('Datasets/webnlg_train.csv') elif type_path == 'eval': df = pd.read_csv('Datasets/webnlg_dev.csv') else: df = pd.read_csv('Datasets/webnlg_test.csv') # n = 1 # df = df.head(int(len(df)*(n/100))) for index, row in df.iterrows(): line = row['input_text'] target = row['target_text'] encodings = self.tokenizer('<|startoftext|>'+ line + ' = ' + target + '<|endoftext|>', truncation=True, max_length=self.max_source_length, padding="max_length") self.input_ids.append(torch.tensor(encodings['input_ids'])) self.attn_masks.append(torch.tensor(encodings['attention_mask'])) class DARTNoSeq2Seq(Dataset): def __init__(self, tokenizer, max_source_length, max_target_length, type_path): super().__init__() self.tokenizer = tokenizer self.max_source_length = max_source_length self.max_target_length = max_target_length self.input_ids = [] self.attn_masks = [] self._build(type_path) def __len__(self): return len(self.input_ids) def __getitem__(self, index): return self.input_ids[index], self.attn_masks[index] def _build(self, type_path): if type_path == 'train': df = pd.read_csv('Datasets/dart_train.csv') elif type_path == 'eval': df = pd.read_csv('Datasets/dart_dev.csv') else: df = pd.read_csv('Datasets/dart_test.csv') # n = 1 # df = df.head(int(len(df)*(n/100))) for index, row in df.iterrows(): line = row['input_text'] target = row['target_text'] encodings = self.tokenizer('<|startoftext|>'+ line + ' = ' + target + '<|endoftext|>', truncation=True, max_length=self.max_source_length, padding="max_length") self.input_ids.append(torch.tensor(encodings['input_ids'])) self.attn_masks.append(torch.tensor(encodings['attention_mask'])) class BOTHNoSeq2Seq(Dataset): def __init__(self, tokenizer, max_source_length, max_target_length, type_path): super().__init__() self.tokenizer = tokenizer self.max_source_length = max_source_length self.max_target_length = max_target_length self.input_ids = [] self.attn_masks = [] self._build(type_path) def __len__(self): return len(self.input_ids) def __getitem__(self, index): return self.input_ids[index], self.attn_masks[index] def _build(self, type_path): if type_path == 'train': df1 = pd.read_csv('Datasets/dart_train.csv') df2 = pd.read_csv('Datasets/webnlg_train.csv') elif type_path == 'eval': df1 =
pd.read_csv('Datasets/dart_dev.csv')
pandas.read_csv
#!/usr/bin/env python3 """ Create pandas dataframe from downloaded csv files and categorize sectors """ import csv import pandas as pd import sys import json import pdb def main(): frl = [] for i in range(2, len(sys.argv)-1): df = pd.read_csv(sys.argv[i], encoding = "ISO-8859-1") frl.append(df) #Create SectorID columns to categorize sectors as integers (categorization was done manually) with open('SectorDict.json', 'r') as sd: sector_dict = json.loads(sd.read()) for df in frl: for i in range(len(df)): for k, v in sector_dict.items(): if df.at[i, 'Sector'].lower() in v: df.at[i, 'SectorID'] = int(k) df =
pd.concat(frl, sort=False)
pandas.concat
from redisclustergrid import StrictRedisCluster import pandas as pd host = "10.11.153.125" startup_nodes = [ {"host": host, "port": "7000"}, {"host": host, "port": "7001"}, {"host": host, "port": "7002"}, {"host": host, "port": "7003"}, {"host": host, "port": "7004"}, {"host": host, "port": "7005"}, ] r = StrictRedisCluster(startup_nodes=startup_nodes, decode_responses=True) df =
pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
pandas.DataFrame
# ----------------------------------------------------------- # <NAME> # ----------------------------------------------------------- import streamlit as st import pandas as pd import numpy as np from sodapy import Socrata import pydeck as pdk import plotly.express as px import requests # from IPython.display import Image with open("style.css") as f: st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True) @st.cache(persist=True) def giphy_path(): path = "https://media.giphy.com/media/rS9tqucvXWwuY/giphy.gif" return path path = giphy_path() points_table_data_url = 'https://www.iplt20.com/points-table/2020' html = requests.get(points_table_data_url).content df_list_points_table =
pd.read_html(html)
pandas.read_html
from datetime import datetime from functools import reduce import logging from multiprocessing import cpu_count from multiprocessing import Pool import os from bs4 import BeautifulSoup import urllib import pandas as pd import numpy as np NCORES = cpu_count() logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG) def retrieve_general_data(url_page): """Scraping items from search page. :param url_page: url of webpage to make the scraping. :type url_page: str :return: Dataframe with information of each item :rtype: pandas.DataFrame :Example: >>> from scraping_details import retrieve_general_data >>> url_page = 'https://www.infocasas.com.uy/venta/inmuebles/montevideo/pagina3' >>> retrieve_general_data(url_page) """ logging.debug('%s', url_page) url_base = '/'.join(url_page.split('/')[:3]) try: page = urllib.request.urlopen(url_page) except urllib.error.HTTPError as e: print('HTTPError: {}'.format(e.code)) return pd.DataFrame([]) except urllib.error.URLError as e: print('URLError: {}'.format(e.reason)) return pd.DataFrame([]) soup = BeautifulSoup(page, 'html.parser') next_page = (soup.find('div', attrs={'id': 'paginado'}) .find('a', attrs={'class': 'next'})) if next_page and (url_page < next_page.attrs['href']): result = pd.DataFrame({}) else: table = soup.find_all('div', attrs={'class': 'propiedades-slider'}) neighborhood = [ [k.text for k in p.find_all('p')] for t in table for p in t.find_all('div') if 'singleLineDots' in p['class'] ] price = [p.text.split()[-1] for t in table for p in t.find_all('div') if 'precio' in p['class']] desc = [[k.text for k in p.find_all('p')] for t in table for p in t.find_all('div') if 'inDescription' in p['class']] desc = [k[0] for k in desc] details = [[d.find_all('span')[0].text for d in p.find_all('div')] for t in table for p in t.find_all('div') if 'contentIcons' in p['class']] details = pd.DataFrame(details, columns=['rooms', 'bathrooms', 'area_m2']) data_id = [k.get('data-id', '') for k in table] data_idproject = [k.get('data-idproyecto', '') for k in table] link = [url_base + k.find('a')['href'] for k in table] proyecto_label = [ k.find(class_='proyectoLabel').get_text() if k.find( class_='proyectoLabel') else None for k in table] df = pd.DataFrame(neighborhood, columns=['neighborhood', 'type']) df['price'] = price df['desc'] = desc df['url'] = link df['id'] = data_id df['idproject'] = data_idproject df['project_label'] = proyecto_label df['page'] = url_page result = pd.concat([details, df], axis=1) return result def retrieve_property_details(url_page): """Scraping details of a item from its web page. :param url_page: url of webpage to make the scraping. :type url_page: str :return: Dataframe with information of each item :rtype: pandas.DataFrame :Example: >>> from scraping_details import retrieve_property_details >>> url_page = 'https://www.infocasas.com.uy/venta-edificio-o-local-jacinto-vera-ideal-colegios-o-empresa-1554m/185865494?v' >>> retrieve_property_details(url_page) """ logging.debug('%s', url_page) try: page = urllib.request.urlopen(url_page) except urllib.error.HTTPError as e: print('HTTPError: {}'.format(e.code)) return pd.Series({'uri': url_page}) except urllib.error.URLError as e: print('URLError: {}'.format(e.reason)) return pd.Series({'uri': url_page}) soup = BeautifulSoup(page, 'html.parser') ficha_tecnica = soup.find_all(class_='ficha-tecnica') amenities = soup.find_all(id='amenities') description = soup.find(id='descripcion') agency = soup.find('p', class_='titulo-inmobiliaria') price = soup.find('p', class_='precio-final') title = soup.find('h1', class_='likeh2 titulo one-line-txt') kind = soup.find('p', class_='venta') # visitation = soup.find_all(class_='allContentVisitation') details = {item.find('p').get_text()[:-1].replace(' ', '_'): item.find('div').get_text() for item in ficha_tecnica[0].find_all(class_='lista')} if ficha_tecnica else {} details['extra'] = ','.join( [key.find('p').get_text() for key in amenities[0].find_all(class_='lista active')]) if amenities else '' details['descripcion'] = '. '.join([p.get_text() for p in description.find_all('p')]) if description else '' details['url'] = url_page details['inmobiliaria'] = agency.get_text() if agency else '' details['precio'] = price.get_text() if price else '' details['titulo_publicacion'] = title.get_text() if title else '' details['tipo_propiedad'] = kind.get_text() if kind else '' return pd.Series(details) def pool_property_details(urls, outputfile): with Pool(NCORES) as p: result = [p.apply_async(retrieve_property_details, (url,)) for url in urls] result = [k.get() for k in result] df_result = reduce(lambda x, y: pd.concat([x, y], axis=1, sort=True), result).transpose().reset_index(drop=True) df_result.to_csv(outputfile, index=False) def pool_general_data(urls, outputfile): with Pool(NCORES) as p: result = [p.apply_async(retrieve_general_data, (url,)) for url in urls] result = [k.get() for k in result] df_result = reduce(lambda x, y: pd.concat([x, y], axis=0, sort=True), result).reset_index(drop=True) if not df_result.empty: df_result.to_csv(outputfile, index=False) is_df_valid = 1 else: is_df_valid = 1 return is_df_valid def generate_raw_dataset(url_base='https://www.infocasas.com.uy', search_path='/venta/inmuebles/montevideo/', output_file='raw_home_for_sale_dataset', ): basepath = os.path.dirname(os.path.realpath(__file__)) output_path = os.path.join( os.sep.join(basepath.split(os.sep)[:-1]), 'data/raw/') suffix = datetime.today().strftime('%Y-%m-%d') output_file = '{}_{}'.format(output_file, suffix) tmp_path = os.path.join(output_path, 'details_rent/') output_file_tmp = tmp_path + output_file + '_{idx}.csv' if not os.path.exists(tmp_path): os.mkdir(tmp_path) is_valid_range = 1 idx = 0 while is_valid_range: subset = np.arange(idx * 10, (idx+1) * 10) # for idx, subset in enumerate(np.array_split(np.arange(955), 100)): output_file = output_file_tmp.format(name=output_file_tmp, idx=idx) web_page = url_base + search_path + 'pagina{}' urls = [web_page.format(k) for k in subset] is_valid_range = pool_general_data(urls, output_file) idx += 1 dfs = [pd.read_csv(tmp_path+key) for key in os.listdir(tmp_path)] output = reduce(lambda x, y:
pd.concat([x, y], sort=True)
pandas.concat