prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import itertools import logging import math from copy import deepcopy import numpy as np import pandas as pd from scipy.ndimage.filters import uniform_filter1d import basty.utils.misc as misc np.seterr(all="ignore") class SpatioTemporal: def __init__(self, fps, stft_cfg={}): self.stft_cfg = deepcopy(stft_cfg) self.logger = logging.getLogger("main") assert fps > 0 self.get_delta = lambda x, scale: self.calc_delta(x, scale, fps) self.get_moving_mean = lambda x, winsize: self.calc_moving_mean(x, winsize, fps) self.get_moving_std = lambda x, winsize: self.calc_moving_std(x, winsize, fps) delta_scales_ = [100, 300, 500] window_sizes_ = [300, 500] if "delta_scales" not in stft_cfg.keys(): self.logger.info( "Scale valuess can not be found in configuration for delta features." + f"Default values are {str(delta_scales_)[1:-1]}." ) if "window_sizes" not in stft_cfg.keys(): self.logger.info( "Window sizes can not be found in configuration for window features." + f"Default values are {str(window_sizes_)[1:-1]}." ) self.stft_cfg["delta_scales"] = stft_cfg.get("delta_scales", delta_scales_) self.stft_cfg["window_sizes"] = stft_cfg.get("window_sizes", window_sizes_) self.stft_set = ["pose", "distance", "angle"] for ft_set in self.stft_set: ft_set_dt = ft_set + "_delta" self.stft_cfg[ft_set] = stft_cfg.get(ft_set, []) self.stft_cfg[ft_set_dt] = stft_cfg.get(ft_set_dt, []) self.angle_between = self.angle_between_atan @staticmethod def angle_between_arccos(v1, v2): """ Returns the abs(angle) in radians between vectors 'v1' and 'v2'. angle_between((1, 0, 0), (0, 1, 0)) --> 1.5707963267948966 angle_between((1, 0, 0), (1, 0, 0)) --> 0.0 angle_between((1, 0, 0), (-1, 0, 0)) --> 3.141592653589793 """ assert isinstance(v1, np.ndarray) and isinstance(v2, np.ndarray) v1_u = v1 / np.linalg.norm(v1) v2_u = v2 / np.linalg.norm(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) @staticmethod def angle_between_atan(v1, v2): """ Returns the abs(angle) in radians between vectors 'v1' and 'v2'. """ assert isinstance(v1, np.ndarray) and isinstance(v2, np.ndarray) angle = np.math.atan2(np.linalg.det([v1, v2]), np.dot(v1, v2)) return np.abs(angle) def get_group_value(self, stft_group, opt): if opt == "avg": group_value = np.nanmean(stft_group, axis=1) elif opt == "min": group_value = np.nanamin(stft_group, axis=1) elif opt == "max": group_value = np.nanmax(stft_group, axis=1) else: raise ValueError(f"Unkown option {opt} is given for feature group.") return group_value @staticmethod def calc_delta(x, scale, fps): # In terms of millisecond. delta_values = [] scale_frame = math.ceil(fps * (1000 / scale)) y = uniform_filter1d(x, size=scale_frame, axis=0) delta_y = np.abs(np.gradient(y, 1 / fps * 1000, axis=0, edge_order=2)) delta_values.append(delta_y) return delta_values @staticmethod def calc_moving_mean(x, winsize, fps): mean_values = [] w_frame = math.ceil(fps * (winsize / 1000)) mean_values.append(x.rolling(w_frame, min_periods=1, center=True).mean()) return mean_values @staticmethod def calc_moving_std(x, winsize, fps): std_values = [] w_frame = math.ceil(fps * (winsize / 1000)) std_values.append(x.rolling(w_frame, min_periods=1, center=True).std()) return std_values def extract(self, ft_set, df_pose, ft_cfg_set): extraction_functions = { "pose": self._extract_pose, "angle": self._extract_angle, "distance": self._extract_distance, } val = extraction_functions[ft_set](df_pose, ft_cfg_set) return val def get_column_names(self, ft_set): stft_cfg = self.stft_cfg name_col = [] def get_stft_name(defn): if isinstance(defn, dict): name = ( list(defn.keys())[0] + "(" + ",".join(["-".join(item) for item in list(defn.values())[0]]) + ")" ) elif isinstance(defn, list): name = "-".join(defn) else: raise ValueError( f"Given feature definition {defn} has incorrect formatting." ) return name if not stft_cfg.get(ft_set, False): raise ValueError(f"Unkown value {ft_set} is given for feature set.") if "pose" in ft_set: ft_names = list( itertools.chain.from_iterable( ([item + "_x"], [item + "_y"]) for item in stft_cfg[ft_set] ) ) else: ft_names = stft_cfg[ft_set] if "delta" not in ft_set: name_col = [ft_set + "." + get_stft_name(item) for item in ft_names] else: scales = stft_cfg["delta_scales"] name_col = misc.flatten( [ [ ft_set + "." + get_stft_name(item) + ".s" + str(t) for item in ft_names ] for t in scales ] ) return name_col @staticmethod def _get_coord(df_pose, name, axis): # Axis name x or y. name_c = name + "_" + axis if name_c in df_pose.columns: coord = df_pose[name_c] elif name == "origin": coord = np.zeros(df_pose.shape[0]) else: raise ValueError(f"No coordinate values can be found for {name}.") return coord def _extract_pose(self, df_pose, body_parts): xy_pose_values = np.ndarray((df_pose.shape[0], len(body_parts) * 2)) if not isinstance(body_parts, list): raise ValueError( f"Given argument has type {type(body_parts)}." + "Pose features should be defined by a list of body-parts." ) for i, bp in enumerate(body_parts): if not isinstance(bp, str): raise ValueError( f"Given feature definition contains {bp}, which is not a body-part." ) xy_pose_values[:, i * 2] = self.__class__._get_coord(df_pose, bp, "x") xy_pose_values[:, i * 2 + 1] = self.__class__._get_coord(df_pose, bp, "y") return xy_pose_values def _extract_angle(self, df_pose, triplets): angle_values = np.ndarray((df_pose.shape[0], len(triplets))) def f_angle(x): return self.angle_between(x[:2] - x[2:4], x[4:] - x[2:4]) def angle_along_axis(xy_values, angle_values): for j in range(xy_values.shape[0]): v1 = xy_values[j, :2] - xy_values[j, 2:4] v2 = xy_values[j, 4:] - xy_values[j, 2:4] angle_values[j, i] = self.angle_between(v1, v2) return angle_values for i, triplet in enumerate(triplets): if isinstance(triplet, dict): opt = list(triplet.keys())[0] group = list(triplet.values())[0] if len(group) > 0 and opt in ["avg", "min", "max"]: angle_group = self._extract_angle(df_pose, group) else: raise ValueError(f"Given feature definition {triplet} is unknown.") angle_values[:, i] = self.get_group_value(angle_group, opt) else: xy_values, _ = self._extract_pose(df_pose, triplet) # angle_values[:, i] = np.apply_along_axis(f_angle, 1, xy_values) # This is somehow faster. angle_values[:, i] = angle_along_axis(xy_values, angle_values) return angle_values def _extract_distance(self, df_pose, pairs): distance_values = np.ndarray((df_pose.shape[0], len(pairs))) for i, pair in enumerate(pairs): if isinstance(pair, dict): opt = list(pair.keys())[0] group = list(pair.values())[0] if len(group) > 0 and opt in ["avg", "min", "max"]: distance_group = self._extract_distance(df_pose, group) else: raise ValueError(f"Given feature definition {pair} is unkwon.") distance_values[:, i] = self.get_group_value(distance_group, opt) else: xy_values = self._extract_pose(df_pose, pair) diff_xy = xy_values[:, 2:4] - xy_values[:, :2] distance_values[:, i] = np.sqrt(diff_xy[:, 0] ** 2 + diff_xy[:, 1] ** 2) return distance_values def _extract_moving_stat(self, df_stft, stft_names_dict, stat, winsizes): if stat == "mean": get_moving_stat = self.get_moving_mean elif stat == "std": get_moving_stat = self.get_moving_std else: raise ValueError(f"Unkown value {stat} is given for moving statistics.") name_col = df_stft.columns mv_stat = pd.concat( itertools.chain(*map(lambda w: get_moving_stat(df_stft, w), winsizes)), axis=1, ) df_stat = pd.DataFrame(data=mv_stat) stat_columns = misc.flatten( [ [ stat + "." + stft_names_dict[name] + ".w" + str(w) for name in name_col ] for w in winsizes ] ) name_dict = {i: stat_columns[i] for i in range(len(stat_columns))} df_stat.columns = list(name_dict.keys()) return df_stat, name_dict def extract_snap_stft(self, df_pose): stft_cfg = self.stft_cfg df_snap_list = [] for ft_set in self.stft_set: if stft_cfg.get(ft_set, False): temp_df = pd.DataFrame(self.extract(ft_set, df_pose, stft_cfg[ft_set])) temp_df.columns = self.get_column_names(ft_set) df_snap_list.append(temp_df) if len(df_snap_list) <= 0: raise ValueError( "At least one snap feature must given in the feature configuration." ) df_snap =
pd.concat(df_snap_list, axis=1)
pandas.concat
import numpy as np import pandas as pd from pandas_datareader import data import matplotlib.pyplot as plt def load_data(ticker, start_date, end_date, output_file): """ a data loading function, using the Yahoo Finance API """ try: df =
pd.read_pickle(output_file)
pandas.read_pickle
import requests import zipfile import io import pandas as pd from datetime import datetime, timedelta
pd.set_option('display.width', None)
pandas.set_option
# -*- coding: utf-8 -*- """ Created on Thu Jun 1 12:55:16 2017 @author: rdk10 """ import os import pandas as pd import sitchensis.Functions as f import tkinter as tk from tkinter.filedialog import askopenfilename import pdb ############# Functions below ############################################# def getFileName(): cwd = os.getcwd() root = tk.Tk() root.lift() root.attributes('-topmost',True) filename = askopenfilename(initialdir = cwd ,title = "Select a tree file and directory", filetypes = [("Excel","*.xlsx"),("Excel","*.xlsm")]) #Ask user to pick files root.after_idle(root.attributes,'-topmost',False) root.withdraw() fileName = filename.rsplit('/')[-1] #Excludes path to file filePath = os.path.dirname(filename) return(filePath, fileName) def importExcelTree(fullFileName): """This section assumed one excel file per tree with a tabe for each type of measurements (trunk, segment, or branch)""" #Import data all at once treeData = pd.read_excel(fullFileName, sheet_name = None) #,converters={'name':str,'ref':str, 'referenceType':str}) ####IMPORTANT if version of pandas is <21 then sheet_name is not recognized and needs to be sheetname. better to update pandas #list of dictionary keys keys = [key for key in treeData] #This tests for types of data present and assigns keys if any(['trunk' in t.lower() for t in treeData]): trunkKey = keys[[i for i, key in enumerate(keys) if 'trunk' in key.lower()][0]] if len(treeData[trunkKey])>0: trunkBool = True else:trunkBool = False else:trunkBool = False if any(['seg' in t.lower() for t in treeData]): segKey = keys[[i for i, key in enumerate(keys) if 'seg' in key.lower()][0]] if len(treeData[segKey])>0: segBool = True else:segBool = False else:segBool = False if any(['branch' in t.lower() for t in treeData]): brKey = keys[[i for i, key in enumerate(keys) if 'branch' in key.lower()][0]] if len(treeData[brKey])>0: branchBool = True else:branchBool = False else:branchBool = False #Assign declination to variable if any(['declin' in t.lower() for t in treeData]): if len([i for i, key in enumerate(keys) if 'declin' in key.lower()])>0: declinKey = keys[[i for i, key in enumerate(keys) if 'declin' in key.lower()][0]] declinRefs = pd.read_excel(fullFileName, sheet_name = declinKey ,converters={'name':str}) declinRefs.columns = [x.lower() for x in declinRefs.columns] declination = declinRefs['declination'].iloc[0] #extract number declination = declination.item() # convert to python float from numpy.float64 else: declination = 0.00 #Assign cust refs to dataFrame if len([i for i, key in enumerate(keys) if 'cust' in key.lower()])>0: custKey = keys[[i for i, key in enumerate(keys) if 'cust' in key.lower()][0]] custRefs = pd.read_excel(fullFileName, sheet_name = custKey ,converters={'name':str}) custRefs.columns = [x.lower() for x in custRefs.columns] custRefs['azi'] = custRefs['azi'] + declination custRefs = f.calcCustRefs(custRefs) else: custRefs = [] #Saves the data if it exists and makes changes to columns so they work in the program if trunkBool: trunkDat = pd.read_excel(fullFileName, sheet_name = trunkKey, converters={'name':str,'ref':str})#, 'ref type':str}) trunkDat.columns = [x.lower() for x in trunkDat.columns] trunkDat['name'] = trunkDat['name'].str.upper() trunkDat['name'] = trunkDat['name'].str.replace(" ","") trunkDat['azi'] = trunkDat['azi'] + declination if any(pd.isnull(trunkDat.index)): trunkDat = trunkDat.reset_index(drop = True) if segBool: segs = pd.read_excel(fullFileName, parse_dates = False, sheet_name = segKey, converters={'name':str,'O/E':str,'base ref':str, 'top ref':str,'midsegment ref':str}) segs.columns = [x.lower() for x in segs.columns] segs['name'] = segs['name'].str.replace(" ","") if segs['base azi'].dtype == 'O': print("Make sure there is no text in the 'base azi' column such as 'CALC' \n or there will be problems later") else: segs['base azi'] = segs['base azi'] + declination segs['top azi'] = segs['top azi'] + declination if any(pd.isnull(segs.index)): segs = segs.reset_index(drop = True) if 'base ht' in segs.columns and 'top ht' in segs.columns: segs['base z'] = segs['base ht'] segs['top z'] = segs['top ht'] else: print("Warning: you must have segment columns labeled 'base ht' and 'top ht'") if any(pd.isnull(segs['name'])): print('These is at least one missing name in the segments file, please rectify this.') names = f.splitName(segs['name']) segs['top name'] = names['topNames'] segs['base name'] = names['baseNames'] if branchBool: branches =
pd.read_excel(fullFileName, parse_dates = False , sheet_name = brKey, converters={'name':str,'O/E':str, 'L/D':str,'origin':str,'base ref':str, 'top ref':str,'midsegment ref':str})
pandas.read_excel
import pyqtgraph as pg from .__function__ import Function as _F from scipy import signal import pandas as pd import copy import numpy as np class Function(_F): def calc(self, srcSeries, f_Hz, **kwargs): f_Hz = float(f_Hz) fs = 1.0/srcSeries.attrs["_ts"] order = int(kwargs.get("order",2)) fnorm = f_Hz/(fs/2) b,a = signal.bessel(order,fnorm,'low') newvals = signal.filtfilt(b,a,np.gradient(srcSeries)) newseries =
pd.Series(newvals, index=srcSeries.index)
pandas.Series
import numpy as np import os import pandas as pd import PySimpleGUI as sg import csv class Demonstrativo_cartao: def __init__(self, nome, validade, lista_devedores, lista_compras, valores=None): self.nome = nome self.validade = validade self.lista_devedores = lista_devedores self.lista_compras = lista_compras self.valores = valores def criar_valores(self): valores = [] linha = [] linha.append('A') for i in (range(len(self.lista_compras))): linha.append(0.0) for i in range(len(self.lista_devedores)): valores.append(linha[:]) cont = 0 for i in range(len(self.lista_devedores)): valores[cont][0] = self.lista_devedores[cont] cont += 1 print(cont) return valores def criar_dataframe(nome, vencimento, ano,mes_referencia, lista_devedores, lista_compras): if not os.path.exists(os.getcwd() + '/tabelas/'): os.makedirs(os.getcwd() + '/tabelas/') lista_devedores_final = ['PARCELA ATUAL','TOTAL DE PARCELAS'] for i in lista_devedores: lista_devedores_final.append(i) print(lista_devedores_final) print(lista_compras) tabela = pd.DataFrame(columns=lista_compras, index=lista_devedores_final) tabela.index.name = 'DEVEDORES' for col in tabela.columns: tabela[col].values[:] = 0.0 tabela.to_csv(os.getcwd() + '/tabelas/' + ano + '_' + mes_referencia + '_' + vencimento +'_' + nome + '.csv', sep=',', encoding='utf-8') return True def criar_planilha(filename): # --- populate table with file contents --- # if filename == '': return data = [] header_list = [] if filename is not None: with open(filename, "r") as infile: reader = csv.reader(infile) header_list = next(reader) data = list(reader) return header_list, data def lista_pagadores(valores): pagadores = '' for i in valores: pagadores = pagadores + '-' + i[0] pagadores = pagadores.replace('-PARCELA ATUAL-TOTAL DE PARCELAS-','') return pagadores def atualizar_compra(arquivo, opção, texto): planilha = pd.read_csv(arquivo) if opção == 'Alterar': nomeantigo, nomenovo = texto.split() planilhanova = planilha.rename(columns={nomeantigo: nomenovo}) planilha = pd.DataFrame(planilhanova) elif opção == 'Remover': planilha = pd.DataFrame(planilha) del planilha[texto] elif opção == 'Adicionar': planilha = planilha.assign(novo=0.0) nomecolunanova = 'novo' planilha = planilha.rename(columns={nomecolunanova: texto}) planilha.to_csv(os.getcwd() + '/tabelas/' + 'novo.csv', sep=',', encoding='utf-8', index= False) os.remove(arquivo) os.rename(os.getcwd() + '/tabelas/' + 'novo.csv', arquivo) def atualizar_devedor(arquivo, opção, indice, nomenovo): planilha =
pd.read_csv(arquivo)
pandas.read_csv
import pandas as pd import xlrd import sys from ross.materials import Material class DataNotFoundError(Exception): """ An exception indicating that the data could not be found in the file. """ pass def read_table_file(file, element, sheet_name=0, n=0, sheet_type="Model"): """Instantiate one or more element objects using inputs from an Excel table. Parameters ---------- file: str Path to the file containing the shaft parameters. element: str Specify the type of element to be instantiated: bearing, shaft or disk. sheet_name: int or str, optional Position of the sheet in the file (starting from 0) or its name. If none is passed, it is assumed to be the first sheet in the file. n: int Exclusive for bearing elements, since this parameter is given outside the table file. sheet_type: str Exclusive for shaft elements, as they have a Model table in which more information can be passed, such as the material parameters. Returns ------- A dictionary of parameters. Examples -------- >>> import os >>> file_path = os.path.dirname(os.path.realpath(__file__)) + '/tests/data/shaft_si.xls' >>> read_table_file(file_path, "shaft", sheet_type="Model", sheet_name="Model") # doctest: +ELLIPSIS {'L': [0.03... """ df = pd.read_excel(file, header=None, sheet_name=sheet_name) # Assign specific values to variables parameter_columns = {} optional_parameter_columns = {} header_key_word = '' default_dictionary = {} parameters = {} if element == 'bearing': header_key_word = 'kxx' parameter_columns['kxx'] = ['kxx'] parameter_columns['cxx'] = ['cxx'] optional_parameter_columns['kyy'] = ['kyy'] optional_parameter_columns['kxy'] = ['kxy'] optional_parameter_columns['kyx'] = ['kyx'] optional_parameter_columns['cyy'] = ['cyy'] optional_parameter_columns['cxy'] = ['cxy'] optional_parameter_columns['cyx'] = ['cyx'] optional_parameter_columns['w'] = ['w', 'speed'] default_dictionary['kyy'] = None default_dictionary['kxy'] = 0 default_dictionary['kyx'] = 0 default_dictionary['cyy'] = None default_dictionary['cxy'] = 0 default_dictionary['cyx'] = 0 default_dictionary['w'] = None elif element == 'shaft': if sheet_type == 'Model': header_key_word = 'od_left' else: header_key_word = 'material' parameter_columns['L'] = ['length'] parameter_columns['i_d'] = ['i_d', 'id', 'id_left'] parameter_columns['o_d'] = ['o_d', 'od', 'od_left'] parameter_columns['material'] = ['material', 'matnum'] optional_parameter_columns['n'] = ['n', 'elemnum'] optional_parameter_columns['axial_force'] = ['axial_force', 'axial force', 'axial'] optional_parameter_columns['torque'] = ['torque'] optional_parameter_columns['shear_effects'] = ['shear_effects', 'shear effects'] optional_parameter_columns['rotary_inertia'] = ['rotary_inertia', 'rotary inertia'] optional_parameter_columns['gyroscopic'] = ['gyroscopic'] optional_parameter_columns['shear_method_calc'] = ['shear_method_calc', 'shear method calc'] default_dictionary['n'] = None default_dictionary['axial_force'] = 0 default_dictionary['torque'] = 0 default_dictionary['shear_effects'] = True default_dictionary['rotary_inertia'] = True default_dictionary['gyroscopic'] = True default_dictionary['shear_method_calc'] = 'cowper' elif element == 'disk': header_key_word = 'ip' parameter_columns['n'] = ['unnamed: 0', 'n'] parameter_columns['m'] = ['m', 'mass'] parameter_columns['Id'] = ['it', 'id'] parameter_columns['Ip'] = ['ip'] # Find table header and define if conversion is needed header_index = -1 header_found = False convert_to_metric = False convert_to_rad_per_sec = False for index, row in df.iterrows(): for i in range(0, row.size): if isinstance(row[i], str): if not header_found: if row[i].lower() == header_key_word: header_index = index header_found = True if 'inches' in row[i].lower() or 'lbm' in row[i].lower(): convert_to_metric = True if 'rpm' in row[i].lower(): convert_to_rad_per_sec = True if header_found and convert_to_metric and convert_to_rad_per_sec: break if header_found and convert_to_metric: break if not header_found: raise ValueError("Could not find the header. Make sure the table has a header " "containing the names of the columns. In the case of a " + element + ", " "there should be a column named " + header_key_word + ".") # Get specific data from the file new_materials = {} if element == 'shaft' and sheet_type == 'Model': material_header_index = -1 material_header_found = False material_header_key_word = 'matno' for index, row in df.iterrows(): for i in range(0, row.size): if isinstance(row[i], str): if row[i].lower() == material_header_key_word: material_header_index = index material_header_found = True break if material_header_found: break if not material_header_found: raise ValueError("Could not find the header for the materials. Make sure the table has a header " "with the parameters for the materials that will be used. There should be a column " "named " + material_header_key_word + ".") df_material = pd.read_excel(file, header=material_header_index, sheet_name=sheet_name) material_name = [] material_rho = [] material_e = [] material_g_s = [] for index, row in df_material.iterrows(): if not pd.isna(row['matno']): material_name.append(int(row['matno'])) material_rho.append(row['rhoa']) material_e.append(row['ea']) material_g_s.append(row['ga']) else: break if convert_to_metric: for i in range(0, len(material_name)): material_rho[i] = material_rho[i] * 27679.904 material_e[i] = material_e[i] * 6894.757 material_g_s[i] = material_g_s[i] * 6894.757 for i in range(0, len(material_name)): new_material = Material( name='shaft_mat_' + str(material_name[i]), rho=material_rho[i], E=material_e[i], G_s=material_g_s[i], ) new_materials['shaft_mat_' + str(material_name[i])] = new_material df = pd.read_excel(file, header=header_index, sheet_name=sheet_name) df.columns = df.columns.str.lower() # Find and isolate data rows first_data_row_found = False last_data_row_found = False indexes_to_drop = [] for index, row in df.iterrows(): if not first_data_row_found \ and (isinstance(row[header_key_word], int) or isinstance(row[header_key_word], float)) \ and not
pd.isna(row[header_key_word])
pandas.isna
# -*- coding: utf-8 -*- """ Created on Fri Aug 14 13:52:36 2020 @author: diego """ import os import sqlite3 import numpy as np import pandas as pd import plots as _plots import update_prices import update_companies_info pd.set_option("display.width", 400) pd.set_option("display.max_columns", 10) pd.options.mode.chained_assignment = None update_prices.update_prices() update_companies_info.update_db() cwd = os.getcwd() conn = sqlite3.connect(os.path.join(cwd, "data", "finance.db")) cur = conn.cursor() # %% Functions class Ticker: """ Attributes and Methods to analyse stocks traded in B3 -BOLSA BRASIL BALCÃO """ def __init__(self, ticker, group="consolidated"): """ Creates a Ticker Class Object Args: ticker: string string of the ticker group: string Financial statements group. Can be 'consolidated' or 'individual' """ self.ticker = ticker.upper() df = pd.read_sql( f"""SELECT cnpj, type, sector, subsector, segment, denom_comerc FROM tickers WHERE ticker = '{self.ticker}'""", conn, ) if len(df) == 0: print('unknown ticker') return self.cnpj = df["cnpj"][0] self.type = df["type"][0] self.sector = df["sector"][0] self.subsector = df["subsector"][0] self.segment = df["segment"][0] self.denom_comerc = df["denom_comerc"][0] Ticker.set_group(self, group) on_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'ON'", conn, ) on_ticker = on_ticker[on_ticker["ticker"].str[-1] == "3"] self.on_ticker = on_ticker.values[0][0] try: self.pn_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'PN'", conn, ).values[0][0] except: pass def set_group(self, new_group): """ To change the financial statement group attribute of a object Args: new_group: string can be 'consolidated' or 'individual' """ if new_group in ["individual", "consolidado", "consolidated"]: if new_group == "individual": self.grupo = "Individual" else: self.grupo = "Consolidado" # Infer the frequency of the reports dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) if len(dates) == 0: self.grupo = "Individual" print( f"The group of {self.ticker} was automatically switched to individual due to the lack of consolidated statements." ) dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) try: freq = pd.infer_freq(dates["date"]) self.freq = freq[0] except ValueError: self.freq = "Q" except TypeError: dates["date"] = pd.to_datetime(dates["date"]) number_of_observations = len(dates) period_of_time = ( dates.iloc[-1, 0] - dates.iloc[0, 0] ) / np.timedelta64(1, "Y") if number_of_observations / period_of_time > 1: self.freq = "Q" else: self.freq = "A" if self.freq == "A": print( f""" The {self.grupo} statements of {self.ticker} are only available on an annual basis. Only YTD values will be available in the functions and many functions will not work. Try setting the financial statements to individual: Ticker.set_group(Ticker object, 'individual') """ ) else: print("new_group needs to be 'consolidated' or 'individual'.") def get_begin_period(self, function, start_period): """ Support method for other methods of the Class """ if start_period == "all": begin_period = pd.to_datetime("1900-01-01") return begin_period.date() elif start_period not in ["all", "last"]: try: pd.to_datetime(start_period) except: print( "start_period must be 'last', 'all', or date formated as 'YYYY-MM-DD'." ) return if start_period == "last": if function in ["prices", "total_shares", "market_value"]: last_date = pd.read_sql( f"SELECT date FROM prices WHERE ticker = '{self.ticker}' ORDER BY date DESC LIMIT(1)", conn, ) else: last_date = pd.read_sql( f"SELECT dt_fim_exerc FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc DESC LIMIT(1)", conn, ) begin_period = pd.to_datetime(last_date.values[0][0]) else: begin_period = pd.to_datetime(start_period) return begin_period.date() def create_pivot_table(df): """ Support method for other methods of the Class """ ##### Creates a pivot table and add % change columns ##### # create columns with % change of the values # value_types: ytd, quarter_value, ttm_value first_type = df.columns.get_loc('ds_conta') + 1 value_types = list(df.columns[first_type:]) new_columns = [i + " % change" for i in value_types] df[new_columns] = df[value_types].div( df.groupby("cd_conta")[value_types].shift(1)) # the calculation of %change from ytd is different: if 'ytd' in value_types: shifted_values = df[['dt_fim_exerc', 'cd_conta', 'ytd']] shifted_values = shifted_values.set_index( [(pd.to_datetime(shifted_values['dt_fim_exerc']) + pd.DateOffset(years=1)), shifted_values['cd_conta']]) df = df.set_index([df['dt_fim_exerc'], df['cd_conta']]) df['ytd % change'] = df['ytd'] / shifted_values['ytd'] df[new_columns] = (df[new_columns] - 1) * 100 # reshape df = df.pivot( index=["cd_conta", "ds_conta"], columns=["dt_fim_exerc"], values=value_types + new_columns ) # rename multiIndex column levels df.columns = df.columns.rename("value", level=0) df.columns = df.columns.rename("date", level=1) # sort columns by date df = df.sort_values([("date"), ("value")], axis=1, ascending=False) # So times, the description of the accounts have small differences for the # same account in different periods, as punctuation. The purpose of the df_index # is to keep only one description to each account, avoiding duplicated rows. df_index = df.reset_index().iloc[:, 0:2] df_index.columns = df_index.columns.droplevel(1) df_index = df_index.groupby("cd_conta").first() # This groupby adds the duplicated rows df = df.groupby(level=0, axis=0).sum() # The next two lines add the account description to the dataframe multiIndex df["ds_conta"] = df_index["ds_conta"] df = df.set_index("ds_conta", append=True) # Reorder the multiIndex column levels df = df.reorder_levels(order=[1, 0], axis=1) # Due to the command line 'df = df.sort_values([('dt_fim_exerc'), ('value')], # axis=1, ascending=False)' # the columns are ordered by date descending, and value descending. The pupose # here is to set the order as: date descending and value ascending df_columns = df.columns.to_native_types() new_order = [] for i in range(1, len(df_columns), 2): new_order.append(df_columns[i]) new_order.append(df_columns[i - 1]) new_order = pd.MultiIndex.from_tuples( new_order, names=("date", "value")) df = df[new_order] return df def income_statement(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the income statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="income_statement", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if quarter == False: df = df.drop(["quarter_value"], axis=1) if ytd == False: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def balance_sheet(self, start_period="all", plot=False): """ Creates a dataframe with the balance sheet statement of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="bp", start_period=start_period ) query = f"""SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpa WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' UNION ALL SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpp WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, parse_dates=['dt_fim_exerc']) df = Ticker.create_pivot_table(df) if plot: _plots.bs_plot(df, self.ticker, self.grupo) return df def cash_flow(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the cash flow statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="dfc", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dfc WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if not quarter: df = df.drop(["quarter_value"], axis=1) if not ytd: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def prices(self, start_period="all"): """ Support method for other methods of the Class """ begin_period = Ticker.get_begin_period( self, function="prices", start_period=start_period ) prices = pd.read_sql( f"""SELECT date, preult AS price FROM prices WHERE ticker = '{self.ticker}' AND date >= '{begin_period}' ORDER BY date""", conn, index_col="date", parse_dates=['date'] ) return prices def total_shares(self, start_period="all"): """ Support method for other methods of the Class """ begin_period = Ticker.get_begin_period( self, function="total_shares", start_period=start_period ) query = f"""SELECT date, number_shares AS on_shares FROM prices WHERE ticker = '{self.on_ticker}' AND date >= '{begin_period}' ORDER BY date""" nshares_on = pd.read_sql(query, conn) try: query = f"""SELECT date, number_shares AS pn_shares FROM prices WHERE ticker = '{self.pn_ticker}' AND date >= '{begin_period}' ORDER BY date""" nshares_pn = pd.read_sql(query, conn) shares = nshares_on.merge(nshares_pn, how="left") shares["total_shares"] = shares["on_shares"] + \ shares["pn_shares"].fillna(0) except: shares = nshares_on.rename({"on_shares": "total_shares"}, axis=1) shares.index = shares["date"] shares.index = pd.to_datetime(shares.index) return shares[["total_shares"]] def net_income(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the net income information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="net_income", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, ds_conta, vl_conta AS ytd_net_income FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' AND (ds_conta = 'Resultado Líquido das Operações Continuadas' OR ds_conta = 'Lucro/Prejuízo do Período') ORDER BY dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Líquido das Operações Continuadas" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Lucro/Prejuízo do Período" ] df = df.drop(["ds_conta"], axis=1) df["quarter_net_income"] = df["ytd_net_income"] - \ df["ytd_net_income"].shift(1) df["quarter_net_income"][df["fiscal_quarter"] == 1] = df["ytd_net_income"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_net_income"] = ( df["quarter_net_income"].rolling(window=4, min_periods=4).sum() ) if quarter == False: df = df.drop(["quarter_net_income"], axis=1) if ytd == False: df = df.drop(["ytd_net_income"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' Net Income (R$,000) ') return df def ebit(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the ebit information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="ebit", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, ds_conta, vl_conta AS ytd_ebit FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' AND (ds_conta = 'Resultado Antes do Resultado Financeiro e dos Tributos' OR ds_conta = 'Resultado Operacional') ORDER BY dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Antes do Resultado Financeiro e dos Tributos" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Resultado Operacional" ] df = df.drop(["ds_conta"], axis=1) df["quarter_ebit"] = df["ytd_ebit"] - df["ytd_ebit"].shift(1) df["quarter_ebit"][df["fiscal_quarter"] == 1] = df["ytd_ebit"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_ebit"] = df["quarter_ebit"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_ebit"], axis=1) if ytd == False: df = df.drop(["ytd_ebit"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' EBIT (R$,000) ') return df def depre_amort(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the depreciationa and amortization information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="depre_amort", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, vl_conta AS ytd_d_a FROM dva WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND ds_conta = 'Depreciação, Amortização e Exaustão' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, index_col="date", parse_dates=['date']) df["quarter_d_a"] = df["ytd_d_a"] - df["ytd_d_a"].shift(1) df["quarter_d_a"][df["fiscal_quarter"] == 1] = df["ytd_d_a"][df["fiscal_quarter"] == 1] if ttm == True: df["ttm_d_a"] = df["quarter_d_a"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_d_a"], axis=1) if ytd == False: df = df.drop(["ytd_d_a"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' D&A (R$,000)') return df def ebitda(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the ebitda information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="ebitda", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dre.dt_fim_exerc AS date, dre.fiscal_quarter, dre.ds_conta, dre.vl_conta AS ytd_ebit, dva.vl_conta AS ytd_d_a FROM dre LEFT JOIN dva ON (dre.dt_fim_exerc=dva.dt_fim_exerc AND dre.grupo_dfp=dva.grupo_dfp AND dre.cnpj=dva.cnpj) WHERE dre.cnpj = '{self.cnpj}' AND dre.grupo_dfp = '{self.grupo}' AND dre.dt_fim_exerc >= '{begin_period.date()}' AND (dre.ds_conta = 'Resultado Antes do Resultado Financeiro e dos Tributos' OR dre.ds_conta = 'Resultado Operacional') AND dva.ds_conta = 'Depreciação, Amortização e Exaustão' ORDER BY dre.dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Antes do Resultado Financeiro e dos Tributos" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Resultado Operacional" ] df["ebit"] = df["ytd_ebit"] - df["ytd_ebit"].shift(1) df["ebit"][df["fiscal_quarter"] == 1] = df["ytd_ebit"][ df["fiscal_quarter"] == 1 ] df["d_a"] = df["ytd_d_a"] - df["ytd_d_a"].shift(1) df["d_a"][df["fiscal_quarter"] == 1] = df["ytd_d_a"][df["fiscal_quarter"] == 1] df["quarter_ebitda"] = df["ebit"] - df["d_a"] if ttm == True: df["ttm_ebitda"] = df["quarter_ebitda"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_ebitda"], axis=1) if ytd == True: df["ytd_ebitda"] = df["ytd_ebit"] - df["ytd_d_a"] df = df[df.index >= begin_period +
pd.DateOffset(months=12)
pandas.DateOffset
import pandas as pd import sqlite3 import numpy as np def hampel_filter(df, col, k, threshold=1): df['rolling_median'] = df[col].rolling(k).median() df['rolling_std'] = df[col].rolling(k).std() df['num_sigma'] = abs(df[col]-df['rolling_median'])/df['rolling_std'] df[col] = np.where(df['num_sigma'] > threshold, df['rolling_median'], df[col]) del df['rolling_median'] del df['rolling_std'] del df['num_sigma'] return df con = sqlite3.connect("C:/Users/<NAME>/PycharmProjects/hampt_rd_data (2).sqlite") # Total hourly rainfall from gauge 036 rain_sql_036 = "SELECT * FROM datavalues WHERE SiteID=21 AND VariableID=1" rain_df_036 = pd.read_sql_query(rain_sql_036, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_036.drop(["ValueID", "VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_036.columns = ["MMPS-036"] rain_df_036.sort_index(inplace=True) rain_sum_036 = rain_df_036.resample("H").sum() # Total hourly rainfall from gauge 039 rain_sql_039 = "SELECT * FROM datavalues WHERE SiteID=13 AND VariableID=1" rain_df_039 = pd.read_sql_query(rain_sql_039, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_039.drop(["ValueID", "VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_039.columns = ["MMPS-039"] rain_df_039.sort_index(inplace=True) rain_sum_039 = rain_df_039.resample("H").sum() # Total hourly rainfall from gauge 140 rain_sql_140 = "SELECT * FROM datavalues WHERE SiteID=15 AND VariableID=1" rain_df_140 = pd.read_sql_query(rain_sql_140, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_140.drop(["ValueID", "VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_140.columns = ["MMPS-140"] rain_df_140.sort_index(inplace=True) rain_sum_140 = rain_df_140.resample("H").sum() # Total hourly rainfall from gauge 149 rain_sql_149 = "SELECT * FROM datavalues WHERE SiteID=7 AND VariableID=1" rain_df_149 = pd.read_sql_query(rain_sql_149, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_149.drop(["ValueID", "VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_149.columns = ["MMPS-149"] rain_df_149.sort_index(inplace=True) rain_sum_149 = rain_df_149.resample("H").sum() # Total hourly rainfall from gauge 163 rain_sql_163 = "SELECT * FROM datavalues WHERE SiteID=16 AND VariableID=1" rain_df_163 = pd.read_sql_query(rain_sql_163, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_163.drop(["ValueID", "VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_163.columns = ["MMPS-163"] rain_df_163.sort_index(inplace=True) rain_sum_163 = rain_df_163.resample("H").sum() # Total hourly rainfall from gauge 175 rain_sql_175 = "SELECT * FROM datavalues WHERE SiteID=11 AND VariableID=1" rain_df_175 = pd.read_sql_query(rain_sql_175, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_175.drop(["ValueID", "VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_175.columns = ["MMPS-175"] rain_df_175.sort_index(inplace=True) rain_sum_175 = rain_df_175.resample("H").sum() # Total hourly rainfall from gauge 177 rain_sql_177 = "SELECT * FROM datavalues WHERE SiteID=12 AND VariableID=1" rain_df_177 = pd.read_sql_query(rain_sql_177, con, index_col="Datetime", parse_dates=['Datetime']) rain_df_177.drop(["ValueID","VariableID", "QCID", "SiteID"], axis=1, inplace=True) rain_df_177.columns = ["MMPS-177"] rain_df_177.sort_index(inplace=True) rain_sum_177 = rain_df_177.resample("H").sum() # # hourly tide for Sewell's Point # tide_sql = "SELECT * FROM datavalues WHERE SiteID=17 AND VariableID=5" # tide_df = pd.read_sql_query(tide_sql, con,index_col="Datetime", parse_dates=['Datetime']) # tide_df.drop(["ValueID","VariableID","QCID","SiteID"], axis=1, inplace=True) # tide_df.columns=["Tide"] # tide_df.sort_index(inplace=True) # tide_mean = tide_df.resample("H").mean() # # Well MMPS-... # gw_sql = "SELECT * FROM datavalues WHERE SiteID=9 AND VariableID=4" # gw_df = pd.read_sql_query(gw_sql, con,index_col="Datetime", parse_dates=['Datetime']) # gw_df.drop(["ValueID","VariableID","QCID","SiteID"], axis=1, inplace=True) # gw_df.columns = ["GWL"] # gw_df.sort_index(inplace=True) # gw_hampel = hampel_filter(gw_df,"GWL",720)#Filtering for one day is 720 time steps # gw_mean = gw_hampel.resample("H").mean() # df = pd.concat([gw_mean,tide_mean,rain_sum_039,rain_sum_175]) # df = pd.merge(gw_mean,tide_mean,left_index=True,right_index=True) # df = pd.merge(df, rain_sum_003, left_index=True, right_index=True) df =
pd.merge(rain_sum_036, rain_sum_039, left_index=True, right_index=True)
pandas.merge
import pandas as pd import sqlite3 class Co2: # ind_name -> 산업명 def ind_name(self,ind): con = sqlite3.connect('./sorting.db') df = pd.read_sql_query('select * from sorting',con) df2 = df[['sort','industry']] df3 = df2[df2['industry'] == ind] result = df3['sort'].tolist() return result # graph -> 그래프용 데이터 추출 def graph(self,ind,sido): #df = pd.read_excel('../../data/calc2_result_graph.xlsx',engine='openpyxl', index_col=0); con = sqlite3.connect('./sorting.db') df = pd.read_sql_query('select * from calc2_result_graph',con) df = df.set_index('time') graph_col = ind + sido for i in df: if i == graph_col: df = df[graph_col] df2 = df.transpose() result = df2[['year_sum','tanso','tree']].tolist() return result ######################################################## #---------------------BASE--------------------------------# # 감축량 이하값 기준으로 기본 sort (1순위 감축량 / 2순위 절감액)# ######################################################## def sol1_alt(self,ind,user_co2): # django 돌릴때 경로 con = sqlite3.connect('./sorting.db') # 테스트로 돌릴때 경로 # con = sqlite3.connect('../../sorting.db') df = pd.read_sql_query('select * from top_8_final', con) user_co2 = float(user_co2) # 제조업 if ind == 'manufacture': df_manu = df[df['sort'] == '제조업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_manu['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_manu_except = df_manu.tail(5); df_manu_except2 = df_manu_except['deco2'].tolist(); for i in df_manu_except2: data2.append(i); for i in data2: df3 = df3.append(df_manu[df_manu['deco2']==i]); df3 = df3.head(5) result_data1 = df3['deco2'].tolist(); result_data2 = df3['act'].tolist(); result_data3 = df3['money'].tolist(); result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 건설업 elif ind == 'building': df_bulid = df[df['sort'] == '건설업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_bulid['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_bulid_except = df_bulid.tail(5); df_bulid_except2 = df_bulid_except['deco2'].tolist(); for i in df_bulid_except2: data2.append(i); for i in data2: df3 = df3.append(df_bulid[df_bulid['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 도매 및 소매업 elif ind == 'retail': df_retail = df[df['sort'] == '도매 및 소매업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_retail['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_retail_except = df_retail.tail(5); df_retail_except2 = df_retail_except['deco2'].tolist(); for i in df_retail_except2: data2.append(i); for i in data2: df3 = df3.append(df_retail[df_retail['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 광업 elif ind == 'mining': df_mining = df[df['sort'] == '광업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_mining['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_mining_except = df_mining.tail(5); df_mining_except2 = df_mining_except['deco2'].tolist(); for i in df_mining_except2: data2.append(i); for i in data2: df3 = df3.append(df_mining[df_mining['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 운수업 elif ind == 'transportation': df_transport = df[df['sort'] == '운수업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_transport['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_transport_except = df_transport.tail(5); df_transport_except2 = df_transport_except['deco2'].tolist(); for i in df_transport_except2: data2.append(i); for i in data2: df3 = df3.append(df_transport[df_transport['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 폐기물 및 재생사업 elif ind == 'recycle': df_recycle = df[df['sort'] == '폐기물 및 재생사업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_recycle['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_recycle_except = df_recycle.tail(5); df_recycle_except2 = df_recycle_except['deco2'].tolist(); for i in df_recycle_except2: data2.append(i); for i in data2: df3 = df3.append(df_recycle[df_recycle['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 발전에너지, 수도사업 elif ind == 'energy': df_energy = df[df['sort'] == '발전에너지, 수도사업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_energy['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_energy_except = df_energy.tail(5); df_energy_except2 = df_energy_except['deco2'].tolist(); for i in df_energy_except2: data2.append(i); for i in data2: df3 = df3.append(df_energy[df_energy['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 농림어업 elif ind == 'primary': df_primary = df[df['sort'] == '농림어업'] data = []; data2 = []; df3 = pd.DataFrame() for i in df_primary['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_primary_except = df_primary.tail(5); df_primary_except2 = df_primary_except['deco2'].tolist(); for i in df_primary_except2: data2.append(i); for i in data2: df3 = df3.append(df_primary[df_primary['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; return result ######################################################## # 감축량 이하값 기준으로 sort (에너지 절감량(연료) 기준)# ######################################################## def sol1_alt_fuel(self,ind,user_co2,sort_base): # django 돌릴때 경로 con = sqlite3.connect('./sorting.db') # 테스트로 돌릴때 경로 # con = sqlite3.connect('../../sorting.db') df = pd.read_sql_query('select * from top_8_final', con) for i in range(15,20): df_co2 = df[df['no'] == sort_base[i]].index df = df.drop(df_co2) user_co2 = float(user_co2) # 제조업 if ind == 'manufacture': df_manu = df[df['sort'] == '제조업'] df_manu = df_manu.sort_values(by=['에너지 절감량(연료)'], ascending=[False]) data = []; data2 = []; df3 = pd.DataFrame() for i in df_manu['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_manu_except = df_manu.tail(5); df_manu_except2 = df_manu_except['deco2'].tolist(); for i in df_manu_except2: data2.append(i); for i in data2: df3 = df3.append(df_manu[df_manu['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 건설업 elif ind == 'building': df_bulid = df[df['sort'] == '건설업'] df_bulid = df_bulid.sort_values(by=['에너지 절감량(연료)'], ascending=[False]) data = []; data2 = []; df3 = pd.DataFrame() for i in df_bulid['deco2']: if i < user_co2: data.append(i); try: for i in range(0,5): data2.append(data[i]); except: df_bulid_except = df_bulid.tail(5); df_bulid_except2 = df_bulid_except['deco2'].tolist(); for i in df_bulid_except2: data2.append(i); for i in data2: df3 = df3.append(df_bulid[df_bulid['deco2']==i]) df3 = df3.head(5) result_data1 = df3['deco2'].tolist() result_data2 = df3['act'].tolist() result_data3 = df3['money'].tolist() result_data4 = df3['no'].tolist(); result = result_data1 + result_data2 + result_data3 + result_data4; # 도매 및 소매업 elif ind == 'retail': df_retail = df[df['sort'] == '도매 및 소매업'] df_retail = df_retail.sort_values(by=['에너지 절감량(연료)'], ascending=[False]) data = []; data2 = []; df3 =
pd.DataFrame()
pandas.DataFrame
import pandas as pd stocks =
pd.Series([20.1, 100.0, 66.5], index=['tx', 'tobao', 'apple'])
pandas.Series
# pylint: disable=bad-continuation """ Defines the Targetted Maximum likelihood Estimation (TMLE) model class """ from pprint import pprint import numpy as np import pandas as pd from pandas.api.types import is_float_dtype, is_numeric_dtype from scipy.interpolate import interp1d from scipy.stats import norm from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor from statsmodels.genmod.generalized_linear_model import GLM from causal_curve.core import Core from causal_curve.utils import rand_seed_wrapper class TMLE(Core): """ Constructs a causal dose response curve through a series of TMLE comparisons across a grid of the treatment values. Gradient boosting is used for prediction in Q model and G model. Assumes continuous treatment and outcome variable. WARNING: -In choosing `treatment_grid_bins` be very careful to respect the "positivity" assumption. There must be sufficient data and variability of treatment within each bin the treatment is split into. -This algorithm assumes you've already performed the necessary transformations to categorical covariates (i.e. these variables are already one-hot encoded and one of the categories is excluded for each set of dummy variables). -Please take care to ensure that the "ignorability" assumption is met (i.e. all strong confounders are captured in your covariates and there is no informative censoring), otherwise your results will be biased, sometimes strongly so. Parameters ---------- treatment_grid_bins: list of floats or ints Represents the edges of bins of treatment values that are used to construct a smooth curve Look at the distribution of your treatment variable to determine which family is more appropriate. Be mindful of the "positivity" assumption when determining bins. In other words, make sure there aren't too few data points in each bin. Mean treatment values between the bin edges will be used to generate the CDRC. n_estimators: int, optional (default = 100) Optional argument to set the number of learners to use when sklearn creates TMLE's Q and G models. learning_rate: float, optional (default = 0.1) Optional argument to set the sklearn's learning rate for TMLE's Q and G models. max_depth: int, optional (default = 5) Optional argument to set sklearn's maximum depth when creating TMLE's Q and G models. random_seed: int, optional (default = None) Sets the random seed. verbose: bool, optional (default = False) Determines whether the user will get verbose status updates. Attributes ---------- psi_list: array of shape (len(treatment_grid_bins) - 2, ) The estimated causal difference between treatment bins std_error_ic_list: array of shape (len(treatment_grid_bins) - 2, ) The standard errors for the psi estimates found in `psi_list` Methods ---------- fit: (self, T, X, y) Fits the causal dose-response model calculate_CDRC: (self, ci, CDRC_grid_num) Calculates the CDRC (and confidence interval) from TMLE estimation Examples -------- >>> from causal_curve import TMLE >>> tmle = TMLE(treatment_grid_bins = [0, 0.03, 0.05, 0.25, 0.5, 1.0, 2.0], n_estimators=500, learning_rate = 0.1, max_depth = 5, random_seed=111 ) >>> tmle.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Outcome']) >>> tmle_results = tmle.calculate_CDRC(0.95) References ---------- <NAME> and <NAME>. Targeted maximum likelihood learning. In: The International Journal of Biostatistics, 2(1), 2006. <NAME> and <NAME>. Collaborative double robust penalized targeted maximum likelihood estimation. In: The International Journal of Biostatistics 6(1), 2010. """ def __init__( self, treatment_grid_bins, n_estimators=100, learning_rate=0.1, max_depth=5, random_seed=None, verbose=False, ): self.treatment_grid_bins = treatment_grid_bins self.n_estimators = n_estimators self.learning_rate = learning_rate self.max_depth = max_depth self.random_seed = random_seed self.verbose = verbose # Validate the params self._validate_init_params() rand_seed_wrapper() if self.verbose: print("Using the following params for TMLE model:") pprint(self.get_params(), indent=4) def _validate_init_params(self): """ Checks that the params used when instantiating TMLE model are formatted correctly """ # Checks for treatment_grid_bins if not isinstance(self.treatment_grid_bins, list): raise TypeError( f"treatment_grid_bins parameter must be a list, " f"but found type {type(self.treatment_grid_bins)}" ) for element in self.treatment_grid_bins: if not isinstance(element, (int, float)): raise TypeError( f"'{element}' in `treatment_grid_bins` list is not of type float or int, " f"it is {type(element)}" ) if len(self.treatment_grid_bins) < 2: raise TypeError("treatment_grid_bins list must, at minimum, of length >= 2") # Checks for n_estimators if not isinstance(self.n_estimators, int): raise TypeError( f"n_estimators parameter must be an integer, " f"but found type {type(self.n_estimators)}" ) if (self.n_estimators < 10) or (self.n_estimators > 100000): raise TypeError("n_estimators parameter must be between 10 and 100000") # Checks for learning_rate if not isinstance(self.learning_rate, (int, float)): raise TypeError( f"learning_rate parameter must be an integer or float, " f"but found type {type(self.learning_rate)}" ) if (self.learning_rate <= 0) or (self.learning_rate >= 1000): raise TypeError( "learning_rate parameter must be greater than 0 and less than 1000" ) # Checks for max_depth if not isinstance(self.max_depth, int): raise TypeError( f"max_depth parameter must be an integer, " f"but found type {type(self.max_depth)}" ) if self.max_depth <= 0: raise TypeError("max_depth parameter must be greater than 0") # Checks for random_seed if not isinstance(self.random_seed, (int, type(None))): raise TypeError( f"random_seed parameter must be an int, but found type {type(self.random_seed)}" ) if (isinstance(self.random_seed, int)) and self.random_seed < 0: raise ValueError(f"random_seed parameter must be > 0") # Checks for verbose if not isinstance(self.verbose, bool): raise TypeError( f"verbose parameter must be a boolean type, but found type {type(self.verbose)}" ) def _validate_fit_data(self): """Verifies that T, X, and y are formatted the right way""" # Checks for T column if not is_float_dtype(self.t_data): raise TypeError(f"Treatment data must be of type float") # Make sure all X columns are float or int if isinstance(self.x_data, pd.Series): if not is_numeric_dtype(self.x_data): raise TypeError( f"All covariate (X) columns must be int or float type (i.e. must be numeric)" ) elif isinstance(self.x_data, pd.DataFrame): for column in self.x_data: if not is_numeric_dtype(self.x_data[column]): raise TypeError( """All covariate (X) columns must be int or float type (i.e. must be numeric)""" ) # Checks for Y column if not
is_float_dtype(self.y_data)
pandas.api.types.is_float_dtype
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return DataFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(df, result) # column is mi df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(df, result) # dup column names? df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) tm.assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert com.all_none(*result.columns.names) result.columns.names = df.columns.names tm.assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path) for i in [6, 7]: msg = f"len of {i}, but only 5 lines in file" with pytest.raises(ParserError, match=msg): read_csv(path, header=list(range(i)), index_col=0) # write with cols msg = "cannot specify cols with a MultiIndex" with pytest.raises(TypeError, match=msg): df.to_csv(path, columns=["foo", "bar"]) with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # empty tsframe[:0].to_csv(path) recons = self.read_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_interval_index(self): # GH 28210 df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3)) with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: df.to_csv(path) result = self.read_csv(path, index_col=0) # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) expected = df.copy() expected.index = expected.index.astype(str) tm.assert_frame_equal(result, expected) def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(",")[2] == "999" def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]}) with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path: df.to_csv(path) df2 = self.read_csv(path) tm.assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return [f"{name}{i:03d}" for i in range(5)] df_float = DataFrame( np.random.randn(100, 5), dtype="float64", columns=create_cols("float") ) df_int = DataFrame( np.random.randn(100, 5).astype("int64"), dtype="int64", columns=create_cols("int"), ) df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool")) df_object = DataFrame( "foo", index=df_float.index, columns=create_cols("object") ) df_dt = DataFrame( Timestamp("20010101"), index=df_float.index, columns=create_cols("date") ) # add in some nans df_float.iloc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = {} for n, dtype in [ ("float", np.float64), ("int", np.int64), ("bool", np.bool_), ("object", object), ]: for c in create_cols(n): dtypes[c] = dtype with tm.ensure_clean() as filename: df.to_csv(filename) rs = read_csv( filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date") ) tm.assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame( np.random.randn(1000, 30), columns=list(range(15)) + list(range(15)), dtype="float64", ) with tm.ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns tm.assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype="float64") df_int = DataFrame(np.random.randn(1000, 3)).astype("int64") df_bool = DataFrame(True, index=df_float.index, columns=range(3)) df_object = DataFrame("foo", index=df_float.index, columns=range(3)) df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3)) df = pd.concat( [df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True ) df.columns = [0, 1, 2] * 5 with tm.ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ["0.4", "1.4", "2.4"]: result[i] = to_datetime(result[i]) result.columns = df.columns tm.assert_frame_equal(result, df) # GH3457 N = 10 df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] with tm.ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={"a.1": "a"}) tm.assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({"A": range(100000)}) aa["B"] = aa.A + 1.0 aa["C"] = aa.A + 2.0 aa["D"] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with tm.ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) tm.assert_frame_equal(rs, aa) @pytest.mark.slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with tm.ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) tm.assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO("a,1.0\nb,2.0") df = self.read_csv(f1, header=None) newdf = DataFrame({"t": df[df.columns[0]]}) with
tm.ensure_clean()
pandas._testing.ensure_clean
#!/usr/bin/env python # encoding: utf-8 import os.path import pandas as pd DATA_FILE_DIR = "input/raw/studies_by_council/" OUTPUT = "input/generated/" def read_data(): """Create a summary dataframe based on concatenation of multiple Excel files. Goes through all the xlsx files in the appropriate dir, converts each one to a df and concatenates successively into a super df with all the data :params: none :return: a dataframe formed from multiple dataframes """ new = True for datafile in os.listdir(DATA_FILE_DIR): if datafile.endswith('.xlsx'): # Create the col name by dropping the file extension from the filename, # and then adding the keyword "funder_" new_col = 'funder_' + str(datafile)[:-5] # Need this if loop because the first iternation has to be a straight read rather than a concatenation if new: dataframe = pd.read_excel(DATA_FILE_DIR + str(datafile), sheetname='CaseStudies') dataframe = pd.DataFrame(dataframe['Case Study Id']) dataframe[new_col] = new_col new = False else: temp_df = pd.read_excel(DATA_FILE_DIR + str(datafile), sheetname='CaseStudies') # Knock out everything except the case study temp_df = pd.DataFrame(temp_df['Case Study Id']) temp_df[new_col] = new_col # Use concat to add temp dataframe onto end of the main dataframe dataframe =
pd.concat([dataframe, temp_df])
pandas.concat
import numpy as np import scipy import pandas as pd import astropy.units as u from astropy.coordinates.sky_coordinate import SkyCoord from astropy.units import Quantity from astroquery.mast import Catalogs from astroquery.gaia import Gaia import requests import re from stellar.isoclassify import classify, pipeline import os import sys import warnings warnings.filterwarnings("ignore") stellar_path = os.path.dirname(os.path.abspath( __file__ )) def QueryGaiaAndSurveys(sc,CONESIZE=15*u.arcsec,savefile=None,mission='tess'): #Getting Gaia DR2 RVs: job = Gaia.launch_job_async("SELECT * \ FROM gaiadr2.gaia_source \ WHERE CONTAINS(POINT('ICRS',gaiadr2.gaia_source.ra,gaiadr2.gaia_source.dec),\ CIRCLE('ICRS',"+str(float(sc.ra.deg))+","+str(float(sc.dec.deg))+","+str(CONESIZE.to(u.deg).value)+"))=1;",verbose=False) gaia_res=job.get_results().to_pandas() #"closeness" function combines proximity of source to RA and DEC (as function of CONESIZE) # *AND* brightness (scaled 1 arcsec ~ 9th mag, or 2*sep ~ deltamag=2.3) closeness=(np.hypot(sc.ra.deg-gaia_res.ra,sc.dec.deg-gaia_res.dec)/CONESIZE.to(u.deg).value)*np.exp(0.3*(gaia_res.phot_g_mean_mag-18)) #Getting APASS results: apasshtml="https://www.aavso.org/cgi-bin/apass_dr10_download.pl?ra={0:.4f}&dec={1:.4f}&radius={2:.4f}&output=csv".format(sc.ra.deg,sc.dec.deg,CONESIZE.to(u.deg).value) out=requests.get(apasshtml) if out.status_code==200: #Modifying the output HTML to include a <tr> before the first row of header labels: APASS=pd.read_html(out.text.replace('<table border=1>\n\t\t<td','<table border=1>\n<tr><td'),header=0) if len(APASS)>0: APASS=APASS[0] else: APASS=None else: APASS=None #pd.DataFrame.from_csv("https://www.aavso.org/cgi-bin/apass_dr10_download.pl?ra="+str(SC.ra.deg)+"&dec="+str(SC.dec.deg)+"&radius="+str(CONESIZE/3600)+"&output=csv") alldat=pd.DataFrame() #Looping through Gaia results to find best match for n,row in enumerate(gaia_res.iterrows()): #Name of series becomes 00_gaiaid (for target) and then 01_gaiaid (for subsequent blends) sername=str(list(np.sort(closeness)).index(closeness[n]))+'_'+str(row[1]['source_id']) alldattemp=pd.Series({'mission':mission},name=sername) #print(alldattemp) alldattemp=alldattemp.append(gaia_res.iloc[n]) print("Querying catalogues. "+str(n)+" of "+str(len(gaia_res))) #multiple rows, let's search using the Gaia RA/DECs #newra=row[1]['ra'] #newdec=row[1]['dec'] #print(row[1]['designation'],"<desig, id>",int(row[1]['source_id'])) if APASS is not None: #"closeness algorithm = [dist in arcsec]*exp(0.3*[delta mag]) closeness_apass=3600*np.hypot(row[1]['ra']-APASS['RA (deg)'],row[1]['dec']-APASS['Dec (deg)'])*np.exp(0.3*(row[1]['phot_g_mean_mag']-APASS['Sloan g\' (SG)'])) if np.min(closeness_apass)<2.5: #Takes best APASS source if there is a source: (within 1 arcsec and deltamag<3) or (<2.5arcsec and deltamag=0.0) #Appending APASS info: nrby_apas=APASS.iloc[np.argmin(closeness_apass)] nrby_apas=nrby_apas.rename(index={col:'ap_'+col for col in nrby_apas.index if col not in gaia_res.columns}) alldattemp=alldattemp.append(nrby_apas.drop([col for col in gaia_res.columns if col in nrby_apas.index])) dr=int(row[1]['designation'].decode("utf-8")[7]) gid=row[1]['source_id'] #Now searching the cross-matched cats with the GAIA ID jobs={} jobs['2m'] = Gaia.launch_job_async("SELECT * \ FROM gaiadr"+str(dr)+".gaia_source AS g, gaiadr"+str(dr)+".tmass_best_neighbour AS tbest, gaiadr1.tmass_original_valid AS tmass \ WHERE g.source_id = tbest.source_id AND tbest.tmass_oid = tmass.tmass_oid \ AND g.source_id = "+str(gid), dump_to_file=False,verbose=False) jobs['sd'] = Gaia.launch_job_async("SELECT * \ FROM gaiadr"+str(dr)+".gaia_source AS g, gaiadr"+str(dr)+".sdss"+"_"[:(2-dr)]+"dr9_best_neighbour AS sdbest, gaiadr1.sdssdr9_original_valid AS sdss \ WHERE g.source_id = sdbest.source_id AND sdbest.sdssdr9_oid = sdss.sdssdr9_oid \ AND g.source_id = "+str(gid), dump_to_file=False,verbose=False) jobs['ur'] = Gaia.launch_job_async("SELECT * \ FROM gaiadr"+str(dr)+".gaia_source AS g, gaiadr"+str(dr)+".urat1_best_neighbour AS uratbest, gaiadr1.urat1_original_valid AS urat1 \ WHERE g.source_id = uratbest.source_id AND uratbest.urat1_oid = urat1.urat1_oid \ AND g.source_id = "+str(gid), dump_to_file=False,verbose=False) jobs['wise'] = Gaia.launch_job_async("SELECT * \ FROM gaiadr"+str(dr)+".gaia_source AS g, gaiadr"+str(dr)+".allwise_best_neighbour AS wisest, gaiadr1.allwise_original_valid AS wise \ WHERE g.source_id = wisest.source_id AND wisest.allwise_oid = wise.allwise_oid \ AND g.source_id = "+str(gid), dump_to_file=False,verbose=False) for job in jobs: res=jobs[job].get_results().to_pandas() if res.shape[0]>0: #Making res=res.rename(columns={col:job+'_'+col for col in res.columns if col not in gaia_res.columns}) alldattemp=alldattemp.append(res.iloc[0].drop([col for col in gaia_res.columns if col in res.columns])) alldattemp=alldattemp.drop_duplicates() #print(alldattemp,,job_sd.get_results().to_pandas(), # job_ur.get_results().to_pandas(),job_wise.get_results().to_pandas()) #alldattemp=pd.concat([alldattemp,job_2m.get_results().to_pandas(),job_sd.get_results().to_pandas(), # job_ur.get_results().to_pandas(),job_wise.get_results().to_pandas()], # axis=1) alldat=alldat.append(alldattemp.rename(sername)) alldat['dilution_ap']=np.tile(CONESIZE.to(u.arcsec).value,len(alldat)) alldat['prop_all_flux']=alldat['phot_g_mean_flux'].values/np.nansum(alldat['phot_g_mean_flux'].values) alldat['diluted_by']=1.0-alldat['prop_all_flux'] if type(alldat)==pd.DataFrame and len(alldat)>1: targ=alldat.iloc[np.argmin(closeness)] elif type(alldat)==pd.DataFrame: targ=alldat.iloc[0] elif type(alldat)==pd.Series: targ=alldat if savefile is not None: alldat.iloc[np.argsort(closeness)].to_csv(savefile.replace('.csv','_all_contams.csv')) targ.to_csv(savefile) #print(str(alldat.shape)," dic created with data from ",','.join([cats[i] if len(jobs[i])>0 else "" for i in range(5)])) return targ def GetKICinfo(kic): #Getting Kepler stellar info from end-of-Kepler Q1-Q17 data table: kicdat=pd.read_csv("https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=q1_q17_dr25_stellar&where=kepid=%27"+str(int(kic))+"%27") if len(kicdat.shape)>1: kicdat=kicdat.iloc[0] for row in kicdat.index: newname=row[:] if 'dens' in row: newname=newname.replace('dens','rho_gcm3') elif 'radius' in row: newname=newname.replace('radius','rad') if '_err1' in row: newname=newname.replace('_err1','ep') elif '_err2' in row: newname=newname.replace('_err2','em') kicdat=kicdat.rename(index={row:newname}) try: kicdat[newname]=float(kicdat[newname]) except: continue for row in kicdat.index: #Adding simple average errors: if 'em' in row and row[:-1] not in kicdat.index: kicdat[row[:-1]]=0.5*(abs(kicdat[row])+abs(kicdat[row[:-1]+'p'])) #Adding rho in terms of solar density: kicdat['rho']=kicdat['rho_gcm3']/1.411 kicdat['rhoep']=kicdat['rho_gcm3ep']/1.411 kicdat['rhoem']=kicdat['rho_gcm3em']/1.411 kicdat['rhoe']=0.5*(abs(kicdat['rhoep'])+abs(kicdat['rhoem'])) kicdat['rho_gcm3e']=1.411*kicdat['rhoe'] #kicdat=pd.DataFrame.from_csv("https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=keplerstellar&where=epic_number=%27"+str(int(kic))+"%27") kicdat['mission']='kepler' kicdat['id']=kicdat['kepid'] kicdat['spec']=None kicdat['source']='kic' return kicdat def GetExoFop(icid,mission='tess',file=''): cols={'Telescope':'telescope','Instrument':'instrument','Teff (K)':'teff','Teff (K) Error':'teffe','log(g)':'logg', 'log(g) Error':'logge','Radius (R_Sun)':'rad','Radius (R_Sun) Error':'rade','logR\'HK':'logrhk', 'logR\'HK Error':'logrhke','S-index':'sindex','S-index Error':'sindexe','H-alpha':'haplha','H-alpha Error':'halphae', 'Vsini':'vsini','Vsini Error':'vsinie','Rot Per':'rot_per','Rot Per Error':'rot_pere','Metallicity':'feh', 'Metallicity Error':'fehe','Mass (M_Sun)':'mass','Mass (M_Sun) Error':'masse','Density (g/cm^3)':'rho_gcm3', 'Density (g/cm^3) Error':'rho_gcm3e','Luminosity':'lum','Luminosity Error':'lume','Observation Time (BJD)':'obs_time_bjd', 'RV (m/s)':'rv_ms','RV Error':'rv_mse','Distance (pc)':'dis','Distance (pc) Error':'dise', '# of Contamination sources':'n_contams', 'B':'bmag', 'B Error':'bmage', 'Dec':'dec', 'Ecliptic Lat':'lat_ecl', 'Ecliptic Long':'long_ecl', 'Gaia':'gmag', 'Gaia Error':'gmage', 'Galactic Lat':'lat_gal', 'Galactic Long':'long_gal', 'H':'hmag', 'H Error':'hmage', 'In CTL':'in_ctl', 'J':'jmag', 'J Error':'jmage', 'K':'kmag', 'K Error':'kmage', 'Planet Name(s)':'planet_names', 'Proper Motion Dec (mas/yr)':'pm_dec', 'Proper Motion RA (mas/yr)':'pm_ra', 'RA':'ra', 'Star Name & Aliases':'star_name', 'TESS':'tmag','Kep':'kepmag', 'TESS Error':'tmage', 'TIC Contamination Ratio':'ratio_contams', 'TOI':'toi', 'V':'vmag', 'V Error':'vmage', 'WISE 12 micron':'w3mag', 'WISE 12 micron Error':'w3mage', 'WISE 22 micron':'w4mag', 'WISE 22 micron Error':'w4mage', 'WISE 3.4 micron':'w1mag', 'WISE 3.4 micron Error':'w1mage', 'WISE 4.6 micron':'w2mag', 'WISE 4.6 micron Error':'w2mag', 'n_TOIs':'n_tois','spec':'spec', 'Campaign':'campaign','Object Type':'objtype'} #Strips online file for a given epic/tic if mission.lower() in ['kep','kepler']: kicinfo=GetKICinfo(icid) #Checking if the object is also in the TIC: ticout=Catalogs.query_criteria(catalog="Tic",coordinates=str(kicinfo['ra'])+','+str(kicinfo['dec']), radius=20*u.arcsecond,objType="STAR",columns=['ID','KIC','Tmag','Vmag']).to_pandas() if len(ticout.shape)>1: ticout=ticout.loc[np.argmin(ticout['Tmag'])] icid=ticout['ID'] mission='tess' elif ticout.shape[0]>0: #Not in TIC return kicinfo else: kicinfo = None assert mission.lower() in ['tess','k2'] outdat={} outdat['mission']=mission.lower() #Searching TESS and K2 ExoFop for info (and TIC-8 info): req=requests.get("https://exofop.ipac.caltech.edu/"+mission.lower()+"/download_target.php?id="+str(icid), timeout=120) if req.status_code==200: #Splitting into each 'paragraph' sections=req.text.split('\n\n') for sect in sections: #Processing each section: if sect[:2]=='RA': #This is just general info - saving for line in sect.split('\n'): if mission.lower()=='tess': if line[:28].strip() in cols: outdat[cols[line[:28].strip()]]=line[28:45].split(' ')[0].strip() else: outdat[re.sub('\ |\^|\/|\{|\}|\(|\)|\[|\]', '',line[:28])]=line[28:45].split(' ')[0].strip() elif mission.lower()=='k2': if line[:13].strip() in cols: outdat[cols[line[:13].strip()]]=line[13:].strip() else: outdat[re.sub('\ |\^|\/|\{|\}|\(|\)|\[|\]', '',line[:13])]=line[13:].strip() elif sect[:24]=='TESS Objects of Interest': #Only taking number of TOIs and TOI number: outdat['n_TOIs']=len(sect.split('\n'))-2 outdat['TOI']=sect.split('\n')[2][:15].strip() elif sect[:7]=='STELLAR': #Stellar parameters labrow=sect.split('\n')[1] boolarr=np.array([s==' ' for s in labrow]) splits=[0]+list(2+np.where(boolarr[:-3]*boolarr[1:-2]*~boolarr[2:-1]*~boolarr[3:])[0])+[len(labrow)] labs = [re.sub('\ |\^|\/|\{|\}|\(|\)|\[|\]', '',labrow[splits[i]:splits[i+1]]) for i in range(len(splits)-1)] spec=[] if mission.lower()=='tess': #Going through all sources of Stellar params: for row in sect.split('\n')[2:]: stpars=np.array([row[splits[i]:splits[i+1]].strip() for i in range(len(splits)-1)]) for nl in range(len(labs)): if labs[nl].strip() not in cols: label=re.sub('\ |\/|\{|\}|\(|\)|\[|\]', '', labs[nl]).replace('Error','_err') else: label=cols[labs[nl].strip()] if not label in outdat.keys() and stpars[1]=='' and stpars[nl].strip()!='': #Stellar info just comes from TIC, so saving simply: outdat[label] = stpars[nl] elif stpars[1]!='' and stpars[nl].strip()!='': #Stellar info comes from follow-up, so saving with _INSTRUMENT: spec+=['_'+row[splits[3]:splits[4]].strip()] outdat[labs[nl]+'_'+stpars[1]] = stpars[nl] elif mission.lower()=='k2': for row in sect.split('\n')[1:]: if row[splits[0]:splits[1]].strip() not in cols: label=re.sub('\ |\/|\{|\}|\(|\)|\[|\]', '', row[splits[0]:splits[1]]).replace('Error','_err') else: label=cols[row[splits[0]:splits[1]].strip()] if not label in outdat.keys() and row[splits[3]:splits[4]].strip()=='huber': outdat[label] = row[splits[1]:splits[2]].strip() outdat[label+'_err'] = row[splits[2]:splits[3]].strip() elif label in outdat.keys() and row[splits[3]:splits[4]].strip()!='huber': if row[splits[3]:splits[4]].strip()!='macdougall': spec+=['_'+row[splits[3]:splits[4]].strip()] #Adding extra stellar params with _user (no way to tell the source, e.g. spectra) outdat[label+'_'+row[splits[3]:splits[4]].strip()] = row[splits[1]:splits[2]].strip() outdat[label+'_err'+'_'+row[splits[3]:splits[4]].strip()] = row[splits[2]:splits[3]].strip() outdat['spec']=None if len(spec)==0 else ','.join(list(np.unique(spec))) elif sect[:9]=='MAGNITUDE': labrow=sect.split('\n')[1] boolarr=np.array([s==' ' for s in labrow]) splits=[0]+list(2+np.where(boolarr[:-3]*boolarr[1:-2]*~boolarr[2:-1]*~boolarr[3:])[0])+[len(labrow)] for row in sect.split('\n')[2:]: if row[splits[0]:splits[1]].strip() not in cols: label=re.sub('\ |\/|\{|\}|\(|\)|\[|\]', '', row[splits[0]:splits[1]]).replace('Error','_err') else: label=cols[row[splits[0]:splits[1]].strip()] outdat[label] = row[splits[1]:splits[2]].strip() outdat[label+'_err'] = row[splits[2]:splits[3]].strip() outdat=pd.Series(outdat,name=icid) #Replacing err and err1/2 with em and ep for col in outdat.index: try: outdat[col]=float(outdat[col]) except: pass if col.find('_err1')!=-1: outdat=outdat.rename(series={col:col.replace('_err1','ep')}) elif col.find('_err2')!=-1: outdat=outdat.rename(series={col:col.replace('_err2','em')}) elif col.find('_err')!='1': outdat[col.replace('_err','em')]=outdat[col] outdat[col.replace('_err','ep')]=outdat[col] outdat=outdat.rename(series={col:col.replace('_err','e')}) for col in outdat.index: if 'radius' in col: outdat=outdat.rename(series={col:col.replace('radius','rad')}) if col[-2:]=='em' and col[:-1] not in outdat.index and type(outdat[col])!=str: #average of em and ep -> e outdat[col[:-1]]=0.5*(abs(outdat[col])+abs(outdat[col[:-1]+'p'])) return outdat, kicinfo elif kicinfo is not None: return None, kicinfo else: return None, None def LoadModel(): #Loading isoclassify "mesa" model from file: mist_loc='/'.join(classify.__file__.split('/')[:-3])+'/mesa.h5' import h5py file = h5py.File(mist_loc,'r+', driver='core', backing_store=False) model = {'age':np.array(file['age']),\ 'mass':np.array(file['mass']),\ 'feh':np.array(file['feh']),\ 'teff':np.array(file['teff']),\ 'logg':np.array(file['logg']),\ 'rad':np.array(file['rad']),\ 'lum':np.array(file['rad']),\ 'rho':np.array(file['rho']),\ 'dage':np.array(file['dage']),\ 'dmass':np.array(file['dmass']),\ 'dfeh':np.array(file['dfeh']),\ 'eep':np.array(file['eep']),\ 'bmag':np.array(file['bmag']),\ 'vmag':np.array(file['vmag']),\ 'btmag':np.array(file['btmag']),\ 'vtmag':np.array(file['vtmag']),\ 'gmag':np.array(file['gmag']),\ 'rmag':np.array(file['rmag']),\ 'imag':np.array(file['imag']),\ 'zmag':np.array(file['zmag']),\ 'jmag':np.array(file['jmag']),\ 'hmag':np.array(file['hmag']),\ 'kmag':np.array(file['kmag']),\ 'd51mag':np.array(file['d51mag']),\ 'gamag':np.array(file['gamag']),\ 'fdnu':np.array(file['fdnu']),\ 'avs':np.zeros(len(np.array(file['gamag']))),\ 'dis':np.zeros(len(np.array(file['gamag'])))} model['rho'] = np.log10(model['rho']) model['lum'] = model['rad']**2*(model['teff']/5777.)**4 # next line turns off Dnu scaling relation corrections model['fdnu'][:]=1. model['avs']=np.zeros(len(model['teff'])) model['dis']=np.zeros(len(model['teff'])) ''' # load MIST models homedir=os.path.expanduser('~/') import pickle model=pickle.load(open(mist_loc,'rb'),encoding='latin') # prelims to manipulate some model variables (to be automated soon ...) model['rho']=np.log10(model['rho']) model['fdnu'][:]=1. model['avs']=np.zeros(len(model['teff'])) model['dis']=np.zeros(len(model['teff'])) ''' return model def LoadDust(sc,plx,dust='allsky'): import mwdust av=mwdust.SFD()(sc.galactic.l.deg,sc.galactic.b.deg,1000.0/plx) #sfdmap(sc.ra.deg.to_string(),sc.dec.deg.to_string()) if dust == 'allsky': dustmodel = pipeline.query_dustmodel_coords_allsky(sc.ra.deg,sc.dec.deg) ext = pipeline.extinction('cardelli') if dust == 'green18': dustmodel = pipeline.query_dustmodel_coords(sc.ra.deg,sc.dec.deg) ext = pipeline.extinction('schlafly16') if dust == 'none': dustmodel = 0 ext = pipeline.extinction('cardelli') return dustmodel,ext def dens2(logg,loggerr1,loggerr2,rad,raderr1,raderr2,mass,masserr1,masserr2,nd=6000,returnpost=False): #Returns a density as the weighted average of that from logg and mass dens1 = lambda logg,rad: (np.power(10,logg-2)/(1.33333*np.pi*6.67e-11*rad*695500000))/1410.0 dens2 = lambda mass,rad: ((mass*1.96e30)/(4/3.0*np.pi*(rad*695500000)**3))/1410.0 loggs= np.random.normal(logg,0.5*(loggerr1+loggerr2),nd) rads= np.random.normal(rad,0.5*(raderr1+raderr2),nd) rads[rads<0]=abs(np.random.normal(rad,0.25*(raderr1+raderr2),np.sum(rads<0))) masses= np.random.normal(mass,0.5*(masserr1+masserr2),nd) masses[masses<0]=abs(np.random.normal(mass,0.25*(masserr1+masserr2),np.sum(masses<0))) d1=np.array([dens1(loggs[l],rads[l]) for l in range(nd)]) d2=np.array([dens2(masses[m],rads[m]) for m in range(nd)]) #Combining up/down dists alone for up.down uncertainties. COmbining all dists for median. #Gives almost identical values as a weighted average of resulting medians/errors. #print("logg/rad: "+str(np.median(d1))+"+/-"+str(np.std(d1))+", mass/rad:"+str(np.median(d2))+"+/-"+str(np.std(d2))) post=d1 if np.std(d1)<np.std(d2) else d2 if returnpost: #Returning combined posterier... return post else: dens=np.percentile(post,[16,50,84]) return np.array([dens[1],np.diff(dens)[0],np.diff(dens)[1]]) def QueryNearbyGaia(sc,CONESIZE,file=None): job = Gaia.launch_job_async("SELECT * \ FROM gaiadr2.gaia_source \ WHERE CONTAINS(POINT('ICRS',gaiadr2.gaia_source.ra,gaiadr2.gaia_source.dec),\ CIRCLE('ICRS',"+str(sc.ra.deg)+","+str(sc.dec.deg)+","+str(CONESIZE/3600.0)+"))=1;" \ , dump_to_file=True,output_file=file) df=job.get_results().to_pandas() ''' if df: job = Gaia.launch_job_async("SELECT * \ FROM gaiadr1.gaia_source \ WHERE CONTAINS(POINT('ICRS',gaiadr1.gaia_source.ra,gaiadr1.gaia_source.dec),\ CIRCLE('ICRS',"+str(sc.ra.deg)+","+str(sc.dec.deg)+","+str(CONESIZE/3600.0)+"))=1;" \ , dump_to_file=True,output_file=file) ''' print(np.shape(df)) if np.shape(df)[0]>1: print(df.shape[0],"stars with mags:",df.phot_g_mean_mag.values,'and teffs:',df.teff_val.values) #Taking brightest star as target df=df.loc[np.argmin(df.phot_g_mean_mag)] if len(np.shape(df))>1: df=df.iloc[0] if np.shape(df)[0]!=0 or np.isnan(float(df['teff_val'])): outdf={} #print(df[['teff_val','teff_percentile_upper','radius_val','radius_percentile_upper','lum_val','lum_percentile_upper']]) outdf['Teff']=float(df['teff_val']) outdf['e_Teff']=0.5*(float(df['teff_percentile_upper'])-float(df['teff_percentile_lower'])) #print(np.shape(df)) #print(df['lum_val']) if not np.isnan(df['lum_val']): outdf['lum']=float(df['lum_val']) outdf['e_lum']=0.5*(float(df['lum_percentile_upper'])-float(df['lum_percentile_lower'])) else: if outdf['Teff']<9000: outdf['lum']=np.power(10,5.6*np.log10(outdf['Teff']/5880)) outdf['e_lum']=1.0 else: outdf['lum']=np.power(10,8.9*np.log10(outdf['Teff']/5880)) outdf['e_lum']=0.3*outdf['lum'] if not np.isnan(df['radius_val']): outdf['rad']=float(df['radius_val']) outdf['e_rad']=0.5*(float(df['radius_percentile_upper'])-float(df['radius_percentile_lower'])) else: mass=outdf['lum']**(1/3.5) if outdf['Teff']<9000: outdf['rad']=mass**(3/7.) outdf['e_rad']=0.5*outdf['rad'] else: outdf['rad']=mass**(19/23.) outdf['e_rad']=0.5*outdf['rad'] outdf['GAIAmag_api']=df['phot_g_mean_mag'] else: print("NO GAIA TARGET FOUND") outdf={} return outdf def CheckSpecCsv(radec,icid,thresh=20*u.arcsec): specs=pd.read_csv(stellar_path+"/spectra_all.csv") spec_coords=SkyCoord(specs['ra']*u.deg,specs['dec']*u.deg) seps=radec.separation(spec_coords) #Searching by ID if icid in specs.input_id: out=specs.loc[specs.input_id.values==icid,['teff','teff_err','logg','logg_err','feh','feh_err']] elif np.min(seps)<thresh: #And searching by RA/DEC out=specs.iloc[np.argmin(seps),['teff','teff_err','logg','logg_err','feh','feh_err']] else: return None #Converting from df to Series: out=out.iloc[0] if type(out)==pd.DataFrame else out return out def Assemble_and_run_isoclassify(icid,sc,mission,survey_dat,exofop_dat,errboost=0.2,spec_dat=None, useGaiaLum=True,useGaiaBR=True,useBV=True,useGaiaSpec=True, use2mass=True,useGriz=True,useGaiaAg=True): ############################################ # Building isoclassify input data: # ############################################ x=classify.obsdata() mag=False x.addcoords(sc.ra.deg,sc.dec.deg) #Luminosity from Gaia: if useGaiaLum and 'lum_val' in survey_dat.index: if not np.isnan((survey_dat.lum_val+survey_dat.lum_percentile_upper+survey_dat.lum_percentile_lower)): x.addlum([survey_dat.lum_val],[0.5*(survey_dat.lum_percentile_upper-survey_dat.lum_percentile_lower)]) #BR from Gaia: if useGaiaBR and 'phot_g_mean_mag' in survey_dat.index and survey_dat.phot_g_mean_mag is not None: if not np.isnan(np.sum(survey_dat[['phot_g_mean_mag','phot_bp_mean_mag','phot_rp_mean_mag', 'phot_g_mean_flux_over_error','phot_bp_mean_flux_over_error', 'phot_rp_mean_flux_over_error']].values.astype(np.float64))): x.addgaia(survey_dat[['phot_g_mean_mag','phot_bp_mean_mag','phot_rp_mean_mag']].values.astype(np.float64), errboost+np.log(1.0+1.0/survey_dat[['phot_g_mean_flux_over_error', 'phot_bp_mean_flux_over_error', 'phot_rp_mean_flux_over_error']].values.astype(np.float64))*2.5) mag+=True else: print("No Gaia mag for",icid) mag+=False #BV from either APASS or Exofop: if useBV and 'ap_Johnson B (B)' in survey_dat.index and not np.isnan(np.sum(survey_dat[['ap_Johnson B (B)','ap_Johnson V (V)','ap_Berr','ap_Verr']].values)): #BV photometry (eg apass) x.addbv([survey_dat['ap_Johnson B (B)'],survey_dat['ap_Johnson V (V)']], [errboost+survey_dat['ap_Berr'],errboost+survey_dat['ap_Verr']]) mag+=True elif useBV and 'B' in exofop_dat.index and not np.isnan(np.sum(exofop_dat[['B','V','Be','Ve']].values.astype(float))): x.addbv([float(exofop_dat['B']),float(exofop_dat['V'])], [errboost+float(exofop_dat['Be']),errboost+float(exofop_dat['Ve'])]) mag+=True else: print("No BV for",icid) mag+=False #Spectra either from APASS, or from user-uploaded file, or from Gaia spectrum: if exofop_dat['spec'] is not None: #From ExoFop - either has _user (K2) or _INSTRUMENT (TESS) #If there's multiple spectra, we'll take the one with lowest Teff err: if len(exofop_dat['spec'].split(','))>1: src=exofop_dat['spec'].split(',')[np.min([spec_dat['teff_err'+spec_src] for spec_src in exofop_dat['spec'].split(',')])] else: src=exofop_dat['spec'].split(',')[0] if 'logg'+src in spec_dat.index: #Correcting possible problems (e.g. missing columns): exofop_dat['feh'+src]=0.0 if 'feh'+src not in exofop_dat.index else exofop_dat['feh'+src] if 'fehe'+src not in exofop_dat.index: if 'fehep'+src in spec_dat.index: exofop_dat['fehe'+src]=0.5*(abs(exofop_dat['fehep'+src])+abs(exofop_dat['fehem'+src])) else: exofop_dat['fehe'+src]=2.0 if 'logge'+src not in exofop_dat.index: if 'loggep'+src in exofop_dat.index: exofop_dat['logge'+src]=0.5*(abs(exofop_dat['loggep'+src])+abs(exofop_dat['loggem'+src])) else: exofop_dat['logge'+src]=2.5 if 'teffe'+src not in exofop_dat.index: if 'teffep'+src in exofop_dat.index: exofop_dat['teffe'+src]=0.5*(abs(exofop_dat['teffem'+src])+abs(exofop_dat['teffem'+src])) else: exofop_dat['teffe'+src]=250 x.addspec([exofop_dat['teff'+src], exofop_dat['logg'+src], exofop_dat['feh'+src]], [exofop_dat['teffe'+src], exofop_dat['logge'+src], exofop_dat['fehe'+src]]) elif spec_dat is not None: #From LAMOST or AAT or Coralie (cross-matched list in stellar folder) x.addspec([spec_dat.teff, spec_dat.logg, spec_dat.feh], [spec_dat.teff_err, spec_dat.logg_err, spec_dat.feh_err]) elif useGaiaSpec and 'teff_val' in survey_dat.index and not np.isnan(survey_dat.teff_val): #From Gaia: x.addspec([survey_dat.teff_val, survey_dat.rv_template_logg, 0.0], [0.5*(survey_dat.teff_percentile_upper-survey_dat.teff_percentile_lower), 0.4, 1.0]) #2MASS JHK from Gaia-xmatched catalogue or from ExoFop: if use2mass and '2m_ks_m' in survey_dat.index and not np.isnan(np.sum(survey_dat[['2m_j_m','2m_h_m','2m_ks_m', '2m_j_msigcom','2m_h_msigcom','2m_ks_msigcom']].values)): # 2MASS photometry x.addjhk([survey_dat['2m_j_m'],survey_dat['2m_h_m'],survey_dat['2m_ks_m']], [errboost+survey_dat['2m_j_msigcom'],errboost+survey_dat['2m_h_msigcom'],errboost+survey_dat['2m_ks_msigcom']]) mag+=True elif use2mass and 'K' in exofop_dat.index and not np.isnan(np.sum(exofop_dat[['J','H','K', 'Je','He','Ke']].values.astype(float))): x.addjhk([float(exofop_dat['J']),float(exofop_dat['H']),float(exofop_dat['K'])], [errboost+float(exofop_dat['Je']),errboost+float(exofop_dat['He']),errboost+float(exofop_dat['Ke'])]) mag+=True else: print("No 2MASS for",icid) mag+=False #GRIZ photometry from APASS or Gaia-xmatched SDSS catalogue or from ExoFop: if useGriz and "ap_Sloan z' (SZ)" in survey_dat.index and not np.isnan(np.sum(survey_dat[["ap_Sloan g' (SG)","ap_Sloan r' (SR)","ap_Sloan i' (SI)","ap_Sloan z' (SZ)","ap_SGerr","ap_SRerr","ap_SIerr","ap_SZerr"]].values)): # 2MASS photometry x.addgriz([survey_dat["ap_Sloan g' (SG)"],survey_dat["ap_Sloan r' (SR)"], survey_dat["ap_Sloan i' (SI)"],survey_dat["ap_Sloan z' (SZ)"]], [errboost+survey_dat["ap_SGerr"],errboost+survey_dat["ap_SRerr"], errboost+survey_dat["ap_SIerr"],errboost+survey_dat["ap_SZerr"]]) mag+=True elif useGriz and 'sd_z_mag' in survey_dat.index and not np.isnan(np.sum(survey_dat[["sd_g_mag","sd_r_mag","sd_i_mag","sd_z_mag","sd_g_mag_error","sd_r_mag_error","sd_i_mag_error","sd_z_mag_error"]].values)): x.addgriz([survey_dat['sd_g_mag'],survey_dat['sd_r_mag'],survey_dat['sd_i_mag'],survey_dat['sd_z_mag']], [errboost+survey_dat['sd_g_mag_error'],errboost+survey_dat['sd_r_mag_error'], errboost+survey_dat['sd_i_mag_error'],errboost+survey_dat['sd_z_mag_error']]) mag+=True elif useGriz and 'z' in exofop_dat.index and not np.isnan(np.sum(exofop_dat[["g","r","i","z","ge","re","ie","ze"]].values)): x.addgriz([float(exofop_dat['g']),float(exofop_dat['r']),float(exofop_dat['i']),float(exofop_dat['z'])], [errboost+float(exofop_dat['ge']),errboost+float(exofop_dat['re']), errboost+float(exofop_dat['ie']),errboost+float(exofop_dat['ze'])]) mag+=True else: mag+=False print("No griz for",icid) #Gaia Ag if useGaiaAg and 'a_g_val' in survey_dat.index and survey_dat['a_g_val'] is not None: av=survey_dat['a_g_val'] else: av=-99 #Gaia Parallax: if 'parallax' in survey_dat.index and survey_dat.parallax is not None: x.addplx(survey_dat.parallax/1000,survey_dat.parallax_error/1000) #In a case where no magnitude is set, we assume V~kepmag/V~Tmag: if not mag: if 'tmag' in exofop_dat.index and ~np.isnan(exofop_dat['tmag']): print("No archival photometry! Adding Tmag from input catalogue magnitude as V:",exofop_dat['tmag']) x.addbv([-99,exofop_dat['tmag']],[-99,0.2]) elif 'kepmag' in exofop_dat.index and ~np.isnan(exofop_dat['kepmag']): print("No archival photometry! Adding Kepmaf from input catalogue magnitude as V:",exofop_dat['kepmag']) x.addbv([-99,exofop_dat['kepmag']],[-99,0.2]) ############################################ # Running isoclassify: # ############################################ mod=LoadModel() dustmodel,ext = LoadDust(sc,survey_dat.parallax/1000.,dust='allsky') paras = classify.classify(input=x, model=mod, dustmodel=dustmodel, useav=av, ext=ext, plot=0) ############################################ # Assembling all output data: # ############################################ #Extracting parameters from isoclassify output class into pandas df: col_names=['teff','teffep','teffem','logg','loggep','loggem','feh','fehep','fehem', 'rad','radep','radem','mass','massep','massem','rho','rhoep','rhoem', 'lum','lumep','lumem','avs','avsep','avsem','dis','disep','disem']#,'plx','plxep','plxem','mabs'] isoclass_df=pd.Series() for c in col_names: exec('isoclass_df[\"'+c+'\"]=paras.'+c) #isoclass_df=isoclass_df.rename(index={'rho':'rho_gcm3','rhoep':'rho_gcm3ep','rhoem':'rho_gcm3em'}) #After much posturing, I have determined that these output "rho"s are in rho_S and not gcm3, so adding gcm3 values here: isoclass_df['rho_gcm3']=isoclass_df['rho']*1.411 isoclass_df['rho_gcm3ep']=isoclass_df['rhoep']*1.411 isoclass_df['rho_gcm3em']=isoclass_df['rhoem']*1.411 return isoclass_df, paras def starpars(icid,mission,errboost=0.1,return_best=True, useGaiaLum=True,useGaiaBR=True,useGaiaSpec=True, useBV=True,use2mass=True,useGriz=True,useGaiaAg=True): # Estimating stellar parameters given survey data, input catalogues, and possibly follow-up data #INPUTS: # - icid (Mission ID in input catalogue) # - mission ('tess','k2','kepler') # - errboost (amount to artificially boost photometry errors due to possible systematics) # - return_best (boolean. Only return best info, or return all data objects?) # - useGaiaLum (Use luminosity as determined by Gaia) # - useGaiaBR (Use Gaia B and R filter photometry) # - useGaiaSpec (Use the Gaia estimates of logg and Teff as input spectra) # - useBV (Use BV from survey data - e.g. APASS) # - use2mass (Use 2MASS JHK from survey) # - useGriz (Use BV from survey data - e.g. APASS or SDSS) # - useGaiaAg (Use Reddening as determined by Gaia) ############################################ # Getting stellar data from Exofop: # ############################################ exofop_dat, kicinfo = GetExoFop(icid,mission) #In the case where we only get KIC info, we just call this "ExoFop" too: if exofop_dat is None and kicinfo is not None: exofop_dat=kicinfo exofop_dat['mission']='kep_or_k2' ############################################ # Getting survey data from [Various]: # ############################################ #Loading RA and Dec: if type(exofop_dat['ra'])==str and (exofop_dat['ra'].find(':')!=-1)|(exofop_dat['ra'].find('h')!=-1): coor=SkyCoord(exofop_dat['ra'],exofop_dat['dec'],unit=(u.hourangle,u.deg)) elif (type(exofop_dat['ra'])==float)|(type(exofop_dat['ra'])==np.float64) or (type(exofop_dat['ra'])==str)&(exofop_dat['ra'].find(',')!=-1): coor=SkyCoord(exofop_dat['ra'],exofop_dat['dec'],unit=u.deg) #Getting TIC, Spec and survey data: #tic_dat = Catalogs.query_criteria("TIC",coordinates=coor,radius=20/3600,objType="STAR")#This is not used, as TIC is on ExoFop spec_dat = CheckSpecCsv(coor,icid) survey_dat=QueryGaiaAndSurveys(coor,mission=mission) order_of_kw_to_remove=['useGaiaAg','useGriz','useBV','useGaiaBR','use2mass','useGaiaSpec','useGaiaLum'] n_kw_to_remove=0 isoclass_dens_is_NaN=True #Isoclass often fails, e.g. due to photometry. So let's loop through the kwargs and gradually remove contraints: while isoclass_dens_is_NaN and n_kw_to_remove<=len(order_of_kw_to_remove): kwars={order_of_kw_to_remove[nkw]:(True if nkw>=n_kw_to_remove else False) for nkw in range(len(order_of_kw_to_remove))} #print(n_kw_to_remove,'/',len(order_of_kw_to_remove),kwars) try: isoclass_df, paras = Assemble_and_run_isoclassify(icid,coor,mission,survey_dat,exofop_dat, errboost=errboost*(1+0.33*n_kw_to_remove),spec_dat=spec_dat,**kwars) #print(isoclass_df[['rho_gcm3','rho_gcm3ep','rho_gcm3em']]) isoclass_dens_is_NaN=(np.isnan(isoclass_df[['rho_gcm3','rho_gcm3ep','rho_gcm3em']]).any())|(isoclass_df[['rho_gcm3','rho_gcm3ep','rho_gcm3em']]==0.0).all() except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() print(exc_type, exc_tb.tb_lineno) isoclass_df,paras=None,None #print(n_kw_to_remove,'|',isoclass_df) n_kw_to_remove+=1 #Assessing which available data source is the *best* using lowest density error if isoclass_df is not None: isoclass_err_rho=(0.5*(abs(isoclass_df['rho_gcm3ep'])+abs(isoclass_df['rho_gcm3em'])))/isoclass_df['rho_gcm3'] else: isoclass_err_rho=100 #Calculating if 'rho' not in exofop_dat.index and 'rho_gcm3' not in exofop_dat.index and 'rad' in exofop_dat.index and (('mass' in exofop_dat.index)|('logg' in exofop_dat.index)): #Getting Density from R, M and logg: rhos=[];rhoems=[];rhoeps=[];rhoes=[] if 'mass' in exofop_dat.index: rhos+=[1.411*exofop_dat['mass']/exofop_dat['rad']**3] rhoeps+=[1.411*(exofop_dat['mass']+exofop_dat['massep'])/((exofop_dat['rad']-exofop_dat['radem'])**3)-rhos[-1]] rhoems+=[rhos[-1] - 1.411*(exofop_dat['mass']-exofop_dat['massem'])/((exofop_dat['rad']+exofop_dat['radep'])**3)] rhoes+=[0.5*(abs(rhoeps[-1])+abs(rhoems[-1]))] if 'logg' in exofop_dat.index: rhos+=[np.power(10,exofop_dat['logg']-4.4377)/exofop_dat['rad']] rhoeps+=[np.power(10,(exofop_dat['logg']+exofop_dat['loggep'])-4.4377)/(exofop_dat['rad']-exofop_dat['radem'])-rhos[-1]] rhoems+=[rhos[-1]-np.power(10,(exofop_dat['logg']-exofop_dat['loggem'])-4.4377)/(exofop_dat['rad']+exofop_dat['rad'])] rhoes+=[0.5*(abs(rhoeps[-1])+abs(rhpems[-1]))] rhos=np.array(rhos) rhoes=np.array(rhoes) exofop_dat['rho_gcm3']=rhos[np.argmin(rhoes)] exofop_dat['rho_gcm3e']=np.min(rhoes) exofop_dat['rho_gcm3em']=rhoems[np.argmin(rhoes)] exofop_dat['rho_gcm3ep']=rhoeps[np.min(rhoes)] exofop_dat['rho']=exofop_dat['rho_gcm3']/1.411 exofop_dat['rhoe']=exofop_dat['rho_gcm3e']/1.411 exofop_dat['rhoem']=exofop_dat['rho_gcm3em']/1.411 exofop_dat['rhoep']=exofop_dat['rho_gcm3ep']/1.411 elif 'rho' in exofop_dat.index and 'rho_gcm3' not in exofop_dat.index: exofop_dat['rho_gcm3']=exofop_dat['rho']*1.411 exofop_dat['rho_gcm3e']=0.5*(abs(exofop_dat['rhoep'])+abs(exofop_dat['rhoem']))*1.411 elif 'rho_gcm3' in exofop_dat.index and 'rho' not in exofop_dat.index: exofop_dat['rho']=exofop_dat['rho_gcm3']/1.411 exofop_dat['rhoe']=0.5*(abs(exofop_dat['rho_gcm3ep'])+abs(exofop_dat['rho_gcm3em']))/1.411 exofop_dat['rhoep']=exofop_dat['rho_gcm3ep']/1.411 exofop_dat['rhoem']=exofop_dat['rho_gcm3em']/1.411 elif 'rho_gcm3' not in exofop_dat.index: exofop_dat['rho_gcm3e']=100 exofop_dat['rho_gcm3']=1 if 'rho_gcm3em' in exofop_dat.index and 'rho_gcm3e' not in exofop_dat.index: exofop_dat['rho_gcm3e']=0.5*(abs(exofop_dat['rho_gcm3ep'])+abs(exofop_dat['rho_gcm3em'])) #elif #exofop_dat['rho_gcm3e']=0.5*(exofop_dat['rho_gcm3em']+exofop_dat['rho_gcm3ep']) #Calculating percentage error on density from exofop/input catalogues: if 'rho_gcm3' in exofop_dat.index and not np.isnan(float(exofop_dat['rho_gcm3'])): #Checking if there is also a Kepler Input catalogue file, and whether the quoted density error is lower: if kicinfo is not None and 'rho' in kicinfo.index: if (kicinfo['rho_gcm3e']/kicinfo['rho_gcm3'])<(exofop_dat['rho_gcm3e']/exofop_dat['rho_gcm3']): #Replacing data in exofop_dat with that from kicdat for col in kicinfo.index: exofop_dat[col]=kicinfo[col] exofop_dat['source']='KIC' inputcat_err_rho=(exofop_dat['rho_gcm3e'])/exofop_dat['rho_gcm3'] else: inputcat_err_rho=100 print(inputcat_err_rho,exofop_dat['rho_gcm3e'],'<err | rho>',exofop_dat['rho_gcm3']) print('Density errors. isoclassify:',isoclass_err_rho,', input cat:',inputcat_err_rho) if isoclass_df is not None and abs(exofop_dat['rho_gcm3']-isoclass_df['rho_gcm3']) > abs(0.5*(abs(isoclass_df['rho_gcm3ep'])+abs(isoclass_df['rho_gcm3em']))+exofop_dat['rho_gcm3e']): print('Densities disagree at >1-sigma | isoclassify:',isoclass_df['rho_gcm3'],0.5*(abs(isoclass_df['rho_gcm3ep'])+abs(isoclass_df['rho_gcm3em'])),'| input cat:',exofop_dat['rho_gcm3'],exofop_dat['rho_gcm3e']) #Now we know which is best, we put that best info into "best_df" best_df=pd.Series() if mission[0] in ['T','t']: best_df['tmag']=exofop_dat['tmag'] elif mission[0] in ['K','k']: best_df['kepmag']=exofop_dat['kepmag'] best_df['ra']=exofop_dat['ra'] best_df['dec']=exofop_dat['dec'] #selecting the best stellar parameter source from input cat vs isoclassify if isoclass_err_rho<inputcat_err_rho or np.isnan(inputcat_err_rho): #Generated Density better constrained by isoclassify: col_names=['teff','teffep','teffem','logg','loggep','loggem','lum','lumep','lumem', 'rad','radep','radem','mass','massep','massem','rho_gcm3','rho_gcm3ep','rho_gcm3em', 'dis','disep','disem'] for col in col_names: best_df[col]=isoclass_df[col] best_df['source']='isoclassify' elif inputcat_err_rho<=isoclass_err_rho or np.isnan(isoclass_err_rho): #input catalogue info better constrained col_names=['teff','teffep','teffem','teffe','teff_prov','logg','loggep','loggem','logge','logg_prov', 'rad','radep','radem','rade','mass','massep','massem','masse' 'rho_gcm3','rho_gcm3e','rho_gcm3ep','rho_gcm3em','rho','rhoe','rhoep','rhoem'] if 'av' in exofop_dat.index: col_names+=['avs','avsem','avsep'] if 'feh' in exofop_dat.index: col_names+=['feh','fehem','fehep'] for col in col_names: if col in exofop_dat.index: best_df[col]=exofop_dat[col] best_df['source']='input_catalogue' #Converting rho in gcm3 to rho in rho_s if 'rho_gcm3' in best_df.index: coldic={'rho_gcm3':'rho','rho_gcm3em':'rhoem','rho_gcm3ep':'rhoep'} for key in coldic: best_df[coldic[key]]=best_df[key]/1.411 if return_best: return best_df else: return exofop_dat,survey_dat,isoclass_df,paras,best_df def getStellarDensity(ID,mission,errboost=0.1): #Compiling dfs (which may have spectra) exofop_dat,_,isoclass_df,_,_=starpars(ID,mission,errboost=0.1,return_best=False) #Sorting out missing data and getting important info - Mass, Radius, density and logg: if
pd.isnull(exofop_dat[['logg','mass']])
pandas.isnull
import argparse from multiprocessing import Process, Queue import time import logging log = logging.getLogger(__name__) import cooler import numpy as np import pandas as pd from hicmatrix import HiCMatrix from hicmatrix.lib import MatrixFileHandler from schicexplorer._version import __version__ from schicexplorer.utilities import cell_name_list def parse_arguments(args=None): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=False, description='' ) parserRequired = parser.add_argument_group('Required arguments') # define the arguments parserRequired.add_argument('--matrix', '-m', help='The single cell Hi-C interaction matrices to investigate for QC. Needs to be in scool format', metavar='scool scHi-C matrix', required=True) parserRequired.add_argument('--outFileName', '-o', help='File name of the normalized scool matrix.', required=True) parserRequired.add_argument('--threads', '-t', help='Number of threads. Using the python multiprocessing module.', required=False, default=4, type=int) parserRequired.add_argument('--normalize', '-n', help='Normalize to a) all matrices to the lowest read count of the given matrices, b) all to a given read coverage value or c) to a multiplicative value', choices=['smallest', 'read_count', 'multiplicative'], default='smallest', required=True) parserOpt = parser.add_argument_group('Optional arguments') parserOpt.add_argument('--setToZeroThreshold', '-z', help='Values smaller as this threshold are set to 0.', required=False, default=1.0, type=float) parserOpt.add_argument('--value', '-v', default=1, type=float, help='This value is used to either be interpreted as the desired read_count or the multiplicative value. This depends on the value for --normalize') parserOpt.add_argument('--maximumRegionToConsider', help='To compute the normalization factor for the normalization mode \'smallest\' and \'read_count\', consider only this genomic distance around the diagonal.', required=False, default=30000000, type=int) parserOpt.add_argument('--help', '-h', action='help', help='show this help message and exit') parserOpt.add_argument('--version', action='version', version='%(prog)s {}'.format(__version__)) return parser def compute_sum(pMatrixName, pMatricesList, pMaxDistance, pQueue): sum_list = [] for i, matrix in enumerate(pMatricesList): matrixFileHandler = MatrixFileHandler(pFileType='cool', pMatrixFile=pMatrixName + '::' + matrix, pLoadMatrixOnly=True) _matrix, cut_intervals, nan_bins, \ distance_counts, correction_factors = matrixFileHandler.load() instances = _matrix[0] features = _matrix[1] distances = np.absolute(instances - features) mask = distances <= pMaxDistance sum_of_matrix = _matrix[2][mask].sum() sum_list.append(sum_of_matrix) del _matrix pQueue.put(sum_list) def compute_normalize(pMatrixName, pMatricesList, pNormalizeMax, pSumOfAll, pThreshold, pMultiplicative, pQueue): pixelList = [] for i, matrix in enumerate(pMatricesList): matrixFileHandler = MatrixFileHandler(pFileType='cool', pMatrixFile=pMatrixName + '::' + matrix, pLoadMatrixOnly=True) _matrix, cut_intervals, nan_bins, \ distance_counts, correction_factors = matrixFileHandler.load() data = np.array(_matrix[2]).astype(np.float32) instances = np.array(_matrix[0]) features = np.array(_matrix[1]) mask = np.isnan(data) data[mask] = 0 mask = np.isinf(data) data[mask] = 0 if pMultiplicative is None: adjust_factor = pSumOfAll[i] / pNormalizeMax else: adjust_factor = pMultiplicative if pMultiplicative is None: data /= adjust_factor else: data *= adjust_factor mask = np.isnan(data) data[mask] = 0 mask = np.isinf(data) data[mask] = 0 mask = data < pThreshold data[mask] = 0 mask = data == 0 instances = instances[~mask] features = features[~mask] data = data[~mask] pixels =
pd.DataFrame({'bin1_id': instances, 'bin2_id': features, 'count': data})
pandas.DataFrame
""" Computational Cancer Analysis Library Authors: Huwate (Kwat) Yeerna (Medetgul-Ernar) <EMAIL> Computational Cancer Analysis Laboratory, UCSD Cancer Center <NAME> <EMAIL> Computational Cancer Analysis Laboratory, UCSD Cancer Center """ from os.path import isfile from matplotlib.backends.backend_pdf import PdfPages from matplotlib.cm import bwr, gist_rainbow from matplotlib.colorbar import ColorbarBase, make_axes from matplotlib.colors import (ColorConverter, LinearSegmentedColormap, ListedColormap, Normalize) from matplotlib.gridspec import GridSpec from matplotlib.pyplot import (figure, gca, savefig, sca, subplot, suptitle, tight_layout) from numpy import array, unique from pandas import DataFrame, Series, isnull from seaborn import (barplot, boxplot, clustermap, despine, distplot, heatmap, set_style, violinplot) from .d2 import get_dendrogram_leaf_indices, normalize_2d_or_1d from .file import establish_filepath # ============================================================================== # Style # ============================================================================== FIGURE_SIZE = (16, 10) SPACING = 0.05 FONT_LARGEST = {'fontsize': 24, 'weight': 'bold', 'color': '#220530'} FONT_LARGER = {'fontsize': 20, 'weight': 'bold', 'color': '#220530'} FONT_STANDARD = {'fontsize': 16, 'weight': 'bold', 'color': '#220530'} FONT_SMALLER = {'fontsize': 12, 'weight': 'bold', 'color': '#220530'} # Color maps C_BAD = 'wheat' # Continuous 1 CMAP_CONTINUOUS = bwr CMAP_CONTINUOUS.set_bad(C_BAD) # Continuous 2 reds = [0.26, 0.26, 0.26, 0.39, 0.69, 1, 1, 1, 1, 1, 1] greens_half = [0.26, 0.16, 0.09, 0.26, 0.69] colordict = { 'red': tuple([(0.1 * i, r, r) for i, r in enumerate(reds)]), 'green': tuple([ (0.1 * i, r, r) for i, r in enumerate(greens_half + [1] + list(reversed(greens_half))) ]), 'blue': tuple([(0.1 * i, r, r) for i, r in enumerate(reversed(reds))]) } CMAP_CONTINUOUS_ASSOCIATION = LinearSegmentedColormap('association', colordict) CMAP_CONTINUOUS_ASSOCIATION.set_bad(C_BAD) # Categorical CMAP_CATEGORICAL = gist_rainbow CMAP_CATEGORICAL.set_bad(C_BAD) # Binary CMAP_BINARY = ListedColormap(['#cdcdcd', '#404040']) CMAP_BINARY.set_bad(C_BAD) DPI = 300 # ============================================================================== # Functions # ============================================================================== def plot_points(*args, title='', xlabel='', ylabel='', filepath=None, file_extension='pdf', dpi=DPI, ax=None, **kwargs): """ :param args: :param title: :param xlabel: :param ylabel: :param filepath: :param file_extension: :param dpi: :param kwargs: :return: None """ if not ax: figure(figsize=FIGURE_SIZE) ax = gca() if 'linestyle' not in kwargs: kwargs['linestyle'] = '' if 'marker' not in kwargs: kwargs['marker'] = '.' ax.plot(*args, **kwargs) decorate(style='ticks', title=title, xlabel=xlabel, ylabel=ylabel) if filepath: save_plot(filepath, file_extension=file_extension, dpi=dpi) def plot_distribution(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None, title='', xlabel='', ylabel='Frequency', filepath=None, file_extension='pdf', dpi=DPI): """ :param a: :param bins: :param hist: :param kde: :param rug: :param fit: :param hist_kws: :param kde_kws: :param rug_kws: :param fit_kws: :param color: :param vertical: :param norm_hist: :param axlabel: :param label: :param ax: :param title: :param xlabel: :param ylabel: :param filepath: :param file_extension: :param dpi: :return: None """ if not ax: figure(figsize=FIGURE_SIZE) distplot( a, bins=bins, hist=hist, kde=kde, rug=rug, fit=fit, hist_kws=hist_kws, kde_kws=kde_kws, rug_kws=rug_kws, fit_kws=fit_kws, color=color, vertical=vertical, norm_hist=norm_hist, axlabel=axlabel, label=label, ax=ax) decorate(style='ticks', title=title, xlabel=xlabel, ylabel=ylabel) if filepath: save_plot(filepath, file_extension=file_extension, dpi=dpi) def plot_violin_box_or_bar(x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw='scott', cut=2, scale='count', scale_hue=True, gridsize=100, width=0.8, inner='quartile', split=False, orient=None, linewidth=None, color=None, palette=None, saturation=0.75, ax=None, fliersize=5, whis=1.5, notch=False, ci=95, n_boot=1000, units=None, errcolor='0.26', errwidth=None, capsize=None, violin_or_box='violin', colors=(), figure_size=FIGURE_SIZE, title=None, xlabel=None, ylabel=None, filepath=None, file_extension='pdf', dpi=DPI, **kwargs): """ Plot violin plot. :param x: :param y: :param hue: :param data: :param order: :param hue_order: :param bw: :param cut: :param scale: :param scale_hue: :param gridsize: :param width: :param inner: :param split: :param orient: :param linewidth: :param color: :param palette: :param saturation: :param ax: :param fliersize: :param whis: :param notch: :param ci: :param n_boot: :param units: :param errcolor: :param errwidth: :param capsize: :param violin_or_box: :param colors: iterable; :param figure_size: tuple; :param title: :param xlabel: :param ylabel: :param filepath: :param file_extension: :param dpi: :param kwargs: :return: None """ # Initialize a figure if not ax: figure(figsize=figure_size) if isinstance(x, str): x = data[x] if isinstance(y, str): y = data[y] if not palette: palette = assign_colors_to_states(x, colors=colors) if len(set([v for v in y if v and ~isnull(v)])) <= 2: # Use barplot for binary barplot( x=x, y=y, hue=hue, data=data, order=order, hue_order=hue_order, ci=ci, n_boot=n_boot, units=units, orient=orient, color=color, palette=palette, saturation=saturation, errcolor=errcolor, ax=ax, errwidth=errwidth, capsize=capsize, **kwargs) else: # Use violin or box plot for continuous or categorical if violin_or_box == 'violin': violinplot( x=x, y=y, hue=hue, data=data, order=order, hue_order=hue_order, bw=bw, cut=cut, scale=scale, scale_hue=scale_hue, gridsize=gridsize, width=width, inner=inner, split=split, orient=orient, linewidth=linewidth, color=color, palette=palette, saturation=saturation, ax=ax, **kwargs) elif violin_or_box == 'box': boxplot( x=x, y=y, hue=hue, data=data, order=order, hue_order=hue_order, orient=orient, color=color, palette=palette, saturation=saturation, width=width, fliersize=fliersize, linewidth=linewidth, whis=whis, notch=notch, ax=ax, **kwargs) else: raise ValueError( '\'violin_or_box\' must be either \'violin\' or \'box\'.') decorate(style='ticks', title=title, xlabel=xlabel, ylabel=ylabel) if filepath: save_plot(filepath, file_extension=file_extension, dpi=dpi) def plot_heatmap(dataframe, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=False, cbar_kws=None, cbar_ax=None, square=False, xticklabels=False, yticklabels=False, mask=None, figure_size=FIGURE_SIZE, data_type='continuous', normalization_method=None, normalization_axis=0, max_std=3, axis_to_sort=None, cluster=False, row_annotation=(), column_annotation=(), annotation_colors=(), title=None, xlabel=None, ylabel=None, xlabel_rotation=0, ylabel_rotation=90, xtick_rotation=90, ytick_rotation=0, filepath=None, file_extension='pdf', dpi=DPI, **kwargs): """ Plot heatmap. :param dataframe: :param vmin: :param vmax: :param cmap: :param center: :param robust: :param annot: :param fmt: :param annot_kws: :param linewidths: :param linecolor: :param cbar: :param cbar_kws: :param cbar_ax: :param square: :param xticklabels: :param yticklabels: :param mask: :param figure_size: :param data_type: :param normalization_method: :param normalization_axis: :param max_std: :param axis_to_sort: :param cluster: :param row_annotation: :param column_annotation: :param annotation_colors: list; a list of matplotlib color specifications :param title: :param xlabel: :param ylabel: :param xlabel_rotation: :param ylabel_rotation: :param xtick_rotation: :param ytick_rotation: :param filepath: :param file_extension: :param dpi: :param kwargs: :return: None """ df = dataframe.copy() if normalization_method: df = normalize_2d_or_1d( df, normalization_method, axis=normalization_axis).clip(-max_std, max_std) if len(row_annotation) or len(column_annotation): if len(row_annotation): if isinstance(row_annotation, Series): row_annotation = row_annotation.copy() if not len(row_annotation.index & df.index): # Series # but without proper index row_annotation.index = df.index else: row_annotation = Series(row_annotation, index=df.index) row_annotation.sort_values(inplace=True) df = df.ix[row_annotation.index, :] if len(column_annotation): if isinstance(column_annotation, Series): column_annotation = column_annotation.copy() # Series but without proper index if not len(column_annotation.index & df.columns): column_annotation.index = df.columns else: column_annotation = Series(column_annotation, index=df.columns) column_annotation.sort_values(inplace=True) df = df.ix[:, column_annotation.index] if axis_to_sort in (0, 1): a = array(df) a.sort(axis=axis_to_sort) df = DataFrame(a, index=df.index) elif cluster: row_indices, column_indices = get_dendrogram_leaf_indices(dataframe) df = df.iloc[row_indices, column_indices] if isinstance(row_annotation, Series): row_annotation = row_annotation.iloc[row_indices] if isinstance(column_annotation, Series): column_annotation = column_annotation.iloc[column_indices] figure(figsize=figure_size) gridspec = GridSpec(10, 10) ax_top = subplot(gridspec[0:1, 2:-2]) ax_center = subplot(gridspec[1:8, 2:-2]) ax_bottom = subplot(gridspec[8:10, 2:-2]) ax_left = subplot(gridspec[1:8, 1:2]) ax_right = subplot(gridspec[1:8, 8:9]) ax_top.axis('off') ax_bottom.axis('off') ax_left.axis('off') ax_right.axis('off') if not cmap: if data_type == 'continuous': cmap = CMAP_CONTINUOUS elif data_type == 'categorical': cmap = CMAP_CATEGORICAL elif data_type == 'binary': cmap = CMAP_BINARY else: raise ValueError( 'Target data type must be continuous, categorical, or binary.') heatmap( df, vmin=vmin, vmax=vmax, cmap=cmap, center=center, robust=robust, annot=annot, fmt=fmt, annot_kws=annot_kws, linewidths=linewidths, linecolor=linecolor, cbar=cbar, cbar_kws=cbar_kws, cbar_ax=cbar_ax, square=square, ax=ax_center, xticklabels=xticklabels, yticklabels=yticklabels, mask=mask, **kwargs) # Get values for making legend values = unique(df.values) values = values[~isnull(values)] if data_type == 'continuous': # Plot colorbar # Get not-nan values for computing min, mean, & max min_ = values.min() mean_ = values.mean() max_ = values.max() cax, kw = make_axes( ax_bottom, location='bottom', fraction=0.16, cmap=cmap, norm=Normalize(min_, max_), ticks=[min_, mean_, max_]) ColorbarBase(cax, **kw) decorate(ax=cax, xtick_rotation=90) elif data_type in ('categorical', 'binary'): # Plot category legends if len(values) < 30: horizontal_span = ax_center.axis()[1] vertical_span = ax_center.axis()[3] colors = assign_colors_to_states(values, colors=cmap) columns = df.columns.tolist() if isinstance(columns[0], str): max_len_c = max([len(c) for c in columns]) else: max_len_c = 10 vertical_offset = 0.016 * max_len_c for i, v in enumerate(values): x = (horizontal_span / len(values) / 2) + \ i * horizontal_span / len(values) y = 0 - vertical_span * vertical_offset c = colors[v] ax_center.plot( x, y, 'o', color=c, markersize=16, aa=True, clip_on=False) ax_center.text( x, y - vertical_span * 0.05, v, horizontalalignment='center', **FONT_STANDARD) decorate( title=title, xlabel=xlabel, ylabel=ylabel, xlabel_rotation=xlabel_rotation, ylabel_rotation=ylabel_rotation, xtick_rotation=xtick_rotation, ytick_rotation=ytick_rotation, ax=ax_center) if len(row_annotation): if len(set(row_annotation)) <= 2: cmap = CMAP_BINARY else: if len(annotation_colors): cmap = ListedColormap(annotation_colors) else: cmap = CMAP_CATEGORICAL heatmap(
DataFrame(row_annotation)
pandas.DataFrame
from typing import Tuple, List, Dict, Any import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, Imputer, FunctionTransformer from sklearn.pipeline import Pipeline from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split, GridSearchCV, cross_validate, KFold from sklearn.metrics import mean_squared_error, make_scorer import joblib import mlflow pd.options.display.max_columns = None CURRENT_EXPERIMENT_NAME = 'feature engineering' def filter_by(df: pd.DataFrame, **kwargs) -> pd.DataFrame: df_out = df for key, value in kwargs.items(): if type(value) is list: df_out = df_out[df_out[key].isin(value)] else: df_out = df_out[df_out[key] == value] return df_out def missing_rate(df: pd.DataFrame) -> pd.Series: return df.isnull().sum() / len(df) def reduce_mem_usage(df: pd.DataFrame, verbose: bool = True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / (1024 ** 2) for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format( end_mem, 100 * (start_mem - end_mem) / start_mem) ) return df def rmse(y_true, y_pred) -> float: return np.sqrt(mean_squared_error(y_true, y_pred)) rmse_score = make_scorer(rmse, greater_is_better=False) def add_key_prefix(d: Dict, prefix = 'best_') -> Dict: return {prefix + key: value for key, value in d.items()} def df_from_cv_results(d: Dict): df = pd.DataFrame(d) score_columns = ['mean_test_score', 'mean_train_score'] param_columns = [c for c in df.columns if c.startswith('param_')] return pd.concat([ -df.loc[:, score_columns], df.loc[:, param_columns], ], axis=1).sort_values(by='mean_test_score') def sample(*args, frac: float = 0.01) -> np.ndarray: n_rows = args[0].shape[0] random_index = np.random.choice(n_rows, int(n_rows * frac), replace=False) gen = ( a[random_index] for a in args ) if len(args) == 1: return next(gen) else: return gen class BaseTransformer(BaseEstimator, TransformerMixin): def fit(self, x: pd.DataFrame, y = None): return self def transform(self, x: pd.DataFrame) -> pd.DataFrame: return x class ColumnTransformer(BaseTransformer): def __init__(self, defs: Dict[str, BaseTransformer]): self.defs = defs def fit(self, x: pd.DataFrame, y: np.ndarray = None): for col, transformer in self.defs.items(): transformer.fit(x[col], y) return self def transform(self, x: pd.DataFrame) -> pd.DataFrame: xp = x.copy() for col, transformer in self.defs.items(): xp[col] = transformer.transform(x[col]) return xp def fit_transform(self, x: pd.DataFrame, y: np.ndarray = None) -> pd.DataFrame: xp = x.copy() for col, transformer in self.defs.items(): if hasattr(transformer, 'fit_transform'): xp[col] = transformer.fit_transform(x[col], y) else: xp[col] = transformer.fit(x[col], y).transform(x[col]) return xp class WrappedLabelEncoder(BaseTransformer): def __init__(self): self.le = LabelEncoder() def fit(self, x, y = None): self.le.fit(x) return self def transform(self, x): return self.le.transform(x) class WeatherImputer(BaseTransformer): def transform(self, w: pd.DataFrame) -> pd.DataFrame: # add missing datetime dt_min, dt_max = w['timestamp'].min(), w['timestamp'].max() empty_df = pd.DataFrame({'timestamp': pd.date_range(start=dt_min, end=dt_max, freq='H')}) w_out = pd.concat([ ws.merge( empty_df, on='timestamp', how='outer' ).sort_values( by='timestamp' ).assign( site_id=site_id ) for site_id, ws in w.groupby('site_id') ], ignore_index=True) # large missing rate columns; fill by -999 w_out['cloud_coverage'] = w_out['cloud_coverage'].fillna(-999).astype(np.int16) # small missing rate columns; fill by same value forward and backward w_out = pd.concat([ ws.fillna(method='ffill').fillna(method='bfill') for _, ws in w_out.groupby('site_id') ], ignore_index=True) # fill nan by mean over all sites w_mean = w_out.groupby('timestamp').mean().drop(columns=['site_id']).reset_index() w_mean = w_out.loc[:, ['site_id', 'timestamp']].merge(w_mean, on='timestamp', how='left') w_out = w_out.where(~w_out.isnull(), w_mean) # float -> uint w_out['site_id'] = w_out['site_id'].astype(np.uint8) return w_out class WeatherEngineerer(BaseTransformer): @staticmethod def shift_by(wdf: pd.DataFrame, n: int) -> pd.DataFrame: method = 'bfill' if n > 0 else 'ffill' return pd.concat([ ws.iloc[:, [2, 4, 8]].shift(n).fillna(method=method) for _, ws in wdf.groupby('site_id') ], axis=0) def weather_weighted_average(self, w: pd.DataFrame, hours: int = 5) -> pd.DataFrame: ahours = abs(hours) sign = int(hours / ahours) w_weighted_average = sum( [self.shift_by(w, (i+1)*sign) * (ahours-i) for i in range(ahours)] ) / (np.arange(ahours) + 1).sum() w_weighted_average.columns = ['{0}_wa{1}'.format(c, hours) for c in w_weighted_average.columns] return pd.concat([w, w_weighted_average], axis=1) @staticmethod def dwdt(df: pd.DataFrame, base_col: str) -> pd.DataFrame: df_out = df.copy() df_out[base_col + '_dt_wa1'] = df[base_col] - df[base_col + '_wa1'] df_out[base_col + '_dt_wa-1'] = df[base_col] - df[base_col + '_wa-1'] df_out[base_col + '_dt_wa5'] = df[base_col] - df[base_col + '_wa5'] df_out[base_col + '_dt_wa-5'] = df[base_col] - df[base_col + '_wa-5'] return df_out @staticmethod def wet(df: pd.DataFrame, suffix: str) -> pd.DataFrame: df_out = df.copy() df_out['wet' + suffix] = df['air_temperature' + suffix] - df['dew_temperature' + suffix] return df_out def transform(self, w_in: pd.DataFrame) -> pd.DataFrame: w = w_in.pipe(self.weather_weighted_average, hours=1) \ .pipe(self.weather_weighted_average, hours=-1) \ .pipe(self.weather_weighted_average) \ .pipe(self.weather_weighted_average, hours=-5) w = w.pipe(self.dwdt, base_col='air_temperature') \ .pipe(self.dwdt, base_col='dew_temperature') \ .pipe(self.dwdt, base_col='wind_speed') \ .pipe(self.wet, suffix='') \ .pipe(self.wet, suffix='_wa1') \ .pipe(self.wet, suffix='_wa-1') \ .pipe(self.wet, suffix='_wa5') \ .pipe(self.wet, suffix='_wa-5') return w class WindDirectionEncoder(BaseTransformer): @staticmethod def _from_degree(degree: int) -> int: val = int((degree / 22.5) + 0.5) arr = [i for i in range(0,16)] return arr[(val % 16)] def transform(self, x: pd.Series) -> pd.Series: return x.apply(self._from_degree) class WindSpeedEncoder(BaseTransformer): def transform(self, x: pd.Series) -> pd.Series: return pd.cut( x, bins=[0, 0.3, 1.6, 3.4, 5.5, 8, 10.8, 13.9, 17.2, 20.8, 24.5, 28.5, 33, 1000], right=False, labels=False, ) weather_pipeline = Pipeline(steps=[ ('impute_missing_value', WeatherImputer()), ('feature_engineering', WeatherEngineerer()), ('label_encode', ColumnTransformer({ 'wind_direction': WindDirectionEncoder(), 'wind_speed': WindSpeedEncoder(), 'wind_speed_wa1': WindSpeedEncoder(), 'wind_speed_wa-1': WindSpeedEncoder(), 'wind_speed_wa5': WindSpeedEncoder(), 'wind_speed_wa-5': WindSpeedEncoder(), })) ]) class BuildingMetadataEngineerer(BaseTransformer): def transform(self, bm_in: pd.DataFrame) -> pd.DataFrame: bm = bm_in.copy() bm['log_square_feet'] = np.log(bm['square_feet']) bm['square_feet_per_floor'] = bm['square_feet'] / bm['floor_count'] bm['log_square_feet_per_floor'] = bm['log_square_feet'] / bm['floor_count'] bm['building_age'] = 2019 - bm['year_built'] bm['square_feet_per_age'] = bm['square_feet'] / bm['building_age'] bm['log_square_feet_per_age'] = bm['log_square_feet'] / bm['building_age'] return bm class BuildingMetadataImputer(BaseTransformer): def transform(self, bm: pd.DataFrame) -> pd.DataFrame: return bm.fillna(-999) building_metadata_pipeline = Pipeline(steps=[ ('label_encode', ColumnTransformer({ 'primary_use': WrappedLabelEncoder(), })), ('feature_engineering', BuildingMetadataEngineerer()), ('impute_missing_value', BuildingMetadataImputer()), ]) class BuildingMetaJoiner(BaseTransformer): def __init__(self, bm: pd.DataFrame = None): self.bm = bm def transform(self, x: pd.DataFrame) -> pd.DataFrame: if self.bm is None: return x else: return x.merge( self.bm, on='building_id', how='left', ) class WeatherJoiner(BaseTransformer): def __init__(self, w: pd.DataFrame = None): self.w = w def transform(self, x: pd.DataFrame) -> pd.DataFrame: if self.w is None: return x else: return x.merge( self.w, on=['site_id', 'timestamp'], how='left', ) class DatetimeFeatureEngineerer(BaseTransformer): def __init__(self, col: str = 'timestamp'): self.col = col def transform(self, x: pd.DataFrame) -> pd.DataFrame: xp = x.copy() ts = x[self.col] xp['month'] = ts.dt.month.astype(np.int8) xp['week'] = ts.dt.week.astype(np.int8) xp['day_of_week'] = ts.dt.weekday.astype(np.int8) xp['time_period'] = pd.cut( ts.dt.hour, bins=[0, 3, 6, 9, 12, 15, 18, 21, 25], right=False, labels=False, ) holidays = [ '2016-01-01', '2016-01-18', '2016-02-15', '2016-05-30', '2016-07-04', '2016-09-05', '2016-10-10', '2016-11-11', '2016-11-24', '2016-12-26', '2017-01-01', '2017-01-16', '2017-02-20', '2017-05-29', '2017-07-04', '2017-09-04', '2017-10-09', '2017-11-10', '2017-11-23', '2017-12-25', '2018-01-01', '2018-01-15', '2018-02-19', '2018-05-28', '2018-07-04', '2018-09-03', '2018-10-08', '2018-11-12', '2018-11-22', '2018-12-25', '2019-01-01' ] xp['is_holiday'] = (ts.dt.date.astype('str').isin(holidays)).astype(np.int8) return xp class TargetEncoder(BaseTransformer): def __init__(self, cv: int = 5, smoothing: int = 1): self.agg = None self.cv = cv self.smoothing = 1 def transform(self, x: pd.Series): if self.agg is None: raise ValueError('you shold fit() before predict()') encoded = pd.merge(x, self.agg, left_on=x.name, right_index=True, how='left') encoded = encoded.fillna(encoded.mean()) xp = encoded['y'] xp.name = x.name return xp def fit_transform(self, x: pd.Series, y: np.ndarray = None) -> pd.Series: df = pd.DataFrame({'x': x, 'y': y}) self.agg = df.groupby('x').mean() fold = KFold(n_splits=self.cv, shuffle=True) xp = x.copy() for idx_train, idx_test in fold.split(x): df_train = df.loc[idx_train, :] df_test = df.loc[idx_test, :] agg_train = df_train.groupby('x').mean() encoded = pd.merge(df_test, agg_train, left_on='x', right_index=True, how='left', suffixes=('', '_mean'))['y_mean'] encoded = encoded.fillna(encoded.mean()) xp[encoded.index] = encoded return xp class ColumnDropper(BaseTransformer): def __init__(self, cols: List[str]): self.cols = cols def transform(self, x: pd.DataFrame, y = None) -> pd.DataFrame: return x.drop(columns=self.cols) class ArrayTransformer(BaseTransformer): def transform(self, x: pd.DataFrame, y = None) -> np.ndarray: return x.values def pipeline_factory() -> Pipeline: return Pipeline(steps=[ # join ('join_building_meta', BuildingMetaJoiner( building_metadata_pipeline.fit_transform( building_metadata ) )), ('join_weather', WeatherJoiner( weather_pipeline.fit_transform( pd.concat([weather_train, weather_test], axis=0, ignore_index=True) ) )), # feature engineering ('feature_engineering_from_datetime', DatetimeFeatureEngineerer()), ('target_encode', ColumnTransformer({ 'primary_use': TargetEncoder(), 'meter': TargetEncoder(), 'cloud_coverage': TargetEncoder(), 'time_period': TargetEncoder(), 'wind_direction': TargetEncoder(), 'wind_speed': TargetEncoder(), 'wind_speed_wa1': TargetEncoder(), 'wind_speed_wa-1': TargetEncoder(), 'wind_speed_wa5': TargetEncoder(), 'wind_speed_wa-5': TargetEncoder(), })), # drop columns ('drop_columns', ColumnDropper([ 'building_id', 'timestamp', 'site_id', 'precip_depth_1_hr', ])), # pd.DataFrame -> np.ndarray ('df_to_array', ArrayTransformer()), # regressor ('regressor', RandomForestRegressor()), ]) def cv(pipeline: Pipeline, df: pd.DataFrame, n_jobs: int = -1, **params) -> Tuple[float, float]: x = df.drop(columns='meter_reading') y = np.log1p(df['meter_reading'].values) default_params = dict( n_estimators=10, max_depth=None, max_features='auto', min_samples_leaf=1, ) merged_params = {**default_params, **params} pipeline_params = {**merged_params, 'n_jobs': n_jobs} pipeline_params = add_key_prefix(pipeline_params, 'regressor__') pipeline.set_params(**pipeline_params) mlflow.set_experiment(CURRENT_EXPERIMENT_NAME) with mlflow.start_run(): mlflow.log_params(merged_params) scores = cross_validate( pipeline, x, y, cv=3, scoring=rmse_score, return_train_score=True, verbose=2, ) rmse_val = - np.mean(scores['test_score']) rmse_train = - np.mean(scores['train_score']) mlflow.log_metrics(dict( rmse_val=rmse_val, rmse_train=rmse_train, )) return rmse_val, rmse_train def oneshot(pipeline: Pipeline, df: pd.DataFrame, **params): x = df.drop(columns='meter_reading') y = np.log1p(df['meter_reading'].values) default_params = dict( n_estimators=10, max_depth=None, max_features='auto', min_samples_leaf=1, ) merged_params = {**default_params, **params} pipeline_params = {**merged_params, 'n_jobs': -1, 'verbose': 2} pipeline_params = add_key_prefix(pipeline_params, 'regressor__') pipeline.set_params(**pipeline_params) mlflow.set_experiment(CURRENT_EXPERIMENT_NAME) with mlflow.start_run(): mlflow.log_params(merged_params) pipeline.fit(x, y) joblib.dump(pipeline, 'out/pipeline.sav', compress=1) score = rmse(y, pipeline.predict(x)) mlflow.log_metrics(dict(rmse_train=score)) mlflow.log_artifact('out/pipeline.sav') return pipeline def grid_search(pipeline: Pipeline, df: pd.DataFrame, n_jobs: int = -1, **param_grid): x = df.drop(columns='meter_reading') y = np.log1p(df['meter_reading'].values) default_param_grid = dict( n_estimators=[80], max_depth=[None], max_features=['auto'], min_samples_leaf=[0.00003], ) merged_param_grid = {**default_param_grid, **param_grid} pipeline_param_grid = add_key_prefix(merged_param_grid, 'regressor__') pipeline.set_params(regressor__n_jobs=n_jobs) mlflow.set_experiment(CURRENT_EXPERIMENT_NAME) with mlflow.start_run(): mlflow.log_params(merged_param_grid) regressor = GridSearchCV( pipeline, param_grid=pipeline_param_grid, cv=3, scoring=rmse_score, verbose=2, refit=True, ) regressor.fit(x, y) best_model = regressor.best_estimator_ best_param = add_key_prefix(regressor.best_params_) best_rmse = - regressor.best_score_ cv_results = df_from_cv_results(regressor.cv_results_) joblib.dump(best_model, 'out/model.sav') cv_results.to_csv('out/cv_results.csv', index=False) mlflow.log_params(best_param) mlflow.log_metrics(dict( rmse=best_rmse, )) mlflow.log_artifact('./out/model.sav') mlflow.log_artifact('./out/cv_results.csv') mlflow.end_run() return cv_results def load_model(run_id: str = None): if run_id is None: model_path = 'out/model.joblib' else: mlflow_client = mlflow.tracking.MlflowClient() model_path = mlflow_client.download_artifacts(run_id, 'model.joblib') return joblib.load(model_path) def predict(df: pd.DataFrame, pipeline: Pipeline) -> pd.DataFrame: x = df.iloc[:, 1:] y_log1p = pipeline.predict(x) y = np.expm1(y_log1p) return pd.DataFrame({ 'row_id': df.iloc[:, 0], 'meter_reading': y, })[['row_id', 'meter_reading']] if __name__ == '__main__': train =
pd.read_csv('data/train.csv', parse_dates=['timestamp'])
pandas.read_csv
import os import pandas as pd from sklearn.preprocessing import LabelEncoder,OneHotEncoder,MinMaxScaler from config import * import numpy as np import json class Dataset: def __init__(self,data_path): self.data_path = data_path self.load_dataset() def load_dataset(self): if not os.path.exists(self.data_path): raise Exception('File Not Found') self.dataset =
pd.read_csv(self.data_path)
pandas.read_csv
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import pandas as pd import matplotlib.pyplot as plt import numpy as np # %% DATA_ROOT = '../../data/raw' # %% [markdown] # ## LOADING DATA # %% print('Loading raw datasets...', flush=True) GIT_COMMITS_PATH = f"{DATA_ROOT}/GIT_COMMITS.csv" GIT_COMMITS_CHANGES = f"{DATA_ROOT}/GIT_COMMITS_CHANGES.csv" SONAR_MEASURES_PATH = f"{DATA_ROOT}/SONAR_MEASURES.csv" SZZ_FAULT_INDUCING_COMMITS = f"{DATA_ROOT}/SZZ_FAULT_INDUCING_COMMITS.csv" JIRA_ISSUES = f"{DATA_ROOT}/JIRA_ISSUES.csv" # %% git_commits = pd.read_csv(GIT_COMMITS_PATH) git_commits_changes = pd.read_csv(GIT_COMMITS_CHANGES) sonar_measures = pd.read_csv(SONAR_MEASURES_PATH) szz_fault_inducing_commits = pd.read_csv(SZZ_FAULT_INDUCING_COMMITS) jira_issues =
pd.read_csv(JIRA_ISSUES)
pandas.read_csv
import argparse parser = argparse.ArgumentParser() parser.add_argument('--datafile', type=str, default='heteroaryl_suzuki.onerx') parser.add_argument('--output', default='heteroaryl_suzuki.csv') args= parser.parse_args() import pandas as pd fname=args.datafile sidx = 5 bidx = 6 tidx = 7 lidx = 9 yidx = 11 aidx = 12 sml_idx = 14 data = {'solvent':[], 'base':[], 'temperature':[], 'ligand':[], 'yield':[], 'article':[], 'reaction_smiles':[]} i=0 with open(fname, 'r') as f: for line in f: x = eval(line) data['solvent'].append(',,'.join(x[sidx])) data['base'].append(',,'.join(x[bidx])) data['temperature'].append(x[tidx][0] if x[tidx]!=[] else None) data['ligand'].append(',,'.join(x[lidx])) data['yield'].append(x[yidx][0] if x[yidx]!=[] else None) data['reaction_smiles'].append(x[sml_idx]) data['article'].append(x[aidx][1] if len(x[aidx])>1 else '') i+=1 data =
pd.DataFrame(data)
pandas.DataFrame
#%% import os try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass #%% import sys sys.path.append("/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/") import pandas as pd import numpy as np import connectome_tools.process_matrix as promat import math import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import pymaid from pymaid_creds import url, name, password, token # convert pair-sorted brain/sensories matrix to binary matrix based on synapse threshold matrix_ad = pd.read_csv('data/axon-dendrite.csv', header=0, index_col=0) matrix_dd = pd.read_csv('data/dendrite-dendrite.csv', header=0, index_col=0) matrix_aa = pd.read_csv('data/axon-axon.csv', header=0, index_col=0) matrix_da = pd.read_csv('data/dendrite-axon.csv', header=0, index_col=0) matrix = matrix_ad + matrix_dd + matrix_aa + matrix_da # the columns are string by default and the indices int; now both are int matrix_ad.columns = pd.to_numeric(matrix_ad.columns) matrix_dd.columns = pd.to_numeric(matrix_dd.columns) matrix_aa.columns = pd.to_numeric(matrix_aa.columns) matrix_da.columns = pd.to_numeric(matrix_da.columns) matrix.columns =
pd.to_numeric(matrix.columns)
pandas.to_numeric
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
import re from unittest.mock import Mock, call, patch import numpy as np import pandas as pd import pytest from rdt.transformers.categorical import ( CategoricalFuzzyTransformer, CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___setstate__(self): """Test the ``__set_state__`` method. Validate that the ``__dict__`` attribute is correctly udpdated when Setup: - create an instance of a ``CategoricalTransformer``. Side effect: - it updates the ``__dict__`` attribute of the object. """ # Setup transformer = CategoricalTransformer() # Run transformer.__setstate__({ 'intervals': { None: 'abc' } }) # Assert assert transformer.__dict__['intervals'][np.nan] == 'abc' def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test_is_transform_deterministic(self): """Test the ``is_transform_deterministic`` method. Validate that this method returs the opposite boolean value of the ``fuzzy`` parameter. Setup: - initialize a ``CategoricalTransformer`` with ``fuzzy = True``. Output: - the boolean value which is the opposite of ``fuzzy``. """ # Setup transformer = CategoricalTransformer(fuzzy=True) # Run output = transformer.is_transform_deterministic() # Assert assert output is False def test_is_composition_identity(self): """Test the ``is_composition_identity`` method. Since ``COMPOSITION_IS_IDENTITY`` is True, just validates that the method returns the opposite boolean value of the ``fuzzy`` parameter. Setup: - initialize a ``CategoricalTransformer`` with ``fuzzy = True``. Output: - the boolean value which is the opposite of ``fuzzy``. """ # Setup transformer = CategoricalTransformer(fuzzy=True) # Run output = transformer.is_composition_identity() # Assert assert output is False def test__get_intervals(self): """Test the ``_get_intervals`` method. Validate that the intervals for each categorical value are correct. Input: - a pandas series containing categorical values. Output: - a tuple, where the first element describes the intervals for each categorical value (start, end). """ # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, 'bar': 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', 'bar', 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert result[0] == expected_intervals pd.testing.assert_series_equal(result[1], expected_means) pd.testing.assert_frame_equal(result[2], expected_starts) def test__get_intervals_nans(self): """Test the ``_get_intervals`` method when data contains nan's. Validate that the intervals for each categorical value are correct, when passed data containing nan values. Input: - a pandas series cotaining nan values and categorical values. Output: - a tuple, where the first element describes the intervals for each categorical value (start, end). """ # Setup data = pd.Series(['foo', np.nan, None, 'foo', 'foo', 'tar']) # Run result = CategoricalTransformer._get_intervals(data) # Assert expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), np.nan: ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, np.nan: 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', np.nan, 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert result[0] == expected_intervals pd.testing.assert_series_equal(result[1], expected_means) pd.testing.assert_frame_equal(result[2], expected_starts) def test__fit_intervals(self): # Setup transformer = CategoricalTransformer() # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer._fit(data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, 'bar': 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', 'bar', 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert transformer.intervals == expected_intervals pd.testing.assert_series_equal(transformer.means, expected_means) pd.testing.assert_frame_equal(transformer.starts, expected_starts) def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), np.nan: (0.5, 1.0, 0.75, 0.5 / 6), } # Run result_foo = transformer._get_value('foo') result_nan = transformer._get_value(np.nan) # Asserts assert result_foo == 0.25 assert result_nan == 0.75 @patch('rdt.transformers.categorical.norm') def test__get_value_fuzzy(self, norm_mock): # setup norm_mock.rvs.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test__reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer._fit(data) result = transformer._reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows. Output: - the output of `_transform_by_category`. Side effects: - `_transform_by_category` will be called once. """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer._transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows. Ouptut: - the transformed data. """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_category_nans(self): """Test the ``_transform_by_category`` method with data containing nans. Validate that the data is transformed correctly when it contains nan's. Setup: - the categorical transformer is instantiated, and the appropriate ``intervals`` attribute is set. Input: - a pandas series containing nan's. Output: - a numpy array containing the transformed data. """ # Setup data = pd.Series([np.nan, 3, 3, 2, np.nan]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), np.nan: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() @patch('rdt.transformers.categorical.norm') def test__transform_by_category_fuzzy_true(self, norm_mock): """Test the ``_transform_by_category`` method when ``fuzzy`` is True. Validate that the data is transformed correctly when ``fuzzy`` is True. Setup: - the categorical transformer is instantiated with ``fuzzy`` as True, and the appropriate ``intervals`` attribute is set. - the ``intervals`` attribute is set to a a dictionary of intervals corresponding to the elements of the passed data. - set the ``side_effect`` of the ``rvs_mock`` to the appropriate function. Input: - a pandas series. Output: - a numpy array containing the transformed data. Side effect: - ``rvs_mock`` should be called four times, one for each element of the intervals dictionary. """ # Setup def rvs_mock_func(loc, scale, **kwargs): return loc norm_mock.rvs.side_effect = rvs_mock_func data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Assert expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() norm_mock.rvs.assert_has_calls([ call(0.125, 0.041666666666666664, size=0), call(0.375, 0.041666666666666664, size=2), call(0.625, 0.041666666666666664, size=1), call(0.875, 0.041666666666666664, size=2), ]) def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer._transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transform_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data =
pd.Series([1, 2, 3, 4])
pandas.Series
import pandas as pd import numpy as np from rdtools import energy_from_power import pytest # Tests for resampling at same frequency def test_energy_from_power_calculation(): power_times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') result_times = power_times[1:] power_series = pd.Series(data=4.0, index=power_times) expected_energy_series = pd.Series(data=1.0, index=result_times) expected_energy_series.name = 'energy_Wh' result = energy_from_power(power_series, max_timedelta=pd.to_timedelta('15 minutes')) pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_max_interval(): power_times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') result_times = power_times[1:] power_series = pd.Series(data=4.0, index=power_times) expected_energy_series = pd.Series(data=np.nan, index=result_times) expected_energy_series.name = 'energy_Wh' result = energy_from_power(power_series, max_timedelta=pd.to_timedelta('5 minutes')) # We expect series of NaNs, because max_interval_hours is smaller than the # time step of the power time series pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_validation(): power_series = pd.Series(data=[4.0] * 4) with pytest.raises(ValueError): energy_from_power(power_series, max_timedelta=pd.to_timedelta('15 minutes')) def test_energy_from_power_single_argument(): power_times = pd.date_range('2018-04-01 12:00', '2018-04-01 15:00', freq='15T') result_times = power_times[1:] power_series = pd.Series(data=4.0, index=power_times) missing = pd.to_datetime('2018-04-01 13:00:00') power_series = power_series.drop(missing) expected_energy_series = pd.Series(data=1.0, index=result_times) expected_nan = [missing] expected_nan.append(pd.to_datetime('2018-04-01 13:15:00')) expected_energy_series.loc[expected_nan] = np.nan expected_energy_series.name = 'energy_Wh' # Test that the result has the expected missing timestamp based on median timestep result = energy_from_power(power_series) pd.testing.assert_series_equal(result, expected_energy_series) # Tests for downsampling def test_energy_from_power_downsample(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') time_series = pd.Series(data=[1.0, 2.0, 3.0, 4.0, 5.0], index=times) expected_energy_series = pd.Series(index=[pd.to_datetime('2018-04-01 13:00:00')], data=3.0, name='energy_Wh') expected_energy_series.index.freq = '60T' result = energy_from_power(time_series, '60T') pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_downsample_max_timedelta_exceeded(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') time_series = pd.Series(data=[1.0, 2.0, 3.0, 4.0, 5.0], index=times) expected_energy_series = pd.Series(index=[pd.to_datetime('2018-04-01 13:00:00')], data=1.5, name='energy_Wh') expected_energy_series.index.freq = '60T' result = energy_from_power(time_series.drop(time_series.index[2]), '60T', pd.to_timedelta('15 minutes')) pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_downsample_max_timedelta_not_exceeded(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') time_series = pd.Series(data=[1.0, 2.0, 3.0, 4.0, 5.0], index=times) expected_energy_series = pd.Series(index=[pd.to_datetime('2018-04-01 13:00:00')], data=3.0, name='energy_Wh') expected_energy_series.index.freq = '60T' result = energy_from_power(time_series.drop(time_series.index[2]), '60T', pd.to_timedelta('60 minutes')) pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_for_issue_107(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 16:00', freq='15T') dc_power = pd.Series(index=times, data=1.0) dc_power = dc_power.drop(dc_power.index[5:12]) expected_times = pd.date_range('2018-04-01 13:00', '2018-04-01 16:00', freq='60T') expected_energy_series = pd.Series(index=expected_times, data=[1.0, np.nan, np.nan, 1.0], name='energy_Wh') result = energy_from_power(dc_power, '60T') pd.testing.assert_series_equal(result, expected_energy_series) # Tests for upsampling def test_energy_from_power_upsample(): times =
pd.date_range('2018-04-01 12:00', '2018-04-01 13:30', freq='30T')
pandas.date_range
import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from itertools import product from sklearn.model_selection import TimeSeriesSplit import vectorbt as vbt from vectorbt.generic import nb seed = 42 day_dt = np.timedelta64(86400000000000) df = pd.DataFrame({ 'a': [1, 2, 3, 4, np.nan], 'b': [np.nan, 4, 3, 2, 1], 'c': [1, 2, np.nan, 2, 1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1), datetime(2018, 1, 2), datetime(2018, 1, 3), datetime(2018, 1, 4), datetime(2018, 1, 5) ])) group_by = np.array(['g1', 'g1', 'g2']) @njit def i_or_col_pow_nb(i_or_col, x, pow): return np.power(x, pow) @njit def pow_nb(x, pow): return np.power(x, pow) @njit def nanmean_nb(x): return np.nanmean(x) @njit def i_col_nanmean_nb(i, col, x): return np.nanmean(x) @njit def i_nanmean_nb(i, x): return np.nanmean(x) @njit def col_nanmean_nb(col, x): return np.nanmean(x) # ############# accessors.py ############# # class TestAccessors: def test_shuffle(self): pd.testing.assert_series_equal( df['a'].vbt.shuffle(seed=seed), pd.Series( np.array([2.0, np.nan, 3.0, 1.0, 4.0]), index=df['a'].index, name=df['a'].name ) ) np.testing.assert_array_equal( df['a'].vbt.shuffle(seed=seed).values, nb.shuffle_1d_nb(df['a'].values, seed=seed) ) pd.testing.assert_frame_equal( df.vbt.shuffle(seed=seed), pd.DataFrame( np.array([ [2., 2., 2.], [np.nan, 4., 1.], [3., 3., 2.], [1., np.nan, 1.], [4., 1., np.nan] ]), index=df.index, columns=df.columns ) ) @pytest.mark.parametrize( "test_value", [-1, 0., np.nan], ) def test_fillna(self, test_value): pd.testing.assert_series_equal(df['a'].vbt.fillna(test_value), df['a'].fillna(test_value)) pd.testing.assert_frame_equal(df.vbt.fillna(test_value), df.fillna(test_value)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal(df['a'].vbt.bshift(test_n), df['a'].shift(-test_n)) np.testing.assert_array_equal( df['a'].vbt.bshift(test_n).values, nb.bshift_nb(df['a'].values, test_n) ) pd.testing.assert_frame_equal(df.vbt.bshift(test_n), df.shift(-test_n)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(df['a'].vbt.fshift(test_n), df['a'].shift(test_n)) np.testing.assert_array_equal( df['a'].vbt.fshift(test_n).values, nb.fshift_1d_nb(df['a'].values, test_n) ) pd.testing.assert_frame_equal(df.vbt.fshift(test_n), df.shift(test_n)) def test_diff(self): pd.testing.assert_series_equal(df['a'].vbt.diff(), df['a'].diff()) np.testing.assert_array_equal(df['a'].vbt.diff().values, nb.diff_1d_nb(df['a'].values)) pd.testing.assert_frame_equal(df.vbt.diff(), df.diff()) def test_pct_change(self): pd.testing.assert_series_equal(df['a'].vbt.pct_change(), df['a'].pct_change(fill_method=None)) np.testing.assert_array_equal(df['a'].vbt.pct_change().values, nb.pct_change_1d_nb(df['a'].values)) pd.testing.assert_frame_equal(df.vbt.pct_change(), df.pct_change(fill_method=None)) def test_ffill(self): pd.testing.assert_series_equal(df['a'].vbt.ffill(), df['a'].ffill()) pd.testing.assert_frame_equal(df.vbt.ffill(), df.ffill()) def test_product(self): assert df['a'].vbt.product() == df['a'].product() np.testing.assert_array_equal(df.vbt.product(), df.product()) def test_cumsum(self): pd.testing.assert_series_equal(df['a'].vbt.cumsum(), df['a'].cumsum()) pd.testing.assert_frame_equal(df.vbt.cumsum(), df.cumsum()) def test_cumprod(self): pd.testing.assert_series_equal(df['a'].vbt.cumprod(), df['a'].cumprod()) pd.testing.assert_frame_equal(df.vbt.cumprod(), df.cumprod()) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_min(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_min(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.rolling_min(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.rolling_min(test_window), df.rolling(test_window).min() ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_max(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_max(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.rolling_max(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.rolling_max(test_window), df.rolling(test_window).max() ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_mean(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_mean(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.rolling_mean(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.rolling_mean(test_window), df.rolling(test_window).mean() ) @pytest.mark.parametrize( "test_window,test_minp,test_ddof", list(product([1, 2, 3, 4, 5], [1, None], [0, 1])) ) def test_rolling_std(self, test_window, test_minp, test_ddof): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_std(test_window, minp=test_minp, ddof=test_ddof), df['a'].rolling(test_window, min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.rolling_std(test_window, minp=test_minp, ddof=test_ddof), df.rolling(test_window, min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.rolling_std(test_window), df.rolling(test_window).std() ) @pytest.mark.parametrize( "test_window,test_minp,test_adjust", list(product([1, 2, 3, 4, 5], [1, None], [False, True])) ) def test_ewm_mean(self, test_window, test_minp, test_adjust): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.ewm_mean(test_window, minp=test_minp, adjust=test_adjust), df['a'].ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).mean() ) pd.testing.assert_frame_equal( df.vbt.ewm_mean(test_window, minp=test_minp, adjust=test_adjust), df.ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).mean() ) pd.testing.assert_frame_equal( df.vbt.ewm_mean(test_window), df.ewm(span=test_window).mean() ) @pytest.mark.parametrize( "test_window,test_minp,test_adjust,test_ddof", list(product([1, 2, 3, 4, 5], [1, None], [False, True], [0, 1])) ) def test_ewm_std(self, test_window, test_minp, test_adjust, test_ddof): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.ewm_std(test_window, minp=test_minp, adjust=test_adjust, ddof=test_ddof), df['a'].ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.ewm_std(test_window, minp=test_minp, adjust=test_adjust, ddof=test_ddof), df.ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.ewm_std(test_window), df.ewm(span=test_window).std() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_min(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_min(minp=test_minp), df['a'].expanding(min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.expanding_min(minp=test_minp), df.expanding(min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.expanding_min(), df.expanding().min() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_max(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_max(minp=test_minp), df['a'].expanding(min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.expanding_max(minp=test_minp), df.expanding(min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.expanding_max(), df.expanding().max() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_mean(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_mean(minp=test_minp), df['a'].expanding(min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.expanding_mean(minp=test_minp), df.expanding(min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.expanding_mean(), df.expanding().mean() ) @pytest.mark.parametrize( "test_minp,test_ddof", list(product([1, 3], [0, 1])) ) def test_expanding_std(self, test_minp, test_ddof): pd.testing.assert_series_equal( df['a'].vbt.expanding_std(minp=test_minp, ddof=test_ddof), df['a'].expanding(min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.expanding_std(minp=test_minp, ddof=test_ddof), df.expanding(min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.expanding_std(), df.expanding().std() ) def test_apply_along_axis(self): pd.testing.assert_frame_equal( df.vbt.apply_along_axis(i_or_col_pow_nb, 2, axis=0), df.apply(pow_nb, args=(2,), axis=0, raw=True) ) pd.testing.assert_frame_equal( df.vbt.apply_along_axis(i_or_col_pow_nb, 2, axis=1), df.apply(pow_nb, args=(2,), axis=1, raw=True) ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_apply(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_apply(test_window, i_col_nanmean_nb, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(test_window, i_col_nanmean_nb, minp=test_minp), df.rolling(test_window, min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(test_window, i_col_nanmean_nb), df.rolling(test_window).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(3, i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [2.75, 2.75, 2.75], [np.nan, np.nan, np.nan] ]), index=df.index, columns=df.columns ) ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_apply(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_apply(i_col_nanmean_nb, minp=test_minp), df['a'].expanding(min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_col_nanmean_nb, minp=test_minp), df.expanding(min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_col_nanmean_nb), df.expanding().apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan], [2.0, 2.0, 2.0], [2.2857142857142856, 2.2857142857142856, 2.2857142857142856], [2.4, 2.4, 2.4], [2.1666666666666665, 2.1666666666666665, 2.1666666666666665] ]), index=df.index, columns=df.columns ) ) def test_groupby_apply(self): pd.testing.assert_series_equal( df['a'].vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_col_nanmean_nb), df['a'].groupby(np.asarray([1, 1, 2, 2, 3])).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_col_nanmean_nb), df.groupby(np.asarray([1, 1, 2, 2, 3])).agg({ 'a': lambda x: nanmean_nb(x.values), 'b': lambda x: nanmean_nb(x.values), 'c': lambda x: nanmean_nb(x.values) }), # any clean way to do column-wise grouping in pandas? ) def test_groupby_apply_on_matrix(self): pd.testing.assert_frame_equal( df.vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [2., 2., 2.], [2.8, 2.8, 2.8], [1., 1., 1.] ]), index=pd.Int64Index([1, 2, 3], dtype='int64'), columns=df.columns ) ) @pytest.mark.parametrize( "test_freq", ['1h', '3d', '1w'], ) def test_resample_apply(self, test_freq): pd.testing.assert_series_equal( df['a'].vbt.resample_apply(test_freq, i_col_nanmean_nb), df['a'].resample(test_freq).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.resample_apply(test_freq, i_col_nanmean_nb), df.resample(test_freq).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.resample_apply('3d', i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [2.28571429, 2.28571429, 2.28571429], [2., 2., 2.] ]), index=pd.DatetimeIndex(['2018-01-01', '2018-01-04'], dtype='datetime64[ns]', freq='3D'), columns=df.columns ) ) def test_applymap(self): @njit def mult_nb(i, col, x): return x * 2 pd.testing.assert_series_equal( df['a'].vbt.applymap(mult_nb), df['a'].map(lambda x: x * 2) ) pd.testing.assert_frame_equal( df.vbt.applymap(mult_nb), df.applymap(lambda x: x * 2) ) def test_filter(self): @njit def greater_nb(i, col, x): return x > 2 pd.testing.assert_series_equal( df['a'].vbt.filter(greater_nb), df['a'].map(lambda x: x if x > 2 else np.nan) ) pd.testing.assert_frame_equal( df.vbt.filter(greater_nb), df.applymap(lambda x: x if x > 2 else np.nan) ) def test_apply_and_reduce(self): @njit def every_nth_nb(col, a, n): return a[::n] @njit def sum_nb(col, a, b): return np.nansum(a) + b assert df['a'].vbt.apply_and_reduce(every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,)) == \ df['a'].iloc[::2].sum() + 3 pd.testing.assert_series_equal( df.vbt.apply_and_reduce(every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,)), df.iloc[::2].sum().rename('apply_and_reduce') + 3 ) pd.testing.assert_series_equal( df.vbt.apply_and_reduce( every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,), wrap_kwargs=dict(time_units=True)), (df.iloc[::2].sum().rename('apply_and_reduce') + 3) * day_dt ) def test_reduce(self): @njit def sum_nb(col, a): return np.nansum(a) assert df['a'].vbt.reduce(sum_nb) == df['a'].sum() pd.testing.assert_series_equal( df.vbt.reduce(sum_nb), df.sum().rename('reduce') ) pd.testing.assert_series_equal( df.vbt.reduce(sum_nb, wrap_kwargs=dict(time_units=True)), df.sum().rename('reduce') * day_dt ) pd.testing.assert_series_equal( df.vbt.reduce(sum_nb, group_by=group_by), pd.Series([20.0, 6.0], index=['g1', 'g2']).rename('reduce') ) @njit def argmax_nb(col, a): a = a.copy() a[np.isnan(a)] = -np.inf return np.argmax(a) assert df['a'].vbt.reduce(argmax_nb, to_idx=True) == df['a'].idxmax() pd.testing.assert_series_equal( df.vbt.reduce(argmax_nb, to_idx=True), df.idxmax().rename('reduce') ) pd.testing.assert_series_equal( df.vbt.reduce(argmax_nb, to_idx=True, flatten=True, group_by=group_by),
pd.Series(['2018-01-02', '2018-01-02'], dtype='datetime64[ns]', index=['g1', 'g2'])
pandas.Series
import numpy as np from keras.models import Model from keras.models import load_model, model_from_json from os.path import join import config.settings as cnst import plots.plots as plots from predict.predict import predict_byte, predict_byte_by_section from predict.predict_args import DefaultPredictArguments, Predict as pObj from .ati_args import SectionActivationDistribution import pandas as pd from analyzers.collect_exe_files import get_partition_data, store_partition_data import gc import logging import pefile def find_qualified_sections(sd, trend, common_trend, support, fold_index): """ Function for training Tier-1 model with whole byte sequence data Args: sd: object to hold activation distribution of PE sections trend: plain activation trend found by core ATI process common_trend: not used here support: not used here fold_index: current fold index of cross validation Returns: q_sections_by_q_criteria: a dict with q_criterion found for each percentile supplied and their respective list of sections qualified. """ btrend = trend.loc["BENIGN_ACTIVATION_MAGNITUDE"] mtrend = trend.loc["MALWARE_ACTIVATION_MAGNITUDE"] # Averaging based on respective benign and malware population btrend = btrend / sd.b1_b_truth_count mtrend = mtrend / sd.b1_m_truth_count btrend[btrend == 0] = 1 mtrend[mtrend == 0] = 1 malfluence = mtrend / btrend benfluence = btrend / mtrend mal_q_criteria_by_percentiles = np.percentile(malfluence, q=cnst.PERCENTILES) ben_q_criteria_by_percentiles = np.percentile(benfluence, q=cnst.PERCENTILES) q_sections_by_q_criteria = {} for i, _ in enumerate(cnst.PERCENTILES): # Uncomment [:50] for unqualified sections. Set percentile to 48 q_sections_by_q_criteria[mal_q_criteria_by_percentiles[i]] = np.unique(np.concatenate([trend.columns[malfluence > mal_q_criteria_by_percentiles[i]], trend.columns[benfluence > ben_q_criteria_by_percentiles[i]]])) # [:50] if i == 0: # Do once for lowest percentile list_qsec = np.concatenate([trend.columns[malfluence > mal_q_criteria_by_percentiles[i]], trend.columns[benfluence > ben_q_criteria_by_percentiles[i]]]) # [:50] list_avg_act_mag_signed = np.concatenate([malfluence[malfluence > mal_q_criteria_by_percentiles[i]] * -1, benfluence[benfluence > ben_q_criteria_by_percentiles[i]]]) # [:50] available_sec = pd.read_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + 'data' + cnst.ESC + 'available_sections.csv', header=None) available_sec = list(available_sec.iloc[0]) sec_emb = pd.read_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + 'data' + cnst.ESC + 'section_embeddings.csv') list_qsec_id = [] list_qsec_emb = [] for q in list_qsec: try: list_qsec_emb.append(sec_emb[q][0]) list_qsec_id.append(available_sec.index(q) + 1) except Exception as e: if not (cnst.LEAK in str(e) or cnst.PADDING in str(e)): logging.debug("The section ["+str(q)+"] is not present in available_sections.csv/section_embeddings.csv") influence = np.concatenate([malfluence[malfluence > mal_q_criteria_by_percentiles[i]], benfluence[benfluence > ben_q_criteria_by_percentiles[i]]]) qdf = pd.DataFrame([list_qsec, list_qsec_id, list_qsec_emb, list_avg_act_mag_signed, influence], columns=list_qsec, index=['a', 'b', 'c', 'd', 'e']) qdf = qdf.transpose().sort_values(by='e', ascending=False).transpose() qdf.to_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + 'data' + cnst.ESC + 'qsections_meta_'+str(fold_index)+'.csv', header=None, index=False) # print("Mal Sections:", trend.columns[malfluence > mal_q_criteria_by_percentiles[i]]) # print("Ben Sections:", trend.columns[benfluence > ben_q_criteria_by_percentiles[i]]) logging.info("Qsections found - " + str(len(q_sections_by_q_criteria.keys()))) logging.info(q_sections_by_q_criteria.keys()) return q_sections_by_q_criteria def parse_pe_pkl(file_index, file_id, fjson, unprocessed): """ Function to parse pickle file to find the boundaries of PE sections in a sample's pickle representation Args: file_index: PE sample index file_id: PE name fjson: pickle data representation of PE sample unprocessed: keeps track of count of samples not processed properly Returns: section_bounds: PE section boundaries unprocessed: keeps track of count of samples not processed properly file_byte_size: size of full sample """ section_bounds = [] file_byte_size = None max_section_end_offset = 0 try: # file_byte_size = fjson['size_byte'] with open(cnst.RAW_SAMPLE_DIR + file_id, 'rb') as f: file_byte_size = len(list(f.read())) pe = pefile.PE(cnst.RAW_SAMPLE_DIR + file_id) for pkl_section in pe.sections: section_bounds.append( (pkl_section.Name.strip(b'\x00').decode("utf-8").strip(), pkl_section.PointerToRawData, pkl_section.PointerToRawData + pkl_section.SizeOfRawData)) if (pkl_section.PointerToRawData + pkl_section.SizeOfRawData) > max_section_end_offset: max_section_end_offset = (pkl_section.PointerToRawData + pkl_section.SizeOfRawData) # Placeholder section "padding" - for activations in padding region # if max_section_end_offset < fjson["size_byte"]: # section_bounds.append((cnst.TAIL, max_section_end_offset + 1, fjson["size_byte"])) # section_bounds.append((cnst.PADDING, fjson["size_byte"] + 1, cnst.MAX_FILE_SIZE_LIMIT)) except Exception as e: logging.Exception("parse failed . . . [FILE INDEX - " + str(file_index) + "] [" + str(file_id) + "] ") unprocessed += 1 return section_bounds, unprocessed, file_byte_size def map_act_to_sec(ftype, fmap, sbounds, sd): """ Function to map each hidden layer activation found to corresponding PE section Params: ftype: Benign or Malware fmap: Hidden layer activation map sbounds: Dict of PE sections and their boundaries Return: sd: Object to hold computed activation distribution of PE sections Description of other variables/objects used: section_support: Information about how many samples in a given category has a section <Influence by presence> activation_histogram: Information about total count of activations occurred in a given section for all samples of given category <Influence by activation count> activation_magnitude: Information about total sum of magnitude of activations occurred in a given section for all samples of given category <Influence by activation strength> """ # fmap = fmap // 1 # print("FEATURE MAP ", len(feature_map), " : \n", feature_map) idx = np.argsort(fmap)[::-1][:len(fmap)] # Sort activations in descending order -- Helpful to find top activations if sbounds is not None: for j in range(0, len(sbounds)): section = sbounds[j][0] sd.a_section_support[section] = ( sd.a_section_support[section] + 1) if section in sd.a_section_support.keys() else 1 if ftype == cnst.BENIGN: sd.b_section_support[section] = ( sd.b_section_support[section] + 1) if section in sd.b_section_support.keys() else 1 if section not in sd.m_section_support.keys(): sd.m_section_support[section] = 0 else: if section not in sd.b_section_support.keys(): sd.b_section_support[section] = 0 sd.m_section_support[section] = ( sd.m_section_support[section] + 1) if section in sd.m_section_support.keys() else 1 for current_activation_window in range(0, len(fmap)): # range(0, int(cnst.MAX_FILE_SIZE_LIMIT / cnst.CONV_STRIDE_SIZE)): section = None offset = idx[current_activation_window] * cnst.CONV_WINDOW_SIZE act_val = fmap[idx[current_activation_window]] ###################################################################################### # Change for Pooling layer based Activation trend - Only Max activation is traced back if act_val == 0: continue ###################################################################################### for j in range(0, len(sbounds)): cur_section = sbounds[j] if cur_section[1] <= offset <= cur_section[2]: section = cur_section[0] break if section is not None: # if "." not in section: section = "." + section #Same section's name with and without dot are different # Sum of Magnitude of Activations if section in sd.a_activation_magnitude.keys(): sd.a_activation_magnitude[section] += act_val sd.a_activation_histogram[section] += 1 if ftype == cnst.BENIGN: if sd.b_activation_magnitude[section] is None: sd.b_activation_magnitude[section] = act_val sd.b_activation_histogram[section] = 1 else: sd.b_activation_magnitude[section] += act_val sd.b_activation_histogram[section] += 1 else: if sd.m_activation_magnitude[section] is None: sd.m_activation_magnitude[section] = act_val sd.m_activation_histogram[section] = 1 else: sd.m_activation_magnitude[section] += act_val sd.m_activation_histogram[section] += 1 else: sd.a_activation_magnitude[section] = act_val sd.a_activation_histogram[section] = 1 if ftype == cnst.BENIGN: sd.b_activation_magnitude[section] = act_val sd.b_activation_histogram[section] = 1 sd.m_activation_magnitude[section] = None sd.m_activation_histogram[section] = None else: sd.b_activation_magnitude[section] = None sd.b_activation_histogram[section] = None sd.m_activation_magnitude[section] = act_val sd.m_activation_histogram[section] = 1 else: # !!! VERIFY ALL OFFSET IS MATCHED AND CHECK FOR LEAKAGE !!! # print("No matching section found for OFFSET:", offset) sd.a_activation_magnitude[cnst.LEAK] += act_val sd.a_activation_histogram[cnst.LEAK] += 1 if ftype == cnst.BENIGN: sd.b_activation_magnitude[cnst.LEAK] += act_val sd.b_activation_histogram[cnst.LEAK] += 1 else: sd.m_activation_magnitude[cnst.LEAK] += act_val sd.m_activation_histogram[cnst.LEAK] += 1 return sd def get_feature_maps(smodel, partition, files): """ Function to obtain hidden layer activation (feature) maps using given stunted model Params: smodel: stunted model to use partition: partition for current set of B1 samples under process files: IDs of the samples to be processed from the partition Returns: raw_feature_maps: hidden layer activation (feature) maps """ predict_args = DefaultPredictArguments() predict_args.verbose = cnst.ATI_PREDICT_VERBOSE xlen = len(files) predict_args.pred_steps = xlen // predict_args.batch_size if xlen % predict_args.batch_size == 0 else xlen // predict_args.batch_size + 1 raw_feature_maps = predict_byte(smodel, files, predict_args) return raw_feature_maps def process_files(stunted_model, args, sd): """ Function to process the B1 samples to obtain hidden layer activation maps and trace back their PE sections Params: stunted_model: Tier-1 model that is stunted up to required hidden layer where activation maps are collected. args: contains various config data Returns: sd: Object to hold computed activation distribution of PE sections """ unprocessed = 0 samplewise_feature_maps = [] files = args.t2_x_train files_type = args.t2_y_train logging.info("FMAP MODULE Total B1 [{0}]\tGroundTruth [{1}:{2}]".format(len(args.t2_y_train), len(np.where(args.t2_y_train == cnst.BENIGN)[0]), len(np.where(args.t2_y_train == cnst.MALWARE)[0]))) # file_type = pObj_fmap.ytrue[i] # Using Ground Truth to get trend of actual benign and malware files # file_whole_bytes = {file[:-4]: args.whole_b1_train_partition[file[:-4]]} raw_feature_maps = get_feature_maps(stunted_model, args.whole_b1_train_partition, files) del args.whole_b1_train_partition gc.collect() for i in range(0, len(files)): section_bounds, unprocessed, fsize = parse_pe_pkl(i, files[i], args.section_b1_train_partition[files[i]], unprocessed) if cnst.USE_POOLING_LAYER: try: pooled_max_1D_map = np.sum(raw_feature_maps[i] == np.amax(raw_feature_maps[i], axis=0), axis=1)[:np.min([cnst.MAX_FILE_CONVOLUTED_SIZE,int(fsize/cnst.CONV_STRIDE_SIZE)+2])] sd = map_act_to_sec(files_type[i], pooled_max_1D_map, section_bounds, sd) except Exception as e: logging.exception("$$$$$$$$ " + str(np.shape(raw_feature_maps[i]))) # .size, files[i], args.whole_b1_train_partition[files[i][:-4]]) else: feature_map = raw_feature_maps[i].sum(axis=1).ravel() # feature_map_histogram(feature_map, prediction) samplewise_feature_maps.append(feature_map) sd = map_act_to_sec(files_type[i], feature_map, section_bounds, sd) del args.section_b1_train_partition gc.collect() return sd # print(section_stat) # print("Unprocessed file count: ", unprocessed) # Find activation distribution # raw_arr = np.array(np.squeeze(temp_feature_map_list)) # print(len(raw_arr), raw_arr.max()) # raw_arr = raw_arr[raw_arr > 0.3] # print(len(raw_arr)) # plt.hist(raw_arr, 10)#range(0, len(raw_arr))) # plt.show() '''for key in act.keys(): # key = "."+key if "." not in key else key if key is not None and key != '' and key != '.padding': with open("BENIGN" if "benign" in section_stat_file else "MALWARE" + "_activation_" + key[1:] + ".csv", mode='a+') as f: f.write(str(act[key])) ''' ''' #overall_stat.append(section_stat) for x in pcs_keys: overall_stat_str += str(section_stat[x]) + "," overall_stat_str = overall_stat_str[:-1] + "\n" print("\n[Unprocessed Files : ", unprocessed, "] Overall Stats: ", overall_stat_str) processed_file_count = len(fn_list) - unprocessed normalized_stats_str = str(section_stat["header"]/processed_file_count) + "," \ + str(section_stat["text"]/processed_file_count) + "," \ + str(section_stat["data"]/processed_file_count) + "," \ + str(section_stat["rsrc"]/processed_file_count) + "," \ + str(section_stat["pdata"]/processed_file_count) + "," \ + str(section_stat["rdata"]/processed_file_count) + "\n" #+ str(section_stat["padding"]/processed_file_count) \ print("Normalized Stats: ", normalized_stats_str) #plt.show() with open(section_stat_file, 'w+') as f: f.write(overall_stat_str) f.write("\n") f.write(normalized_stats_str) ''' def change_model(model, new_input_shape=(None, cnst.SAMPLE_SIZE)): """ Function to transfer weights of pre-trained Malconv to the block based model with reduced input shape. Args: model: An object with required parameters/hyper-parameters for loading, configuring and compiling new_input_shape: a value <= Tier-1 model's input shape. Typically, ( Num of Conv. Filters * Size of Conv. Stride ) Returns: new_model: new model with reduced input shape and weights updated """ model._layers[0].batch_input_shape = new_input_shape new_model = model_from_json(model.to_json()) for layer in new_model.layers: try: layer.set_weights(model.get_layer(name=layer.name).get_weights()) # logging.info("Loaded and weights set for layer {}".format(layer.name)) except Exception as e: logging.exception("Could not transfer weights for layer {}".format(layer.name)) return new_model def get_stunted_model(args, tier): """ Function to stunt the given model up to the required hidden layer based on the supplied hidden layer number """ complete_model = load_model(join(args.save_path, args.t1_model_name if tier == 1 else args.t2_model_name)) complete_model = change_model(complete_model, new_input_shape=(None, cnst.SAMPLE_SIZE)) # model.summary() # redefine model to output right after the sixth hidden layer # (ReLU activation layer after convolution - before max pooling) stunted_outputs = [complete_model.layers[x].output for x in [args.layer_num]] # stunted_outputs = complete_model.get_layer('multiply_1').output stunted_model = Model(inputs=complete_model.inputs, outputs=stunted_outputs) # stunted_model.summary() logging.debug("Model stunted upto " + str(stunted_outputs[0]) + " Layer number passed to stunt:" + str(args.layer_num)) return stunted_model def save_activation_trend(sd): """ Function to save the various activation trends identified in CSV format files. Params: sd: Object containing computed activation distribution of PE sections Returns: fmaps_trend: used to identify the qualified sections in subsequent steps others: Not in use currently """ fmaps_trend = pd.DataFrame() fmaps_common_trend = pd.DataFrame() fmaps_section_support = pd.DataFrame() fmaps_trend["ACTIVATION / HISTOGRAM"] = ["ALL_ACTIVATION_MAGNITUDE", "BENIGN_ACTIVATION_MAGNITUDE", "MALWARE_ACTIVATION_MAGNITUDE", "HISTOGRAM_ALL", "HISTOGRAM_BENIGN", "HISTOGRAM_MALWARE"] fmaps_common_trend["COMMON"] = ["ALL_ACTIVATION_MAGNITUDE", "BENIGN_ACTIVATION_MAGNITUDE", "MALWARE_ACTIVATION_MAGNITUDE", "HISTOGRAM_ALL", "HISTOGRAM_BENIGN", "HISTOGRAM_MALWARE"] fmaps_section_support["SUPPORT"] = ["PRESENCE_IN_ALL", "PRESENCE_IN_BENIGN", "PRESENCE_IN_MALWARE", "SUPPORT_IN_ALL", "SUPPORT_IN_BENIGN", "SUPPORT_IN_MALWARE"] for key in sd.a_activation_histogram.keys(): fmaps_trend[key] = [int(sd.a_activation_magnitude[key]) if sd.a_activation_magnitude[key] is not None else sd.a_activation_magnitude[key], int(sd.b_activation_magnitude[key]) if sd.b_activation_magnitude[key] is not None else sd.b_activation_magnitude[key], int(sd.m_activation_magnitude[key]) if sd.m_activation_magnitude[key] is not None else sd.m_activation_magnitude[key], int(sd.a_activation_histogram[key]) if sd.a_activation_histogram[key] is not None else sd.a_activation_histogram[key], int(sd.b_activation_histogram[key]) if sd.b_activation_histogram[key] is not None else sd.b_activation_histogram[key], int(sd.m_activation_histogram[key]) if sd.m_activation_histogram[key] is not None else sd.m_activation_histogram[key]] if sd.b_activation_histogram[key] is not None and sd.m_activation_histogram[key] is not None: fmaps_common_trend[key] = [ int(sd.a_activation_magnitude[key]) if sd.a_activation_magnitude[key] is not None else sd.a_activation_magnitude[key], int(sd.b_activation_magnitude[key]) if sd.b_activation_magnitude[key] is not None else sd.b_activation_magnitude[key], int(sd.m_activation_magnitude[key]) if sd.m_activation_magnitude[key] is not None else sd.m_activation_magnitude[key], int(sd.a_activation_histogram[key]) if sd.a_activation_histogram[key] is not None else sd.a_activation_histogram[key], int(sd.b_activation_histogram[key]) if sd.b_activation_histogram[key] is not None else sd.b_activation_histogram[key], int(sd.m_activation_histogram[key]) if sd.m_activation_histogram[key] is not None else sd.m_activation_histogram[key]] if sd.b1_count > 0 and sd.b1_b_truth_count > 0 and sd.b1_m_truth_count > 0: for key in sd.a_section_support.keys(): fmaps_section_support[key] = [sd.a_section_support[key], sd.b_section_support[key], sd.m_section_support[key], "{:0.1f}%".format(sd.a_section_support[key] / sd.b1_count * 100), "{:0.1f}%".format(sd.b_section_support[key] / sd.b1_b_truth_count * 100), "{:0.1f}%".format(sd.m_section_support[key] / sd.b1_m_truth_count * 100)] fmaps_trend.fillna(-1, inplace=True) fmaps_trend.set_index('ACTIVATION / HISTOGRAM', inplace=True) fmaps_common_trend.set_index('COMMON', inplace=True) fmaps_section_support.set_index('SUPPORT', inplace=True) # Store activation trend identified fmaps_trend.to_csv(cnst.COMBINED_FEATURE_MAP_STATS_FILE, index=True) fmaps_common_trend.to_csv(cnst.COMMON_COMBINED_FEATURE_MAP_STATS_FILE, index=True) fmaps_section_support.to_csv(cnst.SECTION_SUPPORT, index=True) # Drop padding and leak information after saving - not useful for further processing try: fmaps_trend.drop([cnst.PADDING], axis=1, inplace=True) fmaps_common_trend.drop([cnst.PADDING], axis=1, inplace=True) fmaps_section_support.drop([cnst.PADDING], axis=1, inplace=True) fmaps_trend.drop([cnst.LEAK], axis=1, inplace=True) fmaps_common_trend.drop([cnst.LEAK], axis=1, inplace=True) except: logging.info("Proceeding after trying to clean fmap data.") return fmaps_trend, fmaps_common_trend, fmaps_section_support def start_ati_process(args, fold_index, partition_count, sd): """ Function to perform the ATI process over all partitions of B1 training set Params: args: contains various config data fold_index: current fold index of cross validation partition_count: count of train B1 partitions Returns: sd: Object containing computed activation distribution of PE sections """ args.layer_num = cnst.LAYER_NUM_TO_STUNT stunted_model = get_stunted_model(args, tier=1) for pcount in range(0, partition_count): logging.info("ATI for partition: %s", pcount) b1datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "b1_train_" + str(fold_index) + "_p" + str(pcount) + ".csv", header=None) args.t2_x_train, args.t2_y_train = b1datadf.iloc[:, 0], b1datadf.iloc[:, 1] args.whole_b1_train_partition = get_partition_data("b1_train", fold_index, pcount, "t1") args.section_b1_train_partition = get_partition_data("b1_train", fold_index, pcount, "t2") sd = process_files(stunted_model, args, sd) del stunted_model gc.collect() return sd def get_top_act_blocks(top_acts_idx, sbounds, q_sections, whole_bytes): """ Function to map the top activation back to Qualified section's byte blocks and collating them to form block dataset Params: top_acts_idx: act as offsets of top activations in the hidden layer activation (feature) map sbounds: Pe section boundaries q_sections: qualified sections whole_bytes: Entire byte content of a PE sample Returns: top_blocks: single sequence of all top blocks found """ top_blocks = [] top_acts_idx.sort() if sbounds is not None: for idx, offset in enumerate(top_acts_idx * cnst.CONV_STRIDE_SIZE): for sname, low, upp in sbounds: if low <= offset <= upp: if sname in q_sections: try: top_blocks.extend(whole_bytes[offset:offset+cnst.CONV_STRIDE_SIZE]) break except Exception as e: logging.exception("[MODULE: get_section_id_vector()] Error occurred while mapping section id: %s %s %s %s %s %s", idx, low, offset, upp, sname, sname in q_sections) # else: # print(sname, sname in q_sections, sname in available_sections) else: logging.info("Sections bounds not available. Returning a vector of Zeroes for section id vector.") return top_blocks def collect_b1_block_dataset(args, fold_index, partition_count, mode, qcnt='X'): """ Function to generate the top ativation blocks based dataset from B1 sample set Params: args: an object containing various config data fold_index: current fold index of cross validation partition_count: count of B1 train partitions mode: phase of data collection - Train / Val / Test qcnt: index of the current q_criterion. 'X' for Testing phase Returns: None (collected data is persisted directly to disk storage) """ args.layer_num = cnst.LAYER_NUM_TO_COLLECT_NN_DATASET stunted_model = get_stunted_model(args, tier=cnst.TIER_TO_COLLECT_BLOCK_DATA) for pcount in range(0, partition_count): logging.info("Collecting Block data for partition: %s", pcount) b1datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "b1_"+mode+"_" + str(fold_index) + "_p" + str(pcount) + ".csv", header=None) files, files_type = b1datadf.iloc[:, 0], b1datadf.iloc[:, 1] args.whole_b1_partition = get_partition_data("b1_"+mode, fold_index, pcount, "t1") args.section_b1_partition = get_partition_data("b1_"+mode, fold_index, pcount, "t2") unprocessed = 0 logging.info("Block Module Total B1 [{0}]\tGroundTruth [{1}:{2}]".format(len(files_type), len(np.where(files_type == cnst.BENIGN)[0]), len(np.where(files_type == cnst.MALWARE)[0]))) nn_predict_args = DefaultPredictArguments() nn_predict_args.verbose = cnst.ATI_PREDICT_VERBOSE raw_feature_maps = predict_byte_by_section(stunted_model, args.section_b1_partition, files, args.q_sections, None, nn_predict_args) logging.info("Raw feature maps found.") for i in range(0, len(files)): section_bounds, unprocessed, fsize = parse_pe_pkl(i, files[i][:-4], args.section_b1_partition[files[i][:-4]], unprocessed) if cnst.USE_POOLING_LAYER: try: cur_fmap = raw_feature_maps[i] top_acts_idx = np.argmax(cur_fmap, axis=0) top_blocks = get_top_act_blocks(top_acts_idx, section_bounds, args.q_sections, args.whole_b1_partition[files[i][:-4]]["whole_bytes"]) if sum(top_blocks) == 0: logging.debug("No useful top block data added for sample " + files[i]) except Exception as e: logging.exception("$$$$ Error occurred in Top Activation Block Module. $$$$") args.whole_b1_partition[files[i][:-4]]["whole_bytes"] = top_blocks store_partition_data("block_b1_"+mode, fold_index, pcount, "t1", args.whole_b1_partition) del args.section_b1_partition del args.whole_b1_partition gc.collect() del stunted_model gc.collect() def init(args, fold_index, partition_count, b1_all_file_cnt, b1b_all_truth_cnt, b1m_all_truth_cnt): """ Activation Trend Identification (ATI) Module Args: args: various data required for ATI fold_index: current fold of cross-validation partition_count: number of partitions created for b1 training set b1_all_file_cnt: count of samples in b1 set b1b_all_truth_cnt: count of benign samples in b1 training set b1m_all_truth_cnt: count of malware samples in b1 training set Returns: None (Resultant data are stored in CSV for further use) """ sd = SectionActivationDistribution() sd.b1_count = b1_all_file_cnt sd.b1_b_truth_count = b1b_all_truth_cnt sd.b1_m_truth_count = b1m_all_truth_cnt sd = start_ati_process(args, fold_index, partition_count, sd) trend, common_trend, support = save_activation_trend(sd) # select sections for Tier-2 based on identified activation trend q_sections_by_q_criteria = find_qualified_sections(sd, trend, common_trend, support, fold_index) # select, drop = plots.save_stats_as_plot(fmaps, qualification_criteria) # Save qualified sections by Q_criteria qdata = [np.concatenate([[str(q_criterion)], q_sections_by_q_criteria[q_criterion]]) for q_criterion in q_sections_by_q_criteria]
pd.DataFrame(qdata)
pandas.DataFrame
import gc import itertools import multiprocessing import time from collections import Counter import numpy as np import pandas as pd def create_customer_feature_set(train): customer_feats = pd.DataFrame() customer_feats['customer_id'] = train.customer_id customer_feats['customer_max_ratio'] = train.customer_id / \ np.max(train.customer_id) customer_feats['index_max_ratio'] = train.customer_id / \ (train.index + 1e-14) customer_feats['customer_count'] = train.customer_id.map( train.customer_id.value_counts()) customer_feats['cust_first'] = train.customer_id.apply( lambda x: int(str(x)[:1])) customer_feats['cust_2first'] = train.customer_id.apply( lambda x: int(str(x)[:2])) customer_feats['cust_3first'] = train.customer_id.apply( lambda x: int(str(x)[:3])) customer_feats['cust_4first'] = train.customer_id.apply( lambda x: int(str(x)[:4])) customer_feats['cust_6first'] = train.customer_id.apply( lambda x: int(str(x)[:6])) # customer_feats.cust_3first = pd.factorize(customer_feats.cust_3first)[0] customer_feats.drop(['customer_id'], axis=1, inplace=True) return customer_feats def create_groupings_feature_set(data, features, transform=True): df_features = pd.DataFrame() year_mean = group_feat_by_feat( data, 'year', features, 'mean', transform) year_max = group_feat_by_feat( data, 'year', features, 'max', transform) year_count = group_feat_by_feat( data, 'year', features, 'count', transform) month_mean = group_feat_by_feat( data, 'month', features, 'mean', transform) month_max = group_feat_by_feat( data, 'month', features, 'max', transform) month_count = group_feat_by_feat( data, 'month', features, 'count', transform) market_mean = group_feat_by_feat( data, 'market', features, 'mean', transform) market_max = group_feat_by_feat( data, 'market', features, 'max', transform) market_count = group_feat_by_feat( data, 'market', features, 'count', transform) customer_mean = group_feat_by_feat( data, 'customer_id', features, 'mean', transform) customer_max = group_feat_by_feat( data, 'customer_id', features, 'max', transform) customer_count = group_feat_by_feat( data, 'customer_id', features, 'count', transform) df_features = pd.concat([year_mean, year_max, year_count, month_mean, month_max, month_count, market_mean, market_max, market_count, customer_mean, customer_max, customer_count], axis=1) del year_mean, year_max, year_count, month_mean, month_max, month_count, \ market_mean, market_max, market_count, \ customer_mean, customer_max, customer_count gc.collect() return df_features def create_aggregated_lags(df, current_month, only_target=False, features=None, agg_func='mean', month_merge=False): assert(current_month > 0 and current_month < 16) if month_merge: df_result = df[df.date == current_month][['customer_id']] else: df_result = df[['customer_id']] print('Creating grouping features based on aggregated data before {} date.'.format( current_month)) print('Beginning shape:', df_result.shape) if features is not None: if 'customer_id' not in features: features.append('customer_id') df_lag = df[df.date < current_month] if only_target: df_lag = df_lag[['customer_id', 'target']].groupby( 'customer_id', as_index=False).agg('{}'.format(agg_func)) else: if features is not None: df_lag = df_lag[features].groupby( 'customer_id', as_index=False).agg('{}'.format(agg_func)) df_lag.columns = ['{}_lag_agg'.format( x) if 'customer' not in x else x for x in df_lag.columns] df_result = df_result.merge( df_lag, on=['customer_id'], how='left', copy=False) to_drop = [x for x in df_result.columns if 'customer' in x] df_result.drop(to_drop, axis=1, inplace=True) print('Final shape:', df_result.shape) return df_result def create_lag_features(df, current_month=1, start_lag=0, incremental=False, only_target=False, features=None, agg_func='mean', month_merge=False): if month_merge: df_result = df[df.date == current_month][['customer_id', 'target']] else: df_result = df[['customer_id', 'target']] lag_subset = np.arange(start_lag, current_month, 1) print('Beginning shape:', df_result.shape, 'Lag subset:', lag_subset) if features is not None: if 'customer_id' not in features: features.append('customer_id') if incremental: print('Creating grouping features based on incremental lags.') if not incremental: print('Creating grouping features based on non-incremental lags.') print('For non-incremental lags only mean aggregation can be used - switch to it.') agg_func = 'mean' for i in range(len(lag_subset)): if incremental: print('Dates subset:', lag_subset[lag_subset <= lag_subset[i]]) df_lag = df[df.date <= lag_subset[i]] else: df_lag = df[df.date == lag_subset[i]] if only_target: df_lag = df_lag[['customer_id', 'target']].groupby( 'customer_id', as_index=False).agg('{}'.format(agg_func)) else: if features is not None: df_lag = df_lag[features].groupby( 'customer_id', as_index=False).agg('{}'.format(agg_func)) df_lag.columns = ['{}_lag{}'.format( x, i) if 'customer' not in x else x for x in df_lag.columns] df_result = df_result.merge( df_lag, on=['customer_id'], how='left', copy=False) to_drop = [x for x in df_result.columns if 'customer' in x] to_drop.append('target') df_result.drop(to_drop, axis=1, inplace=True) print('Final shape:', df_result.shape) return df_result def prepare_lags_data(train, test, start_train=1, end_train=11, start_test=12, end_test=15, only_target=False, features=None, incremental=False, agg_func='mean'): df_train = pd.DataFrame() df_test = pd.DataFrame() print('Create training set.\n') for i in range(start_train, end_train + 1, 1): if incremental: lag_features = create_lag_features( train, i, start_train, incremental=incremental, only_target=only_target, features=features, agg_func=agg_func) else: lag_features = create_lag_features( train, i, i - 1, incremental=incremental, only_target=only_target, features=features, agg_func=agg_func) df_train = pd.concat([df_train, lag_features]) print('Current train shape:', df_train.shape) print('\nCreate test set.\n') for i in range(start_test, end_test + 1, 1): if incremental: lag_features = create_lag_features( test, i, start_test, incremental=incremental, only_target=only_target, features=features, agg_func=agg_func) else: lag_features = create_lag_features( test, i, i - 1, incremental=incremental, only_target=only_target, features=features, agg_func=agg_func) df_test = pd.concat([df_test, lag_features]) print('Current test shape:', df_test.shape) print('Final shapes:', df_train.shape, df_test.shape) df_train.drop(['target'], axis=1, inplace=True) df_train.reset_index(inplace=True, drop=True) df_test.drop(['target'], axis=1, inplace=True) df_test.reset_index(inplace=True, drop=True) return df_train, df_test def prepare_aggregated_lags(train, test, start_train=0, end_train=11, start_test=12, end_test=15, only_target=False, features=None, agg_func='mean'): df_train = pd.DataFrame() df_test = pd.DataFrame() print('Create training set.\n') for i in range(start_train, end_train + 1, 1): lag_features = create_aggregated_lags( train, i, only_target=only_target, features=features, agg_func=agg_func) df_train =
pd.concat([df_train, lag_features])
pandas.concat
__all__ = [ "eval_df", "ev_df", "eval_nominal", "ev_nominal", "eval_grad_fd", "ev_grad_fd", "eval_conservative", "ev_conservative", ] import itertools import grama as gr from grama import add_pipe, pipe from numpy import ones, eye, tile, atleast_2d from pandas import DataFrame, concat from toolz import curry ## Default evaluation function # -------------------------------------------------- @curry def eval_df(model, df=None, append=True, verbose=True): r"""Evaluate model at given values Evaluates a given model at a given dataframe. Args: model (gr.Model): Model to evaluate df (DataFrame): Input dataframe to evaluate append (bool): Append results to original dataframe? Returns: DataFrame: Results of model evaluation Examples: >>> import grama as gr >>> from grama.models import make_test >>> md = make_test() >>> df = gr.df_make(x0=0, x1=1, x2=2) >>> md >> gr.ev_df(df=df) """ if df is None: raise ValueError("No input df given") if len(model.functions) == 0: raise ValueError("Given model has no functions") out_intersect = set(df.columns).intersection(model.out) if (len(out_intersect) > 0) and verbose: print( "... provided columns intersect model output.\n" + "eval_df() is dropping {}".format(out_intersect) ) df_res = model.evaluate_df(df) if append: df_res = concat( [ df.reset_index(drop=True).drop(model.out, axis=1, errors="ignore"), df_res, ], axis=1, ) return df_res ev_df = add_pipe(eval_df) ## Nominal evaluation # -------------------------------------------------- @curry def eval_nominal(model, df_det=None, append=True, skip=False): r"""Evaluate model at nominal values Evaluates a given model at a model nominal conditions (median). Args: model (gr.Model): Model to evaluate df_det (DataFrame): Deterministic levels for evaluation; use "nom" for nominal deterministic levels. append (bool): Append results to nominal inputs? skip (bool): Skip evaluation of the functions? Returns: DataFrame: Results of nominal model evaluation or unevaluated design Examples: >>> import grama as gr >>> from grama.models import make_test >>> md = make_test() >>> md >> gr.ev_nominal(df_det="nom") """ ## Draw from underlying gaussian quantiles = ones((1, model.n_var_rand)) * 0.5 # Median ## Convert samples to desired marginals df_pr = DataFrame(data=quantiles, columns=model.var_rand) df_rand = model.density.pr2sample(df_pr) ## Construct outer-product DOE df_samp = model.var_outer(df_rand, df_det=df_det) if skip: return df_samp return eval_df(model, df=df_samp, append=append) ev_nominal = add_pipe(eval_nominal) ## Gradient finite-difference evaluation # -------------------------------------------------- @curry def eval_grad_fd(model, h=1e-8, df_base=None, var=None, append=True, skip=False): r"""Finite-difference gradient approximation Evaluates a given model with a central-difference stencil to approximate the gradient. Args: model (gr.Model): Model to differentiate h (numeric): finite difference stepsize, single (scalar): or per-input (array) df_base (DataFrame): Base-points for gradient calculations var (list(str) or string): list of variables to differentiate, or flag; "rand" for var_rand, "det" for var_det append (bool): Append results to base point inputs? skip (bool): Skip evaluation of the functions? Returns: DataFrame: Gradient approximation or unevaluated design @pre (not isinstance(h, collections.Sequence)) | (h.shape[0] == df_base.shape[1]) Examples: >>> import grama as gr >>> from grama.models import make_cantilever_beam >>> md = make_cantilever_beam() >>> df_nom = md >> gr.ev_nominal(df_det="nom") >>> df_grad = md >> gr.ev_grad_fd(df_base=df_nom) >>> df_grad >> gr.tf_gather("var", "val", gr.everything()) """ ## Check invariants if not set(model.var).issubset(set(df_base.columns)): raise ValueError("model.var must be subset of df_base.columns") if var is None: var = model.var elif isinstance(var, str): if var == "rand": var = model.var_rand elif var == "det": var = model.var_det else: raise ValueError("var flag not recognized; use 'rand' or 'det'") else: if not set(var).issubset(set(model.var)): raise ValueError("var must be subset of model.var") var_fix = list(set(model.var).difference(set(var))) ## TODO if skip == True: raise NotImplementedError("skip not implemented") ## Build stencil n_var = len(var) stencil = eye(n_var) * h stepscale = tile(atleast_2d(0.5 / h).T, (1, model.n_out)) outputs = model.out nested_labels = [ list(map(lambda s_out: "D" + s_out + "_D" + s_var, outputs)) for s_var in var ] grad_labels = list(itertools.chain.from_iterable(nested_labels)) ## Loop over df_base results = [] # TODO: Preallocate? for row_i in range(df_base.shape[0]): ## Evaluate df_left = eval_df( model, gr.tran_outer( DataFrame( columns=var, data=-stencil + df_base[var].iloc[[row_i]].values ), df_base[var_fix].iloc[[row_i]], ), append=False, ) df_right = eval_df( model, gr.tran_outer( DataFrame( columns=var, data=+stencil + df_base[var].iloc[[row_i]].values ), df_base[var_fix].iloc[[row_i]], ), append=False, ) ## Compute differences res = (stepscale * (df_right[outputs] - df_left[outputs]).values).flatten() df_grad = DataFrame(columns=grad_labels, data=[res]) results.append(df_grad) return concat(results).reset_index(drop=True) ev_grad_fd = add_pipe(eval_grad_fd) ## Conservative quantile evaluation # -------------------------------------------------- @curry def eval_conservative(model, quantiles=None, df_det=None, append=True, skip=False): r"""Evaluates a given model at conservative input quantiles Uses model specifications to determine the "conservative" direction for each input, and evaluates the model at the desired quantile. Provided primarily for comparing UQ against pseudo-deterministic design criteria. Note that if there is no conservative direction for the given input, the given quantile will be ignored and the median will automatically be selected. Args: model (gr.Model): Model to evaluate quantiles (numeric): lower quantile value(s) for conservative evaluation; can be single value for all inputs, array of values for each random variable, or None for default 0.01. values in [0, 0.5] df_det (DataFrame): Deterministic levels for evaluation; use "nom" for nominal deterministic levels. append (bool): Append results to conservative inputs? skip (bool): Skip evaluation of the functions? Returns: DataFrame: Conservative evaluation or unevaluated design Examples: >>> import grama as gr >>> from grama.models import make_plate_buckle >>> md = make_plate_buckle() >>> md >> gr.ev_conservative(df_det="nom") """ ## Default behavior if quantiles is None: print("eval_conservative() using quantile default 0.01;") print("provide `quantiles` keyword for non-default behavior.") quantiles = [0.01] * model.n_var_rand ## Handle scalar vs vector quantiles try: len(quantiles) except TypeError: quantiles = [quantiles] * model.n_var_rand ## Modify quantiles for conservative directions quantiles = [ 0.5 + (0.5 - quantiles[i]) * model.density.marginals[model.var_rand[i]].sign for i in range(model.n_var_rand) ] quantiles = atleast_2d(quantiles) ## Draw samples df_pr =
DataFrame(data=quantiles, columns=model.var_rand)
pandas.DataFrame
import pandas as pd import pytest import woodwork as ww from pandas.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) from evalml.pipelines.components import LabelEncoder def test_label_encoder_init(): encoder = LabelEncoder() assert encoder.parameters == {"positive_label": None} assert encoder.random_seed == 0 def test_label_encoder_fit_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() with pytest.raises(ValueError, match="y cannot be None"): encoder.fit(X) encoder.fit(X, y) with pytest.raises(ValueError, match="y cannot be None"): encoder.inverse_transform(None) def test_label_encoder_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X) assert_frame_equal(X, X_t) assert y_t is None def test_label_encoder_fit_transform_with_numeric_values_does_not_encode(): X = pd.DataFrame({}) # binary y = pd.Series([0, 1, 1, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) # multiclass X = pd.DataFrame({}) y = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) def test_label_encoder_fit_transform_with_numeric_values_needs_encoding(): X = pd.DataFrame({}) # binary y = pd.Series([2, 1, 2, 1]) y_expected = pd.Series([1, 0, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series([0, 1, 1, 3, 0, 3]) y_expected = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_with_categorical_values(): X = pd.DataFrame({}) # binary y = pd.Series(["b", "a", "b", "b"]) y_expected = pd.Series([1, 0, 1, 1]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series(["c", "a", "b", "c", "d"]) y_expected = pd.Series([2, 0, 1, 2, 3]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_equals_fit_and_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder() X_fit_transformed, y_fit_transformed = encoder.fit_transform(X, y) encoder_duplicate = LabelEncoder() encoder_duplicate.fit(X, y) X_transformed, y_transformed = encoder_duplicate.transform(X, y) assert_frame_equal(X_fit_transformed, X_transformed) assert_series_equal(y_fit_transformed, y_transformed) def test_label_encoder_inverse_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) y_expected = ww.init_series(y) encoder = LabelEncoder() _, y_fit_transformed = encoder.fit_transform(X, y) y_inverse_transformed = encoder.inverse_transform(y_fit_transformed) assert_series_equal(y_expected, y_inverse_transformed) y_encoded = pd.Series([1, 0, 2, 1]) y_expected = ww.init_series(pd.Series(["b", "a", "c", "b"])) y_inverse_transformed = encoder.inverse_transform(y_encoded) assert_series_equal(y_expected, y_inverse_transformed) def test_label_encoder_with_positive_label_multiclass_error(): y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder(positive_label="a") with pytest.raises( ValueError, match="positive_label should only be set for binary classification targets", ): encoder.fit(None, y) def test_label_encoder_with_positive_label_missing_from_input(): y = pd.Series(["a", "b", "a"]) encoder = LabelEncoder(positive_label="z") with pytest.raises( ValueError, match="positive_label was set to `z` but was not found in the input target data.", ): encoder.fit(None, y) @pytest.mark.parametrize( "y, positive_label, y_encoded_expected", [ ( pd.Series([True, False, False, True]), False, pd.Series([0, 1, 1, 0]), ), # boolean ( pd.Series([True, False, False, True]), True, pd.Series([1, 0, 0, 1]), ), # boolean ( pd.Series([0, 1, 1, 0]), 0, pd.Series([1, 0, 0, 1]), ), # int, 0 / 1, encoding should flip ( pd.Series([0, 1, 1, 0]), 1, pd.Series([0, 1, 1, 0]), ), # int, 0 / 1, encoding should not change ( pd.Series([6, 2, 2, 6]), 6, pd.Series([1, 0, 0, 1]), ), # ints, not 0 / 1, encoding should not change ( pd.Series([6, 2, 2, 6]), 2, pd.Series([0, 1, 1, 0]), ), # ints, not 0 / 1, encoding should flip (pd.Series(["b", "a", "a", "b"]), "a", pd.Series([0, 1, 1, 0])), # categorical (pd.Series(["b", "a", "a", "b"]), "b", pd.Series([1, 0, 0, 1])), # categorical ], ) def test_label_encoder_with_positive_label(y, positive_label, y_encoded_expected): encoder = LabelEncoder(positive_label=positive_label) _, y_fit_transformed = encoder.fit_transform(None, y) assert_series_equal(y_encoded_expected, y_fit_transformed) y_inverse_transformed = encoder.inverse_transform(y_fit_transformed) assert_series_equal(ww.init_series(y), y_inverse_transformed) def test_label_encoder_with_positive_label_fit_different_from_transform(): encoder = LabelEncoder(positive_label="a") y = pd.Series(["a", "b", "b", "a"]) encoder.fit(None, y) with pytest.raises(ValueError, match="y contains previously unseen labels"): encoder.transform(None, pd.Series(["x", "y", "x"])) @pytest.mark.parametrize("use_positive_label", [True, False]) def test_label_encoder_transform_does_not_have_all_labels(use_positive_label): encoder = LabelEncoder(positive_label="a" if use_positive_label else None) y = pd.Series(["a", "b", "b", "a"]) encoder.fit(None, y) expected = (
pd.Series([1, 1, 1, 1])
pandas.Series
#!/bin/python3 """ Provides analysis about the R-Mappings """ __author__ = 'Loraine' __version__ = '1.0' import pandas as pd from config import path from scipy.stats import ttest_ind class FirstExperiment(object): def __init__(self,filename): self.df =
pd.read_csv(path + filename)
pandas.read_csv
#!/usr/bin/python3.7 import pandas as pd import numpy as np import os, sys # Read in files. critical_0to1000 =
pd.read_csv("Critical.0-1000.txt", skipinitialspace=True, names=['seqnum', 'mutant_position', 'original_class', 'mutant_class', 'original_score', 'mutant_score', 'delta_score'], header=0, delim_whitespace=True)
pandas.read_csv
import pandas as pd import numpy as np from pathlib import Path import time from radon.raw import * from radon.cli import * from radon.complexity import * from radon.metrics import * import logging import tqdm import itertools from func_timeout import func_timeout, FunctionTimedOut import signal import logging import multiprocessing as mp from multiprocessing_logging import install_mp_handler import subprocess import json import os # Paths of sample projeects PATH_SAMPLE = Path("../Sample_Projects/round_2/").resolve() # Paths of .csv files PATH_CSV = Path("../csv/round_2/").resolve() # Path of mi files PATH_MI = Path("{0}/mi/".format(PATH_CSV)).resolve() # Create the main directory for cloning projects PATH_MI.mkdir(parents=True, exist_ok=True) timeOut = 10 def calculateCC(path): # print(path) result = subprocess.check_output(['radon', 'cc', '--total-average', path], stderr= subprocess.STDOUT, timeout=timeOut) # print(result.decode("utf-8")) result_str = result.decode("utf-8") if(len(result_str) > 0): # Split the last line and collect the data output = result_str.split("Average complexity: ")[-1].split(" ") # print(result) # Rank A - F cc_rank = output[0] # print(cc_rank) # Remove (cc_score) -> cc_score and convert to float value cc_score = float(output[1].replace("(", "").replace(")", "").strip()) # print(cc_score) else: cc_rank = np.NaN cc_score = np.NaN # print({'cc_rank': cc_rank, 'cc_score': cc_score}) return {'cc_rank': cc_rank, 'cc_score': cc_score} def calculateHV(path): # print(path) result = subprocess.check_output(['radon', 'hal', '-j', path], stderr= subprocess.STDOUT, timeout=timeOut) # print(result.decode("utf-8")) result_str = result.decode("utf-8") # print(stdout.decode("utf-8")) # print(stderr) x = result_str js = json.loads(x) hal = js[path]['total'] # print(hal) # return array h1, h2, N1, N2, vocabulary, length, calculated_length, volume, difficulty, effort, time, bugs # print({'h1': hal[0], 'h2': hal[1], 'N1': hal[2], 'N2': hal[3], 'vocabulary': hal[4], 'length': hal[5], 'calculated_length': hal[6], 'volume': hal[7], 'difficulty': hal[8], 'effort': hal[9], 'time': hal[10], 'bugs': hal[11]}) return {'h1': hal[0], 'h2': hal[1], 'N1': hal[2], 'N2': hal[3], 'vocabulary': hal[4], 'length': hal[5], 'calculated_length': hal[6], 'volume': hal[7], 'difficulty': hal[8], 'effort': hal[9], 'time': hal[10], 'bugs': hal[11]} def calculateLOC(path): result = subprocess.check_output(['radon', 'raw', '-j', path], stderr= subprocess.STDOUT, timeout=timeOut) # print(result.decode("utf-8")) result_str = result.decode("utf-8") # print(stdout.decode("utf-8")) # print(stderr) x = result_str js = json.loads(x) raw = js[path] # Return dict {'loc': 259, 'lloc': 151, 'single_comments': 48, 'sloc': 149, 'multi': 7, 'comments': 48, 'blank': 55} return raw # def calculateCC(code): # # Register the signal function handler # signal.signal(signal.SIGALRM, handler) # # Define a timeout for your function (10 seconds) # signal.alarm(10) # try: # arr = mi_parameters(code, count_multi=False) # CC = arr[1] # # print(mi_visit(txt, False)) # except SyntaxError: # CC = -1 # finally: # # Unregister the signal so it won't be triggered # # if the timeout is not reached. # signal.signal(signal.SIGALRM, signal.SIG_IGN) # return CC # def calculateHV(code, file): # # Register the signal function handler # signal.signal(signal.SIGALRM, handler) # # Define a timeout for your function (10 seconds) # signal.alarm(10) # try: # arr = mi_parameters(code, count_multi=False) # hv = arr[0] # except SyntaxError: # hv = -1 # print(str(file)) # finally: # # Unregister the signal so it won't be triggered # # if the timeout is not reached. # signal.signal(signal.SIGALRM, signal.SIG_IGN) # return hv # def calculateLOC(code): # # Register the signal function handler # signal.signal(signal.SIGALRM, handler) # # Define a timeout for your function (10 seconds) # signal.alarm(10) # try: # loc = analyze(code) # # Module(loc=209, lloc=75, sloc=128, comments=8, multi=36, blank=37, single_comments=8) # # sloc = loc[2] # except SyntaxError: # lst = [-1] # loc = list(itertools.chain.from_iterable(itertools.repeat(x, 7) for x in lst)) # finally: # # Unregister the signal so it won't be triggered # # if the timeout is not reached. # signal.signal(signal.SIGALRM, signal.SIG_IGN) # return loc # def calculatePercentComment(code): # # Register the signal function handler # signal.signal(signal.SIGALRM, handler) # # Define a timeout for your function (10 seconds) # signal.alarm(10) # try: # arr = mi_parameters(code, count_multi=False) # # Convert percent to radian # percent = arr[3]*0.06283 # except SyntaxError: # percent = -1 # finally: # # Unregister the signal so it won't be triggered # # if the timeout is not reached. # signal.signal(signal.SIGALRM, signal.SIG_IGN) # return percent def calculateMI(hv, cc, sloc): if(hv != np.NaN and cc != np.NaN and sloc != np.NaN): real_mi = np.clip(100 * (171-(5.2*np.log(hv+1))-(0.23*cc)-(16.2*np.log(sloc+1)))/171, 0, 100) # print("MI:") # print(100 * (171-(5.2*np.log(hv))-(0.23*cc)-(16.2*np.log(sloc)))/171) # print(real_mi) return real_mi else: return np.NaN def mergeFile(path_project): path = Path(path_project) merge = "" # Merge all .py files as one file # Then, input it into radon API(mi_visit) to calculate MI for each project for file in path_project.rglob('*.py'): txt = open(str(file)).read() merge = merge + "\n" + txt return merge def handler(signum, frame): raise Exception("Time Out!") def evaluate(path_project): project_id = int(path_project.name) temp = [] for dirpath, dirs, files in tqdm.tqdm(list(os.walk("{0}".format(path_project))), desc="File Level: {0}".format(project_id)): for filename in files: python = os.path.join(dirpath,filename) # print(python) if(python.endswith(".py")): try: path = "{0}".format(python) # print(path) hv = calculateHV(path) # hv = func_timeout(10, calculateHV, args=code) cc = calculateCC(path) # print(cc) # # cc = func_timeout(10, calculateCC, args=code) raw = calculateLOC(path) # # all_loc = func_timeout(10, calculateLOC, args=code) real_mi = calculateMI(hv['volume'], cc['cc_score'], raw['sloc']) d = {'project_id': path_project.name} d.update(hv) d.update(cc) d.update(raw) d.update({'mi': real_mi}) d.update({'path': path}) temp.append(d) # logging.info("project_id: {0}, path: {1}".format(project_id, file)) # print(d) except OSError as o: logging.error("[{0}], project_id: {1}, path: {2}".format(o, project_id, python)) except Exception as e: logging.error("[{0}], project_id: {1}, path: {2}".format(e, project_id, python)) # print(temp) df = pd.DataFrame.from_dict(temp) # print(df) df.to_csv("{0}/{1}.csv".format(PATH_MI, project_id), index=False) # print("########### Finish Calculating MI project: {0} ############".format(project_id)) return df def dispatch_jobs(func, data): # Get the number of CPU cores numberOfCores = mp.cpu_count() # print(numberOfCores) # Data split by number of cores # data_split = np.array_split(data, numberOfCores, axis=0) # print(type(data_split[0])) # set up logging to file logging.basicConfig(filename='mi.log', filemode='w', level=logging.ERROR) install_mp_handler() with mp.Pool(processes=numberOfCores) as pool: pool.map(func, data) pool.close() pool.join() # result.to_csv("{0}/{1}".format(PATH_CSV, "mi_original.csv"), index=False) print("########### Dispatch jobs Finished ############") def contain(project_id, df): flag = False for id in df['project_id']: if(id == project_id): # print(path_project.name) flag = True return flag def rerun(): rerun = pd.read_csv("/home/senior/senior/src/mi_rerun.csv") for path_project in tqdm.tqdm(list(PATH_SAMPLE.iterdir()), desc="Project Level", total=len(rerun)): project_id = int(path_project.name) temp = [] if(contain(project_id, rerun)): for dirpath, dirs, files in os.walk("{0}".format(path_project)): for filename in tqdm.tqdm(list(files), desc="File Level: {0}".format(project_id)): python = os.path.join(dirpath,filename) # print(python) if(python.endswith(".py")): try: path = "{0}".format(python) # print(path) hv = calculateHV(path) # hv = func_timeout(10, calculateHV, args=code) cc = calculateCC(path) # print(cc) # # cc = func_timeout(10, calculateCC, args=code) raw = calculateLOC(path) # # all_loc = func_timeout(10, calculateLOC, args=code) real_mi = calculateMI(hv['volume'], cc['cc_score'], raw['sloc']) d = {'project_id': path_project.name} d.update(hv) d.update(cc) d.update(raw) d.update({'mi': real_mi}) d.update({'path': path}) temp.append(d) # logging.info("project_id: {0}, path: {1}".format(project_id, file)) # print(d) except OSError as os: logging.error("[{0}], project_id: {1}, path: {2}".format(os, project_id, python)) except Exception as e: logging.error("[{0}], project_id: {1}, path: {2}".format(e, project_id, python)) # print(temp) df =
pd.DataFrame.from_dict(temp)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas.compat import range import pandas as pd import pandas.util.testing as tm # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons(object): def test_df_boolean_comparison_error(self): # GH#4576 # boolean comparisons with a tuple/list give unexpected results df = pd.DataFrame(np.arange(6).reshape((3, 2))) # not shape compatible with pytest.raises(ValueError): df == (2, 2) with pytest.raises(ValueError): df == [2, 2] def test_df_float_none_comparison(self): df = pd.DataFrame(np.random.randn(8, 3), index=range(8), columns=['A', 'B', 'C']) with pytest.raises(TypeError): df.__eq__(None) def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types(self, opname): # GH#15077, non-empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 result = getattr(df, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH#15077 empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('timestamps', [ [pd.Timestamp('2012-01-01 13:00:00+00:00')] * 2, [pd.Timestamp('2012-01-01 13:00:00')] * 2]) def test_tz_aware_scalar_comparison(self, timestamps): # Test for issue #15966 df = pd.DataFrame({'test': timestamps}) expected = pd.DataFrame({'test': [False, False]}) tm.assert_frame_equal(df == -1, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic(object): def test_df_add_flex_filled_mixed_dtypes(self): # GH#19611 dti = pd.date_range('2016-01-01', periods=3) ser = pd.Series(['1 Day', 'NaT', '2 Days'], dtype='timedelta64[ns]') df = pd.DataFrame({'A': dti, 'B': ser}) other = pd.DataFrame({'A': ser, 'B': ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( {'A': pd.Series(['2016-01-02', '2016-01-03', '2016-01-05'], dtype='datetime64[ns]'), 'B': ser * 2}) tm.assert_frame_equal(result, expected) class TestFrameMulDiv(object): """Tests for DataFrame multiplication and division""" # ------------------------------------------------------------------ # Mod By Zero def test_df_mod_zero_df(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) result = df % df tm.assert_frame_equal(result, expected) def test_df_mod_zero_array(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values % df.values result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype='float64') result2.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result2, expected) def test_df_mod_zero_int(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df % 0 expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') % 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_mod_zero_series_does_not_commute(self): # GH#3590, modulo as ints # not commutative with series df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser % df res2 = df % ser assert not res.fillna(0).equals(res2.fillna(0)) # ------------------------------------------------------------------ # Division By Zero def test_df_div_zero_df(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / df first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) tm.assert_frame_equal(result, expected) def test_df_div_zero_array(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) with np.errstate(all='ignore'): arr = df.values.astype('float') / df.values result = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_df_div_zero_int(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / 0 expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns) expected.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') / 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_div_zero_series_does_not_commute(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser / df res2 = df / ser assert not res.fillna(0).equals(res2.fillna(0)) class TestFrameArithmetic(object): @pytest.mark.xfail(reason='GH#7996 datetime64 units not converted to nano', strict=True) def test_df_sub_datetime64_not_ns(self): df = pd.DataFrame(pd.date_range('20130101', periods=3)) dt64 = np.datetime64('2013-01-01') assert dt64.dtype == 'datetime64[D]' res = df - dt64 expected = pd.DataFrame([
pd.Timedelta(days=0)
pandas.Timedelta
#%% import json from itertools import chain, cycle import numpy as np import pandas as pd # from pandas import json_normalize from pandas.io.json import json_normalize import matplotlib.pyplot as plt import seaborn as sns sns.set_context('notebook') import sys import os # %% ## Connect to Postgres database with data and DBT error views import psycopg2 as pg import yaml from pathlib import Path with open(Path.home() / ".dbt/profiles.yml") as f: db_config = yaml.load(f,Loader=yaml.FullLoader) db_credentials = db_config['default']['outputs']['dev'] conn = pg.connect(host=db_credentials['host'], user=db_credentials['user'], password=db_credentials['<PASSWORD>'], port=db_credentials['port'], dbname=db_credentials['dbname'] ) # %% ## Load and parse DBT error results with open('dbt/target/run_results_test.json') as f: run_results = json.load(f) dbt_results = json_normalize(run_results['results']) # Get rid of verbose columns we don't need dbt_results.drop(list(dbt_results.filter(regex = '_sql')), axis = 1, inplace = True) dbt_results.drop(list(dbt_results.filter(regex = '_path')), axis = 1, inplace = True) dbt_results.rename(columns={'node.alias': 'test_name'}, inplace=True) # Unravel nested list of refs and add tag columns dbt_results['referenced_tables'] = dbt_results['node.refs'].apply(chain.from_iterable).apply(list) # Separate out the tests that have successfully created views from those that failed errors = dbt_results[dbt_results['status']=='ERROR'][['test_name','error']] successes = dbt_results[dbt_results['status']=='CREATE VIEW'][['test_name', 'referenced_tables']] # %% # Copy the views from the database created by the test runs to local dataframes # Some views don't have UUIDS so mark those as wrong test_dfs = {} wrong_outputs = [] for s in successes['test_name']: test_table = pd.read_sql(f'SELECT * FROM analytics.{s}',conn) if not any(col in test_table for col in ['uuid','from_uuid','chv_uuid','chu_uuid']): # print(f'{s} does not contain uuid') wrong_outputs.append(s) else: test_dfs[s] = pd.read_sql(f'SELECT * FROM analytics.{s}',conn) # %% from ast import literal_eval ge_results = pd.read_csv('generated_reports/ge_clean_results.csv') ge_results.rename(columns={'result.short_name':'test_name'}, inplace=True) ge_results['referenced_tables'] = ge_results['result.table'].apply(lambda x : [x]) ge_successes = ge_results[~ ge_results['error']][['test_name', 'referenced_tables']] ge_errors = ge_results[~ ge_results['error']][['test_name','error']] for test in ge_successes['test_name']: test_row = ge_results[ge_results['test_name'] == test] test_column = test_row['result.id_column'].values[0] error_value = test_row['result.unexpected_list'].apply(literal_eval).values[0] if test_column in ['uuid','from_uuid','chv_uuid','chu_uuid']: test_dfs[test] = pd.DataFrame(error_value, columns=[test_column]) else: wrong_outputs.append(test) # combine GE results with DBT results successes = successes.append(ge_successes, ignore_index=True) errors = errors.append(ge_errors, ignore_index=True) successes = successes[~successes['test_name'].isin(wrong_outputs)] wrong = pd.DataFrame(wrong_outputs, columns=['test_name']) wrong['error'] = 'Output view does not contain UUID' errors = errors.append(wrong, ignore_index=True) #%% tables = ['patient', 'assessment', 'assessment_follow_up', 'pregnancy', 'pregnancy_follow_up', 'postnatal_follow_up', 'chv', 'supervisor', 'household','delivery','immunization'] tags = ['tag_' + r for r in tables] for i in tables: successes['tag_' + i] = successes.apply(lambda x: int(i in x['referenced_tables']), axis=1) # %% ref_dfs = {} for t in tables: ref_dfs[t] = pd.read_sql(f'SELECT * FROM {t}',conn) # Iterating through each table in the database, pull out the relevant tests and put stats in a dataframe OUTPUT_DIR = './generated_reports/' table_outputs = [] test_outputs = [] for table in tables: # print(table) tests = successes[successes['tag_'+table]==1]['test_name'].to_list() if len(tests) == 0: continue dfs = [test_dfs[t] for t in tests] ref = ref_dfs[table] if table == 'chv': uuid_key = '<KEY>' #chv table has a different naming convention elif table == 'supervisor': uuid_key = '<KEY>' #supervisor table too! else: uuid_key = 'uuid' if 'reported' in ref: ## for tables that have a time associated with entries (not chv or supervisor) ## group by time and plot. ref['reported'] = pd.to_datetime(ref['reported']) plot_data = [] for t,d in zip(tests, dfs): if 'reported' in d: # For tests on one table we have all the data we need subset = d subset['reported'] = pd.to_datetime(subset['reported']) elif uuid_key in d: subset = pd.merge(ref,d,on=uuid_key,how='inner',suffixes=('','_')) elif ('from_uuid' in d) or ('to_id' in d): referenced_tables = successes[successes['test_name']==t]['referenced_tables'] key = 'from_uuid' if referenced_tables.iloc[0][0] == table else 'to_id' subset = pd.merge(ref,d,left_on=uuid_key,right_on=key,how='inner',suffixes=('','_')) subset_resamp = subset[subset['reported'].dt.year>=2017].groupby(pd.Grouper(key='reported',freq='1W'))[uuid_key].count() if subset.shape[0] != 0: plot_data.append((t, subset_resamp) ) n_plots = len(plot_data)+1 prop_cycle = plt.rcParams['axes.prop_cycle'] colors = cycle(prop_cycle.by_key()['color']) fig, ax = plt.subplots(n_plots, 1, figsize=(10,n_plots*3),sharex=False) ref_resamp = ref[ref['reported'].dt.year>=2017].groupby(pd.Grouper(key='reported',freq='1W'))[uuid_key].count() ref_resamp.plot(ax=ax[0], label=table, color=next(colors)) ax[0].legend(loc='upper left') ax[0].set_title(table, fontsize=18) for data,a in zip(plot_data,ax[1:]): t, resamp = data (resamp/ref_resamp).plot(ax=a, color=next(colors)) a.set_title(t) a.set_ylabel('Fraction IoP') plt.tight_layout() plt.savefig(OUTPUT_DIR + table +'.png') test_output = [] all_errors = [] for t,d in zip(tests, dfs): if ('from_uuid' in d) or ('to_id' in d): referenced_tables = successes[successes['test_name']==t]['referenced_tables'] key = 'from_uuid' if referenced_tables.iloc[0][0] == table else 'to_id' else: key = uuid_key row_errors = d[key].dropna().values.tolist() all_errors += row_errors test_output.append({ 'Test': t, 'Table': table, 'Errors': len(row_errors), '% Error': len(row_errors)/ref.shape[0]*100 }) test_outputs += test_output unique_errors = pd.Series(all_errors).nunique() table_output = {} table_output['Table'] = table table_output['Unique Rows with Error'] = unique_errors table_output['Total Rows'] = ref.shape[0] table_output['% Error'] = table_output['Unique Rows with Error']/table_output['Total Rows']*100 table_outputs.append(table_output) table_outputs = pd.DataFrame(table_outputs) test_outputs =
pd.DataFrame(test_outputs)
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"), pd.Series([], dtype="float64"), ], ) def test_series_keys(ps): gds = cudf.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([], index=[100]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = cudf.from_pandas(other) expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({12: [], 22: []}), pd.DataFrame([[1, 2], [3, 4]], columns=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[0, 1], index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[1, 0], index=[7, 8]), pd.DataFrame( { 23: [315.3324, 3243.32432, 3232.332, -100.32], 33: [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { 0: [315.3324, 3243.32432, 3232.332, -100.32], 1: [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), ], ) @pytest.mark.parametrize( "other", [ pd.Series([10, 11, 23, 234, 13]), pytest.param( pd.Series([10, 11, 23, 234, 13], index=[11, 12, 13, 44, 33]), marks=pytest.mark.xfail( reason="pandas bug: " "https://github.com/pandas-dev/pandas/issues/35092" ), ), {1: 1}, {0: 10, 1: 100, 2: 102}, ], ) @pytest.mark.parametrize("sort", [False, True]) def test_dataframe_append_series_dict(df, other, sort): pdf = df other_pd = other gdf = cudf.from_pandas(df) if isinstance(other, pd.Series): other_gd = cudf.from_pandas(other) else: other_gd = other expected = pdf.append(other_pd, ignore_index=True, sort=sort) actual = gdf.append(other_gd, ignore_index=True, sort=sort) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_series_mixed_index(): df = cudf.DataFrame({"first": [], "d": []}) sr = cudf.Series([1, 2, 3, 4]) with pytest.raises( TypeError, match=re.escape( "cudf does not support mixed types, please type-cast " "the column index of dataframe and index of series " "to same dtypes." ), ): df.append(sr, ignore_index=True) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ [pd.DataFrame([[5, 6], [7, 8]], columns=list("AB"))], [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), ], [pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()], [ pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame(), pd.DataFrame(), pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), ], [ pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), ], [pd.DataFrame([]), pd.DataFrame([], index=[100])], [ pd.DataFrame([]), pd.DataFrame([], index=[100]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = [ cudf.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], ) @pytest.mark.parametrize( "other", [ [[1, 2], [10, 100]], [[1, 2, 10, 100, 0.1, 0.2, 0.0021]], [[]], [[], [], [], []], [[0.23, 0.00023, -10.00, 100, 200, 1000232, 1232.32323]], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = [ cudf.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_error(): df = cudf.DataFrame({"a": [1, 2, 3]}) ps = cudf.Series([1, 2, 3]) with pytest.raises( TypeError, match="Can only append a Series if ignore_index=True " "or if the Series has a name", ): df.append(ps) def test_cudf_arrow_array_error(): df = cudf.DataFrame({"a": [1, 2, 3]}) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Table via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Table, consider " "using .to_arrow()", ): df.__arrow_array__() sr = cudf.Series([1, 2, 3]) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Array via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Array, consider " "using .to_arrow()", ): sr.__arrow_array__() sr = cudf.Series(["a", "b", "c"]) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Array via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Array, consider " "using .to_arrow()", ): sr.__arrow_array__() @pytest.mark.parametrize("n", [0, 2, 5, 10, None]) @pytest.mark.parametrize("frac", [0.1, 0.5, 1, 2, None]) @pytest.mark.parametrize("replace", [True, False]) @pytest.mark.parametrize("axis", [0, 1]) def test_dataframe_sample_basic(n, frac, replace, axis): # as we currently don't support column with same name if axis == 1 and replace: return pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5], "float": [0.05, 0.2, 0.3, 0.2, 0.25], "int": [1, 3, 5, 4, 2], }, index=[1, 2, 3, 4, 5], ) df = cudf.DataFrame.from_pandas(pdf) random_state = 0 try: pout = pdf.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) except BaseException: assert_exceptions_equal( lfunc=pdf.sample, rfunc=df.sample, lfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, "axis": axis, }, ), rfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, "axis": axis, }, ), ) else: gout = df.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) assert pout.shape == gout.shape @pytest.mark.parametrize("replace", [True, False]) @pytest.mark.parametrize("random_state", [1, np.random.mtrand.RandomState(10)]) def test_dataframe_reproducibility(replace, random_state): df = cudf.DataFrame({"a": cupy.arange(0, 1024)}) expected = df.sample(1024, replace=replace, random_state=random_state) out = df.sample(1024, replace=replace, random_state=random_state) assert_eq(expected, out) @pytest.mark.parametrize("n", [0, 2, 5, 10, None]) @pytest.mark.parametrize("frac", [0.1, 0.5, 1, 2, None]) @pytest.mark.parametrize("replace", [True, False]) def test_series_sample_basic(n, frac, replace): psr = pd.Series([1, 2, 3, 4, 5]) sr = cudf.Series.from_pandas(psr) random_state = 0 try: pout = psr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) except BaseException: assert_exceptions_equal( lfunc=psr.sample, rfunc=sr.sample, lfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, }, ), rfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, }, ), ) else: gout = sr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) assert pout.shape == gout.shape @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[100, 10, 1, 0]), pd.DataFrame(columns=["a", "b", "c", "d"]), pd.DataFrame(columns=["a", "b", "c", "d"], index=[100]), pd.DataFrame( columns=["a", "b", "c", "d"], index=[100, 10000, 2131, 133] ), pd.DataFrame({"a": [1, 2, 3], "b": ["abc", "xyz", "klm"]}), ], ) def test_dataframe_empty(df): pdf = df gdf = cudf.from_pandas(pdf) assert_eq(pdf.empty, gdf.empty) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[100, 10, 1, 0]), pd.DataFrame(columns=["a", "b", "c", "d"]), pd.DataFrame(columns=["a", "b", "c", "d"], index=[100]), pd.DataFrame( columns=["a", "b", "c", "d"], index=[100, 10000, 2131, 133] ), pd.DataFrame({"a": [1, 2, 3], "b": ["abc", "xyz", "klm"]}), ], ) def test_dataframe_size(df): pdf = df gdf = cudf.from_pandas(pdf) assert_eq(pdf.size, gdf.size) @pytest.mark.parametrize( "ps", [ pd.Series(dtype="float64"), pd.Series(index=[100, 10, 1, 0], dtype="float64"), pd.Series([], dtype="float64"), pd.Series(["a", "b", "c", "d"]), pd.Series(["a", "b", "c", "d"], index=[0, 1, 10, 11]), ], ) def test_series_empty(ps): ps = ps gs = cudf.from_pandas(ps) assert_eq(ps.empty, gs.empty) @pytest.mark.parametrize( "data", [ [], [1], {"a": [10, 11, 12]}, { "a": [10, 11, 12], "another column name": [12, 22, 34], "xyz": [0, 10, 11], }, ], ) @pytest.mark.parametrize("columns", [["a"], ["another column name"], None]) def test_dataframe_init_with_columns(data, columns): pdf = pd.DataFrame(data, columns=columns) gdf = cudf.DataFrame(data, columns=columns) assert_eq( pdf, gdf, check_index_type=False if len(pdf.index) == 0 else True, check_dtype=False if pdf.empty and len(pdf.columns) else True, ) @pytest.mark.parametrize( "data, ignore_dtype", [ ([pd.Series([1, 2, 3])], False), ([pd.Series(index=[1, 2, 3], dtype="float64")], False), ([pd.Series(name="empty series name", dtype="float64")], False), ( [pd.Series([1]), pd.Series([], dtype="float64"), pd.Series([3])], False, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([], dtype="float64"), pd.Series([3], name="series that is named"), ], False, ), ([pd.Series([1, 2, 3], name="hi")] * 10, False), ([pd.Series([1, 2, 3], name=None, index=[10, 11, 12])] * 10, False), ( [ pd.Series([1, 2, 3], name=None, index=[10, 11, 12]), pd.Series([1, 2, 30], name=None, index=[13, 144, 15]), ], True, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), ], False, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]),
pd.Series([], name="abc", dtype="float64")
pandas.Series
import re import fnmatch import os, sys, time import pickle, uuid from platform import uname import pandas as pd import numpy as np import datetime from math import sqrt from datetime import datetime import missingno as msno import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa import seasonal from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.stattools import adfuller, kpss import statsmodels.api as sm from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt from scipy import signal import pmdarima as pm import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as mcolors import matplotlib.patches as mpatches from pandas.plotting import lag_plot import seaborn as sns from pylab import rcParams from sklearn.ensemble import RandomForestRegressor from lightgbm import LGBMRegressor from xgboost import XGBRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, LabelEncoder, OneHotEncoder from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error # import keras # from keras.models import Sequential # from keras.layers import Dense # from keras.layers import LSTM # from keras.layers import Dropout # from keras.layers import * # from keras.callbacks import EarlyStopping from src.Config import Config from .Model import Model class Logger(object): info = print critical = print error = print class Train(Config): REGRESSION_ALGORITHMS = dict( # # Supervised Learning XGBR = dict(alg=XGBRegressor, args=dict(silent=1, random_state=self.MODELLING_CONFIG["RANDOM_STATE"], objective="reg:squarederror"), scaled=False), LGBMR = dict(alg=LGBMRegressor, args=dict(random_state=self.MODELLING_CONFIG["RANDOM_STATE"]), scaled=False), RFR = dict(alg=RandomForestRegressor, args=dict(n_estimators=100, random_state=self.MODELLING_CONFIG["RANDOM_STATE"]), scaled=False), RFR_tuned = dict(alg=RandomForestRegressor, args=dict(random_state=self.MODELLING_CONFIG["RANDOM_STATE"]), scaled=False, param_grid={ 'n_estimators': [20, 50, 100, 200, 500], #100 'max_depth':[2, 4, None, 8], #None 'min_samples_split':[0.5, 2, 4, 10], #2 'max_features':[1, 2, None, 3, 6], #auto }, ), XGBR_tuned = dict(alg=XGBRegressor, args=dict(silent=1, random_state=self.MODELLING_CONFIG["RANDOM_STATE"], objective="reg:squarederror"), scaled=False, param_grid={ 'learning_rate':[0.01, 0.05, 0.1, 0.3],#, 0.5, 0.9], 'max_depth': [2, 3, 6, 10, 13], #3 'n_estimators': [20, 50, 200],#, 500], #100 #'booster': ['gbtree', 'dart'], #'gbtree' 'colsample_bytree': [0.2, 0.5, 0.8, 1.0], 'subsample': [0.2, 0.5, 0.8, 1.0], # 'early_stopping_rounds': [200], }, ), LGBMR_tuned = dict(alg=LGBMRegressor, args=dict(random_state=self.MODELLING_CONFIG["RANDOM_STATE"]), scaled=False, param_grid={ 'learning_rate':[0.01, 0.05, 0.1, 0.3, 0.9], #0.1 'max_depth':[2, 3, 6], 'n_estimators': [20, 50, 100, 200], #100 'num_leaves': [4, 8, 64], #31 # 'subsample': [0.2, 0.5, 0.8, 1.0], # 'bagging_fraction': [0.2, 0.5, 0.8, 1.0], # 'early_stopping_rounds': [200] #'boosting' : ['gbdt', 'dart', 'goss'], }, ), ) SARIMA = pm.auto_arima FORECAST_ALGORITHMS = dict( # # Forecasting ARIMA = dict(alg=ARIMA, args=dict(order=(Config.MODELLING_CONFIG['ARIMA_P'], Config.MODELLING_CONFIG['ARIMA_D'], Config.MODELLING_CONFIG['ARIMA_Q']))), SARIMA = dict(alg=SARIMA, args=dict(start_p=1, d=0, start_q=1, max_p=5, max_d=2, max_q=5, m=7, start_P=0, D=0, start_Q=0, max_P=5, max_D=2, max_Q=5, seasonal=True, trace=True, error_action='ignore', suppress_warnings=True, stepwise=True)), HOLT_WINTER = dict(alg=ExponentialSmoothing, args=dict(seasonal_periods=Config.MODELLING_CONFIG["HOLT_WINTER_SEASON"], trend=Config.MODELLING_CONFIG["HOLT_WINTER_TREND"], seasonal=Config.MODELLING_CONFIG["HOLT_WINTER_SEASONAL"])), ) def __init__(self, var, logger=Logger(), suffix=""): self.logger = logger self.models = {} self.axis_limit = [1e10, 0] self.suffix = suffix self.meta = dict( var = var, stime = datetime.now(), user = os.getenv('LOGNAME') or os.getlogin(), sys = uname()[1], py = '.'.join(map(str, sys.version_info[:3])), ) @staticmethod def vars(types=[], wc_vars=[], qreturn_dict=False): """ Return list of variable names Acquire the right features from dataframe to be input into model. Featurs will be acquired based the value "predictive" in the VARS dictionary. Parameters ---------- types : str VARS name on type of features Returns ------- Features with predictive == True in Config.VARS """ if types==None: types = [V for V in Config.VARS] selected_vars = [] for t in types: for d in Config.VARS[t]: if not d.get('predictive'): continue if len(wc_vars) != 0: matched_vars = fnmatch.filter(wc_vars, d['var']) if qreturn_dict: for v in matched_vars: dd = d.copy() dd['var'] = v selected_vars.append(dd) else: selected_vars.extend(matched_vars) else: if qreturn_dict and not d in selected_vars: selected_vars.append(d) else: if not d['var'] in selected_vars: selected_vars.append(d['var']) return selected_vars def read_csv_file(self, vars, fname=None, feature_engineer=Config.MODELLING_CONFIG["FEATURE_ENGINEERING"], **args): """Read in csv files Read in csv files from multiple data sources Parameters ---------- source_type : str Option to decide whether to read in single or multiple csv files fname : str (default=None) Name of csv file: - If "source_type" = "single", key in the csv file name without extension - If "source_type" = "multiple", do not need to key in anything, just leave it in default Returns ------- data : object Dataframe """ self.meta['feature_engineer'] = feature_engineer self.logger.info("Preparing data for modeling ...") self.sources = [vars] if self.meta['feature_engineer'] == True: self.sources.append("Feature_Engineer") elif self.meta['feature_engineer'] == False: self.sources = self.sources try: fname = "{}.csv".format(fname) self.data = pd.read_csv(os.path.join(Config.FILES["DATA_LOCAL"], fname)) cols = self.vars(self.sources, self.data.columns) self.data = self.data[cols + ["Date", "District", "Prod_Sales"]] if self.data.size == 0: self.logger.warning("no data found in file {}".format(fname)) if self.logger == print: exit() except FileNotFoundError: self.logger.critical("file {} is not found".format(fname)) if self.logger == print: exit() fname = os.path.join(self.FILES["DATA_LOCAL"], "{}{}.csv".format(Config.FILES["MERGED_DATA"], self.suffix)) self.data.to_csv(fname) self.logger.info("done.") return def run(self, algorithms=['ARIMA'], district=None, metric_eval="test", cv_type="loo", model_type=Config.MODELLING_CONFIG["MODEL_TYPE"]): """Initiate the modelling Set the arguments in running the model. Most of the model testing can be configure in this method Parameters ---------- algorithms : array-like, (default='LGBMR') Models to run; Models to run include hyperparameters set and any tuning can be adjusted in the algorithms. district : str District with product sales on either BIODIESEL or PRIMAX-95 metric_eval : str, optional (default='test') To determine whether to run cross-validation on per-district model; - If "test", no cross validation will be performed for per-district model. - If "cv", cross validation will be performed for per-district model. cv_type : str, optional (default='loo') Type of cross validation method to used in modelling; - If "loo", Leave One Out cross validation will be performed for per-district model. - If "kf", K-Fold cross validation will be performed for per-district model. Returns ------- Model results with best algorithm, metrics and saved model file in pickle format """ self.data.reset_index(inplace=True) self.data[["Date"]] = pd.to_datetime(self.data["Date"]) assert metric_eval in self.MODELLING_CONFIG["METRIC_EVAL_TYPE"] assert cv_type in self.MODELLING_CONFIG["CV_FOLD_TYPE"] self.metric_eval = metric_eval self.cv_type = cv_type self.meta['metric_eval'] = metric_eval self.meta['cv_type'] = cv_type self.meta['SPLIT_RATIO'] = self.MODELLING_CONFIG["SPLIT_RATIO"] self.meta["model_type"] = self.MODELLING_CONFIG["MODEL_TYPE"] if district == None: district = self.data["District"].unique() self.data = self.data[self.data["District"].isin(district)] if self.meta["model_type"] == "Forecasting": self.forecasting(self.data, algorithms) elif self.meta["model_type"] == "Supervised": self.regression(self.data, algorithms) self.sort_models() self.get_results() self.meta['runtime'] = datetime.now() - self.meta['stime'] self.meta['algorithms'] = algorithms self.logger.info("Training finished in {}.".format(self.meta['runtime'])) def regression(self, data, algorithms, column_name="District"): """Run the regression Run the regression model on each clustering_type defined with different models. Parameters ---------- data : str Merged dataframe algorithms : str Types of models column_name : str, optional (default='District') Unique column to used to subset the dataframe """ self.logger.info("Training using regression algorithms with evaluation type on '{}':".format(self.meta['metric_eval'])) # # loop over algorithms in supervised learning for algorithm in algorithms: start = time.time() self.logger.info(" Training using regression algorithm {} ...".format(algorithm)) # # loop over district n_districts = data[column_name].nunique() i_district = 0 for district, group_data in data.groupby(column_name): self.logger.info(" Building model for {} {} with total {} records ({} out of {}):"\ .format(column_name, district, group_data.shape[0], i_district, n_districts)) start_district = time.time() group_data = group_data.dropna(axis='columns', how = 'all') if not "{}".format(self.meta["var"]) in group_data.columns: self.logger.info(" There is no {} measurement for district : {}. Skipping...".format(self.meta["var"], district)) continue if 'Feature_Engineer' not in self.sources: self.sources.append('Feature_Engineer') predictives = [col for col in group_data.columns if col in self.vars(self.sources) and col != self.meta["var"]] vars_impute_interp = [] vars_impute_knn = [] for var in self.vars(self.sources, group_data.columns): v = next(v for source in self.sources for v in self.vars([source], group_data, True) if v['var'] == var) if algorithm in self.MODELLING_CONFIG["IMPUTE_ALGORITHMS"]: if v.get("impute", '') == 'interp': vars_impute_interp.append(var) else: vars_impute_knn.append(var) else: if v.get("impute", '') == 'interp': vars_impute_interp.append(var) elif v.get("impute", '') == 'knn': vars_impute_knn.append(var) else: pass # no imputation if vars_impute_interp != []: try: self.logger.info(" interpolation for {} ...".format(', '.join(vars_impute_interp))) group_data.loc[:, vars_impute_interp] = group_data.loc[:, vars_impute_interp].interpolate(limit_direction='both') except ValueError: self.logger.info(" Not enough data point in {} for KNN imputation and interpolation ...".format(', '.join(vars_impute_knn))) if vars_impute_knn != []: try: self.logger.info(" KNN imputation for {} ...".format(', '.join(vars_impute_knn))) group_data.loc[:, vars_impute_knn] = self.knn_impute(group_data.loc[:, vars_impute_knn]) except ValueError: self.logger.info(" Not enough data point in {} for KNN imputation and interpolation ...".format(', '.join(vars_impute_knn))) group_data = group_data[group_data[self.meta["var"]].notnull()] self.logger.info(" Remove observations with null value for response; new # of observations: {} (previously {})".format(group_data.shape[0], self.data.shape[0])) k = max(len(predictives) + 1, 5) kk = group_data.shape[0]*(Config.MODELLING_CONFIG["SPLIT_RATIO"]) if kk < k: self.logger.info(" Skipping model for {} {}; too few points: {}; minimum {} points required." \ .format(column_name, district, group_data.shape[0], int(k / (1-Config.MODELLING_CONFIG["SPLIT_RATIO"]))+1)) continue # # create model object, set response and independent variables (predictives) if not district in self.models: self.models[district] = [] model = Model(self.REGRESSION_ALGORITHMS[algorithm], district, self.meta["var"], predictives) model.set_props(algorithm, group_data) if self.REGRESSION_ALGORITHMS[algorithm]['scaled']: model.regression_scalar(group_data) else: model.regression_tree(group_data, self.meta['metric_eval'], self.meta['cv_type']) self.models[district].append(model) self.logger.info(" Metrics:: {}".format(', '.join(["{}:{:.2f}".format(m, v) for m, v in model.metrics.items()]))) if hasattr(model, 'metrics_holdout'): self.logger.info(" Holdout Metrics:: {}".format(', '.join(["{}:{:.2f}".format(m, v) for m, v in model.metrics_holdout.items()]))) self.logger.info(" {} {} trained using '{:d}' records in {:0.1f}s".format(district, column_name, group_data.shape[0], time.time()-start_district)) i_district += 1 #if i_district > 2: break self.logger.info(" {} {}(s) trained using {} algorithm in {:0.2f}s".format(i_district, column_name, algorithm, time.time()-start)) def forecasting(self, data, algorithms, column_name="District", univariate=Config.MODELLING_CONFIG["UNIVARIATE_OPTION"], seasonal=Config.MODELLING_CONFIG["SEASONAL_OPTION"]): """Run the regression / forecasting / heuristics model Run the regression model on each clustering_type defined with different models. Parameters ---------- data : str Merged dataframe algorithms : str Types of models column_name : str, optional (default='District') Unique column to used to subset the dataframe """ self.meta["univariate"] = self.MODELLING_CONFIG["UNIVARIATE_OPTION"] self.meta["seasonal"] = self.MODELLING_CONFIG["SEASONAL_OPTION"] self.logger.info("Training using forecasting algorithms with evaluation type on '{}':".format(self.meta['metric_eval'])) # # loop over algorithms in forecasting algorithms for algorithm in algorithms: start = time.time() self.logger.info(" Training using forecasting algorithm {} ...".format(algorithm)) # # loop over district n_districts = data[column_name].nunique() i_district = 0 for district, group_data in data.groupby(column_name): self.logger.info(" Building model for {} {} with total {} records ({} out of {}):"\ .format(column_name, district, group_data.shape[0], i_district, n_districts)) start_district = time.time() group_data = group_data.dropna(axis='columns', how = 'all') if not "{}".format(self.meta["var"]) in group_data.columns: self.logger.info(" There is no {} measurement for string : {}. Skipping...".format(self.meta["var"], district)) continue if self.meta["univariate"] == True: predictives = [col for col in group_data.columns if col in self.meta["var"]] elif self.meta["univariate"] == False: predictives = [col for col in group_data.columns if col in self.vars(self.sources) and col != self.meta["var"]] vars_impute_interp = [] vars_impute_knn = [] for var in self.vars(self.sources, group_data.columns): v = next(v for source in self.sources for v in self.vars([source], group_data, True) if v['var'] == var) if algorithm in self.MODELLING_CONFIG["IMPUTE_ALGORITHMS"]: if v.get("impute", '') == 'interp': vars_impute_interp.append(var) else: vars_impute_knn.append(var) else: if v.get("impute", '') == 'interp': vars_impute_interp.append(var) elif v.get("impute", '') == 'knn': vars_impute_knn.append(var) else: pass # no imputation if vars_impute_interp != []: try: self.logger.info(" interpolation for {} ...".format(', '.join(vars_impute_interp))) group_data.loc[:, vars_impute_interp] = group_data.loc[:, vars_impute_interp].interpolate(limit_direction='both') except ValueError: self.logger.info(" Not enough data point in {} for KNN imputation and interpolation ...".format(', '.join(vars_impute_knn))) if vars_impute_knn != []: try: self.logger.info(" KNN imputation for {} ...".format(', '.join(vars_impute_knn))) group_data.loc[:, vars_impute_knn] = self.knn_impute(group_data.loc[:, vars_impute_knn]) except ValueError: self.logger.info(" Not enough data point in {} for KNN imputation and interpolation ...".format(', '.join(vars_impute_knn))) group_data = group_data[group_data[self.meta["var"]].notnull()] self.logger.info(" Remove observations with null value for response; new # of observations: {} (previously {})".format(group_data.shape[0], self.data.shape[0])) k = max(len(predictives) + 1, 5) kk = group_data.shape[0]*(Config.MODELLING_CONFIG["SPLIT_RATIO"]) if kk < k: self.logger.info(" Skipping model for {} {}; too few points: {}; minimum {} points required." \ .format(column_name, district, group_data.shape[0], int(k / (1-Config.MODELLING_CONFIG["SPLIT_RATIO"]))+1)) continue # # create model object, set response and independent variables (predictives) if not district in self.models: self.models[district] = [] model = Model(self.FORECAST_ALGORITHMS[algorithm], district, self.meta["var"], predictives) model.set_props(algorithm, group_data) model.forecast_model(group_data, self.meta["seasonal"]) self.models[district].append(model) self.logger.info(" Metrics:: {}".format(', '.join(["{}:{:.2f}".format(m, v) for m, v in model.metrics.items()]))) if hasattr(model, 'metrics_holdout'): self.logger.info(" Holdout Metrics:: {}".format(', '.join(["{}:{:.2f}".format(m, v) for m, v in model.metrics_holdout.items()]))) self.logger.info(" {} {} trained using '{:d}' records in {:0.1f}s".format(district, column_name, group_data.shape[0], time.time()-start_district)) i_district += 1 #if i_district > 2: break self.logger.info(" {} {}(s) trained using {} algorithm in {:0.2f}s".format(i_district, column_name, algorithm, time.time()-start)) def sort_models(self): """Sort the models base on the selected metric The results from model will be sorted from the metric score; The primary metric score defined is R2 score; You can select the threshold of metric to be displayed in chart. """ self.meta["METRIC_BEST"] = self.MODELLING_CONFIG["METRIC_BEST"] self.meta["METRIC_BEST_THRESH"] = self.MODELLING_CONFIG.get("METRIC_BEST_THRESH", None) self.logger.info(" Sorting models per district base on metric '{}'".format(self.meta["METRIC_BEST"])) reverse = False if self.meta["METRIC_BEST"] in ["MAE", "MAPE", "RMSE", "MSE"] else True self.best_district = [] for district in self.models: self.models[district].sort(key=lambda x: x.metrics[self.meta["METRIC_BEST"]], reverse=reverse) if self.meta["METRIC_BEST_THRESH"] != None: metric_value = self.models[district][0].metrics[self.meta["METRIC_BEST"]] if (not reverse and metric_value < self.meta["METRIC_BEST_THRESH"] ) or \ (reverse and metric_value > self.meta["METRIC_BEST_THRESH"] ): self.best_district.append(district) min_x = min(self.models[district][0].actual.min(), self.models[district][0].pred.min()) if min_x < self.axis_limit[0]: self.axis_limit[0] = min_x max_x = max(self.models[district][0].actual.max(), self.models[district][0].pred.max()) if max_x > self.axis_limit[1]: self.axis_limit[1] = max_x def save_models(self, fname=""): """Saving the trained models to pickle files Model will be saved as a pickle file with extension on .sa Parameters ---------- fname : str (default='') Read in model file with extension .sa Returns ------- Models file in .sa extension format """ self.meta["n_models"] = len(self.models) training = dict( models = {w: [self.models[w][0]] for w in self.models}, meta = self.meta ) if fname == "": fname = os.path.join(self.FILES["DATA"], self.FILES["MODELS"], self.meta["var"] + '_' + '.' + Config.NAME["short"].lower()) if os.path.exists(fname): os.remove(fname) with open(fname, 'wb') as handle: pickle.dump(training, handle, protocol=pickle.HIGHEST_PROTOCOL) self.logger.info("Training and its models saved to file '{}'.".format(fname)) def load_models(self, path, append=False): """Loading the trained models from pickle files Model with extension on .sa will be loaded as input in dashboard Parameters ---------- path : str Input directory where model files are stored ---------- """ file_path = os.path.join(path, self.meta["var"] + '.' + Config.NAME["short"].lower()) if not os.path.isfile(path) else path with open(file_path, 'rb') as handle: training = pickle.load(handle) if not append: self.models = training["models"] self.meta = training["meta"] self.meta["n_models"] = len(self.models) else: if training["meta"]["var"] != self.meta["var"]: self.logger.critical(" existing training is for response '{}', \ while the loading train is for response '{}'.".format(self.meta["var"], training["meta"]["var"])) self.models.update(training["models"]) self.meta['runtime'] += training["meta"]['runtime'] self.meta["n_models"] += len(training["models"]) def predict(self, df_test, metric=Config.MODELLING_CONFIG["PREDICT_METRIC_CONF"]): """Predict sales Use model (.sa) file created from different model types, then use the model file to do prediction of sales. Parameters ---------- df_test : object (default=district_test_{source}.csv & reservoir_{source}.csv) Merge dataframe from input data source Returns ------- df_result : object Dataframe on predicted sales for each cluster column with its best metrics """ cluster_col = 'District' df_result = pd.DataFrame({"{}".format(cluster_col): [], "DATE": [], self.meta["var"]: [], "METRIC":[]}) for district_name, district_data in df_test.groupby("{}".format(cluster_col)): if district_name in self.models: model_accu = [self.models[district_name][0].metrics[self.MODELLING_CONFIG["METRIC_BEST"]]]*district_data.shape[0] preds = pd.DataFrame({ "{}".format(cluster_col): pd.Series([district_name]*district_data.shape[0]), "DATE": pd.Series(district_data.index), self.meta["var"]: pd.Series(self.models[district_name][0].predict(district_data)), "METRIC": pd.Series(model_accu), }) preds[self.meta["var"]] = preds[self.meta["var"]].round(1) df_result = pd.concat([df_result, preds]) if metric in ['False', False]: df_result.drop(columns=["METRIC"], inplace=True) return df_result def evaluate(self, actual_all, pred_all): """Evaluate the prediction result between actual and predicted value Acquiring the sales value from test data (actual value). Then, with the predicted sakes value, we evaluate the prediction error. Parameters ---------- actual_all : object Dataframe of test data with sales pred_all : object Dataframe of predicted sales """ results = [] for district, actual in actual_all.groupby("District"): pred = pred_all[pred_all["District"]==district][self.meta["var"]] inds = actual[self.meta["var"]].notnull() metrics = self.models[district][0].evaluate(actual[self.meta["var"]][inds], pred[inds]) results.append((district, metrics[Config.MODELLING_CONFIG["METRIC_BEST"]])) return pd.DataFrame.from_records(results, columns=["District", "Metric_new"]) def knn_impute(self, data, k=None): """KNN imputation on missing values KNN imputation will utilize nearby columns as input parameters for imputation on missing cells; However, KNN imputation is very time-exhastive method. Parameters ---------- data : str Any dataframe dataframe_in : boolean (default=True) Option to select whether to do KNN-imputation to whole dataframe, or just specific column col : str If the "dataframe_in" = False, then we need to put in a column to perform specific column imputation near_neigh : int (default=3) Number of nearby columns to be used as input for KNN imputation Returns ------- array : object Dataframe with KNN imputation on columns """ if k == None: k = self.MODELLING_CONFIG["KNN_NEIGHBOUR"] # data = data.dropna(thresh=0.7*len(data), axis=1) encoding = LabelEncoder() if self.MODELLING_CONFIG["ENCODING_ALG"].upper() == 'ORDINAL' else OneHotEncoder() data = data.ffill().bfill() data = encoding.fit_transform(data.values) data = data.dropna(axis=1, how="all", thresh=(data.shape[0])*self.MODELLING_CONFIG["IMPUTE_MISSING_PERCENT_THRES"]) scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data.values) knn_imputer = KNNImputer(n_neighbors=k) scaled_data = knn_imputer.fit_transform(scaled_data) scaled_data = scaler.inverse_transform(scaled_data) scaled_data = encoding.inverse_transform(scaled_data) return scaled_data def get_results(self): """get results for metric""" results_list = [] for district in self.models: # # loop over the models per district for model in self.models[district]: # # loop over the metrics for m, val in model.metrics.items(): result = dict(Algorithm=model.algorithm, District=district, created=model.created, start_time=model.start_time, end_time=model.end_time, n_records=model.n_records, metric_name=m, metric_value=val) results_list.append(result) self.results = pd.DataFrame(results_list) fname = os.path.join(Config.FILES["DATA_LOCAL"], "{}{}.csv".format("test_results", self.suffix)) self.results.to_csv(fname) # set the best algorithm for each item self.bests = {} best_district = None for metric, group_data in self.results.groupby('metric_name'): if metric == "MAPE": best_model = group_data.set_index("Algorithm").groupby(['District'])['metric_value'].agg('idxmin').rename("best_model") best_accuracy = group_data.groupby(['District'])['metric_value'].min().rename("best_accuracy") else: best_model = group_data.set_index("Algorithm").groupby(['District'])['metric_value'].agg('idxmax').rename("best_model") best_accuracy = group_data.groupby(['District'])['metric_value'].max().rename("best_accuracy") self.bests[metric] = pd.concat([best_model, best_accuracy], axis = 1) if self.best_district != []: self.bests[metric] = self.bests[metric].loc[self.best_district] def ADF_Stationarity_Test(self, time_series, print_results=True): """Augmented Dickey-Fuller (ADF) test Dickey-Fuller test is a type of unit root test. Unit root are a cause for non-stationary, the ADF test will test test if unit root is present. .. note:: A time series is stationary if a single shift in time doesn't change the time series statistical properties, in which case unit root does not exist The Null and Alternate hypothesis of the Augmented Dickey-Fuller test is defined as follow: * **Null Hypothesis**: There is the presence of a unit root * **Alternate Hypothesis**: There is not unit root Parameters ---------- time_series : array-like An array of time series data to be tested on stationarity print_results : boolean (default=True) Option to decide whether to print the results of ADF testing Returns ------- p_value : P-value determined from ADF test is_stationary : Boolean on whether the time series is stationary or not dfResults : Dictionary of result from ADF testing """ adfTest = adfuller(timeseries, autolag='AIC') self.p_value = adfTest[1] if (self.p_value < self.MODELLING_CONFIG["SIGNIFICANCE_LEVEL"]): self.is_stationary = True else: self.is_stationary = False if print_results: dfResults =
pd.Series(adfTest[0:4], index=['ADF Test Statistic','P-Value','Lags Used','Observations Used'])
pandas.Series
import sys sys.path.append("../") sys.path.append("AIF360/") import warnings from sklearn.model_selection import train_test_split from aif360.datasets import StandardDataset import pandas as pd from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from aif360.algorithms.preprocessing.optim_preproc_helpers.opt_tools import OptTools from aif360.algorithms.preprocessing.optim_preproc import OptimPreproc from aif360.metrics import BinaryLabelDatasetMetric from fairness_metrics.tot_metrics import TPR, TNR import numpy as np warnings.simplefilter("ignore") np.random.seed(10) def get_distortion_compas(vold, vnew): """Distortion function for the compas dataset. We set the distortion metric here. See section 4.3 in supplementary material of http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention for an example Note: Users can use this as templates to create other distortion functions. Args: vold (dict) : {attr:value} with old values vnew (dict) : dictionary of the form {attr:value} with new values Returns: d (value) : distortion value """ # Distortion cost distort = {} distort['two_year_recid'] = pd.DataFrame( {'No recid.': [0., 2.], 'Did recid.': [2., 0.]}, index=['No recid.', 'Did recid.']) distort['age_cat'] = pd.DataFrame( {'Less than 25': [0., 1., 2.], '25 to 45': [1., 0., 1.], 'Greater than 45': [2., 1., 0.]}, index=['Less than 25', '25 to 45', 'Greater than 45']) # distort['length_of_stay'] = pd.DataFrame( # {'<week': [0., 1., 2.], # '<3months': [1., 0., 1.], # '>3 months': [2., 1., 0.]}, # index=['<week', '<3months', '>3 months']) distort['c_charge_degree'] = pd.DataFrame( {'M': [0., 2.], 'F': [1., 0.]}, index=['M', 'F']) distort['priors_count'] = pd.DataFrame( {'0': [0., 1., 2., 100.], '1 to 3': [1., 0., 1., 100.], 'More than 3': [2., 1., 0., 100.], 'missing': [0., 0., 0., 1.]}, index=['0', '1 to 3', 'More than 3', 'missing']) # distort['score_text'] = pd.DataFrame( # {'Low': [0., 2.,100.], # 'MediumHigh': [2., 0.,100.], # 'missing score': [0., 0.,1.]}, # index=['Low', 'MediumHigh','missing score']) distort['score_text'] = pd.DataFrame( {'Low': [0., 2.], 'MediumHigh': [2., 0.]}, index=['Low', 'MediumHigh']) distort['sex'] = pd.DataFrame( {0.0: [0., 2.], 1.0: [2., 0.]}, index=[0.0, 1.0]) distort['race'] = pd.DataFrame( {0.0: [0., 2.], 1.0: [2., 0.]}, index=[0.0, 1.0]) total_cost = 0.0 for k in vold: if k in vnew: total_cost += distort[k].loc[vnew[k], vold[k]] return total_cost default_mappings = { 'label_maps': [{1.0: 'Did recid.', 0.0: 'No recid.'}], 'protected_attribute_maps': [{0.0: 'Male', 1.0: 'Female'}, {1.0: 'Caucasian', 0.0: 'Not Caucasian'}] } def default_preprocessing(df): """Perform the same preprocessing as the original analysis: https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb """ return df[(df.days_b_screening_arrest <= 30) & (df.days_b_screening_arrest >= -30) & (df.is_recid != -1) & (df.c_charge_degree != 'O') & (df.score_text != 'N/A')] class CompasDataset_test(StandardDataset): """ProPublica COMPAS Dataset. See :file:`aif360/data/raw/compas/README.md`. """ def __init__( self, label_name='two_year_recid', favorable_classes=[0], protected_attribute_names=[ 'sex', 'race'], privileged_classes=[ ['Female'], ['Caucasian']], instance_weights_name=None, categorical_features=[ 'age_cat', 'c_charge_degree', 'c_charge_desc'], features_to_keep=[ 'sex', 'age', 'age_cat', 'race', 'juv_fel_count', 'juv_misd_count', 'juv_other_count', 'priors_count', 'c_charge_degree', 'c_charge_desc', 'two_year_recid', 'length_of_stay'], features_to_drop=[], na_values=[], custom_preprocessing=default_preprocessing, metadata=default_mappings): """See :obj:`StandardDataset` for a description of the arguments. Note: The label value 0 in this case is considered favorable (no recidivism). Examples: In some cases, it may be useful to keep track of a mapping from `float -> str` for protected attributes and/or labels. If our use case differs from the default, we can modify the mapping stored in `metadata`: >>> label_map = {1.0: 'Did recid.', 0.0: 'No recid.'} >>> protected_attribute_maps = [{1.0: 'Male', 0.0: 'Female'}] >>> cd = CompasDataset(protected_attribute_names=['sex'], ... privileged_classes=[['Male']], metadata={'label_map': label_map, ... 'protected_attribute_maps': protected_attribute_maps}) Now this information will stay attached to the dataset and can be used for more descriptive visualizations. """ np.random.seed(1) def quantizePrior1(x): if x <= 0: return 0 elif 1 <= x <= 3: return 1 else: return 2 def quantizeLOS(x): if x <= 7: return 0 if 8 < x <= 93: return 1 else: return 2 def group_race(x): if x == "Caucasian": return 1.0 else: return 0.0 filepath = 'compas-test.csv' df = pd.read_csv(filepath, index_col='id', na_values=[]) df['age_cat'] = df['age_cat'].replace('Greater than 45', 2) df['age_cat'] = df['age_cat'].replace('25 - 45', 1) df['age_cat'] = df['age_cat'].replace('Less than 25', 0) df['score_text'] = df['score_text'].replace('High', 1) df['score_text'] = df['score_text'].replace('Medium', 1) df['score_text'] = df['score_text'].replace('Low', 0) df['priors_count'] = df['priors_count'].apply( lambda x: quantizePrior1(x)) df['length_of_stay'] = (pd.to_datetime(df['c_jail_out']) - pd.to_datetime(df['c_jail_in'])).apply( lambda x: x.days) df['length_of_stay'] = df['length_of_stay'].apply( lambda x: quantizeLOS(x)) df = df.loc[~df['race'].isin( ['Native American', 'Hispanic', 'Asian', 'Other']), :] df['c_charge_degree'] = df['c_charge_degree'].replace({'F': 0, 'M': 1}) df['c_charge_degree'] = df['c_charge_degree'].replace({0: 'F', 1: 'M'}) df1 = df[['priors_count', 'c_charge_degree', 'race', 'age_cat', 'score_text', 'two_year_recid']] tot = [] for index, row in df1.iterrows(): result = '' for j in df1.columns: result = result + str(row[j]) tot.append(result) df1['tmp_feature'] = tot df1['mis_prob'] = 0 for i in df1['tmp_feature'].unique(): if 'African' in i and i[-1] == '0' and i[0] == '0': df1.loc[df1['tmp_feature'] == i, 'mis_prob'] = 0.8 elif 'African' in i and i[0] == '2': df1.loc[df1['tmp_feature'] == i, 'mis_prob'] = 0.2 else: df1.loc[df1['tmp_feature'] == i, 'mis_prob'] = 0.05 new_label = [] np.random.seed(10) for i, j in zip(df1['mis_prob'], df1['priors_count']): if np.random.binomial(1, i, 1)[0] == 1: new_label.append(3) else: new_label.append(j) df['priors_count'] = new_label super( CompasDataset_test, self).__init__( df=df, label_name=label_name, favorable_classes=favorable_classes, protected_attribute_names=protected_attribute_names, privileged_classes=privileged_classes, instance_weights_name=instance_weights_name, categorical_features=categorical_features, features_to_keep=features_to_keep, features_to_drop=features_to_drop, na_values=na_values, custom_preprocessing=custom_preprocessing, metadata=metadata) def load_preproc_data_compas(protected_attributes=None): def custom_preprocessing(df): """The custom pre-processing function is adapted from https://github.com/fair-preprocessing/nips2017/blob/master/compas/code/Generate_Compas_Data.ipynb """ df = df[['age', 'c_charge_degree', 'race', 'age_cat', 'score_text', 'sex', 'priors_count', 'days_b_screening_arrest', 'decile_score', 'is_recid', 'two_year_recid', 'length_of_stay']] # Indices of data samples to keep ix = df['days_b_screening_arrest'] <= 30 ix = (df['days_b_screening_arrest'] >= -30) & ix ix = (df['is_recid'] != -1) & ix ix = (df['c_charge_degree'] != "O") & ix ix = (df['score_text'] != 'N/A') & ix df = df.loc[ix, :] # Restrict races to African-American and Caucasian dfcut = df.loc[~df['race'].isin( ['Native American', 'Hispanic', 'Asian', 'Other']), :] # Restrict the features to use dfcutQ = dfcut[['sex', 'race', 'age_cat', 'c_charge_degree', 'score_text', 'priors_count', 'is_recid', 'two_year_recid', 'length_of_stay']].copy() # Quantize priors count between 0, 1-3, and >3 def quantizePrior(x): if x == 0: return '0' elif x == 1: return '1 to 3' elif x == 2: return 'More than 3' else: return 'missing' # Quantize length of stay def quantizeLOS(x): if x == 0: return '<week' if x == 1: return '<3months' else: return '>3 months' # Quantize length of stay def adjustAge(x): if x == 1: return '25 to 45' elif x == 2: return 'Greater than 45' elif x == 0: return 'Less than 25' # Quantize score_text to MediumHigh def quantizeScore(x): if x == 1: return 'MediumHigh' else: return 'Low' def group_race(x): if x == "Caucasian": return 1.0 else: return 0.0 dfcutQ['priors_count'] = dfcutQ['priors_count'].apply( lambda x: quantizePrior(x)) dfcutQ['length_of_stay'] = dfcutQ['length_of_stay'].apply( lambda x: quantizeLOS(x)) dfcutQ['score_text'] = dfcutQ['score_text'].apply( lambda x: quantizeScore(x)) dfcutQ['age_cat'] = dfcutQ['age_cat'].apply(lambda x: adjustAge(x)) # Recode sex and race dfcutQ['sex'] = dfcutQ['sex'].replace({'Female': 1.0, 'Male': 0.0}) dfcutQ['race'] = dfcutQ['race'].apply(lambda x: group_race(x)) features = ['two_year_recid', 'race', 'age_cat', 'priors_count', 'c_charge_degree', 'score_text'] # Pass vallue to df df = dfcutQ[features] return df XD_features = [ 'age_cat', 'c_charge_degree', 'priors_count', 'race', 'score_text'] D_features = [ 'race'] if protected_attributes is None else protected_attributes Y_features = ['two_year_recid'] X_features = list(set(XD_features) - set(D_features)) categorical_features = [ 'age_cat', 'priors_count', 'c_charge_degree', 'score_text'] # privileged classes all_privileged_classes = {"sex": [1.0], "race": [1.0]} # protected attribute maps all_protected_attribute_maps = { "sex": { 0.0: 'Male', 1.0: 'Female'}, "race": { 1.0: 'Caucasian', 0.0: 'Not Caucasian'}} return CompasDataset_test( label_name=Y_features[0], favorable_classes=[0], protected_attribute_names=D_features, privileged_classes=[all_privileged_classes[x] for x in D_features], instance_weights_name=None, categorical_features=categorical_features, features_to_keep=X_features + Y_features + D_features, na_values=[], metadata={'label_maps': [{1.0: 'Did recid.', 0.0: 'No recid.'}], 'protected_attribute_maps': [all_protected_attribute_maps[x] for x in D_features]}, custom_preprocessing=custom_preprocessing) privileged_groups = [{'race': 1}] unprivileged_groups = [{'race': 0}] dataset_orig_vt = load_preproc_data_compas(['race']) def default_preprocessing(df): """Perform the same preprocessing as the original analysis: https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb """ return df[(df.days_b_screening_arrest <= 30) & (df.days_b_screening_arrest >= -30) & (df.is_recid != -1) & (df.c_charge_degree != 'O') & (df.score_text != 'N/A')] class CompasDataset_train(StandardDataset): """ProPublica COMPAS Dataset. See :file:`aif360/data/raw/compas/README.md`. """ def __init__( self, label_name='two_year_recid', favorable_classes=[0], protected_attribute_names=[ 'sex', 'race'], privileged_classes=[ ['Female'], ['Caucasian']], instance_weights_name=None, categorical_features=[ 'age_cat', 'c_charge_degree', 'c_charge_desc'], features_to_keep=[ 'sex', 'age', 'age_cat', 'race', 'juv_fel_count', 'juv_misd_count', 'juv_other_count', 'priors_count', 'c_charge_degree', 'c_charge_desc', 'two_year_recid', 'length_of_stay'], features_to_drop=[], na_values=[], custom_preprocessing=default_preprocessing, metadata=default_mappings): """See :obj:`StandardDataset` for a description of the arguments. Note: The label value 0 in this case is considered favorable (no recidivism). Examples: In some cases, it may be useful to keep track of a mapping from `float -> str` for protected attributes and/or labels. If our use case differs from the default, we can modify the mapping stored in `metadata`: >>> label_map = {1.0: 'Did recid.', 0.0: 'No recid.'} >>> protected_attribute_maps = [{1.0: 'Male', 0.0: 'Female'}] >>> cd = CompasDataset(protected_attribute_names=['sex'], ... privileged_classes=[['Male']], metadata={'label_map': label_map, ... 'protected_attribute_maps': protected_attribute_maps}) Now this information will stay attached to the dataset and can be used for more descriptive visualizations. """ np.random.seed(1) def quantizePrior1(x): if x <= 0: return 0 elif 1 <= x <= 3: return 1 else: return 2 def quantizeLOS(x): if x <= 7: return 0 if 8 < x <= 93: return 1 else: return 2 def group_race(x): if x == "Caucasian": return 1.0 else: return 0.0 filepath = 'compas-train.csv' df = pd.read_csv(filepath, index_col='id', na_values=[]) df['age_cat'] = df['age_cat'].replace('Greater than 45', 2) df['age_cat'] = df['age_cat'].replace('25 - 45', 1) df['age_cat'] = df['age_cat'].replace('Less than 25', 0) df['score_text'] = df['score_text'].replace('High', 1) df['score_text'] = df['score_text'].replace('Medium', 1) df['score_text'] = df['score_text'].replace('Low', 0) df['priors_count'] = df['priors_count'].apply( lambda x: quantizePrior1(x)) df['length_of_stay'] = (pd.to_datetime(df['c_jail_out']) -
pd.to_datetime(df['c_jail_in'])
pandas.to_datetime
def getMetroStatus(): import http.client, urllib.request, urllib.parse, urllib.error, base64, time headers = { # Request headers 'api_key': '6b700f7ea9db408e9745c207da7ca827',} params = urllib.parse.urlencode({}) try: conn = http.client.HTTPSConnection('api.wmata.com') conn.request("GET", "/StationPrediction.svc/json/GetPrediction/All?%s" % params, "{body}", headers) response = conn.getresponse() data = response.read() return str(data) #returns the data as a string rather than raw bytes conn.close() except Exception as e: print("[Errno {0}] {1}".format(e.errno, e.strerror)) def JSONfromMetro(trainString): #converts the string into a dictionary file import json, re fixSlash=re.compile(r'\\') #this line and the next remove triple-slashes, which screw up the json module fixedTrainString=fixSlash.sub('',trainString) trainJSON=json.loads(fixedTrainString[2:-2]+"}") #slightly adjusts the string to put it in json form if isinstance(trainJSON,dict) and 'Trains' in trainJSON.keys(): return trainJSON['Trains'] else: return None def saveWMATASQL(trainData, engine): #saves the current WMATA data to open engine import datetime, pandas as pd #the line below creates a table name starting with WMATA and then containing the date and time information, with each day/hour/minute/second taking two characters if not isinstance(trainData, list): return None DTstring=str(datetime.datetime.now().month)+str(datetime.datetime.now().day).rjust(2,'0')+str(datetime.datetime.now().hour).rjust(2,'0')+str(datetime.datetime.now().minute).rjust(2,'0')+str(datetime.datetime.now().second).rjust(2,'0') trainFrame=pd.DataFrame('-', index=range(len(trainData)), columns=['DT','Car','Loc','Lin','Des','Min','Gro']) #creates trainFrame, the DataFrame to send to the SQL server for iter in range(len(trainData)): #for all the trains in trainData trainFrame.loc[iter]['DT']=DTstring for colName in ['Car','LocationCode','Line','DestinationCode','Min','Group']: #select the six relevant fields trainFrame.loc[iter][colName[:3]]=trainData[iter][colName] #and fill in the relevant data trainFrame.to_sql('WMATAFull', engine, if_exists='append') #send trainFrame to the SQL server return trainFrame def lineNextDF(line, destList, arrData): import pandas as pd timeString=arrData.DT.iloc[0] rowName=pd.to_datetime('2016-'+timeString[0]+'-'+timeString[1:3]+' '+timeString[3:5]+':'+timeString[5:7]+':'+timeString[7:]) # names the row as a timestamp with the month day hour minute second lineStat=pd.DataFrame('-',index=[rowName],columns=line) for station in line: #repeat the below process for every station on the line trains2consider=arrData.loc[lambda df: df.Loc==station].loc[lambda df: df.Des.isin(destList)] #pull out the trains at that station heading toward the destinations if len(trains2consider.index)>0: #If you found a train if trains2consider.Des.iloc[0] in ['A11','B08','E01','K04']: #the next few lines set the station status to the color and ETA of the first arriving train lineStat.loc[rowName,station]=trains2consider.Lin.iloc[0].lower()+':'+trains2consider.Min.iloc[0] #if the train is terminating early (at Grovesnor, Silver Spring or Mt Vernon), use lowercase elif trains2consider.Des.iloc[0]=='E06': lineStat.loc[rowName,station]='Yl:'+trains2consider.Min.iloc[0] elif trains2consider.Des.iloc[0]=='A13': lineStat.loc[rowName,station]='Rd:'+trains2consider.Min.iloc[0] else: lineStat.loc[rowName,station]=trains2consider.Lin.iloc[0]+':'+trains2consider.Min.iloc[0] #otherwise use upper return lineStat def allLNtoNE(arrData, surgeNum): #all of the lines to the North and East during Surge 4 import pandas as pd LNlist=[] for num in range(len(lineList[surgeNum])): LNlist.append(lineNextDF(lineList[surgeNum][num], NEdestList[surgeNum][num], arrData)) #run for each line and destination return pd.concat(LNlist, axis=1, join='outer') #then join them all together def allLNtoSW(arrData, surgeNum): #all of the lines to the South and West during Surge 4 import pandas as pd LNlist=[] for num in range(1,1+len(lineList[surgeNum])): LNlist.append(lineNextDF(lineList[surgeNum][-num][::-1], SWdestList[surgeNum][-num][::-1], arrData)) #run for each line and destination return pd.concat(LNlist, axis=1, join='outer') #then join them all together def WMATAtableSQL(timeMin,intervalSec, surgeNum): #records for timeMin minutes, about ever intervalSec seconds import time, pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@team<EMAIL>:5432/WmataData') #opens the engine to WmataData #creates a list of the table we're creating to add to the index isStart=True startTime=time.time() while time.time()<(startTime+60*timeMin): #runs for timeMin minutes stepStart=time.time() WMATAdf=saveWMATASQL(JSONfromMetro(getMetroStatus()),engine) #save the current train data and appends the name to tableList if isinstance(WMATAdf,pd.DataFrame) and len(WMATAdf.index)>0: #if you got data back if isStart: #and it's the first row allLN2NE=allLNtoNE(WMATAdf,surgeNum) #set allLNtoNE equal to the all LineNext to NE data allLN2SW=allLNtoSW(WMATAdf,surgeNum) #set allLNtoSW equal to the all LineNext to SW data isStart=False #and the next row will not be the first row else: #for other rows allLN2NE=allLN2NE.append(allLNtoNE(WMATAdf,surgeNum)) #append the data allLN2SW=allLN2SW.append(allLNtoSW(WMATAdf,surgeNum)) stepTime=time.time()-stepStart #calculates the time this step took if stepTime<intervalSec: #if intervalSec seconds have not passed, time.sleep(intervalSec-stepTime) #wait until a total of intervalSec have passed engine.connect().close() return [allLN2NE, allLN2SW] def lineNextSQL(line, timeString,destList, engine): #reads the next train to arrive at the stations in line heading toward destList and returns it as a Data Frame import pandas as pd from sqlalchemy import create_engine isEngineNone=(engine is None) if isEngineNone: #if there's not an engine, make one engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@teamoriginal.ccc95gjlnnnc.us-east-1.rds.amazonaws.com:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT"='+"'"+timeString+"';" arrData=
pd.read_sql(query,engine)
pandas.read_sql
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=
pd.DataFrame(pred)
pandas.DataFrame
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..kabam_exe import Kabam test = {} class TestKabam(unittest.TestCase): """ Unit tests for Kabam model. : unittest will : 1) call the setup method, : 2) then call every method starting with "test", : 3) then the teardown method """ print("kabam unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for Kabam unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open Kabam qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for Kabam unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_kabam_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty kabam object kabam_empty = Kabam(df_empty, df_empty) return kabam_empty def test_ventilation_rate(self): """ :description Ventilation rate of aquatic animal :unit L/d :expression Kabam Eq. A5.2b (Gv) :param zoo_wb: wet weight of animal (kg) :param conc_do: concentration of dissolved oxygen (mg O2/L) :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series(['nan', 0.00394574, 0.468885], dtype = 'float') try: #use the zooplankton variables/values for the test kabam_empty.zoo_wb = pd.Series(['nan', 1.e-07, 1.e-4], dtype = 'float') kabam_empty.conc_do = pd.Series([5.0, 10.0, 7.5], dtype='float') result = kabam_empty.ventilation_rate(kabam_empty.zoo_wb) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_pest_uptake_eff_gills(self): """ :description Pesticide uptake efficiency by gills :unit fraction "expresssion Kabam Eq. A5.2a (Ew) :param log kow: octanol-water partition coefficient () :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series(['nan', 0.540088, 0.540495], dtype = 'float') try: kabam_empty.log_kow = pd.Series(['nan', 5., 6.], dtype = 'float') kabam_empty.kow = 10.**(kabam_empty.log_kow) result = kabam_empty.pest_uptake_eff_bygills() npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_phytoplankton_k1_calc(self): """ :description Uptake rate constant through respiratory area for phytoplankton :unit: L/kg*d :expression Kabam Eq. A5.1 (K1:unique to phytoplankton) :param log kow: octanol-water partition coefficient () :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series([1639.34426, 8695.6521, 15267.1755], dtype = 'float') try: kabam_empty.log_kow = pd.Series([4., 5., 6.], dtype = 'float') kabam_empty.kow = 10.**(kabam_empty.log_kow) result = kabam_empty.phytoplankton_k1_calc(kabam_empty.kow) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_aq_animal_k1_calc(self): """ U:description ptake rate constant through respiratory area for aquatic animals :unit: L/kg*d :expression Kabam Eq. A5.2 (K1) :param pest_uptake_eff_bygills: Pesticide uptake efficiency by gills of aquatic animals (fraction) :param vent_rate: Ventilation rate of aquatic animal (L/d) :param wet_wgt: wet weight of animal (kg) :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series(['nan', 1201.13849, 169.37439], dtype = 'float') try: pest_uptake_eff_bygills = pd.Series(['nan', 0.0304414, 0.0361228], dtype = 'float') vent_rate = pd.Series(['nan', 0.00394574, 0.468885], dtype = 'float') wet_wgt = pd.Series(['nan', 1.e-07, 1.e-4], dtype = 'float') result = kabam_empty.aq_animal_k1_calc(pest_uptake_eff_bygills, vent_rate, wet_wgt) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_water_part_coef(self): """ :description Organism-Water partition coefficient (based on organism wet weight) :unit () :expression Kabam Eq. A6a (Kbw) :param zoo_lipid: lipid fraction of organism (kg lipid/kg organism wet weight) :param zoo_nlom: non-lipid organic matter (NLOM) fraction of organism (kg NLOM/kg organism wet weight) :param zoo_water: water content of organism (kg water/kg organism wet weight) :param kow: octanol-water partition coefficient () :param beta: proportionality constant expressing the sorption capacity of NLOM or NLOC to that of octanol :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series([650.87, 11000.76, 165000.64], dtype = 'float') try: #For test purpose we'll use the zooplankton variable names kabam_empty.zoo_lipid_frac = pd.Series([0.03, 0.04, 0.06], dtype = 'float') kabam_empty.zoo_nlom_frac = pd.Series([0.10, 0.20, 0.30,], dtype = 'float') kabam_empty.zoo_water_frac = pd.Series([0.87, 0.76, 0.64], dtype = 'float') kabam_empty.kow = pd.Series([1.e4, 1.e5, 1.e6], dtype = 'float') beta = 0.35 result = kabam_empty.animal_water_part_coef(kabam_empty.zoo_lipid_frac, kabam_empty.zoo_nlom_frac, kabam_empty.zoo_water_frac, beta) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_aq_animal_k2_calc(self): """ :description Elimination rate constant through the respiratory area :unit (per day) :expression Kabam Eq. A6 (K2) :param zoo_k1: Uptake rate constant through respiratory area for aquatic animals :param k_bw_zoo (Kbw): Organism-Water partition coefficient (based on organism wet weight () :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result = pd.Series([], dtype='float') expected_results = pd.Series([2.5186969, 0.79045921, 0.09252798], dtype = 'float') try: #For test purpose we'll use the zooplankton variable names kabam_empty.zoo_k1 = pd.Series([1639.34426, 8695.6521, 15267.1755], dtype = 'float') kabam_empty.k_bw_zoo = pd.Series([650.87, 11000.76, 165000.64], dtype = 'float') result = kabam_empty.aq_animal_k2_calc(kabam_empty.zoo_k1, kabam_empty.k_bw_zoo) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_grow_rate_const(self): """ :description Aquatic animal/organism growth rate constant :unit (per day) :expression Kabam Eq. A7.1 & A7.2 :param zoo_wb: wet weight of animal/organism (kg) :param water_temp: water temperature (degrees C) :return: """ # create empty pandas dataframes to create empty object for this unittest kabam_empty = self.create_kabam_object() result =
pd.Series([], dtype='float')
pandas.Series
import os import toml import time import datetime import pandas as pd from bayescache.meters import ( AverageMeter, EpochMeter, LossMeter, PatienceMeter, TimeMeter ) class OptimizationHistory: """Records of the optimization""" def __init__(self, savepath=None, experiment_name=None, device=None, dataloader_info=None, seeds=None, rank=0): self.time_meter = TimeMeter() self.epoch_meter = EpochMeter() self.loss_meter = LossMeter() self.patience_meter = PatienceMeter() self.top1_train = AverageMeter('Acc@1', ':6.2f') self.top1_valid = AverageMeter('Acc@1', ':6.24f') self.savepath = savepath self.experiment_name = experiment_name self.device = device self.dataloader_info = dataloader_info self.seeds = seeds self.rank = rank self.reset() def reset(self): self.runtime = [] self.num_epochs = [] self.train_loss = [] self.valid_loss = [] self.stop_epoch = [] def reset_meters(self): self.time_meter.reset() self.epoch_meter.reset() self.loss_meter.reset() self.patience_meter.reset() def record_history(self): self.runtime.append(self.time_meter.get_timings()) self.num_epochs.append(self.epoch_meter.get_counts()) self.train_loss.append(self.loss_meter.get_train_loss()) self.valid_loss.append(self.loss_meter.get_valid_loss()) self.stop_epoch.append(self.patience_meter.get_stop_epoch()) def save_metadata(self): if self.savepath == None or self.experiment_name == None: raise ValueError("You must specify a savepath and experiment name to save results.") now = datetime.datetime.now() metadata = { 'Title': self.experiment_name, 'Date': now.strftime("%Y-%m-%d"), 'Device': self.device, 'NumEpochs': self.num_epochs, 'StopEpoch': self.stop_epoch, 'Runtime': self.runtime, 'Acc@1TrainAvg': self.top1_train.avg.item(), 'Acc@1ValidAvg': self.top1_valid.avg.item(), 'Dataloaders': self.dataloader_info, 'Seeds': self.seeds } meta_dir = os.path.join(self.savepath, 'metadata') os.makedirs(meta_dir, exist_ok=True) metafile = os.path.join(meta_dir, f'metadata{self.rank}.toml') with open(metafile, 'w') as outfile: toml.dump(metadata, outfile) def save(self): self.save_metadata() # Create separate directories to keep train/valid loss for all ranks savepath_train = os.path.join(self.savepath, 'trainloss') savepath_valid = os.path.join(self.savepath, 'validloss') os.makedirs(savepath_train, exist_ok=True) os.makedirs(savepath_valid, exist_ok=True) trainsave = os.path.join(savepath_train, f'trainloss{self.rank}.csv') validsave = os.path.join(savepath_valid, f'validloss{self.rank}.csv') trainloss_df =
pd.DataFrame({'loss': self.train_loss[0]})
pandas.DataFrame
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__)
tm.assert_index_equal(result, orig)
pandas.util.testing.assert_index_equal
import pandas as pd import numpy as np import json from tqdm import tqdm from scipy.optimize import minimize from utils import get_next_gw, time_decay from ranked_probability_score import ranked_probability_score, match_outcome class Bradley_Terry: """ Model game outcomes using logistic distribution """ def __init__( self, games, threshold=0.1, scale=1, parameters=None, decay=True): """ Args: games (pd.DataFrame): Finished games to used for training. threshold (float): Threshold to differentiate team performances scale (float): Variance of strength ratings parameters (array): Initial parameters to use decay (boolean): Apply time decay """ self.games = games.loc[:, [ "score1", "score2", "team1", "team2", "date"]] self.games = self.games.dropna() self.games["date"] = pd.to_datetime(self.games["date"]) self.games["days_since"] = ( self.games["date"].max() - self.games["date"]).dt.days self.games["weight"] = ( time_decay(0.0026, self.games["days_since"]) if decay else 1) self.decay = decay self.games["score1"] = self.games["score1"].astype(int) self.games["score2"] = self.games["score2"].astype(int) self.teams = np.sort(np.unique(self.games["team1"])) self.league_size = len(self.teams) self.threshold = threshold self.scale = scale # Initial parameters if parameters is None: self.parameters = np.concatenate(( np.random.uniform(0, 1, (self.league_size)), # Strength [.1], # Home advantage )) else: self.parameters = parameters def likelihood(self, parameters, games): """ Perform sample prediction and compare with outcome Args: parameters (pd.DataFrame): Current estimate of the parameters games (pd.DataFrame): Fixtures Returns: (float): Likelihood of the estimated parameters """ parameter_df = ( pd.DataFrame() .assign(rating=parameters[:self.league_size]) .assign(team=self.teams) ) fixtures_df = ( pd.merge( games, parameter_df, left_on='team1', right_on='team') .rename(columns={"rating": "rating1"}) .merge(parameter_df, left_on='team2', right_on='team') .rename(columns={"rating": "rating2"}) .drop("team_y", axis=1) .drop("team_x", axis=1) ) outcome = match_outcome(fixtures_df) outcome_ma = np.ones((fixtures_df.shape[0], 3)) outcome_ma[np.arange(0, fixtures_df.shape[0]), outcome] = 0 odds = np.zeros((fixtures_df.shape[0], 3)) odds[:, 0] = ( 1 / (1 + np.exp( -( fixtures_df["rating1"] + parameters[-1] - fixtures_df["rating2"] - self.threshold ) / self.scale) ) ) odds[:, 2] = ( 1 / (1 + np.exp( -( fixtures_df["rating2"] - parameters[-1] - fixtures_df["rating1"] - self.threshold ) / self.scale) ) ) odds[:, 1] = 1 - odds[:, 0] - odds[:, 2] return - np.power( np.ma.masked_array(odds, outcome_ma), np.repeat( np.array(fixtures_df["weight"].values).reshape(-1, 1), 3, axis=1) ).sum() def maximum_likelihood_estimation(self): """ Maximum likelihood estimation of the model parameters for team strengths and the home field advantage. """ # Set strength ratings to have unique set of values for reproducibility constraints = [{ "type": "eq", "fun": lambda x: sum(x[: self.league_size]) - self.league_size }] # Set the maximum and minimum values the parameters can take bounds = [(0, 3)] * self.league_size bounds += [(0, 1)] self.solution = minimize( self.likelihood, self.parameters, args=self.games, constraints=constraints, bounds=bounds, options={'disp': False, 'maxiter': 100}) self.parameters = self.solution["x"] def predict(self, games): """ Predict score for several fixtures Args: games (pd.DataFrame): Fixtures Returns: pd.DataFrame: Fixtures with appended odds """ parameter_df = ( pd.DataFrame() .assign(rating=self.parameters[:self.league_size]) .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .rename(columns={"rating": "rating1"}) .merge(parameter_df, left_on='team2', right_on='team') .rename(columns={"rating": "rating2"}) .drop("team_y", axis=1) .drop("team_x", axis=1) .assign(home_adv=self.parameters[-1]) ) def synthesize_odds(row): """ Lambda function that parses row by row to compute score matrix Args: row (array): Fixture Returns: (tuple): Home and Away win and clean sheets odds """ home_win_p = ( 1 / ( 1 + np.exp( -( row["rating1"] + row["home_adv"] - row["rating2"] - self.threshold) / self.scale ) ) ) away_win_p = ( 1 / ( 1 + np.exp( -( row["rating2"] - row["home_adv"] - row["rating1"] - self.threshold) / self.scale ) ) ) draw_p = 1 - home_win_p - away_win_p return home_win_p, draw_p, away_win_p ( fixtures_df["home_win_p"], fixtures_df["draw_p"], fixtures_df["away_win_p"] ) = zip(*fixtures_df.apply( lambda row: synthesize_odds(row), axis=1)) return fixtures_df def evaluate(self, games): """ Evaluate the model's prediction accuracy Args: games (pd.DataFrame): Fixtured to evaluate on Returns: pd.DataFrame: df with appended metrics """ fixtures_df = self.predict(games) fixtures_df["winner"] = match_outcome(fixtures_df) fixtures_df["rps"] = fixtures_df.apply( lambda row: ranked_probability_score( [row["home_win_p"], row["draw_p"], row["away_win_p"]], row["winner"]), axis=1) return fixtures_df def backtest( self, train_games, test_season, path='', cold_start=False, save=True): """ Test the model's accuracy on past/finished games by iteratively training and testing on parts of the data. Args: train_games (pd.DataFrame): All the training samples test_season (int): Season to use a test set path (string): Path extension to adjust to ipynb use cold_start (boolean): Resume training with random parameters save (boolean): Save predictions to disk Returns: (float): Evaluation metric """ # Get training data self.train_games = train_games # Initialize model self.__init__(self.train_games[ self.train_games['season'] != test_season], decay=self.decay) # Initial train on past seasons self.maximum_likelihood_estimation() # Get test data # Separate testing based on per GW intervals fixtures = ( pd.read_csv( f"{path}data/fpl_official/vaastav/data/2021-22/fixtures.csv") .loc[:, ['event', 'kickoff_time']]) fixtures["kickoff_time"] = ( pd.to_datetime(fixtures["kickoff_time"]).dt.date) # Get only EPL games from the test season self.test_games = ( self.train_games .loc[self.train_games['league_id'] == 2411] .loc[self.train_games['season'] == test_season] .dropna() ) self.test_games["kickoff_time"] = ( pd.to_datetime(self.test_games["date"]).dt.date) # Merge on date self.test_games = pd.merge( self.test_games, fixtures, left_on='kickoff_time', right_on='kickoff_time') # Add the home team and away team index for running inference idx = (
pd.DataFrame()
pandas.DataFrame
# Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pyfora.pandas_util import pyfora.algorithms import pyfora.algorithms.LinearRegression as LinearRegression import pyfora.pure_modules.pure_pandas as PurePandas import numpy import pandas import pandas.util.testing import random class InMemoryPandasTestCases(object): def checkFramesEqual(self, df1, df2): pandas.util.testing.assert_frame_equal(df1, df2) return True def checkSeriesEqual(self, series1, series2): pandas.util.testing.assert_series_equal(series1, series2) return True def test_pandas_series_basic(self): s = pandas.Series(range(10)) def f(): return s self.equivalentEvaluationTest(f) def test_repeated_dataframe_ctor(self): df = pandas.DataFrame({'A': [1,2,3,4], 'B': [5,6,7,8]}) def f(): return pandas.DataFrame(df) self.equivalentEvaluationTest( f, comparisonFunction=self.checkFramesEqual ) def test_repeated_series_ctor(self): s = pandas.Series([1,2,3]) def f(): return pandas.Series(s) self.equivalentEvaluationTest( f, comparisonFunction=self.checkSeriesEqual ) def test_pandas_dataframes_basic(self): df = pandas.DataFrame({'A': [1,2,3,4], 'B': [5,6,7,8]}) def f(): return df self.equivalentEvaluationTest( f, comparisonFunction=self.checkFramesEqual ) def test_pandas_series_indexing_1(self): s = pandas.Series(4) def f(ix): return s.iloc[ix] for ix in range(-len(s), len(s)): self.equivalentEvaluationTest( f, ix, comparisonFunction=lambda x, y: x == y ) def test_pandas_dataframe_indexing_1(self): df = pandas.DataFrame({'A': [1,2,3,4], 'B': [5,6,7,8]}) def f(ix, jx): return df.iloc[ix, jx] for ix in range(-df.shape[0], df.shape[0]): for jx in range(-df.shape[1], df.shape[1]): self.equivalentEvaluationTest( f, ix, jx, comparisonFunction=lambda x, y: int(x) == int(y) ) def test_pandas_dataframe_indexing_2(self): df = pandas.DataFrame({'A': [1,2], 'B': [5,6]}) def f(ix1, ix2, jx): return df.iloc[ix1:ix2, jx] ixes = range(-df.shape[0], df.shape[1]) + [None] jxes = range(-df.shape[1], df.shape[1]) for ix1 in ixes: for ix2 in ixes: for jx in jxes: self.equivalentEvaluationTest( f, ix1, ix2, jx, comparisonFunction=lambda x, y: list(x) == list(y) ) def test_pandas_dataframe_indexing_3(self): # due to some hashing stuff, this test will fail if # key 'D' is replaced by 'C'. Ehh ... df = pandas.DataFrame({'A': range(5), 'B': range(5,10), 'D': range(10,15)}) def f(): return df.iloc[:,:-1] def g(): return df.iloc[:,-1:] self.equivalentEvaluationTest( f, comparisonFunction=self.checkFramesEqual ) self.equivalentEvaluationTest( g, comparisonFunction=self.checkFramesEqual ) def test_pandas_dataframe_indexing_4(self): df = pandas.DataFrame({'A': range(5), 'B': range(5,10), 'D': range(10,15)}) def f(): return df.iloc[:,:] self.equivalentEvaluationTest( f, comparisonFunction=self.checkFramesEqual ) def test_pandas_dataframe_indexing_5(self): df = pandas.DataFrame({'A': range(5), 'B': range(5,10), 'D': range(10,15)}) def f(): return df.iloc[:,] self.equivalentEvaluationTest( f, comparisonFunction=self.checkFramesEqual ) def test_pandas_dataframe_indexing_6(self): df = pandas.DataFrame({'A': range(5), 'B': range(5,10), 'D': range(10,15)}) def f(jx): return df.iloc[:jx] for jx in xrange(2, 5, 2): self.equivalentEvaluationTest( f, jx, comparisonFunction=self.checkFramesEqual ) def test_pandas_shape(self): df = pandas.DataFrame({'A': [1,2,3,4], 'B': [5,6,7,8]}) self.equivalentEvaluationTest(lambda: df.shape) def test_pandas_dataframe_ctor_1(self): items = [('A', [1,2,3]), ('B', [4,5,6])] self.equivalentEvaluationTest( lambda: pandas.DataFrame(dict(items)), comparisonFunction=self.checkFramesEqual ) def test_pandas_dataframe_ctor_2(self): # NOTE: this form breaks the pandas API col1 = [1,2,3] col2 = [4,5,6] data = [col1, col2] res = self.evaluateWithExecutor( lambda: pandas.DataFrame(data) ) self.checkFramesEqual( res, pandas.DataFrame({ 'C0': col1, 'C1': col2 }) ) def test_pandas_dataframe_class(self): self.equivalentEvaluationTest( lambda: pandas.DataFrame, comparisonFunction=lambda x, y: x == y ) def test_pandas_read_csv_1(self): # there's some weirdness with whitspace that we have to deal # with, on the fora side. For example, after indenting all the # lines of s here, the read csv will miss the first line # o_O s = """ A,B,C 1,2,3 4,5,6 7,8,9 10,11,12 """ res = self.evaluateWithExecutor( lambda: pyfora.pandas_util.read_csv_from_string(s) ) self.checkFramesEqual( res, pandas.DataFrame( { 'A': [1,4,7,10], 'B': [2,5,8,11], 'C': [3,6,9,12] }, dtype=float ) ) def test_pandas_read_csv_2(self): # there's some weirdness with whitspace that we have to deal # with, on the fora side. For example, after indenting all the # lines of s here, the read csv will miss the first line # o_O s = """ A,B,C 1,2,3 4,notAFloat,6 7,8,9 10,11,12 """ def f(): try: return pyfora.pandas_util.read_csv_from_string(s) except Exception as e: return e res = self.evaluateWithExecutor(f) self.assertIsInstance(res, Exception) def test_pandas_read_csv_from_s3(self): s = """ A,B,C 1,2,3 4,5,6 7,8,9 10,11,12 """ with self.create_executor() as executor: s3 = self.getS3Interface(executor) key = "test_pandas_read_csv_from_s3_key" s3().setKeyValue("bucketname", key, s) remoteCsv = executor.importS3Dataset("bucketname", key).result() with executor.remotely.downloadAll(): df = pyfora.pandas_util.read_csv_from_string(remoteCsv) self.checkFramesEqual( df, pandas.DataFrame( { 'A': [1,4,7,10], 'B': [2,5,8,11], 'C': [3,6,9,12] }, dtype=float ) ) def pyfora_linear_regression_test(self): random.seed(42) nRows = 100 x_col_1 = [] x_col_2 = [] y_col = [] for _ in range(nRows): x1 = random.uniform(-10, 10) x2 = random.uniform(-10, 10) noise = random.uniform(-1, 1) y = x1 * 5 + x2 * 2 - 8 + noise x_col_1.append(x1) x_col_2.append(x2) y_col.append(y) def computeCoefficients(): predictors = PurePandas.PurePythonDataFrame([x_col_1, x_col_2], ["x1", "x2"]) responses = PurePandas.PurePythonDataFrame([y_col], ["y"]) return LinearRegression.linearRegression(predictors, responses) res_python = computeCoefficients() res_pyfora = self.evaluateWithExecutor(computeCoefficients) self.assertArraysAreAlmostEqual(res_python, res_pyfora) df_x = pandas.DataFrame({ 'x1': x_col_1, 'x2': x_col_2 }) df_y = pandas.DataFrame({ 'y': y_col }) res_pandas = LinearRegression.linearRegression(df_x, df_y) self.assertArraysAreAlmostEqual(res_python, res_pandas) # verified using sklearn.linear_model.LinearRegression, on nRows = 100 res_scikit = numpy.array([[4.96925412, 2.00279298, -7.98208391]]) self.assertArraysAreAlmostEqual(res_python, res_scikit) def test_pyfora_linear_regression_1(self): self.pyfora_linear_regression_test() def test_pyfora_linear_regression_with_splitting(self): # note: the right way to do this is to expose _splitLimit # as an argument to LinearRegression.linearRegression, but a # lack of named arguments in pyfora means that the code # would be slightly more verbose than it should need be. oldSplitLimit = LinearRegression._splitLimit try: LinearRegression._splitLimit = 10 self.pyfora_linear_regression_test() finally: LinearRegression._splitLimit = oldSplitLimit def test_series_sort_values(self): s = pandas.Series([5,5,2,2,1,2,3,4,2,3,1,5]) def f(): return list(s.sort_values().values) self.equivalentEvaluationTest( f, comparisonFunction=lambda x, y: all(map(lambda v:v[0]==v[1], zip(x, y))) ) def test_series_unique(self): s = pandas.Series([5,5,2,2,1,2,3,4,2,3,1,5]) def f(): return sorted(list(s.unique())) self.equivalentEvaluationTest( f, comparisonFunction=lambda x, y: all(map(lambda v:v[0]==v[1], zip(x, y))) ) def test_dataframe_pyfora_addColumn(self): d = {'A': [1,2,3,4], 'B': [5,6,7,8]} df = pandas.DataFrame(d) c = range(8, 12) def f(): return df.pyfora_addColumn('C', c) newDict = d.copy() newDict['C'] = c self.checkFramesEqual( self.evaluateWithExecutor(f), pandas.DataFrame(newDict) ) def test_series_isinstance(self): s = pandas.Series([1,2,3,4]) def f(): return isinstance(s, list) self.equivalentEvaluationTest(f) def test_dataframe_as_matrix(self): df =
pandas.DataFrame({'A': [1,2,3,4], 'B': [5,6,7,8]})
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.base import _registry as ea_registry from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, PeriodIndex, Series, Timestamp, cut, date_range, notna, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.tseries.offsets import BDay class TestDataFrameSetItem: @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"]) def test_setitem_dtype(self, dtype, float_frame): arr = np.random.randn(len(float_frame)) float_frame[dtype] = np.array(arr, dtype=dtype) assert float_frame[dtype].dtype.name == dtype def test_setitem_list_not_dataframe(self, float_frame): data = np.random.randn(len(float_frame), 2) float_frame[["A", "B"]] = data tm.assert_almost_equal(float_frame[["A", "B"]].values, data) def test_setitem_error_msmgs(self): # GH 7432 df = DataFrame( {"bar": [1, 2, 3], "baz": ["d", "e", "f"]}, index=Index(["a", "b", "c"], name="foo"), ) ser = Series( ["g", "h", "i", "j"], index=Index(["a", "b", "c", "a"], name="foo"), name="fiz", ) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): df["newcol"] = ser # GH 4107, more descriptive error message df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"]) msg = "incompatible index of inserted column with frame index" with pytest.raises(TypeError, match=msg): df["gr"] = df.groupby(["b", "c"]).count() def test_setitem_benchmark(self): # from the vb_suite/frame_methods/frame_insert_columns N = 10 K = 5 df = DataFrame(index=range(N)) new_col = np.random.randn(N) for i in range(K): df[i] = new_col expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N)) tm.assert_frame_equal(df, expected) def test_setitem_different_dtype(self): df = DataFrame( np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"] ) df.insert(0, "foo", df["a"]) df.insert(2, "bar", df["c"]) # diff dtype # new item df["x"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 5 + [np.dtype("float32")], index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) # replacing current (in different block) df["a"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2, index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) df["y"] = df["a"].astype("int32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")], index=["foo", "c", "bar", "b", "a", "x", "y"], ) tm.assert_series_equal(result, expected) def test_setitem_empty_columns(self): # GH 13522 df = DataFrame(index=["A", "B", "C"]) df["X"] = df.index df["X"] = ["x", "y", "z"] exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"]) tm.assert_frame_equal(df, exp) def test_setitem_dt64_index_empty_columns(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert df["A"].dtype == np.dtype("M8[ns]") def test_setitem_timestamp_empty_columns(self): # GH#19843 df = DataFrame(index=range(3)) df["now"] = Timestamp("20130101", tz="UTC") expected = DataFrame( [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"] ) tm.assert_frame_equal(df, expected) def test_setitem_wrong_length_categorical_dtype_raises(self): # GH#29523 cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"]) df = DataFrame(range(10), columns=["bar"]) msg = ( rf"Length of values \({len(cat)}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=msg): df["foo"] = cat def test_setitem_with_sparse_value(self): # GH#8131 df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_array = SparseArray([0, 0, 1]) df["new_column"] = sp_array expected = Series(sp_array, name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_with_unaligned_sparse_value(self): df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0]) df["new_column"] = sp_series expected = Series(SparseArray([1, 0, 0]), name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_dict_preserves_dtypes(self): # https://github.com/pandas-dev/pandas/issues/34573 expected = DataFrame( { "a": Series([0, 1, 2], dtype="int64"), "b": Series([1, 2, 3], dtype=float), "c": Series([1, 2, 3], dtype=float), } ) df = DataFrame( { "a": Series([], dtype="int64"), "b": Series([], dtype=float), "c": Series([], dtype=float), } ) for idx, b in enumerate([1, 2, 3]): df.loc[df.shape[0]] = {"a": int(idx), "b": float(b), "c": float(b)} tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "obj,dtype", [ (Period("2020-01"), PeriodDtype("M")), (Interval(left=0, right=5), IntervalDtype("int64", "right")), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), ], ) def test_setitem_extension_types(self, obj, dtype): # GH: 34832 expected = DataFrame({"idx": [1, 2, 3], "obj": Series([obj] * 3, dtype=dtype)}) df = DataFrame({"idx": [1, 2, 3]}) df["obj"] = obj tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "ea_name", [ dtype.name for dtype in ea_registry.dtypes # property would require instantiation if not isinstance(dtype.name, property) ] # mypy doesn't allow adding lists of different types # https://github.com/python/mypy/issues/5492 + ["datetime64[ns, UTC]", "period[D]"], # type: ignore[list-item] ) def test_setitem_with_ea_name(self, ea_name): # GH 38386 result = DataFrame([0]) result[ea_name] = [1] expected = DataFrame({0: [0], ea_name: [1]}) tm.assert_frame_equal(result, expected) def test_setitem_dt64_ndarray_with_NaT_and_diff_time_units(self): # GH#7492 data_ns = np.array([1, "nat"], dtype="datetime64[ns]") result = Series(data_ns).to_frame() result["new"] = data_ns expected = DataFrame({0: [1, None], "new": [1, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) # OutOfBoundsDatetime error shouldn't occur data_s = np.array([1, "nat"], dtype="datetime64[s]") result["new"] = data_s expected = DataFrame({0: [1, None], "new": [1e9, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into a not-yet-existing column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df[unit] = vals assert df[unit].dtype == np.dtype("M8[ns]") assert (df[unit].values == ex_vals).all() @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_existing_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into an already-existing dt64 column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df["dates"] = np.arange(n, dtype=np.int64).view("M8[ns]") # We overwrite existing dt64 column with new, non-nano dt64 vals df["dates"] = vals assert (df["dates"].values == ex_vals).all() def test_setitem_dt64tz(self, timezone_frame): df = timezone_frame idx = df["B"].rename("foo") # setitem df["C"] = idx tm.assert_series_equal(df["C"], Series(idx, name="C")) df["D"] = "foo" df["D"] = idx tm.assert_series_equal(df["D"], Series(idx, name="D")) del df["D"] # assert that A & C are not sharing the same base (e.g. they # are copies) v1 = df._mgr.arrays[1] v2 = df._mgr.arrays[2] tm.assert_extension_array_equal(v1, v2) v1base = v1._data.base v2base = v2._data.base assert v1base is None or (id(v1base) != id(v2base)) # with nan df2 = df.copy() df2.iloc[1, 1] = NaT df2.iloc[1, 2] = NaT result = df2["B"] tm.assert_series_equal(notna(result), Series([True, False, True], name="B")) tm.assert_series_equal(df2.dtypes, df.dtypes) def test_setitem_periodindex(self): rng = period_range("1/1/2000", periods=5, name="index") df = DataFrame(np.random.randn(5, 3), index=rng) df["Index"] = rng rs = Index(df["Index"]) tm.assert_index_equal(rs, rng, check_names=False) assert rs.name == "Index" assert rng.name == "index" rs = df.reset_index().set_index("index") assert isinstance(rs.index, PeriodIndex) tm.assert_index_equal(rs.index, rng) def test_setitem_complete_column_with_array(self): # GH#37954 df = DataFrame({"a": ["one", "two", "three"], "b": [1, 2, 3]}) arr = np.array([[1, 1], [3, 1], [5, 1]]) df[["c", "d"]] = arr expected = DataFrame( { "a": ["one", "two", "three"], "b": [1, 2, 3], "c": [1, 3, 5], "d": [1, 1, 1], } ) expected["c"] = expected["c"].astype(arr.dtype) expected["d"] = expected["d"].astype(arr.dtype) assert expected["c"].dtype == arr.dtype assert expected["d"].dtype == arr.dtype tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"]) def test_setitem_bool_with_numeric_index(self, dtype): # GH#36319 cols = Index([1, 2, 3], dtype=dtype) df = DataFrame(np.random.randn(3, 3), columns=cols) df[False] = ["a", "b", "c"] expected_cols = Index([1, 2, 3, False], dtype=object) if dtype == "f8": expected_cols = Index([1.0, 2.0, 3.0, False], dtype=object) tm.assert_index_equal(df.columns, expected_cols) @pytest.mark.parametrize("indexer", ["B", ["B"]]) def test_setitem_frame_length_0_str_key(self, indexer): # GH#38831 df = DataFrame(columns=["A", "B"]) other = DataFrame({"B": [1, 2]}) df[indexer] = other expected = DataFrame({"A": [np.nan] * 2, "B": [1, 2]}) expected["A"] = expected["A"].astype("object") tm.assert_frame_equal(df, expected) def test_setitem_frame_duplicate_columns(self, using_array_manager): # GH#15695 cols = ["A", "B", "C"] * 2 df = DataFrame(index=range(3), columns=cols) df.loc[0, "A"] = (0, 3) df.loc[:, "B"] = (1, 4) df["C"] = (2, 5) expected = DataFrame( [ [0, 1, 2, 3, 4, 5], [np.nan, 1, 2, np.nan, 4, 5], [np.nan, 1, 2, np.nan, 4, 5], ], dtype="object", ) if using_array_manager: # setitem replaces column so changes dtype expected.columns = cols expected["C"] = expected["C"].astype("int64") # TODO(ArrayManager) .loc still overwrites expected["B"] = expected["B"].astype("int64") else: # set these with unique columns to be extra-unambiguous expected[2] = expected[2].astype(np.int64) expected[5] = expected[5].astype(np.int64) expected.columns = cols tm.assert_frame_equal(df, expected) def test_setitem_frame_duplicate_columns_size_mismatch(self): # GH#39510 cols = ["A", "B", "C"] * 2 df = DataFrame(index=range(3), columns=cols) with pytest.raises(ValueError, match="Columns must be same length as key"): df[["A"]] = (0, 3, 5) df2 = df.iloc[:, :3] # unique columns with pytest.raises(ValueError, match="Columns must be same length as key"): df2[["A"]] = (0, 3, 5) @pytest.mark.parametrize("cols", [["a", "b", "c"], ["a", "a", "a"]]) def test_setitem_df_wrong_column_number(self, cols): # GH#38604 df = DataFrame([[1, 2, 3]], columns=cols) rhs = DataFrame([[10, 11]], columns=["d", "e"]) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): df["a"] = rhs def test_setitem_listlike_indexer_duplicate_columns(self): # GH#38604 df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"]) rhs = DataFrame([[10, 11, 12]], columns=["a", "b", "b"]) df[["a", "b"]] = rhs expected = DataFrame([[10, 11, 12]], columns=["a", "b", "b"]) tm.assert_frame_equal(df, expected) df[["c", "b"]] = rhs expected = DataFrame([[10, 11, 12, 10]], columns=["a", "b", "b", "c"]) tm.assert_frame_equal(df, expected) def test_setitem_listlike_indexer_duplicate_columns_not_equal_length(self): # GH#39403 df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"]) rhs = DataFrame([[10, 11]], columns=["a", "b"]) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): df[["a", "b"]] = rhs def test_setitem_intervals(self): df = DataFrame({"A": range(10)}) ser = cut(df["A"], 5) assert isinstance(ser.cat.categories, IntervalIndex) # B & D end up as Categoricals # the remainder are converted to in-line objects # containing an IntervalIndex.values df["B"] = ser df["C"] = np.array(ser) df["D"] = ser.values df["E"] = np.array(ser.values) df["F"] = ser.astype(object) assert is_categorical_dtype(df["B"].dtype) assert is_interval_dtype(df["B"].cat.categories) assert is_categorical_dtype(df["D"].dtype) assert is_interval_dtype(df["D"].cat.categories) # These go through the Series constructor and so get inferred back # to IntervalDtype assert is_interval_dtype(df["C"]) assert is_interval_dtype(df["E"]) # But the Series constructor doesn't do inference on Series objects, # so setting df["F"] doesn't get cast back to IntervalDtype assert is_object_dtype(df["F"]) # they compare equal as Index # when converted to numpy objects c = lambda x: Index(np.array(x)) tm.assert_index_equal(c(df.B), c(df.B)) tm.assert_index_equal(c(df.B), c(df.C), check_names=False) tm.assert_index_equal(c(df.B), c(df.D), check_names=False) tm.assert_index_equal(c(df.C), c(df.D), check_names=False) # B & D are the same Series tm.assert_series_equal(df["B"], df["B"]) tm.assert_series_equal(df["B"], df["D"], check_names=False) # C & E are the same Series tm.assert_series_equal(df["C"], df["C"]) tm.assert_series_equal(df["C"], df["E"], check_names=False) def test_setitem_categorical(self): # GH#35369 df = DataFrame({"h": Series(list("mn")).astype("category")}) df.h = df.h.cat.reorder_categories(["n", "m"]) expected = DataFrame( {"h": Categorical(["m", "n"]).reorder_categories(["n", "m"])} ) tm.assert_frame_equal(df, expected) def test_setitem_with_empty_listlike(self): # GH#17101 index = Index([], name="idx") result = DataFrame(columns=["A"], index=index) result["A"] = [] expected = DataFrame(columns=["A"], index=index) tm.assert_index_equal(result.index, expected.index) @pytest.mark.parametrize( "cols, values, expected", [ (["C", "D", "D", "a"], [1, 2, 3, 4], 4), # with duplicates (["D", "C", "D", "a"], [1, 2, 3, 4], 4), # mixed order (["C", "B", "B", "a"], [1, 2, 3, 4], 4), # other duplicate cols (["C", "B", "a"], [1, 2, 3], 3), # no duplicates (["B", "C", "a"], [3, 2, 1], 1), # alphabetical order (["C", "a", "B"], [3, 2, 1], 2), # in the middle ], ) def test_setitem_same_column(self, cols, values, expected): # GH#23239 df = DataFrame([values], columns=cols) df["a"] = df["a"] result = df["a"].values[0] assert result == expected def test_setitem_multi_index(self): # GH#7655, test that assigning to a sub-frame of a frame # with multi-index columns aligns both rows and columns it = ["jim", "joe", "jolie"], ["first", "last"], ["left", "center", "right"] cols = MultiIndex.from_product(it) index = date_range("20141006", periods=20) vals = np.random.randint(1, 1000, (len(index), len(cols))) df = DataFrame(vals, columns=cols, index=index) i, j = df.index.values.copy(), it[-1][:] np.random.shuffle(i) df["jim"] = df["jolie"].loc[i, ::-1] tm.assert_frame_equal(df["jim"], df["jolie"]) np.random.shuffle(j) df[("joe", "first")] = df[("jolie", "last")].loc[i, j] tm.assert_frame_equal(df[("joe", "first")], df[("jolie", "last")]) np.random.shuffle(j) df[("joe", "last")] = df[("jolie", "first")].loc[i, j] tm.assert_frame_equal(df[("joe", "last")], df[("jolie", "first")]) @pytest.mark.parametrize( "columns,box,expected", [ ( ["A", "B", "C", "D"], 7, DataFrame( [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]], columns=["A", "B", "C", "D"], ), ), ( ["C", "D"], [7, 8], DataFrame( [[1, 2, 7, 8], [3, 4, 7, 8], [5, 6, 7, 8]], columns=["A", "B", "C", "D"], ), ), ( ["A", "B", "C"], np.array([7, 8, 9], dtype=np.int64), DataFrame([[7, 8, 9], [7, 8, 9], [7, 8, 9]], columns=["A", "B", "C"]), ), ( ["B", "C", "D"], [[7, 8, 9], [10, 11, 12], [13, 14, 15]], DataFrame( [[1, 7, 8, 9], [3, 10, 11, 12], [5, 13, 14, 15]], columns=["A", "B", "C", "D"], ), ), ( ["C", "A", "D"], np.array([[7, 8, 9], [10, 11, 12], [13, 14, 15]], dtype=np.int64), DataFrame( [[8, 2, 7, 9], [11, 4, 10, 12], [14, 6, 13, 15]], columns=["A", "B", "C", "D"], ), ), ( ["A", "C"], DataFrame([[7, 8], [9, 10], [11, 12]], columns=["A", "C"]), DataFrame( [[7, 2, 8], [9, 4, 10], [11, 6, 12]], columns=["A", "B", "C"] ), ), ], ) def test_setitem_list_missing_columns(self, columns, box, expected): # GH#29334 df = DataFrame([[1, 2], [3, 4], [5, 6]], columns=["A", "B"]) df[columns] = box tm.assert_frame_equal(df, expected) def test_setitem_list_of_tuples(self, float_frame): tuples = list(zip(float_frame["A"], float_frame["B"])) float_frame["tuples"] = tuples result = float_frame["tuples"] expected = Series(tuples, index=float_frame.index, name="tuples") tm.assert_series_equal(result, expected) def test_setitem_iloc_generator(self): # GH#39614 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) indexer = (x for x in [1, 2]) df.iloc[indexer] = 1 expected = DataFrame({"a": [1, 1, 1], "b": [4, 1, 1]}) tm.assert_frame_equal(df, expected) def test_setitem_iloc_two_dimensional_generator(self): df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) indexer = (x for x in [1, 2]) df.iloc[indexer, 1] = 1 expected = DataFrame({"a": [1, 2, 3], "b": [4, 1, 1]}) tm.assert_frame_equal(df, expected) class TestSetitemTZAwareValues: @pytest.fixture def idx(self): naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B") idx = naive.tz_localize("US/Pacific") return idx @pytest.fixture def expected(self, idx): expected = Series(np.array(idx.tolist(), dtype="object"), name="B") assert expected.dtype == idx.dtype return expected def test_setitem_dt64series(self, idx, expected): # convert to utc df = DataFrame(np.random.randn(2, 1), columns=["A"]) df["B"] = idx with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = df["B"] comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B") tm.assert_series_equal(result, comp) def test_setitem_datetimeindex(self, idx, expected): # setting a DataFrame column with a tzaware DTI retains the dtype df = DataFrame(np.random.randn(2, 1), columns=["A"]) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) def test_setitem_object_array_of_tzaware_datetimes(self, idx, expected): # setting a DataFrame column with a tzaware DTI retains the dtype df = DataFrame(np.random.randn(2, 1), columns=["A"]) # object array of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) class TestDataFrameSetItemWithExpansion: # TODO(ArrayManager) update parent (_maybe_update_cacher) @td.skip_array_manager_not_yet_implemented def test_setitem_listlike_views(self): # GH#38148 df = DataFrame({"a": [1, 2, 3], "b": [4, 4, 6]}) # get one column as a view of df ser = df["a"] # add columns with list-like indexer df[["c", "d"]] = np.array([[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]]) # edit in place the first column to check view semantics df.iloc[0, 0] = 100 expected = Series([100, 2, 3], name="a") tm.assert_series_equal(ser, expected) def test_setitem_string_column_numpy_dtype_raising(self): # GH#39010 df = DataFrame([[1, 2], [3, 4]]) df["0 - Name"] = [5, 6] expected = DataFrame([[1, 2, 5], [3, 4, 6]], columns=[0, 1, "0 - Name"]) tm.assert_frame_equal(df, expected) def test_setitem_empty_df_duplicate_columns(self): # GH#38521 df = DataFrame(columns=["a", "b", "b"], dtype="float64") df.loc[:, "a"] = list(range(2)) expected = DataFrame( [[0, np.nan, np.nan], [1, np.nan, np.nan]], columns=["a", "b", "b"] ) tm.assert_frame_equal(df, expected) def test_setitem_with_expansion_categorical_dtype(self): # assignment df = DataFrame( {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")} ) labels = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) df = df.sort_values(by=["value"], ascending=True) ser = cut(df.value, range(0, 10500, 500), right=False, labels=labels) cat = ser.values # setting with a Categorical df["D"] = cat str(df) result = df.dtypes expected = Series( [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)], index=["value", "D"], ) tm.assert_series_equal(result, expected) # setting with a Series df["E"] = ser str(df) result = df.dtypes expected = Series( [ np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False), CategoricalDtype(categories=labels, ordered=False), ], index=["value", "D", "E"], ) tm.assert_series_equal(result, expected) result1 = df["D"] result2 = df["E"] tm.assert_categorical_equal(result1._mgr.array, cat) # sorting ser.name = "E" tm.assert_series_equal(result2.sort_index(), ser.sort_index()) def test_setitem_scalars_no_index(self): # GH#16823 / GH#17894 df = DataFrame() df["foo"] = 1 expected = DataFrame(columns=["foo"]).astype(np.int64) tm.assert_frame_equal(df, expected) def test_setitem_newcol_tuple_key(self, float_frame): assert ( "A", "B", ) not in float_frame.columns float_frame["A", "B"] = float_frame["A"] assert ("A", "B") in float_frame.columns result = float_frame["A", "B"] expected = float_frame["A"] tm.assert_series_equal(result, expected, check_names=False) def test_frame_setitem_newcol_timestamp(self): # GH#2155 columns = date_range(start="1/1/2012", end="2/1/2012", freq=BDay()) data = DataFrame(columns=columns, index=range(10)) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works, mostly a smoke-test assert np.isnan(data[ts]).all() class TestDataFrameSetItemSlicing: def test_setitem_slice_position(self): # GH#31469 df = DataFrame(np.zeros((100, 1))) df[-4:] = 1 arr = np.zeros((100, 1)) arr[-4:] = 1 expected = DataFrame(arr) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [tm.setitem, tm.iloc]) @pytest.mark.parametrize("box", [Series, np.array, list]) @pytest.mark.parametrize("n", [1, 2, 3]) def test_setitem_broadcasting_rhs(self, n, box, indexer): # GH#40440 # TODO: Add pandas array as box after GH#40933 is fixed df = DataFrame([[1, 3, 5]] + [[2, 4, 6]] * n, columns=["a", "b", "c"]) indexer(df)[1:] = box([10, 11, 12]) expected = DataFrame([[1, 3, 5]] + [[10, 11, 12]] * n, columns=["a", "b", "c"]) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [tm.setitem, tm.iloc]) @pytest.mark.parametrize("box", [Series, np.array, list]) @pytest.mark.parametrize("n", [1, 2, 3]) def test_setitem_broadcasting_rhs_mixed_dtypes(self, n, box, indexer): # GH#40440 # TODO: Add pandas array as box after GH#40933 is fixed df = DataFrame( [[1, 3, 5], ["x", "y", "z"]] + [[2, 4, 6]] * n, columns=["a", "b", "c"] ) indexer(df)[1:] = box([10, 11, 12]) expected = DataFrame( [[1, 3, 5]] + [[10, 11, 12]] * (n + 1), columns=["a", "b", "c"], dtype="object", ) tm.assert_frame_equal(df, expected) class TestDataFrameSetItemCallable: def test_setitem_callable(self): # GH#12533 df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}) df[lambda x: "A"] = [11, 12, 13, 14] exp = DataFrame({"A": [11, 12, 13, 14], "B": [5, 6, 7, 8]}) tm.assert_frame_equal(df, exp) def test_setitem_other_callable(self): # GH#13299 def inc(x): return x + 1 df = DataFrame([[-1, 1], [1, -1]]) df[df > 0] = inc expected = DataFrame([[-1, inc], [inc, -1]]) tm.assert_frame_equal(df, expected) class TestDataFrameSetItemBooleanMask: @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values @pytest.mark.parametrize( "mask_type", [lambda df: df > np.abs(df) / 2, lambda df: (df > np.abs(df) / 2).values], ids=["dataframe", "array"], ) def test_setitem_boolean_mask(self, mask_type, float_frame): # Test for issue #18582 df = float_frame.copy() mask = mask_type(df) # index with boolean mask result = df.copy() result[mask] = np.nan expected = df.copy() expected.values[np.array(mask)] = np.nan tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("indexer", [tm.setitem, tm.loc]) def test_setitem_boolean_mask_aligning(self, indexer): # GH#39931 df = DataFrame({"a": [1, 4, 2, 3], "b": [5, 6, 7, 8]}) expected = df.copy() mask = df["a"] >= 3 indexer(df)[mask] = indexer(df)[mask].sort_values("a") tm.assert_frame_equal(df, expected) def test_setitem_mask_categorical(self): # assign multiple rows (mixed values) (-> array) -> exp_multi_row # changed multiple rows cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2) catsf = Categorical( ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"] ) idxf = Index(["h", "i", "j", "k", "l", "m", "n"]) valuesf = [1, 1, 3, 3, 1, 1, 1] df = DataFrame({"cats": catsf, "values": valuesf}, index=idxf) exp_fancy = exp_multi_row.copy() return_value = exp_fancy["cats"].cat.set_categories( ["a", "b", "c"], inplace=True ) assert return_value is None mask = df["cats"] == "c" df[mask] = ["b", 2] # category c is kept in .categories tm.assert_frame_equal(df, exp_fancy) @pytest.mark.parametrize("dtype", ["float", "int64"]) @pytest.mark.parametrize("kwargs", [{}, {"index": [1]}, {"columns": ["A"]}]) def test_setitem_empty_frame_with_boolean(self, dtype, kwargs): # see GH#10126 kwargs["dtype"] = dtype df = DataFrame(**kwargs) df2 = df.copy() df[df > df2] = 47 tm.assert_frame_equal(df, df2) def test_setitem_boolean_indexing(self): idx = list(range(3)) cols = ["A", "B", "C"] df1 = DataFrame( index=idx, columns=cols, data=np.array( [[0.0, 0.5, 1.0], [1.5, 2.0, 2.5], [3.0, 3.5, 4.0]], dtype=float ), ) df2 = DataFrame(index=idx, columns=cols, data=np.ones((len(idx), len(cols)))) expected = DataFrame( index=idx, columns=cols, data=np.array([[0.0, 0.5, 1.0], [1.5, 2.0, -1], [-1, -1, -1]], dtype=float), ) df1[df1 > 2.0 * df2] = -1 tm.assert_frame_equal(df1, expected) with pytest.raises(ValueError, match="Item wrong length"): df1[df1.index[:-1] > 2] = -1 def test_loc_setitem_all_false_boolean_two_blocks(self): # GH#40885 df = DataFrame({"a": [1, 2], "b": [3, 4], "c": "a"}) expected = df.copy() indexer = Series([False, False], name="c") df.loc[indexer, ["b"]] = DataFrame({"b": [5, 6]}, index=[0, 1]) tm.assert_frame_equal(df, expected) class TestDataFrameSetitemCopyViewSemantics: def test_setitem_always_copy(self, float_frame): assert "E" not in float_frame.columns s = float_frame["A"].copy() float_frame["E"] = s float_frame["E"][5:10] = np.nan assert notna(s[5:10]).all() def test_setitem_clear_caches(self): # see GH#304 df = DataFrame( {"x": [1.1, 2.1, 3.1, 4.1], "y": [5.1, 6.1, 7.1, 8.1]}, index=[0, 1, 2, 3] ) df.insert(2, "z", np.nan) # cache it foo = df["z"] df.loc[df.index[2:], "z"] = 42 expected = Series([np.nan, np.nan, 42, 42], index=df.index, name="z") assert df["z"] is not foo tm.assert_series_equal(df["z"], expected) def test_setitem_duplicate_columns_not_inplace(self): # GH#39510 cols = ["A", "B"] * 2 df =
DataFrame(0.0, index=[0], columns=cols)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 3 22:53:56 2021 @author: afo """ import pandas as pd import lyricsgenius import json import os from os.path import isfile, join from os import listdir import re from rym import rymscraper # Function to get all the json file names in 3 subdirectories of given rapper - albums, eps, mixtapes def load_album_names(p, df, to_collect=2): files_alb = [] files_ep = [] files_mix = [] album_path = p + '/data/' + df.iloc[0,0] +'/albums' ep_path = p + '/data/' + df.iloc[0,0] +'/eps' mixtape_path = p + '/data/' + df.iloc[0,0] +'/mixtapes' if to_collect >= 0: # Get list of files from albums files_alb = [f for f in listdir(album_path) if isfile(join(album_path, f))] files_alb = [s.replace('.json', '') for s in files_alb] if to_collect >= 1: # Get list of files from eps files_ep = [f for f in listdir(ep_path) if isfile(join(ep_path, f))] files_ep = [s.replace('.json', '') for s in files_ep] if to_collect >= 2: # Get list of files from mixtapes files_mix = [f for f in listdir(mixtape_path) if isfile(join(mixtape_path, f))] files_mix = [s.replace('.json', '') for s in files_mix] files = files_alb + files_ep + files_mix # make single list try : files.remove('.DS_Store') except ValueError: print() return files # Function to get the discography from RYM and add to dataframe def get_album_list(urls, names, name, to_collect=2): network = rymscraper.RymNetwork() # main scraper object # If artist url is supplied, take it, otherwise take name if len(str(urls[name])) > 2: discography_infos = network.get_discography_infos(url=urls[name], complementary_infos=False) else: discography_infos = network.get_discography_infos(name=names[name], complementary_infos=False) # don't forget to close and quit the browser (prevent memory leaks) network.browser.close() network.browser.quit() print("Discography for: " + names[name] + " gathered successfully!") # Placeholders for output lists artist_list = [] album_list = [] date_list = [] type_list = [] print(discography_infos[0]['Artist']) # If 0 - collect albums, if 1 - albums+eps, if 2 - albums+eps+mixtapes (all) if to_collect >= 0: # Loop to get the albums first for x in discography_infos: # Both these rappers have accent on "e" which breaks the check by name (as csv file with names in UTF-8) # So in case of them name is not checked, otherwise it gets checked to be sure it is not wrong artist # Same logic applies to all three loops if names[name] == 'Andre 3000' or names[name] == 'Red Cafe': if x['Category'] == 'Album': artist_list.append(names[name]) album_list.append(x['Name']) date_list.append(x['Year']) type_list.append(x['Category']) else: if x['Artist'] == names[name] and x['Category'] == 'Album': artist_list.append(names[name]) album_list.append(x['Name']) date_list.append(x['Year']) type_list.append(x['Category']) if to_collect >= 1: # Loop to get the EPs second for x in discography_infos: if names[name] == '<NAME>' or names[name] == 'Red Cafe': if x['Category'] == 'EP': artist_list.append(names[name]) album_list.append(x['Name']) date_list.append(x['Year']) type_list.append(x['Category']) else: if x['Artist'] == names[name] and x['Category'] == 'EP': artist_list.append(names[name]) album_list.append(x['Name']) date_list.append(x['Year']) type_list.append(x['Category']) if to_collect >= 2: # Loop to get the mixtapes last for x in discography_infos: if names[name] == '<NAME>' or names[name] == 'Red Cafe': if x['Category'] == 'Mixtape': artist_list.append(names[name]) album_list.append(x['Name']) date_list.append(x['Year']) type_list.append(x['Category']) else: if x['Artist'] == names[name] and x['Category'] == 'Mixtape': artist_list.append(names[name]) album_list.append(x['Name']) date_list.append(x['Year']) type_list.append(x['Category']) # All the ouputs collected into df d = {'Artist': artist_list, 'Album':album_list, 'Year': date_list, 'Type': type_list} df = pd.DataFrame(d) df['Year'] =
pd.to_numeric(df['Year'])
pandas.to_numeric
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. from datetime import datetime import numpy as np import pandas as pd import pytest import pytz from freezegun import freeze_time from pandas import Timestamp from pandas._testing import assert_frame_equal from wetterdienst.exceptions import StartDateEndDateError from wetterdienst.metadata.period import Period from wetterdienst.metadata.resolution import Resolution from wetterdienst.metadata.timezone import Timezone from wetterdienst.provider.dwd.observation import ( DwdObservationDataset, DwdObservationPeriod, DwdObservationResolution, ) from wetterdienst.provider.dwd.observation.api import DwdObservationRequest from wetterdienst.provider.dwd.observation.metadata.parameter import ( DwdObservationParameter, ) from wetterdienst.settings import Settings def test_dwd_observation_data_api(): request = DwdObservationRequest( parameter=["precipitation_height"], resolution="daily", period=["recent", "historical"], ) assert request == DwdObservationRequest( parameter=[DwdObservationParameter.DAILY.PRECIPITATION_HEIGHT], resolution=Resolution.DAILY, period=[Period.HISTORICAL, Period.RECENT], start_date=None, end_date=None, ) assert request.parameter == [ ( DwdObservationParameter.DAILY.CLIMATE_SUMMARY.PRECIPITATION_HEIGHT, DwdObservationDataset.CLIMATE_SUMMARY, ) ] @pytest.mark.remote def test_dwd_observation_data_dataset(): """Request a parameter set""" expected = DwdObservationRequest( parameter=["kl"], resolution="daily", period=["recent", "historical"], ).filter_by_station_id(station_id=(1,)) given = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL, DwdObservationPeriod.RECENT], start_date=None, end_date=None, ).filter_by_station_id( station_id=(1,), ) assert given == expected expected = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL, DwdObservationPeriod.RECENT], ).filter_by_station_id( station_id=(1,), ) given = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL, DwdObservationPeriod.RECENT], start_date=None, end_date=None, ).filter_by_station_id( station_id=(1,), ) assert expected == given assert expected.parameter == [ ( DwdObservationDataset.CLIMATE_SUMMARY, DwdObservationDataset.CLIMATE_SUMMARY, ) ] def test_dwd_observation_data_parameter(): """Test parameter given as single value without dataset""" request = DwdObservationRequest( parameter=["precipitation_height"], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [ ( DwdObservationParameter.DAILY.CLIMATE_SUMMARY.PRECIPITATION_HEIGHT, DwdObservationDataset.CLIMATE_SUMMARY, ) ] request = DwdObservationRequest( parameter=["climate_summary"], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [(DwdObservationDataset.CLIMATE_SUMMARY, DwdObservationDataset.CLIMATE_SUMMARY)] def test_dwd_observation_data_parameter_dataset_pairs(): """Test parameters given as parameter - dataset pair""" request = DwdObservationRequest( parameter=[("climate_summary", "climate_summary")], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [(DwdObservationDataset.CLIMATE_SUMMARY, DwdObservationDataset.CLIMATE_SUMMARY)] request = DwdObservationRequest( parameter=[("precipitation_height", "precipitation_more")], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [ ( DwdObservationParameter.DAILY.PRECIPITATION_MORE.PRECIPITATION_HEIGHT, DwdObservationDataset.PRECIPITATION_MORE, ) ] @pytest.mark.remote def test_dwd_observation_data_fails(): # station id assert ( DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], period=[DwdObservationPeriod.HISTORICAL], resolution=DwdObservationResolution.DAILY, ) .filter_by_station_id( station_id=["test"], ) .df.empty ) with pytest.raises(StartDateEndDateError): DwdObservationRequest( parameter=["abc"], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date="1951-01-01", ) def test_dwd_observation_data_dates(): # time input request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", ).filter_by_station_id( station_id=[1], ) assert request == DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[ DwdObservationPeriod.HISTORICAL, ], start_date=datetime(1971, 1, 1), end_date=datetime(1971, 1, 1), ).filter_by_station_id( station_id=[1], ) request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL], end_date="1971-01-01", ).filter_by_station_id( station_id=[1], ) assert request == DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[ DwdObservationPeriod.HISTORICAL, ], start_date=datetime(1971, 1, 1), end_date=datetime(1971, 1, 1), ).filter_by_station_id( station_id=[1], ) with pytest.raises(StartDateEndDateError): DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date="1951-01-01", ) def test_request_period_historical(): # Historical period expected request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", ) assert request.period == [ Period.HISTORICAL, ] def test_request_period_historical_recent(): # Historical and recent period expected request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(days=400), ) assert request.period == [ Period.HISTORICAL, Period.RECENT, ] def test_request_period_historical_recent_now(): # Historical, recent and now period expected request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date=pd.Timestamp(datetime.utcnow()), ) assert request.period == [ Period.HISTORICAL, Period.RECENT, Period.NOW, ] @freeze_time(datetime(2022, 1, 29, 1, 30, tzinfo=pytz.timezone(Timezone.GERMANY.value))) def test_request_period_recent_now(): request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(hours=2), ) assert request.period == [Period.RECENT, Period.NOW] @freeze_time(datetime(2022, 1, 29, 2, 30, tzinfo=pytz.timezone(Timezone.GERMANY.value))) def test_request_period_now(): # Now period request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(hours=2), ) assert request.period == [Period.NOW] @freeze_time("2021-03-28T18:38:00+02:00") def test_request_period_now_fixeddate(): # Now period request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(hours=2), ) assert Period.NOW in request.period def test_request_period_empty(): # No period (for example in future) request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) + pd.Timedelta(days=720), ) assert request.period == [] @pytest.mark.remote def test_dwd_observation_data_result_missing_data(): """Test for DataFrame having empty values for dates where the station should not have values""" Settings.tidy = True Settings.humanize = True Settings.si_units = True request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-27", # few days before official start end_date="1934-01-04", # few days after official start, ).filter_by_station_id( station_id=[1048], ) # Leave only one column to potentially contain NaN which is VALUE df = request.values.all().df.drop("quality", axis=1) df_1933 = df[df["date"].dt.year == 1933] df_1934 = df[df["date"].dt.year == 1934] assert not df_1933.empty and df_1933.dropna().empty assert not df_1934.empty and not df_1934.dropna().empty request = DwdObservationRequest( parameter=DwdObservationParameter.HOURLY.TEMPERATURE_AIR_MEAN_200, resolution=DwdObservationResolution.HOURLY, start_date="2020-06-09 12:00:00", # no data at this time (reason unknown) end_date="2020-06-09 12:00:00", ).filter_by_station_id( station_id=["03348"], ) df = request.values.all().df assert_frame_equal( df, pd.DataFrame( { "station_id": pd.Categorical(["03348"]), "dataset": pd.Categorical(["temperature_air"]), "parameter": pd.Categorical(["temperature_air_mean_200"]), "date": [datetime(2020, 6, 9, 12, 0, 0, tzinfo=pytz.UTC)], "value": pd.Series([pd.NA], dtype=pd.Float64Dtype()).astype(float), "quality": pd.Series([pd.NA], dtype=pd.Float64Dtype()).astype(float), } ), check_categorical=False, ) @pytest.mark.remote def test_dwd_observation_data_result_tabular(): """Test for actual values (tabular)""" Settings.tidy = False Settings.humanize = False Settings.si_units = False request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-31", # few days before official start end_date="1934-01-01", # few days after official start, ).filter_by_station_id( station_id=[1048], ) df = request.values.all().df assert list(df.columns.values) == [ "station_id", "dataset", "date", "qn_3", "fx", "fm", "qn_4", "rsk", "rskf", "sdk", "shk_tag", "nm", "vpm", "pm", "tmk", "upm", "txk", "tnk", "tgk", ] assert_frame_equal( df, pd.DataFrame( { "station_id": pd.Categorical(["01048"] * 2), "dataset": pd.Categorical(["climate_summary"] * 2), "date": [ datetime(1933, 12, 31, tzinfo=pytz.UTC), datetime(1934, 1, 1, tzinfo=pytz.UTC), ], "qn_3": pd.Series([pd.NA, pd.NA], dtype=pd.Int64Dtype()), "fx": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "fm": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "qn_4": pd.Series([pd.NA, 1], dtype=pd.Int64Dtype()), "rsk": pd.to_numeric([pd.NA, 0.2], errors="coerce"), "rskf": pd.to_numeric([pd.NA, 8], errors="coerce"), "sdk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "shk_tag": pd.Series([pd.NA, 0], dtype=pd.Int64Dtype()), "nm": pd.to_numeric([pd.NA, 8.0], errors="coerce"), "vpm": pd.to_numeric([pd.NA, 6.4], errors="coerce"), "pm": pd.to_numeric([pd.NA, 1008.60], errors="coerce"), "tmk": pd.to_numeric([pd.NA, 0.5], errors="coerce"), "upm": pd.to_numeric([pd.NA, 97.00], errors="coerce"), "txk": pd.to_numeric([pd.NA, 0.7], errors="coerce"), "tnk": pd.to_numeric([pd.NA, 0.2], errors="coerce"), "tgk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), } ), check_categorical=False, ) @pytest.mark.remote def test_dwd_observation_data_result_tabular_metric(): """Test for actual values (tabular) in metric units""" Settings.tidy = False Settings.humanize = False Settings.si_units = True request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-31", # few days before official start end_date="1934-01-01", # few days after official start, ).filter_by_station_id( station_id=[1048], ) df = request.values.all().df assert list(df.columns.values) == [ "station_id", "dataset", "date", "qn_3", "fx", "fm", "qn_4", "rsk", "rskf", "sdk", "shk_tag", "nm", "vpm", "pm", "tmk", "upm", "txk", "tnk", "tgk", ] assert_frame_equal( df, pd.DataFrame( { "station_id": pd.Categorical(["01048"] * 2), "dataset": pd.Categorical(["climate_summary"] * 2), "date": [ datetime(1933, 12, 31, tzinfo=pytz.UTC), datetime(1934, 1, 1, tzinfo=pytz.UTC), ], "qn_3": pd.Series([pd.NA, pd.NA], dtype=pd.Int64Dtype()), "fx": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "fm": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "qn_4": pd.Series([pd.NA, 1], dtype=pd.Int64Dtype()), "rsk": pd.to_numeric([pd.NA, 0.2], errors="coerce"), "rskf": pd.to_numeric([pd.NA, 8], errors="coerce"), "sdk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "shk_tag": pd.Series([pd.NA, 0], dtype=pd.Int64Dtype()), "nm": pd.to_numeric([pd.NA, 100.0], errors="coerce"), "vpm": pd.to_numeric([pd.NA, 640.0], errors="coerce"), "pm": pd.to_numeric([pd.NA, 100860.0], errors="coerce"), "tmk":
pd.to_numeric([pd.NA, 273.65], errors="coerce")
pandas.to_numeric
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats from collections import OrderedDict def latex_matrix_string(mean, title, row_labels, col_labels, best_bold_row=True, best_bold_column=False): """ Latex Matrix String Generator. Example ------- mean = [[1, 6, 5, 7], [12, 4, 6, 13], [9, 8, 7, 10]] print(latex_matrix_string(mean, "Testing Testing", [ "row1", "row2", "row3"], [ "col1", "col2", "col3", "col4"])) Parameters ---------- mean : array of float array An array of float arrays containing mean values title : string Title string of the table row_labels : string array Array of strings for row names col_labels : string arrays Array of strings for column names best_bold_row : boolean If set to true, the minimum mean entry in each row will be set to bold. best_bold_column : If set to true, the minimum mean entry in each column will be set to bold. """ matrix_string = '''\hline ''' for i, row in enumerate(mean): column_string = '''{ |c''' matrix_string = matrix_string + \ "\\textbf{" + row_labels[i] + "}& " # length of row labels and number of rows must be equal for j, cell in enumerate(row): column_string = column_string + '''|c''' ending_string = ''' & ''' if j < len(row) - 1 else ''' \\\ \hline''' if best_bold_row and cell == min( row) and best_bold_column == False: matrix_string = matrix_string + \ "$\mathbf{" + str(cell) + "}$" + ending_string elif best_bold_column and cell == min([a[j] for a in mean]) and best_bold_row == False: matrix_string = matrix_string + \ "$\mathbf{" + str(cell) + "}$" + ending_string else: matrix_string = matrix_string + "$" + \ str(cell) + "$" + ending_string column_string = column_string + '''| }''' column_label = "" for column in col_labels: column_label = column_label + "&\\textbf{" + column + "}" latex_string1 = '''\\begin{table}[ht] \centering \\begin{tabular} ''' + column_string + ''' \hline ''' + column_label + "\\\ [0.1ex]" + ''' ''' + matrix_string + '''\end{tabular} \\\[-1.5ex] \caption{''' + title + '''} \end{table}''' return latex_string1 def latex_matrix_string_mean_error(mean, error, title, row_labels, col_labels, best_bold_row=True, best_bold_column=False): """ Latex Matrix String Generator. Example ------- mean = [[1, 6, 5, 7], [12, 4, 6, 13], [9, 8, 7, 10]] error = [[2, 6, 1, 5], [4, 8, 2, 3], [1, 4, 8, 2]] print(latex_matrix_string(mean, error, "Testing Testing", [ "row1", "row2", "row3"], [ "col1", "col2", "col3", "col4"])) Parameters ---------- mean : array of float array An array of float arrays containing mean values error : array of float array An array of float array containing error values title : string Title string of the table row_labels : string array Array of strings for row names col_labels : string arrays Array of strings for column names best_bold_row : boolean If set to true, the minimum mean entry in each row will be set to bold. best_bold_column : If set to true, the minimum mean entry in each column will be set to bold. """ matrix_string = '''\hline ''' for i, row in enumerate(mean): column_string = '''{ |c''' matrix_string = matrix_string + \ "\\textbf{" + row_labels[i] + "}& " # length of row labels and number of rows must be equal for j, cell in enumerate(row): column_string = column_string + '''|c''' ending_string = ''' & ''' if j < len(row) - 1 else ''' \\\ \hline''' if best_bold_row and cell == min( row) and best_bold_column == False: matrix_string = matrix_string + \ "$\mathbf{" + str(cell) + " \pm " + str(error[i][j]) + "}$" + ending_string elif best_bold_column and cell == min([a[j] for a in mean]) and best_bold_row == False: matrix_string = matrix_string + \ "$\mathbf{" + str(cell) + " \pm " + str(error[i][j]) + "}$" + ending_string else: matrix_string = matrix_string + "$" + \ str(cell) + " \pm " + str(error[i][j]) + "$" + ending_string column_string = column_string + '''| }''' column_label = "" for column in col_labels: column_label = column_label + "&\\textbf{" + column + "}" latex_string1 = '''\\begin{table}[ht] \centering \\begin{tabular} ''' + column_string + ''' \hline ''' + column_label + "\\\ [0.1ex]" + ''' ''' + matrix_string + '''\end{tabular} \\\[-1.5ex] \caption{''' + title + '''} \end{table}''' return latex_string1 # def plot_over_iterations(x, methods, metric="mean", labels=None, linewidth=3, fontsize_label=25, # x_label="Error", y_label="Number of iterations", log_y=False, log_x=False, # title="", legend_loc=1, percentiles=(5, 95), colors=None, plot_legend=True): # """ # Plots performance over iterations of different methods . # # Example: # ---------------------------- # x = np.array([[1, 2, 3, 4, 5], [1, 2, 3, 4]]) # method_1 = np.array([[1,4,5,2], [3,4,3,6] , [2,5,5,8]]) # method_2 = np.array([[8,7,5,9], [7,3,9,1] , [3,2,9,4]]) # method_3 = np.array([[10,13,9,11], [9,12,10,10] , [11,14,18,6]]) # methods = [method_1, method_2, method_3] # plot = plot_median(x,methods) # plot.show() # # Parameters: # ---------- # x : numpy array # For each curve, contains the x-coordinates. Each entry # corresponds to one method. # methods : list of numpy arrays # A list of numpy arrays of methods. Each method contains a numpy array # of several run of that corresponding method. # method_names: List of Strings # A list of names for the methods # # Returns # ------- # plt : object # Plot Object # """ # # if labels is None: # labels = ["Method-%d" % i for i in range(len(methods))] # # styles = ["o", "D", "s", ">", "<", "^", "v", "*", "*", ".", ",", "1", "2", "3", "4"] # # if colors is None: # colors = ["blue", "green", "purple", "darkorange", "red", # "palevioletred", "lightseagreen", "brown", "black", # "firebrick", "cyan", "gold", "slategray"] # # for index, method in enumerate(methods): # style = styles[index % len(styles)] # color = colors[index % len(colors)] # if metric == "median": # plt.plot(x[index], np.median(method, axis=0), label=labels[index], linewidth=linewidth, marker=style, # color=color) # elif metric == "mean": # plt.plot(x[index], np.mean(method, axis=0), label=labels[index], linewidth=linewidth, marker=style, # color=color) # elif metric == "median_percentiles": # plt.plot(x[index], np.median(method, axis=0), label=labels[index], linewidth=linewidth, marker=style, # color=color) # plt.fill_between(x[index], np.percentile(method, percentiles[0], axis=0), # np.percentile(method, percentiles[1], axis=0), # color=color, alpha=0.2) # elif metric == "mean_std": # plt.errorbar(x[index], np.mean(method, axis=0), yerr=np.std(method, axis=0), # label=labels[index], linewidth=linewidth, marker=style, color=color) # else: # raise ValueError("Metric does not exist!") # # if plot_legend: # plt.legend(loc=legend_loc, fancybox=True, framealpha=1, frameon=True, fontsize=fontsize_label) # # plt.xlabel(x_label, fontsize=fontsize_label) # plt.ylabel(y_label, fontsize=fontsize_label) # plt.grid(True, which='both', ls="-") # if log_y: # plt.yscale("log") # if log_x: # plt.xscale("log") # # plt.title(title, fontsize=fontsize_label) # return plt def fill_trajectory(performance_list, time_list, replace_nan=np.NaN): frame_dict = OrderedDict() counter = np.arange(0, len(performance_list)) for p, t, c in zip(performance_list, time_list, counter): if len(p) != len(t): raise ValueError("(%d) Array length mismatch: %d != %d" % (c, len(p), len(t))) frame_dict[str(c)] =
pd.Series(data=p, index=t)
pandas.Series
import pytd import os import logging import pandas as pd import time from dotenv import load_dotenv from pathlib import Path class TreasureData: # Methods to integrate with TreasureData. def __init__(self) -> None: # Read environment variables load_dotenv() env_path = Path('..')/'.env' load_dotenv(dotenv_path=env_path) #Set up Logging self.logger = logging.getLogger('TreasureData') logging.basicConfig(filename="tdLogfile.txt") self.stderrLogger=logging.StreamHandler() self.stderrLogger.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) logging.getLogger().addHandler(self.stderrLogger) self.logger.setLevel(os.getenv('logLevel')) self.logger.debug("Class Initialised") # Treasure Data login vars self.td_api_server=os.getenv('td_api_server') self.td_api_key=os.getenv('td_api_key') self.td_engine_name=os.getenv('td_engine_name') def connect(self, databaseName): self.db_client=pytd.Client(database=databaseName) def execute_sql(self, source_sql): # Read PII from Source Table and return a pandas dataframe # Intended for select queries that return a result. df="" start_time = time.time() res = self.db_client.query(source_sql) self.logger.info("-- Running : [" + source_sql + "]---") df = pd.DataFrame(**res) self.logger.info("--- Total read "+str(len(df))+" source rows in : {:.3f} seconds ---".format((time.time() - start_time))) return df def create_table(self, tablename, tabledef): sql='CREATE TABLE IF NOT EXISTS '+ tablename +' ( ' + tabledef + ' )' self.logger.debug("SQL:" + sql) self.db_client.query(sql) def clear_table(self,tablename): self.db_client.query('DELETE FROM '+ tablename +' WHERE 1=1') def write_to_table(self, tablename, tableColumns, tableData=[]): # Writes data to a Treasure Data table. if len(tableData) > 0: # Create a dataframe dest_df=
pd.DataFrame(columns=tableColumns)
pandas.DataFrame
# -*- coding: utf-8 -*- import time import requests from datetime import datetime from logging import getLogger from typing import Optional from typing import Dict from typing import Iterable from funcy import compose from funcy import partial from pandas import DataFrame from pandas import to_datetime from pandas import Series from pyloniex import PoloniexPublicAPI from moneybot.clients import Postgres from moneybot.clients import Poloniex YEAR_IN_SECS = 60 * 60 * 24 * 365 logger = getLogger(__name__) def format_time(ts: datetime) -> str: return ts.strftime('%Y-%m-%d %H:%M:%S') def historical(ticker: str) -> Dict: url = f'https://graphs.coinmarketcap.com/currencies/{ticker}' return requests.get(url).json() def market_cap(hist_ticker: Dict) -> Series: r = {} ts = None for key, vals in hist_ticker.items(): if ts is None: ts = [to_datetime(t[0] * 1000000) for t in vals] r[key] = [t[1] for t in vals] return
DataFrame(r, index=ts)
pandas.DataFrame
from datetime import datetime import os import re import numpy as np import pandas as pd from fetcher.extras.common import atoi, MaRawData, zipContextManager from fetcher.utils import Fields, extract_arcgis_attributes, extract_attributes NULL_DATE = datetime(2020, 1, 1) DATE = Fields.DATE.name TS = Fields.TIMESTAMP.name DATE_USED = Fields.DATE_USED.name def add_query_constants(df, query): for k, v in query.constants.items(): df[k] = v return df def build_leveled_mapping(mapping): tab_mapping = {x.split(":")[0]: {} for x in mapping.keys() if x.find(':') > 0} for k, v in mapping.items(): if k.find(':') < 0: continue tab, field = k.split(":") tab_mapping[tab][field] = v return tab_mapping def prep_df(values, mapping): df = pd.DataFrame(values).rename(columns=mapping).set_index(DATE) for c in df.columns: if c.find('status') >= 0: continue # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = pd.to_datetime(df.index, errors='coerce') return df def make_cumsum_df(data, timestamp_field=Fields.TIMESTAMP.name): df = pd.DataFrame(data) df.set_index(timestamp_field, inplace=True) df.sort_index(inplace=True) df = df.select_dtypes(exclude=['string', 'object']) # .groupby(level=0).last() # can do it here, but not mandatory cumsum_df = df.cumsum() cumsum_df[Fields.TIMESTAMP.name] = cumsum_df.index return cumsum_df def handle_ak(res, mapping, queries): tests = res[0] collected = [x['attributes'] for x in tests['features']] df = pd.DataFrame(collected) df = df.pivot(columns='Test_Result', index='Date_Collected') df.columns = df.columns.droplevel() df['tests_total'] = df.sum(axis=1) df = df.rename(columns=mapping).cumsum() df[TS] = df.index add_query_constants(df, queries[0]) tagged = df.to_dict(orient='records') # cases cases = pd.DataFrame([x['attributes'] for x in res[1]['features']]).rename(columns=mapping) cases[TS] = pd.to_datetime(cases[TS], unit='ms') cases = cases.set_index(TS).sort_index().cumsum().resample('1d').ffill() cases[TS] = cases.index add_query_constants(cases, queries[1]) tagged.extend(cases.to_dict(orient='records')) # last item: already cumulative data = extract_arcgis_attributes(res[2], mapping) for x in data: x[DATE_USED] = queries[2].constants[DATE_USED] tagged.extend(data) return tagged def handle_ar(res, mapping): # simply a cumsum table data = extract_arcgis_attributes(res[0], mapping) cumsum_df = make_cumsum_df(data) return cumsum_df.to_dict(orient='records') def handle_az(res, mapping, queries): mapped = [] for i, df in enumerate(res[0]): # minor cheating for same column names df.columns = ["{}-{}".format(c, i) for c in df.columns] df = df.rename(columns=mapping) df[DATE] = pd.to_datetime(df[DATE]) df = df.set_index(DATE).sort_index().cumsum() df[TS] = df.index add_query_constants(df, queries[i]) mapped.extend(df.to_dict(orient='records')) return mapped def handle_ca(res, mapping, queries): # need to cumsum mapped = [] for query, result in zip(queries, res): # extract also maps items = extract_attributes(result, query.data_path, mapping, 'CA') df = prep_df(items, mapping).sort_index(na_position='first').drop(columns=TS).cumsum() df = df.loc[df.index.notna()] add_query_constants(df, query) df[TS] = df.index mapped.extend(df.to_dict(orient='records')) return mapped def handle_ct(res, mapping, queries): tests = res[0] df = pd.DataFrame(tests).rename(columns=mapping).set_index(DATE) for c in df.columns: # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = df.index.fillna(NULL_DATE.strftime(mapping.get('__strptime'))) df = df.sort_index().cumsum() df[TS] = pd.to_datetime(df.index) df[TS] = df[TS].values.astype(np.int64) // 10 ** 9 add_query_constants(df, queries[0]) tagged = df.to_dict(orient='records') # by report df = res[1].rename(columns=mapping).sort_values('DATE') add_query_constants(df, queries[1]) df[TS] = df['DATE'] tagged.extend(df.to_dict(orient='records')) # death + cases for i, df in enumerate(res[2:]): df = res[2+i].rename(columns=mapping).set_index('DATE').sort_index().cumsum() add_query_constants(df, queries[2+i]) df[TS] = df.index tagged.extend(df.to_dict(orient='records')) return tagged def handle_dc(res, mapping, queries): df = res[0] # make it pretty df = df[df['Unnamed: 0'] == 'Testing'].T df.columns = df.loc['Unnamed: 1'] df = df.iloc[2:] df.index = pd.to_datetime(df.index, errors='coerce') df = df.loc[df.index.dropna()].rename(columns=mapping) add_query_constants(df, queries[0]) df[TS] = df.index return df.to_dict(orient='records') def handle_de(res, mapping): df = res[0] df['Date'] = pd.to_datetime(df[['Year', 'Month', 'Day']]) df = df[df['Statistic'].isin(mapping.keys())] # changing the order of operations here is probably better def prepare_values(df): df = df.pivot( index=['Date', 'Date used'], values='Value', columns=['Statistic']) df[DATE_USED] = df.index.get_level_values(1) df = df.droplevel(1) df['Date'] = df.index df = df.replace(mapping).rename(columns=mapping) return df.to_dict(orient='records') # Death deaths_df = df[(df['Statistic'].str.find('Death') >= 0) & (df['Unit'] == 'people')] tagged = prepare_values(deaths_df) # testing tests_df = df[df['Statistic'].str.find('Test') >= 0] for x in ['people', 'tests']: partial = prepare_values(tests_df[tests_df['Unit'] == x]) tagged.extend(partial) # cases cases = df[df['Unit'] == 'people'][df['Statistic'].str.find('Cases') >= 0] partial = prepare_values(cases) tagged.extend(partial) return tagged def handle_fl(res, mapping, queries): # simply a cumsum table tagged = [] for i, data in enumerate(res[:-1]): df = extract_arcgis_attributes(res[i], mapping) cumsum_df = make_cumsum_df(df) add_query_constants(cumsum_df, queries[i]) tagged.extend(cumsum_df.to_dict(orient='records')) # The last item is the aggregated case-line data df = pd.DataFrame([x['attributes'] for x in res[-1]['features']]) df = df.rename( columns={**{'EXPR_1': 'Year', 'EXPR_2': 'Month', 'EXPR_3': 'Day'}, **mapping}) df[DATE] = pd.to_datetime(df[['Year', 'Month', 'Day']]) df = df.set_index(DATE).sort_index().cumsum() add_query_constants(df, queries[-1]) df[TS] = df.index tagged.extend(df.to_dict(orient='records')) return tagged def handle_ga(res, mapping): tagged = [] file_mapping = build_leveled_mapping(mapping) with zipContextManager(res[0]) as zipdir: for filename in file_mapping.keys(): date_fields = [k for k, v in file_mapping[filename].items() if v == 'TIMESTAMP'] df = pd.read_csv(os.path.join(zipdir, filename), parse_dates=date_fields) df = df[df['county'] == 'Georgia'] by_date = file_mapping[filename].pop(DATE_USED) df = df.rename(columns=file_mapping[filename]) df[DATE_USED] = by_date tagged.extend(df.to_dict(orient='records')) return tagged def handle_il(res, mapping, queries): df = res[0].rename(columns=mapping) df[TS] = df[DATE] add_query_constants(df, queries[0]) mapped = df.to_dict(orient='records') # testing df = pd.DataFrame(res[1].get('test_group_counts')).rename(columns=mapping) df = df[df['regionID'] == 0] df[DATE] = pd.to_datetime(df[DATE]) df = df.set_index(DATE).sort_index().cumsum() df[TS] = df.index mapped.extend(df.to_dict(orient='records')) return mapped def handle_in(res, mapping): tagged = [] df = prep_df(res[0]['result']['records'], mapping).sort_index().cumsum() # need to assign dating correctly assignments = [ ('SPECIMENS', 'Specimen Collection'), ('POSITIVE_BY_SPECIMEN', 'Specimen Collection'), (['POSITIVE', 'TOTAL'], 'Report'), ('DEATH', 'Death'), ] for key, by_date in assignments: if isinstance(key, list): subset = df.filter(key) else: subset = df.filter(like=key) if subset.columns[0] == 'POSITIVE_BY_SPECIMEN': subset.columns = ['POSITIVE'] subset[DATE_USED] = by_date subset[TS] = subset.index tagged.extend(subset.to_dict(orient='records')) return tagged def handle_ks(res, mapping, queries): testing = res[0][0].filter(like='alias') testing.columns = [c.replace('-alias', '') for c in testing.columns] testing = testing.rename(columns=mapping).groupby(DATE).last() testing.index = pd.to_datetime(testing.index) testing[TS] = testing.index add_query_constants(testing, queries[0]) return testing.to_dict(orient='records') def handle_la(res, mapping): df = res[0].rename(columns=mapping).groupby(DATE).sum() df = df.sort_index().cumsum() df[TS] = df.index df[DATE_USED] = 'Specimen Collection' return df.to_dict(orient='records') def handle_ma(res, mapping): '''Returning a list of dictionaries (records) ''' tagged = [] # break the mapping to {file -> {mapping}} # not the most efficient, but the data is tiny tab_mapping = build_leveled_mapping(mapping) tabs = MaRawData(res[0]) for tabname in tab_mapping.keys(): df = tabs[tabname].rename(columns=tab_mapping[tabname]) df[DATE] = pd.to_datetime(df[DATE]) # expect it to always exist (we control the file list) by_date = tab_mapping[tabname].pop(DATE_USED) df = df[tab_mapping[tabname].values()] # need to cumsum TestingByDate file if tabname.startswith('TestingByDate'): df = df.set_index(DATE).cumsum() df[DATE] = df.index df[DATE_USED] = by_date tagged.extend(df.to_dict(orient='records')) return tagged def handle_md(res, mapping, queries): mapped = extract_arcgis_attributes(res[0], mapping, 'MD') for x in mapped: x[DATE_USED] = 'Report' for i, result in enumerate(res[1:]): data = extract_arcgis_attributes(result, mapping, 'MD') cumsum_df = make_cumsum_df(data) add_query_constants(cumsum_df, queries[i+1]) mapped.extend(cumsum_df.to_dict(orient='records')) return mapped def handle_me(res, mapping, queries): cases = res[0].rename(columns=mapping).groupby(DATE).sum().sort_index().cumsum() cases[TS] = cases.index mapped = cases.to_dict(orient='records') df = res[1].rename(columns=mapping).set_index(DATE) df['positive'] = df['Positive Tests'].fillna(0) + df['Positive Tests Flexible'].fillna(0) df = df.pivot(columns='Type', values=['All Tests', 'positive']) df.columns = df.columns.map(lambda x: "{}-{}".format(x[0], x[1])) df = df.cumsum().rename(columns=mapping) add_query_constants(df, queries[1]) df[TS] = df.index mapped.extend(df.to_dict(orient='records')) return mapped def handle_mi(res, mapping): soup = res[-1] h = soup.find("h5", string=re.compile('[dD][aA][tT][aA]')) parent = h.find_parent("ul") links = parent.find_all("a") base_url = 'https://www.michigan.gov' cases_url = base_url + links[1]['href'] tests_url = base_url + links[4]['href'] tagged = [] # cases: df = pd.read_excel(cases_url, engine='xlrd', parse_dates=['Date']) df = df.groupby(['Date', 'CASE_STATUS']).sum().filter(like='Cumulative').unstack() df.columns = df.columns.map("-".join) like_bydate = [('death', 'Death'), ('Cases', 'Symptom Onset')] for like, by_date in like_bydate: foo = df.filter(like=like).rename(columns=mapping) foo[TS] = foo.index foo[DATE_USED] = by_date tagged.extend(foo.to_dict(orient='records')) # tests df = pd.read_excel(tests_url, engine='xlrd', parse_dates=['MessageDate']) df = df.groupby('MessageDate').sum().sort_index().cumsum().rename(columns=mapping) df[TS] = df.index tagged.extend(df.to_dict(orient='records')) return tagged def handle_mn(res, mapping): mapped = [] # Soup time. Yummy! page = res[0] table_ids = { 'labtable': 'n/a', 'casetable': 'Specimen Collection' } for table_id, date_used in table_ids.items(): table = page.find("table", id=table_id) if not table: continue # map table headers to fields headers = table.find_all('th') headers = [h.get_text(strip=True) for h in headers] headers = [mapping.get(h, '') for h in headers] for tr in table.find_all('tr'): tds = tr.find_all('td') if not tds: # expected for 1st line continue td_text = [td.get_text(strip=True) for td in tds] values = dict(zip(headers, td_text)) if values[DATE].lower().find('unknown') >= 0: # ignore unknown date for now continue row = {} for k, v in values.items(): if not k: continue if k != DATE: v = atoi(v) if v != '-' else None row[k] = v row[DATE_USED] = date_used mapped.append(row) return mapped def handle_mo(res, mapping, queries): dfs = [ # result index, date index (res[0], 'Date Reported'), (res[1], 'Test Date') ] mapped = [] for i, (mo, date_index) in enumerate(dfs): mo = mo.pivot(columns='Measure Names', values='Measure Values', index=date_index) mo = mo.iloc[:-1] mo[TS] = pd.to_datetime(mo.index) mo = mo.set_index(TS).sort_index(na_position='first') dates = pd.date_range(end=mo.index.max(), periods=len(mo.index), freq='d') mo.index = dates mo = mo.cumsum().rename(columns=mapping) add_query_constants(mo, queries[i]) mo[TS] = mo.index mapped.extend(mo.to_dict(orient='records')) # death by day of death df = res[2].rename(columns={'Measure Values': 'DEATH'}).rename(columns=mapping) df = df[df[TS] != 'All'] df[TS] = pd.to_datetime(df[TS]) # There are dates that are around ~1940, we aggregate all of them to "before 2020" df = df.set_index(TS)[['DEATH']].groupby( by=lambda x: x if x >= datetime(2020, 1, 1) else datetime(2020, 1, 1)) \ .sum().sort_index(na_position='first').cumsum() dates = pd.date_range(start=df.index.min(), end=df.index.max(), freq='d') df = df.reindex(dates).ffill() df[TS] = df.index add_query_constants(df, queries[2]) mapped.extend(df.to_dict(orient='records')) return mapped def handle_nc(res, mapping): tagged = [] for x in res: tot = x.rename(columns=mapping) tot = tot.pivot( columns='Measure Names', values='Measure Values', index=DATE).sort_index() for c in tot.columns: tag, dating = mapping.get(c, ":").split(":") if not tag: continue df = pd.DataFrame(tot[c].rename(tag)).fillna(0).sort_index().cumsum() df[TS] = df.index df[DATE_USED] = dating tagged.extend(df.to_dict(orient='records')) return tagged def handle_nd(res, mapping): # simply a cumsum table res = res[0].rename(columns=mapping) res = res.groupby(DATE).sum().filter(mapping.values()).cumsum() res[DATE] = res.index records = res.to_dict(orient='records') return records def handle_nh(res, mapping, queries): mapped = [] # 1st element: non-cumulative cases df = res[0].rename(columns=mapping).set_index(TS).sort_index().cumsum() df[TS] = df.index add_query_constants(df, queries[0]) mapped.extend(df.to_dict(orient='records')) for df, query in zip(res[1:], queries[1:]): df = df.rename(columns=mapping) add_query_constants(df, query) mapped.extend(df.to_dict(orient='records')) return mapped def handle_nv(res, mapping): mapped = [] nv = res[0] tab_mapping = build_leveled_mapping(mapping) for tab in tab_mapping.keys(): df = nv[tab] date_used = tab_mapping[tab].pop(DATE_USED) df.columns = df.iloc[1] df = df.iloc[2:].rename(columns=tab_mapping[tab]).filter(tab_mapping[tab].values()) df[DATE] = pd.to_datetime(df[DATE], errors='coerce') df = df[df[DATE].notna()].set_index(DATE).sort_index() if tab == 'Cases': df = df.cumsum() df[DATE_USED] = date_used df[TS] = df.index mapped.extend(df.to_dict(orient='records')) return mapped def handle_oh(res, mapping): testing_url = res[0]['url'] df = pd.read_csv(testing_url, parse_dates=['Date']) df = df.set_index('Date').sort_index().cumsum().rename(columns=mapping) df[TS] = df.index df[DATE_USED] = 'Test Result' tagged = df.to_dict(orient='records') oh = res[1].iloc[:-1] oh['Case Count'] = pd.to_numeric(oh['Case Count']) for x in ['Onset Date', 'Date Of Death']: oh[x] = pd.to_datetime(oh[x], errors='coerce') # death death = oh.groupby('Date Of Death').sum().filter( like='Death').sort_index().cumsum().rename(columns=mapping) death[TS] = death.index death[DATE_USED] = 'Death' tagged.extend(death.to_dict(orient='records')) # cases cases = oh.groupby('Onset Date').sum().filter( like='Case').sort_index().cumsum().rename(columns=mapping) cases[TS] = cases.index cases[DATE_USED] = 'Symptom Onset' tagged.extend(cases.to_dict(orient='records')) return tagged def handle_or(res, mapping, queries): testing = res[0][0].rename(columns=mapping) testing[DATE] = pd.to_datetime(testing[DATE], errors='coerce') testing = testing[testing[DATE].notna()] testing = testing.pivot( index=DATE, columns='Test Result-alias', values='SUM(ELR Count)-alias' ).rename(columns=mapping).sort_index().cumsum() testing[TS] = testing.index add_query_constants(testing, queries[0]) return testing.to_dict(orient='records') def handle_pa(res, mapping, queries): tagged = [] for i, data in enumerate(res): df = pd.DataFrame(data).rename(columns=mapping).set_index(DATE).sort_index() df.index =
pd.to_datetime(df.index)
pandas.to_datetime
# -*- coding: utf-8 -*- import json import os import pandas as pd import sklearn.datasets def data(dataset="bio_eventrelated_100hz"): """Download example datasets. Download and load available `example datasets <https://github.com/neuropsychology/NeuroKit/tree/master/data#datasets>`_. Note that an internet connexion is necessary. Parameters ---------- dataset : str The name of the dataset. The list and description is available `here <https://neurokit2.readthedocs.io/en/master/datasets.html#>`_. Returns ------- DataFrame The data. Examples --------- >>> import neurokit2 as nk >>> >>> data = nk.data("bio_eventrelated_100hz") """ # TODO: one could further improve this function with like # selectors 'ecg=True, eda=True, restingstate=True' that would # find the most appropriate dataset dataset = dataset.lower() path = "https://raw.githubusercontent.com/neuropsychology/NeuroKit/master/data/" # Specific requests if dataset == "iris": data = sklearn.datasets.load_iris() return pd.DataFrame(data.data, columns=data["feature_names"]) if dataset in ["eeg", "eeg.txt"]: return pd.read_csv(path + "eeg.txt").values[:, 0] # Add extension if dataset in ["bio_resting_8min_200hz"]: dataset += ".json" # Specific case for json file if dataset.endswith(".json"): if "https" not in dataset: data = pd.read_json(path + dataset, orient="index") else: data =
pd.read_json(dataset, orient="index")
pandas.read_json
from itertools import combinations import pandas as pd import numpy as np import scipy.stats as stats import random from diffex import constants IUPHAR_Channels_names = constants.IUPHAR_Channels_names def clean_dataframe(df): """ Return a cleaned dataframe with NaN rows removed and duplicate fold change measurements averaged """ # Select all rows from the df that don't have NA clean_df = df.loc[df['Gene name'].notnull(), :] # Select only rows with Gene names that are duplicated dup_df = clean_df[clean_df.duplicated(subset='Gene name',keep=False)] dup_df = dup_df.sort_values(by=['Gene name']) try: # won't work if no duplicates to average # Average duplicate fold change measurements dup_df = dup_df.groupby('Gene name',as_index=False).mean() dup_df = dup_df.round(3) except: print(f'No duplicated gene names in dataset for df with column 1: {df.columns[1]}') pass # Drop rows from the original dataframe that are in the duplicate df cond = clean_df['Gene name'].isin(dup_df['Gene name']) clean_df.drop(clean_df[cond].index, inplace = True) clean_df = clean_df.append(dup_df) clean_df = clean_df.reset_index(drop=True) del dup_df return clean_df def get_combinations(names_list, k): """ Return a list of unique combinations (each element is a tuple) from the names_list """ return list(combinations(names_list, k)) def find_pairwise_overlaps(dfs_dict): """ Return a dataframe with a column holding the overlapping set of 'Gene name's for each unique pair of models in the dfs_dict """ model_pairs = get_combinations(names_list=list(dfs_dict.keys()), k=2) overlaps_dict = {} for combi_tuple in model_pairs: # create a name to be used for this combination's # dataframe column combi_name = '-'.join(combi_tuple) # find overlap between the two model gene name columns df_1 = dfs_dict[combi_tuple[0]] df_2 = dfs_dict[combi_tuple[1]] overlap_df = pd.merge(df_1, df_2, on='Gene name') overlaps_dict[combi_name] = overlap_df['Gene name'] overlaps_df = pd.DataFrame(overlaps_dict) return overlaps_df def find_triplet_overlaps(dfs_dict): """ Return a dataframe with a column holding the overlapping set of 'Gene name's for each unique unique group of three models in the dfs_dict """ model_trips = get_combinations(names_list=list(dfs_dict.keys()), k=3) overlaps_dict = {} for combi_tuple in model_trips: # create a name to be used for this combination's # dataframe column combi_name = '-'.join(combi_tuple) # find overlap between the two model gene name columns df_1 = dfs_dict[combi_tuple[0]] df_2 = dfs_dict[combi_tuple[1]] df_3 = dfs_dict[combi_tuple[2]] overlap_df =
pd.merge(df_1, df_2, on='Gene name')
pandas.merge
import docx from docx.shared import Pt from docx.enum.text import WD_ALIGN_PARAGRAPH, WD_BREAK from docx.shared import Cm import os import math import pandas as pd import numpy as np import re from datetime import date import streamlit as st import json import glob from PIL import Image import smtplib import docx2pdf import shutil import zipfile from datetime import datetime import platform import matplotlib.pyplot as plt def User_validation(): f=open("Validation/Validation.json","r") past=json.loads(f.read()) f.close() now=datetime.now() dt_string = now.strftime("%d/%m/%Y %H:%M") time_past=datetime.strptime(past['Acceso']["Hora"], "%d/%m/%Y %H:%M") timesince = now - time_past Time_min= int(timesince.total_seconds() / 60) bool_negate = Time_min<120 if not bool_negate: past['Acceso'].update({"Estado":"Negado"}) str_json_0=json.dumps(past, indent=4) J_f=open("Validation/Validation.json","w") J_f.write(str_json_0) J_f.close() bool_aprove= past['Acceso']["Estado"]=="Aprovado" if not bool_aprove: colums= st.columns([1,2,1]) with colums[1]: #st.image("Imagenes/Escudo_unal.png") st.subheader("Ingrese el usuario y contraseña") Usuario=st.text_input("Usuario") Clave=st.text_input("Contraseña",type="password") Users=["Gestor Comercial"] bool_user = Usuario in Users bool_clave = (Clave)==("1234") bool_user_email = past['Acceso']["User"] == Usuario bool_time2 = Time_min<1000 bool_1 = bool_time2 and bool_user_email bool_2 = bool_user and bool_clave if not bool_user_email and bool_2: past['Acceso'].update({"User":Usuario,"Estado":"Aprovado","Hora":dt_string}) str_json_0=json.dumps(past, indent=4) J_f=open("Validation/Validation.json","w") J_f.write(str_json_0) J_f.close() if not bool_2: if (Usuario != "") and (Clave!=""): with colums[1]: st.warning("Usuario o contraseña incorrectos.\n\n Por favor intente nuevamente.") elif bool_2 and not bool_1: past['Acceso'].update({"User":Usuario,"Estado":"Aprovado","Hora":dt_string}) str_json_0=json.dumps(past, indent=4) J_f=open("Validation/Validation.json","w") J_f.write(str_json_0) J_f.close() EMAIL_ADDRESS = '<EMAIL>' EMAIL_PASSWORD = '<PASSWORD>' try: with smtplib.SMTP('smtp.gmail.com', 587) as smtp: smtp.ehlo() smtp.starttls() smtp.ehlo() smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) subject = 'Acceso aplicacion Julia' body = 'Acceso usuario ' + Usuario +' el '+dt_string msg = f'Subject: {subject}\n\n{body}' smtp.sendmail(EMAIL_ADDRESS, EMAIL_ADDRESS, msg) except: pass with colums[1]: st.button("Acceder a la aplicación") elif bool_2: past['Acceso'].update({"Estado":"Aprovado","Hora":dt_string,"User":Usuario}) str_json_0=json.dumps(past, indent=4) J_f=open("Validation/Validation.json","w") J_f.write(str_json_0) J_f.close() with colums[1]: st.button("Acceder a la aplicación") return bool_aprove def Num_dias(leng): if leng==1: return "1 día" else: return str(leng) + " días" def day_week(dia): if dia ==0: Dia="Lunes" elif dia ==1: Dia="Martes" elif dia ==2: Dia="Miércoles" elif dia ==3: Dia="Jueves" elif dia ==4: Dia="Viernes" elif dia ==5: Dia="Sábado" elif dia ==6: Dia="Domingo-Festivo" return Dia def remove_row(table, row): tbl = table._tbl tr = row._tr tbl.remove(tr) def Range_fecha(dates): if len(dates)==1: return pd.to_datetime(dates[0]).strftime('%Y-%m-%d') else: return pd.to_datetime(dates[0]).strftime('%Y-%m-%d')+" hasta "+ pd.to_datetime(dates[-1]).strftime('%Y-%m-%d') def any2str(obj): if isinstance(obj, str): return obj elif math.isnan(obj): return "" elif isinstance(obj, int): return str(obj) elif isinstance(obj, float): return str(obj) def dt_fechas(data,data_user,Fechas,tipo_dia): dt_Final=pd.DataFrame(columns=["Dia","Fecha","Requerimiento","Respaldo"]) for dia in Fechas: data_fecha=data_user[data_user["Fecha"]== dia] data_dia_todos=data[data["Fecha"]==dia] try: d_week=tipo_dia[Tipo_dia["FECHA"]==dia]["TIPO D"].to_numpy()[0] except: st.warning("Actualizar el calendario del excel extra") d_week=day_week(pd.Series(data=dia).dt.dayofweek.to_numpy()[0]) df=pd.DataFrame([[d_week,dia,data_dia_todos["CANTIDAD"].sum(),data_fecha["CANTIDAD"].sum()]],columns=["Dia","Fecha","Requerimiento","Respaldo"]) dt_Final=dt_Final.append(df, ignore_index=True) return dt_Final def dt_fechas_2(data,data_user,Fechas,tipo_dia): dt_Final=pd.DataFrame(columns=["Dia","Fecha","Requerimiento","Respaldo"]) for dia in Fechas: data_fecha=data_user[data_user["FECHA"]== dia] data_dia_todos=data[data["FECHA"]==dia] try: d_week=tipo_dia[Tipo_dia["FECHA"]==dia]["TIPO D"].to_numpy()[0] except: st.warning("Actualizar el calendario del excel extra") d_week=day_week(pd.Series(data=dia).dt.dayofweek.to_numpy()[0]) df=pd.DataFrame([[d_week,dia,data_dia_todos["CANTIDAD"].sum(),data_fecha["CANTIDAD"].sum()]],columns=["Dia","Fecha","Requerimiento","Respaldo"]) dt_Final=dt_Final.append(df, ignore_index=True) return dt_Final def dt_fechas_3(data,data_user,Fechas,tipo_dia): dt_Final=pd.DataFrame(columns=["Dia","Fecha","Respaldo","P_neto","TRM","PRECIO PONDERADO"]) for dia in Fechas: data_fecha=data_user[data_user["FECHA"]== dia] try: d_week=tipo_dia[Tipo_dia["FECHA"]==dia]["TIPO D"].to_numpy()[0] except: st.warning("Actualizar el calendario del excel extra") d_week=day_week(pd.Series(data=dia).dt.dayofweek.to_numpy()[0]) df=pd.DataFrame([[d_week,dia,data_fecha["CANTIDAD"].sum(),data_fecha["P NETO"].sum(),round(data_fecha["TRM"].mean(),2),round(data_fecha["PRECIO PONDERADO"].mean(),2)]], columns=["Dia","Fecha","Respaldo","P_neto","TRM","PRECIO PONDERADO"]) dt_Final=dt_Final.append(df, ignore_index=True) return dt_Final def Mes_espa(mes): if mes =="01": Mes="Enero" elif mes =="02": Mes="Febrero" elif mes =="03": Mes="Marzo" elif mes =="04": Mes="Abril" elif mes =="05": Mes="Mayo" elif mes =="06": Mes="Junio" elif mes =="07": Mes="Julio" elif mes =="08": Mes="Agosto" elif mes =="09": Mes="Septiembre" elif mes =="10": Mes="Octubre" elif mes =="11": Mes="Noviembre" elif mes =="12": Mes="Diciembre" return Mes def F_Liq_pag(mes,ano): if mes%12 ==1: Fecha ="Enero" elif mes%12 ==2: Fecha ="Febrero" elif mes%12 ==3: Fecha ="Marzo" elif mes%12 ==4: Fecha ="Abril" elif mes%12 ==5: Fecha ="Mayo" elif mes%12 ==6: Fecha ="Junio" elif mes%12 ==7: Fecha ="Julio" elif mes%12 ==8: Fecha="Agosto" elif mes%12 ==9: Fecha="Septiembre" elif mes%12 ==10: Fecha="Octubre" elif mes%12 ==11: Fecha="Noviembre" elif mes%12 ==0: Fecha="Diciembre" if mes > 12: Fecha += " "+ str(ano+1) else: Fecha += " "+ str(ano) return Fecha def num2money(num): if num < 1e3: return str(round(num,2)) elif num < 1e6: return str(round(num*1e3/1e6,2))+ " miles." elif num < 1e9: return str(round(num*1e3/1e9,2))+ " mill." elif num < 1e12: return str(round(num*1e3/1e12,2))+ " mil mill." def mes_espa(mes): if mes =="01": Mes="enero" elif mes =="02": Mes="febrero" elif mes =="03": Mes="marzo" elif mes =="04": Mes="abril" elif mes =="05": Mes="mayo" elif mes =="06": Mes="junio" elif mes =="07": Mes="julio" elif mes =="08": Mes="agosto" elif mes =="09": Mes="septiembre" elif mes =="10": Mes="octubre" elif mes =="11": Mes="noviembre" elif mes =="12": Mes="diciembre" return Mes def mes_num(mes): Opciones2=("Enero","Febrero","Marzo","Abril","Mayo","Junio","Julio","Agosto","Septiembre","Octubre","Noviembre","Diciembre") if mes == Opciones2[0]: Mes="01" elif mes == Opciones2[1]: Mes="02" elif mes == Opciones2[2]: Mes="03" elif mes == Opciones2[3]: Mes="04" elif mes == Opciones2[4]: Mes="05" elif mes == Opciones2[5]: Mes="06" elif mes == Opciones2[6]: Mes="07" elif mes == Opciones2[7]: Mes="08" elif mes == Opciones2[8]: Mes="09" elif mes == Opciones2[9]: Mes="10" elif mes == Opciones2[10]: Mes="11" elif mes == Opciones2[11]: Mes="12" return Mes def dia_esp(dia): if dia =="01": Dia="1" elif dia =="02": Dia="2" elif dia =="03": Dia="3" elif dia =="04": Dia="4" elif dia =="05": Dia="5" elif dia =="06": Dia="6" elif dia =="07": Dia="7" elif dia =="08": Dia="8" elif dia =="09": Dia="9" else : Dia = dia return Dia def set_font(rows,fila,col,size): run=rows[fila].cells[col].paragraphs[0].runs font = run[0].font font.size= Pt(size) font.name = 'Tahoma' def replace_text_for_image(paragraph, key, value,wid,hei): if key in paragraph.text: inline = paragraph.runs for item in inline: if key in item.text: item.text = item.text.replace(key, "") for val in value: r = paragraph.add_run() r.add_picture(val,width=Cm(wid), height=Cm(hei)) def replace_text_in_paragraph(paragraph, key, value): if key in paragraph.text: inline = paragraph.runs for item in inline: if key in item.text: item.text = item.text.replace(key, value) def delete_columns(table, columns): # sort columns descending columns.sort(reverse=True) grid = table._tbl.find("w:tblGrid", table._tbl.nsmap) for ci in columns: for cell in table.column_cells(ci): cell._tc.getparent().remove(cell._tc) # Delete column reference. col_elem = grid[ci] grid.remove(col_elem) st.set_page_config( layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" page_title="JULIA RD", # String or None. Strings get appended with "• Streamlit". page_icon="📊", # String, anything supported by st.image, or None. ) if User_validation(): #if True: Opciones1=("Oferta Firme de Respaldo","Certificado de Reintegros","Informe Comercial") eleccion=st.sidebar.selectbox('Seleccione el proyecto',Opciones1) #if False: if eleccion==Opciones1[0]: st.header("Creación ofertas firmes de respaldo") st.subheader("Introducción de los documentos") colums= st.columns([1,1,1]) with colums[0]: uploaded_file_1 = st.file_uploader("Suba el consolidado base") with colums[1]: uploaded_file_2 = st.file_uploader("Suba la plantilla del documento") with colums[2]: uploaded_file_3 = st.file_uploader("Suba el excel adicional") if (uploaded_file_1 is not None) and (uploaded_file_2 is not None) and (uploaded_file_3 is not None): try: data=pd.read_excel(uploaded_file_1) Extras=pd.read_excel(uploaded_file_3,sheet_name="Usuarios") Tipo_dia=pd.read_excel(uploaded_file_3,sheet_name="Calendario") except: st.warning("Recuerde que el formato del Excel tiene que ser xls") data["Fecha"]=data["FECHAINI"].dt.to_pydatetime() if data["USUARIO"].isnull().values.any(): st.warning("Revisar archivo de consolidado base, usuario no encontrado.") data.dropna(subset = ["USUARIO"], inplace=True) Users=pd.unique(data["USUARIO"]) else: Users=pd.unique(data["USUARIO"]) Extras=pd.read_excel(uploaded_file_3,sheet_name="Usuarios") Tipo_dia=pd.read_excel(uploaded_file_3,sheet_name="Calendario") template_file_path = uploaded_file_2 today = date.today() fecha=dia_esp(today.strftime("%d")) +" de "+ mes_espa(today.strftime("%m")) +" de "+ today.strftime("%Y") colums= st.columns([1,4,1]) with colums[1]: st.subheader("Introducción de las variables") P_bolsa=st.text_input("Introduzca el Precio de Escasez de Activación",value="10.00") P_contrato=st.text_input("Introduzca el precio del contrato [USD]",value="10.00") P_TMR=st.text_input("Introduzca el valor de la TRM",value="3,950.00") F_TRM = st.date_input("Seleccione la fecha del valor de la TRM:",value=today).strftime("%Y-%m-%d") Agente_extra = st.text_input("Introduzca el nombre particular del agente") columns_2 = st.columns([1,2,2,1]) Opciones2=("Enero","Febrero","Marzo","Abril","Mayo","Junio","Julio","Agosto","Septiembre","Octubre","Noviembre","Diciembre") Opciones3=("I","II","III","IV","V") with columns_2[1]: eleccion2=st.selectbox('Seleccione el mes de la OFR',Opciones2) with columns_2[2]: eleccion3=st.selectbox('Selecciona la semana de la OFR',Opciones3) if Agente_extra: Agente_extra="_"+Agente_extra else: Agente_extra="" columns_3 = st.columns([2,1,2]) with columns_3[1]: if platform.system()=='Windows': b=st.checkbox("PDF") else: b=False a=st.button("Crear los documentos") Ruta="Documentos/OFR/"+str(today.year)+"/"+mes_num(eleccion2)+"-"+eleccion2 +"/"+ eleccion3 Ruta_x="Documentos_exportar/" if os.path.exists(Ruta_x): shutil.rmtree(Ruta_x) Ruta_x=Ruta_x+"/" Ruta_x=Ruta_x+"/" os.makedirs(Ruta_x, exist_ok=True) if a: try: path1 = os.path.join(Ruta) shutil.rmtree(path1) os.makedirs(Ruta, exist_ok=True) except: os.makedirs(Ruta, exist_ok=True) Ruta_word=Ruta+"/Word" Ruta_pdf=Ruta+"/PDF" Info ={"Ruta": Ruta, "File_names": None } File_names=[] os.makedirs(Ruta_word, exist_ok=True) if b: os.makedirs(Ruta_pdf, exist_ok=True) zf = zipfile.ZipFile( "Resultado.zip", "w", zipfile.ZIP_DEFLATED) my_bar=st.progress(0) steps=len(Users) steps_done=0 for usuario in Users: data_user=data.copy() data_user=data_user[data_user["USUARIO"]==usuario] Empresas = pd.unique(data_user["agente1"]) Respaldo = data[data["USUARIO"]== usuario]["CANTIDAD"].sum() Fechas = pd.unique(data_user["Fecha"]) R_fechas = Range_fecha(Fechas) Data_frame_fechas=dt_fechas(data.copy(),data_user,Fechas,Tipo_dia) try: Email = str(Extras[Extras["USUARIO"] == usuario]["CORREO"].values) Porc_come = Extras[Extras["USUARIO"] == usuario]["MARGEN"].values[0] except: Email = "" Porc_come = 0.1 st.warning("No hay coincidencia en el Excel de usuarios para: "+usuario) Email = re.sub("\[|\]|\'|0","",Email) tx_empresas="" for idx ,val in enumerate(Empresas): if len(Empresas)<4: val_2=val[0:3] tx_empresas += val_2 if idx==len(Empresas)-1: pass else: tx_empresas +=", " else: tx_empresas += "Los Generadores" P_kwh=float(re.sub(",","",P_TMR))*float(P_contrato)/1000 Ingreso=int(P_kwh*Respaldo) C_comer=int(Ingreso*Porc_come) C_GMS=int(Ingreso*4/1000) I_NETO=Ingreso-C_comer-C_GMS if len(Data_frame_fechas.index.values)>13: Enter="\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" else: Enter="" variables = { "${FECHA}": fecha, "${MES}": eleccion2, "${AGENTES}": tx_empresas, "${USUARIO}": usuario, "${PRECIO_BOLSA}": P_bolsa, "${PRECIO_CONTRATO}": P_contrato, "${FECHA_TRM}": F_TRM, "${PRECIO_TRM}": P_TMR, "${EMAIL_USUARIO}": Email, "${PRECIO_PKWH}":str(round(P_kwh,2)), "${PORC_COMER}":str(int(Porc_come*100))+"%", "${RESPALDO_TOT}":f'{Respaldo:,}', "${INGRESO}":f'{Ingreso:,}', "${COST_COME}":f'{C_comer:,}', "${COST_GMS}":f'{C_GMS:,}', "${INGRESO_NETO}": f'{I_NETO:,}', "${NUM_DIAS}":Num_dias(len(Fechas)), "${RANGO_FECHAS_1}": R_fechas, "${ENTER}": Enter, "${MES_LIQUIDACION}": F_Liq_pag(Opciones2.index(eleccion2)+2,int(today.strftime("%Y"))), "${MES_PAGO}": F_Liq_pag(Opciones2.index(eleccion2)+3,int(today.strftime("%Y"))), "${INDICADOR}": eleccion3 } template_document = docx.Document(template_file_path) for variable_key, variable_value in variables.items(): for section in template_document.sections: for paragraph in section.header.paragraphs: replace_text_in_paragraph(paragraph, variable_key, variable_value) for paragraph in template_document.paragraphs: replace_text_in_paragraph(paragraph, variable_key, variable_value) for table in template_document.tables: for col in table.columns: for cell in col.cells: for paragraph in cell.paragraphs: replace_text_in_paragraph(paragraph, variable_key, variable_value) rows = template_document.tables[1].rows index_1=Data_frame_fechas.index.values Acum_Req=0 Acum_Res=0 for idx in index_1: rows[int(idx)+1].cells[0].text = Data_frame_fechas.iloc[idx]["Dia"] rows[int(idx)+1].cells[1].text = Data_frame_fechas.iloc[idx]["Fecha"].strftime('%Y-%m-%d') rows[int(idx)+1].cells[2].text = f'{Data_frame_fechas.iloc[idx]["Requerimiento"]:,}' Acum_Req += Data_frame_fechas.iloc[idx]["Requerimiento"] rows[int(idx)+1].cells[3].text = f'{Data_frame_fechas.iloc[idx]["Respaldo"]:,}' Acum_Res += Data_frame_fechas.iloc[idx]["Respaldo"] for idx_2 in range(0,4): run=rows[int(idx)+1].cells[idx_2].paragraphs[0].runs font = run[0].font font.size= Pt(10) font.name = 'Tahoma' for idx in np.arange(len(index_1)+1,37): remove_row(template_document.tables[1], rows[len(index_1)+1]) rows[-1].cells[1].text = Num_dias(len(Fechas)) rows[-1].cells[2].text = f'{Acum_Req:,}' rows[-1].cells[3].text = f'{Acum_Res:,}' version=1 template_document.save(Ruta_x+usuario+"_OFR"+Agente_extra+"_"+eleccion2+"_"+str(today.year)+".docx") zf.write(Ruta_x+usuario+"_OFR"+Agente_extra+"_"+eleccion2+"_"+str(today.year)+".docx") if b: docx2pdf.convert(Ruta_x+usuario+"_OFR"+Agente_extra+"_"+eleccion2+"_"+str(today.year)+".docx", Ruta_pdf+"/"+usuario+"_OFR"+Agente_extra+"_"+eleccion2+"_"+str(today.year)+".pdf") zf.write(Ruta_pdf+"/"+usuario+"_OFR"+Agente_extra+"_"+eleccion2+"_"+str(today.year)+".pdf") File_names.extend([usuario+"_OFR"+Agente_extra+"_"+eleccion2+"_"+str(today.year)+".docx"]) steps_done += 1 my_bar.progress(int(steps_done*100/steps)) Info.update({"File_names":File_names}) json_info = json.dumps(Info, indent = 4) with open(Ruta_x+'/00_data.json', 'w') as f: json.dump(json_info, f) zf.write(Ruta_x+'/00_data.json') zf.close() with open("Resultado.zip", "rb") as fp: with columns_3[1]: btn = st.download_button( label="Descargar resultados", data=fp, file_name="Resultado.zip", mime="application/zip" ) else: st.warning("Necesita subir los tres archivos") #elif False: elif eleccion==Opciones1[1]: st.header("Creación certificados de reintegros") st.subheader("Introducción de los documentos") if True: colums= st.columns([1,1,1]) with colums[0]: uploaded_file_1 = st.file_uploader("Suba el documento de liquidación") with colums[1]: uploaded_file_2 = st.file_uploader("Suba la plantilla del documento") with colums[2]: uploaded_file_3 = st.file_uploader("Suba el excel adicional") else: uploaded_file_1="Liquidacion_base.xlsm" uploaded_file_2="Certificado_base.docx" uploaded_file_3="Excel_extra_certificados.xls" if (uploaded_file_1 is not None) and (uploaded_file_2 is not None) and (uploaded_file_3 is not None): try: data=pd.read_excel(uploaded_file_1) Extras=pd.read_excel(uploaded_file_3,sheet_name="Usuarios") Tipo_dia=pd.read_excel(uploaded_file_3,sheet_name="Calendario") Agentes=pd.read_excel(uploaded_file_3,sheet_name="Agentes") except: st.warning("Recuerde que el formato del Excel tiene que ser xls") data["FECHA"]=data["FECHA"].dt.to_pydatetime() if data["USUARIO"].isnull().values.any(): st.warning("Revisar archivo de consolidado base, usuario no encontrado.") data.dropna(subset = ["USUARIO"], inplace=True) Users=pd.unique(data["USUARIO"]) else: Users=pd.unique(data["USUARIO"]) template_file_path = uploaded_file_2 today = date.today() fecha=dia_esp(today.strftime("%d")) +" de "+ mes_espa(today.strftime("%m")) +" de "+ today.strftime("%Y") colums= st.columns([1,4,1]) with colums[1]: st.subheader("Introducción de las variables") F_TRM = st.date_input("Seleccione la fecha del valor de la TRM:",value=today).strftime("%Y-%m-%d") P_TMR=str(round(data["TRM"].mean(),2)) columns_2 = st.columns([1,2,2,1]) Opciones2=("Enero","Febrero","Marzo","Abril","Mayo","Junio","Julio","Agosto","Septiembre","Octubre","Noviembre","Diciembre") with columns_2[1]: eleccion3=st.number_input('Seleccione el año del cerficado',value=today.year) with columns_2[2]: eleccion2=st.selectbox('Seleccione el mes del cerficado',Opciones2) columns_3 = st.columns([2,1,2]) with columns_3[1]: if platform.system()=='Windows': b=st.checkbox("PDF") else: b=False a=st.button("Crear los documentos") Ruta="Documentos/Certificados/"+str(eleccion3) +"/"+ mes_num(eleccion2)+"-"+eleccion2 Ruta_x="Documentos_exportar" if os.path.exists(Ruta_x): shutil.rmtree(Ruta_x) Ruta_x=Ruta_x+"/" Ruta_x=Ruta_x+"/" os.makedirs(Ruta_x, exist_ok=True) if a: try: path1 = os.path.join(Ruta) shutil.rmtree(path1) os.makedirs(Ruta, exist_ok=True) except: os.makedirs(Ruta, exist_ok=True) Ruta_word=Ruta+"/Word" Ruta_pdf=Ruta+"/PDF" Info ={"Ruta": Ruta, "File_names": None } File_names=[] os.makedirs(Ruta_word, exist_ok=True) if b: os.makedirs(Ruta_pdf, exist_ok=True) os.makedirs(Ruta_word, exist_ok=True) if b: os.makedirs(Ruta_pdf, exist_ok=True) zf = zipfile.ZipFile( "Resultado.zip", "w", zipfile.ZIP_DEFLATED) my_bar=st.progress(0) steps=len(Users) steps_done=0 for usuario in Users: data_user=data.copy() data_user=data_user[data_user["USUARIO"]==usuario] Empresas = pd.unique(data_user["COMPRADOR"]) Respaldo = data[data["USUARIO"]== usuario]["CANTIDAD"].sum() Fechas = pd.unique(data_user["FECHA"]) R_fechas = Range_fecha(Fechas) Data_frame_fechas=dt_fechas_2(data.copy(),data_user,Fechas,Tipo_dia) try: Email = str(Extras[Extras["USUARIO"] == usuario]["CORREO"].values) Porc_come = Extras[Extras["USUARIO"] == usuario]["MARGEN"].values[0] except: Email = "" Porc_come = 0.1 st.warning("No hay coincidencia en el Excel de usuarios para: "+usuario) Email = re.sub("\[|\]|\'|0","",Email) # tx_empresas="" # for idx ,val in enumerate(Empresas): # if len(Empresas)<4: # val_2=val[0:3] # tx_empresas += val_2 # if idx==len(Empresas)-1: # pass # else: # tx_empresas +=", " # else: # tx_empresas += "Los Generadores" if len(Data_frame_fechas.index.values)>13: Enter="\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" else: Enter="" REQ_MAXIMO=Data_frame_fechas["Respaldo"].max() Valor_total=int(round(data_user["P NETO"].sum())) variables = { "${FECHA}": fecha, "${MES}": eleccion2, "${ANO}": str(eleccion3), # "${AGENTES}": tx_empresas, "${USUARIO}": usuario, "${OFERTA_MAX}": f'{REQ_MAXIMO:,}', "${FECHA_TRM}": F_TRM, "${P_TRM}": P_TMR, "${EMAIL_USUARIO}": Email, "${PORC_COMER}":str(int(Porc_come*100))+"%", "${RESPALDO_TOT}":"$ "+f'{Valor_total:,}', "${NUM_DIAS}":Num_dias(len(Fechas)), "${RANGO_FECHAS_1}": R_fechas, "${ENTER}": Enter, "${MES_LIQUIDACION}": F_Liq_pag(Opciones2.index(eleccion2)+2,int(today.strftime("%Y"))), "${MES_PAGO}": F_Liq_pag(Opciones2.index(eleccion2)+3,int(today.strftime("%Y"))), "${INDICADOR}": eleccion3 } template_document = docx.Document(template_file_path) for variable_key, variable_value in variables.items(): for section in template_document.sections: for paragraph in section.header.paragraphs: replace_text_in_paragraph(paragraph, variable_key, variable_value) for paragraph in template_document.paragraphs: replace_text_in_paragraph(paragraph, variable_key, variable_value) for table in template_document.tables: for col in table.columns: for cell in col.cells: for paragraph in cell.paragraphs: replace_text_in_paragraph(paragraph, variable_key, variable_value) rows = template_document.tables[1].rows index_1=Agentes.index.values Total_ingreso=0 Total_respaldo=0 dt_participa=pd.DataFrame(columns=["OFR","INGRESO","FILA_1","FILA_2"]) for idx in index_1: run=rows[int(idx)+3].cells[0].paragraphs[0] rows[int(idx)+3].cells[0].text = "Precio "+Agentes.iloc[idx]["AGENTE"] rows[int(idx)+3].cells[1].text = f'{Agentes.iloc[idx]["PRECIO"]:,}' rows[int(idx)+3].cells[2].text = f'{round(float(re.sub(",","",P_TMR))*Agentes.iloc[idx]["PRECIO"]/1000,2):,}' Respaldo=data_user[data_user["OFR"]==Agentes.iloc[idx]["OFR"]]["CANTIDAD"].sum() rows[int(idx)+15].cells[0].text = "Respaldo "+Agentes.iloc[idx]["AGENTE"] rows[int(idx)+15].cells[1].text = "kWh" rows[int(idx)+15].cells[2].text = f'{Respaldo:,}' for idx_2 in range(0,3): run=rows[int(idx)+3].cells[idx_2].paragraphs[0].runs font = run[0].font font.size= Pt(10) font.name = 'Tahoma' for idx_2 in range(0,3): run=rows[int(idx)+15].cells[idx_2].paragraphs[0].runs font = run[0].font font.size= Pt(10) font.name = 'Tahoma' if idx_2==0: font.bold= True Total_respaldo += Respaldo df=pd.DataFrame([[Agentes.iloc[idx]["OFR"],Respaldo,int(idx)+3,int(idx)+15]],columns=["OFR","INGRESO","FILA_1","FILA_2"]) dt_participa=dt_participa.append(df, ignore_index=True) Total_ingreso += Respaldo*float(re.sub(",","",P_TMR))*Agentes.iloc[idx]["PRECIO"]/1000 filas=[22,24,25,26,28] valores=[Total_respaldo, Total_ingreso, Total_ingreso*Porc_come, Total_ingreso*0.004, Valor_total] for idx, val in enumerate(filas): rows[val].cells[2].text = f'{int(round(valores[idx])):,}' run=rows[val].cells[2].paragraphs[0].runs font = run[0].font font.size= Pt(10) font.name = 'Tahoma' contador1=0 contador2=0 for idx in list(dt_participa.index): if dt_participa.iloc[idx]["INGRESO"]==0: remove_row(template_document.tables[1], rows[dt_participa.iloc[idx]["FILA_1"]+contador1]) contador1 -= 1 remove_row(template_document.tables[1], rows[dt_participa.iloc[idx]["FILA_2"]+contador1+contador2]) contador2 -= 1 rows = template_document.tables[2].rows index_1=Data_frame_fechas.index.values Acum_Req=0 Acum_Res=0 for idx in index_1: rows[int(idx)+1].cells[0].text = Data_frame_fechas.iloc[idx]["Fecha"].strftime('%Y-%m-%d') rows[int(idx)+1].cells[1].text = Data_frame_fechas.iloc[idx]["Dia"] rows[int(idx)+1].cells[2].text = f'{Data_frame_fechas.iloc[idx]["Requerimiento"]:,}' Acum_Req += Data_frame_fechas.iloc[idx]["Requerimiento"] rows[int(idx)+1].cells[3].text = f'{Data_frame_fechas.iloc[idx]["Respaldo"]:,}' Acum_Res += Data_frame_fechas.iloc[idx]["Respaldo"] for idx_2 in range(0,4): run=rows[int(idx)+1].cells[idx_2].paragraphs[0].runs font = run[0].font font.size= Pt(10) font.name = 'Tahoma' for idx in np.arange(len(index_1)+1,37): remove_row(template_document.tables[2], rows[len(index_1)+1]) #rows[-1].cells[1].text = Num_dias(len(Fechas)) rows[-1].cells[2].text = f'{Acum_Req:,}' rows[-1].cells[3].text = f'{Acum_Res:,}' for idx_2 in range(1,4): run=rows[-1].cells[idx_2].paragraphs[0].runs font = run[0].font font.size= Pt(10) font.name = 'Tahoma' # version=1 name_word=usuario+"_Certificado_Reintegros_"+eleccion2+"_"+str(eleccion3)+".docx" name_pdf=usuario+"_Certificado_Reintegros_"+eleccion2+"_"+str(eleccion3)+".pdf" template_document.save(Ruta_x+name_word) zf.write(Ruta_x+name_word) if b: docx2pdf.convert(Ruta_x+name_word, Ruta_x+name_pdf) zf.write(Ruta_x+name_pdf) File_names.extend([name_word]) steps_done += 1 my_bar.progress(int(steps_done*100/steps)) Info.update({"File_names":File_names}) json_info = json.dumps(Info, indent = 4) with open(Ruta_x+'/00_data.json', 'w') as f: json.dump(json_info, f) zf.write(Ruta_x+'/00_data.json') zf.close() with open("Resultado.zip", "rb") as fp: with columns_3[1]: btn = st.download_button( label="Descargar resultados", data=fp, file_name="Resultado.zip", mime="application/zip" ) else: st.warning("Necesita subir los tres archivos") #elif True: elif eleccion==Opciones1[2]: st.header("Creación consolidados mensuales") st.subheader("Introducción de los documentos") if True: colums= st.columns([1,1]) with colums[0]: uploaded_file_1 = st.file_uploader("Suba el documento de base principal") with colums[1]: uploaded_file_2 = st.file_uploader("Suba la plantilla del documento") # with colums[2]: # uploaded_file_3 = st.file_uploader("Suba el excel adicional") else: uploaded_file_1="Excel_base_informe.xls" uploaded_file_2="Plantilla_base.docx" # uploaded_file_3="Excel_extra_certificados.xls" if (uploaded_file_1 is not None) and (uploaded_file_2 is not None): #and (uploaded_file_3 is not None): try: excel_1=
pd.ExcelFile(uploaded_file_1)
pandas.ExcelFile
import pandas as pd from sklearn import linear_model import statsmodels.api as sm import numpy as np from scipy import stats # df_2018 = pd.read_csv("/mnt/nadavrap-students/STS/data/2018_2019.csv") # df_2016 = pd.read_csv("/mnt/nadavrap-students/STS/data/2016_2017.csv") # df_2014 = pd.read_csv("/mnt/nadavrap-students/STS/data/2014_2015.csv") # df_2012 = pd.read_csv("/mnt/nadavrap-students/STS/data/2012_2013.csv") # df_2010 = pd.read_csv("/mnt/nadavrap-students/STS/data/2010_2011.csv") # # print (df_2018.stsrcom.unique()) # print (df_2016.stsrcom.unique()) # print (df_2014.stsrcom.unique()) # print (df_2012.stsrcom.unique()) # print (df_2010.stsrcom.unique()) # print (df_2018.stsrcHospD.unique()) # print (df_2016.stsrcHospD.unique()) # print (df_2014.stsrcHospD.unique()) # print (df_2012.stsrcHospD.unique()) # print (df_2010.stsrcHospD.unique()) # # print (df_2018.columns.tolist()) # df_union = pd.concat([df_2010, df_2012,df_2014,df_2016,df_2018], ignore_index=True) # print (df_union) # print (df_union['surgyear'].value_counts()) # for col in df_union.columns: # print("Column '{}' have :: {} missing values.".format(col,df_union[col].isna().sum())) # df_union= pd.read_csv("df_union.csv") # cols_to_remove = [] # samples = len(df_union) # for col in df_union.columns: # nan_vals = df_union[col].isna().sum() # prec_missing_vals = nan_vals / samples # print("Column '{}' have :: {} missing values. {}%".format(col, df_union[col].isna().sum(), round(prec_missing_vals,3))) # print (cols_to_remove) # # df_union.drop(cols_to_remove, axis=1, inplace=True) # print("Number of Features : ",len(df_union.columns)) # for col in df_union.columns: # print("Column '{}' have :: {} missing values.".format(col,df_union[col].isna().sum())) # # df_union.to_csv("df union after remove.csv") # df_2018_ = pd.read_csv("/mnt/nadavrap-students/STS/data/2018_2019.csv") df_all= pd.read_csv("/tmp/pycharm_project_723/df_union.csv") print (df_all.reoperation.unique()) print (df_all.stsrcHospD.unique()) print (df_all.stsrcom.unique()) # mask = df_2018_['surgyear'] == 2018 # df_all = df_2018_[mask] # mask_reop = df_all['reoperation'] == 1 # df_reop = df_all[mask_reop] # df_op = df_all[~mask_reop] def create_df_for_bins_hospid(col_mort): df1 = df_all.groupby(['hospid', 'surgyear'])['hospid'].count().reset_index(name='total') df2 = df_all.groupby(['hospid', 'surgyear'])['reoperation'].apply(lambda x: (x == 1).sum()).reset_index( name='Reop') df3 = df_all.groupby(['hospid', 'surgyear'])['reoperation'].apply(lambda x: (x == 0).sum()).reset_index( name='FirstOperation') df_aggr = pd.read_csv("aggregate_csv.csv") mask_reop = df_all['reoperation'] == 1 df_reop = df_all[mask_reop] df_op = df_all[~mask_reop] dfmort = df_all.groupby(['hospid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_all') dfmortf = df_op.groupby(['hospid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_first') dfmortr = df_reop.groupby(['hospid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_reop') df_comp = df_all.groupby(['hospid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_all') df_compr = df_reop.groupby(['hospid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_reop') df_compf = df_op.groupby(['hospid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_FirstOperation') d1 = pd.merge(df1, df3, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d2 = pd.merge(d1, df2, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') df5 = pd.merge(df_aggr, d2, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='inner') # how='left', on=['HospID','surgyear']) del df5["Unnamed: 0"] d3 = pd.merge(df5, dfmort, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d4 = pd.merge(d3, dfmortf, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d5 = pd.merge(d4, dfmortr, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d6 = pd.merge(d5, df_comp, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d7 = pd.merge(d6, df_compf, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d8 = pd.merge(d7, df_compr, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') # df_sum_all_Years_total = pd.merge(d8, df_19, on='HospID', how='outer') d8.fillna(0, inplace=True) d8['mort_rate_All'] = (d8['Mortality_all'] / d8['total']) * 100 d8['Mortality_First_rate'] = (d8['Mortality_first'] / d8['FirstOperation']) * 100 d8['Mortality_Reop_rate'] = (d8['Mortality_reop'] / d8['Reop']) * 100 d8['Complics_rate_All'] = (d8['Complics_all'] / d8['total']) * 100 d8['Complics_First_rate'] = (d8['Complics_FirstOperation'] / d8['FirstOperation']) * 100 d8['Complics_Reop_rate'] = (d8['Complics_reop'] / d8['Reop']) * 100 d8.to_csv('hospid_year_allyears.csv') df_PredMort_all = df_all.groupby(['hospid', 'surgyear'])['predmort'].mean().reset_index(name='PredMort_All_avg') df_PredMort_op = df_op.groupby(['hospid', 'surgyear'])['predmort'].mean().reset_index(name='PredMort_First_avg') df_PredMort_reop = df_reop.groupby(['hospid', 'surgyear'])['predmort'].mean().reset_index( name='PredMort_Reoperation_avg') df_PredComp_all = df_all.groupby(['hospid', 'surgyear'])['predmm'].mean().reset_index(name='PredComp_All_avg') df_PredComp_op = df_op.groupby(['hospid', 'surgyear'])['predmm'].mean().reset_index(name='PredComp_First_avg') df_PredComp_reop = df_reop.groupby(['hospid', 'surgyear'])['predmm'].mean().reset_index( name='PredComp_Reoperation_avg') d19 = pd.merge(d8, df_PredMort_all, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d9 = pd.merge(d19, df_PredMort_op, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d10 = pd.merge(d9, df_PredMort_reop, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d14 = pd.merge(d10, df_PredComp_all, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d11 = pd.merge(d14, df_PredComp_op, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d12 = pd.merge(d11, df_PredComp_reop, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d12.fillna(0, inplace=True) d12['Mort_observe/expected_All'] = (d12['mort_rate_All'] / d12['PredMort_All_avg']) d12['Mort_observe/expected_First'] = (d12['Mortality_First_rate'] / d12['PredMort_First_avg']) d12['Mort_observe/expected_Reop'] = (d12['Mortality_Reop_rate'] / d12['PredMort_Reoperation_avg']) d12[['log_All_Mort', 'log_First_Mort', 'log_Reoperation_Mort']] = np.log2( d12[['Mort_observe/expected_All', 'Mort_observe/expected_First', 'Mort_observe/expected_Reop']].replace(0, np.nan)) d12.fillna(0, inplace=True) d12['Comp_observe/expected_All'] = (d12['Complics_rate_All'] / d12['PredComp_All_avg']) d12['Comp_observe/expected_First'] = (d12['Complics_First_rate'] / d12['PredComp_First_avg']) d12['Comp_observe/expected_Reop'] = (d12['Complics_Reop_rate'] / d12['PredComp_Reoperation_avg']) d12[['log_All_Comp', 'log_First_Comp', 'log_Reoperation_Comp']] = np.log2( d12[['Comp_observe/expected_All', 'Comp_observe/expected_First', 'Comp_observe/expected_Reop']].replace(0, np.nan)) d12.fillna(0, inplace=True) d12.to_csv("hospid_allyears_expec_hospid_stsrcHospD.csv") print(d12.info()) print(d12.columns.tolist()) #create_df_for_bins_hospid('stsrcHospD') def create_df_for_bins_surgid(col_mort): df1 = df_all.groupby(['surgid', 'surgyear'])['surgid'].count().reset_index(name='total') df2 = df_all.groupby(['surgid', 'surgyear'])['reoperation'].apply(lambda x: (x == 1).sum()).reset_index( name='Reop') df3 = df_all.groupby(['surgid', 'surgyear'])['reoperation'].apply(lambda x: (x == 0).sum()).reset_index( name='FirstOperation') df_aggr = pd.read_csv("/tmp/pycharm_project_723/aggregate_surgid_csv.csv") mask_reop = df_all['reoperation'] == 1 df_reop = df_all[mask_reop] df_op = df_all[~mask_reop] dfmort = df_all.groupby(['surgid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_all') dfmortf = df_op.groupby(['surgid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_first') dfmortr = df_reop.groupby(['surgid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_reop') df_comp = df_all.groupby(['surgid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_all') df_compr = df_reop.groupby(['surgid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_reop') df_compf = df_op.groupby(['surgid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_FirstOperation') d1 = pd.merge(df1, df3, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'], how='outer') d2 = pd.merge(d1, df2, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'], how='outer') df5 = pd.merge(df_aggr, d2, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'],how='inner') # del df5["Unnamed: 0"] d3 = pd.merge(df5, dfmort, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'], how='outer') d4 = pd.merge(d3, dfmortf, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'], how='outer') d5 = pd.merge(d4, dfmortr, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'], how='outer') d6 =
pd.merge(d5, df_comp, left_on=['surgid', 'surgyear'], right_on=['surgid', 'surgyear'], how='outer')
pandas.merge
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3), pd.timedelta_range("1 day", periods=3), pd.period_range("2012Q1", periods=3, freq="Q"), pd.Index(list("abc")), pd.Int64Index([1, 2, 3]), pd.RangeIndex(0, 3), ], ids=lambda x: type(x).__name__, ) def test_constructor_limit_copies(self, index): # GH 17449 # limit copies of input s = pd.Series(index) # we make 1 copy; this is just a smoke test here assert s._mgr.blocks[0].values is not index def test_constructor_pass_none(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(None, index=range(5)) assert s.dtype == np.float64 s = Series(None, index=range(5), dtype=object) assert s.dtype == np.object_ # GH 7431 # inference on the index with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(index=np.array([None])) expected = Series(index=Index([None])) tm.assert_series_equal(s, expected) def test_constructor_pass_nan_nat(self): # GH 13467 exp = Series([np.nan, np.nan], dtype=np.float64) assert exp.dtype == np.float64 tm.assert_series_equal(Series([np.nan, np.nan]), exp) tm.assert_series_equal(Series(np.array([np.nan, np.nan])), exp) exp = Series([pd.NaT, pd.NaT]) assert exp.dtype == "datetime64[ns]" tm.assert_series_equal(Series([pd.NaT, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, pd.NaT])), exp) tm.assert_series_equal(Series([pd.NaT, np.nan]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, np.nan])), exp) tm.assert_series_equal(Series([np.nan, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([np.nan, pd.NaT])), exp) def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Series(["a", "b", "c"], dtype=float) def test_constructor_unsigned_dtype_overflow(self, uint_dtype): # see gh-15832 msg = "Trying to coerce negative values to unsigned integers" with pytest.raises(OverflowError, match=msg): Series([-1], dtype=uint_dtype) def test_constructor_coerce_float_fail(self, any_int_dtype): # see gh-15832 msg = "Trying to coerce float values to integers" with pytest.raises(ValueError, match=msg): Series([1, 2, 3.5], dtype=any_int_dtype) def test_constructor_coerce_float_valid(self, float_dtype): s = Series([1, 2, 3.5], dtype=float_dtype) expected = Series([1, 2, 3.5]).astype(float_dtype) tm.assert_series_equal(s, expected) def test_constructor_dtype_no_cast(self): # see gh-1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 assert s[1] == 5 def test_constructor_datelike_coercion(self): # GH 9477 # incorrectly inferring on dateimelike looking when object dtype is # specified s = Series([Timestamp("20130101"), "NOV"], dtype=object) assert s.iloc[0] == Timestamp("20130101") assert s.iloc[1] == "NOV" assert s.dtype == object # the dtype was being reset on the slicing and re-inferred to datetime # even thought the blocks are mixed belly = "216 3T19".split() wing1 = "2T15 4H19".split() wing2 = "416 4T20".split() mat = pd.to_datetime("2016-01-22 2019-09-07".split()) df = pd.DataFrame({"wing1": wing1, "wing2": wing2, "mat": mat}, index=belly) result = df.loc["3T19"] assert result.dtype == object result = df.loc["216"] assert result.dtype == object def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [ np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None]), ]: result = Series(arr) assert result.dtype == "M8[ns]" def test_constructor_dtype_datetime64(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) assert isna(s).all() # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(iNaT, index=range(5)) assert not isna(s).all() s = Series(np.nan, dtype="M8[ns]", index=range(5)) assert isna(s).all() s = Series([datetime(2001, 1, 2, 0, 0), iNaT], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" s = Series([datetime(2001, 1, 2, 0, 0), np.nan], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) assert s.dtype == "M8[ns]" s.iloc[0] = np.nan assert s.dtype == "M8[ns]" # GH3414 related expected = Series( [datetime(2013, 1, 1), datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]", ) result = Series(Series(dates).astype(np.int64) / 1000000, dtype="M8[ms]") tm.assert_series_equal(result, expected) result = Series(dates, dtype="datetime64[ns]") tm.assert_series_equal(result, expected) expected = Series( [pd.NaT, datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]" ) result = Series([np.nan] + dates[1:], dtype="datetime64[ns]") tm.assert_series_equal(result, expected) dts = Series(dates, dtype="datetime64[ns]") # valid astype dts.astype("int64") # invalid casting msg = r"cannot astype a datetimelike from \[datetime64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): dts.astype("int32") # ints are ok # we test with np.int64 to get similar results on # windows / 32-bit platforms result = Series(dts, dtype=np.int64) expected = Series(dts.astype(np.int64)) tm.assert_series_equal(result, expected) # invalid dates can be help as object result = Series([datetime(2, 1, 1)]) assert result[0] == datetime(2, 1, 1, 0, 0) result = Series([datetime(3000, 1, 1)]) assert result[0] == datetime(3000, 1, 1, 0, 0) # don't mix types result = Series([Timestamp("20130101"), 1], index=["a", "b"]) assert result["a"] == Timestamp("20130101") assert result["b"] == 1 # GH6529 # coerce datetime64 non-ns properly dates = date_range("01-Jan-2015", "01-Dec-2015", freq="M") values2 = dates.view(np.ndarray).astype("datetime64[ns]") expected = Series(values2, index=dates) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, dates) tm.assert_series_equal(result, expected) # GH 13876 # coerce to non-ns to object properly expected = Series(values2, index=dates, dtype=object) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, index=dates, dtype=object) tm.assert_series_equal(result, expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) tm.assert_numpy_array_equal(series1.values, dates2) assert series1.dtype == object # these will correctly infer a datetime s = Series([None, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([np.nan, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, None, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, np.nan, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" # tz-aware (UTC and other tz's) # GH 8411 dr = date_range("20130101", periods=3) assert Series(dr).iloc[0].tz is None dr = date_range("20130101", periods=3, tz="UTC") assert str(Series(dr).iloc[0].tz) == "UTC" dr = date_range("20130101", periods=3, tz="US/Eastern") assert str(Series(dr).iloc[0].tz) == "US/Eastern" # non-convertible s = Series([1479596223000, -1479590, pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a NaT it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a nan it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) assert s.dtype == "object" assert s[2] is np.nan assert "NaN" in str(s) def test_constructor_with_datetime_tz(self): # 8260 # support datetime64 with tz dr = date_range("20130101", periods=3, tz="US/Eastern") s = Series(dr) assert s.dtype.name == "datetime64[ns, US/Eastern]" assert s.dtype == "datetime64[ns, US/Eastern]" assert is_datetime64tz_dtype(s.dtype) assert "datetime64[ns, US/Eastern]" in str(s) # export result = s.values assert isinstance(result, np.ndarray) assert result.dtype == "datetime64[ns]" exp = pd.DatetimeIndex(result) exp = exp.tz_localize("UTC").tz_convert(tz=s.dt.tz) tm.assert_index_equal(dr, exp) # indexing result = s.iloc[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[Series([True, True, False], index=s.index)] tm.assert_series_equal(result, s[0:2]) result = s.iloc[0:1] tm.assert_series_equal(result, Series(dr[0:1])) # concat result = pd.concat([s.iloc[0:1], s.iloc[1:]]) tm.assert_series_equal(result, s) # short str assert "datetime64[ns, US/Eastern]" in str(s) # formatting with NaT result = s.shift() assert "datetime64[ns, US/Eastern]" in str(result) assert "NaT" in str(result) # long str t = Series(date_range("20130101", periods=1000, tz="US/Eastern")) assert "datetime64[ns, US/Eastern]" in str(t) result = pd.DatetimeIndex(s, freq="infer") tm.assert_index_equal(result, dr) # inference s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ] ) assert s.dtype == "datetime64[ns, US/Pacific]" assert lib.infer_dtype(s, skipna=True) == "datetime64" s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Eastern"), ] ) assert s.dtype == "object" assert lib.infer_dtype(s, skipna=True) == "datetime" # with all NaT s = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]") expected = Series(pd.DatetimeIndex(["NaT", "NaT"], tz="US/Eastern")) tm.assert_series_equal(s, expected) @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_construction_to_datetimelike_unit(self, arr_dtype, dtype, unit): # tests all units # gh-19223 dtype = f"{dtype}[{unit}]" arr = np.array([1, 2, 3], dtype=arr_dtype) s = Series(arr) result = s.astype(dtype) expected = Series(arr.astype(dtype)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("arg", ["2013-01-01 00:00:00", pd.NaT, np.nan, None]) def test_constructor_with_naive_string_and_datetimetz_dtype(self, arg): # GH 17415: With naive string result =
Series([arg], dtype="datetime64[ns, CET]")
pandas.Series
import os import sys import glob import click import pandas as pd from .printing import splash_screen from .prompt import main_menu_prompt csv_sheets = [] xlsx_sheets = [] def get_csv_df(files): for file in files: csv_sheets.append(str(file)) yield pd.read_csv(file) def get_xlsx_df(files): for file in files: xlsx_sheets.append(str(file)) yield
pd.read_excel(file)
pandas.read_excel
#%% [markdown] # # Lung Vasculature Analysis # This notebook (.ipynb) is a working project for analyzing lung vasculature. It inculdes three parts: # 1. converts skeleton analytical output (.xml) into .csv file. # 2. calulates the length and average thickness of each segment. # 3. makes two types of plots: # 1. histogram of each dataset on length and thickness # 2. average histogram on length and thickness (line plot with error bars) # #%% get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') import os, sys, re, io import numpy as np import pandas as pd from tqdm import tqdm import time from core.fileop import DirCheck, ListFiles import core.mkplot as mkplot #%% [markdown] # ## Part 1: # Converting skeleton analytical output (.xml) into .csv file. # * Inputs: *.xml # * Outputs: *.csv # * Dependencies: xml, time, pandas, tqdm </br> # # * *.xml file includes three sheets: nodes, points, and segments. # * Warning: the progress bar controled by `tqdm` is not functioning well. It can not overwrite itself and creates multiple lines. #%% [markdown] # ### Functions #%% # import dependencies import xml.etree.ElementTree as etree from core.msxml import MSXmlReader # function def convert_xml_csv(ippath, oppath): filelist, fileabslist = ListFiles(ippath, extension='.xml') for idx, f in enumerate(filelist): filename = f.replace('.xml', '') ip = os.path.join(ippath, f) op = os.path.join(oppath, filename) print(ip) print(op) # create path if filename not in os.listdir(oppath): DirCheck(op) # convert *.xml to *.csv csv_all = MSXmlReader(ip) # save each spreadsheet into individual *.csv file for key, value in csv_all.items(): oppath_tmp = os.path.join(op, key + '.csv') value.to_csv(oppath_tmp, index = False) #%% [markdown] # ### Execution # To run the code, please change `path` to the directory hosts the raw data. #%% path = 'data' ipdir = 'raw' opdir = 'csv' ippath = os.path.join(path, ipdir) oppath = os.path.join(path, opdir) # make dir DirCheck(oppath) # convert files in batch convert_xml_csv(ippath, oppath) #%% [markdown] # ## Part 2: # Calulating the length and average thickness of each segment. # * Inputs: nodes.csv, points.csv, segments.csv # * Outputs: segments_s.csv # # `SegStats` extracts euclidean coordinates and thickness of each point, then calculate the total length and average thickness. #%% [markdown] # ### Functions #%% # load dependencies from core.filamentanalysis import SegStats, PNSCount path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipdir = 'csv' ippath = os.path.join(path, ipdir) img_group = [] # function def stats_calculator(ippath, oppath): imglist = [x for x in os.listdir(ippath) if not x.startswith('.')] var = ['df_nodes', 'df_points', 'df_segments'] counts_combined = [] names= [] for img in imglist: filelist, fileabslist = ListFiles(os.path.join(ippath, img), extension='.csv') df_points = pd.read_csv(os.path.join(ippath, img, 'points.csv')) df_segments = pd.read_csv(os.path.join(ippath, img, 'segments.csv')) df_nodes = pd.read_csv(os.path.join(ippath, img,'nodes.csv')) opfilename = 'segments_s.csv' countfilename = 'count.csv' countfilename_combined = 'counts_combined.csv' if opfilename not in filelist: df_segments_s = SegStats(df_points, df_segments) df_segments_s.to_csv(os.path.join(oppath, img, opfilename), index = False) counts = (PNSCount(df_points, df_nodes, df_segments)) counts_combined.append(counts) names.append(img) fileinfo = pd.read_csv(os.path.join('./par', 'lung_file_idx.csv')) print(names) img_group = [] img_treatment = [] for i in names: img_group.append(fileinfo[fileinfo['data_filename'] == i]['genotype'].item()) img_treatment.append(fileinfo[fileinfo['data_filename'] == i]['treatment'].item()) if countfilename_combined not in imglist: df_counts_combined = pd.DataFrame(counts_combined, columns= ['Points', 'Nodes', 'Segments']) df_counts_combined['Names'] = names df_counts_combined['Genotype'] = img_group df_counts_combined['Treatment'] = img_treatment df_counts_combined.to_csv(os.path.join(path, countfilename_combined), index = False) #%% [markdown] # ### Execution # To run the code, please change `path` to the directory hosts the raw data. #%% path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipdir = 'csv' opdir = 'csv' ippath = os.path.join(path, ipdir) oppath = os.path.join(path, opdir) # make dir DirCheck(oppath) # convert files in batch stats_calculator(ippath, oppath) #%% [markdown] # ## Part 3: # Creating two sets of plots: # 1. histogram of each dataset on length and thickness # 2. average histogram on length and thickness (line plot with error bars) # # * Inputs: segments_s.csv # * Outputs: # 1. `histo/length/*.png`: frequency - length (µm) # 2. `histo/thickness/*.png`: frequency - thickness (µm) # 3. `histo_summary/length.png`: histogram in line plot style # 4. `histo_summary/thickness.png`: histogram in line plot style # # `SegStats` extracts euclidean coordinates and thickness of each point, then calculate # the total length and average thickness. # # # In the ouputs, the code renames "thickness" to "radius" to avoid confusion. Quotes from # Amira User's Manual # > As an estimate of the local thickness, the closest distance to the label # boundary (boundary distance map) is stored at every point in the *Spatial Graph*. # The attribute is named *thickness* and constitutes the *radius* of the circular cross-section # of the filament at a given point of the centerline. #%% # import depandencies import matplotlib.pyplot as plt import matplotlib.style as style style.use('default') import scipy.stats as stats from core.mkplot import GroupImg, FindRange, IndividualHisto from core.mkplot import make_individul_plots, make_individul_plots_all, make_merged_plots #%% path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipdir = 'csv' opdir1 = 'plot' opdir2 = 'histogram' subfolder = ['histo', 'histo_summary'] ippath = os.path.join(path, ipdir) oppath = os.path.join(path, opdir1, opdir2) for i in subfolder: oppath_sub = os.path.join(oppath, i) DirCheck(oppath_sub) #%% # load fileinfo fileinfo = pd.read_csv(os.path.join('./par', 'lung_file_idx.csv')) columns = { 'length': { 'x_label': 'Length (µm)', 'file_label': 'length', }, 'thickness': { 'x_label': 'Radius (µm)', 'file_label': 'radius', }, } #%% # plot individual histogram make_individul_plots(ippath, oppath, fileinfo, columns) #%% path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipfile = 'counts_combined.csv' ippath_stat = os.path.join(path, ipfile) ippath_csv = os.path.join(path, 'csv') oppath_stat = os.path.join(path, 'plot', 'histogram', 'histo_summary') filestat = pd.read_csv(ippath_stat) filestat['Group'] = filestat['Genotype'] + ' & ' + filestat['Treatment'] display(filestat) make_individul_plots_all(ippath_csv, oppath, fileinfo, filestat, columns) #%% [markdown] # Create plots with x-axis in different scales #%% # plot merged histogram in counts make_merged_plots(ippath_csv, oppath, fileinfo, columns, frequency = False, x_max_factor = 0.07) # plot merged histogram in frequency make_merged_plots(ippath, oppath, fileinfo, columns, frequency = True, x_max_factor = 0.07) #%% # plot merged histogram in counts make_merged_plots(ippath, oppath, fileinfo, columns, frequency = False, x_max_factor = 0.2) # plot merged histogram in frequency make_merged_plots(ippath, oppath, fileinfo, columns, frequency = True, x_max_factor = 0.2) #%% # plot merged histogram in counts make_merged_plots(ippath, oppath, fileinfo, columns, frequency = False, x_max_factor = 1) # plot merged histogram in frequency make_merged_plots(ippath, oppath, fileinfo, columns, frequency = True, x_max_factor = 1) #%% [markdown] # ## Part 4 # ### 4-1: Plot paird scatter plot # Module: seaborn #%% # from pandas.plotting import scatter_matrix import seaborn as sns sns.set(style="ticks", color_codes=True) path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipfile = 'counts_combined.csv' ippath_stat = os.path.join(path, ipfile) ippath_csv = os.path.join(path, 'csv') oppath_stat = os.path.join(path, 'plot', 'histogram', 'histo_summary') counts = pd.read_csv(ippath_stat) counts['Group'] = counts['Genotype'] + ' & ' + counts['Treatment'] display(counts) #%% g = sns.PairGrid(counts, vars = ['Points', 'Nodes', 'Segments'], hue = 'Group') g.map_diag(plt.hist) g.map_offdiag(plt.scatter) g.add_legend() g.savefig(os.path.join(oppath_stat, "pairgrid.png")) #%% [markdown] # ### 4-2: Plot histogram comparison # Module: seaborn #%% labels, uniques = pd.factorize(counts['Group']) for i in uniques: print(i) tmp_df = counts[counts['Group'] == i] data_merge = [] filename = tmp_df['Names'] df_all = [] for index, value in filename.items(): print(value) tmp_df2 = pd.read_csv(os.path.join(ippath_csv, value, 'segments_s.csv')) tmp_df2['Filename'] = value df_all.append(tmp_df2) df_all_con = pd.concat(df_all) # display(df_all_con) g = sns.FacetGrid(df_all_con, col="Filename") g.map(plt.hist, 'thickness', density = True) #%% [markdown] # ## Part 5: histogram standardization # #%% from core.mkplot import histo_standardize, make_merged_plots_std path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipfile = 'counts_combined.csv' ippath_stat = os.path.join(path, ipfile) ippath_csv = os.path.join(path, 'csv') histo_standardize(ippath_csv) #%% [markdown] # ## Part 6: Plots with standardize data # #%% path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipfile = 'counts_combined.csv' ippath_stat = os.path.join(path, ipfile) ippath_csv = os.path.join(path, 'csv') oppath = os.path.join(path, 'plot', 'histogram') DirCheck(oppath) columns = { 'length': { 'x_label': 'Standard Deviation', 'file_label': 'length', }, 'thickness': { 'x_label': 'Standard Deviation', 'file_label': 'radius', }, } make_merged_plots_std(ippath_csv, oppath, fileinfo, columns, opdir = 'histo_summary_std', filename = 'segments_s_std.csv', frequency = False, x_max_factor = 1) make_merged_plots_std(ippath_csv, oppath, fileinfo, columns, opdir = 'histo_summary_std', filename = 'segments_s_std.csv', frequency = True, x_max_factor = 1) make_merged_plots_std(ippath_csv, oppath, fileinfo, columns, opdir = 'histo_summary_std', filename = 'segments_s_std.csv', frequency = False, x_max_factor = 0.2) make_merged_plots_std(ippath_csv, oppath, fileinfo, columns, opdir = 'histo_summary_std', filename = 'segments_s_std.csv', frequency = True, x_max_factor = 0.2) #%% [markdown] # # Part 6 # Plot the Points, Nodes, and Segment Count in Bokeh with Holoview #%% import numpy as np import pandas as pd import holoviews as hv from holoviews import opts, Cycle #%% hv.extension('bokeh') path = '/Volumes/LaCie_DataStorage/Woo-lungs/2019' ipfile = 'counts_combined.csv' ippath = os.path.join(path, ipfile) counts = pd.read_csv(ippath) f1 = hv.Scatter((zip(counts.Points.items(), counts.Nodes.items())), ['Points'], ['Nodes']) f2 = hv.Scatter((zip(counts.Points.items(), counts.Segments.items())), ['Points'], ['Segments']) f3 = hv.Scatter((zip(counts.Nodes.items(), counts.Points.items())), ['Nodes'], ['Points']) f4 = hv.Scatter((zip(counts.Nodes.items(), counts.Segments.items())), ['Nodes'], ['Segments']) f5 = hv.Scatter((zip(counts.Segments.items(), counts.Points.items())), ['Segments'], ['Points']) f6 = hv.Scatter((zip(counts.Segments.items(), counts.Nodes.items())), ['Segments'], ['Nodes']) f1 + f2 + f3 + f4 + f5 + f6 #%% import holoviews as hv from holoviews import opts hv.extension('bokeh') from holoviews.operation import gridmatrix from bokeh.sampledata.iris import flowers from bokeh.palettes import brewer import bokeh.models as bmod counts =
pd.read_csv(ippath)
pandas.read_csv
# -*- coding: utf-8 -*- # Copyright StateOfTheArt.quant. # # * Commercial Usage: please contact <EMAIL> # * Non-Commercial Usage: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from scipy.stats import rankdata import torch import numpy as np import pandas as pd from featurizer.functions.algebra_statistic import weighted_average, weighted_std, downside_std, upside_std import pdb # https://stackoverflow.com/questions/14313510/how-to-calculate-moving-average-using-numpy def rolling_sum(tensor, window=1, dim=0): ret = torch.cumsum(tensor, dim=dim) ret[window:] = ret[window:] - ret[:-window] ret[:window-1]= float("nan") return ret def rolling_sum_(tensor, window=1, dim=0): tensor_np = tensor.cpu().detach().numpy() tensor_df = pd.DataFrame(tensor_np) output_df = tensor_df.rolling(window).sum() output_tensor = torch.tensor(output_df.values, dtype=tensor.dtype, device=tensor.device) return output_tensor def rolling_sum3d(tensor, window=1, dim=1): ret = torch.cumsum(tensor, dim=dim) ret[:,window:] = ret[:,window:] - ret[:,:-window] ret[:,:window-1]= float("nan") return ret def rolling_mean(tensor, window=1): #to-do fixme #ret = torch.cumsum(tensor, dim=0) #ret[window:] = ret[window:] - ret[:-window] #ret[:window-1]= float("nan") #output = ret/window return rolling_mean_(tensor=tensor, window=window) def rolling_mean_(tensor, window=1): tensor_np = tensor.cpu().detach().numpy() tensor_df =
pd.DataFrame(tensor_np)
pandas.DataFrame
# -*- coding: utf-8 -*- import re import numpy as np import pytest from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_interval_dtype, is_period, is_period_dtype, is_string_dtype) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, registry) import pandas as pd from pandas import ( Categorical, CategoricalIndex, IntervalIndex, Series, date_range) from pandas.core.sparse.api import SparseDtype import pandas.util.testing as tm @pytest.fixture(params=[True, False, None]) def ordered(request): return request.param class Base(object): def setup_method(self, method): self.dtype = self.create() def test_hash(self): hash(self.dtype) def test_equality_invalid(self): assert not self.dtype == 'foo' assert not is_dtype_equal(self.dtype, np.int64) def test_numpy_informed(self): pytest.raises(TypeError, np.dtype, self.dtype) assert not self.dtype == np.str_ assert not np.str_ == self.dtype def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert not len(self.dtype._cache) assert result == self.dtype class TestCategoricalDtype(Base): def create(self): return CategoricalDtype() def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert result == self.dtype def test_hash_vs_equality(self): dtype = self.dtype dtype2 = CategoricalDtype() assert dtype == dtype2 assert dtype2 == dtype assert hash(dtype) == hash(dtype2) def test_equality(self): assert is_dtype_equal(self.dtype, 'category') assert is_dtype_equal(self.dtype, CategoricalDtype()) assert not is_dtype_equal(self.dtype, 'foo') def test_construction_from_string(self): result = CategoricalDtype.construct_from_string('category') assert is_dtype_equal(self.dtype, result) pytest.raises( TypeError, lambda: CategoricalDtype.construct_from_string('foo')) def test_constructor_invalid(self): msg = "Parameter 'categories' must be list-like" with pytest.raises(TypeError, match=msg): CategoricalDtype("category") dtype1 = CategoricalDtype(['a', 'b'], ordered=True) dtype2 = CategoricalDtype(['x', 'y'], ordered=False) c = Categorical([0, 1], dtype=dtype1, fastpath=True) @pytest.mark.parametrize('values, categories, ordered, dtype, expected', [ [None, None, None, None, CategoricalDtype()], [None, ['a', 'b'], True, None, dtype1], [c, None, None, dtype2, dtype2], [c, ['x', 'y'], False, None, dtype2], ]) def test_from_values_or_dtype( self, values, categories, ordered, dtype, expected): result = CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) assert result == expected @pytest.mark.parametrize('values, categories, ordered, dtype', [ [None, ['a', 'b'], True, dtype2], [None, ['a', 'b'], None, dtype2], [None, None, True, dtype2], ]) def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype): msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) def test_is_dtype(self): assert CategoricalDtype.is_dtype(self.dtype) assert CategoricalDtype.is_dtype('category') assert CategoricalDtype.is_dtype(CategoricalDtype()) assert not CategoricalDtype.is_dtype('foo') assert not CategoricalDtype.is_dtype(np.float64) def test_basic(self): assert is_categorical_dtype(self.dtype) factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) s = Series(factor, name='A') # dtypes assert is_categorical_dtype(s.dtype) assert is_categorical_dtype(s) assert not is_categorical_dtype(np.dtype('float64')) assert is_categorical(s.dtype) assert is_categorical(s) assert not is_categorical(np.dtype('float64')) assert not is_categorical(1.0) def test_tuple_categories(self): categories = [(1, 'a'), (2, 'b'), (3, 'c')] result = CategoricalDtype(categories) assert all(result.categories == categories) @pytest.mark.parametrize("categories, expected", [ ([True, False], True), ([True, False, None], True), ([True, False, "a", "b'"], False), ([0, 1], False), ]) def test_is_boolean(self, categories, expected): cat = Categorical(categories) assert cat.dtype._is_boolean is expected assert is_bool_dtype(cat) is expected assert is_bool_dtype(cat.dtype) is expected class TestDatetimeTZDtype(Base): def create(self): return DatetimeTZDtype('ns', 'US/Eastern') def test_alias_to_unit_raises(self): # 23990 with tm.assert_produces_warning(FutureWarning): DatetimeTZDtype('datetime64[ns, US/Central]') def test_alias_to_unit_bad_alias_raises(self): # 23990 with pytest.raises(TypeError, match=''): DatetimeTZDtype('this is a bad string') with pytest.raises(TypeError, match=''): DatetimeTZDtype('datetime64[ns, US/NotATZ]') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = DatetimeTZDtype('ns', 'US/Eastern') dtype3 = DatetimeTZDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype4 = DatetimeTZDtype("ns", "US/Central") assert dtype2 != dtype4 assert hash(dtype2) != hash(dtype4) def test_construction(self): pytest.raises(ValueError, lambda: DatetimeTZDtype('ms', 'US/Eastern')) def test_subclass(self): a = DatetimeTZDtype.construct_from_string('datetime64[ns, US/Eastern]') b = DatetimeTZDtype.construct_from_string('datetime64[ns, CET]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_compat(self): assert is_datetime64tz_dtype(self.dtype) assert is_datetime64tz_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_any_dtype(self.dtype) assert is_datetime64_any_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_ns_dtype(self.dtype) assert is_datetime64_ns_dtype('datetime64[ns, US/Eastern]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('datetime64[ns, US/Eastern]') def test_construction_from_string(self): result = DatetimeTZDtype.construct_from_string( 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, result) pytest.raises(TypeError, lambda: DatetimeTZDtype.construct_from_string('foo')) def test_construct_from_string_raises(self): with pytest.raises(TypeError, match="notatz"): DatetimeTZDtype.construct_from_string('datetime64[ns, notatz]') with pytest.raises(TypeError, match="^Could not construct DatetimeTZDtype$"): DatetimeTZDtype.construct_from_string(['datetime64[ns, notatz]']) def test_is_dtype(self): assert not DatetimeTZDtype.is_dtype(None) assert DatetimeTZDtype.is_dtype(self.dtype) assert DatetimeTZDtype.is_dtype('datetime64[ns, US/Eastern]') assert not DatetimeTZDtype.is_dtype('foo') assert DatetimeTZDtype.is_dtype(DatetimeTZDtype('ns', 'US/Pacific')) assert not DatetimeTZDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'US/Eastern')) assert not is_dtype_equal(self.dtype, 'foo') assert not is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'CET')) assert not is_dtype_equal(DatetimeTZDtype('ns', 'US/Eastern'), DatetimeTZDtype('ns', 'US/Pacific')) # numpy compat assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]") def test_basic(self): assert is_datetime64tz_dtype(self.dtype) dr = date_range('20130101', periods=3, tz='US/Eastern') s = Series(dr, name='A') # dtypes assert is_datetime64tz_dtype(s.dtype) assert is_datetime64tz_dtype(s) assert not is_datetime64tz_dtype(np.dtype('float64')) assert not is_datetime64tz_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s) assert is_datetimetz(s.dtype) assert not is_datetimetz(np.dtype('float64')) assert not is_datetimetz(1.0) def test_dst(self): dr1 = date_range('2013-01-01', periods=3, tz='US/Eastern') s1 = Series(dr1, name='A') assert is_datetime64tz_dtype(s1) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s1) dr2 = date_range('2013-08-01', periods=3, tz='US/Eastern') s2 = Series(dr2, name='A') assert is_datetime64tz_dtype(s2) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s2) assert s1.dtype == s2.dtype @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern']) @pytest.mark.parametrize('constructor', ['M8', 'datetime64']) def test_parser(self, tz, constructor): # pr #11245 dtz_str = '{con}[ns, {tz}]'.format(con=constructor, tz=tz) result = DatetimeTZDtype.construct_from_string(dtz_str) expected = DatetimeTZDtype('ns', tz) assert result == expected def test_empty(self): with pytest.raises(TypeError, match="A 'tz' is required."): DatetimeTZDtype() class TestPeriodDtype(Base): def create(self): return PeriodDtype('D') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = PeriodDtype('D') dtype3 = PeriodDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) def test_construction(self): with pytest.raises(ValueError): PeriodDtype('xx') for s in ['period[D]', 'Period[D]', 'D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day() assert is_period_dtype(dt) for s in ['period[3D]', 'Period[3D]', '3D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day(3) assert is_period_dtype(dt) for s in ['period[26H]', 'Period[26H]', '26H', 'period[1D2H]', 'Period[1D2H]', '1D2H']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Hour(26) assert is_period_dtype(dt) def test_subclass(self): a = PeriodDtype('period[D]') b = PeriodDtype('period[3D]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_identity(self): assert PeriodDtype('period[D]') == PeriodDtype('period[D]') assert PeriodDtype('period[D]') is PeriodDtype('period[D]') assert PeriodDtype('period[3D]') == PeriodDtype('period[3D]') assert PeriodDtype('period[3D]') is PeriodDtype('period[3D]') assert PeriodDtype('period[1S1U]') == PeriodDtype('period[1000001U]') assert PeriodDtype('period[1S1U]') is PeriodDtype('period[1000001U]') def test_compat(self): assert not is_datetime64_ns_dtype(self.dtype) assert not is_datetime64_ns_dtype('period[D]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('period[D]') def test_construction_from_string(self): result = PeriodDtype('period[D]') assert is_dtype_equal(self.dtype, result) result = PeriodDtype.construct_from_string('period[D]') assert is_dtype_equal(self.dtype, result) with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo') with pytest.raises(TypeError): PeriodDtype.construct_from_string('period[foo]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo[D]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns, US/Eastern]') def test_is_dtype(self): assert PeriodDtype.is_dtype(self.dtype) assert PeriodDtype.is_dtype('period[D]') assert PeriodDtype.is_dtype('period[3D]') assert PeriodDtype.is_dtype(PeriodDtype('3D')) assert PeriodDtype.is_dtype('period[U]') assert PeriodDtype.is_dtype('period[S]') assert PeriodDtype.is_dtype(PeriodDtype('U')) assert PeriodDtype.is_dtype(PeriodDtype('S')) assert not PeriodDtype.is_dtype('D') assert not PeriodDtype.is_dtype('3D') assert not PeriodDtype.is_dtype('U') assert not PeriodDtype.is_dtype('S') assert not PeriodDtype.is_dtype('foo') assert not PeriodDtype.is_dtype(np.object_) assert not PeriodDtype.is_dtype(np.int64) assert not PeriodDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'period[D]') assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(PeriodDtype('D'), PeriodDtype('D')) assert not is_dtype_equal(self.dtype, 'D') assert not is_dtype_equal(PeriodDtype('D'), PeriodDtype('2D')) def test_basic(self): assert is_period_dtype(self.dtype) pidx = pd.period_range('2013-01-01 09:00', periods=5, freq='H') assert is_period_dtype(pidx.dtype) assert is_period_dtype(pidx) with tm.assert_produces_warning(FutureWarning): assert is_period(pidx) s = Series(pidx, name='A') assert is_period_dtype(s.dtype) assert is_period_dtype(s) with tm.assert_produces_warning(FutureWarning): assert is_period(s) assert not is_period_dtype(np.dtype('float64')) assert not is_period_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert not is_period(np.dtype('float64')) with tm.assert_produces_warning(FutureWarning): assert not is_period(1.0) def test_empty(self): dt = PeriodDtype() with pytest.raises(AttributeError): str(dt) def test_not_string(self): # though PeriodDtype has object kind, it cannot be string assert not is_string_dtype(PeriodDtype('D')) class TestIntervalDtype(Base): def create(self): return IntervalDtype('int64') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = IntervalDtype('int64') dtype3 = IntervalDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype3 assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype1 = IntervalDtype('interval') dtype2 = IntervalDtype(dtype1) dtype3 = IntervalDtype('interval') assert dtype2 == dtype1 assert dtype2 == dtype2 assert dtype2 == dtype3 assert dtype2 is dtype1 assert dtype2 is dtype2 assert dtype2 is dtype3 assert hash(dtype2) == hash(dtype1) assert hash(dtype2) == hash(dtype2) assert hash(dtype2) == hash(dtype3) @pytest.mark.parametrize('subtype', [ 'interval[int64]', 'Interval[int64]', 'int64', np.dtype('int64')]) def test_construction(self, subtype): i = IntervalDtype(subtype) assert i.subtype == np.dtype('int64') assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_construction_generic(self, subtype): # generic i = IntervalDtype(subtype) assert i.subtype is None assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [ CategoricalDtype(list('abc'), False), CategoricalDtype(list('wxyz'), True), object, str, '<U10', 'interval[category]', 'interval[object]']) def test_construction_not_supported(self, subtype): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalDtype') with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) @pytest.mark.parametrize('subtype', ['xx', 'IntervalA', 'Interval[foo]']) def test_construction_errors(self, subtype): msg = 'could not construct IntervalDtype' with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) def test_construction_from_string(self): result = IntervalDtype('interval[int64]') assert is_dtype_equal(self.dtype, result) result = IntervalDtype.construct_from_string('interval[int64]') assert is_dtype_equal(self.dtype, result) @pytest.mark.parametrize('string', [ 0, 3.14, ('a', 'b'), None]) def test_construction_from_string_errors(self, string): # these are invalid entirely msg = 'a string needs to be passed, got type' with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) @pytest.mark.parametrize('string', [ 'foo', 'foo[int64]', 'IntervalA']) def test_construction_from_string_error_subtype(self, string): # this is an invalid subtype msg = ("Incorrectly formatted string passed to constructor. " r"Valid formats include Interval or Interval\[dtype\] " "where dtype is numeric, datetime, or timedelta") with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) def test_subclass(self): a = IntervalDtype('interval[int64]') b = IntervalDtype('interval[int64]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_is_dtype(self): assert IntervalDtype.is_dtype(self.dtype) assert IntervalDtype.is_dtype('interval') assert IntervalDtype.is_dtype(IntervalDtype('float64')) assert IntervalDtype.is_dtype(IntervalDtype('int64')) assert IntervalDtype.is_dtype(IntervalDtype(np.int64)) assert not IntervalDtype.is_dtype('D') assert not IntervalDtype.is_dtype('3D') assert not IntervalDtype.is_dtype('U') assert not IntervalDtype.is_dtype('S') assert not IntervalDtype.is_dtype('foo') assert not IntervalDtype.is_dtype('IntervalA') assert not IntervalDtype.is_dtype(np.object_) assert not IntervalDtype.is_dtype(np.int64) assert not IntervalDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'interval[int64]') assert is_dtype_equal(self.dtype, IntervalDtype('int64')) assert is_dtype_equal(IntervalDtype('int64'), IntervalDtype('int64')) assert not is_dtype_equal(self.dtype, 'int64') assert not is_dtype_equal(IntervalDtype('int64'), IntervalDtype('float64')) # invalid subtype comparisons do not raise when directly compared dtype1 = IntervalDtype('float64') dtype2 = IntervalDtype('datetime64[ns, US/Eastern]') assert dtype1 != dtype2 assert dtype2 != dtype1 @pytest.mark.parametrize('subtype', [ None, 'interval', 'Interval', 'int64', 'uint64', 'float64', 'complex128', 'datetime64', 'timedelta64', PeriodDtype('Q')]) def test_equality_generic(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) assert is_dtype_equal(dtype, 'interval') assert is_dtype_equal(dtype, IntervalDtype()) @pytest.mark.parametrize('subtype', [ 'int64', 'uint64', 'float64', 'complex128', 'datetime64', 'timedelta64', PeriodDtype('Q')]) def test_name_repr(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) expected = 'interval[{subtype}]'.format(subtype=subtype) assert str(dtype) == expected assert dtype.name == 'interval' @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_name_repr_generic(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) assert str(dtype) == 'interval' assert dtype.name == 'interval' def test_basic(self): assert is_interval_dtype(self.dtype) ii = IntervalIndex.from_breaks(range(3)) assert is_interval_dtype(ii.dtype) assert is_interval_dtype(ii) s = Series(ii, name='A') assert is_interval_dtype(s.dtype) assert is_interval_dtype(s) def test_basic_dtype(self): assert is_interval_dtype('interval[int64]') assert is_interval_dtype(IntervalIndex.from_tuples([(0, 1)])) assert is_interval_dtype(IntervalIndex.from_breaks(np.arange(4))) assert is_interval_dtype(IntervalIndex.from_breaks( date_range('20130101', periods=3))) assert not is_interval_dtype('U') assert not is_interval_dtype('S') assert not is_interval_dtype('foo') assert not is_interval_dtype(np.object_) assert not is_interval_dtype(np.int64) assert not is_interval_dtype(np.float64) def test_caching(self): IntervalDtype.reset_cache() dtype = IntervalDtype("int64") assert len(IntervalDtype._cache) == 1 IntervalDtype("interval") assert len(IntervalDtype._cache) == 2 IntervalDtype.reset_cache() tm.round_trip_pickle(dtype) assert len(IntervalDtype._cache) == 0 class TestCategoricalDtypeParametrized(object): @pytest.mark.parametrize('categories', [ list('abcd'), np.arange(1000), ['a', 'b', 10, 2, 1.3, True], [True, False], pd.date_range('2017', periods=4)]) def test_basic(self, categories, ordered): c1 = CategoricalDtype(categories, ordered=ordered) tm.assert_index_equal(c1.categories, pd.Index(categories)) assert c1.ordered is ordered def test_order_matters(self): categories = ['a', 'b'] c1 = CategoricalDtype(categories, ordered=True) c2 = CategoricalDtype(categories, ordered=False) c3 = CategoricalDtype(categories, ordered=None) assert c1 is not c2 assert c1 is not c3 @pytest.mark.parametrize('ordered', [False, None]) def test_unordered_same(self, ordered): c1 = CategoricalDtype(['a', 'b'], ordered=ordered) c2 = CategoricalDtype(['b', 'a'], ordered=ordered) assert hash(c1) == hash(c2) def test_categories(self): result = CategoricalDtype(['a', 'b', 'c']) tm.assert_index_equal(result.categories, pd.Index(['a', 'b', 'c'])) assert result.ordered is None def test_equal_but_different(self, ordered): c1 = CategoricalDtype([1, 2, 3]) c2 = CategoricalDtype([1., 2., 3.]) assert c1 is not c2 assert c1 != c2 @pytest.mark.parametrize('v1, v2', [ ([1, 2, 3], [1, 2, 3]), ([1, 2, 3], [3, 2, 1]), ]) def test_order_hashes_different(self, v1, v2): c1 = CategoricalDtype(v1, ordered=False) c2 = CategoricalDtype(v2, ordered=True) c3 = CategoricalDtype(v1, ordered=None) assert c1 is not c2 assert c1 is not c3 def test_nan_invalid(self): with pytest.raises(ValueError): CategoricalDtype([1, 2, np.nan]) def test_non_unique_invalid(self): with pytest.raises(ValueError): CategoricalDtype([1, 2, 1]) def test_same_categories_different_order(self): c1 = CategoricalDtype(['a', 'b'], ordered=True) c2 = CategoricalDtype(['b', 'a'], ordered=True) assert c1 is not c2 @pytest.mark.parametrize('ordered1', [True, False, None]) @pytest.mark.parametrize('ordered2', [True, False, None]) def test_categorical_equality(self, ordered1, ordered2): # same categories, same order # any combination of None/False are equal # True/True is the only combination with True that are equal c1 = CategoricalDtype(list('abc'), ordered1) c2 = CategoricalDtype(list('abc'), ordered2) result = c1 == c2 expected = bool(ordered1) is bool(ordered2) assert result is expected # same categories, different order # any combination of None/False are equal (order doesn't matter) # any combination with True are not equal (different order of cats) c1 = CategoricalDtype(list('abc'), ordered1) c2 = CategoricalDtype(list('cab'), ordered2) result = c1 == c2 expected = (bool(ordered1) is False) and (bool(ordered2) is False) assert result is expected # different categories c2 = CategoricalDtype([1, 2, 3], ordered2) assert c1 != c2 # none categories c1 = CategoricalDtype(list('abc'), ordered1) c2 = CategoricalDtype(None, ordered2) c3 = CategoricalDtype(None, ordered1) assert c1 == c2 assert c2 == c1 assert c2 == c3 @pytest.mark.parametrize('categories', [list('abc'), None]) @pytest.mark.parametrize('other', ['category', 'not a category']) def test_categorical_equality_strings(self, categories, ordered, other): c1 = CategoricalDtype(categories, ordered) result = c1 == other expected = other == 'category' assert result is expected def test_invalid_raises(self): with pytest.raises(TypeError, match='ordered'): CategoricalDtype(['a', 'b'], ordered='foo') with pytest.raises(TypeError, match="'categories' must be list-like"): CategoricalDtype('category') def test_mixed(self): a = CategoricalDtype(['a', 'b', 1, 2]) b = CategoricalDtype(['a', 'b', '1', '2']) assert hash(a) != hash(b) def test_from_categorical_dtype_identity(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # Identity test for no changes c2 = CategoricalDtype._from_categorical_dtype(c1) assert c2 is c1 def test_from_categorical_dtype_categories(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # override categories result = CategoricalDtype._from_categorical_dtype( c1, categories=[2, 3]) assert result == CategoricalDtype([2, 3], ordered=True) def test_from_categorical_dtype_ordered(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # override ordered result = CategoricalDtype._from_categorical_dtype( c1, ordered=False) assert result == CategoricalDtype([1, 2, 3], ordered=False) def test_from_categorical_dtype_both(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # override ordered result = CategoricalDtype._from_categorical_dtype( c1, categories=[1, 2], ordered=False) assert result == CategoricalDtype([1, 2], ordered=False) def test_str_vs_repr(self, ordered): c1 = CategoricalDtype(['a', 'b'], ordered=ordered) assert str(c1) == 'category' # Py2 will have unicode prefixes pat = r"CategoricalDtype\(categories=\[.*\], ordered={ordered}\)" assert re.match(pat.format(ordered=ordered), repr(c1)) def test_categorical_categories(self): # GH17884 c1 = CategoricalDtype(Categorical(['a', 'b'])) tm.assert_index_equal(c1.categories, pd.Index(['a', 'b'])) c1 = CategoricalDtype(CategoricalIndex(['a', 'b'])) tm.assert_index_equal(c1.categories,
pd.Index(['a', 'b'])
pandas.Index
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd import _pickle as cPickle import argparse from copy import deepcopy import japanize_matplotlib import lightgbm as lgb import matplotlib.pyplot as plt import pickle from sklearn.metrics import mean_squared_error import time from tqdm import tqdm import os code_path = os.path.dirname(os.path.abspath(__file__)) parser = argparse.ArgumentParser() arg = parser.add_argument arg('seed', type=int) arg('iteration_mul', type=float) arg('train_file', type=str) arg('test_file', type=str) arg('--learning_rate', type=float, default=0.05) arg('--num_leaves', type=int, default=31) arg('--n_estimators', type=int, default=500) args = parser.parse_args()#args=['1', '0.5','train_fe.ftr', 'test_fe.ftr']) # print(args) train_fe = pd.read_feather(f'{code_path}/../prepare_data/{args.train_file}') test_fe = pd.read_feather(f'{code_path}/../prepare_data/{args.test_file}') target_fe = train_fe['meter_reading'] train_fe = train_fe.drop('meter_reading', axis=1) X_train = train_fe.query('20160115 <= timestamp < 20160601 & site_id != 0') X_valid = train_fe.query('20160901 <= timestamp < 20170101 & site_id != 0') X_test = test_fe y_train = target_fe.loc[X_train.index] y_valid = target_fe.loc[X_valid.index] # y_train = np.log1p(y_train) # y_valid = np.log1p(y_valid) X_train = X_train.drop('timestamp', axis=1) X_valid = X_valid.drop('timestamp', axis=1) X_test = X_test.drop('timestamp', axis=1) # print(X_train.shape) def meter_predict(meter, model, X_test, best_iteration, iteration_mul=1.5): X_test_m = X_test.query('meter == {}'.format(meter)).drop('meter', axis=1) g = X_test_m.groupby('building_id') y_pred = [] for building_id in tqdm(sorted(X_test_m['building_id'].unique())): X_building = g.get_group(building_id) y_pred.append(pd.Series(model.predict(X_building, n_jobs=4,num_iteration=min(models_all[meter].n_estimators, int(best_iteration[meter][building_id]*iteration_mul))), index=X_building.index)) return pd.concat(y_pred).sort_index() # load model load_name = '{}/../model/model_use_{}_seed{}_leave{}_lr{}_tree{}.pkl'.format(code_path, args.train_file.replace('.ftr', ''),args.seed, args.num_leaves, str(args.learning_rate).replace('.', ''), args.n_estimators) with open(load_name, 'rb') as f: models = pickle.load(f) # with open(f'{code_path}/../model/model_5_95_hokan_cleaning_50000tree_seed{}.pkl'.format(args.seed), 'wb') as f: # pickle.dump(models, f) # 各building, meter毎の最良のiteration数 best_iteration = dict() for meter in [0,1,2,3]: best_iteration[meter] = dict() # for i in range(1448): # best_iteration[meter][i] = 200 for i in tqdm(sorted(X_valid.query('meter == {}'.format(meter))['building_id'].unique())): best_iteration[meter][i] = max(20, np.argmin(np.array(models[meter].evals_result_[i]['rmse'])) + 1) # best_iteration[meter][i] = np.argmin(np.array(models[meter].evals_result_[i]['rmse'])) + 1 del_list = [list(), list(), list(), list()] for meter in [0,1,2,3]: for buildingID, itr in best_iteration[meter].items(): if itr<=20: del_list[meter].append(buildingID) if itr<=100: best_iteration[meter][buildingID] = 100 # if itr>=int(models[0].n_estimators * 0.98): # best_iteration[meter][buildingID] = models[0].n_estimatorss for meter in [0,1,2,3]: for i in range(1448): if i not in best_iteration[meter]: best_iteration[meter][i] = 200 #load model load_name = '{}/../model/model_all_use_{}_seed{}_leave{}_lr{}_tree{}.pkl'.format(code_path, args.train_file.replace('.ftr', ''),args.seed, args.num_leaves, str(args.learning_rate).replace('.', ''), args.n_estimators) with open(load_name, 'rb') as f: models_all = pickle.load(f) # meter type毎のtestの予測 preds = list() for i in tqdm([3,2,1,0]): preds.append(meter_predict(i, models_all[i], X_test, best_iteration, iteration_mul=args.iteration_mul)) y_preds = pd.concat(preds).sort_index() # lgb.plot_importance(models_all[0], importance_type='gain', figsize=(10,20)) # lgb.plot_importance(models_all[0], importance_type='split', figsize=(10,20)) submission =
pd.read_csv(f'{code_path}/../input/sample_submission.csv')
pandas.read_csv
""" test get/set & misc """ from datetime import timedelta import re import numpy as np import pytest from pandas import ( DataFrame, IndexSlice, MultiIndex, Series, Timedelta, Timestamp, date_range, period_range, timedelta_range, ) import pandas._testing as tm def test_basic_indexing(): s = Series(np.random.randn(5), index=["a", "b", "a", "a", "b"]) msg = "index 5 is out of bounds for axis 0 with size 5" with pytest.raises(IndexError, match=msg): s[5] with pytest.raises(IndexError, match=msg): s[5] = 0 with pytest.raises(KeyError, match=r"^'c'$"): s["c"] s = s.sort_index() with pytest.raises(IndexError, match=msg): s[5] msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$" with pytest.raises(IndexError, match=msg): s[5] = 0 def test_basic_getitem_with_labels(datetime_series): indices = datetime_series.index[[5, 10, 15]] result = datetime_series[indices] expected = datetime_series.reindex(indices) tm.assert_series_equal(result, expected) result = datetime_series[indices[0] : indices[2]] expected = datetime_series.loc[indices[0] : indices[2]] tm.assert_series_equal(result, expected) def test_basic_getitem_dt64tz_values(): # GH12089 # with tz for values ser = Series( date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"] ) expected = Timestamp("2011-01-01", tz="US/Eastern") result = ser.loc["a"] assert result == expected result = ser.iloc[0] assert result == expected result = ser["a"] assert result == expected def test_getitem_setitem_ellipsis(): s = Series(np.random.randn(10)) np.fix(s) result = s[...] tm.assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() @pytest.mark.parametrize( "result_1, duplicate_item, expected_1", [ [ Series({1: 12, 2: [1, 2, 2, 3]}), Series({1: 313}), Series({1: 12}, dtype=object), ], [ Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), Series({1: [1, 2, 3]}), Series({1: [1, 2, 3]}), ], ], ) def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) tm.assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_setitem_integers(): # caused bug without test s = Series([1, 2, 3], ["a", "b", "c"]) assert s.iloc[0] == s["a"] s.iloc[0] = 5 tm.assert_almost_equal(s["a"], 5) def test_series_box_timestamp(): rng = date_range("20090415", "20090519", freq="B") ser = Series(rng) assert isinstance(ser[0], Timestamp) assert isinstance(ser.at[1], Timestamp) assert isinstance(ser.iat[2], Timestamp) assert isinstance(ser.loc[3], Timestamp) assert isinstance(ser.iloc[4], Timestamp) ser = Series(rng, index=rng) assert isinstance(ser[0], Timestamp) assert isinstance(ser.at[rng[1]], Timestamp) assert isinstance(ser.iat[2], Timestamp) assert isinstance(ser.loc[rng[3]], Timestamp) assert isinstance(ser.iloc[4], Timestamp) def test_series_box_timedelta(): rng = timedelta_range("1 day 1 s", periods=5, freq="h") ser = Series(rng) assert isinstance(ser[0], Timedelta) assert isinstance(ser.at[1], Timedelta) assert isinstance(ser.iat[2], Timedelta) assert isinstance(ser.loc[3], Timedelta) assert isinstance(ser.iloc[4], Timedelta) def test_getitem_ambiguous_keyerror(indexer_sl): ser = Series(range(10), index=list(range(0, 20, 2))) with pytest.raises(KeyError, match=r"^1$"): indexer_sl(ser)[1] def test_getitem_dups_with_missing(indexer_sl): # breaks reindex, so need to use .loc internally # GH 4246 ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"]) with pytest.raises(KeyError, match=re.escape("['bam'] not in index")): indexer_sl(ser)[["foo", "bar", "bah", "bam"]] def test_setitem_ambiguous_keyerror(indexer_sl): s = Series(range(10), index=list(range(0, 20, 2))) # equivalent of an append s2 = s.copy() indexer_sl(s2)[1] = 5 expected = s.append(Series([5], index=[1])) tm.assert_series_equal(s2, expected) def test_setitem(datetime_series, string_series): datetime_series[datetime_series.index[5]] = np.NaN datetime_series[[1, 2, 17]] = np.NaN datetime_series[6] = np.NaN assert np.isnan(datetime_series[6]) assert np.isnan(datetime_series[2]) datetime_series[np.isnan(datetime_series)] = 5 assert not np.isnan(datetime_series[2]) def test_setslice(datetime_series): sl = datetime_series[5:20] assert len(sl) == len(sl.index) assert sl.index.is_unique is True # FutureWarning from NumPy about [slice(None, 5). @pytest.mark.filterwarnings("ignore:Using a non-tuple:FutureWarning") def test_basic_getitem_setitem_corner(datetime_series): # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2] msg = "key of type tuple not found and not a MultiIndex" with pytest.raises(KeyError, match=msg): datetime_series[:, 2] with pytest.raises(KeyError, match=msg): datetime_series[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices with tm.assert_produces_warning(FutureWarning): # GH#31299 result = datetime_series[[slice(None, 5)]] expected = datetime_series[:5] tm.assert_series_equal(result, expected) # OK msg = r"unhashable type(: 'slice')?" with pytest.raises(TypeError, match=msg): datetime_series[[5, slice(None, None)]] with pytest.raises(TypeError, match=msg): datetime_series[[5, slice(None, None)]] = 2 def test_slice(string_series, object_series): numSlice = string_series[10:20] numSliceEnd = string_series[-10:] objSlice = object_series[10:20] assert string_series.index[9] not in numSlice.index assert object_series.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == string_series.index[11] assert tm.equalContents(numSliceEnd, np.array(string_series)[-10:]) # Test return view. sl = string_series[10:20] sl[:] = 0 assert (string_series[10:20] == 0).all() def test_timedelta_assignment(): # GH 8209 s = Series([], dtype=object) s.loc["B"] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"])) s = s.reindex(s.index.insert(0, "A")) tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"])) s.loc["A"] = timedelta(1) expected = Series(Timedelta("1 days"), index=["A", "B"]) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(): # GH 4080 df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]}) return_value = df.set_index(["a", "b", "c"], inplace=True) assert return_value is None s = Series([1], index=[(2, 2, 2)]) df["val"] = 0 df df["val"].update(s) expected = DataFrame( {"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]} ) return_value = expected.set_index(["a", "b", "c"], inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) def test_preserve_refs(datetime_series): seq = datetime_series[[5, 10, 15]] seq[1] = np.NaN assert not np.isnan(datetime_series[10]) def test_cast_on_putmask(): # GH 2746 # need to upcast s = Series([1, 2], index=[1, 2], dtype="int64") s[[True, False]] = Series([0], index=[1], dtype="int64") expected = Series([0, 2], index=[1, 2], dtype="int64")
tm.assert_series_equal(s, expected)
pandas._testing.assert_series_equal
# coding: utf-8 # # Guild Wars 2 Achievement System Analysis # Guild Wars 2 is a Massively multiplayer online role-playing game created by ArenaNet, which tends to cater to a more casual players and focuses more on cooperative play with some single player campaign. # # This project analyzes the game achievement systems in order to determine which achievement players should pursue according to their play style and time commitment to the game. This as done by looking at the rewards of each achievements and determining their importance based on their monetary value, the strength and the rarity of the items received. # # Using supervised learning and clustering methods on the rewards given for completing achievements I predict the financial worth of each achievement in game. Specifically, I used the Linear Regression and Decision Trees Regression to create a model which will predict the importance of an achievement based on the vendor value of the reward players received from completing the achievement. I also used Forest Trees to classify those achievements according to categories, so it will be possible to predict the type of achievements which the players should pursue # In[1]: import sklearn as sk import numpy as np import pandas as pd import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import seaborn as sns from scipy import io from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import model_selection, metrics, linear_model, datasets, feature_selection # # Cleaning The Data # # To get the information I used the Guild Wars 2 API (found here: https://wiki.guildwars2.com/wiki/API:Main) # For the analysis I used the following data: # # Achievement Category: which gave me the information about the type of achievement it is and was used to cluster the data # # Achievement Points: the amount of points players receive from each achievement, collecting those point allow the players to collect better rewards in the future # # Reward Type: the type of reward the player gets for completing the achievement # # Item Type: the type of item the player gets as a reward # # Rarity: the rarity of the item the player gets # # Level of Reward: the level of the reward (80 is the max level in the game) # # Vendor Value: the sell value (in coins) of the reward item # In[2]: #import CSV Achievements = pd.read_csv("clean Data/Achievement.csv") Items = pd.read_csv("clean Data/ItemFin.csv") Titles =
pd.read_csv("clean Data/titles.csv")
pandas.read_csv
import pandas as pd import numpy as np import os import sys import tensorflow as tf import json import joblib import time from tensorflow import keras from keras import optimizers from datetime import datetime,timedelta from sklearn.preprocessing import MinMaxScaler from datetime import datetime pd.set_option('display.max_columns', None) #--------------------------------------- # variables #--------------------------------------- start = time.time() DATASET_NUM = 7 MODEL_NUM = 10 # path PATH_BASE = './' PATH_MODEL = PATH_BASE + '/model/' PATH_RESULT = PATH_BASE + '/result/' # power capacity power_nm_list = ['onm1_h','onm2_h','onm3_h','onm4_h'] capacity_list = [89.7, 96.6, 90, 46.2] RSRS_ID = 0 POWER_NM = power_nm_list[RSRS_ID] CAPACITY = capacity_list[RSRS_ID] print("POWER_NM:{}, CAPACITY:{}".format(POWER_NM,CAPACITY)) # timesteps SHIFT_DAYS = 7 PRED_STEPS = 24 dataX_STEPS = SHIFT_DAYS*PRED_STEPS #--------------------------------------- # functions #--------------------------------------- # 이상치 nan 처리 def power_anomal(x) : if x > CAPACITY : return np.nan return x def sensor_anomal(x) : if x < -900 : return np.nan return x # load sol omn def load_power(POWER_NM): df_power = pd.read_csv(PATH_BASE + '/df_power.csv',index_col=0) df_power['POWER']=df_power['POWER'].apply(power_anomal).apply(lambda x:x) df_power.sort_values(by=['DATE'], axis=0) df_power = df_power.set_index(pd.DatetimeIndex(df_power['DATE'])) df_power.drop(['_id','DATE'], axis=1, inplace=True) df_power = df_power.interpolate(method='linear',limit_direction='forward') return df_power # load sensor def load_sensor(): df_sensor= pd.read_csv(PATH_BASE + '/df_sensor.csv',index_col=0) df_sensor.sort_values(by=['DATE'], axis=0) df_sensor = df_sensor.set_index(pd.DatetimeIndex(df_sensor['DATE'])) df_sensor.drop(['_id','DATE'], axis=1, inplace=True) df_sensor['uv']=df_sensor['uv'].apply(sensor_anomal).apply(lambda x:x) df_sensor['solarradiation']=df_sensor['solarradiation'].apply(sensor_anomal).apply(lambda x:x) df_sensor['humidity']=df_sensor['humidity'].apply(sensor_anomal).apply(lambda x:x) df_sensor['windspeed']=df_sensor['windspeed'].apply(sensor_anomal).apply(lambda x:x) df_sensor['windgust']=df_sensor['windgust'].apply(sensor_anomal).apply(lambda x:x) df_sensor['temp']=df_sensor['temp'].apply(sensor_anomal).apply(lambda x:x) df_sensor['winddir']=df_sensor['winddir'].apply(sensor_anomal).apply(lambda x:x) df_sensor = df_sensor.interpolate(method='linear',limit_direction='forward') return df_sensor def get_df(df_power, df_sensor, POWER_NM): # load the scaler power_scaler = joblib.load(open('{}scaler/power_{}.pkl'.format(PATH_MODEL,POWER_NM[:-2]), 'rb')) weather_scaler = joblib.load(open('{}scaler/weather.pkl'.format(PATH_MODEL), 'rb')) # power scaledpower = power_scaler.fit_transform(df_power.values) scaledpower_df = pd.DataFrame(scaledpower, columns=df_power.columns, index=list(df_power.index.values)) # weather df_weather = df_sensor.copy() df_weather.drop(['dailyrainin','weeklyrainin','monthlyrainin','yearlyrainin'], axis=1, inplace=True) scaledweather = weather_scaler.fit_transform(df_weather.values) scaledweather_df = pd.DataFrame(scaledweather, columns=df_weather.columns, index=list(df_weather.index.values)) # JOIN (index merge) df = pd.merge(scaledpower_df,scaledweather_df, how='outer',left_index=True, right_index=True) df = df[[ 'POWER', 'solarradiation', 'humidity', 'windspeed', 'windgust', 'temp', 'winddir' ]] df = df.interpolate(method='linear') return power_scaler, df #--------------------------------------- # MODEL_TYPE iteration #--------------------------------------- total_accRate = 0 total_accRate_list = [] result_pred = pd.DataFrame() result_acc = pd.DataFrame() result_target= pd.DataFrame() for m in range(0,MODEL_NUM): # for m in range(0,1): model = tf.keras.models.load_model(PATH_MODEL+'model'+str(m)+'.h5') print("\n\n MODEL", m, "-"*100) accRate_sum = 0 #--------------------------------------- # dataset iteration #--------------------------------------- for T in range(0,DATASET_NUM): PRED_DAY = datetime(2021, 8, 25, 0,0,0)+timedelta(T) PRED_DAY = datetime(PRED_DAY.year, PRED_DAY.month, PRED_DAY.day, 0,0,0) X_START = PRED_DAY - timedelta(7) X_END = PRED_DAY - timedelta(1) X_END = datetime(X_END.year, X_END.month, X_END.day, 23,0,0) # print("X DATA: {} ~ {} => PRED: {} ".format(str(X_START)[:10], str(X_END)[:10], str(PRED_DAY)[:10])) # get data df_power = load_power(POWER_NM) df_sensor = load_sensor() power_scaler, df = get_df(df_power, df_sensor,POWER_NM) # create x,y arr x_arr = [] X_df = df.loc[str(X_START):str(X_END)] x_arr.append(X_df.iloc[:].values.tolist()) x_arr=np.asarray(x_arr).astype(np.float64) y_arr = [] Y_df = df.loc[str(PRED_DAY):str(PRED_DAY + timedelta(1))] y_arr.append(Y_df.iloc[:,[0]].values.tolist()) y_arr=np.asarray(y_arr).astype(np.float64) #--------------------------------------- # predict #--------------------------------------- n_dataset= x_arr.shape[0] predList=[] accRate=[] yList=[] pred = model.predict([x_arr]) pred[pred<0] = 0 pred = pred[:,:,0] pred = power_scaler.inverse_transform(pred) predList = pred.reshape(-1,1) #--------------------------------------- # calculate predictaccRate #--------------------------------------- if(str(PRED_DAY.strftime("%Y-%m-%d")) > str(df.index[-1])[:10]): for hr in range(0, PRED_STEPS): accRate.append(0) else: y = power_scaler.inverse_transform(y_arr[:,:,0]) yList = y.reshape(-1,1) for hr in range(0, PRED_STEPS): pred = predList[hr] target = yList[hr] difference = np.abs(target-pred) accRate.append(100-np.round(difference/CAPACITY*100, 2)) accRate_df = pd.DataFrame(np.array(accRate).reshape(1,-1)) accRate_df.insert(0,'PRED_DATE',PRED_DAY, allow_duplicates=False) accRate_df.insert(0,'MODEL',m, allow_duplicates=False) pred_df = pd.DataFrame(np.array(predList).reshape(1,-1)) pred_df.insert(0,'PRED_DATE',PRED_DAY, allow_duplicates=False) pred_df.insert(0,'MODEL',m, allow_duplicates=False) y_df = pd.DataFrame(np.array(yList).reshape(1,-1)) y_df.insert(0,'PRED_DATE',PRED_DAY, allow_duplicates=False) y_df.insert(0,'MODEL',m, allow_duplicates=False) mean_accRate = np.round(accRate_df.mean(axis = 1,numeric_only = True)[0],2) accRate_sum = accRate_sum + mean_accRate print("dataset {} : {}".format(T+1,mean_accRate)) if result_pred.shape[0] == 0: result_pred = pred_df result_acc = accRate_df result_target= y_df else: result_pred = pd.concat([result_pred, pred_df]) result_acc =
pd.concat([result_acc, accRate_df])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Jan 12 16:01:32 2018 @author: Adam """ import os import glob from numbers import Number import numpy as np import pandas as pd def sub_dire(base, dire, fname=None): """ Build path to a base/dire. Create if does not exist.""" if base is None: raise ValueError(f"base={base} is not valid") else: path = os.path.join(base, dire) if not os.path.exists(path): os.makedirs(path) if fname is not None: path = os.path.join(path, fname) return path def ls(dire, regex="*", full_output=True, report=False): """ List the contents of dire. e.g., to list pickle files in the cache, ls(h5.cache_dire, regex="*.pkl") """ # folder if dire is None: raise Exception("Cannot read from None directory.") # check exists if not os.path.isdir(dire): raise Exception(f"{dire} does not exist.") fils = glob.glob(os.path.join(dire, regex)) if report: print(f"Found {len(fils)} matches to {regex} in {dire}.") if full_output: return fils fnames = [os.path.split(f)[1] for f in fils] return fnames def to_pickle(obj, dire, fname, overwrite=False, **kwargs): """ save `obj` as [dire]/[fname].pkl args: obj python object to save dire directory fname file name overwrite=False kwargs: [passed to pandas.to_pickle()] """ fname, _ = os.path.splitext(fname) fname += ".pkl" fil = os.path.join(dire, fname) # checks if not os.path.isdir(dire): raise OSError(f"{dire} not found") elif os.path.exists(fil) and not overwrite: raise OSError(f"{fil} already exists. Use overwrite=True") else: pd.to_pickle(obj, fil, **kwargs) def read_pickle(dire, fname, **kwargs): """ read `obj` from [dire]/[fname].pkl args: obj python object to save dire directory fname file name. kwargs: [passed to pandas.read_pickle()] """ fname, _ = os.path.splitext(fname) fname += ".pkl" fil = os.path.join(dire, fname) # checks if not os.path.exists(fil): raise OSError(f"{fil} not found") else: pd.read_pickle(fil, **kwargs) def t_index(time, dt=1.0, t0=0.0): """ Convert time to index using dt [and t0]. """ if isinstance(time, Number): return int(round((time - t0) / dt)) elif isinstance(time, tuple): return tuple([int(round((t - t0) / dt)) for t in time]) elif isinstance(time, list): return list([int(round((t - t0) / dt)) for t in time]) elif isinstance(time, np.ndarray): return np.array([int(round((t - t0) / dt)) for t in time]) else: raise TypeError("time must be a number or list of numbers.") def utf8_attrs(info): """ Convert bytes to utf8 args: info dict() return: info dict() (decoded to utf8) """ for key, val in info.items(): if isinstance(val, bytes): info[key] = val.decode("utf8") return info def add_level(df, label, position="first"): """ Add a level to pd.MultiIndex columns. This can be useful when joining DataFrames with / without multiindex columns. >>> st = statistics(df, groupby="squid") # MultiIndex DataFrame >>> add_level(h5.var, "VAR").join(st) args: df object to add index level to pd.DataFrame() label= value(s) of the added level(s) str() / list(str) position=0 position of level to add "first", "last" or int return: df.copy() with pd.MultiIndex() """ df2 = df.copy() # multiple labels? if isinstance(label, str): # ..nope... label = [label] # reverse the label list (more intuitve behaviour?) label = label[::-1] # position is first? if position == "first": position = 0 # if df is Series then convert to DataFrame if isinstance(df2, pd.Series): df2 =
pd.DataFrame(df2)
pandas.DataFrame
from __future__ import annotations from datetime import ( datetime, time, timedelta, tzinfo, ) from typing import ( TYPE_CHECKING, Literal, overload, ) import warnings import numpy as np from pandas._libs import ( lib, tslib, ) from pandas._libs.arrays import NDArrayBacked from pandas._libs.tslibs import ( BaseOffset, NaT, NaTType, Resolution, Timestamp, conversion, fields, get_resolution, iNaT, ints_to_pydatetime, is_date_array_normalized, normalize_i8_timestamps, timezones, to_offset, tzconversion, ) from pandas._typing import npt from pandas.errors import PerformanceWarning from pandas.util._validators import validate_inclusive from pandas.core.dtypes.cast import astype_dt64_to_dt64tz from pandas.core.dtypes.common import ( DT64NS_DTYPE, INT64_DTYPE, is_bool_dtype, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_object_dtype, is_period_dtype, is_sparse, is_string_dtype, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.generic import ABCMultiIndex from pandas.core.dtypes.missing import isna from pandas.core.algorithms import checked_add_with_arr from pandas.core.arrays import ( ExtensionArray, datetimelike as dtl, ) from pandas.core.arrays._ranges import generate_regular_range from pandas.core.arrays.integer import IntegerArray import pandas.core.common as com from pandas.core.construction import extract_array from pandas.tseries.frequencies import get_period_alias from pandas.tseries.offsets import ( BDay, Day, Tick, ) if TYPE_CHECKING: from pandas import DataFrame from pandas.core.arrays import ( PeriodArray, TimedeltaArray, ) _midnight = time(0, 0) def tz_to_dtype(tz): """ Return a datetime64[ns] dtype appropriate for the given timezone. Parameters ---------- tz : tzinfo or None Returns ------- np.dtype or Datetime64TZDType """ if tz is None: return DT64NS_DTYPE else: return DatetimeTZDtype(tz=tz) def _field_accessor(name: str, field: str, docstring=None): def f(self): values = self._local_timestamps() if field in self._bool_ops: result: np.ndarray if field.endswith(("start", "end")): freq = self.freq month_kw = 12 if freq: kwds = freq.kwds month_kw = kwds.get("startingMonth", kwds.get("month", 12)) result = fields.get_start_end_field( values, field, self.freqstr, month_kw ) else: result = fields.get_date_field(values, field) # these return a boolean by-definition return result if field in self._object_ops: result = fields.get_date_name_field(values, field) result = self._maybe_mask_results(result, fill_value=None) else: result = fields.get_date_field(values, field) result = self._maybe_mask_results( result, fill_value=None, convert="float64" ) return result f.__name__ = name f.__doc__ = docstring return property(f) class DatetimeArray(dtl.TimelikeOps, dtl.DatelikeOps): """ Pandas ExtensionArray for tz-naive or tz-aware datetime data. .. warning:: DatetimeArray is currently experimental, and its API may change without warning. In particular, :attr:`DatetimeArray.dtype` is expected to change to always be an instance of an ``ExtensionDtype`` subclass. Parameters ---------- values : Series, Index, DatetimeArray, ndarray The datetime data. For DatetimeArray `values` (or a Series or Index boxing one), `dtype` and `freq` will be extracted from `values`. dtype : numpy.dtype or DatetimeTZDtype Note that the only NumPy dtype allowed is 'datetime64[ns]'. freq : str or Offset, optional The frequency. copy : bool, default False Whether to copy the underlying array of values. Attributes ---------- None Methods ------- None """ _typ = "datetimearray" _scalar_type = Timestamp _recognized_scalars = (datetime, np.datetime64) _is_recognized_dtype = is_datetime64_any_dtype _infer_matches = ("datetime", "datetime64", "date") # define my properties & methods for delegation _bool_ops: list[str] = [ "is_month_start", "is_month_end", "is_quarter_start", "is_quarter_end", "is_year_start", "is_year_end", "is_leap_year", ] _object_ops: list[str] = ["freq", "tz"] _field_ops: list[str] = [ "year", "month", "day", "hour", "minute", "second", "weekofyear", "week", "weekday", "dayofweek", "day_of_week", "dayofyear", "day_of_year", "quarter", "days_in_month", "daysinmonth", "microsecond", "nanosecond", ] _other_ops: list[str] = ["date", "time", "timetz"] _datetimelike_ops: list[str] = _field_ops + _object_ops + _bool_ops + _other_ops _datetimelike_methods: list[str] = [ "to_period", "tz_localize", "tz_convert", "normalize", "strftime", "round", "floor", "ceil", "month_name", "day_name", ] # ndim is inherited from ExtensionArray, must exist to ensure # Timestamp.__richcmp__(DateTimeArray) operates pointwise # ensure that operations with numpy arrays defer to our implementation __array_priority__ = 1000 # ----------------------------------------------------------------- # Constructors _dtype: np.dtype | DatetimeTZDtype _freq = None def __init__(self, values, dtype=DT64NS_DTYPE, freq=None, copy: bool = False): values = extract_array(values, extract_numpy=True) if isinstance(values, IntegerArray): values = values.to_numpy("int64", na_value=iNaT) inferred_freq = getattr(values, "_freq", None) if isinstance(values, type(self)): # validation dtz = getattr(dtype, "tz", None) if dtz and values.tz is None: dtype = DatetimeTZDtype(tz=dtype.tz) elif dtz and values.tz: if not timezones.tz_compare(dtz, values.tz): msg = ( "Timezone of the array and 'dtype' do not match. " f"'{dtz}' != '{values.tz}'" ) raise TypeError(msg) elif values.tz: dtype = values.dtype if freq is None: freq = values.freq values = values._ndarray if not isinstance(values, np.ndarray): raise ValueError( f"Unexpected type '{type(values).__name__}'. 'values' must be " "a DatetimeArray, ndarray, or Series or Index containing one of those." ) if values.ndim not in [1, 2]: raise ValueError("Only 1-dimensional input arrays are supported.") if values.dtype == "i8": # for compat with datetime/timedelta/period shared methods, # we can sometimes get here with int64 values. These represent # nanosecond UTC (or tz-naive) unix timestamps values = values.view(DT64NS_DTYPE) if values.dtype != DT64NS_DTYPE: raise ValueError( "The dtype of 'values' is incorrect. Must be 'datetime64[ns]'. " f"Got {values.dtype} instead." ) dtype = _validate_dt64_dtype(dtype) if freq == "infer": raise ValueError( "Frequency inference not allowed in DatetimeArray.__init__. " "Use 'pd.array()' instead." ) if copy: values = values.copy() if freq: freq = to_offset(freq) if getattr(dtype, "tz", None): # https://github.com/pandas-dev/pandas/issues/18595 # Ensure that we have a standard timezone for pytz objects. # Without this, things like adding an array of timedeltas and # a tz-aware Timestamp (with a tz specific to its datetime) will # be incorrect(ish?) for the array as a whole dtype = DatetimeTZDtype(tz=timezones.tz_standardize(dtype.tz)) NDArrayBacked.__init__(self, values=values, dtype=dtype) self._freq = freq if inferred_freq is None and freq is not None: type(self)._validate_frequency(self, freq) # error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked" @classmethod def _simple_new( # type: ignore[override] cls, values: np.ndarray, freq: BaseOffset | None = None, dtype=DT64NS_DTYPE ) -> DatetimeArray: assert isinstance(values, np.ndarray) assert values.dtype == DT64NS_DTYPE result = super()._simple_new(values, dtype) result._freq = freq return result @classmethod def _from_sequence(cls, scalars, *, dtype=None, copy: bool = False): return cls._from_sequence_not_strict(scalars, dtype=dtype, copy=copy) @classmethod def _from_sequence_not_strict( cls, data, dtype=None, copy: bool = False, tz=None, freq=lib.no_default, dayfirst: bool = False, yearfirst: bool = False, ambiguous="raise", ): explicit_none = freq is None freq = freq if freq is not lib.no_default else None freq, freq_infer = dtl.maybe_infer_freq(freq) subarr, tz, inferred_freq = sequence_to_dt64ns( data, dtype=dtype, copy=copy, tz=tz, dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous, ) freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer) if explicit_none: freq = None dtype = tz_to_dtype(tz) result = cls._simple_new(subarr, freq=freq, dtype=dtype) if inferred_freq is None and freq is not None: # this condition precludes `freq_infer` cls._validate_frequency(result, freq, ambiguous=ambiguous) elif freq_infer: # Set _freq directly to bypass duplicative _validate_frequency # check. result._freq = to_offset(result.inferred_freq) return result @classmethod def _generate_range( cls, start, end, periods, freq, tz=None, normalize=False, ambiguous="raise", nonexistent="raise", inclusive="both", ): periods = dtl.validate_periods(periods) if freq is None and any(x is None for x in [periods, start, end]): raise ValueError("Must provide freq argument if no data is supplied") if com.count_not_none(start, end, periods, freq) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) freq = to_offset(freq) if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if start is NaT or end is NaT: raise ValueError("Neither `start` nor `end` can be NaT") left_inclusive, right_inclusive = validate_inclusive(inclusive) start, end, _normalized = _maybe_normalize_endpoints(start, end, normalize) tz = _infer_tz_from_endpoints(start, end, tz) if tz is not None: # Localize the start and end arguments start_tz = None if start is None else start.tz end_tz = None if end is None else end.tz start = _maybe_localize_point( start, start_tz, start, freq, tz, ambiguous, nonexistent ) end = _maybe_localize_point( end, end_tz, end, freq, tz, ambiguous, nonexistent ) if freq is not None: # We break Day arithmetic (fixed 24 hour) here and opt for # Day to mean calendar day (23/24/25 hour). Therefore, strip # tz info from start and day to avoid DST arithmetic if isinstance(freq, Day): if start is not None: start = start.tz_localize(None) if end is not None: end = end.tz_localize(None) if isinstance(freq, Tick): values = generate_regular_range(start, end, periods, freq) else: xdr = generate_range(start=start, end=end, periods=periods, offset=freq) values = np.array([x.value for x in xdr], dtype=np.int64) _tz = start.tz if start is not None else end.tz values = values.view("M8[ns]") index = cls._simple_new(values, freq=freq, dtype=tz_to_dtype(_tz)) if tz is not None and index.tz is None: arr = tzconversion.tz_localize_to_utc( index.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent ) index = cls(arr) # index is localized datetime64 array -> have to convert # start/end as well to compare if start is not None: start = start.tz_localize(tz, ambiguous, nonexistent).asm8 if end is not None: end = end.tz_localize(tz, ambiguous, nonexistent).asm8 else: # Create a linearly spaced date_range in local time # Nanosecond-granularity timestamps aren't always correctly # representable with doubles, so we limit the range that we # pass to np.linspace as much as possible arr = ( np.linspace(0, end.value - start.value, periods, dtype="int64") + start.value ) dtype = tz_to_dtype(tz) arr = arr.astype("M8[ns]", copy=False) index = cls._simple_new(arr, freq=None, dtype=dtype) if start == end: if not left_inclusive and not right_inclusive: index = index[1:-1] else: if not left_inclusive or not right_inclusive: if not left_inclusive and len(index) and index[0] == start: index = index[1:] if not right_inclusive and len(index) and index[-1] == end: index = index[:-1] dtype = tz_to_dtype(tz) return cls._simple_new(index._ndarray, freq=freq, dtype=dtype) # ----------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value, setitem: bool = False) -> np.datetime64: if not isinstance(value, self._scalar_type) and value is not NaT: raise ValueError("'value' should be a Timestamp.") self._check_compatible_with(value, setitem=setitem) return value.asm8 def _scalar_from_string(self, value) -> Timestamp | NaTType: return Timestamp(value, tz=self.tz) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return self._assert_tzawareness_compat(other) if setitem: # Stricter check for setitem vs comparison methods if not timezones.tz_compare(self.tz, other.tz): raise ValueError(f"Timezones don't match. '{self.tz}' != '{other.tz}'") # ----------------------------------------------------------------- # Descriptive Properties def _box_func(self, x) -> Timestamp | NaTType: if isinstance(x, np.datetime64): # GH#42228 # Argument 1 to "signedinteger" has incompatible type "datetime64"; # expected "Union[SupportsInt, Union[str, bytes], SupportsIndex]" x = np.int64(x) # type: ignore[arg-type] ts = Timestamp(x, tz=self.tz) # Non-overlapping identity check (left operand type: "Timestamp", # right operand type: "NaTType") if ts is not NaT: # type: ignore[comparison-overlap] # GH#41586 # do this instead of passing to the constructor to avoid FutureWarning ts._set_freq(self.freq) return ts @property # error: Return type "Union[dtype, DatetimeTZDtype]" of "dtype" # incompatible with return type "ExtensionDtype" in supertype # "ExtensionArray" def dtype(self) -> np.dtype | DatetimeTZDtype: # type: ignore[override] """ The dtype for the DatetimeArray. .. warning:: A future version of pandas will change dtype to never be a ``numpy.dtype``. Instead, :attr:`DatetimeArray.dtype` will always be an instance of an ``ExtensionDtype`` subclass. Returns ------- numpy.dtype or DatetimeTZDtype If the values are tz-naive, then ``np.dtype('datetime64[ns]')`` is returned. If the values are tz-aware, then the ``DatetimeTZDtype`` is returned. """ return self._dtype @property def tz(self) -> tzinfo | None: """ Return timezone, if any. Returns ------- datetime.tzinfo, pytz.tzinfo.BaseTZInfo, dateutil.tz.tz.tzfile, or None Returns None when the array is tz-naive. """ # GH 18595 return getattr(self.dtype, "tz", None) @tz.setter def tz(self, value): # GH 3746: Prevent localizing or converting the index by setting tz raise AttributeError( "Cannot directly set timezone. Use tz_localize() " "or tz_convert() as appropriate" ) @property def tzinfo(self) -> tzinfo | None: """ Alias for tz attribute """ return self.tz @property # NB: override with cache_readonly in immutable subclasses def is_normalized(self) -> bool: """ Returns True if all of the dates are at midnight ("no time") """ return is_date_array_normalized(self.asi8, self.tz) @property # NB: override with cache_readonly in immutable subclasses def _resolution_obj(self) -> Resolution: return get_resolution(self.asi8, self.tz) # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def __array__(self, dtype=None) -> np.ndarray: if dtype is None and self.tz: # The default for tz-aware is object, to preserve tz info dtype = object return super().__array__(dtype=dtype) def __iter__(self): """ Return an iterator over the boxed values Yields ------ tstamp : Timestamp """ if self.ndim > 1: for i in range(len(self)): yield self[i] else: # convert in chunks of 10k for efficiency data = self.asi8 length = len(self) chunksize = 10000 chunks = (length // chunksize) + 1 with warnings.catch_warnings(): # filter out warnings about Timestamp.freq warnings.filterwarnings("ignore", category=FutureWarning) for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = ints_to_pydatetime( data[start_i:end_i], tz=self.tz, freq=self.freq, box="timestamp" ) yield from converted def astype(self, dtype, copy: bool = True): # We handle # --> datetime # --> period # DatetimeLikeArrayMixin Super handles the rest. dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, self.dtype): if copy: return self.copy() return self elif is_datetime64_ns_dtype(dtype): return astype_dt64_to_dt64tz(self, dtype, copy, via_utc=False) elif self.tz is None and is_datetime64_dtype(dtype) and dtype != self.dtype: # unit conversion e.g. datetime64[s] return self._ndarray.astype(dtype) elif is_period_dtype(dtype): return self.to_period(freq=dtype.freq) return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy) # ----------------------------------------------------------------- # Rendering Methods @dtl.ravel_compat def _format_native_types( self, na_rep="NaT", date_format=None, **kwargs ) -> npt.NDArray[np.object_]: from pandas.io.formats.format import get_format_datetime64_from_values fmt = get_format_datetime64_from_values(self, date_format) return tslib.format_array_from_datetime( self.asi8, tz=self.tz, format=fmt, na_rep=na_rep ) # ----------------------------------------------------------------- # Comparison Methods def _has_same_tz(self, other) -> bool: # vzone shouldn't be None if value is non-datetime like if isinstance(other, np.datetime64): # convert to Timestamp as np.datetime64 doesn't have tz attr other = Timestamp(other) if not hasattr(other, "tzinfo"): return False other_tz = other.tzinfo return timezones.tz_compare(self.tzinfo, other_tz) def _assert_tzawareness_compat(self, other) -> None: # adapted from _Timestamp._assert_tzawareness_compat other_tz = getattr(other, "tzinfo", None) other_dtype = getattr(other, "dtype", None) if is_datetime64tz_dtype(other_dtype): # Get tzinfo from Series dtype other_tz = other.dtype.tz if other is NaT: # pd.NaT quacks both aware and naive pass elif self.tz is None: if other_tz is not None: raise TypeError( "Cannot compare tz-naive and tz-aware datetime-like objects." ) elif other_tz is None: raise TypeError( "Cannot compare tz-naive and tz-aware datetime-like objects" ) # ----------------------------------------------------------------- # Arithmetic Methods def _sub_datetime_arraylike(self, other): """subtract DatetimeArray/Index or ndarray[datetime64]""" if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): assert is_datetime64_dtype(other) other = type(self)(other) if not self._has_same_tz(other): # require tz compat raise TypeError( f"{type(self).__name__} subtraction must have the same " "timezones or no timezones" ) self_i8 = self.asi8 other_i8 = other.asi8 arr_mask = self._isnan | other._isnan new_values = checked_add_with_arr(self_i8, -other_i8, arr_mask=arr_mask) if self._hasnans or other._hasnans: np.putmask(new_values, arr_mask, iNaT) return new_values.view("timedelta64[ns]") def _add_offset(self, offset) -> DatetimeArray: if self.ndim == 2: return self.ravel()._add_offset(offset).reshape(self.shape) assert not isinstance(offset, Tick) try: if self.tz is not None: values = self.tz_localize(None) else: values = self result = offset._apply_array(values).view("M8[ns]") result = DatetimeArray._simple_new(result) result = result.tz_localize(self.tz) except NotImplementedError: warnings.warn( "Non-vectorized DateOffset being applied to Series or DatetimeIndex.", PerformanceWarning, ) result = self.astype("O") + offset if not len(self): # GH#30336 _from_sequence won't be able to infer self.tz return type(self)._from_sequence(result).tz_localize(self.tz) return type(self)._from_sequence(result) def _sub_datetimelike_scalar(self, other): # subtract a datetime from myself, yielding a ndarray[timedelta64[ns]] assert isinstance(other, (datetime, np.datetime64)) assert other is not NaT other = Timestamp(other) # error: Non-overlapping identity check (left operand type: "Timestamp", # right operand type: "NaTType") if other is NaT: # type: ignore[comparison-overlap] return self - NaT if not self._has_same_tz(other): # require tz compat raise TypeError( "Timestamp subtraction must have the same timezones or no timezones" ) i8 = self.asi8 result = checked_add_with_arr(i8, -other.value, arr_mask=self._isnan) result = self._maybe_mask_results(result) return result.view("timedelta64[ns]") # ----------------------------------------------------------------- # Timezone Conversion and Localization Methods def _local_timestamps(self) -> np.ndarray: """ Convert to an i8 (unix-like nanosecond timestamp) representation while keeping the local timezone and not using UTC. This is used to calculate time-of-day information as if the timestamps were timezone-naive. """ if self.tz is None or timezones.is_utc(self.tz): return self.asi8 return tzconversion.tz_convert_from_utc(self.asi8, self.tz) def tz_convert(self, tz) -> DatetimeArray: """ Convert tz-aware Datetime Array/Index from one time zone to another. Parameters ---------- tz : str, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A `tz` of None will convert to UTC and remove the timezone information. Returns ------- Array or Index Raises ------ TypeError If Datetime Array/Index is tz-naive. See Also -------- DatetimeIndex.tz : A timezone that has a variable offset from UTC. DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex. Examples -------- With the `tz` parameter, we can change the DatetimeIndex to other time zones: >>> dti = pd.date_range(start='2014-08-01 09:00', ... freq='H', periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert('US/Central') DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='H') With the ``tz=None``, we can remove the timezone (after converting to UTC if necessary): >>> dti = pd.date_range(start='2014-08-01 09:00', freq='H', ... periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='H') """ tz = timezones.maybe_get_tz(tz) if self.tz is None: # tz naive, use tz_localize raise TypeError( "Cannot convert tz-naive timestamps, use tz_localize to localize" ) # No conversion since timestamps are all UTC to begin with dtype = tz_to_dtype(tz) return self._simple_new(self._ndarray, dtype=dtype, freq=self.freq) @dtl.ravel_compat def tz_localize(self, tz, ambiguous="raise", nonexistent="raise") -> DatetimeArray: """ Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. This method can also be used to do the inverse -- to create a time zone unaware object from an aware object. To that end, pass `tz=None`. Parameters ---------- tz : str, pytz.timezone, dateutil.tz.tzfile or None Time zone to convert timestamps to. Passing ``None`` will remove the time zone information preserving local time. ambiguous : 'infer', 'NaT', bool array, default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. Returns ------- Same type as self Array/Index converted to the specified time zone. Raises ------ TypeError If the Datetime Array/Index is tz-aware and tz is not None. See Also -------- DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from one time zone to another. Examples -------- >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) With the ``tz=None``, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq=None) Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.dt.tz_localize('CET', ambiguous='infer') 0 2018-10-28 01:30:00+02:00 1 2018-10-28 02:00:00+02:00 2 2018-10-28 02:30:00+02:00 3 2018-10-28 02:00:00+01:00 4 2018-10-28 02:30:00+01:00 5 2018-10-28 03:00:00+01:00 6 2018-10-28 03:30:00+01:00 dtype: datetime64[ns, CET] In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False])) 0 2018-10-28 01:20:00+02:00 1 2018-10-28 02:36:00+02:00 2 2018-10-28 03:46:00+01:00 dtype: datetime64[ns, CET] If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or `'shift_forward'` or `'shift_backwards'`. >>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 0 2015-03-29 03:00:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 0 2015-03-29 01:59:59.999999999+01:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 0 2015-03-29 03:30:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] """ nonexistent_options = ("raise", "NaT", "shift_forward", "shift_backward") if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta ): raise ValueError( "The nonexistent argument must be one of 'raise', " "'NaT', 'shift_forward', 'shift_backward' or " "a timedelta object" ) if self.tz is not None: if tz is None: new_dates = tzconversion.tz_convert_from_utc(self.asi8, self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = timezones.maybe_get_tz(tz) # Convert to UTC new_dates = tzconversion.tz_localize_to_utc( self.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent ) new_dates = new_dates.view(DT64NS_DTYPE) dtype = tz_to_dtype(tz) freq = None if timezones.is_utc(tz) or (len(self) == 1 and not isna(new_dates[0])): # we can preserve freq # TODO: Also for fixed-offsets freq = self.freq elif tz is None and self.tz is None: # no-op freq = self.freq return self._simple_new(new_dates, dtype=dtype, freq=freq) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timestamp methods def to_pydatetime(self) -> npt.NDArray[np.object_]: """ Return Datetime Array/Index as object ndarray of datetime.datetime objects. Returns ------- datetimes : ndarray[object] """ return ints_to_pydatetime(self.asi8, tz=self.tz) def normalize(self) -> DatetimeArray: """ Convert times to midnight. The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected. This method is available on Series with datetime values under the ``.dt`` accessor, and directly on Datetime Array/Index. Returns ------- DatetimeArray, DatetimeIndex or Series The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- floor : Floor the datetimes to the specified freq. ceil : Ceil the datetimes to the specified freq. round : Round the datetimes to the specified freq. Examples -------- >>> idx = pd.date_range(start='2014-08-01 10:00', freq='H', ... periods=3, tz='Asia/Calcutta') >>> idx DatetimeIndex(['2014-08-01 10:00:00+05:30', '2014-08-01 11:00:00+05:30', '2014-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H') >>> idx.normalize() DatetimeIndex(['2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None) """ new_values = normalize_i8_timestamps(self.asi8, self.tz) return type(self)(new_values)._with_freq("infer").tz_localize(self.tz) @dtl.ravel_compat def to_period(self, freq=None) -> PeriodArray: """ Cast to PeriodArray/Index at a particular frequency. Converts DatetimeArray/Index to PeriodArray/Index. Parameters ---------- freq : str or Offset, optional One of pandas' :ref:`offset strings <timeseries.offset_aliases>` or an Offset object. Will be inferred by default. Returns ------- PeriodArray/Index Raises ------ ValueError When converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred. See Also -------- PeriodIndex: Immutable ndarray holding ordinal values. DatetimeIndex.to_pydatetime: Return DatetimeIndex as object. Examples -------- >>> df = pd.DataFrame({"y": [1, 2, 3]}, ... index=pd.to_datetime(["2000-03-31 00:00:00", ... "2000-05-31 00:00:00", ... "2000-08-31 00:00:00"])) >>> df.index.to_period("M") PeriodIndex(['2000-03', '2000-05', '2000-08'], dtype='period[M]') Infer the daily frequency >>> idx = pd.date_range("2017-01-01", periods=2) >>> idx.to_period() PeriodIndex(['2017-01-01', '2017-01-02'], dtype='period[D]') """ from pandas.core.arrays import PeriodArray if self.tz is not None: warnings.warn( "Converting to PeriodArray/Index representation " "will drop timezone information.", UserWarning, ) if freq is None: freq = self.freqstr or self.inferred_freq if freq is None: raise ValueError( "You must pass a freq argument as current index has none." ) res = get_period_alias(freq) # https://github.com/pandas-dev/pandas/issues/33358 if res is None: res = freq freq = res return PeriodArray._from_datetime64(self._ndarray, freq, tz=self.tz) def to_perioddelta(self, freq) -> TimedeltaArray: """ Calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq. Used for vectorized offsets. Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index """ # Deprecaation GH#34853 warnings.warn( "to_perioddelta is deprecated and will be removed in a " "future version. " "Use `dtindex - dtindex.to_period(freq).to_timestamp()` instead.", FutureWarning, # stacklevel chosen to be correct for when called from DatetimeIndex stacklevel=3, ) from pandas.core.arrays.timedeltas import TimedeltaArray i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view("m8[ns]") return TimedeltaArray(m8delta) # ----------------------------------------------------------------- # Properties - Vectorized Timestamp Properties/Methods def month_name(self, locale=None): """ Return the month names of the DateTimeIndex with specified locale. Parameters ---------- locale : str, optional Locale determining the language in which to return the month name. Default is English locale. Returns ------- Index Index of month names. Examples -------- >>> idx = pd.date_range(start='2018-01', freq='M', periods=3) >>> idx DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'], dtype='datetime64[ns]', freq='M') >>> idx.month_name() Index(['January', 'February', 'March'], dtype='object') """ values = self._local_timestamps() result = fields.get_date_name_field(values, "month_name", locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result def day_name(self, locale=None): """ Return the day names of the DateTimeIndex with specified locale. Parameters ---------- locale : str, optional Locale determining the language in which to return the day name. Default is English locale. Returns ------- Index Index of day names. Examples -------- >>> idx = pd.date_range(start='2018-01-01', freq='D', periods=3) >>> idx DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', freq='D') >>> idx.day_name() Index(['Monday', 'Tuesday', 'Wednesday'], dtype='object') """ values = self._local_timestamps() result = fields.get_date_name_field(values, "day_name", locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result @property def time(self) -> npt.NDArray[np.object_]: """ Returns numpy array of datetime.time. The time part of the Timestamps. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC timestamps = self._local_timestamps() return ints_to_pydatetime(timestamps, box="time") @property def timetz(self) -> npt.NDArray[np.object_]: """ Returns numpy array of datetime.time also containing timezone information. The time part of the Timestamps. """ return ints_to_pydatetime(self.asi8, self.tz, box="time") @property def date(self) -> npt.NDArray[np.object_]: """ Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC timestamps = self._local_timestamps() return ints_to_pydatetime(timestamps, box="date") def isocalendar(self) -> DataFrame: """ Returns a DataFrame with the year, week, and day calculated according to the ISO 8601 standard. .. versionadded:: 1.1.0 Returns ------- DataFrame with columns year, week and day See Also -------- Timestamp.isocalendar : Function return a 3-tuple containing ISO year, week number, and weekday for the given Timestamp object. datetime.date.isocalendar : Return a named tuple object with three components: year, week and weekday. Examples -------- >>> idx = pd.date_range(start='2019-12-29', freq='D', periods=4) >>> idx.isocalendar() year week day 2019-12-29 2019 52 7 2019-12-30 2020 1 1 2019-12-31 2020 1 2 2020-01-01 2020 1 3 >>> idx.isocalendar().week 2019-12-29 52 2019-12-30 1 2019-12-31 1 2020-01-01 1 Freq: D, Name: week, dtype: UInt32 """ from pandas import DataFrame values = self._local_timestamps() sarray = fields.build_isocalendar_sarray(values) iso_calendar_df = DataFrame( sarray, columns=["year", "week", "day"], dtype="UInt32" ) if self._hasnans: iso_calendar_df.iloc[self._isnan] = None return iso_calendar_df @property def weekofyear(self): """ The week ordinal of the year. .. deprecated:: 1.1.0 weekofyear and week have been deprecated. Please use DatetimeIndex.isocalendar().week instead. """ warnings.warn( "weekofyear and week have been deprecated, please use " "DatetimeIndex.isocalendar().week instead, which returns " "a Series. To exactly reproduce the behavior of week and " "weekofyear and return an Index, you may call " "pd.Int64Index(idx.isocalendar().week)", FutureWarning, stacklevel=3, ) week_series = self.isocalendar().week if week_series.hasnans: return week_series.to_numpy(dtype="float64", na_value=np.nan) return week_series.to_numpy(dtype="int64") week = weekofyear year = _field_accessor( "year", "Y", """ The year of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="Y") ... ) >>> datetime_series 0 2000-12-31 1 2001-12-31 2 2002-12-31 dtype: datetime64[ns] >>> datetime_series.dt.year 0 2000 1 2001 2 2002 dtype: int64 """, ) month = _field_accessor( "month", "M", """ The month as January=1, December=12. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64 """, ) day = _field_accessor( "day", "D", """ The day of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="D") ... ) >>> datetime_series 0 2000-01-01 1 2000-01-02 2 2000-01-03 dtype: datetime64[ns] >>> datetime_series.dt.day 0 1 1 2 2 3 dtype: int64 """, ) hour = _field_accessor( "hour", "h", """ The hours of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="h") ... ) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 01:00:00 2 2000-01-01 02:00:00 dtype: datetime64[ns] >>> datetime_series.dt.hour 0 0 1 1 2 2 dtype: int64 """, ) minute = _field_accessor( "minute", "m", """ The minutes of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="T") ... ) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 00:01:00 2 2000-01-01 00:02:00 dtype: datetime64[ns] >>> datetime_series.dt.minute 0 0 1 1 2 2 dtype: int64 """, ) second = _field_accessor( "second", "s", """ The seconds of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="s") ... ) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> datetime_series.dt.second 0 0 1 1 2 2 dtype: int64 """, ) microsecond = _field_accessor( "microsecond", "us", """ The microseconds of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="us") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int64 """, ) nanosecond = _field_accessor( "nanosecond", "ns", """ The nanoseconds of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="ns") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000000 1 2000-01-01 00:00:00.000000001 2 2000-01-01 00:00:00.000000002 dtype: datetime64[ns] >>> datetime_series.dt.nanosecond 0 0 1 1 2 2 dtype: int64 """, ) _dayofweek_doc = """ The day of the week with Monday=0, Sunday=6. Return the day of the week. It is assumed the week starts on Monday, which is denoted by 0 and ends on Sunday which is denoted by 6. This method is available on both Series with datetime values (using the `dt` accessor) or DatetimeIndex. Returns ------- Series or Index Containing integers indicating the day number. See Also -------- Series.dt.dayofweek : Alias. Series.dt.weekday : Alias. Series.dt.day_name : Returns the name of the day of the week. Examples -------- >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64 """ day_of_week = _field_accessor("day_of_week", "dow", _dayofweek_doc) dayofweek = day_of_week weekday = day_of_week day_of_year = _field_accessor( "dayofyear", "doy", """ The ordinal day of the year. """, ) dayofyear = day_of_year quarter = _field_accessor( "quarter", "q", """ The quarter of the date. """, ) days_in_month = _field_accessor( "days_in_month", "dim", """ The number of days in the month. """, ) daysinmonth = days_in_month _is_month_doc = """ Indicates whether the date is the {first_or_last} day of the month. Returns ------- Series or array For Series, returns a Series with boolean values. For DatetimeIndex, returns a boolean array. See Also -------- is_month_start : Return a boolean indicating whether the date is the first day of the month. is_month_end : Return a boolean indicating whether the date is the last day of the month. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> s = pd.Series(pd.date_range("2018-02-27", periods=3)) >>> s 0 2018-02-27 1 2018-02-28 2 2018-03-01 dtype: datetime64[ns] >>> s.dt.is_month_start 0 False 1 False 2 True dtype: bool >>> s.dt.is_month_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2018-02-27", periods=3) >>> idx.is_month_start array([False, False, True]) >>> idx.is_month_end array([False, True, False]) """ is_month_start = _field_accessor( "is_month_start", "is_month_start", _is_month_doc.format(first_or_last="first") ) is_month_end = _field_accessor( "is_month_end", "is_month_end", _is_month_doc.format(first_or_last="last") ) is_quarter_start = _field_accessor( "is_quarter_start", "is_quarter_start", """ Indicator for whether the date is the first day of a quarter. Returns ------- is_quarter_start : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_end : Similar property for indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_start array([False, False, True, False]) """, ) is_quarter_end = _field_accessor( "is_quarter_end", "is_quarter_end", """ Indicator for whether the date is the last day of a quarter. Returns ------- is_quarter_end : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_start : Similar property indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_end=df.dates.dt.is_quarter_end) dates quarter is_quarter_end 0 2017-03-30 1 False 1 2017-03-31 1 True 2 2017-04-01 2 False 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_end array([False, True, False, False]) """, ) is_year_start = _field_accessor( "is_year_start", "is_year_start", """ Indicate whether the date is the first day of a year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_end : Similar property indicating the last day of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_start 0 False 1 False 2 True dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_start array([False, False, True]) """, ) is_year_end = _field_accessor( "is_year_end", "is_year_end", """ Indicate whether the date is the last day of the year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_start : Similar property indicating the start of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_end array([False, True, False]) """, ) is_leap_year = _field_accessor( "is_leap_year", "is_leap_year", """ Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns ------- Series or ndarray Booleans indicating if dates belong to a leap year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False]) >>> dates_series = pd.Series(idx) >>> dates_series 0 2012-12-31 1 2013-12-31 2 2014-12-31 dtype: datetime64[ns] >>> dates_series.dt.is_leap_year 0 True 1 False 2 False dtype: bool """, ) def to_julian_date(self) -> np.ndarray: """ Convert Datetime Array to float64 ndarray of Julian Dates. 0 Julian date is noon January 1, 4713 BC. https://en.wikipedia.org/wiki/Julian_day """ # http://mysite.verizon.net/aesir_research/date/jdalg2.htm year = np.asarray(self.year) month = np.asarray(self.month) day = np.asarray(self.day) testarr = month < 3 year[testarr] -= 1 month[testarr] += 12 return ( day + np.fix((153 * month - 457) / 5) + 365 * year + np.floor(year / 4) - np.floor(year / 100) + np.floor(year / 400) + 1_721_118.5 + ( self.hour + self.minute / 60 + self.second / 3600 + self.microsecond / 3600 / 10 ** 6 + self.nanosecond / 3600 / 10 ** 9 ) / 24 ) # ----------------------------------------------------------------- # Reductions def std( self, axis=None, dtype=None, out=None, ddof: int = 1, keepdims: bool = False, skipna: bool = True, ): # Because std is translation-invariant, we can get self.std # by calculating (self - Timestamp(0)).std, and we can do it # without creating a copy by using a view on self._ndarray from pandas.core.arrays import TimedeltaArray tda = TimedeltaArray(self._ndarray.view("i8")) return tda.std( axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims, skipna=skipna ) # ------------------------------------------------------------------- # Constructor Helpers @overload def sequence_to_datetimes( data, allow_object: Literal[False] = ..., require_iso8601: bool = ... ) -> DatetimeArray: ... @overload def sequence_to_datetimes( data, allow_object: Literal[True] = ..., require_iso8601: bool = ... ) -> np.ndarray | DatetimeArray: ... def sequence_to_datetimes( data, allow_object: bool = False, require_iso8601: bool = False ) -> np.ndarray | DatetimeArray: """ Parse/convert the passed data to either DatetimeArray or np.ndarray[object]. """ result, tz, freq = sequence_to_dt64ns( data, allow_object=allow_object, allow_mixed=True, require_iso8601=require_iso8601, ) if result.dtype == object: return result dtype = tz_to_dtype(tz) dta = DatetimeArray._simple_new(result, freq=freq, dtype=dtype) return dta def sequence_to_dt64ns( data, dtype=None, copy=False, tz=None, dayfirst=False, yearfirst=False, ambiguous="raise", *, allow_object: bool = False, allow_mixed: bool = False, require_iso8601: bool = False, ): """ Parameters ---------- data : list-like dtype : dtype, str, or None, default None copy : bool, default False tz : tzinfo, str, or None, default None dayfirst : bool, default False yearfirst : bool, default False ambiguous : str, bool, or arraylike, default 'raise' See pandas._libs.tslibs.tzconversion.tz_localize_to_utc. allow_object : bool, default False Whether to return an object-dtype ndarray instead of raising if the data contains more than one timezone. allow_mixed : bool, default False Interpret integers as timestamps when datetime objects are also present. require_iso8601 : bool, default False Only consider ISO-8601 formats when parsing strings. Returns ------- result : numpy.ndarray The sequence converted to a numpy array with dtype ``datetime64[ns]``. tz : tzinfo or None Either the user-provided tzinfo or one inferred from the data. inferred_freq : Tick or None The inferred frequency of the sequence. Raises ------ TypeError : PeriodDType data is passed """ inferred_freq = None dtype = _validate_dt64_dtype(dtype) tz = timezones.maybe_get_tz(tz) # if dtype has an embedded tz, capture it tz = validate_tz_from_dtype(dtype, tz) if not hasattr(data, "dtype"): # e.g. list, tuple if np.ndim(data) == 0: # i.e. generator data = list(data) data = np.asarray(data) copy = False elif isinstance(data, ABCMultiIndex): raise TypeError("Cannot create a DatetimeArray from a MultiIndex.") else: data = extract_array(data, extract_numpy=True) if isinstance(data, IntegerArray): data = data.to_numpy("int64", na_value=iNaT) elif not isinstance(data, (np.ndarray, ExtensionArray)): # GH#24539 e.g. xarray, dask object data = np.asarray(data) if isinstance(data, DatetimeArray): inferred_freq = data.freq # By this point we are assured to have either a numpy array or Index data, copy = maybe_convert_dtype(data, copy) data_dtype = getattr(data, "dtype", None) if ( is_object_dtype(data_dtype) or is_string_dtype(data_dtype) or is_sparse(data_dtype) ): # TODO: We do not have tests specific to string-dtypes, # also complex or categorical or other extension copy = False if lib.infer_dtype(data, skipna=False) == "integer": data = data.astype(np.int64) else: # data comes back here as either i8 to denote UTC timestamps # or M8[ns] to denote wall times data, inferred_tz = objects_to_datetime64ns( data, dayfirst=dayfirst, yearfirst=yearfirst, allow_object=allow_object, allow_mixed=allow_mixed, require_iso8601=require_iso8601, ) if tz and inferred_tz: # two timezones: convert to intended from base UTC repr data = tzconversion.tz_convert_from_utc(data.view("i8"), tz) data = data.view(DT64NS_DTYPE) elif inferred_tz: tz = inferred_tz elif allow_object and data.dtype == object: # We encountered mixed-timezones. return data, None, None data_dtype = data.dtype # `data` may have originally been a Categorical[datetime64[ns, tz]], # so we need to handle these types. if is_datetime64tz_dtype(data_dtype): # DatetimeArray -> ndarray tz = _maybe_infer_tz(tz, data.tz) result = data._ndarray elif is_datetime64_dtype(data_dtype): # tz-naive DatetimeArray or ndarray[datetime64] data = getattr(data, "_ndarray", data) if data.dtype != DT64NS_DTYPE: data = conversion.ensure_datetime64ns(data) copy = False if tz is not None: # Convert tz-naive to UTC tz = timezones.maybe_get_tz(tz) data = tzconversion.tz_localize_to_utc( data.view("i8"), tz, ambiguous=ambiguous ) data = data.view(DT64NS_DTYPE) assert data.dtype == DT64NS_DTYPE, data.dtype result = data else: # must be integer dtype otherwise # assume this data are epoch timestamps if tz: tz = timezones.maybe_get_tz(tz) if data.dtype != INT64_DTYPE: data = data.astype(np.int64, copy=False) result = data.view(DT64NS_DTYPE) if copy: result = result.copy() assert isinstance(result, np.ndarray), type(result) assert result.dtype == "M8[ns]", result.dtype # We have to call this again after possibly inferring a tz above validate_tz_from_dtype(dtype, tz) return result, tz, inferred_freq def objects_to_datetime64ns( data: np.ndarray, dayfirst, yearfirst, utc=False, errors="raise", require_iso8601: bool = False, allow_object: bool = False, allow_mixed: bool = False, ): """ Convert data to array of timestamps. Parameters ---------- data : np.ndarray[object] dayfirst : bool yearfirst : bool utc : bool, default False Whether to convert timezone-aware timestamps to UTC. errors : {'raise', 'ignore', 'coerce'} require_iso8601 : bool, default False allow_object : bool Whether to return an object-dtype ndarray instead of raising if the data contains more than one timezone. allow_mixed : bool, default False Interpret integers as timestamps when datetime objects are also present. Returns ------- result : ndarray np.int64 dtype if returned values represent UTC timestamps np.datetime64[ns] if returned values represent wall times object if mixed timezones inferred_tz : tzinfo or None Raises ------ ValueError : if data cannot be converted to datetimes """ assert errors in ["raise", "ignore", "coerce"] # if str-dtype, convert data = np.array(data, copy=False, dtype=np.object_) flags = data.flags order: Literal["F", "C"] = "F" if flags.f_contiguous else "C" try: result, tz_parsed = tslib.array_to_datetime( data.ravel("K"), errors=errors, utc=utc, dayfirst=dayfirst, yearfirst=yearfirst, require_iso8601=require_iso8601, allow_mixed=allow_mixed, ) result = result.reshape(data.shape, order=order) except ValueError as err: try: values, tz_parsed = conversion.datetime_to_datetime64(data.ravel("K")) # If tzaware, these values represent unix timestamps, so we # return them as i8 to distinguish from wall times values = values.reshape(data.shape, order=order) return values.view("i8"), tz_parsed except (ValueError, TypeError): raise err if tz_parsed is not None: # We can take a shortcut since the datetime64 numpy array # is in UTC # Return i8 values to denote unix timestamps return result.view("i8"), tz_parsed elif is_datetime64_dtype(result): # returning M8[ns] denotes wall-times; since tz is None # the distinction is a thin one return result, tz_parsed elif is_object_dtype(result): # GH#23675 when called via `pd.to_datetime`, returning an object-dtype # array is allowed. When called via `pd.DatetimeIndex`, we can # only accept datetime64 dtype, so raise TypeError if object-dtype # is returned, as that indicates the values can be recognized as # datetimes but they have conflicting timezones/awareness if allow_object: return result, tz_parsed raise TypeError(result) else: # pragma: no cover # GH#23675 this TypeError should never be hit, whereas the TypeError # in the object-dtype branch above is reachable. raise TypeError(result) def maybe_convert_dtype(data, copy: bool): """ Convert data based on dtype conventions, issuing deprecation warnings or errors where appropriate. Parameters ---------- data : np.ndarray or pd.Index copy : bool Returns ------- data : np.ndarray or pd.Index copy : bool Raises ------ TypeError : PeriodDType data is passed """ if not hasattr(data, "dtype"): # e.g. collections.deque return data, copy if is_float_dtype(data.dtype): # Note: we must cast to datetime64[ns] here in order to treat these # as wall-times instead of UTC timestamps. data = data.astype(DT64NS_DTYPE) copy = False # TODO: deprecate this behavior to instead treat symmetrically # with integer dtypes. See discussion in GH#23675 elif is_timedelta64_dtype(data.dtype) or is_bool_dtype(data.dtype): # GH#29794 enforcing deprecation introduced in GH#23539 raise TypeError(f"dtype {data.dtype} cannot be converted to datetime64[ns]") elif is_period_dtype(data.dtype): # Note: without explicitly raising here, PeriodIndex # test_setops.test_join_does_not_recur fails raise TypeError( "Passing PeriodDtype data is invalid. Use `data.to_timestamp()` instead" ) elif is_categorical_dtype(data.dtype): # GH#18664 preserve tz in going DTI->Categorical->DTI # TODO: cases where we need to do another pass through this func, # e.g. the categories are timedelta64s data = data.categories.take(data.codes, fill_value=NaT)._values copy = False elif is_extension_array_dtype(data.dtype) and not
is_datetime64tz_dtype(data.dtype)
pandas.core.dtypes.common.is_datetime64tz_dtype
import pytesseract from pytesseract import Output import cv2 import jiwer import numpy as np import pandas as pd import base64 class Class_Pytesseract_OCR: def __init__(self, hyperparams,model_parameters,return_formats): #---------dataset_infos self.X = None self.y_target = None #---------model_parameters self.ocr_engine = model_parameters['ocr_engine'] self.segmentation_mode = model_parameters['segmentation_mode'] self.language = model_parameters['language'] self.custom_config = self._create_custom_config_string() #---------hyperparams self.bbox_conf = hyperparams['bbox_conf'] #---------return_formats self.bbox_return = return_formats['bbox_return'] self.image_return_format = return_formats['image_return_format'] self.remove_linebreaks = return_formats['remove_linebreaks'] #------- Results self.y_pred = None self.avg_mer = None self.avg_wer = None self.avg_wil = None self.avg_wip = None self.df_result = None def _create_custom_config_string(self): segmentaion_mode_dict = {"Orientation and script detection (OSD) only.":"0", "Automatic page segmentation with OSD.":"1", "Automatic page segmentation, but no OSD, or OCR.":"2", "Fully automatic page segmentation, but no OSD. (Default)":"3", "Assume a single column of text of variable sizes.":"4", "Assume a single uniform block of vertically aligned text.":"5", "Assume a single uniform block of text.":"6", "Treat the image as a single text line.":"7", "Treat the image as a single word.":"8", "Treat the image as a single word in a circle.":"9", "Treat the image as a single character.":"10", "Sparse text. Find as much text as possible in no particular order.":"11", "Sparse text with OSD.":"12", "Raw line. Treat the image as a single text line, bypassing hacks that are Tesseract-specific.":"13"} ocr_engine_dict = {"Legacy engine only.":"0", "Neural nets LSTM engine only.":"1", "Legacy + LSTM engines.":"2", "Default, based on what is available.":"3"} custom_config = (f"-l {self.language} --oem {ocr_engine_dict[self.ocr_engine]} --psm {segmentaion_mode_dict[self.segmentation_mode]}") custom_config = r'{}'.format(custom_config) return custom_config def _calc_metrics(self,ground_truth,hypothesis): transformation = jiwer.Compose([ jiwer.ToLowerCase(), jiwer.RemoveMultipleSpaces(), jiwer.RemoveWhiteSpace(replace_by_space=" "), jiwer.SentencesToListOfWords(word_delimiter=" ") ]) mer = jiwer.mer( ground_truth, hypothesis, truth_transform=transformation, hypothesis_transform=transformation ) wer = jiwer.wer( ground_truth, hypothesis, truth_transform=transformation, hypothesis_transform=transformation ) wil = jiwer.wil( ground_truth, hypothesis, truth_transform=transformation, hypothesis_transform=transformation ) wip = jiwer.wip( ground_truth, hypothesis, truth_transform=transformation, hypothesis_transform=transformation ) return mer,wer,wil,wip def _get_bounding_box(self,d): bboxes_list = [] n_boxes = len(d['text']) for i in range(n_boxes): if int(d['conf'][i]) > self.bbox_conf: (x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i]) bboxes_list.append((x, y, w, h)) return bboxes_list def _get_metrics(self): mer_list,wer_list,wil_list,wip_list = [],[],[],[] for yt,yp in zip(self.y_target,self.y_pred): mer,wer,wil,wip = self._calc_metrics(yt,yp) mer_list.append(mer) wer_list.append(wer) wil_list.append(wil) wip_list.append(wip) return mer_list,wer_list,wil_list,wip_list, np.mean(mer_list),np.mean(wer_list),np.mean(wil_list),np.mean(wip_list) def _remove_linebreaks_from_text(self,text): if self.remove_linebreaks: text = text.replace("\n"," ") text = text.replace("\t"," ") return text def predict(self,img_reference,step,return_formats = None): if step == "Experiment": img = cv2.imread(img_reference) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if step == "Deployment": img = img_reference d = pytesseract.image_to_data(img, config=self.custom_config,output_type=Output.DICT) text = pytesseract.image_to_string(img, config=self.custom_config) text = self._remove_linebreaks_from_text(text) if return_formats: bbox_list = self._get_bounding_box(d) if return_formats['bbox_return'] == "np_array": result = bbox_list, text if return_formats['bbox_return'] == "image": img_bytes_base64 = self._overlay_image_with_bboxes(img,bbox_list,return_formats['image_return_format']) result = img_bytes_base64, text else: result = d, text return result def _overlay_image_with_bboxes(self,img,bbox_list,image_type): for i in bbox_list: img = cv2.rectangle(img, (i[0], i[1]), (i[0] + i[2], i[1] + i[3]), (0, 255, 0), 2) _, buffer = cv2.imencode(image_type,img) img_bytes_base64 = base64.b64encode(buffer).decode() return img_bytes_base64 def _construct_result_dataframe(self,step): all_bboxes_list = [] self.y_pred = [] for image_path in self.X: d,text = self.predict(image_path,step) text = self._remove_linebreaks_from_text(text) self.y_pred.append(text) bboxes_list = self._get_bounding_box(d) all_bboxes_list.append(bboxes_list) if step == 'Experiment': mer_list,wer_list,wil_list,wip_list,self.avg_mer,self.avg_wer,self.avg_wil,self.avg_wip = self._get_metrics() self.df_result = pd.DataFrame({'source_text': self.X, 'target_ocr_text': self.y_target,'predicted_ocr_text': self.y_pred,'BBOXES_COORDS(X, Y, W, H)':all_bboxes_list,'Match Error Rate (MER)':mer_list,' Word Error Rate (WER)':wer_list,'Word Information Lost (WIL)':wil_list,'Word Information Preserved (WIP)':wip_list}) if step == 'Deployment': self.df_result =
pd.DataFrame({'source_text': self.X,'predicted_ocr_text': self.y_pred,'BBOXES_COORDS(X, Y, W, H)':all_bboxes_list})
pandas.DataFrame
# @name: create_fake_data.py # @summary: Creates a series of fake patients and "data" simulating CViSB data # @description: For prototyping and testing out CViSB data management website, creating a series of fake patients and data files. # @sources: # @depends: # @author: <NAME> # @email: <EMAIL> # @license: Apache-2.0 # @date: 16 March 2018 import pandas as pd import numpy as np import io import dropbox # [ Set up params ] --------------------------------------------------------------------------------------- token = "" dropbox_folder = "/CViSB_test" expt_file = 'expt_list.csv' # [ Set up fake patient generator ] ----------------------------------------------------------------------- def fakePatients(number = 25): ids = np.arange(number) patients = pd.DataFrame() create_id = np.vectorize(lambda x: 'fakeid' + str(x).zfill(4)) patients['patient_id'] = create_id(ids) patients['sex'] = patients.apply(create_sex, axis = 1) patients['age'] = patients.apply(create_age, axis = 1) patients['cohort'] = patients.apply(create_cohort, axis = 1) patients['cohort_exposure'] = patients.apply(create_exposure, axis = 1) patients['timepoints'] = patients.apply(create_timepts, axis = 1) return patients def create_sex(x): if (np.random.rand() > 0.5): return('male') else: return('female') def create_age(x): return round(np.random.rand()*100) def create_cohort(x): if (np.random.rand() > 0.67): return('Ebola') else: return('Lassa') def create_exposure(x): rand_num = np.random.rand() if (rand_num > 0.8): return("exposed") elif (rand_num > 0.1): if (np.random.rand() > 0.2): return("died") else: return("survived") else: return("community") def create_timepts(x): rand_num = np.random.rand() timepts = [ [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 7], [0, 1, 2, 3, 4, 7, 10] ] if (rand_num < 0.4): return(timepts[0]) elif (rand_num < 0.6): return(timepts[1]) elif (rand_num < 0.6): return(timepts[2]) elif (rand_num < 0.6): return(timepts[3]) elif (rand_num < 0.6): return(timepts[4]) else: return(timepts[5]) # [ Create patients ] ------------------------------------------------------------------------------------- patients = fakePatients() # --- Upload to dropbox --- dbx = dropbox.Dropbox(token) dbx.files_upload(patients.to_csv(index = False).encode('utf-8'), dropbox_folder + '/fakepatient_roster.csv') # dbx.files_upload(patients.to_csv(sep = '\t', index = False).encode('utf-8'), '/fakepatient_roster.tsv') # [ Create samples ] -------------------------------------------------------------------------------------- # Convert array of timepoints to wide dataframe of timepoints # TODO: use the function I wrote tp = pd.DataFrame(patients['timepoints'].values.tolist(), index = patients.patient_id).reset_index() # Convert to long dataframe tp = pd.melt(tp, id_vars = ['patient_id'], value_name = 'timepoint').drop('variable', axis = 1) # Remove NAs tp = tp.dropna(axis = 0, how='any') # Create a sample for every timepoint sample_list = pd.DataFrame(data = {'sample_id': ['plasma', 'PMBC', 'hDNA', 'vDNA', 'hRNA', 'vRNA'], 'description': ['raw blood plasma', 'raw peripheral blood mononuclear cells', 'extracted host DNA', 'extracted viral DNA', 'extracted host RNA', 'extracted viral RNA']}) sample_list['tmp'] = 1 tp['tmp'] = 1 # Merge on drop timepoint 0; no biological data taken samples = pd.merge(tp[tp.timepoint > 0], sample_list, on='tmp').drop('tmp', axis = 1) # Fill some fields to be inputted later. samples['creation_date'] = np.NaN samples['storage_loc'] = np.NaN samples['invalid'] = False dbx.files_upload(samples.to_csv(index = False).encode('utf-8'), dropbox_folder + '/fakesample_list.csv', mode=dropbox.files.WriteMode.overwrite) # [ Generate file list ] ---------------------------------------------------------------------------------- tp.drop('tmp', axis = 1) def gen_filelist(patient_timepts): # read in the experiment file structure md, res = dbx.files_download(dropbox_folder +"/" + expt_file) if(res.status_code == 200): expts = pd.read_csv(io.StringIO(res.content.decode('utf-8'))) expts def array2long(df, var, id_var): # remove any NAs in column df = df[df[var].notnull()] if(any(df[var].apply(lambda x: type(x)) == str)): # Convert string to array df[var] = df[var].apply(lambda x: x.replace(', ', ',').split(',')) # splay data frame wide temp = pd.DataFrame(df[var].values.tolist(), index = df[id_var]).reset_index() # Convert to long dataframe temp = pd.melt(temp, id_vars = [id_var], value_name = var).drop('variable', axis = 1) # Remove NAs temp = temp.dropna(axis = 0, how='any') return temp # BUG: fix the .loc for NAN setting ex_times = array2long(expts, 'timepts', 'expt_id') ex_files = array2long(expts, 'file_types', 'expt_id') ex_pars = array2long(expts, 'params', 'expt_id') # Merge on drop timepoint 0; no biological data taken expt_files = pd.merge(ex_times, ex_files, on='expt_id') expt_files =
pd.merge(expt_files, ex_pars, on='expt_id', how='outer')
pandas.merge
import os import re import unicodedata from twitter import OAuth, Twitter import numpy as np import pandas as pd import arrow from . import templates, plots from loonathetrends.utils import get_video_title_lookup, get_video_ismv_lookup auth = OAuth( os.environ["TWITTER_ACCESSTOKEN"], os.environ["TWITTER_ACCESSSECRET"], os.environ["TWITTER_CONSUMERKEY"], os.environ["TWITTER_CONSUMERSECRET"], ) t = Twitter(auth=auth) t_upload = Twitter(domain="upload.twitter.com", auth=auth) MILESTONES = { 100_000: "100k", 200_000: "200k", 500_000: "500k", 1_000_000: "1M", 2_000_000: "2M", 5_000_000: "5M", 10_000_000: "10M", 20_000_000: "20M", 50_000_000: "50M", 100_000_000: "100M", } REGEX_YOUTUBEURL = r"(?:.+?)?(?:\/v\/|watch\/|\?v=|\&v=|youtu\.be\/|\/v=|^youtu\.be\/)([a-zA-Z0-9_-]{11})+" def _status_length(status): return len(unicodedata.normalize("NFC", status)) def followers_update(db, freq, dry_run=False, post_plots=False): if freq == "daily": ndays = 1 elif freq == "weekly": ndays = 7 else: raise RuntimeError("Parameter freq provided not valid") query = ( "SELECT * FROM followers " "WHERE tstamp = current_date " "OR tstamp >= current_date - %s " "ORDER BY tstamp" ) template = templates.followers_update df = pd.read_sql(query, db, params=(ndays,)) date = arrow.get(df["tstamp"].iloc[-1]).format("YYMMDD") grouped = df.groupby("site") tots = grouped.last()["count"].to_dict() difs = (grouped.last()["count"] - grouped.first()["count"]).to_dict() status = template(freq=freq, date=date, tots=tots, difs=difs) if _status_length(status) > 280: raise RuntimeError(f"The status update is {_status_length(status)} characters long.") if post_plots: media = plots.new_followers(db) else: media = [] if not dry_run: media_ids = [] for img in media: media_id = t_upload.media.upload(media=img)["media_id_string"] media_ids.append(media_id) if media_ids: def chunk_four(l): for i in range(0, len(l), 4): yield l[i : i + 4] last_tweet = None for chunk in chunk_four(media_ids): if last_tweet == None: last_tweet = t.statuses.update( status=status, media_ids=",".join(chunk) ) else: last_tweetid = last_tweet["id_str"] last_tweet = t.statuses.update( status="@loonathetrends", media_ids=",".join(chunk), in_reply_to_status_id=last_tweetid, ) else: t.statuses.update(status=status) else: for n, img in enumerate(media, 1): with open("test{}.png".format(n), "wb") as f: f.write(img) return status def youtube_update(db, kind, dry_run=False): # create DataFrame for stats stats = pd.read_sql( "SELECT * FROM video_stats WHERE " "tstamp >= (current_date - 8)" "ORDER BY tstamp", db, parse_dates=["tstamp"], ).set_index("tstamp") lookup = get_video_title_lookup(db) # find out what video to post about func = lambda x: x.diff().last("7d").sum() if kind == "latest": mvlookup = pd.Series(get_video_ismv_lookup(db)) videoid = ( pd.read_sql( "SELECT published_at, video_id FROM videos ORDER BY published_at", db ) .set_index("video_id") .loc[mvlookup] .index[-1] ) elif kind == "views": videoid = stats.groupby("video_id")["views"].agg(func).idxmax() elif kind == "likes": videoid = stats.groupby("video_id")["likes"].agg(func).idxmax() elif kind == "comments": videoid = stats.groupby("video_id")["comments"].agg(func).idxmax() # get and trim stats stats = stats[stats.video_id == videoid].drop("video_id", axis=1) last = stats.index[-1] length = pd.Timedelta("1d") trimmed = stats.reindex(pd.date_range(last - length, last, freq="h")) # assign fill-ins for template title = lookup[videoid] tots = trimmed.iloc[-1].to_dict() rates = (trimmed.diff().mean() * 24).to_dict() date = arrow.get(last).format("YYMMDD") # make charts media = plots.youtube(db, videoid) # fill template kind_template = { "latest": "Latest @loonatheworld music video:", "views": "Most viewed @loonatheworld video this week:", "likes": "Most liked @loonatheworld video this week:", "comments": "Most commented @loonatheworld video this week:", } template = templates.youtube_update status = template( kind=kind_template[kind], title=title, date=date, tots=tots, rates=rates, videoid=videoid, ) if _status_length(status) > 280: raise RuntimeError(f"The status update is {_status_length(status)} characters long.") # post on twitter if not dry_run: media_id = t_upload.media.upload(media=media)["media_id_string"] t.statuses.update(status=status, media_ids=media_id) return status def youtube_milestone(db, dry_run=False): # get the stats stats = pd.read_sql( "SELECT * FROM video_stats WHERE " "tstamp >= (current_date - 8) " "ORDER BY tstamp", db, parse_dates=["tstamp"], ) mvlookup = pd.Series(get_video_ismv_lookup(db)) lookup = get_video_title_lookup(db) # get the current view counts for all videos views = stats.groupby("video_id")["views"].last() # calculate how many views are left for each milestone for all videos marray = np.array(list(MILESTONES)).reshape((1, len(MILESTONES))) varray = np.array(views).reshape((len(views), 1)) viewsleft = pd.DataFrame( columns=MILESTONES, data=marray - varray, index=views.index ) viewsleft[viewsleft <= 0] = None # discard reached milestones # calculate the current view rate for all videos pivot = stats.pivot(index="tstamp", columns="video_id", values="views") rates = pivot.last("7d1h").asfreq("h").diff().mean() * 24 rates[rates <= 0] = None # calculate how many days are left to reach the milestones daysleft = viewsleft.apply(lambda x: x / rates).min(axis=1) # find out the featured video for today daysleft_mv = daysleft[(daysleft <= 7) & mvlookup] videoid = daysleft.idxmin() if daysleft_mv.empty else daysleft_mv.idxmin() milestone = viewsleft.loc[videoid].idxmin() # create the mapping for the tweet template fillin = { "date": arrow.now().format("YYMMDD"), "videoid": videoid, "title": lookup[videoid], "diff": viewsleft.loc[videoid].min(), "milestone": MILESTONES[milestone], "prediction": (arrow.now().shift(days=daysleft.loc[videoid]).humanize()), } # fill in the template and post on Twitter template = templates.youtube_milestone status = template(**fillin) if _status_length(status) > 280: raise RuntimeError(f"The status update is {_status_length(status)} characters long.") if not dry_run: t.statuses.update(status=status) return status def youtube_milestone_reached(db, dry_run=False): videos = pd.read_sql( "select video_id, title, age(published_at) as age from videos", db ).values for video_id, title, age in videos: if age <
pd.Timedelta("3d")
pandas.Timedelta
import pandas as pd def extract_feature_values(data): """ Given a params dict, return the values for feeding into a model""" # Replace these features with the features for your model. They need to # correspond with the `name` attributes of the <input> tags EXPECTED_FEATURES = [ "user_id", ] # This assumes all inputs will be numeric. If you have categorical features # that the user enters as a string, you'll want to rewrite this as a for # loop that treats different features differently #values = [[float(data[feature]) for feature in EXPECTED_FEATURES]] return
pd.DataFrame(values, columns=EXPECTED_FEATURES)
pandas.DataFrame
# -*- coding: utf-8 -*- # @Author: gunjianpan # @Date: 2019-03-04 19:03:49 # @Last Modified by: gunjianpan # @Last Modified time: 2019-03-28 10:26:48 import lightgbm as lgb import numpy as np import pandas as pd import warnings import threading import time from datetime import datetime from numba import jit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from util.util import * warnings.filterwarnings('ignore') data_path = 'concrete/data/' model_path = 'concrete/model/' pickle_path = 'concrete/pickle/' prediction_path = 'concrete/prediction/' v = '2' # t = '_total' t = '' class Concrete(object): """ data minie for concrete """ def __init__(self, do_pre=False): self.id2file = {} self.id2lab = {} self.detail_map = {} self.detail_pickle = {} self.f1_max_index = 0.5 self.f1_map = {index: 0 for index in range(0, 5)} self.version = datetime.now().strftime("%m%d%H%M") self.seed = 333 self.EARLY_STOP = 300 self.OPT_ROUNDS = 2444 self.MAX_ROUNDS = 300000 self.evaluate_num = 0 self.params = { 'boosting': 'gbdt', 'objective': 'binary', 'learning_rate': 0.01, 'max_depth': -1, 'min_child_samples': 20, 'max_bin': 255, 'subsample': 0.85, 'subsample_freq': 10, 'colsample_bytree': 0.8, 'min_child_weight': 0.001, 'subsample_for_bin': 200000, 'min_split_gain': 0, 'reg_alpha': 0, 'reg_lambda': 0, 'num_leaves': 63, 'seed': self.seed, 'nthread': 20, 'metric': "None", "verbose": -1 } self.pre_data_list(do_pre) def load_basic(self, file_type): """ load basic @param file_type: 1-submit_example, 0-train_labels """ file_name = 'submit_example' if file_type else 'train_labels' file_name += '.csv' with open(data_path + file_name, 'r') as f: train_list = f.readlines()[1:] self.id2file = { index: train[:-1].split(',')[0] for index, train in enumerate(train_list)} self.id2lab = {index: int(train[:-1].split(',')[1]) for index, train in enumerate(train_list)} def load_detail(self, file_type, block_size=500): """ load detail @param file_type: 1-submit_example, 0-train_labels """ pickle_file = 'submit_middle' if file_type else 'train_middle' pickle_file += '.pickle' detail_pickle = load_bigger(pickle_path + pickle_file) print('load over') id_len = len(self.id2lab.keys()) for block_index in range((id_len - 1) // block_size + 1): index_min = block_size * block_index index_max = min(id_len, (block_index + 1) * block_size) threadings = [] for index in list(self.id2file.keys())[index_min:index_max]: label_id = self.id2lab[index] detail_csv = detail_pickle[index] work = threading.Thread( target=self.pre_data_once, args=(index, file_type, label_id, detail_csv,)) threadings.append(work) for work in threadings: work.start() for work in threadings: work.join() if not index_max % 10: print(index_max) detail_map = [self.detail_map[k] for k in sorted(self.detail_map.keys())] output_file = 'submit_middle' if file_type else 'train_middle' title_basic = ['活塞工作时长', '发动机转速', '油泵转速', '泵送压力', '液压油温', '流量档位', '分配压力', '排量电流', '低压开关', '高压开关', '搅拌超压信号', '正泵', '反泵', '设备类型'] # title_min = [index + '_min'for index in title_basic[1:8]] # title_max = [index + '_max'for index in title_basic[1:8]] # title_mean = [index + '_mean'for index in title_basic[1:8]] # title_std = [index + '_std'for index in title_basic[1:8]] # title_poor = [index + '_poor'for index in title_basic[1:8]] # title_median = [index + '_median'for index in title_basic[1:8]] # title_total = [index + '_total'for index in title_basic[1:8]] # title_hit = [index + '_hit'for index in title_basic[1:8]] # title_constant = ['label', '活塞工作时长', '低压开关', '正泵', '设备类型', '低压开关&正泵'] # title_collection = [*title_min, *title_mean, *title_max, *title_poor, *title_std, *title_median, *title_total, *title_hit] # title_collection_diff = [index + '_diff' for index in title_collection] # title_collection_diff_diff = [ # index + '_diff_diff' for index in title_collection] # title_collection_diff_diff_diff = [ # index + '_diff_diff_diff' for index in title_collection] # title_collection_diff_diff_diff2 = [ # index + '_diff_diff_diff2' for index in title_collection] # title_collection_diff_diff_diff3 = [ # index + '_diff_diff_diff3' for index in title_collection] # title_collection_ptr = [index + '_pct' for index in title_collection] # title_collection_ptr_diff = [ # index + '_pct_diff' for index in title_collection] # title_all = [*title_constant, *title_collection, *title_collection_diff, # *title_collection_diff_diff, *title_collection_diff_diff_diff, # *title_collection_ptr, *title_collection_ptr_diff, # *title_collection_diff_diff_diff2, *title_collection_diff_diff_diff3] # title_all = [*title_collection_diff_diff_diff2, *title_collection_diff_diff_diff3] title_skew = [index + '_skew'for index in title_basic[0:8]] with open(data_path + output_file, 'w') as f: f.write(",".join(title_skew) + '\n') # f.write("nunique" + '\n') f.write("\n".join([str(index) for index in detail_map])) def load_all(self, file_type): """ load all """ self.load_basic(file_type) self.load_detail(file_type) self.detail_map = {} def load_all_pickle(self, file_type): """ load all """ self.load_basic(file_type) self.load_detail_pickle(file_type) self.detail_pickle = {} def load_detail_pickle(self, file_type, block_size=300): """ load detail @param file_type: 1-submit_example, 0-train_labels """ id_len = len(self.id2lab.keys()) for block_index in range((id_len - 1) // block_size + 1): index_min = block_size * block_index index_max = min(id_len, (block_index + 1) * block_size) threadings = [] for index in list(self.id2file.keys())[index_min:index_max]: file_id = self.id2file[index] work = threading.Thread( target=self.pre_data_two, args=(index, file_type, file_id,)) threadings.append(work) for work in threadings: work.start() for work in threadings: work.join() print(index_max) output_file = 'submit_middle' if file_type else 'train_middle' output_file += '.pickle' dump_bigger(self.detail_pickle, pickle_path + output_file) def pre_data_list(self, do_pre): version = begin_time() df_columns = pd.read_csv(data_path + 'train_middle_total').columns begin_index = 0 with open(model_path + v + 'columns.csv', 'r') as f: str_f = f.readline() if str_f[-1] == '\n': str_f = str_f[:-1] good_columns = str_f.split(',') with open(model_path + v + 'lastcolumn.csv', 'r') as f: str_f = f.readline() if str_f[-1] == '\n': str_f = str_f[:-1] while df_columns[begin_index] != str_f: begin_index += 1 self.wait_columns = list(df_columns[begin_index + 6:]) self.good_columns = good_columns self.basic_f1 = 0 if do_pre == True: self.load_all(0) self.load_all(1) elif do_pre == 2: self.load_all_pickle(0) self.load_all_pickle(1) else: self.load_basic(1) end_time(version) def evaluate_f1(self, preds, train_data): self.evaluate_num = self.evaluate_num + 1 labels = train_data.get_label() if not self.evaluate_num % 50: f1_list = [self.evaulate_model_once(labels, [int(indexs > (index / 100)) for indexs in preds]) for index in range(48, 53)] max_index = f1_list.index(max(f1_list)) if max_index in self.f1_map: self.f1_map[max_index] += 1 else: self.f1_map[max_index] = 1 # print(labels, preds) return 'f1', f1_list[2], True else: preds = [int(index > 0.5) for index in preds] return 'f1', self.evaulate_model_once(labels, preds), True def pre_data_two(self, detail_id, file_type, file_id): file_folder = 'data_test' if file_type else 'data_train' file_folder += '/' file_folder += file_id detail_csv = pd.read_csv(data_path + file_folder) self.detail_pickle[detail_id] = detail_csv def pre_data_once(self, detail_id, file_type, label_id, detail_csv): # detail_basic = detail_csv.agg(['min', 'max', 'std', 'mean', 'median']) # detail_max = detail_basic.iloc[1] # detail_time = detail_csv.max()[0] # detail_time = detail_max[0] # detail_press = detail_max[8] # detail_pump = detail_max[11] # detail_type = detail_max[13] # detail_add = detail_pump + detail_press # detail_constant = [label_id, detail_time, # detail_press, detail_pump, detail_type, detail_add] # detail_max = detail_max[1:8] # detail_min = detail_basic.iloc[0, 1:8] # detail_poor = detail_max - detail_min # detail_mean = detail_basic.iloc[3, 1:8] # detail_std = detail_basic.iloc[2, 1:8] # detail_median = detail_basic.iloc[4, 1:8] # detail_total = [index * detail_time for index in detail_mean] # detail_hit = [index * detail_time for index in detail_std] # detail_collapse = [*detail_min, *detail_mean, *detail_max, *detail_poor, # *detail_std, *detail_median, *detail_total, *detail_hit] # del detail_csv['设备类型'] # detail_basic_diff = detail_csv.diff() # detail_diff_basic = detail_basic_diff.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_diff_min = detail_diff_basic.iloc[0, 1:8] # detail_diff_max = detail_diff_basic.iloc[1, 1:8] # detail_diff_poor = detail_diff_max - detail_diff_min # detail_diff_std = detail_diff_basic.iloc[2, 1:8] # detail_diff_mean = detail_diff_basic.iloc[3, 1:8] # detail_diff_median = detail_diff_basic.iloc[4, 1:8] # detail_diff_total = [index * detail_time for index in detail_diff_mean] # detail_diff_hit = [index * detail_time for index in detail_diff_std] # detail_collapse_diff = [*detail_diff_min, *detail_diff_mean, *detail_diff_max, *detail_diff_poor, # *detail_diff_std, *detail_diff_median, *detail_diff_total, *detail_diff_hit] # detail_basic_diff_diff = detail_basic_diff.diff() # detail_diff_diff_basic = detail_basic_diff_diff.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_diff_diff_min = detail_diff_diff_basic.iloc[0, 1:8] # detail_diff_diff_max = detail_diff_diff_basic.iloc[1, 1:8] # detail_diff_diff_poor = detail_diff_diff_max - detail_diff_diff_min # detail_diff_diff_std = detail_diff_diff_basic.iloc[2, 1:8] # detail_diff_diff_mean = detail_diff_diff_basic.iloc[3, 1:8] # detail_diff_diff_median = detail_diff_diff_basic.iloc[4, 1:8] # detail_diff_diff_total = [ # index * detail_time for index in detail_diff_diff_mean] # detail_diff_diff_hit = [ # index * detail_time for index in detail_diff_diff_mean] # detail_collapse_diff_diff = [*detail_diff_diff_min, *detail_diff_diff_mean, *detail_diff_diff_max, # *detail_diff_diff_poor, *detail_diff_diff_std, *detail_diff_diff_median, # *detail_diff_diff_total, *detail_diff_diff_hit] # detail_basic_diff_diff_diff = detail_basic_diff_diff.diff() # detail_diff_diff_diff_basic = detail_basic_diff_diff_diff.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_diff_diff_diff_min = detail_diff_diff_diff_basic.iloc[0, 1:8] # detail_diff_diff_diff_max = detail_diff_diff_diff_basic.iloc[1, 1:8] # detail_diff_diff_diff_poor = detail_diff_diff_diff_max - detail_diff_diff_diff_min # detail_diff_diff_diff_std = detail_diff_diff_diff_basic.iloc[2, 1:8] # detail_diff_diff_diff_mean = detail_diff_diff_diff_basic.iloc[3, 1:8] # detail_diff_diff_diff_median = detail_diff_diff_diff_basic.iloc[4, 1:8] # detail_diff_diff_diff_total = [ # index * detail_time for index in detail_diff_diff_diff_mean] # detail_diff_diff_diff_hit = [ # index * detail_time for index in detail_diff_diff_diff_mean] # detail_collapse_diff_diff_diff = [*detail_diff_diff_diff_min, *detail_diff_diff_diff_mean, *detail_diff_diff_diff_max, # *detail_diff_diff_diff_poor, *detail_diff_diff_diff_std, *detail_diff_diff_diff_median, # *detail_diff_diff_diff_total, *detail_diff_diff_diff_hit] # detail_basic_diff_diff_diff2 = detail_basic_diff_diff_diff.diff() # detail_diff_diff_diff2_basic = detail_basic_diff_diff_diff2.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_diff_diff_diff2_min = detail_diff_diff_diff2_basic.iloc[0, 1:8] # detail_diff_diff_diff2_max = detail_diff_diff_diff2_basic.iloc[1, 1:8] # detail_diff_diff_diff2_poor = detail_diff_diff_diff2_max - detail_diff_diff_diff2_min # detail_diff_diff_diff2_std = detail_diff_diff_diff2_basic.iloc[2, 1:8] # detail_diff_diff_diff2_mean = detail_diff_diff_diff2_basic.iloc[3, 1:8] # detail_diff_diff_diff2_median = detail_diff_diff_diff2_basic.iloc[4, 1:8] # detail_diff_diff_diff2_total = [ # index * detail_time for index in detail_diff_diff_diff2_mean] # detail_diff_diff_diff2_hit = [ # index * detail_time for index in detail_diff_diff_diff2_mean] # detail_collapse_diff_diff2_diff = [*detail_diff_diff_diff2_min, *detail_diff_diff_diff2_mean, *detail_diff_diff_diff2_max, # *detail_diff_diff_diff2_poor, *detail_diff_diff_diff2_std, *detail_diff_diff_diff2_median, # *detail_diff_diff_diff2_total, *detail_diff_diff_diff2_hit] # detail_basic_diff_diff_diff3 = detail_basic_diff_diff_diff2.diff() # detail_diff_diff_diff3_basic = detail_basic_diff_diff_diff3.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_diff_diff_diff3_min = detail_diff_diff_diff3_basic.iloc[0, 1:8] # detail_diff_diff_diff3_max = detail_diff_diff_diff3_basic.iloc[1, 1:8] # detail_diff_diff_diff3_poor = detail_diff_diff_diff3_max - detail_diff_diff_diff3_min # detail_diff_diff_diff3_std = detail_diff_diff_diff3_basic.iloc[2, 1:8] # detail_diff_diff_diff3_mean = detail_diff_diff_diff3_basic.iloc[3, 1:8] # detail_diff_diff_diff3_median = detail_diff_diff_diff3_basic.iloc[4, 1:8] # detail_diff_diff_diff3_total = [ # index * detail_time for index in detail_diff_diff_diff3_mean] # detail_diff_diff_diff3_hit = [ # index * detail_time for index in detail_diff_diff_diff3_mean] # detail_collapse_diff_diff3_diff = [*detail_diff_diff_diff3_min, *detail_diff_diff_diff3_mean, *detail_diff_diff_diff3_max, # *detail_diff_diff_diff3_poor, *detail_diff_diff_diff3_std, *detail_diff_diff_diff3_median, # *detail_diff_diff_diff3_total, *detail_diff_diff_diff3_hit] # detail_basic_pct = detail_csv.pct_change() # detail_pct_change_basic = detail_basic_pct.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_pct_change_min = detail_pct_change_basic.iloc[0, 1:8] # detail_pct_change_max = detail_pct_change_basic.iloc[1, 1:8] # detail_pct_change_poor = detail_pct_change_max - detail_pct_change_min # detail_pct_change_std = detail_pct_change_basic.iloc[2, 1:8] # detail_pct_change_mean = detail_pct_change_basic.iloc[3, 1:8] # detail_pct_change_median = detail_pct_change_basic.iloc[4, 1:8] # detail_pct_change_total = [ # index * detail_time for index in detail_pct_change_mean] # detail_pct_change_hit = [ # index * detail_time for index in detail_pct_change_std] # detail_collapse_ptr = [*detail_pct_change_min, *detail_pct_change_mean, *detail_pct_change_max, # *detail_pct_change_poor, *detail_pct_change_std, *detail_pct_change_median, # *detail_pct_change_total, *detail_pct_change_hit] # detail_basic_pct_diff = detail_basic_pct.diff() # detail_pct_diff_basic = detail_basic_pct_diff.agg( # ['min', 'max', 'std', 'mean', 'median']) # detail_pct_diff_min = detail_pct_diff_basic.iloc[0, 1:8] # detail_pct_diff_max = detail_pct_diff_basic.iloc[1, 1:8] # detail_pct_diff_poor = detail_pct_diff_max - detail_pct_diff_min # detail_pct_diff_std = detail_pct_diff_basic.iloc[2, 1:8] # detail_pct_diff_mean = detail_pct_diff_basic.iloc[3, 1:8] # detail_pct_diff_median = detail_pct_diff_basic.iloc[4, 1:8] # detail_pct_diff_total = [ # index * detail_time for index in detail_pct_diff_mean] # detail_pct_diff_hit = [ # index * detail_time for index in detail_pct_diff_std] # detail_collapse_pct_diff = [*detail_pct_diff_min, *detail_pct_diff_mean, *detail_pct_diff_max, # *detail_pct_diff_poor, *detail_pct_diff_std, *detail_pct_diff_median, # *detail_pct_diff_total, *detail_pct_diff_hit] # detail = [*detail_constant, *detail_collapse, *detail_collapse_diff, # *detail_collapse_diff_diff, *detail_collapse_diff_diff_diff, # *detail_collapse_ptr, *detail_collapse_pct_diff, # *detail_collapse_diff_diff2_diff, *detail_collapse_diff_diff3_diff] # detail = [*detail_collapse_diff_diff2_diff, *detail_collapse_diff_diff3_diff] self.detail_map[detail_id] = ",".join( [str(index) for index in list(detail_csv.skew()[0:8])]) # self.detail_map[detail_id] = ",".join([str(index) for index in detail]) # self.detail_map[detail_id] = detail_csv['活塞工作时长'].nunique() def pre_data(self, pre, slices): """ prepare data """ # detail_type = pd.get_dummies(pre['设备类型'], prefix=pre[['设备类型']].columns[0]) # pre = pre.drop(['设备类型'], axis=1) # return pd.concat([pre, detail_type], axis=1) pre['设备类型'] = pre['设备类型'].map( {'ZV252': 0, 'ZV573': 1, 'ZV63d': 2, 'ZVa78': 3, 'ZVa9c': 4, 'ZVe44': 4, 'ZVfd4': 5}) if slices is None: return pre else: columns_total = pre.columns if not slices: wait_columns = [*columns_total[:128], *columns_total[188:198]] if slices == 11: wait_columns = [*columns_total[:128]] elif slices == 1: wait_columns = [*columns_total[:128], *columns_total[178:198]] elif slices == 2: wait_columns = [*columns_total[:128], * columns_total[178:198], *columns_total[218:228]] elif slices < 9: wait_columns = [*columns_total[:128], *columns_total[178:198], * columns_total[218:228], *columns_total[88 + slices * 10:98 + slices * 10]] else: wait_columns = [*columns_total[:128], *columns_total[178:198], * columns_total[218:228], *columns_total[108 + slices * 10:118 + slices * 10]] # columns = [*columns_total[:118], *columns_total[178:188], *columns_total[118 + slices * 10:128 + slices * 10]] # columns = columns_total[:118] + [:118 + 10 * slices] # wait_columns = self.good_columns # if slices != -1: # wait_columns = [*wait_columns, self.wait_columns[slices]] wait =
pd.DataFrame(pre, columns=wait_columns)
pandas.DataFrame
import json import pandas as pd pd.set_option('display.max_rows', 30) pd.set_option('display.max_columns', 50) pd.set_option('display.width', 1200) import matplotlib.pyplot as plt import seaborn as sns # used for plot interactive graph. import warnings warnings.filterwarnings('ignore') def load_tmdb_movies(path): df = pd.read_csv(path) df['release_date'] = pd.to_datetime(df['release_date']).apply(lambda x: x.date()) json_columns = ['genres', 'keywords', 'production_countries', 'production_companies', 'spoken_languages'] for column in json_columns: df[column] = df[column].apply(json.loads) return df def load_tmdb_credits(path): df = pd.read_csv(path) json_columns = ['cast', 'crew'] for column in json_columns: df[column] = df[column].apply(json.loads) return df # return a missing value rather than an error upon indexing/key failure def safe_access(container, index_values): result = container try: for idx in index_values: result = result[idx] return result except IndexError or KeyError: return pd.np.nan def get_director(crew_data): directors = [x['name'] for x in crew_data if x['job'] == 'Director'] return safe_access(directors, [0]) def pipe_flatten_names(keywords): return '|'.join([x['name'] for x in keywords]) # TODO: либо переделать это здесь, либо заменить этим мёрдж данных в CBF def convert_to_original_format(movies, credits): tmdb_movies = movies.copy() tmdb_movies['title_year'] = pd.to_datetime(tmdb_movies['release_date']).apply(lambda x: x.year) tmdb_movies['country'] = tmdb_movies['production_countries'].apply(lambda x: safe_access(x, [0, 'name'])) tmdb_movies['language'] = tmdb_movies['spoken_languages'].apply(lambda x: safe_access(x, [0, 'name'])) tmdb_movies['director_name'] = credits['crew'].apply(get_director) tmdb_movies['actor_1_name'] = credits['cast'].apply(lambda x: safe_access(x, [0, 'name'])) tmdb_movies['actor_2_name'] = credits['cast'].apply(lambda x: safe_access(x, [1, 'name'])) tmdb_movies['actor_3_name'] = credits['cast'].apply(lambda x: safe_access(x, [2, 'name'])) tmdb_movies['companies_1'] = tmdb_movies['production_companies'].apply(lambda x: safe_access(x, [0, 'name'])) tmdb_movies['companies_2'] = tmdb_movies['production_companies'].apply(lambda x: safe_access(x, [1, 'name'])) tmdb_movies['companies_3'] = tmdb_movies['production_companies'].apply(lambda x: safe_access(x, [2, 'name'])) tmdb_movies['genres'] = tmdb_movies['genres'].apply(pipe_flatten_names) tmdb_movies['keywords'] = tmdb_movies['keywords'].apply(pipe_flatten_names) return tmdb_movies # For list datatypes def Obtain_list_Occurences(column_name, data): listOcc = [] for i in data[column_name]: split_genre = list(map(str, i.split('|'))) for j in split_genre: if j not in listOcc: listOcc.append(j) return listOcc def count_word(df, ref_col, liste): keyword_count = dict() for s in liste: keyword_count[s] = 0 for liste_keywords in df[ref_col].str.split('|'): if type(liste_keywords) == float and pd.isnull(liste_keywords): continue for s in [s for s in liste_keywords if s in liste]: if pd.notnull(s): keyword_count[s] += 1 # convert the dictionary in a list to sort the keywords by frequency keyword_occurences = [] for k,v in keyword_count.items(): keyword_occurences.append([k,v]) keyword_occurences.sort(key = lambda x:x[1], reverse = True) return keyword_occurences, keyword_count def TopTen(theList): TopTen = list() for i in range(0, 10): TopTen.append(theList[i][0]) return TopTen def show_heatmap(data): plt.figure(figsize=(10, 10)) g = sns.heatmap(data[list(data)].corr(), annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.01) plt.show(g) def show_joint(data, x, y): plt.figure(figsize=(10, 10)) g = sns.jointplot(x=x, y=y, data=data); plt.show(g) def show_regplot(data, x, y): plt.figure(figsize=(10, 10)) g = sns.regplot(x=x, y=y, data=data) plt.show(g) def to_frequency_table(data): frequencytable = {} for key in data: if key in frequencytable: frequencytable[key] += 1 else: frequencytable[key] = 1 return frequencytable movies = load_tmdb_movies("../dataset/tmdb_5000_movies.csv") credits = load_tmdb_credits("../dataset/tmdb_5000_credits.csv") data = convert_to_original_format(movies, credits) # print(data.head()) # missing data total = data.isnull().sum().sort_values(ascending=False) percent = (data.isnull().sum()/data.isnull().count()).sort_values(ascending=False) missing_data =
pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
pandas.concat
"""This script is designed to perform statistics of demographic information """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr,spearmanr,kendalltau import sys sys.path.append(r'D:\My_Codes\LC_Machine_Learning\lc_rsfmri_tools\lc_rsfmri_tools_python') import os from eslearn.utils.lc_read_write_mat import read_mat, write_mat #%% ----------------------------------Our center 550---------------------------------- uid_path_550 = r'D:\WorkStation_2018\SZ_classification\Scale\selected_550.txt' scale_path_550 = r'D:\WorkStation_2018\SZ_classification\Scale\10-24大表.xlsx' headmotion_file = r'D:\WorkStation_2018\SZ_classification\Scale\头动参数_1322.xlsx' scale_data_550 = pd.read_excel(scale_path_550) uid_550 = pd.read_csv(uid_path_550, header=None) scale_selected_550 = pd.merge(uid_550, scale_data_550, left_on=0, right_on='folder', how='inner') describe_bprs_550 = scale_selected_550.groupby('诊断')['BPRS_Total'].describe() describe_age_550 = scale_selected_550.groupby('诊断')['年龄'].describe() describe_duration_550 = scale_selected_550.groupby('诊断')['病程月'].describe() describe_durgnaive_550 = scale_selected_550.groupby('诊断')['用药'].value_counts() describe_sex_550 = scale_selected_550.groupby('诊断')['性别'].value_counts() # Demographic demographic_info_dataset1 = scale_selected_550[['folder', '诊断', '年龄', '性别', '病程月']] headmotion = pd.read_excel(headmotion_file) headmotion = headmotion[['Subject ID','mean FD_Power']] demographic_info_dataset1 = pd.merge(demographic_info_dataset1, headmotion, left_on='folder', right_on='Subject ID', how='inner') demographic_info_dataset1 = demographic_info_dataset1.drop(columns=['Subject ID']) site_dataset1 = pd.DataFrame(np.zeros([len(demographic_info_dataset1),1])) site_dataset1.columns = ['site'] demographic_dataset1_all = pd.concat([demographic_info_dataset1 , site_dataset1], axis=1) demographic_dataset1_all.columns = ['ID','Diagnosis', 'Age', 'Sex', 'Duration', 'MeanFD', 'Site'] demographic_dataset1 = demographic_dataset1_all[['ID','Diagnosis', 'Age', 'Sex', 'MeanFD', 'Site']] demographic_dataset1['Diagnosis'] = np.int32(demographic_dataset1['Diagnosis'] == 3) # Duration and age demographic_duration_dataset1 = demographic_dataset1_all[['Duration', 'Age']].dropna() np.corrcoef(demographic_duration_dataset1['Duration'], demographic_duration_dataset1['Age']) pearsonr(demographic_duration_dataset1['Duraton'], demographic_duration_dataset1['Age']) #%% ----------------------------------BeiJing 206---------------------------------- uid_path_206 = r'D:\WorkStation_2018\SZ_classification\Scale\北大精分人口学及其它资料\SZ_NC_108_100.xlsx' scale_path_206 = r'D:\WorkStation_2018\SZ_classification\Scale\北大精分人口学及其它资料\SZ_NC_108_100-WF.csv' headmotion_file_206 = r'D:\WorkStation_2018\SZ_classification\Scale\北大精分人口学及其它资料\parameters\FD_power' uid_to_remove = ['SZ010109','SZ010009'] scale_data_206 = pd.read_csv(scale_path_206) scale_data_206 = scale_data_206.drop(np.array(scale_data_206.index)[scale_data_206['ID'].isin(uid_to_remove)]) scale_data_206['PANSStotal1'] = np.array([np.float64(duration) if duration.strip() !='' else 0 for duration in scale_data_206['PANSStotal1'].values]) Pscore = pd.DataFrame(scale_data_206[['P1', 'P2', 'P3', 'P4', 'P4', 'P5', 'P6', 'P7']].iloc[:106,:], dtype = np.float64) Pscore = np.sum(Pscore, axis=1).describe() Nscore = pd.DataFrame(scale_data_206[['N1', 'N2', 'N3', 'N4', 'N4', 'N5', 'N6', 'N7']].iloc[:106,:], dtype=np.float64) Nscore = np.sum(Nscore, axis=1).describe() Gscore = pd.DataFrame(scale_data_206[['G1', 'G2', 'G3', 'G4', 'G4', 'G5', 'G6', 'G7', 'G8', 'G9', 'G10', 'G11', 'G12', 'G13', 'G14', 'G15', 'G16']].iloc[:106,:]) Gscore = np.array(Gscore) for i, itemi in enumerate(Gscore): for j, itemj in enumerate(itemi): print(itemj) if itemj.strip() != '': Gscore[i,j] = np.float64(itemj) else: Gscore[i, j] = np.nan Gscore = pd.DataFrame(Gscore) Gscore = np.sum(Gscore, axis=1).describe() describe_panasstotol_206 = scale_data_206.groupby('group')['PANSStotal1'].describe() describe_age_206 = scale_data_206.groupby('group')['age'].describe() scale_data_206['duration'] = np.array([np.float64(duration) if duration.strip() !='' else 0 for duration in scale_data_206['duration'].values]) describe_duration_206 = scale_data_206.groupby('group')['duration'].describe() describe_sex_206 = scale_data_206.groupby('group')['sex'].value_counts() # Demographic uid = pd.DataFrame(scale_data_206['ID']) uid['ID'] = uid['ID'].str.replace('NC','10'); uid['ID'] = uid['ID'].str.replace('SZ','20'); uid = pd.DataFrame(uid, dtype=np.int32) demographic_info_dataset2 = scale_data_206[['group','age', 'sex']] demographic_info_dataset2 = pd.concat([uid, demographic_info_dataset2], axis=1) headmotion_name_dataset2 = os.listdir(headmotion_file_206) headmotion_file_path_dataset2 = [os.path.join(headmotion_file_206, name) for name in headmotion_name_dataset2] meanfd = [] for i, file in enumerate(headmotion_file_path_dataset2): fd = np.loadtxt(file) meanfd.append(np.mean(fd)) meanfd_dataset2 = pd.DataFrame(meanfd) headmotion_name_dataset2 = pd.Series(headmotion_name_dataset2) headmotion_name_dataset2 = headmotion_name_dataset2.str.findall('(NC.*[0-9]\d*|SZ.*[0-9]\d*)') headmotion_name_dataset2 = [str(id[0]) if id != [] else 0 for id in headmotion_name_dataset2] headmotion_name_dataset2 = pd.DataFrame([''.join(id.split('_')) if id != 0 else '0' for id in headmotion_name_dataset2]) headmotion_name_dataset2[0] = headmotion_name_dataset2[0].str.replace('NC','10'); headmotion_name_dataset2[0] = headmotion_name_dataset2[0].str.replace('SZ','20'); headmotion_name_dataset2 = pd.DataFrame(headmotion_name_dataset2, dtype=np.int32) headmotion_name_dataset2 = pd.concat([headmotion_name_dataset2, meanfd_dataset2], axis=1) headmotion_name_dataset2.columns = ['ID','meanFD'] demographic_dataset2 = pd.merge(demographic_info_dataset2, headmotion_name_dataset2, left_on='ID', right_on='ID', how='left') site_dataset2 = pd.DataFrame(np.ones([len(demographic_dataset2),1])) site_dataset2.columns = ['site'] demographic_dataset2 = pd.concat([demographic_dataset2, site_dataset2], axis=1) demographic_dataset2.columns = ['ID', 'Diagnosis', 'Age', 'Sex', 'MeanFD', 'Site'] demographic_dataset2['Diagnosis'] = np.int32(demographic_dataset2['Diagnosis'] == 1) duration_dataset2 = pd.concat([uid, scale_data_206['duration']], axis=1) demographic_duration_dataset2 = pd.merge(duration_dataset2, demographic_dataset2, left_on='ID', right_on='ID') demographic_duration_dataset2 = demographic_duration_dataset2.iloc[:106,:] pearsonr(demographic_duration_dataset2['duration'], demographic_duration_dataset2['Age']) #%% -------------------------COBRE---------------------------------- # Inputs matroot = r'D:\WorkStation_2018\SZ_classification\Data\SelectedFC_COBRE' # all mat files directory scale = r'H:\Data\精神分裂症\COBRE\COBRE_phenotypic_data.csv' # whole scale path headmotion_file_COBRE = r'D:\WorkStation_2018\SZ_classification\Data\headmotion\cobre\HeadMotion.tsv' duration_COBRE = r'D:\WorkStation_2018\SZ_classification\Scale\COBRE_duration.xlsx' # Transform the .mat files to one .npy file allmatname = os.listdir(matroot) # Give labels to each subject, concatenate at the first column allmatname = pd.DataFrame(allmatname) allsubjname = allmatname.iloc[:,0].str.findall(r'[1-9]\d*') allsubjname = pd.DataFrame([name[0] for name in allsubjname]) scale_data = pd.read_csv(scale,sep=',',dtype='str') print(scale_data) diagnosis = pd.merge(allsubjname,scale_data,left_on=0,right_on='ID')[['ID','Subject Type']] scale_data = pd.merge(allsubjname,scale_data,left_on=0,right_on='ID') diagnosis['Subject Type'][diagnosis['Subject Type'] == 'Control'] = 0 diagnosis['Subject Type'][diagnosis['Subject Type'] == 'Patient'] = 1 include_loc = diagnosis['Subject Type'] != 'Disenrolled' diagnosis = diagnosis[include_loc.values] allsubjname = allsubjname[include_loc.values] scale_data_COBRE = pd.merge(allsubjname, scale_data, left_on=0, right_on=0, how='inner').iloc[:,[0,1,2,3,5]] scale_data_COBRE['Gender'] = scale_data_COBRE['Gender'].str.replace('Female', '0') scale_data_COBRE['Gender'] = scale_data_COBRE['Gender'].str.replace('Male', '1') scale_data_COBRE['Subject Type'] = scale_data_COBRE['Subject Type'].str.replace('Patient', '1') scale_data_COBRE['Subject Type'] = scale_data_COBRE['Subject Type'].str.replace('Control', '0') scale_data_COBRE = pd.DataFrame(scale_data_COBRE, dtype=np.float64) describe_age_COBRE = scale_data_COBRE.groupby('Subject Type')['Current Age'].describe() describe_sex_COBRE = scale_data_COBRE.groupby('Subject Type')['Gender'].value_counts() headmotion_COBRE = pd.read_csv(headmotion_file_COBRE,sep='\t', index_col=False) headmotion_COBRE = headmotion_COBRE[['Subject ID', 'mean FD_Power']] scale_data['ID'] = pd.DataFrame(scale_data['ID'], dtype=np.int32) demographic_COBRE =
pd.merge(scale_data, headmotion_COBRE, left_on='ID', right_on='Subject ID', how='inner')
pandas.merge
import numpy as np import pandas as pd import time from pathlib import Path from experiments.evaluation import calculate_metrics from causal_estimators.ipw_estimator import IPWEstimator from causal_estimators.standardization_estimator import \ StandardizationEstimator, StratifiedStandardizationEstimator from experiments.evaluation import run_model_cv from loading import load_from_folder from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC from sklearn.kernel_ridge import KernelRidge from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessClassifier, GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor,\ RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.exceptions import UndefinedMetricWarning import warnings warnings.simplefilter(action='ignore', category=UndefinedMetricWarning) # warnings.filterwarnings("ignore", message="UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.") RESULTS_DIR = Path('results') alphas = {'alpha': np.logspace(-4, 5, 10)} # gammas = [] + ['scale'] Cs = np.logspace(-4, 5, 10) d_Cs = {'C': Cs} SVM = 'svm' d_Cs_pipeline = {SVM + '__C': Cs} max_depths = list(range(2, 10 + 1)) + [None] d_max_depths = {'max_depth': max_depths} d_max_depths_base = {'base_estimator__max_depth': max_depths} Ks = {'n_neighbors': [1, 2, 3, 5, 10, 15, 25, 50, 100, 200]} OUTCOME_MODEL_GRID = [ ('LinearRegression', LinearRegression(), {}), ('LinearRegression_interact', make_pipeline(PolynomialFeatures(degree=2, interaction_only=True), LinearRegression()), {}), ('LinearRegression_degree2', make_pipeline(PolynomialFeatures(degree=2), LinearRegression()), {}), # ('LinearRegression_degree3', # make_pipeline(PolynomialFeatures(degree=3), LinearRegression()), {}), ('Ridge', Ridge(), alphas), ('Lasso', Lasso(), alphas), ('ElasticNet', ElasticNet(), alphas), ('KernelRidge', KernelRidge(), alphas), ('SVM_rbf', SVR(kernel='rbf'), d_Cs), ('SVM_sigmoid', SVR(kernel='sigmoid'), d_Cs), ('LinearSVM', LinearSVR(), d_Cs), # (SVR(kernel='linear'), d_Cs), # doesn't seem to work (runs forever) # TODO: add tuning of SVM gamma, rather than using the default "scale" setting # SVMs are sensitive to input scale ('Standardized_SVM_rbf', Pipeline([('standard', StandardScaler()), (SVM, SVR(kernel='rbf'))]), d_Cs_pipeline), ('Standardized_SVM_sigmoid', Pipeline([('standard', StandardScaler()), (SVM, SVR(kernel='sigmoid'))]), d_Cs_pipeline), ('Standardized_LinearSVM', Pipeline([('standard', StandardScaler()), (SVM, LinearSVR())]), d_Cs_pipeline), ('kNN', KNeighborsRegressor(), Ks), # GaussianProcessRegressor(), # TODO: also cross-validate over min_samples_split and min_samples_leaf ('DecisionTree', DecisionTreeRegressor(), d_max_depths), # ('RandomForest', RandomForestRegressor(), d_max_depths), # TODO: also cross-validate over learning_rate # ('AdaBoost', AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=None)), d_max_depths_base), # ('GradientBoosting', GradientBoostingRegressor(), d_max_depths), # MLPRegressor(max_iter=1000), # MLPRegressor(alpha=1, max_iter=1000), ] PROP_SCORE_MODEL_GRID = [ ('LogisticRegression_l2', LogisticRegression(penalty='l2'), d_Cs), ('LogisticRegression', LogisticRegression(penalty='none'), {}), ('LogisticRegression_l2_liblinear', LogisticRegression(penalty='l2', solver='liblinear'), d_Cs), ('LogisticRegression_l1_liblinear', LogisticRegression(penalty='l1', solver='liblinear'), d_Cs), ('LogisticRegression_l1_saga', LogisticRegression(penalty='l1', solver='saga'), d_Cs), ('LDA', LinearDiscriminantAnalysis(), {}), ('LDA_shrinkage', LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto'), {}), ('QDA', QuadraticDiscriminantAnalysis(), {}), # TODO: add tuning of SVM gamma, rather than using the default "scale" setting ('SVM_rbf', SVC(kernel='rbf', probability=True), d_Cs), ('SVM_sigmoid', SVC(kernel='sigmoid', probability=True), d_Cs), # ('SVM_linear', SVC(kernel='linear', probability=True), d_Cs), # doesn't seem to work (runs forever) # SVMs are sensitive to input scale ('Standardized_SVM_rbf', Pipeline([('standard', StandardScaler()), (SVM, SVC(kernel='rbf', probability=True))]), d_Cs_pipeline), ('Standardized_SVM_sigmoid', Pipeline([('standard', StandardScaler()), (SVM, SVC(kernel='sigmoid', probability=True))]), d_Cs_pipeline), # ('Standardized_SVM_linear', Pipeline([('standard', StandardScaler()), # (SVM, SVC(kernel='linear', probability=True))]), # d_Cs_pipeline), # doesn't seem to work (runs forever) ('kNN', KNeighborsClassifier(), Ks), # GaussianProcessClassifier(), ('GaussianNB', GaussianNB(), {}), # TODO: also cross-validate over min_samples_split and min_samples_leaf ('DecisionTree', DecisionTreeClassifier(), d_max_depths), # ('RandomForest', RandomForestClassifier(), max_depths), # TODO: also cross-validate over learning_rate # ('AdaBoost', AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=None)), d_max_depths_base), # ('GradientBoosting', GradientBoostingClassifier(), d_max_depths), # MLPClassifier(max_iter=1000), # MLPClassifier(alpha=1, max_iter=1000), ] psid_gen_model, args = load_from_folder(dataset='lalonde_psid1') cps_gen_model, args = load_from_folder(dataset='lalonde_cps1') twins_gen_model, args = load_from_folder(dataset='twins') psid_ate = psid_gen_model.ate(noisy=True) psid_ite = psid_gen_model.ite(noisy=True).squeeze() cps_ate = cps_gen_model.ate(noisy=True) cps_ite = cps_gen_model.ite(noisy=True).squeeze() twins_ate = twins_gen_model.ate(noisy=False) twins_ite = twins_gen_model.ite(noisy=False).squeeze() GEN_MODELS = [ ('lalonde_psid', psid_gen_model, psid_ate, psid_ite), ('lalonde_cps', cps_gen_model, cps_ate, cps_ite), ('twins', twins_gen_model, twins_ate, twins_ite) ] t_start = time.time() N_SEEDS_CV = 5 N_SEEDS_METRICS = 5 def run_experiments_for_estimator(get_estimator_func, model_grid, save_location, meta_est_name, model_type, exclude=[], gen_models=GEN_MODELS, n_seeds_cv=N_SEEDS_CV, n_seeds_metrics=N_SEEDS_METRICS): # if outcome_model_grid is None and prop_score_model_grid is None: # raise ValueError('Either outcome_model_grid or prop_score_model_grid must be not None.') # if outcome_model_grid is not None and prop_score_model_grid is not None: # raise ValueError('Currently only supporting one non-None model grid.') # outcome_modeling = outcome_model_grid is not None # model_grid = outcome_model_grid if outcome_modeling else prop_score_model_grid # model_type = 'outcome' if outcome_modeling else 'prop_score' valid_model_types = ['outcome', 'prop_score'] if model_type not in valid_model_types: raise ValueError('Invalid model_type... Valid model_types: {}'.format(valid_model_types)) param_str = 'params_' + model_type + '_model' dataset_dfs = [] for gen_name, gen_model, ate, ite in gen_models: print('DATASET:', gen_name) dataset_start = time.time() model_dfs = [] for model_name, model, param_grid in model_grid: print('MODEL:', model_name) if (gen_name, model_name) in exclude or model_name in exclude: print('SKIPPING') continue model_start = time.time() results = run_model_cv(gen_model, model, model_name=model_name, param_grid=param_grid, n_seeds=n_seeds_cv, model_type=model_type, best_model=False, ret_time=False) metrics_list = [] for params in results[param_str]: try: est_start = time.time() estimator = get_estimator_func(model.set_params(**params)) metrics = calculate_metrics(gen_model, estimator, n_seeds=n_seeds_metrics, conf_ints=False, ate=ate, ite=ite) est_end = time.time() # Add estimator fitting time in minutes metrics['time'] = (est_end - est_start) / 60 metrics_list.append(metrics) except ValueError: print('Skipping {} params: {}'.format(model_name, params)) causal_metrics = pd.DataFrame(metrics_list) model_df =
pd.concat([results, causal_metrics], axis=1)
pandas.concat
import json import pandas as pd from .RelationshipHelper import RelationshipHelper from .TwinHelper import TwinHelper from .QueryHelper import QueryHelper class DeployHelper: def __init__(self, host_name, token_path=None, token=None): self.__rh = RelationshipHelper( host_name=host_name, token_path=token_path, token=token) self.__th = TwinHelper(host_name=host_name, token=self.__rh.get_token()) self.__qh = QueryHelper(host_name=host_name, token=self.__rh.get_token()) ## # Deploy digital twins with a csv file. # The columns should be 'modelid', 'dtid', 'init_property', 'init_component', 'rname', 'rtarget', 'init_rproperty' # 'init_property', 'init_component' and 'init_rproperty' are optional columns. # 'modelid': model ID # 'dtid': Twin ID # 'init_property': (JSON format) Can be empty, the initial value of properties # 'init_component': (JSON format) Can be empty, the initial value of components # 'rname': Relationship name, if 'rname' is specified, 'rtarget' is required. # If multiple relationships are required, just add a new line without 'modelid' and using an existing 'dtid'. # 'rtarget': Target twin ID if a relationship is specified # 'init_rproperty': Initial value of properties of relationship if a relationship is specified. ## def csv_deploy(self, path, atomic=True): # read csv df = pd.read_csv(path) # a list for relationships, used for creating relationships after twins are creating. relationships_storage = list() # used for making this process atomic, if something failed, remove all things in these two list if atomic: succeed_twins = list() succeed_relationships = list() else: failed_twins = list() failed_relationships = list() # check if optional columns exist has_init_property = False has_init_component = False has_init_rproperty = False for c in df.columns: if c == 'init_property': has_init_property = True elif c == 'init_component': has_init_component = True elif c == 'init_rproperty': has_init_rproperty = True for _, row in df.iterrows(): modelid = row['modelid'] dtid = row['dtid'] # check empty data if not has_init_property or pd.isna(row['init_property']): init_property = {} else: init_property = json.loads(row['init_property']) if not has_init_component or pd.isna(row['init_component']): init_component = {} else: init_component = json.loads(row['init_component']) if not has_init_rproperty or pd.isna(row['init_rproperty']): init_rproperty = {} else: init_rproperty = json.loads(row['init_rproperty']) rname = row['rname'] rtarget = row['rtarget'] if not pd.isna(modelid): try: self.__th.add_twin( dtid=dtid, model=modelid, init_property=init_property, init_component=init_component ) print('Add DT: dtid={}, modelid={}'.format(dtid, modelid)) if atomic: succeed_twins.append(dtid) except Exception as e: print('Exception:', e) if atomic: self.__atomic(succeed_twins) return None else: failed_twins.append( (modelid, dtid, init_property, init_component)) # avoid adding relationship before the target is created, store it first if not
pd.isna(rtarget)
pandas.isna
from tqdm import tqdm import numpy as np from scipy import sparse import os import gensim.models import pandas as pd import src.utils as utils from sklearn.ensemble import RandomForestRegressor from src.features.w2v import reduce_dimensions, plot_with_plotly import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix class Node2Vec(): def __init__(self, indir, n=1, p=2, q=1, walk_length=100, test=False, test_offset=0): self.indir = indir self.offset = test_offset outdir = os.path.join(indir, 'walks') if not os.path.exists(outdir): os.mkdir(outdir) fp = os.path.join( outdir, f'node2vec_n={n}_p={p}_q={q}_wl={walk_length}.cor' ) if test: fp = os.path.join( outdir, f'node2vec_n={n}_p={p}_q={q}_wl={walk_length}_test.cor' ) self.corpus_path = fp self.n = n self.p = p self.q = q self.walk_length = walk_length def get_api_neighbors_A(self, app): """Get all API neighbors of an APP from A matrix""" assert app.startswith('app_') app_id = int(app.split('_')[1]) neighbor_ids = np.nonzero(self.A_tr_csr[app_id])[1] return np.array([f'api_{s}' for s in neighbor_ids]) def get_app_neighbors_A(self, api): """Get all APP neighbors of an API from A matrix""" assert api.startswith('api_') api_id = int(api.split('_')[1]) neighbor_ids = np.nonzero(self.A_tr_csc[:, api_id])[0] return np.array([f'app_{s}' for s in neighbor_ids]) def get_api_neighbors_B(self, api): """Get all API neighbors of an API from B matrix""" assert api.startswith('api_') api_id = int(api.split('_')[1]) neighbor_ids = np.nonzero(self.B_tr[:, api_id])[0] ls = [f'api_{s}' for s in neighbor_ids] ls.remove(api) return np.array(ls) def get_api_neighbors_P(self, api): """Get all API neighbors of an API from P matrix""" assert api.startswith('api_') api_id = int(api.split('_')[1]) neighbor_ids = np.nonzero(self.P_tr[:, api_id])[0] ls = [f'api_{s}' for s in neighbor_ids] ls.remove(api) return np.array(ls) def all_neighbors_from_api(self, api): """Get all API neighbors of an APP from all matrices (B and P)""" assert api.startswith('api_') api_id = int(api.split('_')[1]) nbr_apis = np.concatenate([ self.get_api_neighbors_B(api), self.get_api_neighbors_P(api) ]) nbr_apis = np.unique(nbr_apis) nbr_apps = self.get_app_neighbors_A(api) # weights later? no return nbr_apis, nbr_apps def perform_one_walk_full(self, p=1, q=1, walk_length=20, app=None): path = [] if app is None: app = 'app_' + str(np.random.choice(np.arange(self.A_tr_csr.shape[0]))) prev_nbrs = self.get_api_neighbors_A(app) curr_node = np.random.choice(prev_nbrs) prev_node = app path.append(app) path.append(curr_node) for i in range(walk_length - 2): if curr_node.startswith('api_'): nbr_apis, nbr_apps = self.all_neighbors_from_api(curr_node) curr_nbrs = np.concatenate([nbr_apis, nbr_apps]) elif curr_node.startswith('app_'): curr_nbrs = self.get_api_neighbors_A(curr_node) else: raise AssertionError alpha_1 = np.intersect1d(prev_nbrs, curr_nbrs, assume_unique=True) alpha_p = prev_node alpha_q = np.setdiff1d( np.setdiff1d(curr_nbrs, alpha_1, assume_unique=True), [alpha_p], assume_unique=True ) alphas = [*alpha_1, alpha_p, *alpha_q] assert len(alpha_1) + len(alpha_q) + 1 == len(curr_nbrs) probs_q = np.full(len(alpha_q), 1/q/len(alpha_q)) if len(alpha_q) else [] probs_1 = np.full(len(alpha_1), 1/len(alpha_1)) if len(alpha_1) else [] probs = [*probs_1, 1/p, *probs_q] probs = np.array(probs) / sum(probs) new_node = np.random.choice(alphas, p=probs) path.append(new_node) prev_node = curr_node prev_nbrs = curr_nbrs curr_node = new_node return path def perform_one_walk_metapath(self, p=1, q=1, walk_length=20, app=None, metapath='APA'): path = [] if metapath == 'APA': path_stages = ['A', 'P'] if app is None: app = 'app_' + str(np.random.choice(range(self.A_tr_csr.shape[0]))) prev_nbrs = self.get_api_neighbors_A(app) curr_node = np.random.choice(prev_nbrs) prev_node = app path.append(app) path.append(curr_node) prev_stage = 'A' for i in range(walk_length - 2): stage = path_stages[ (path_stages.index(prev_stage) + 1) % len(path_stages) ] print(prev_stage, stage) # if curr_node.startswith('api_'): # nbr_apis, nbr_apps = self.all_neighbors_from_api(curr_node) # curr_nbrs = np.concatenate([nbr_apis, nbr_apps]) # elif curr_node.startswith('app_'): # curr_nbrs = self.get_api_neighbors_A(curr_node) # else: raise AssertionError if stage.startswith('A'): assert curr_node.startswith('app_') curr_nbrs = self.get_api_neighbors_A(curr_node) elif stage.startswith('B'): assert curr_node.startswith('api_') nbr_apps = self.get_app_neighbors_A(curr_node) nbr_apis = self.get_api_neighbors_B(curr_node) curr_nbrs = np.concatenate([nbr_apis, nbr_apps]) elif stage.startswith('P'): assert curr_node.startswith('api_') nbr_apps = self.get_app_neighbors_A(curr_node) nbr_apis = self.get_api_neighbors_P(curr_node) curr_nbrs = np.concatenate([nbr_apis, nbr_apps]) else: raise AssertionError alpha_1 = np.intersect1d(prev_nbrs, curr_nbrs, assume_unique=True) alpha_p = prev_node alpha_q = np.setdiff1d( np.setdiff1d(curr_nbrs, alpha_1, assume_unique=True), [alpha_p], assume_unique=True ) alphas = [*alpha_1, *alpha_q, alpha_p] # print(len(alpha_1), len(alpha_q), len(curr_nbrs)) print(prev_node, curr_node) # print(np.setdiff1d(alphas, curr_nbrs)) # print(np.setdiff1d(curr_nbrs, alphas)) assert len(alphas) == len(curr_nbrs) probs_1 = np.full(len(alpha_1), 1/len(alpha_1)) if len(alpha_1) else [] probs_q = np.full(len(alpha_q), 1/q/len(alpha_q)) if len(alpha_q) else [] probs = [*probs_1, *probs_q, 1/p] probs = np.array(probs) / sum(probs) new_node = np.random.choice(alphas, p=probs) print(new_node) if new_node in alpha_1: prev_stage = prev_stage elif new_node == alpha_p: prev_stage = prev_stage elif new_node in alpha_q: prev_stage = stage else: raise Error('Something went really wrong') path.append(new_node) prev_node = curr_node prev_nbrs = curr_nbrs curr_node = new_node return path def perform_walks(self, n, p, q, walk_length): # n is how many paths from each app n_apps_tr = self.A_tr_csr.shape[0] walks = [] for app_i in tqdm(range(n_apps_tr)): app = 'app_' + str(app_i) for j in range(n): path = self.perform_one_walk_full(p, q, walk_length, app=app) walks.append(path) return walks def load_matrix(self): indir = self.indir A_tr = sparse.load_npz(os.path.join(indir, 'A_reduced_tr.npz')) A_tst = sparse.load_npz(os.path.join(indir, 'A_reduced_tst.npz')) B_tr = sparse.load_npz(os.path.join(indir, 'B_reduced_tr.npz')) P_tr = sparse.load_npz(os.path.join(indir, 'P_reduced_tr.npz')) meta_tr = pd.read_csv(os.path.join(indir, 'meta_tr.csv'), index_col=0) meta_tst = pd.read_csv(os.path.join(indir, 'meta_tst.csv'), index_col=0) assert 'csr_matrix' in str(type(A_tr)) self.A_tr_csr = A_tr self.A_tr_csc = A_tr.tocsc(copy=True) self.A_tst = A_tst self.B_tr = B_tr self.P_tr = P_tr self.train_label = pd.read_csv(os.path.join(indir, 'meta_tr.csv'), index_col=None).rename(columns={'Unnamed: 0':'app_id'}).set_index('app_id')['label'].to_dict() self.test_label = pd.read_csv(os.path.join(indir, 'meta_tst.csv'), index_col=None).rename(columns={'Unnamed: 0':'app_id'}).set_index('app_id')['label'].to_dict() self.meta_tr = meta_tr self.meta_tst = meta_tst self.num_train = A_tr.shape[0] def save_corpus(self): walks = self.perform_walks(n=self.n, p=self.p, q=self.q, walk_length=self.walk_length) # add an offset for every app if in test mode if self.offset > 0: print('hi') for i in range(len(walks)): walk = walks[i] walks[i] = [ f"app_{int(node.split('_')[-1]) + self.offset}" if node.startswith('app') else node for node in walk ] outfile = open(self.corpus_path, 'w') print('saving..') for walk in tqdm(walks): outfile.write(' '.join(walk) + '\n') outfile.close() def create_model(self): sentences = MyCorpus(self.corpus_path) self.model = gensim.models.Word2Vec( sentences=sentences, size=64, sg=1, negative=5, window=3, iter=5, min_count=1 ) def predict_embeddings(self): X = [] Y = [] train_labels = [] for j in range(self.A_tr_csr.shape[0]): indexes = np.nonzero((self.A_tr_csr[j]).toarray()[0])[0] all_api = self.model.wv.vocab.keys() matrix = np.zeros(64) for i in indexes: element = 'api_' + str(i) if element in all_api: matrix += self.model.wv[element] matrix /= len(all_api) X.append(matrix) Y.append(self.model.wv['app_' + str(j)]) train_labels.append('app_' + str(j)) regressor = RandomForestRegressor(n_estimators=500, oob_score=True, random_state=100).fit(X, Y) test_X = [] test_labels = [] for j in range(self.A_tst.shape[0]): indexes = np.nonzero((self.A_tst[j]).toarray()[0])[0] all_api = self.model.wv.vocab.keys() matrix = np.zeros(64) for i in indexes: element = 'api_' + str(i) if element in all_api: matrix += self.model.wv[element] matrix /= len(all_api) test_X.append(matrix) test_labels.append('app_' + str(j + self.A_tr_csr.shape[0])) embeddings = regressor.predict(test_X) for i in range(len(test_labels)): self.model.wv[test_labels[i]] = embeddings[i] self.train_embeddings = Y self.test_embeddings = embeddings self.train_labels = self.meta_tr.label == 'class1' self.test_labels = self.meta_tst.label == 'class1' def plot_embeddings(self): x_vals, y_vals, labels = reduce_dimensions(self) df_dict = {'x_vals': x_vals, 'y_vals': y_vals, 'labels': labels} df = pd.DataFrame(df_dict) graph_labels = {0: 'train_benign', 1: 'train_malware', 2: 'test_benign', 3: 'test_malware'} df = df.replace({"labels": graph_labels}) graph_title = self.corpus_path.split('/')[-1].split('_')[0] + " two dimensional embeddings" plot_with_plotly(df, graph_title) def train_nn(self, num_epoch=5000): train_X = torch.tensor(self.train_embeddings).float() test_X = torch.tensor(self.test_embeddings).float() train_Y = torch.tensor(self.train_labels).float() test_Y = torch.tensor(self.test_labels).float() net = Net(train_X.shape[1]) criterion = torch.nn.MSELoss(reduction='mean') optimizer = torch.optim.Adamax(net.parameters(), lr=0.0001) y_pred = None y_test_pred = None for epoch in range(num_epoch): # loop over the dataset multiple times running_loss = 0.0 y_pred = net(train_X) y_pred = torch.squeeze(y_pred) train_loss = criterion(y_pred, train_Y) if epoch % 1000 == 0: train_acc = calculate_accuracy(train_Y, y_pred) y_test_pred = net(test_X) y_test_pred = torch.squeeze(y_test_pred) test_loss = criterion(y_test_pred, test_Y) test_acc = calculate_accuracy(test_Y, y_test_pred) print( f'''epoch {epoch} Train set - loss: {round_tensor(train_loss)}, accuracy: {round_tensor(train_acc)} Test set - loss: {round_tensor(test_loss)}, accuracy: {round_tensor(test_acc)} ''') optimizer.zero_grad() train_loss.backward() optimizer.step() print('Finished Training') self.nn_train_pred = y_pred self.nn_test_pred = y_test_pred def evaluate(self): cm = confusion_matrix(torch.tensor(self.test_labels).float().numpy()*1, self.nn_test_pred.ge(.5).view(-1).detach().numpy()*1) df_cm =
pd.DataFrame(cm, index=['benign', 'malware'], columns=['benign', 'malware'])
pandas.DataFrame
# -*- coding: utf-8 -*- ''' This code generates Fig. S5 The probability that cooling associated with anthropogenic aerosols has resulted in economic benefits at the country-level. by <NAME> (<EMAIL>) ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import _env from matplotlib.colors import ListedColormap import seaborn.apionly as sns import matplotlib import geopandas as gp from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection matplotlib.rcParams['font.family'] = 'sans-serif' matplotlib.rcParams['font.sans-serif'] = 'Helvetica' def set_latlon_ticks(ax,m): ax.set_xticks(np.arange(-160,161,40)) ax.set_xticklabels('') ax.set_yticks(np.arange(-90,91,45)) ax.set_yticklabels('') parallels = np.arange(-90.,91,45.) m.drawparallels(parallels,labels=[True,False,False,False],dashes=[3,3],xoffset=5,linewidth = 0) meridians = np.arange(-160,161,40.) m.drawmeridians(meridians,labels=[True,False,False,True],dashes=[3,3],yoffset=5,linewidth = 0) ds = 'ERA-Interim' if_ctryshp = (_env.idir_root + '/shape/country/country1.shp') odir_plot = _env.odir_root + '/plot/' _env.mkdirs(odir_plot) of_plot = odir_plot + 'ED_F5.Map_Ctry_GDP_Lost_Possibility.png' fig = plt.figure(figsize=(21,10)) for iscen,scen in enumerate(_env.scenarios[1::]): if_gdp = _env.odir_root + '/summary_'+ds+'/country_specific_statistics_GDP_' + ds + '_' + scen + '_Burke.xls' if_ctrylist = _env.idir_root + '/regioncode/Country_List.xls' itbl_gdp = pd.read_excel(if_gdp,'country-lag0') itbl_gdp.set_index('iso',inplace = True) ishp_ctry = gp.read_file(if_ctryshp) ishp_ctry.loc[ishp_ctry['GMI_CNTRY'] == 'ROM','GMI_CNTRY'] = 'ROU' ishp_ctry.loc[ishp_ctry['GMI_CNTRY'] == 'ZAR','GMI_CNTRY'] = 'COD' ishp_ctry.set_index('GMI_CNTRY',inplace = True) ishp_ctry['prob_damg'] = 1-itbl_gdp['probability_damage'] ishp_ctry.loc[
pd.isna(ishp_ctry['prob_damg'])
pandas.isna
import os import numpy as np import pandas as pd from numpy import abs from numpy import log from numpy import sign from scipy.stats import rankdata import scipy as sp import statsmodels.api as sm from data_source import local_source from tqdm import tqdm as pb # region Auxiliary functions def ts_sum(df, window=10): """ Wrapper function to estimate rolling sum. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series sum over the past 'window' days. """ return df.rolling(window).sum() def ts_prod(df, window=10): """ Wrapper function to estimate rolling product. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series product over the past 'window' days. """ return df.rolling(window).prod() def sma(df, window=10): #simple moving average """ Wrapper function to estimate SMA. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series SMA over the past 'window' days. """ return df.rolling(window).mean() def ema(df, n, m): #exponential moving average """ Wrapper function to estimate EMA. :param df: a pandas DataFrame. :return: ema_{t}=(m/n)*a_{t}+((n-m)/n)*ema_{t-1} """ result = df.copy() for i in range(1,len(df)): result.iloc[i]= (m*df.iloc[i-1] + (n-m)*result[i-1]) / n return result def wma(df, n): """ Wrapper function to estimate WMA. :param df: a pandas DataFrame. :return: wma_{t}=0.9*a_{t}+1.8*a_{t-1}+...+0.9*n*a_{t-n+1} """ weights = pd.Series(0.9*np.flipud(np.arange(1,n+1))) result = pd.Series(np.nan, index=df.index) for i in range(n-1,len(df)): result.iloc[i]= sum(df[i-n+1:i+1].reset_index(drop=True)*weights.reset_index(drop=True)) return result def stddev(df, window=10): """ Wrapper function to estimate rolling standard deviation. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return df.rolling(window).std() def correlation(x, y, window=10): """ Wrapper function to estimate rolling corelations. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return x.rolling(window).corr(y) def covariance(x, y, window=10): """ Wrapper function to estimate rolling covariance. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return x.rolling(window).cov(y) def rolling_rank(na): """ Auxiliary function to be used in pd.rolling_apply :param na: numpy array. :return: The rank of the last value in the array. """ return rankdata(na)[-1] def ts_rank(df, window=10): """ Wrapper function to estimate rolling rank. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series rank over the past window days. """ return df.rolling(window).apply(rolling_rank) def rolling_prod(na): """ Auxiliary function to be used in pd.rolling_apply :param na: numpy array. :return: The product of the values in the array. """ return np.prod(na) def product(df, window=10): """ Wrapper function to estimate rolling product. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series product over the past 'window' days. """ return df.rolling(window).apply(rolling_prod) def ts_min(df, window=10): """ Wrapper function to estimate rolling min. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return df.rolling(window).min() def ts_max(df, window=10): """ Wrapper function to estimate rolling min. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series max over the past 'window' days. """ return df.rolling(window).max() def delta(df, period=1): """ Wrapper function to estimate difference. :param df: a pandas DataFrame. :param period: the difference grade. :return: a pandas DataFrame with today’s value minus the value 'period' days ago. """ return df.diff(period) def delay(df, period=1): """ Wrapper function to estimate lag. :param df: a pandas DataFrame. :param period: the lag grade. :return: a pandas DataFrame with lagged time series """ return df.shift(period) def rank(df): """ Cross sectional rank :param df: a pandas DataFrame. :return: a pandas DataFrame with rank along columns. """ #return df.rank(axis=1, pct=True) return df.rank(pct=True) def scale(df, k=1): """ Scaling time serie. :param df: a pandas DataFrame. :param k: scaling factor. :return: a pandas DataFrame rescaled df such that sum(abs(df)) = k """ return df.mul(k).div(np.abs(df).sum()) def ts_argmax(df, window=10): """ Wrapper function to estimate which day ts_max(df, window) occurred on :param df: a pandas DataFrame. :param window: the rolling window. :return: well.. that :) """ return df.rolling(window).apply(np.argmax) + 1 def ts_argmin(df, window=10): """ Wrapper function to estimate which day ts_min(df, window) occurred on :param df: a pandas DataFrame. :param window: the rolling window. :return: well.. that :) """ return df.rolling(window).apply(np.argmin) + 1 def decay_linear(df, period=10): """ Linear weighted moving average implementation. :param df: a pandas DataFrame. :param period: the LWMA period :return: a pandas DataFrame with the LWMA. """ try: df = df.to_frame() #Series is not supported for the calculations below. except: pass # Clean data if df.isnull().values.any(): df.fillna(method='ffill', inplace=True) df.fillna(method='bfill', inplace=True) df.fillna(value=0, inplace=True) na_lwma = np.zeros_like(df) na_lwma[:period, :] = df.iloc[:period, :] na_series = df.values divisor = period * (period + 1) / 2 y = (np.arange(period) + 1) * 1.0 / divisor # Estimate the actual lwma with the actual close. # The backtest engine should assure to be snooping bias free. for row in range(period - 1, df.shape[0]): x = na_series[row - period + 1: row + 1, :] na_lwma[row, :] = (np.dot(x.T, y)) return pd.DataFrame(na_lwma, index=df.index, columns=['CLOSE']) def highday(df, n): #计算df前n期时间序列中最大值距离当前时点的间隔 result = pd.Series(np.nan, index=df.index) for i in range(n,len(df)): result.iloc[i]= i - df[i-n:i].idxmax() return result def lowday(df, n): #计算df前n期时间序列中最小值距离当前时点的间隔 result = pd.Series(np.nan, index=df.index) for i in range(n,len(df)): result.iloc[i]= i - df[i-n:i].idxmin() return result def daily_panel_csv_initializer(csv_name): #not used now if os.path.exists(csv_name)==False: stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY') date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"') dataset=0 for date in date_list["TRADE_DATE"]: stock_list[date]=stock_list["INDUSTRY"] stock_list.drop("INDUSTRY",axis=1,inplace=True) stock_list.set_index("TS_CODE", inplace=True) dataset = pd.DataFrame(stock_list.stack()) dataset.reset_index(inplace=True) dataset.columns=["TS_CODE","TRADE_DATE","INDUSTRY"] dataset.to_csv(csv_name,encoding='utf-8-sig',index=False) else: dataset=pd.read_csv(csv_name) return dataset def IndustryAverage_vwap(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_vwap.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average vwap data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average vwap data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average vwap data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VWAP = (quotations_daily_chosen['AMOUNT']*1000)/(quotations_daily_chosen['VOL']*100+1) result_unaveraged_piece = VWAP result_unaveraged_piece.rename("VWAP_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["VWAP_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_vwap.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_close(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_close.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average close data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average close data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average close data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass CLOSE = quotations_daily_chosen['CLOSE'] result_unaveraged_piece = CLOSE result_unaveraged_piece.rename("CLOSE_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["CLOSE_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_close.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_low(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_low.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average low data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average low data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average low data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass LOW = quotations_daily_chosen['LOW'] result_unaveraged_piece = LOW result_unaveraged_piece.rename("LOW_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["LOW_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_low.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_volume(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_volume.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average volume data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average volume data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average volume data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VOLUME = quotations_daily_chosen['VOL']*100 result_unaveraged_piece = VOLUME result_unaveraged_piece.rename("VOLUME_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["VOLUME_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_volume.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_adv(num): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_adv{num}.csv".format(num=num)) result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average adv{num} data needs not to be updated.".format(num=num)) return result_industryaveraged_df else: print("The corresponding industry average adv{num} data needs to be updated.".format(num=num)) first_date_update = date_list_update[0] except: print("The corresponding industry average adv{num} data is missing.".format(num=num)) result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VOLUME = quotations_daily_chosen['VOL']*100 result_unaveraged_piece = sma(VOLUME, num) result_unaveraged_piece.rename("ADV{num}_UNAVERAGED".format(num=num),inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["ADV{num}_UNAVERAGED".format(num=num)].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_adv{num}.csv".format(num=num),encoding='utf-8-sig') return result_industryaveraged_df #(correlation(delta(close, 1), delta(delay(close, 1), 1), 250) *delta(close, 1)) / close def IndustryAverage_PreparationForAlpha048(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha048.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average data for alpha048 needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average data for alpha048 needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average dataset for alpha048 is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass CLOSE = quotations_daily_chosen['CLOSE'] result_unaveraged_piece = (correlation(delta(CLOSE, 1), delta(delay(CLOSE, 1), 1), 250) *delta(CLOSE, 1)) / CLOSE result_unaveraged_piece.rename("PREPARATION_FOR_ALPHA048_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["PREPARATION_FOR_ALPHA048_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_PreparationForAlpha048.csv",encoding='utf-8-sig') return result_industryaveraged_df #(vwap * 0.728317) + (vwap *(1 - 0.728317)) def IndustryAverage_PreparationForAlpha059(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_PreparationForAlpha059.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average data for alpha059 needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average data for alpha059 needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average dataset for alpha059 is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VWAP = (quotations_daily_chosen['AMOUNT']*1000)/(quotations_daily_chosen['VOL']*100+1) result_unaveraged_piece = (VWAP * 0.728317) + (VWAP *(1 - 0.728317)) result_unaveraged_piece.rename("PREPARATION_FOR_ALPHA059_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=
pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # Desafio 5 # # Neste desafio, vamos praticar sobre redução de dimensionalidade com PCA e seleção de variáveis com RFE. Utilizaremos o _data set_ [Fifa 2019](https://www.kaggle.com/karangadiya/fifa19), contendo originalmente 89 variáveis de mais de 18 mil jogadores do _game_ FIFA 2019. # # > Obs.: Por favor, não modifique o nome das funções de resposta. # ## _Setup_ geral # In[45]: from math import sqrt import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.stats as sct import seaborn as sns import statsmodels.api as sm import statsmodels.stats as st from sklearn.decomposition import PCA #from loguru import logger # In[46]: # Algumas configurações para o matplotlib. #%matplotlib inline #from IPython.core.pylabtools import figsize #figsize(12, 8) #sns.set() # In[78]: fifa = pd.read_csv("/home/gabriel/codenation/data-science-3/data.csv") # In[79]: columns_to_drop = ["Unnamed: 0", "ID", "Name", "Photo", "Nationality", "Flag", "Club", "Club Logo", "Value", "Wage", "Special", "Preferred Foot", "International Reputation", "Weak Foot", "Skill Moves", "Work Rate", "Body Type", "Real Face", "Position", "Jersey Number", "Joined", "Loaned From", "Contract Valid Until", "Height", "Weight", "LS", "ST", "RS", "LW", "LF", "CF", "RF", "RW", "LAM", "CAM", "RAM", "LM", "LCM", "CM", "RCM", "RM", "LWB", "LDM", "CDM", "RDM", "RWB", "LB", "LCB", "CB", "RCB", "RB", "Release Clause" ] try: fifa.drop(columns_to_drop, axis=1, inplace=True) except KeyError: logger.warning(f"Columns already dropped") # ## Inicia sua análise a partir daqui # In[5]: # Sua análise começa aqui. # In[80]: fifa.shape # In[8]: fifa.head() # In[5]: fifa.describe() # In[49]: def missing_values_table(df): mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum()/len(df) mis_val_table =
pd.concat([mis_val, mis_val_percent], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[1]: # Importing dependencies import os import pandas as pd from pandas.io.json import json_normalize import numpy as np pd.set_option('display.max_columns', None) # In[2]: # Path to source JSON businessJson=os.path.join('sourceData', 'business.json') # In[3]: # Path to Yelp food/restaurant categories csv yelpCategories=os.path.join('sourceData', 'yelpCategories.csv') # In[4]: # Creating pd dataframe business_raw=pd.read_json(businessJson, lines=True) # In[5]: # Select only the businesses in Ontario business_on=business_raw.loc[business_raw['state'] == 'ON'] # In[6]: # Dropping any rows with blank values in these categories business_on=business_on.dropna(subset=['name', 'address', 'postal_code', 'city', 'state', 'latitude', 'longitude', 'attributes', 'categories', 'hours']).reset_index(drop=True) # In[7]: # Regex to fix spelling mistakes business_on.replace({'city': {'^AGINCOURT$': 'Agincourt', '^Bradford West Gwillimbury$': 'Bradford', '^East Ajax$': 'Ajax', '^Caledon.{,8}$': 'Caledon', '^East Gwil{1,2}imbury$': 'East Gwillimbury', '(?i)^.*icoke$': 'Etobicoke', '^.{,9}Toro?nto.{,9}$': 'Toronto', 'Malton': 'Mississauga', '^.{,5}Missis{1,2}a?ua?g.{1,2}$': 'Mississauga', '^Regional Municipality of York$': 'North York', '(?i)^North.{0,2}York$': 'North York', '^York Regional Municipality$': 'York', '^Willowdale$': 'North York', '^North of Brampton$': 'Brampton', '(?i)^Oak.?ridges$': 'Oak Ridges', '^oakville$': 'Oakville', '(?i)^Richmond?.?Hill?$': 'Richmond Hill', '^.{,8}Scar.?bo?rough$': 'Scarborough', '^.{,11}Stouffville$': 'Stouffville', '(?i)^Thornhil{,2}$': 'Thornhill', '^.*Vaugh.{,3}$': 'Vaughan', '^Wh.?i.?by$': 'Whitby'}}, inplace=True, regex=True) # In[8]: business=business_on.loc[business_on['city'].isin(['Unionville', 'Bolton', 'York', 'Bradford', 'Concord', 'East York', 'Stouffville', 'Woodbridge', 'Aurora', 'Ajax', 'Whitby', 'Pickering', 'Thornhill', 'Newmarket', 'Oakville', 'Etobicoke', 'North York', 'Scarborough', 'Vaughan', 'Richmond Hill', 'Brampton', 'Markham', 'Mississauga', 'Toronto'])].reset_index(drop=True) # In[9]: # Only taking these columns business=business.loc[:, ['name', 'address', 'postal_code', 'city', 'latitude', 'longitude','categories', 'stars', 'hours','attributes']] business.columns=['Name', 'Address', 'Postal_code', 'City', 'Latitude', 'Longitude', 'Categories', 'Stars', 'Hours', 'Attributes'] # ## Handling the hours column # In[10]: # Turning the hours column in to a df hours_raw=json_normalize(data=business['Hours']) business.drop(columns='Hours', inplace=True) # In[11]: # Reorganise columns hours_raw=hours_raw.loc[:,['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']] # In[12]: # Create a new df with opening and closing hours columnsHours=hours_raw.columns hours=hours_raw # In[13]: # Loop through and split the columns for column in columnsHours: hours[[f"{column}_open", f"{column}_close"]]=hours_raw[column].str.split('-', expand=True) hours.drop(columns=columnsHours, inplace=True) hours=hours.apply(lambda x: x.str.strip()) # In[14]: # # Create new list of column names and convert the time to minutes columnsHours=hours.columns for column in columnsHours: hours[column]=hours[column].replace('$', ':00', regex=True) hours[column]=
pd.to_timedelta(hours[column])
pandas.to_timedelta
# -*- coding: utf-8 -*- """ Creates textual features from an intput paragraph """ # Load Packages import textstat from sklearn.preprocessing import label_binarize from sklearn.decomposition import PCA import numpy as np import pandas as pd import pkg_resources import ast import spacy #from collections import Counter from pyphen import Pyphen import pickle #import xgboost # lead the language model from spay. this must be downloaded nlp = spacy.load('en_core_web_md') pyphen_dic = Pyphen(lang='en') # set word lists to be used ## This corpus comes from the Cambridge English Corpus of spoken English and includes ## all the NGSL and SUP words needed to get 90% coverage. NGSL_wordlist = set([ ln.decode('utf-8').strip() for ln in pkg_resources.resource_stream('financial_readability', 'word_lists/NGSL_wordlist.txt') ]) ## The Business Service List 1.0, also known as the BSL (<NAME>. & Culligan, B., 2016) is a list of approximately 1700 words ## that occur with very high frequency within the domain of general business English. Based on a 64.5 million word corpus of business ## texts, newspapers, journals and websites, the BSL 1.0 version gives approximately 97% coverage of general business English materials ## when learned in combination with the 2800 words of core general English in the New General Service List or NGSL (<NAME>., Culligan, B., and Phillips, J. 2013) BSL_wordlist = set([ ln.decode('utf-8').strip() for ln in pkg_resources.resource_stream('financial_readability', 'word_lists/BSL_wordlist.txt') ]) ## New Academic Word List (NAWL): The NAWL is based on a carefully selected academic corpus of 288 million words. NAWL_wordlist = set([ ln.decode('utf-8').strip() for ln in pkg_resources.resource_stream('financial_readability', 'word_lists/NAWL_wordlist.txt') ]) ## Load tf_idf score list idf_list = list([ ln.decode('utf-8').strip() for ln in pkg_resources.resource_stream('financial_readability', 'word_lists/dict_idf.txt') ]) idf_dict = ast.literal_eval(idf_list[0]) ## Load the BOFIR model with pkg_resources.resource_stream('financial_readability', 'models/bofir_model_5c.pickle.dat') as f: bofir_model_5c = pickle.load(f) with pkg_resources.resource_stream('financial_readability', 'models/bofir_model_3c.pickle.dat') as f: bofir_model_3c = pickle.load(f) #bofir_model_5c = pickle.load(open("bofir_model_5c.pickle.dat", "rb")) #bofir_model_3c = pickle.load(open("bofir_model_3c.pickle.dat", "rb")) #%% # Create Features class readability: """ Creates various text features for a paragraph Methods ------- syl_count(word=None) Counts the number of syllables for a given word linguistic_features(as_dict = False) Returns the tokens and their linguistic features based on the spacy doc container pos_onehot(): Creates the POS tag per token in a one-hot encoding. dep_onehot(): Creates the dependency tag per token in a one-hot encoding. wordlist_features(as_dict=False): Creates word features based on word lists and the calculated tf-idf scores. other_features(as_dict=False): Returns dummies for the remaining spacy word features classic_features(as_dict=False): Returns the classic word features check_word_list(token, word_list='NGSL'): Function to check if token exists in specific word list. check_tfidf(token): Function to check if token exists in tf_idf list and return idf score. tree_features(as_dict=False): Function to create the tree based features. semantic_features(as_dict=False): Function to calculate the cumulative explained variance for PCA on the word embeddings. word_features(embeddings = False): Combines the featuresets to a Dataframe with all the 88 word-features. paragraph_features(embed = False, as_dict = False): Create the feature set over the total paragraph based on the features estimated per word. bofir(cat5 = True): Use the paragraph features to calculate the BOFIR score for a given paragraph. readability_measures(as_dict = False): Return the BOFIR score as well as other classic readability formulas for the paragraph. """ def __init__(self, paragraph): self.paragraph = paragraph # create the standard readability measures self.flesch = textstat.flesch_reading_ease(self.paragraph) # create a spacy doc container self.doc = nlp(paragraph) # Spacy text variables self.token = [token.text for token in self.doc] self.sent = [sentence.text for sentence in self.doc.sents] self.lenght = [len(token.text) for token in self.doc] self.lemma = [token.lemma_ for token in self.doc] self.pos = [token.pos_ for token in self.doc] self.tag = [token.tag_ for token in self.doc] self.dep = [token.dep_ for token in self.doc] self.like_email = [token.like_email for token in self.doc] self.like_url = [token.like_url for token in self.doc] self.is_alpha = [token.is_alpha for token in self.doc] self.is_stop = [token.is_stop for token in self.doc] self.ent_type = [token.ent_type_ for token in self.doc] self.ent_pos = [token.ent_iob_ for token in self.doc] self.word_vectors = [token.vector for token in self.doc] self.vector_norm = [token.vector_norm for token in self.doc] self.is_oov = [token.is_oov for token in self.doc] # lexical chain - dependencies of words: self.subtree_lenght = [len(list(token.subtree)) for token in self.doc] self.n_left = [len(list(token.lefts)) for token in self.doc] self.n_right = [len(list(token.rights)) for token in self.doc] self.ancestors = [len(list(token.ancestors)) for token in self.doc] self.children = [len(list(token.children)) for token in self.doc] # count syllables per token self.syllables = [self.syl_count(token.text) for token in self.doc] # number of sentences and tokens self.n_sentences = len(self.sent) self.n_tokens = len(self.token) def syl_count(self, word): """ Counts the number of syllables for a given word Parameters ---------- word : str The token to be analyzed Returns ------- count: integer The number of syllables """ count = 0 split_word = pyphen_dic.inserted(word.lower()) count += max(1, split_word.count("-") + 1) return count def linguistic_features(self, as_dict = False): """ Function that returns the tokens and their linguistic features based on the spacy doc container doc: spacy doc input Parameters ---------- as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables Output Variables: ------- Text: The original word text. Lemma: The base form of the word. POS: The simple part-of-speech tag. Tag: The detailed part-of-speech tag. Dep: Syntactic dependency, i.e. the relation between tokens. like_email: Does the token resemble an email address? is_alpha: Does the token consist of alphabetic characters? is stop: Is the token part of a stop list, i.e. the most common words of the language? ent_type: Named entity type ent_pos: IOB code of named entity tag. vector_norm: The L2 norm of the token’s vector (the square root of the sum of the values squared) is_oov: Out-of-vocabulary lexical chain variables determine the dependency tree: subtree_lenght: total number of suptrees n_left: number of connections left n_left: number of connections right ancestors: number of nodes above children: number of nodes below syllables: number of syllables (only for words found in the dictionary) """ d = {'token':self.token,'lenght':self.lenght,'lemma':self.lemma, 'pos':self.pos,'tag':self.tag, 'dep':self.dep,'like_email':self.like_email,'like_url':self.like_url, 'stop':self.is_stop, 'alpha':self.is_alpha, 'ent_type':self.ent_type,'ent_pos':self.ent_pos, 'vector_norm':self.vector_norm,'oov':self.is_oov, 'subtree_lenght':self.subtree_lenght, 'n_left':self.n_left, 'n_right':self.n_right,'ancestors':self.ancestors, 'children':self.children,'syllables': self.syllables} if as_dict: return d else: return pd.DataFrame(d) def pos_onehot(self): """ Creates the POS tag per token in a one-hot encoding. (To be agregated over the paragraph or used as input into a RNN.) Returns ------- d: pandas DataFrame Dataframe with all the Output Variables Output Variables: ------- ADJ adjective ADP adposition ADV adverb AUX auxiliary CONJ conjunction CCONJ coordinating conjunction DET determiner INTJ interjection NOUN noun NUM numeral PART particle PRON pronoun PROPN proper noun PUNCT punctuation SCONJ subordinating conjunction SYM symbol VERB verb X other SPACE space """ pos_tags_classes = ['ADJ', 'ADP', 'ADV','AUX', 'CONJ', 'CCONJ', 'DET', 'INTJ', 'JJS', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X', 'SPACE'] pos_tag_data = self.pos # one hot encoding of the different POS tags x = label_binarize(pos_tag_data, classes=pos_tags_classes) output = pd.DataFrame(x, columns=pos_tags_classes) return output def dep_onehot(self): """ Creates the dependency tag per token in a one-hot encoding. Returns ------- d: pandas DataFrame Dataframe with all the Output Variables Output Variables: ------- acl clausal modifier of noun (adjectival clause) acomp adjectival complement advcl adverbial clause modifier advmod adverbial modifier agent agent amod adjectival modifier appos appositional modifier attr attribute aux auxiliary auxpass auxiliary (passive) case case marking cc coordinating conjunction ccomp clausal complement compound compound conj conjunct cop copula csubj clausal subject csubjpass clausal subject (passive) dative dative dep unclassified dependent det determiner dobj direct object expl expletive intj interjection mark marker meta meta modifier neg negation modifier nn noun compound modifier nounmod modifier of nominal npmod noun phrase as adverbial modifier nsubj nominal subject nsubjpass nominal subject (passive) nummod numeric modifier oprd object predicate obj object obl oblique nominal parataxis parataxis pcomp complement of preposition pobj object of preposition poss possession modifier preconj pre-correlative conjunction prep prepositional modifier prt particle punct punctuation quantmod modifier of quantifier relcl relative clause modifier root root xcomp open clausal complement """ dep_tags_classes = ['acl', 'acomp', 'advcl','advmod', 'agent', 'amod', 'appos', 'attr', 'aux', 'auxpass', 'case', 'cc', 'ccomp', 'compound', 'conj', 'cop', 'csubj', 'csubjpass', 'dative', 'dep','det', 'dobj', 'expl', 'intj', 'mark', 'meta', 'neg', 'nn', 'nounmod', 'npmod', 'nsubj','nsubjpass', 'nummod', 'oprd', 'obj', 'obl', 'parataxis', 'pcomp', 'pobj', 'poss', 'preconj', 'prep','prt', 'punct', 'quantmod', 'relcl','root', 'xcomp'] # one hot encoding of the different DEP tags x = label_binarize(self.dep, classes=dep_tags_classes) output = pd.DataFrame(x, columns=dep_tags_classes) return output def wordlist_features(self, as_dict=False): """ Creates word features based on word lists and the calculated tf-idf scores. Parameters ---------- as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables """ NGSL = [self.check_word_list(token.lower(), word_list='NGSL') for token in self.token] BSL = [self.check_word_list(token.lower(), word_list='BSL') for token in self.token] NAWL = [self.check_word_list(token.lower(), word_list='NAWL') for token in self.token] idf = [self.check_tfidf(token.lower()) for token in self.token] d = {'ngsl': NGSL,'bsl': BSL,'nawl': NAWL, 'idf': idf} if as_dict: return d else: return pd.DataFrame(d) def other_features(self, as_dict=False): """ Returns dummies for the remaining spacy word features Parameters ---------- as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables """ # the dummy variables is_entity = [1 if token != 'O' else 0 for token in self.ent_pos] like_email = [1 if token == True else 0 for token in self.like_email] like_url = [1 if token == True else 0 for token in self.like_url] is_stop = [1 if token == True else 0 for token in self.is_stop] is_alpha = [1 if token == True else 0 for token in self.is_alpha] is_oov = [1 if token == True else 0 for token in self.is_oov] d = {'is_entity': is_entity,'like_email': like_email,'like_url': like_url, 'is_stop': is_stop, 'is_alpha': is_alpha, 'is_oov': is_oov, 'vector_norm':self.vector_norm} if as_dict: return d else: return pd.DataFrame(d) def classic_features(self, as_dict=False): """ Returns the classic word features Parameters ---------- as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables """ large_words = [1 if syl >= 3 else 0 for syl in self.syllables] polsyll = [1 if syl > 1 else 0 for syl in self.syllables] # the dummy variables d = {'syllables': self.syllables, 'large_word': large_words, 'polsyll':polsyll, 'lenght':self.lenght} if as_dict: return d else: return pd.DataFrame(d) def check_word_list(self, token, word_list='NGSL'): """ Function to check if token exists in specific word list. Parameters ---------- token : str The token to be analyzed word_list : str Defines the wordlist to be considered (NGSL, BSL or NAWL) if nothing is specified, NAWL is considered Returns ------- x: integer Dummy (0 or 1) if word is in the specified word list """ if word_list=='NGSL': word_set = NGSL_wordlist elif word_list=='BSL': word_set = BSL_wordlist else: word_set = NAWL_wordlist if token not in word_set: x = 0 else: x=1 return x def check_tfidf(self, token): """ Function to check if token exists in tf_idf list and return idf score. Parameters ---------- token : str The token to be analyzed Returns ------- value: integer IDF value """ value = idf_dict.get(token, 0) return value def tree_features(self, as_dict=False): """ Function to create the tree based features. Parameters ---------- as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables Output Variables ------- subtree_lenght n_left n_right ancestors children """ # lexical chain - dependencies of words: self.subtree_lenght = [len(list(token.subtree)) for token in self.doc] self.n_left = [len(list(token.lefts)) for token in self.doc] self.n_right = [len(list(token.rights)) for token in self.doc] self.ancestors = [len(list(token.ancestors)) for token in self.doc] self.children = [len(list(token.children)) for token in self.doc] d = {'subtree_lenght':self.subtree_lenght, 'n_left':self.n_left,'n_right':self.n_right, 'ancestors':self.ancestors,'children':self.children} if as_dict: return d else: return pd.DataFrame(d) def semantic_features(self, as_dict=False): """ Function to calculate the cumulative explained variance for PCA on the word embeddings. Parameters ---------- as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables Output Variables ------- wordvec_1pc wordvec_3pc wordvec_10pc """ pca = PCA() pca.fit(self.word_vectors) explained_var = pd.DataFrame(pca.explained_variance_ratio_, columns=['expl_var']) wordvec_1pc = np.sum(explained_var.iloc[0]) wordvec_3pc = np.sum(explained_var.iloc[0:3]) wordvec_10pc = np.sum(explained_var.iloc[0:10]) d = {'wordvec_1pc':wordvec_1pc,'wordvec_3pc':wordvec_3pc,'wordvec_10pc':wordvec_10pc} if as_dict: return d else: return pd.DataFrame(d) def word_features(self, embeddings = False): """ Combines the featuresets to a Dataframe with all the 88 word-features. Parameters ---------- embeddings : boolean Defines if the word embeddings (n=300) are included or not Returns ------- d: pandas DataFrame Dataframe with all the Output Variables. Each row represents a token and the features are in the columns (n x 88) as there are 88 word-features """ classic_features = self.classic_features() pos_features = self.pos_onehot() dep_features = self.dep_onehot() wordlist_features = self.wordlist_features() other_features = self.other_features() tree_features = self.tree_features() if embeddings: nameslist = ["V{:02d}".format(x+1) for x in range(300)] word_embeddings = pd.DataFrame(self.word_vectors, columns = nameslist) return pd.concat([classic_features,pos_features,dep_features, wordlist_features, other_features,tree_features,word_embeddings], axis=1) else: return pd.concat([classic_features, pos_features,dep_features, wordlist_features, other_features,tree_features], axis=1) def paragraph_features(self, embed = False, as_dict = False): """ Create the feature set over the total paragraph based on the features estimated per word. Parameters ---------- embed : boolean Defines if the word embeddings (n=300) are included or not as_dict : boolean Defines if output is a dataframe or dict Returns ------- d: pandas DataFrame Dataframe with all the Output Variables. Each row represents a feature. columns: cat: feature category value: value of the feature """ # word embeddings word_embeddings_raw = pd.DataFrame(self.word_vectors, columns = ["V{:02d}".format(x+1) for x in range(300)]) # create all datasets with the mean word values classic_features = pd.DataFrame(self.classic_features().mean(), columns= ['value']) classic_features['cat'] = 'classic' dep_features = pd.DataFrame(self.dep_onehot().mean(), columns= ['value']) dep_features['cat'] = 'dep' wordlist_features = pd.DataFrame(self.wordlist_features().mean(), columns= ['value']) wordlist_features['cat'] = 'classic' pos_features = pd.DataFrame(self.pos_onehot().mean(), columns= ['value']) pos_features['cat'] = 'pos' tree_features = pd.DataFrame(self.tree_features().mean(), columns= ['value']) tree_features['cat'] = 'tree' other_features = pd.DataFrame(self.other_features().mean(), columns= ['value']) other_features['cat'] = 'classic' semantic_features = pd.DataFrame(self.semantic_features().mean(), columns= ['value']) semantic_features['cat'] = 'semantic' word_embeddings = pd.DataFrame(word_embeddings_raw.mean(), columns= ['value']) word_embeddings['cat'] = 'embeddings' if embed: temp_df = pd.concat([classic_features, dep_features, wordlist_features, pos_features, other_features, tree_features,semantic_features, word_embeddings], axis=0) else: temp_df = pd.concat([classic_features, dep_features, wordlist_features, pos_features, other_features, tree_features,semantic_features], axis=0) temp_df['var'] = temp_df.index # add standard features that are not based on word features paragraph_features =
pd.DataFrame(columns=['var','value', 'cat'])
pandas.DataFrame
# coding:utf-8 import os from pathlib import Path import sys import argparse import pdb import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from tqdm import tqdm import pickle import time from datetime import datetime, timedelta from sklearn.metrics import confusion_matrix from functools import partial import scipy as sp import matplotlib.pyplot as plt #from matplotlib_venn import venn2 import lightgbm as lgb from sklearn import preprocessing import seaborn as sns import gc import psutil import os from IPython.display import FileLink import statistics import json import ast from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_validate import collections import random import functools from sklearn.metrics import roc_curve,auc,accuracy_score,confusion_matrix,f1_score,classification_report from sklearn.metrics import mean_squared_error # The metric in question from sklearn.metrics import cohen_kappa_score import copy from sklearn.model_selection import StratifiedKFold, KFold, train_test_split import itertools from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from distutils.util import strtobool import math from scipy.sparse import csr_matrix, save_npz, load_npz from typing import Union from sklearn.decomposition import PCA #import dask.dataframe as dd import re from sklearn.cluster import KMeans from contextlib import contextmanager from collections import deque #import eli5 #from eli5.sklearn import PermutationImportance import shutil import array #import sqlite3 #from tsfresh.utilities.dataframe_functions import roll_time_series #from tsfresh import extract_features SEED_NUMBER=2020 def set_seed(seed): random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) set_seed(SEED_NUMBER) pd.set_option('display.max_columns', 5000) pd.set_option('display.max_rows', 1000) EMPTY_NUM=-999 # https://github.com/lopuhin/kaggle-imet-2019/blob/master/imet/utils.py#L17 ON_KAGGLE = False#'KAGGLE_URL_BASE'in os.environ #print(" os.environ :", os.environ) print("ON_KAGGLE:", ON_KAGGLE) if not ON_KAGGLE: #import slackweb try: import wandb from wandb.lightgbm import wandb_callback except: print(f"error : cannot import wandb") else: import warnings warnings.simplefilter('ignore') PROJECT_NAME = "probspace_kiva" INPUT_DIR = Path("../data/raw") PROC_DIR = Path("../data/proc") LOG_DIR = Path("../data/log") OUTPUT_DIR = Path("../data/submission") PATH_TO_GRAPH_DIR=Path("../data/graph") PATH_TO_MODEL_DIR=Path("../data/model") PATH_TO_UPLOAD_MODEL_PARENT_DIR=Path("../data/model") PATH_TO_FEATURES_DIR=Path("../data/features") class Colors: """Defining Color Codes to color the text displayed on terminal. """ blue = "\033[94m" green = "\033[92m" yellow = "\033[93m" red = "\033[91m" end = "\033[0m" def color(string: str, color: Colors = Colors.yellow) -> str: return f"{color}{string}{Colors.end}" @contextmanager def timer2(label: str) -> None: """compute the time the code block takes to run. """ p = psutil.Process(os.getpid()) start = time.time() # Setup - __enter__ m0 = p.memory_info()[0] / 2. ** 30 print(color(f"{label}: Start at {start}; RAM USAGE AT START {m0}")) try: yield # yield to body of `with` statement finally: # Teardown - __exit__ m1 = p.memory_info()[0] / 2. ** 30 delta = m1 - m0 sign = '+' if delta >= 0 else '-' delta = math.fabs(delta) end = time.time() print(color(f"{label}: End at {end} ({end - start}[s] elapsed); RAM USAGE AT END {m1:.2f}GB ({sign}{delta:.2f}GB)", color=Colors.red)) @contextmanager def trace(title): t0 = time.time() p = psutil.Process(os.getpid()) m0 = p.memory_info()[0] / 2. ** 30 yield m1 = p.memory_info()[0] / 2. ** 30 delta = m1 - m0 sign = '+' if delta >= 0 else '-' delta = math.fabs(delta) print(f"[{m1:.1f}GB({sign}{delta:.1f}GB):{time.time() - t0:.1f}sec] {title} ", file=sys.stderr) def cpu_dict(my_dictionary, text=None): size = sys.getsizeof(json.dumps(my_dictionary)) #size += sum(map(sys.getsizeof, my_dictionary.values())) + sum(map(sys.getsizeof, my_dictionary.keys())) print(f"{text} size : {size}") def cpu_stats(text=None): #if not ON_KAGGLE: pid = os.getpid() py = psutil.Process(pid) memory_use = py.memory_info()[0] / 2. ** 30 print('{} memory GB:'.format(text) + str(memory_use))#str(np.round(memory_use, 2))) def reduce_mem_Series(se, verbose=True, categories=False): numeric2reduce = ["int16", "int32", "int64", "float64"] col_type = se.dtype best_type = None if (categories==True) & (col_type == "object"): se = se.astype("category") best_type = "category" elif col_type in numeric2reduce: downcast = "integer" if "int" in str(col_type) else "float" se = pd.to_numeric(se, downcast=downcast) best_type = se.dtype.name if verbose and best_type is not None and best_type != str(col_type): print(f"Series '{se.index}' converted from {col_type} to {best_type}") return se def reduce_mem_usage(df, verbose=True, categories=False): # All types that we want to change for "lighter" ones. # int8 and float16 are not include because we cannot reduce # those data types. # float32 is not include because float16 has too low precision. numeric2reduce = ["int16", "int32", "int64", "float64"] start_mem = 0 if verbose: start_mem = df.memory_usage().sum() / 1024**2 #start_mem = memory_usage_mb(df, deep=deep) for col, col_type in df.dtypes.iteritems(): best_type = None if (categories==True) & (col_type == "object"): df[col] = df[col].astype("category") best_type = "category" elif col_type in numeric2reduce: downcast = "integer" if "int" in str(col_type) else "float" df[col] = pd.to_numeric(df[col], downcast=downcast) best_type = df[col].dtype.name # Log the conversion performed. if verbose and best_type is not None and best_type != str(col_type): print(f"Column '{col}' converted from {col_type} to {best_type}") if verbose: #end_mem = memory_usage_mb(df, deep=deep) end_mem = df.memory_usage().sum() / 1024**2 diff_mem = start_mem - end_mem percent_mem = 100 * diff_mem / start_mem print(f"Memory usage decreased from" f" {start_mem:.2f}MB to {end_mem:.2f}MB" f" ({diff_mem:.2f}MB, {percent_mem:.2f}% reduction)") return df @contextmanager def timer(name): t0 = time.time() yield print(f'[{name}] done in {time.time() - t0:.6f} s') def normal_sampling(mean, label_k, std=2, under_limit=1e-15): val = math.exp(-(label_k-mean)**2/(2*std**2))/(math.sqrt(2*math.pi)*std) if val < under_limit: val = under_limit return val def compHist(np_oof, np_y_pred, np_y_true, title_str): np_list = [np_oof, np_y_true, np_y_pred] label_list = ["oof", "true", "pred"] color_list = ['red', 'blue', 'green'] for np_data, label, color in zip(np_list, label_list, color_list): sns.distplot( np_data, #bins=sturges(len(data)), color=color, kde=True, label=label ) plt.savefig(str(PATH_TO_GRAPH_DIR / f"{title_str}_compHist.png")) plt.close() def compPredTarget(y_pred, y_true, index_list, title_str, lm_flag=False): df_total = pd.DataFrame({"Prediction" : y_pred.flatten(), "Target" : y_true.flatten(), "Difference" : y_true.flatten() -y_pred.flatten() #"type" : np.full(len(y_pred), "oof") }, index=index_list) print(df_total) print("Difference > 0.1 : ", df_total[np.abs(df_total["Difference"]) > 0.1].Difference.count()) #print(df_total[df_total["type"]=="valid_train"].Difference) fig = plt.figure() sns.displot(df_total.Difference,bins=10) plt.savefig(str(PATH_TO_GRAPH_DIR / f"{title_str}_oof_diff_distplot.png")) plt.close() #pdb.set_trace() if lm_flag: plt.figure() fig2 = sns.lmplot(x="Target", y="Prediction", data=df_total, palette="Set1") #fig.set_axis_labels('target', 'pred') plt.title(title_str) plt.tight_layout() plt.savefig(str(PATH_TO_GRAPH_DIR / f"{title_str}_oof_true_lm.png")) plt.close() def dimensionReductionPCA(df, _n_components, prefix="PCA_"): pca = PCA(n_components=_n_components) pca.fit(df) reduced_feature = pca.transform(df) df_reduced = pd.DataFrame(reduced_feature, columns=[f"{prefix}{x + 1}" for x in range(_n_components)], index=df.index) print(f"df_reduced:{df_reduced}") df_tmp = pd.DataFrame(pca.explained_variance_ratio_, index=[f"{prefix}{x + 1}" for x in range(_n_components)]) print(df_tmp) import matplotlib.ticker as ticker plt.gca().get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) plt.plot([0] + list( np.cumsum(pca.explained_variance_ratio_)), "-o") plt.xlabel("Number of principal components") plt.ylabel("Cumulative contribution rate") plt.grid() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_PCA.png") #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() # df_comp = pd.DataFrame(pca.components_, columns=df.columns, index=[f"{prefix}{x + 1}" for x in range(_n_components)]) # print(df_comp) # plt.figure(figsize=(6, 6)) # for x, y, name in zip(pca.components_[0], pca.components_[1], df.columns): # plt.text(x, y, name) # plt.scatter(pca.components_[0], pca.components_[1], alpha=0.8) # plt.grid() # plt.xlabel("PC1") # plt.ylabel("PC2") # path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_PCA_scatter.png") # #print("save: ", path_to_save) # plt.savefig(path_to_save) # plt.show(block=False) # plt.close() return df_reduced def addNanPos(df, cols_list:list, suffix="nan_pos"): for col in cols_list: if df[col].isnull().any(): df["{}_{}".format(col, suffix)] = df[col].map(lambda x: 1 if pd.isna(x) else 0) return df def get_feature_importances(X, y, shuffle=False): # 必要ならば目的変数をシャッフル if shuffle: y = np.random.permutation(y) # モデルの学習 clf = RandomForestClassifier(random_state=42) clf.fit(X, y) # 特徴量の重要度を含むデータフレームを作成 imp_df = pd.DataFrame() imp_df["feature"] = X.columns imp_df["importance"] = clf.feature_importances_ return imp_df.sort_values("importance", ascending=False) def nullImporcance(df_train_X, df_train_y, th=80, n_runs=100): # 実際の目的変数でモデルを学習し、特徴量の重要度を含むデータフレームを作成 actual_imp_df = get_feature_importances(df_train_X, df_train_y, shuffle=False) # 目的変数をシャッフルした状態でモデルを学習し、特徴量の重要度を含むデータフレームを作成 N_RUNS = n_runs null_imp_df = pd.DataFrame() for i in range(N_RUNS): print("run : {}".format(i)) imp_df = get_feature_importances(df_train_X, df_train_y, shuffle=True) imp_df["run"] = i + 1 null_imp_df = pd.concat([null_imp_df, imp_df]) def display_distributions(actual_imp_df, null_imp_df, feature, path_to_save_dir): # ある特徴量に対する重要度を取得 actual_imp = actual_imp_df.query("feature == '{}'".format(feature))["importance"].mean() null_imp = null_imp_df.query("feature == '{}'".format(feature))["importance"] # 可視化 fig, ax = plt.subplots(1, 1, figsize=(6, 4)) a = ax.hist(null_imp, label="Null importances") ax.vlines(x=actual_imp, ymin=0, ymax=np.max(a[0]), color='r', linewidth=10, label='Real Target') ax.legend(loc="upper right") ax.set_title("Importance of {}".format(feature), fontweight='bold') plt.xlabel("Null Importance Distribution for {}".format(feature)) plt.ylabel("Importance") plt.show() path_to_save = os.path.join(str(path_to_save_dir), "null_imp_{}".format(feature)) plt.savefig(path_to_save) # 実データにおいて特徴量の重要度が高かった上位5位を表示 for feature in actual_imp_df["feature"]: display_distributions(actual_imp_df, null_imp_df, feature, PATH_TO_GRAPH_DIR) # 閾値を設定 THRESHOLD = th # 閾値を超える特徴量を取得 null_features = [] for feature in actual_imp_df["feature"]: print("Null :: {}".format(feature)) actual_value = actual_imp_df.query("feature=='{}'".format(feature))["importance"].values null_value = null_imp_df.query("feature=='{}'".format(feature))["importance"].values percentage = (null_value < actual_value).sum() / null_value.size * 100 print("actual_value: {}, null_value : {}, percentage : {}".format(actual_value, null_value, percentage)) if percentage < THRESHOLD and (100-THRESHOLD) < percentage: null_features.append(feature) return null_features def makeFourArithmeticOperations(df, col1, col2): new_col = "auto__{}_add_{}".format(col1, col2) df[new_col] = df[col1] + df[col2] new_col = "auto__{}_diff_{}".format(col1, col2) df[new_col] = df[col1] - df[col2] new_col = "auto__{}_multiply_{}".format(col1, col2) df[new_col] = df[col1] * df[col2] new_col = "auto__{}_devide_{}".format(col1, col2) df[new_col] = df[col1] / df[col2] return df def procAgg(df:pd.DataFrame, base_group_col:str, agg_col:str, agg_list:list): for agg_func in agg_list: new_col = "auto__{}_{}_agg_by_{}".format(agg_col, agg_func, base_group_col) map_dict = df.groupby(base_group_col)[agg_col].agg(agg_func) print(new_col) print(map_dict) df[new_col] = df[base_group_col].map(map_dict) df[new_col] = reduce_mem_Series(df[new_col]) #df = makeFourArithmeticOperations(df, new_col, agg_col) return df def aggregationFE(df:pd.DataFrame, base_group_cols:list, agg_cols:list, agg_func_list:list=['count', 'max', 'min', 'sum', 'mean', "nunique", "std", "median", "skew"]): for b in base_group_cols: for a in agg_cols: df = procAgg(df, b, a, agg_func_list) return df def makeInteractionColumn(df:pd.DataFrame, inter_cols:list): print(inter_cols) for c in inter_cols: col_name = "inter_" + "_".join(c) print(col_name) #df[col_name] = "_" for i, col in enumerate(c): print(col) if i == 0: df[col_name] = df[col] else: # #print(df[col]) df[col_name] = df[col_name].map(lambda x : str(x)) + "_" + df[col].map(lambda x : str(x)) #print(df[col_name].unique()) print("****") return df def interactionFE(df:pd.DataFrame, cols:list=[], inter_nums:list=[]): for inter_num in inter_nums: inter_cols = itertools.combinations(cols, inter_num) df = makeInteractionColumn(df, inter_cols) # for c in itertools.combinations(cols, inter_num): # # col_name = "inter_" + "_".join(c) # print(col_name) # #df[col_name] = "_" # # for i, col in enumerate(c): # print(col) # if i == 0: # df[col_name] = df[col] # else: # # # #print(df[col]) # df[col_name] = df[col_name].map(lambda x : str(x)) + "_" + df[col].map(lambda x : str(x)) # # print(df[col_name].unique()) return df def interactionFEbyOne(df:pd.DataFrame, inter_col:str, target_cols:list, inter_nums:list=[1]): for inter_num in inter_nums: comb = itertools.combinations(target_cols, inter_num) for c in comb: if not inter_col in c: inter_cols = (inter_col,) + c print(inter_cols) df = makeInteractionColumn(df, [inter_cols]) return df def calcSmoothingParam(num_of_data, k=100, f=100): param = 1 / (1 + np.exp(-(num_of_data - k)/f)) return param def calcSmoothingTargetMean(df:pd.DataFrame, col_name, target_name): #print(df[target_name]) all_mean = df[target_name].mean() #print(all_mean) #sys.exit() df_vc = df[col_name].value_counts() gp_mean_dict = df.groupby(col_name)[target_name].mean() smooth_target_mean = df_vc.copy() for key, val in gp_mean_dict.items(): n=df_vc[key] param = calcSmoothingParam(num_of_data=n) smooth = param * val + (1-param)*all_mean smooth_target_mean[key] = smooth print("label : {}, n = {}, val={}, all = {}, param = {}, final={}".format(key, n, val, all_mean, param, smooth)) del smooth_target_mean, df_vc gc.collect() return smooth_target_mean def targetEncoding(df_train_X, df_train_y, encoding_cols:list, _n_splits=4, smooth_flag=0): dict_all_train_target_mean = {} for c in encoding_cols: # print("Target Encoding : {}".format(c)) # print(f"df_train_X[c] : {df_train_X[c].shape}") # print(f"df_train_y : {df_train_y.shape}") #df_data_tmp = pd.DataFrame({c: df_train_X[c], "target":df_train_y}) df_data_tmp = pd.DataFrame(df_train_X[c]) df_data_tmp["target"] = df_train_y#.loc[:,0] #nan_mean= -999#df_data_tmp["target"].mean() nan_mean=df_data_tmp["target"].mean() if smooth_flag: all_train_target_mean=calcSmoothingTargetMean(df_data_tmp, c, "target") else: all_train_target_mean = df_data_tmp.groupby(c)["target"].mean() dict_all_train_target_mean[c] = all_train_target_mean #print(all_train_target_mean) #df_test_X[c] = df_test_X[c].map(all_train_target_mean) tmp = np.repeat(np.nan, df_train_X.shape[0]) kf = KFold(n_splits=_n_splits, shuffle=True, random_state=0) for idx_1, idx_2 in kf.split(df_train_X): if smooth_flag: target_mean=calcSmoothingTargetMean(df_data_tmp.iloc[idx_1], c, "target") else: target_mean = df_data_tmp.iloc[idx_1].groupby(c)["target"].mean() tmp[idx_2] = df_train_X[c].iloc[idx_2].map(target_mean) idx_1_unique = df_data_tmp.iloc[idx_1][c].unique() idx_2_unique = df_data_tmp.iloc[idx_2][c].unique() for c2 in idx_2_unique: if not c2 in idx_1_unique: pass #print("TARGET ENCORDING ERROR {}: {} replace to {}".format(c, c2, nan_mean)) df_train_X[c] = tmp df_train_X[c].fillna(value=nan_mean, inplace=True) #print(df_train_X.loc[df_train_X[c].isnull(), c]) #showNAN(df_train_X) return df_train_X, dict_all_train_target_mean def add_noise(series, noise_level): return series * (1 + noise_level * np.random.randn(len(series))) def calc_smoothing(se_gp_count, se_gp_mean, prior, min_samples_leaf=1, smoothing=1): smoothing = 1 / (1 + np.exp(-(se_gp_count - min_samples_leaf) / smoothing)) se_smoothing_mean = prior * (1 - smoothing) + se_gp_mean * smoothing return se_smoothing_mean #, smoothing def TEST__calc_smoothing(): se_count = pd.Series(np.arange(2000000)) cpu_stats("before calc_smoothing") se_count, smoothing = calc_smoothing(se_count, se_count, prior=50, min_samples_leaf=100, smoothing=300) cpu_stats("after calc_smoothing") #fig = plt.Figure() plt.plot(se_count, smoothing, label="smoothing") plt.show() def target_encode_with_smoothing(trn_series=None, #tst_series=None, target_se=None, min_samples_leaf=1, smoothing=1, #noise_level=0, agg_val="mean", ): """ from https://www.kaggle.com/ogrellier/python-target-encoding-for-categorical-features/notebook Smoothing is computed like in the following paper by <NAME> https://kaggle2.blob.core.windows.net/forum-message-attachments/225952/7441/high%20cardinality%20categoricals.pdf trn_series : training categorical feature as a pd.Series tst_series : test categorical feature as a pd.Series target : target data as a pd.Series min_samples_leaf (int) : minimum samples to take category average into account smoothing (int) : smoothing effect to balance categorical average vs prior """ assert len(trn_series) == len(target_se) #assert trn_series.name == tst_series.name temp = pd.concat([trn_series, target_se], axis=1) # Compute target mean averages = temp.groupby(by=trn_series.name)[target_se.name].agg([agg_val, "count"]) # Compute smoothing smoothing = 1 / (1 + np.exp(-(averages["count"] - min_samples_leaf) / smoothing)) # Apply average function to all target data if agg_val == "mean": prior = target_se.mean() elif agg_val == "std": prior = target_se.std() # The bigger the count the less full_avg is taken into account averages[target_se.name] = prior * (1 - smoothing) + averages[agg_val] * smoothing averages.drop([agg_val, "count"], axis=1, inplace=True) return averages # # Apply averages to trn and tst series # ft_trn_series = pd.merge( # trn_series.to_frame(trn_series.name), # averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), # on=trn_series.name, # how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # # pd.merge does not keep the index so restore it # ft_trn_series.index = trn_series.index # ft_tst_series = pd.merge( # tst_series.to_frame(tst_series.name), # averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), # on=tst_series.name, # how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # pd.merge does not keep the index so restore it #ft_tst_series.index = tst_series.index #return add_noise(ft_trn_series, noise_level), add_noise(ft_tst_series, noise_level) def showNAN(df): # print(df.isnull()) # df.isnull().to_csv(PROC_DIR/'isnull.csv') # print(df.isnull().sum()) # df.isnull().sum().to_csv(PROC_DIR/'isnull_sum.csv') # total = df.isnull().sum().sort_values(ascending=False) # print(total) # print(f"count : {df.isnull().count()}") # percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False) # missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) #df=df.replace([np.inf, -np.inf], np.nan) nan_dict = {} for col in df.columns: total = df[col].isnull().sum() percent = total / df[col].isnull().count() nan_dict[col] = [total, percent] missing_data = pd.DataFrame(nan_dict, index=['Total', 'Percent']).T missing_data = missing_data.sort_values('Percent', ascending=False) nan_data = missing_data.loc[missing_data["Percent"] > 0, :] if not ON_KAGGLE: print("****show nan*****") print(nan_data) print("****show nan end*****\n") nan_list = list(nan_data.index) #del missing_data, nan_data #gc.collect() return nan_list def accumAdd(accum_dict, dict_key_name, add_val, _empty_val=EMPTY_NUM): if accum_dict[dict_key_name] == _empty_val: accum_dict[dict_key_name] = add_val else: accum_dict[dict_key_name] += add_val return accum_dict def getColumnsFromParts(colums_parts, base_columns): new_cols=[] for col_p in colums_parts: for col in base_columns: if col_p in col: if not col in new_cols: new_cols.append(col) #print("find from the part : {}".format(col)) return new_cols.copy() def checkCorreatedFeatures(df, exclude_columns=[], th=0.995, use_cols=[]): counter = 0 to_remove = [] if len(use_cols)==0: use_cols = df.columns for feat_a in use_cols: if feat_a in exclude_columns: continue for feat_b in df.columns: if feat_b in exclude_columns: continue if feat_a != feat_b and feat_a not in to_remove and feat_b not in to_remove: #print('{}: FEAT_A: {}, FEAT_B: {}'.format(counter, feat_a, feat_b)) c = np.corrcoef(df[feat_a], df[feat_b])[0][1] if c > th: counter += 1 to_remove.append(feat_b) print('{}: FEAT_A: {}, FEAT_B (removed): {} - Correlation: {}'.format(counter, feat_a, feat_b, c)) return to_remove.copy() def addStrToLastWithoutContinuous(chain_string, added_str, splitter="_"): string_list = chain_string.split(splitter) if string_list[-1] != added_str: return chain_string + splitter + added_str else: return chain_string def adv2(_df_train, _df_test, drop_cols): df_train = _df_train.copy() df_test = _df_test.copy() print(len(df_train)) print(len(df_test)) df_train["isTest"] = 0 df_test["isTest"] = 1 drop_cols.append("isTest") df = pd.concat([df_train, df_test]) #train 0, test 1 df_X = df.drop(columns= drop_cols) df_y = df["isTest"] columns=df_X.columns.to_list() train, test, y_train, y_test = train_test_split(df_X, df_y, test_size=0.33, random_state=42, shuffle=True) del df, df_y, df_X gc.collect() train = lgb.Dataset(train, label=y_train) test = lgb.Dataset(test, label=y_test) param = {'num_leaves': 50, 'min_data_in_leaf': 30, 'objective':'binary', 'max_depth': 5, 'learning_rate': 0.05, "min_child_samples": 20, "boosting": "gbdt", "feature_fraction": 0.9, "bagging_freq": 1, "bagging_fraction": 0.9 , "bagging_seed": 44, "metric": 'auc', "verbosity": -1, 'importance_type':'gain', } num_round = 1000 clf = lgb.train(param, train, num_round, valid_sets = [train, test], verbose_eval=50, early_stopping_rounds = 500) feature_imp = pd.DataFrame(sorted(zip(clf.feature_importance(),columns)), columns=['Value','Feature']) plt.figure(figsize=(20, 20)) sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False).head(100)) plt.title('LightGBM Features') plt.tight_layout() plt.show() plt.savefig(str(PATH_TO_GRAPH_DIR / 'lgbm_importances-01.png')) def adversarialValidation(_df_train, _df_test, drop_cols, sample_flag=False): df_train = _df_train.copy() df_test = _df_test.copy() if sample_flag: num_test = len(df_test) df_train = df_train.sample(n=num_test) print(f"df_train : {len(df_train)}") print(f"df_test : {len(df_test)}") df_train["isTest"] = 0 df_test["isTest"] = 1 drop_cols.append("isTest") df = pd.concat([df_train, df_test]) #train 0, test 1 df_X = df.drop(columns= drop_cols) df_y = df["isTest"] adv_params = { 'learning_rate': 0.05, 'n_jobs': -1, 'seed': 50, 'objective':'binary', 'boosting_type':'gbdt', 'is_unbalance': False, 'importance_type':'gain', 'metric': 'auc', 'verbose': 1, } model = lgb.LGBMClassifier(n_estimators=100) model.set_params(**adv_params) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) score = cross_validate(model, df_X, df_y, cv=skf, return_estimator=True, scoring="roc_auc") adv_acc = score['test_score'].mean() print('Adv AUC:', score['test_score'].mean()) feature_imp = pd.DataFrame(sorted(zip(score['estimator'][0].feature_importances_,df_X.columns), reverse=True), columns=['Value','Feature']) print(feature_imp) #graphImportance(feature_imp, 50) #base_name = '../data/features/adv_feature_imp_' + datetime.datetime.now().strftime("%Y%m%d_%H%M%S") #feature_imp.to_csv(base_name + '.csv') # f = open(base_name + '.pkl', 'wb') # pickle.dump(feature_imp, f) # f.close() for i in range(len(feature_imp["Feature"])): if feature_imp["Value"].values[i] > 0: str_col = "\'" + feature_imp["Feature"].values[i] + "\'," print(str_col) return adv_acc, feature_imp def get_too_many_null_attr(data, rate=0.9): # many_null_cols = [] # for col in data.columns: # print(col) # if data[col].isnull().sum() / data.shape[0] > 0.9: # many_null_cols.append(col) # print("DONE!!!!!") many_null_cols = [col for col in data.columns if data[col].isnull().sum() / data.shape[0] > rate] return many_null_cols def get_too_many_repeated_val(data, rate=0.95): big_top_value_cols = [col for col in data.columns if data[col].value_counts(dropna=False, normalize=True).values[0] > rate] return big_top_value_cols def get_useless_columns(data, null_rate=0.95, repeat_rate=0.95): too_many_null = get_too_many_null_attr(data, null_rate) print("More than {}% null: ".format(null_rate) + str(len(too_many_null))) print(too_many_null) too_many_repeated = get_too_many_repeated_val(data, repeat_rate) print("More than {}% repeated value: ".format(repeat_rate) + str(len(too_many_repeated))) print(too_many_repeated) cols_to_drop = list(set(too_many_null + too_many_repeated)) return cols_to_drop def get_useless_columnsTrainTest(df_train, df_test, null_rate=0.95, repeat_rate=0.95): drop_train = set(get_useless_columns(df_train, null_rate=null_rate, repeat_rate=repeat_rate)) drop_test = set(get_useless_columns(df_test, null_rate=null_rate, repeat_rate=repeat_rate)) if not df_test.empty else set([]) s_symmetric_difference = drop_train ^ drop_test if s_symmetric_difference: print("{} are not included in each set".format(s_symmetric_difference)) cols_to_drop = list((drop_train) & (drop_test)) print("intersection cols_to_drop") print(cols_to_drop) return cols_to_drop def transformCosCircle(df, time_col_str): val = [float(x) for x in df[time_col_str].unique()] val.sort() #print(val) num = len(val) unit = 180.0 / num #print(unit) trans_val = [x * unit for x in val] #print(trans_val) df[time_col_str + "_angle_rad"] = np.deg2rad(df[time_col_str].replace(val, trans_val)) df[time_col_str + "_cos"] = np.cos(df[time_col_str + "_angle_rad"]) df[time_col_str + "_sin"] = np.sin(df[time_col_str + "_angle_rad"]) df = df.drop(columns=[time_col_str + "_angle_rad"]) #print(df[time_col_str]) return df def extract_time_features(df, date_col): df[date_col] = pd.to_datetime(df[date_col]) df['month'] = df[date_col].dt.month df['day'] = df[date_col].dt.day #df['hour'] = df[date_col].dt.hour df['year'] = df[date_col].dt.year #df["seconds"] = df[date_col].dt.second df['dayofweek'] = df[date_col].dt.dayofweek #0:monday to 6: sunday #df['week'] = df[date_col].dt.week # the week ordinal of the year df['weekofyear'] = df[date_col].dt.weekofyear # the week ordinal of the year df['dayofyear'] = df[date_col].dt.dayofyear #1-366 df['quarter'] = df[date_col].dt.quarter df['is_month_start'] = df[date_col].dt.is_month_start df['is_month_end'] = df[date_col].dt.is_month_end df['is_quarter_start'] = df[date_col].dt.is_quarter_start df['is_quarter_end'] = df[date_col].dt.is_quarter_end df['is_year_start'] = df[date_col].dt.is_year_start df['is_year_end'] = df[date_col].dt.is_year_end df['is_leap_year'] = df[date_col].dt.is_leap_year df['days_in_month'] = df['date'].dt.daysinmonth df["days_from_end_of_month"] = df['days_in_month'] - df["day"] df["days_rate_in_month"] = (df["day"] -1) / (df['days_in_month'] - 1) df["s_m_e_in_month"] = df["day"].map(lambda x: 0 if x <= 10 else (1 if x <= 20 else 2)) # df = transformCosCircle(df, "day") # df = transformCosCircle(df, "month") # df = transformCosCircle(df, "dayofweek") # df = transformCosCircle(df, "weekofyear") # df = transformCosCircle(df, "dayofyear") return df def pickle_dump(obj, path): with open(path, mode='wb') as f: pickle.dump(obj,f) def pickle_load(path): data = None with open(path, mode='rb') as f: data = pickle.load(f) return data def procLabelEncToColumns(df_train, df_test, col_list): df_train["train_test_judge"] = "train" df_test["train_test_judge"] = "test" df = pd.concat([df_train, df_test]) for c in col_list: df[c] = procLabelEncToSeries(df[c]) df_train = df.loc[df["train_test_judge"]=="train"].drop(columns=["train_test_judge"]) df_test = df.loc[df["train_test_judge"]=="test"].drop(columns=["train_test_judge"]) return df_train, df_test def procLabelEncToSeries(se): val_list = list(se.dropna().unique()) val_list.sort() #print(df[f].unique()) replace_map = dict(zip(val_list, np.arange(len(val_list)))) se = se.map(replace_map) #pdb.set_trace() return se def proclabelEncodings(df, not_proc_list=[]): #lbl = preprocessing.LabelEncoder() if not ON_KAGGLE: print("**label encoding**") decode_dict = {} for f in df.columns: if df[f].dtype.name =='object': if f in not_proc_list: continue if not ON_KAGGLE: print(f) val_list = list(df[f].dropna().unique()) val_list.sort() #print(df[f].unique()) replace_map = dict(zip(val_list, np.arange(len(val_list)))) df[f] = df[f].map(replace_map) #print(df[f].unique()) inverse_dict = get_swap_dict(replace_map) decode_dict[f] = inverse_dict #lbl.fit(list(df[f].dropna().unique())) #print(list(lbl.classes_)) #df[f] = lbl.transform(list(df[f].values)) if not ON_KAGGLE: print("**label encoding end **\n") print("**for dicode**") #print(f"{decode_dict}") return df, decode_dict def qwk(act,pred,n=4,hist_range=(0,3), weights=None): O = confusion_matrix(act,pred, labels=[0, 1, 2, 3],sample_weight = weights) O = np.divide(O,np.sum(O)) W = np.zeros((n,n)) for i in range(n): for j in range(n): W[i][j] = ((i-j)**2)/((n-1)**2) act_hist = np.histogram(act,bins=n,range=hist_range, weights=weights)[0] prd_hist = np.histogram(pred,bins=n,range=hist_range, weights=weights)[0] E = np.outer(act_hist,prd_hist) E = np.divide(E,np.sum(E)) num = np.sum(np.multiply(W,O)) den = np.sum(np.multiply(W,E)) return 1-np.divide(num,den) def calcClass(X, coef): X_p = np.copy(X) for i, pred in enumerate(X_p): if pred < coef[0]: X_p[i] = 0 elif pred >= coef[0] and pred < coef[1]: X_p[i] = 1 elif pred >= coef[1] and pred < coef[2]: X_p[i] = 2 else: X_p[i] = 3 return X_p class OptimizedRounder(object): """ An optimizer for rounding thresholds to maximize Quadratic Weighted Kappa (QWK) score """ def __init__(self): self.coef_ = 0 def _kappa_loss(self, coef, X, y): #print(coef) """ Get loss according to using current coefficients :param coef: A list of coefficients that will be used for rounding :param X: The raw predictions :param y: The ground truth labels """ X_p = np.copy(X) for i, pred in enumerate(X_p): if pred < coef[0]: X_p[i] = 0 elif pred >= coef[0] and pred < coef[1]: X_p[i] = 1 elif pred >= coef[1] and pred < coef[2]: X_p[i] = 2 #elif pred >= coef[2] and pred < coef[3]: # X_p[i] = 3 else: X_p[i] = 3 #ll = cohen_kappa_score(y, X_p, weights='quadratic') ll = qwk(y, X_p) #print(ll) return -ll def fit(self, X, y, initial_coef): """ Optimize rounding thresholds :param X: The raw predictions :param y: The ground truth labels """ loss_partial = partial(self._kappa_loss, X=X, y=y) #initial_coef = th_list self.coef_ = sp.optimize.minimize(loss_partial, initial_coef, method='nelder-mead') return self.coefficients() def predict(self, X, coef): """ Make predictions with specified thresholds :param X: The raw predictions :param coef: A list of coefficients that will be used for rounding """ X_p = np.copy(X) for i, pred in enumerate(X_p): if pred < coef[0]: X_p[i] = 0 elif pred >= coef[0] and pred < coef[1]: X_p[i] = 1 elif pred >= coef[1] and pred < coef[2]: X_p[i] = 2 #elif pred >= coef[2] and pred < coef[3]: # X_p[i] = 3 else: X_p[i] = 3 return X_p def coefficients(self): """ Return the optimized coefficients """ return self.coef_['x'] def calcDropColsFromPermuationImportance(path_to_dir): ppath_to_dir = Path(path_to_dir) df_total = pd.DataFrame() for i, f in enumerate(ppath_to_dir.glob("permutation_feature_imp_*.csv")): df_imp =
pd.read_csv(f, index_col=1)
pandas.read_csv
import numpy as np import pandas as pd import pytest from ber_public.deap import dim @pytest.fixture def building_fabric(): floor_uvalue = pd.Series([0.14]) roof_uvalue = pd.Series([0.11]) wall_uvalue = pd.Series([0.13]) window_uvalue = pd.Series([0.87]) door_uvalue =
pd.Series([1.5])
pandas.Series
import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import numpy as np begge_kjonn_5 = pd.read_csv("begge_kjonn_5.csv") gutter_5 = pd.read_csv("gutter_5.csv") jenter_5 = pd.read_csv("jenter_5.csv") jenter_gutter_5 = pd.concat([gutter_5, jenter_5]).reset_index(drop=True) begge_kjonn_8 = pd.read_csv("begge_kjonn_8.csv") gutter_8 = pd.read_csv("gutter_8.csv") jenter_8 = pd.read_csv("jenter_8.csv") jenter_gutter_8 = pd.concat([gutter_8, jenter_8]).reset_index(drop=True) # Save tables to excel file, for the heck of it begge_kjonn_9 = pd.read_csv("begge_kjonn_9.csv") gutter_9 = pd.read_csv("gutter_9.csv") jenter_9 = pd.read_csv("jenter_9.csv") jenter_gutter_9 =
pd.concat([gutter_9, jenter_9])
pandas.concat
import os import glob import numpy as np import pandas as pd import lightgbm as lgb from tqdm import tqdm_notebook as tqdm from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from constants import DATA_DIR def csv_concatenate(folder_path, nested=False): # Concatenate all csv files under a directory if nested == True: files = glob.glob(folder_path + "/*/*.csv") else: files = glob.glob(folder_path + "/*.csv") df_list = [] for file in files: df_list.append(pd.read_csv(file, parse_dates=True, infer_datetime_format=True)) # Fill nan with 0s as some values are empty for percentage points df =
pd.concat(df_list)
pandas.concat
import pandas as pd import pytest from .. import sqftproforma as sqpf from .. import developer @pytest.fixture def simple_dev_inputs(): return pd.DataFrame( {'residential': [40, 40, 40], 'office': [15, 18, 15], 'retail': [12, 10, 10], 'industrial': [12, 12, 12], 'land_cost': [1000000, 2000000, 3000000], 'parcel_size': [10000, 20000, 30000], 'max_far': [2.0, 3.0, 4.0], 'max_height': [40, 60, 80]}, index=['a', 'b', 'c']) def test_developer(simple_dev_inputs): pf = sqpf.SqFtProForma() out = pf.lookup("residential", simple_dev_inputs) dev = developer.Developer({"residential": out}) target_units = 10 parcel_size = pd.Series([1000, 1000, 1000], index=['a', 'b', 'c']) ave_unit_size =
pd.Series([650, 650, 650], index=['a', 'b', 'c'])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # IBM HR Employee Attrition & Performance. # ## [Please star/upvote in case you find it helpful.] # In[ ]: from IPython.display import Image Image("../../../input/pavansubhasht_ibm-hr-analytics-attrition-dataset/imagesibm/image-logo.png") # ## CONTENTS ::-> # [ **1 ) Exploratory Data Analysis**](#content1) # [ **2) Corelation b/w Features**](#content2) # [** 3) Feature Selection**](#content3) # [** 4) Preparing Dataset**](#content4) # [ **5) Modelling**](#content5) # # Note that this notebook uses traditional ML algorithms. I have another notebook in which I have used an ANN on the same dataset. To check it out please follow the below link--> # # https://www.kaggle.com/rajmehra03/an-introduction-to-ann-keras-with-ibm-hr-dataset/ # [ **6) Conclusions**](#content6) # <a id="content1"></a> # ## 1 ) Exploratory Data Analysis # ## 1.1 ) Importing Various Modules # In[ ]: # Ignore the warnings import warnings warnings.filterwarnings('always') warnings.filterwarnings('ignore') # data visualisation and manipulation import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns import missingno as msno #configure # sets matplotlib to inline and displays graphs below the corressponding cell. style.use('fivethirtyeight') sns.set(style='whitegrid',color_codes=True) #import the necessary modelling algos. from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB #model selection from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix,roc_curve,roc_auc_score from sklearn.model_selection import GridSearchCV from imblearn.over_sampling import SMOTE #preprocess. from sklearn.preprocessing import MinMaxScaler,StandardScaler,Imputer,LabelEncoder,OneHotEncoder # ## 1.2 ) Reading the data from a CSV file # In[ ]: df=pd.read_csv(r"../../../input/pavansubhasht_ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv") # In[ ]: df.head() # In[ ]: df.shape # In[ ]: df.columns # ## 1.3 ) Missing Values Treatment # In[ ]: df.info() # no null or 'Nan' values. # In[ ]: df.isnull().sum() # In[ ]: msno.matrix(df) # just to visualize. one final time. # ## 1.4 ) The Features and the 'Target' # In[ ]: df.columns # In[ ]: df.head() # In all we have 34 features consisting of both the categorical as well as the numerical features. The target variable is the # 'Attrition' of the employee which can be either a Yes or a No. This is what we have to predict. # **Hence this is a Binary Classification problem. ** # ## 1.5 ) Univariate Analysis # In this section I have done the univariate analysis i.e. I have analysed the range or distribution of the values that various features take. To better analyze the results I have plotted various graphs and visualizations wherever necessary. Univariate analysis helps us identify the outliers in the data. # In[ ]: df.describe() # Let us first analyze the various numeric features. To do this we can actually plot a boxplot showing all the numeric features. Also the distplot or a histogram is a reasonable choice in such cases. # In[ ]: sns.factorplot(data=df,kind='box',size=10,aspect=3) # Note that all the features have pretty different scales and so plotting a boxplot is not a good idea. Instead what we can do is plot histograms of various continuously distributed features. # # We can also plot a kdeplot showing the distribution of the feature. Below I have plotted a kdeplot for the 'Age' feature. # Similarly we plot for other numeric features also. Similarly we can also use a distplot from seaborn library which combines most.. # In[ ]: sns.kdeplot(df['Age'],shade=True,color='#ff4125') # In[ ]: sns.distplot(df['Age']) # Similarly we can do this for all the numerical features. Below I have plotted the subplots for the other features. # In[ ]: warnings.filterwarnings('always') warnings.filterwarnings('ignore') fig,ax = plt.subplots(5,2, figsize=(9,9)) sns.distplot(df['TotalWorkingYears'], ax = ax[0,0]) sns.distplot(df['MonthlyIncome'], ax = ax[0,1]) sns.distplot(df['YearsAtCompany'], ax = ax[1,0]) sns.distplot(df['DistanceFromHome'], ax = ax[1,1]) sns.distplot(df['YearsInCurrentRole'], ax = ax[2,0]) sns.distplot(df['YearsWithCurrManager'], ax = ax[2,1]) sns.distplot(df['YearsSinceLastPromotion'], ax = ax[3,0]) sns.distplot(df['PercentSalaryHike'], ax = ax[3,1]) sns.distplot(df['YearsSinceLastPromotion'], ax = ax[4,0]) sns.distplot(df['TrainingTimesLastYear'], ax = ax[4,1]) plt.tight_layout() print() # Let us now analyze the various categorical features. Note that in these cases the best way is to use a count plot to show the relative count of observations of different categories. # In[ ]: cat_df=df.select_dtypes(include='object') # In[ ]: cat_df.columns # In[ ]: def plot_cat(attr,labels=None): if(attr=='JobRole'): sns.factorplot(data=df,kind='count',size=5,aspect=3,x=attr) return sns.factorplot(data=df,kind='count',size=5,aspect=1.5,x=attr) # I have made a function that accepts the name of a string. In our case this string will be the name of the column or attribute which we want to analyze. The function then plots the countplot for that feature which makes it easier to visualize. # In[ ]: plot_cat('Attrition') # **Note that the number of observations belonging to the 'No' category is way greater than that belonging to 'Yes' category. Hence we have skewed classes and this is a typical example of the 'Imbalanced Classification Problem'. To handle such types of problems we need to use the over-sampling or under-sampling techniques. I shall come back to this point later.** # **Let us now similalry analyze other categorical features.** # In[ ]: plot_cat('BusinessTravel') # The above plot clearly shows that most of the people belong to the 'Travel_Rarely' class. This indicates that most of the people did not have a job which asked them for frequent travelling. # In[ ]: plot_cat('OverTime') # In[ ]: plot_cat('Department') # In[ ]: plot_cat('EducationField') # In[ ]: plot_cat('Gender') # Note that males are present in higher number. # In[ ]: plot_cat('JobRole') # ** Similarly we can continue for other categorical features. ** # **Note that the same function can also be used to better analyze the numeric discrete features like 'Education','JobSatisfaction' etc... # In[ ]: # just uncomment the following cell. # In[ ]: # num_disc=['Education','EnvironmentSatisfaction','JobInvolvement','JobSatisfaction','WorkLifeBalance','RelationshipSatisfaction','PerformanceRating'] # for i in num_disc: # plot_cat(i) # similarly we can intrepret these graphs. # <a id="content2"></a> # ## 2 ) Corelation b/w Features # # In[ ]: #corelation matrix. cor_mat= df.corr() mask = np.array(cor_mat) mask[np.tril_indices_from(mask)] = False fig=plt.gcf() fig.set_size_inches(30,12) # ###### SOME INFERENCES FROM THE ABOVE HEATMAP # # 1. Self relation ie of a feature to itself is equal to 1 as expected. # # 2. JobLevel is highly related to Age as expected as aged employees will generally tend to occupy higher positions in the company. # # 3. MonthlyIncome is very strongly related to joblevel as expected as senior employees will definately earn more. # # 4. PerformanceRating is highly related to PercentSalaryHike which is quite obvious. # # 5. Also note that TotalWorkingYears is highly related to JobLevel which is expected as senior employees must have worked for a larger span of time. # # 6. YearsWithCurrManager is highly related to YearsAtCompany. # # 7. YearsAtCompany is related to YearsInCurrentRole. # # # **Note that we can drop some highly corelated features as they add redundancy to the model but since the corelation is very less in genral let us keep all the features for now. In case of highly corelated features we can use something like Principal Component Analysis(PCA) to reduce our feature space.** # In[ ]: df.columns # <a id="content3"></a> # ## 3 ) Feature Selection # # ## 3.1 ) Plotting the Features against the 'Target' variable. # #### 3.1.1 ) Age # Note that Age is a continuous quantity and therefore we can plot it against the Attrition using a boxplot. # In[ ]: sns.factorplot(data=df,y='Age',x='Attrition',size=5,aspect=1,kind='box') # Note that the median as well the maximum age of the peole with 'No' attrition is higher than that of the 'Yes' category. This shows that people with higher age have lesser tendency to leave the organisation which makes sense as they may have settled in the organisation. # #### 3.1.2 ) Department # Note that both Attrition(Target) as well as the Deaprtment are categorical. In such cases a cross-tabulation is the most reasonable way to analyze the trends; which shows clearly the number of observaftions for each class which makes it easier to analyze the results. # In[ ]: df.Department.value_counts() # In[ ]: sns.factorplot(data=df,kind='count',x='Attrition',col='Department') # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.Department],margins=True,normalize='index') # set normalize=index to view rowwise %. # Note that most of the observations corresspond to 'No' as we saw previously also. About 81 % of the people in HR dont want to leave the organisation and only 19 % want to leave. Similar conclusions can be drawn for other departments too from the above cross-tabulation. # #### 3.1.3 ) Gender # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.Gender],margins=True,normalize='index') # set normalize=index to view rowwise %. # About 85 % of females want to stay in the organisation while only 15 % want to leave the organisation. All in all 83 % of employees want to be in the organisation with only being 16% wanting to leave the organisation or the company. # #### 3.1.4 ) Job Level # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.JobLevel],margins=True,normalize='index') # set normalize=index to view rowwise %. # People in Joblevel 4 have a very high percent for a 'No' and a low percent for a 'Yes'. Similar inferences can be made for other job levels. # #### 3.1.5 ) Monthly Income # In[ ]: sns.factorplot(data=df,kind='bar',x='Attrition',y='MonthlyIncome') # Note that the average income for 'No' class is quite higher and it is obvious as those earning well will certainly not be willing to exit the organisation. Similarly those employees who are probably not earning well will certainly want to change the company. # #### 3.1.6 ) Job Satisfaction # In[ ]: sns.factorplot(data=df,kind='count',x='Attrition',col='JobSatisfaction') # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.JobSatisfaction],margins=True,normalize='index') # set normalize=index to view rowwise %. # Note this shows an interesting trend. Note that for higher values of job satisfaction( ie more a person is satisfied with his job) lesser percent of them say a 'Yes' which is quite obvious as highly contented workers will obvioulsy not like to leave the organisation. # #### 3.1.7 ) Environment Satisfaction # In[ ]:
pd.crosstab(columns=[df.Attrition],index=[df.EnvironmentSatisfaction],margins=True,normalize='index')
pandas.crosstab
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([None, pd.NaT, None]) assert lib.infer_dtype(arr) == 'datetime' # np.datetime64(nat) arr = np.array([np.datetime64('nat')]) assert lib.infer_dtype(arr) == 'datetime64' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([pd.NaT, n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([pd.NaT, n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' # datetime / timedelta mixed arr = np.array([pd.NaT, np.datetime64('nat'), np.timedelta64('nat'), np.nan]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64('nat'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_is_datetimelike_array_all_nan_nat_like(self): arr = np.array([np.nan, pd.NaT, np.datetime64('nat')]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.datetime64('nat'), np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, np.nan], dtype=object) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) assert lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='US/Eastern')], dtype=object)) assert not lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='CET')], dtype=object)) @pytest.mark.parametrize( "func", [ 'is_datetime_array', 'is_datetime64_array', 'is_bool_array', 'is_timedelta_or_timedelta64_array', 'is_date_array', 'is_time_array', 'is_interval_array', 'is_period_array']) def test_other_dtypes_for_array(self, func): func = getattr(lib, func) arr = np.array(['foo', 'bar']) assert not func(arr) arr = np.array([1, 2]) assert not func(arr) def test_date(self): dates = [date(2012, 1, day) for day in range(1, 20)] index = Index(dates) assert index.inferred_type == 'date' dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan] result = lib.infer_dtype(dates) assert result == 'mixed' result = lib.infer_dtype(dates, skipna=True) assert result == 'date' def test_is_numeric_array(self): assert lib.is_float_array(np.array([1, 2.0])) assert lib.is_float_array(np.array([1, 2.0, np.nan])) assert not lib.is_float_array(np.array([1, 2])) assert lib.is_integer_array(np.array([1, 2])) assert not lib.is_integer_array(np.array([1, 2.0])) def test_is_string_array(self): assert lib.is_string_array(np.array(['foo', 'bar'])) assert not lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=False) assert lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=True) assert not lib.is_string_array(np.array([1, 2])) def test_to_object_array_tuples(self): r = (5, 6) values = [r] result = lib.to_object_array_tuples(values) try: # make sure record array works from collections import namedtuple record = namedtuple('record', 'x y') r = record(5, 6) values = [r] result = lib.to_object_array_tuples(values) # noqa except ImportError: pass def test_object(self): # GH 7431 # cannot infer more than this as only a single element arr = np.array([None], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' def test_to_object_array_width(self): # see gh-13320 rows = [[1, 2, 3], [4, 5, 6]] expected = np.array(rows, dtype=object) out = lib.to_object_array(rows) tm.assert_numpy_array_equal(out, expected) expected = np.array(rows, dtype=object) out = lib.to_object_array(rows, min_width=1) tm.assert_numpy_array_equal(out, expected) expected = np.array([[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object) out = lib.to_object_array(rows, min_width=5) tm.assert_numpy_array_equal(out, expected) def test_is_period(self): assert lib.is_period(pd.Period('2011-01', freq='M')) assert not lib.is_period(pd.PeriodIndex(['2011-01'], freq='M')) assert not lib.is_period(pd.Timestamp('2011-01')) assert not lib.is_period(1) assert not lib.is_period(np.nan) def test_categorical(self): # GH 8974 from pandas import Categorical, Series arr = Categorical(list('abc')) result = lib.infer_dtype(arr) assert result == 'categorical' result = lib.infer_dtype(Series(arr)) assert result == 'categorical' arr = Categorical(list('abc'), categories=['cegfab'], ordered=True) result = lib.infer_dtype(arr) assert result == 'categorical' result = lib.infer_dtype(Series(arr)) assert result == 'categorical' class TestNumberScalar(object): def test_is_number(self): assert is_number(True) assert is_number(1) assert is_number(1.1) assert is_number(1 + 3j) assert is_number(np.bool(False)) assert is_number(np.int64(1)) assert is_number(np.float64(1.1)) assert is_number(np.complex128(1 + 3j)) assert is_number(np.nan) assert not is_number(None) assert not is_number('x') assert not is_number(datetime(2011, 1, 1)) assert not is_number(np.datetime64('2011-01-01')) assert not is_number(Timestamp('2011-01-01')) assert not is_number(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_number(timedelta(1000)) assert not is_number(Timedelta('1 days')) # questionable assert not is_number(np.bool_(False)) assert is_number(np.timedelta64(1, 'D')) def test_is_bool(self): assert is_bool(True) assert is_bool(np.bool(False)) assert is_bool(np.bool_(False)) assert not is_bool(1) assert not is_bool(1.1) assert not is_bool(1 + 3j) assert not is_bool(np.int64(1)) assert not is_bool(np.float64(1.1)) assert not is_bool(np.complex128(1 + 3j)) assert not is_bool(np.nan) assert not is_bool(None) assert not is_bool('x') assert not is_bool(datetime(2011, 1, 1)) assert not is_bool(np.datetime64('2011-01-01')) assert not is_bool(Timestamp('2011-01-01')) assert not is_bool(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_bool(timedelta(1000)) assert not is_bool(np.timedelta64(1, 'D')) assert not is_bool(Timedelta('1 days')) def test_is_integer(self): assert is_integer(1) assert is_integer(np.int64(1)) assert not is_integer(True) assert not is_integer(1.1) assert not is_integer(1 + 3j) assert not is_integer(np.bool(False)) assert not is_integer(np.bool_(False)) assert not is_integer(np.float64(1.1)) assert not is_integer(np.complex128(1 + 3j)) assert not is_integer(np.nan) assert not is_integer(None) assert not is_integer('x') assert not is_integer(datetime(2011, 1, 1)) assert not is_integer(np.datetime64('2011-01-01')) assert not is_integer(Timestamp('2011-01-01')) assert not is_integer(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_integer(timedelta(1000)) assert not is_integer(Timedelta('1 days')) # questionable assert is_integer(np.timedelta64(1, 'D')) def test_is_float(self): assert is_float(1.1) assert is_float(np.float64(1.1)) assert is_float(np.nan) assert not is_float(True) assert not is_float(1) assert not is_float(1 + 3j) assert not is_float(np.bool(False)) assert not is_float(np.bool_(False)) assert not is_float(np.int64(1)) assert not is_float(np.complex128(1 + 3j)) assert not is_float(None) assert not is_float('x') assert not is_float(datetime(2011, 1, 1)) assert not is_float(np.datetime64('2011-01-01')) assert not is_float(Timestamp('2011-01-01')) assert not is_float(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_float(timedelta(1000)) assert not is_float(np.timedelta64(1, 'D')) assert not is_float(Timedelta('1 days')) def test_is_datetime_dtypes(self): ts = pd.date_range('20130101', periods=3) tsa = pd.date_range('20130101', periods=3, tz='US/Eastern') assert is_datetime64_dtype('datetime64') assert is_datetime64_dtype('datetime64[ns]') assert
is_datetime64_dtype(ts)
pandas.core.dtypes.common.is_datetime64_dtype
from unittest import TestCase import pandas as pd from cbcvalidator.main import Validate, ValueOutOfRange, BadConfigurationError class TestValidate(TestCase): def test_validate(self): v = Validate(verbose=True) data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'min_val': 2, 'max_val': 7, 'action': 'null'}, {'col': 'b', 'max_len': 5, 'action': 'trim'}, {'col': 'b', 'min_len': 2, 'action': 'null'} ] df, msg = v.validate(df, val_dict) test = pd.isnull(df.loc[0, 'a']) self.assertTrue(test) # Test zero value limit (zero's eval to False) data = {'a': [-1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'min_val': 0, 'max_val': 7, 'action': 'null'}, {'col': 'b', 'max_len': 5, 'action': 'trim'}, {'col': 'b', 'min_len': 2, 'action': 'null'} ] df, msg = v.validate(df, val_dict) test = pd.isnull(df.loc[0, 'a']) self.assertTrue(test) test = len(df.loc[0, 'b']) golden = 5 self.assertEqual(golden, test) data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'max_val': 7, 'action': 'null'}, {'col': 'a', 'min_val': 3, 'action': 'print'}, {'col': 'b', 'max_len': 5, 'action': 'print'}, {'col': 'b', 'min_len': 3, 'action': 'null'} ] df, msg = v.validate(df, val_dict) test = pd.isnull(df.loc[7, 'a']) self.assertTrue(test) test = pd.isnull(df.loc[2, 'b']) self.assertTrue(test) # Test value out of range raises data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'max_val': 7, 'action': 'raise'}, ] with self.assertRaises(ValueOutOfRange) as context: df, msg = v.validate(df, val_dict) # Test with no validation criteria matching. data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'max_val': 99, 'action': 'null'}, ] df, msg = v.validate(df, val_dict) self.assertIsNone(msg) # Check that fully empty series works. data = {'a': [None, None, None, None, None, None, None, None]} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'max_val': 7, 'action': 'null'} ] df, msg = v.validate(df, val_dict) # So long as this doesn't raise an error it's fine. # Test what happens when a numeric column is processed as a string. This should do nothing, but print a # warning. data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'a', 'min_len': 2, 'max_len': 7, 'action': 'trim'} ] df, msg = v.validate(df, val_dict) test = df.loc[0, 'a'] self.assertEqual(1, test) # Test for a missing column data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df = pd.DataFrame(data) val_dict = [ {'col': 'not_a_col_name', 'min_len': 2, 'max_len': 7, 'action': 'trim'} ] df, msg = v.validate(df, val_dict) test = df.loc[0, 'a'] self.assertEqual(1, test) # Test value out of range raises data = {'a': [1, 2, 3, 4, 5, 6, 7, 8], 'b': ['abcdefg', 'abcdefghijkl', 'a', 'b', 'c', 'd', 'ef', 'ghi']} df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd def find_ms(df): subset_index = df[['BMI', 'Systolic', 'Diastolic', 'Triglyceride', 'HDL-C', 'Glucose', 'Total Cholesterol', 'Gender']].dropna().index df = df.ix[subset_index] df_bmi_lo = df.loc[df['BMI']<25.0,:] df_bmi_hi = df.loc[df['BMI']>=25.0,:] df_bmi_hi['TG-s'] = df_bmi_hi['Triglyceride']>=150.0 df_bmi_hi['Gluc-s'] = df_bmi_hi['Glucose'] >= 100.0 df_bmi_hi['Systolic-s'] = df_bmi_hi['Systolic']>=130.0 df_bmi_hi['Diastolic-s'] = df_bmi_hi['Diastolic'] >=85.0 df_bmi_hi['TG-s'] = df_bmi_hi['TG-s'].astype(int) df_bmi_hi['Gluc-s'] = df_bmi_hi['Gluc-s'].astype(int) df_bmi_hi['BP-s'] = df_bmi_hi['Systolic-s'] | df_bmi_hi['Diastolic-s'] df_bmi_hi['BP-s'] = df_bmi_hi['BP-s'].astype(int) male_df_bmi_hi = df_bmi_hi[df_bmi_hi['Gender'] == 1] female_df_bmi_hi = df_bmi_hi[df_bmi_hi['Gender'] == 2] male_df_bmi_hi['HDL-C-s'] = male_df_bmi_hi['HDL-C'] < 40.0 female_df_bmi_hi['HDL-C-s'] = female_df_bmi_hi['HDL-C'] < 50.0 female_df_bmi_hi['HDL-C-s'] = female_df_bmi_hi['HDL-C-s'].astype(int) male_df_bmi_hi['HDL-C-s'] = male_df_bmi_hi['HDL-C-s'].astype(int) male_df_bmi_hi['MS'] = male_df_bmi_hi[['BP-s', 'Gluc-s', 'TG-s', 'HDL-C-s']].sum(axis=1) female_df_bmi_hi['MS'] = female_df_bmi_hi[['BP-s', 'Gluc-s', 'TG-s', 'HDL-C-s']].sum(axis=1) df_bmi_lo['MS'] = 0 return pd.concat([df_bmi_lo, male_df_bmi_hi, female_df_bmi_hi]) def set_kpi(df): # BMI df['BMI-kpi'] = df['BMI']>=30 # BP df['Systolic-kpi'] = df['Systolic']>=140.0 df['Diastolic-kpi'] = df['Diastolic'] >=90.0 df['BP-kpi'] = df['Systolic-kpi'] | df['Diastolic-kpi'] # Glucose df['Glucose-kpi'] = df['Glucose'] >= 125.0 # Creatinine df['Creatinine-kpi'] = df['Creatinine'] >=1.5 # Total Cholesterol df['Total Cholesterol-kpi-a'] = df['Total Cholesterol'] >= 200 df['Total Cholesterol-kpi-b'] = df['Total Cholesterol'] >= 240 # HDL-C df['HDL-C-kpi'] = df['HDL-C'] <= 35 # LDL-C (direct) df['LDL-C (Calculated)-kpi'] = df['LDL-C (Calculated)'] >=130 # Hemoglobin df['CBC_Hemoglobin-kpi'] = df['CBC_Hemoglobin'] <= 10 def calculate_kpi_score(df): if len(df) == 0: return None bmi_kpi = df['BMI-kpi'] bp_kpi = df['BP-kpi'] glucose_kpi = df['Glucose-kpi'] creat_kpi = df['Creatinine-kpi'] choles_kpi_a = df['Total Cholesterol-kpi-a'] choles_kpi_b = df['Total Cholesterol-kpi-b'] hdl_kpi = df['HDL-C-kpi'] ldl_kpi = df['LDL-C (Calculated)-kpi'] hgb_kpi = df['CBC_Hemoglobin-kpi'] ms_kpi = df['MS']>1 bmi_kpi_percnt = len(df.ix[bmi_kpi,:])/float(len(df)) bp_kpi_percnt = len(df.ix[bp_kpi,:])/float(len(df)) glucose_kpi_percnt = len(df.ix[glucose_kpi,:])/float(len(df)) creat_kpi_percnt = len(df.ix[creat_kpi,:])/float(len(df)) choles_kpi_a_percnt = len(df.ix[choles_kpi_a,:])/float(len(df)) choles_kpi_b_percnt = len(df.ix[choles_kpi_b,:])/float(len(df)) hdl_kpi_percnt = len(df.ix[hdl_kpi,:])/float(len(df)) ldl_kpi_percnt = len(df.ix[ldl_kpi,:])/float(len(df)) hgb_kpi_percnt = len(df.ix[hgb_kpi,:])/float(len(df)) ms_kpi_percnt = len(df.ix[ms_kpi,:])/float(len(df)) #print 'bmi', bmi_kpi_percnt #print 'bp', bp_kpi_percnt #print 'glucose', glucose_kpi_percnt #print 'cretinine', creat_kpi_percnt #print 'cholesterol a', choles_kpi_a_percnt #print 'cholesterol b', choles_kpi_b_percnt #print 'HDL', hdl_kpi_percnt #print 'LDL', ldl_kpi_percnt #print 'hemoglobin', hgb_kpi_percnt #print 'metabolic syndrome', ms_kpi_percnt data =
pd.Series()
pandas.Series
import numpy as np import pytest from pandas.compat import range, u, zip import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas.core.common as com from pandas.core.indexing import IndexingError from pandas.util import testing as tm @pytest.fixture def frame_random_data_integer_multi_index(): levels = [[0, 1], [0, 1, 2]] codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, codes=codes) return DataFrame(np.random.randn(6, 2), index=index) @pytest.fixture def dataframe_with_duplicate_index(): """Fixture for DataFrame used in tests for gh-4145 and gh-4146""" data = [['a', 'd', 'e', 'c', 'f', 'b'], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]] index = ['h1', 'h3', 'h5'] columns = MultiIndex( levels=[['A', 'B'], ['A1', 'A2', 'B1', 'B2']], codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]], names=['main', 'sub']) return DataFrame(data, index=index, columns=columns) @pytest.mark.parametrize('access_method', [lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)]) @pytest.mark.parametrize('level1_value, expected', [ (0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2])) ]) def test_series_getitem_multiindex(access_method, level1_value, expected): # GH 6018 # series regression getitem with a multi-index s = Series([1, 2, 3]) s.index = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)]) result = access_method(s, level1_value) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('level0_value', ['D', 'A']) def test_getitem_duplicates_multiindex(level0_value): # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise # the appropriate error, only in PY3 of course! index = MultiIndex(levels=[[level0_value, 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) arr = np.random.randn(len(index), 1) df = DataFrame(arr, index=index, columns=['val']) # confirm indexing on missing value raises KeyError if level0_value != 'A': msg = "'A'" with pytest.raises(KeyError, match=msg): df.val['A'] msg = "'X'" with pytest.raises(KeyError, match=msg): df.val['X'] result = df.val[level0_value] expected = Series(arr.ravel()[0:3], name='val', index=Index( [26, 37, 57], name='day')) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('indexer, is_level1, expected_error', [ ([], False, None), # empty ok (['A'], False, None), (['A', 'D'], False, None), (['D'], False, r"\['D'\] not in index"), # not any values found (pd.IndexSlice[:, ['foo']], True, None), (pd.IndexSlice[:, ['foo', 'bah']], True, None) ]) def test_getitem_duplicates_multiindex_missing_indexers(indexer, is_level1, expected_error): # GH 7866 # multi-index slicing with missing indexers idx = MultiIndex.from_product([['A', 'B', 'C'], ['foo', 'bar', 'baz']], names=['one', 'two']) s = Series(np.arange(9, dtype='int64'), index=idx).sort_index() if indexer == []: expected = s.iloc[[]] elif is_level1: expected = Series([0, 3, 6], index=MultiIndex.from_product( [['A', 'B', 'C'], ['foo']], names=['one', 'two'])).sort_index() else: exp_idx = MultiIndex.from_product([['A'], ['foo', 'bar', 'baz']], names=['one', 'two']) expected = Series(np.arange(3, dtype='int64'), index=exp_idx).sort_index() if expected_error is not None: with pytest.raises(KeyError, match=expected_error): s.loc[indexer] else: result = s.loc[indexer] tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns_indexer', [ ([], slice(None)), (['foo'], []) ]) def test_getitem_duplicates_multiindex_empty_indexer(columns_indexer): # GH 8737 # empty indexer multi_index = MultiIndex.from_product((['foo', 'bar', 'baz'], ['alpha', 'beta'])) df = DataFrame(np.random.randn(5, 6), index=range(5), columns=multi_index) df = df.sort_index(level=0, axis=1) expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0]) result = df.loc[:, columns_indexer] tm.assert_frame_equal(result, expected) def test_getitem_duplicates_multiindex_non_scalar_type_object(): # regression from < 0.14.0 # GH 7914 df = DataFrame([[np.mean, np.median], ['mean', 'median']], columns=MultiIndex.from_tuples([('functs', 'mean'), ('functs', 'median')]), index=['function', 'name']) result = df.loc['function', ('functs', 'mean')] expected = np.mean assert result == expected def test_getitem_simple(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data.T expected = df.values[:, 0] result = df['foo', 'one'].values tm.assert_almost_equal(result, expected) @pytest.mark.parametrize('indexer,msg', [ (lambda df: df[('foo', 'four')], r"\('foo', 'four'\)"), (lambda df: df['foobar'], "'foobar'") ]) def test_getitem_simple_key_error( multiindex_dataframe_random_data, indexer, msg): df = multiindex_dataframe_random_data.T with pytest.raises(KeyError, match=msg): indexer(df) @pytest.mark.parametrize('indexer', [ lambda s: s[2000, 3], lambda s: s.loc[2000, 3] ]) def test_series_getitem( multiindex_year_month_day_dataframe_random_data, indexer): s = multiindex_year_month_day_dataframe_random_data['A'] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) result = indexer(s)
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
# ============================================================================= # ALGORITMO MACHINE LEARNING PARA GASOLINERAS EN ESPAÑA # ============================================================================= """ Proceso: Input: - /home/tfm/Documentos/TFM/Datasets/Gasolineras/Gasolineras_de_España.csv Output: - /home/tfm/Documentos/TFM/Datasets/Gasolineras/gas_stations_categorical.txt - /home/tfm/Documentos/TFM/Datasets/Gasolineras/gasolineras_filt_Espana.csv - /home/tfm/Documentos/TFM/Datasets/Gasolineras/gasolineras_reduced_Espana.csv """ # Se cargan las librerías import sys import datetime import time import math import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib plt.style.use("ggplot") from matplotlib.pyplot import figure matplotlib.rcParams["figure.figsize"] = (12,8) import unidecode from sklearn.cluster import DBSCAN from geopy.distance import great_circle from shapely.geometry import MultiPoint # 1.- Definición de funciones ------------------------------------- #------------------------------------------------------------------ def remove_accents(a): """ Definicion de la funcion remove_accents: Funcion para eliminar acentos Parametros ---------- a: string String que contiene la palabra que tiene que limpiarse Returns ------ unidecode.unidecode(a): string String que contiene la palabra sin acentos Ejemplo ------- >>> df[column] = df[column].apply(remove_accents) """ return unidecode.unidecode(a) def plot_multiple_histograms(df, cols): """ Definicion del procedimiento plot_multiple_histograms: Procedimiento para plottear histogramas de variable numéricas Parametros ---------- df: Pandas Dataframe Dataframe que contiene las variables numéricas cols: list[string] Lista de string que contiene el nombre de las columnas de las variables numéricas Returns ------ No existe return como tal, si no que se ejecutan los comando en el procedimiento Ejemplo ------- >>> plot_multiple_histograms(df_numeric, ["X","Y","FID","objectid", "codigo_po","longitud","latitud","precio_g_1","precio_g_2"]) """ num_plots = len(cols) num_cols = math.ceil(np.sqrt(num_plots)) num_rows = math.ceil(num_plots/num_cols) fig, axs = plt.subplots(num_rows, num_cols) for ind, col in enumerate(cols): i = math.floor(ind/num_cols) j = ind - i*num_cols if num_rows == 1: if num_cols == 1: sns.histplot(df[col], kde=True, ax=axs) else: sns.histplot(df[col], kde=True, ax=axs[j]) else: sns.histplot(df[col], kde=True, ax=axs[i, j]) def plot_multiple_countplots(df, cols): """ Definicion del procedimiento plot_multiple_countplots: Procedimiento para plottear variable numéricas Parametros ---------- df: Pandas Dataframe Dataframe que contiene las variables numéricas cols: list[string] Lista de string que contiene el nombre de las columnas de las variables numéricas Returns ------ No existe return como tal, si no que se ejecutan los comando en el procedimiento Ejemplo ------- >>> plot_multiple_countplots(df_numeric, ["X","Y","FID","objectid", "codigo_po","longitud","latitud","precio_g_1","precio_g_2"]) """ num_plots = len(cols) num_cols = math.ceil(np.sqrt(num_plots)) num_rows = math.ceil(num_plots/num_cols) fig, axs = plt.subplots(num_rows, num_cols) for ind, col in enumerate(cols): i = math.floor(ind/num_cols) j = ind - i*num_cols if num_rows == 1: if num_cols == 1: sns.countplot(x=df[col], ax=axs) else: sns.countplot(x=df[col], ax=axs[j]) else: sns.countplot(x=df[col], ax=axs[i, j]) def exploratory_data_analysis(df): """ Definicion de la funcion exploratory_data_analysis: Funcion para que realiza el Análisis Exploratorio de Datos sobre el conjunto de datos de las Gasolineras de España Parametros ---------- df: Pandas Dataframe Dataframe que contiene el dataset de Gasolineras de España Returns ------ df_filt: Pandas Dataframe Dataset que contiene el dataset de Gasolineras de España filtrado Ejemplo ------- >>> df_filt = exploratory_data_analysis(df) """ df.head() df.info() # Eliminar acentos y otros caracteres especiales for column in ["provincia","municipio","localidad","direccion","rotulo"]: df[column] = df[column].apply(remove_accents) # Variables numéricas df_numeric = df.select_dtypes(include="number") df_numeric.info() plot_multiple_histograms(df_numeric, ["X","Y","FID","objectid","codigo_po","longitud","latitud","precio_g_1","precio_g_2"]) plt.show() time.sleep(15) plt.close("all") comparison_column_1 = np.where(df["longitud"] == df["X"], True, False) if np.all(comparison_column_1): print("Longitud igual a X") else: print("Longitud NO es igual a X") comparison_column_2 = np.where(df["latitud"] == df["Y"], True, False) if np.all(comparison_column_2): print("Latitud igual a Y") else: print("Latitud NO es igual a Y") df.drop("X",axis="columns", inplace=True) df.drop("Y",axis="columns", inplace=True) # Filtrar coordenadas de España Peninsular df_filt = df.query("longitud > -10 & latitud > 34 & provincia != 'BALEARS (ILLES)' & provincia != 'MELILLA' & provincia != 'CEUTA'") print(df_filt["provincia"].unique()) sns.displot(df_filt["longitud"], bins=50, kde=True, rug=True) sns.displot(df_filt["latitud"], bins=50, kde=True, rug=True) df_filt.info() print(df_filt.shape) plot_multiple_histograms(df_filt, ["latitud","longitud"]) plt.show() time.sleep(30) plt.close("all") # Variable categóricas df_non_numeric = df_filt.select_dtypes(exclude="number") df_non_numeric.info() plt.figure(figsize=(25,7)) sns.countplot(x="provincia", data=df_non_numeric) plt.show() time.sleep(15) plt.close("all") with open("/home/tfm/Documentos/TFM/Datasets/Gasolineras/gas_stations_categorical.txt", "w") as f: for column in df_non_numeric: print(df_non_numeric[column].value_counts(), file=f) df_filt.drop(df.filter(regex="precio").columns, axis="columns", inplace=True) df_filt.drop("horario00",axis="columns", inplace=True) df_filt.drop("z",axis="columns", inplace=True) df_filt.drop("fecha",axis="columns", inplace=True) df_filt.drop(df.filter(regex="f_").columns, axis="columns", inplace=True) df_filt.drop("objectid",axis="columns", inplace=True) df_filt.drop("FID",axis="columns", inplace=True) df_filt.drop("margen",axis="columns", inplace=True) df_filt.drop("rotulo",axis="columns", inplace=True) df_filt.drop("tipo_venta",axis="columns", inplace=True) df_filt.drop("rem_",axis="columns", inplace=True) df_filt.drop("horario",axis="columns", inplace=True) df_filt.info() return df_filt def get_centermost_point(cluster): """ Definicion de la funcion get_centermost_point: Funcion para que encontrar el punto más cercano al centro del cluster Parametros ---------- cluster: Pandas Series Series que contiene la información del cluster Returns ------ tuple(centermost_point): Pandas Dataframe Tupla que contiene el id del cluster y el punto más cercano al centro del cluster Ejemplo ------- >>> centermost_points = clusters.map(get_centermost_point) """ centroid = (MultiPoint(cluster).centroid.x, MultiPoint(cluster).centroid.y) centermost_point = min(cluster, key=lambda point: great_circle(point, centroid).m) return tuple(centermost_point) def clustering_dbscan(df_filt): """ Definicion de la funcion clustering_dbscan: Funcion para realizar un clustering de tipo DBSCAN que reduce la dimensión del Dataframe de entrada de manera geográficamente uniforme Parametros ---------- df: Pandas Dataframe Dataframe que contiene el dataset sobre el que se va a hacer el clustering Returns ------ rs: Pandas Dataframe Dataframe que contiene el dataset con dimensión reducida Ejemplo ------- >>> rs = clustering_dbscan(df_filt) """ coords = df_filt[["latitud", "longitud"]].values kms_per_radian = 6371.0088 epsilon = 5 / kms_per_radian db = DBSCAN(eps=epsilon, min_samples=4, algorithm="ball_tree", metric="haversine").fit(np.radians(coords)) cluster_labels = db.labels_ num_clusters = len(set(cluster_labels)) clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters-1)]) print("Number of clusters: {}".format(num_clusters)) centermost_points = clusters.map(get_centermost_point) lats, lons = zip(*centermost_points) rep_points =
pd.DataFrame({"longitud":lons, "latitud":lats})
pandas.DataFrame
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'),
Timestamp('2011-08-01 10:00', tz='US/Eastern')
pandas.Timestamp
import os import jsonlines import numpy as np import pandas as pd import requests import tagme import ujson from tqdm import tqdm from bootleg.symbols.entity_profile import EntityProfile pd.options.display.max_colwidth = 500 def load_train_data(train_file, title_map, entity_profile=None): """Loads a jsonl file and creates a pandas DataFrame. Adds candidates, types, and KGs if available.""" num_lines = sum(1 for _ in open(train_file)) rows = [] with jsonlines.open(train_file) as f: for line in tqdm(f, total=num_lines): gold_qids = line["qids"] # for each alias, append a row in the merged result table for alias_idx in range(len(gold_qids)): res = { "sentence": line["sentence"], "sent_idx": line["sent_idx_unq"], "aliases": line["aliases"], "span": line["spans"][alias_idx], "slices": line.get("slices", {}), "alias": line["aliases"][alias_idx], "alias_idx": alias_idx, "is_gold_label": line["gold"][alias_idx], "gold_qid": gold_qids[alias_idx], "gold_title": title_map[gold_qids[alias_idx]] if gold_qids[alias_idx] != "Q-1" else "Q-1", "all_gold_qids": gold_qids, "gold_label_aliases": [ al for i, al in enumerate(line["aliases"]) if line["gold"][i] is True ], "all_is_gold_labels": line["gold"], "all_spans": line["spans"], } slices = [] if "slices" in line: for sl_name in line["slices"]: if ( str(alias_idx) in line["slices"][sl_name] and line["slices"][sl_name][str(alias_idx)] > 0.5 ): slices.append(sl_name) res["slices"] = slices if entity_profile is not None: res["cand_names"] = [ title_map[q[0]] for i, q in enumerate( entity_profile.get_qid_count_cands( line["aliases"][alias_idx] ) ) ] res["cand_qids"] = [ q[0] for i, q in enumerate( entity_profile.get_qid_count_cands( line["aliases"][alias_idx] ) ) ] for type_sym in entity_profile.get_all_typesystems(): gold_types = entity_profile.get_types( gold_qids[alias_idx], type_sym ) res[f"{type_sym}_gld"] = gold_types connected_pairs_gld = [] for alias_idx2 in range(len(gold_qids)): if entity_profile.is_connected( gold_qids[alias_idx], gold_qids[alias_idx2] ): connected_pairs_gld.append(gold_qids[alias_idx2]) res[f"kg_gld"] = connected_pairs_gld rows.append(res) return pd.DataFrame(rows) def load_title_map(entity_dir, entity_mapping_dir="entity_mappings"): return ujson.load( open(os.path.join(entity_dir, entity_mapping_dir, "qid2title.json")) ) def load_cand_map(entity_dir, alias_map_file, entity_mapping_dir="entity_mappings"): return ujson.load( open(os.path.join(entity_dir, entity_mapping_dir, alias_map_file)) ) def load_predictions(file): lines = {} with jsonlines.open(file) as f: for line in f: lines[line["sent_idx_unq"]] = line return lines def score_predictions( orig_file, pred_file, title_map, entity_profile: EntityProfile = None ): """Loads a jsonl file and joins with the results from dump_preds""" num_lines = sum(1 for line in open(orig_file)) preds = load_predictions(pred_file) correct = 0 total = 0 rows = [] with jsonlines.open(orig_file) as f: for line in tqdm(f, total=num_lines): sent_idx = line["sent_idx_unq"] gold_qids = line["qids"] pred_qids = preds[sent_idx]["qids"] assert len(gold_qids) == len( pred_qids ), "Gold and pred QIDs have different lengths" correct += np.sum( [ gold_qid == pred_qid for gold_qid, pred_qid in zip(gold_qids, pred_qids) ] ) total += len(gold_qids) # for each alias, append a row in the merged result table for alias_idx in range(len(gold_qids)): res = { "sentence": line["sentence"], "sent_idx": line["sent_idx_unq"], "aliases": line["aliases"], "span": line["spans"][alias_idx], "slices": line.get("slices", {}), "alias": line["aliases"][alias_idx], "alias_idx": alias_idx, "is_gold_label": line["gold"][alias_idx], "gold_qid": gold_qids[alias_idx], "pred_qid": pred_qids[alias_idx], "gold_title": title_map[gold_qids[alias_idx]] if gold_qids[alias_idx] != "Q-1" else "Q-1", "pred_title": title_map.get(pred_qids[alias_idx], "CouldnotFind") if pred_qids[alias_idx] != "NC" else "NC", "all_gold_qids": gold_qids, "all_pred_qids": pred_qids, "gold_label_aliases": [ al for i, al in enumerate(line["aliases"]) if line["gold"][i] is True ], "all_is_gold_labels": line["gold"], "all_spans": line["spans"], } slices = [] if "slices" in line: for sl_name in line["slices"]: if ( str(alias_idx) in line["slices"][sl_name] and line["slices"][sl_name][str(alias_idx)] > 0.5 ): slices.append(sl_name) res["slices"] = slices if entity_profile is not None: res["cands"] = [ tuple( [ title_map[q[0]], preds[sent_idx]["cand_probs"][alias_idx][i], ] ) for i, q in enumerate( entity_profile.get_qid_count_cands( line["aliases"][alias_idx] ) ) ] for type_sym in entity_profile.get_all_typesystems(): gold_types = entity_profile.get_types( gold_qids[alias_idx], type_sym ) pred_types = entity_profile.get_types( pred_qids[alias_idx], type_sym ) res[f"{type_sym}_gld"] = gold_types res[f"{type_sym}_pred"] = pred_types connected_pairs_gld = [] connected_pairs_pred = [] for alias_idx2 in range(len(gold_qids)): if entity_profile.is_connected( gold_qids[alias_idx], gold_qids[alias_idx2] ): connected_pairs_gld.append(gold_qids[alias_idx2]) if entity_profile.is_connected( pred_qids[alias_idx], pred_qids[alias_idx2] ): connected_pairs_pred.append(pred_qids[alias_idx2]) res[f"kg_gld"] = connected_pairs_gld res[f"kg_pred"] = connected_pairs_pred rows.append(res) return pd.DataFrame(rows) def load_mentions(file): lines = [] with jsonlines.open(file) as f: for line in f: new_line = { "sentence": line["sentence"], "aliases": line.get("aliases", []), "spans": line.get("spans", []), } lines.append(new_line) return
pd.DataFrame(lines)
pandas.DataFrame
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np import pandas from pandas.core.common import apply_if_callable, is_bool_indexer import pandas._libs.lib as lib from pandas.core.dtypes.common import ( is_dict_like, is_list_like, is_scalar, ) import sys import warnings from .base import BasePandasDataset from .iterator import PartitionIterator from .utils import _inherit_docstrings from .utils import from_pandas, to_pandas if sys.version_info[0] == 3 and sys.version_info[1] >= 7: # Python >= 3.7 from re import Pattern as _pattern_type else: # Python <= 3.6 from re import _pattern_type @_inherit_docstrings(pandas.Series, excluded=[pandas.Series, pandas.Series.__init__]) class Series(BasePandasDataset): def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False, query_compiler=None, ): """Constructor for a Series object. Args: series_oids ([ObjectID]): The list of remote Series objects. """ if isinstance(data, type(self)): query_compiler = data._query_compiler if query_compiler is None: warnings.warn( "Distributing {} object. This may take some time.".format(type(data)) ) if name is None: name = "__reduced__" query_compiler = from_pandas( pandas.DataFrame( pandas.Series( data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath, ) ) )._query_compiler if len(query_compiler.columns) != 1 or ( len(query_compiler.index) == 1 and query_compiler.index[0] == "__reduced__" ): query_compiler = query_compiler.transpose() self._query_compiler = query_compiler def _get_name(self): name = self._query_compiler.columns[0] if name == "__reduced__": return None return name def _set_name(self, name): if name is None: name = "__reduced__" self._query_compiler.columns = [name] name = property(_get_name, _set_name) _parent = None def _reduce_dimension(self, query_compiler): return query_compiler.to_pandas().squeeze() def _validate_dtypes_sum_prod_mean(self, axis, numeric_only, ignore_axis=False): return self def _validate_dtypes_min_max(self, axis, numeric_only): return self def _validate_dtypes(self, numeric_only=False): pass def _create_or_update_from_compiler(self, new_query_compiler, inplace=False): """Returns or updates a DataFrame given new query_compiler""" assert ( isinstance(new_query_compiler, type(self._query_compiler)) or type(new_query_compiler) in self._query_compiler.__class__.__bases__ ), "Invalid Query Compiler object: {}".format(type(new_query_compiler)) if not inplace and ( len(new_query_compiler.columns) == 1 or len(new_query_compiler.index) == 1 ): return Series(query_compiler=new_query_compiler) elif not inplace: # This can happen with things like `reset_index` where we can add columns. from .dataframe import DataFrame return DataFrame(query_compiler=new_query_compiler) else: self._update_inplace(new_query_compiler=new_query_compiler) def _prepare_inter_op(self, other): if isinstance(other, Series): new_self = self.copy() new_self.name = "__reduced__" new_other = other.copy() new_other.name = "__reduced__" else: new_self = self new_other = other return new_self, new_other def __add__(self, right): return self.add(right) def __radd__(self, left): return self.add(left) def __and__(self, other): new_self, new_other = self._prepare_inter_op(other) return super(Series, new_self).__and__(new_other) def __array__(self, dtype=None): return super(Series, self).__array__(dtype).flatten() @property def __array_priority__(self): # pragma: no cover return self._to_pandas().__array_priority__ def __bytes__(self): return self._default_to_pandas(pandas.Series.__bytes__) def __contains__(self, key): return key in self.index def __copy__(self, deep=True): return self.copy(deep=deep) def __deepcopy__(self, memo=None): return self.copy(deep=True) def __delitem__(self, key): if key not in self.keys(): raise KeyError(key) self.drop(labels=key, inplace=True) def __div__(self, right): return self.div(right) def __rdiv__(self, left): return self.rdiv(left) def __divmod__(self, right): return self.divmod(right) def __rdivmod__(self, left): return self.rdivmod(left) def __float__(self): return float(self.squeeze()) def __floordiv__(self, right): return self.floordiv(right) def __rfloordiv__(self, right): return self.rfloordiv(right) def _getitem(self, key): key = apply_if_callable(key, self) if isinstance(key, Series) and key.dtype == np.bool: # This ends up being significantly faster than looping through and getting # each item individually. key = key._to_pandas() if is_bool_indexer(key): return self.__constructor__( query_compiler=self._query_compiler.getitem_row_array( pandas.RangeIndex(len(self.index))[key] ) ) # TODO: More efficiently handle `tuple` case for `Series.__getitem__` if isinstance(key, tuple): return self._default_to_pandas(pandas.Series.__getitem__, key) else: if not is_list_like(key): reduce_dimension = True key = [key] else: reduce_dimension = False # The check for whether or not `key` is in `keys()` will throw a TypeError # if the object is not hashable. When that happens, we just use the `iloc`. try: if all(k in self.keys() for k in key): result = self._query_compiler.getitem_row_array( self.index.get_indexer_for(key) ) else: result = self._query_compiler.getitem_row_array(key) except TypeError: result = self._query_compiler.getitem_row_array(key) if reduce_dimension: return self._reduce_dimension(result) return self.__constructor__(query_compiler=result) def __getattr__(self, key): """After regular attribute access, looks up the name in the index Args: key (str): Attribute name. Returns: The value of the attribute. """ try: return object.__getattribute__(self, key) except AttributeError as e: if key in self.index: return self[key] raise e def __int__(self): return int(self.squeeze()) def __iter__(self): return self._to_pandas().__iter__() def __mod__(self, right): return self.mod(right) def __rmod__(self, left): return self.rmod(left) def __mul__(self, right): return self.mul(right) def __rmul__(self, left): return self.rmul(left) def __or__(self, other): new_self, new_other = self._prepare_inter_op(other) return super(Series, new_self).__or__(new_other) def __pow__(self, right): return self.pow(right) def __rpow__(self, left): return self.rpow(left) def __repr__(self): num_rows = pandas.get_option("max_rows") or 60 num_cols = pandas.get_option("max_columns") or 20 temp_df = self._build_repr_df(num_rows, num_cols) if isinstance(temp_df, pandas.DataFrame): temp_df = temp_df.iloc[:, 0] temp_str = repr(temp_df) if self.name is not None: name_str = "Name: {}, ".format(str(self.name)) else: name_str = "" if len(self.index) > num_rows: len_str = "Length: {}, ".format(len(self.index)) else: len_str = "" dtype_str = "dtype: {}".format(temp_str.rsplit("dtype: ", 1)[-1]) if len(self) == 0: return "Series([], {}{}".format(name_str, dtype_str) return temp_str.rsplit("\nName:", 1)[0] + "\n{}{}{}".format( name_str, len_str, dtype_str ) def __round__(self, decimals=0): return self._create_or_update_from_compiler( self._query_compiler.round(decimals=decimals) ) def __setitem__(self, key, value): if key not in self.keys(): raise KeyError(key) self._create_or_update_from_compiler( self._query_compiler.setitem(1, key, value), inplace=True ) def __sub__(self, right): return self.sub(right) def __rsub__(self, left): return self.rsub(left) def __truediv__(self, right): return self.truediv(right) def __rtruediv__(self, left): return self.rtruediv(left) __iadd__ = __add__ __imul__ = __add__ __ipow__ = __pow__ __isub__ = __sub__ __itruediv__ = __truediv__ @property def values(self): """Create a numpy array with the values from this Series. Returns: The numpy representation of this object. """ return super(Series, self).to_numpy().flatten() def __xor__(self, other): new_self, new_other = self._prepare_inter_op(other) return super(Series, new_self).__xor__(new_other) def add(self, other, level=None, fill_value=None, axis=0): new_self, new_other = self._prepare_inter_op(other) return super(Series, new_self).add( new_other, level=level, fill_value=fill_value, axis=axis ) def add_prefix(self, prefix): """Add a prefix to each of the column names. Returns: A new Series containing the new column names. """ return Series(query_compiler=self._query_compiler.add_prefix(prefix, axis=0)) def add_suffix(self, suffix): """Add a suffix to each of the column names. Returns: A new DataFrame containing the new column names. """ return Series(query_compiler=self._query_compiler.add_suffix(suffix, axis=0)) def append(self, to_append, ignore_index=False, verify_integrity=False): """Append another DataFrame/list/Series to this one. Args: to_append: The object to append to this. ignore_index: Ignore the index on appending. verify_integrity: Verify the integrity of the index on completion. Returns: A new DataFrame containing the concatenated values. """ from .dataframe import DataFrame bad_type_msg = ( 'cannot concatenate object of type "{}"; only pd.Series, ' "pd.DataFrame, and pd.Panel (deprecated) objs are valid" ) if isinstance(to_append, list): if not all(isinstance(o, BasePandasDataset) for o in to_append): raise TypeError( bad_type_msg.format( type( next( o for o in to_append if not isinstance(o, BasePandasDataset) ) ) ) ) elif all(isinstance(o, Series) for o in to_append): self.name = None for i in range(len(to_append)): to_append[i].name = None to_append[i] = to_append[i]._query_compiler else: # Matching pandas behavior of naming the Series columns 0 self.name = 0 for i in range(len(to_append)): if isinstance(to_append[i], Series): to_append[i].name = 0 to_append[i] = DataFrame(to_append[i]) return DataFrame(self.copy()).append( to_append, ignore_index=ignore_index, verify_integrity=verify_integrity, ) elif isinstance(to_append, Series): self.name = None to_append.name = None to_append = [to_append._query_compiler] elif isinstance(to_append, DataFrame): self.name = 0 return DataFrame(self.copy()).append( to_append, ignore_index=ignore_index, verify_integrity=verify_integrity ) else: raise TypeError(bad_type_msg.format(type(to_append))) # If ignore_index is False, by definition the Index will be correct. # We also do this first to ensure that we don't waste compute/memory. if verify_integrity and not ignore_index: appended_index = ( self.index.append(to_append.index) if not isinstance(to_append, list) else self.index.append([o.index for o in to_append]) ) is_valid = next((False for idx in appended_index.duplicated() if idx), True) if not is_valid: raise ValueError( "Indexes have overlapping values: {}".format( appended_index[appended_index.duplicated()] ) ) query_compiler = self._query_compiler.concat( 0, to_append, ignore_index=ignore_index, sort=None ) if len(query_compiler.columns) > 1: return DataFrame(query_compiler=query_compiler) else: return Series(query_compiler=query_compiler) def apply(self, func, convert_dtype=True, args=(), **kwds): # apply and aggregate have slightly different behaviors, so we have to use # each one separately to determine the correct return type. In the case of # `agg`, the axis is set, but it is not required for the computation, so we use # it to determine which function to run. if kwds.pop("axis", None) is not None: apply_func = "agg" else: apply_func = "apply" # This is the simplest way to determine the return type, but there are checks # in pandas that verify that some results are created. This is a challenge for # empty DataFrames, but fortunately they only happen when the `func` type is # a list or a dictionary, which means that the return type won't change from # type(self), so we catch that error and use `self.__name__` for the return # type. # Because a `Series` cannot be empty in pandas, we create a "dummy" `Series` to # do the error checking and determining the return type. try: return_type = type( getattr(
pandas.Series([""], index=self.index[:1])
pandas.Series
""" pip install mysql-connector-python pip install pandas pip install numpy """ # libs from db_works import db_connect, db_tables import pandas as pd import numpy as np import pandas_ta as pta # https://mrjbq7.github.io/ta-lib/ import talib as ta # install from whl file < https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib import json db_schema_name, db_table_name, db_settings_table_name = db_tables() cursor, cnxn = db_connect() TACTICS_PACK_SIZE = 50000 # todo: not need to use all params. just use download_settings_id # todo: combination table. Can be stored in other schema def get_combination(): cursor.execute("SELECT download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange FROM " + db_schema_name + ".vw_tactics_tests_to_analyse where tactic_status_id = 0 limit 1") download_setting = cursor.fetchall() if len(download_setting) > 0: download_settings_id = download_setting[0][0] market = download_setting[0][1] tick_interval = download_setting[0][2] data_granulation = download_setting[0][3] stock_type = download_setting[0][4] stock_exchange = download_setting[0][5] print("select done") else: print("no data to download") exit() return download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange = get_combination() print(download_settings_id, market, tick_interval, data_granulation, stock_type, stock_exchange) # download OHLC data from DWH def get_ohlc_data(): cursor.execute("SELECT * FROM " + db_schema_name + ".vw_binance_klines_anl where market = '"+market+"' and " "tick_interval = '" + tick_interval + "' and " "data_granulation = '"+ data_granulation + "' and " "stock_type = '" + stock_type + "' and " "stock_exchange = '" + stock_exchange + "' ") df = pd.DataFrame(cursor.fetchall()) df_bak = df.copy() # absolutly needed. Simple assignment doesn't work print("data ready") return df, df_bak df, df_bak = get_ohlc_data() print(df) def get_tactics_to_check(): cursor.execute("SELECT tactic_id, download_settings_id, test_stake, buy_indicator_1_name, buy_indicator_1_value, yield_expected, wait_periods " "FROM " + db_schema_name + ".vw_tactics_tests_to_analyse where tactic_status_id = 0 and download_settings_id = "+ str(download_settings_id) + " limit " + str(TACTICS_PACK_SIZE) +" ") tactics_data = cursor.fetchall() return tactics_data tactics_data = get_tactics_to_check() def get_test_result(test_stake_in, test_indicator_buy_1_in, test_indicator_value_1_in, test_yield_expect_in, test_wait_periods_in): df.columns =["open_time", "open", "high", "low", "close", "volume", "close_time", "quote_asset_volume", "number_of_trades", "taker_buy_base_asset_volume", "taker_buy_quote_asset_volume", "ignore", "market", "tick_interval", "data_granulation", "stock_type", "stock_exchange", "insert_timestamp", "open_datetime", "close_datetime"] # basics df["open_time_dt"] = pd.to_datetime(df["open_datetime"], unit='ms') df["open_time_yr"] = df["open_time_dt"].dt.year df["open_time_mnt"] = df["open_time_dt"].dt.month df["open_time_dy"] = df["open_time_dt"].dt.day df["change_val"] = df.close - df.open df["change_perc"] = df.close / df.open - 1 df["amplitude_val"] = df.high - df.low df["amplitude_perc"] = df.high - df.low / df.open df["up_down"] = np.where(df["close"] - df["close"].shift(1) > 0, 1, -1) # token: trend up/down 1 / -1 # definition: in custom period sums of change are up or down. # you an combine it with ADX - trend strength by multiply both ie. -1 * 40 df["token_change_7"] = df["change_val"].rolling(7).sum() df["token_trend_7"] = np.where(df["token_change_7"] > 0, 1, -1) df["token_change_14"] = df["change_val"].rolling(14).sum() # oryginal df["token_trend_14"] = np.where(df["token_change_14"] > 0, 1, -1) df["token_change_50"] = df["change_val"].rolling(50).sum() df["token_trend_50"] = np.where(df["token_change_50"] > 0, 1, -1) df["token_change_100"] = df["change_val"].rolling(100).sum() df["token_trend_100"] = np.where(df["token_change_100"] > 0, 1, -1) # indicators # Moving averages df["sma_7"] = pta.sma(df["close"], length=7) df["sma_25"] = pta.sma(df["close"], length=25) df["sma_99"] = pta.sma(df["close"], length=99) df["wma_7"] = pta.wma(df["close"], length=7) df["wma_25"] = pta.wma(df["close"], length=25) df["wma_99"] = pta.wma(df["close"], length=99) df["ema_7"] = pta.ema(df["close"], length=7) df["ema_25"] = pta.ema(df["close"], length=25) df["ema_99"] = pta.ema(df["close"], length=99) # MACD's # oscilators # RSI df["rsi_6"] = ta.RSI(df["close"], timeperiod=6) # tradingview corr, ok, checked df["rsi_10"] = ta.RSI(df["close"], timeperiod=10) # tradingview corr, ok, checked df["rsi_12"] = ta.RSI(df["close"], timeperiod=12) # tradingview corr, ok, checked df["rsi_14"] = ta.RSI(df["close"], timeperiod=14) # tradingview corr, ok, checked df["rsi_20"] = ta.RSI(df["close"], timeperiod=20) # tradingview corr, ok, checked df["rsi_24"] = ta.RSI(df["close"], timeperiod=24) # tradingview corr, ok, checked # Williams %R df["will_perc_r_10"] = pta.willr(df["high"], df["low"], df["close"], 10) # tradingview corr df["will_perc_r_14"] = pta.willr(df["high"], df["low"], df["close"], 14) # tradingview corr # CCI df["cci_14"] = pta.willr(df["high"], df["low"], df["close"], 14) # tradingview corr ------------------------------this isn't cci, < willr function # ROC - rate of change df["roc_5"] = pta.roc(df["close"], 5) # trandingview, ok, checked df["roc_6"] = pta.roc(df["close"], 6) # trandingview, ok, checked df["roc_9"] = pta.roc(df["close"], 9) # trandingview, ok, checked df["roc_10"] = pta.roc(df["close"], 10) # trandingview typical, ok, checked df["roc_12"] = pta.roc(df["close"], 12) # trandingview typical, ok, checked df["roc_14"] = pta.roc(df["close"], 14) # trandingview typical, ok, checked df["roc_24"] = pta.roc(df["close"], 24) # trandingview typical, ok, checked # MFI - money flow index df["mfi_7"] = pta.mfi(df["high"], df["low"], df["close"], df["volume"]) # trandingview, ok, checked df["mfi_14"] = pta.mfi(df["high"], df["low"], df["close"], df["volume"]) # trandingview, ok, checked # stoch - stochastic oscilator df["stoch_slowk_5_3"], df["stoch_slowd_5_3"] = ta.STOCH(df["high"], df["low"], df["close"]) # ta-lib standard df["stoch_fastk_5_3"], df["stoch_fastd_5_3"] = ta.STOCHF(df["high"], df["low"], df["close"]) # ta-lib standard df["stoch_slowk_14_3"], df["stoch_slowd_14_3"] = ta.STOCH(df["high"], df["low"], df["close"]) df["stoch_fastk_14_3"], df["stoch_fastd_14_3"] = ta.STOCHF(df["high"], df["low"], df["close"], fastk_period=14) # tradingview ok, checked # StochRSI #df["stoch_rsi"] = pta.sto # ADX Average directional movement index df["adx_7"] = ta.ADX(df["high"], df["low"], df["close"], timeperiod=7) df["adx_14"] = ta.ADX(df["high"], df["low"], df["close"]) # standard df["adx_50"] = ta.ADX(df["high"], df["low"], df["close"], timeperiod=50) df["adx_100"] = ta.ADX(df["high"], df["low"], df["close"], timeperiod=100) df["adxr_14"] = ta.ADXR(df["high"], df["low"], df["close"]) # standard # token mod: Trend strength index df["token_tsi_14"] = df["token_trend_14"] * df["adx_14"] # volume indicators # OBV - On Balance Volume df["obv"] = pta.obv(df["close"], df["volume"]) # candles df["cdl_doji"] = pta.cdl_doji(df["open"], df["high"], df["low"], df["close"]) df["cdl_dragonfly_doji"] = ta.CDLDRAGONFLYDOJI(df["open"], df["high"], df["low"], df["close"]) df["cdl_hammer"] = ta.CDLHAMMER(df["open"], df["high"], df["low"], df["close"]) df["cdl_marubozu"] = ta.CDLMARUBOZU(df["open"], df["high"], df["low"], df["close"]) df["cdl_longline"] = ta.CDLLONGLINE(df["open"], df["high"], df["low"], df["close"]) df["cdl_longlinedoji"] = ta.CDLLONGLEGGEDDOJI(df["open"], df["high"], df["low"], df["close"]) df["cdl_takuri"] = ta.CDLTAKURI(df["open"], df["high"], df["low"], df["close"]) df["cdl_3white_soldiers"] = ta.CDL3WHITESOLDIERS(df["open"], df["high"], df["low"], df["close"]) # combined token # RSI rise 1 period #df["rsi_6_rise_1_period"] = np.where(df["rsi_6"] > df["rsi_6"].shift(1), 1, 0) # MFI raise 1 period #df["mfi_7_rise_1_period"] = np.where(df["mfi_7"] > df["mfi_7"].shift(1), 1, 0) # volume twice, two green after red df["volume_twice_two_green_after_red"] = np.where((df["up_down"] == 1) & (df["up_down"].shift(1) == 1) & (df["up_down"].shift(2) == 0) & (df["volume"] / df["volume"].shift(1) >= 1.2), 1, 0) # TESTS strategies # TESTS strategies # TESTS strategies # print(df) test_stake = int(test_stake_in) test_indicator_buy_1 = test_indicator_buy_1_in #test_indicator_buy_2 = "token_trend_50" #test_indicator_buy_3 = "token_trend_100" #test_indicator_buy_4 = "adx_7" test_indicator_value_1 = test_indicator_value_1_in #test_indicator_value_2 = 1 #test_indicator_value_3 = 1 #test_indicator_value_4 = 40 test_yield_expect = test_yield_expect_in # ie. 0.01=1% test_wait_periods = test_wait_periods_in # ie. try to sell in next 6 periods (or 10) test_stoploss = -0.05 # must be minus test_stock_fee = -0.0015 # must be minus df["tst_is_buy_signal"] = np.where((df[test_indicator_buy_1] < test_indicator_value_1) # & (df[test_indicator_buy_2] < test_indicator_value_2) # & (df[test_indicator_buy_3] < test_indicator_value_3) # & (df[test_indicator_buy_4] > test_indicator_value_4) , 1, 0) df["tst_sell_price"] = df["close"] * test_yield_expect + df["close"] df["tst_sell_stoploss_price"] = df["close"] + df["close"] * test_stoploss # must be plus df["tst_high_in_sell_period"] = df["high"].rolling(test_wait_periods).max().shift(-test_wait_periods) df["tst_low_in_sell_period"] = df["low"].rolling(test_wait_periods).min().shift(-test_wait_periods) df["tst_sell_after_yield"] = np.where(df['tst_high_in_sell_period'] >= df["tst_sell_price"], 1, 0) df["tst_sell_after_stoploss"] = np.where(df['tst_low_in_sell_period'] <= df["tst_sell_stoploss_price"], 1, 0) df["tst_sold_price"] = np.where(df['tst_sell_after_yield'] == 1, df["tst_sell_price"], df["close"].shift(-1 * test_wait_periods)) # market after time df["tst_sold_diff_perc"] = df["tst_sold_price"] / df["close"] df["tst_single_game_result"] = np.where(df['tst_sold_diff_perc'] > 1, 1, -1) df["tst_buy_sell_fee"] = test_stake * test_stock_fee # todo: change later, but accuracy is good df["tst_single_game_earn"] = test_stake * df["tst_sold_diff_perc"] - test_stake df["tst_single_game_earn_minus_fees"] = (test_stake * df["tst_sold_diff_perc"] - test_stake) + df["tst_buy_sell_fee"] # todo: single game result with stoploss. Need improvement df["tst_single_game_earn_minus_fees_with_stoploss"] = np.where(df['tst_sell_after_stoploss'] == 1 , test_stake * test_stoploss + df["tst_buy_sell_fee"], df["tst_single_game_earn_minus_fees"]) # test_name = "tst_" & market & "_" & tick_interval & "_" & test_indicator_buy_1 # print(df.info(verbose=True)) # last check #print(df) # df2 aggr df2 = df[df["tst_is_buy_signal"] == 1].groupby(["open_time_yr", "open_time_mnt"]).\ aggregate({"tst_is_buy_signal": "sum", #"tst_single_game_earn": "sum", "tst_single_game_earn_minus_fees": "sum" #"tst_single_game_earn_minus_fees_with_stoploss": "sum" }) # print(df2) df3 = df[df["tst_is_buy_signal"] == 1].groupby(["open_time_yr"]).\ aggregate({"tst_is_buy_signal": "sum", #"tst_single_game_earn": "sum", "tst_single_game_earn_minus_fees": "sum" #"tst_single_game_earn_minus_fees_with_stoploss": "sum" }) # print(df3) # statistics df4 = df[df["tst_is_buy_signal"] == 1].aggregate({"tst_is_buy_signal": "sum", #"tst_single_game_earn": "sum", "tst_single_game_earn_minus_fees": "sum" #"tst_single_game_earn_minus_fees_with_stoploss": "sum" }) # print(df4) # jsons with results result_string_1 = pd.DataFrame.to_json(df2) result_string_2 = pd.DataFrame.to_json(df3) result_string_3 =
pd.DataFrame.to_json(df4)
pandas.DataFrame.to_json
import importlib import inspect import os import warnings from unittest.mock import patch import cloudpickle import numpy as np import pandas as pd import pytest from skopt.space import Categorical from evalml.exceptions import ( ComponentNotYetFittedError, EnsembleMissingPipelinesError, MethodPropertyNotFoundError, ) from evalml.model_family import ModelFamily from evalml.pipelines import BinaryClassificationPipeline from evalml.pipelines.components import ( LSA, PCA, ARIMARegressor, BaselineClassifier, BaselineRegressor, CatBoostClassifier, CatBoostRegressor, ComponentBase, DateTimeFeaturizer, DFSTransformer, DropColumns, DropNullColumns, DropRowsTransformer, ElasticNetClassifier, ElasticNetRegressor, Estimator, ExtraTreesClassifier, ExtraTreesRegressor, Imputer, LightGBMClassifier, LightGBMRegressor, LinearDiscriminantAnalysis, LinearRegressor, LogisticRegressionClassifier, NaturalLanguageFeaturizer, OneHotEncoder, Oversampler, PerColumnImputer, PolynomialDetrender, ProphetRegressor, RandomForestClassifier, RandomForestRegressor, RFClassifierSelectFromModel, RFRegressorSelectFromModel, SelectByType, SelectColumns, SimpleImputer, StandardScaler, SVMClassifier, SVMRegressor, TargetImputer, TimeSeriesBaselineEstimator, TimeSeriesFeaturizer, Transformer, Undersampler, XGBoostClassifier, XGBoostRegressor, ) from evalml.pipelines.components.ensemble import ( StackedEnsembleBase, StackedEnsembleClassifier, StackedEnsembleRegressor, ) from evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers import ( VowpalWabbitBinaryClassifier, VowpalWabbitMulticlassClassifier, ) from evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor import ( VowpalWabbitRegressor, ) from evalml.pipelines.components.transformers.encoders.label_encoder import ( LabelEncoder, ) from evalml.pipelines.components.transformers.preprocessing.log_transformer import ( LogTransformer, ) from evalml.pipelines.components.transformers.samplers.base_sampler import ( BaseSampler, ) from evalml.pipelines.components.utils import ( _all_estimators, _all_transformers, all_components, generate_component_code, ) from evalml.problem_types import ProblemTypes @pytest.fixture(scope="module") def test_classes(): class MockComponent(ComponentBase): name = "Mock Component" modifies_features = True modifies_target = False training_only = False class MockEstimator(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] class MockTransformer(Transformer): name = "Mock Transformer" def transform(self, X, y=None): return X return MockComponent, MockEstimator, MockTransformer @pytest.fixture(scope="module") def test_estimator_needs_fitting_false(): class MockEstimatorNeedsFittingFalse(Estimator): name = "Mock Estimator Needs Fitting False" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] needs_fitting = False def predict(self, X): pass return MockEstimatorNeedsFittingFalse class MockFitComponent(ComponentBase): name = "Mock Fit Component" modifies_features = True modifies_target = False training_only = False def __init__(self, param_a=2, param_b=10, random_seed=0): parameters = {"param_a": param_a, "param_b": param_b} super().__init__(parameters=parameters, component_obj=None, random_seed=0) def fit(self, X, y=None): pass def predict(self, X): return np.array( [self.parameters["param_a"] * 2, self.parameters["param_b"] * 10] ) def test_init(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes assert MockComponent().name == "Mock Component" assert MockEstimator().name == "Mock Estimator" assert MockTransformer().name == "Mock Transformer" def test_describe(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes params = {"param_a": "value_a", "param_b": 123} component = MockComponent(parameters=params) assert component.describe(return_dict=True) == { "name": "Mock Component", "parameters": params, } estimator = MockEstimator(parameters=params) assert estimator.describe(return_dict=True) == { "name": "Mock Estimator", "parameters": params, } transformer = MockTransformer(parameters=params) assert transformer.describe(return_dict=True) == { "name": "Mock Transformer", "parameters": params, } def test_describe_component(): enc = OneHotEncoder() imputer = Imputer() simple_imputer = SimpleImputer("mean") column_imputer = PerColumnImputer({"a": "mean", "b": ("constant", 100)}) scaler = StandardScaler() feature_selection_clf = RFClassifierSelectFromModel( n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf ) feature_selection_reg = RFRegressorSelectFromModel( n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf ) drop_col_transformer = DropColumns(columns=["col_one", "col_two"]) drop_null_transformer = DropNullColumns() datetime = DateTimeFeaturizer() natural_language_featurizer = NaturalLanguageFeaturizer() lsa = LSA() pca = PCA() lda = LinearDiscriminantAnalysis() ft = DFSTransformer() us = Undersampler() assert enc.describe(return_dict=True) == { "name": "One Hot Encoder", "parameters": { "top_n": 10, "features_to_encode": None, "categories": None, "drop": "if_binary", "handle_unknown": "ignore", "handle_missing": "error", }, } assert imputer.describe(return_dict=True) == { "name": "Imputer", "parameters": { "categorical_impute_strategy": "most_frequent", "categorical_fill_value": None, "numeric_impute_strategy": "mean", "numeric_fill_value": None, }, } assert simple_imputer.describe(return_dict=True) == { "name": "Simple Imputer", "parameters": {"impute_strategy": "mean", "fill_value": None}, } assert column_imputer.describe(return_dict=True) == { "name": "Per Column Imputer", "parameters": { "impute_strategies": {"a": "mean", "b": ("constant", 100)}, "default_impute_strategy": "most_frequent", }, } assert scaler.describe(return_dict=True) == { "name": "Standard Scaler", "parameters": {}, } assert feature_selection_clf.describe(return_dict=True) == { "name": "RF Classifier Select From Model", "parameters": { "number_features": 5, "n_estimators": 10, "max_depth": None, "percent_features": 0.3, "threshold": -np.inf, "n_jobs": -1, }, } assert feature_selection_reg.describe(return_dict=True) == { "name": "RF Regressor Select From Model", "parameters": { "number_features": 5, "n_estimators": 10, "max_depth": None, "percent_features": 0.3, "threshold": -np.inf, "n_jobs": -1, }, } assert drop_col_transformer.describe(return_dict=True) == { "name": "Drop Columns Transformer", "parameters": {"columns": ["col_one", "col_two"]}, } assert drop_null_transformer.describe(return_dict=True) == { "name": "Drop Null Columns Transformer", "parameters": {"pct_null_threshold": 1.0}, } assert datetime.describe(return_dict=True) == { "name": "DateTime Featurization Component", "parameters": { "features_to_extract": ["year", "month", "day_of_week", "hour"], "encode_as_categories": False, "date_index": None, }, } assert natural_language_featurizer.describe(return_dict=True) == { "name": "Natural Language Featurization Component", "parameters": {}, } assert lsa.describe(return_dict=True) == { "name": "LSA Transformer", "parameters": {}, } assert pca.describe(return_dict=True) == { "name": "PCA Transformer", "parameters": {"n_components": None, "variance": 0.95}, } assert lda.describe(return_dict=True) == { "name": "Linear Discriminant Analysis Transformer", "parameters": {"n_components": None}, } assert ft.describe(return_dict=True) == { "name": "DFS Transformer", "parameters": {"index": "index"}, } assert us.describe(return_dict=True) == { "name": "Undersampler", "parameters": { "sampling_ratio": 0.25, "sampling_ratio_dict": None, "min_samples": 100, "min_percentage": 0.1, }, } try: oversampler = Oversampler() assert oversampler.describe(return_dict=True) == { "name": "Oversampler", "parameters": { "sampling_ratio": 0.25, "sampling_ratio_dict": None, "k_neighbors_default": 5, "n_jobs": -1, }, } except ImportError: pass # testing estimators base_classifier = BaselineClassifier() base_regressor = BaselineRegressor() lr_classifier = LogisticRegressionClassifier() en_classifier = ElasticNetClassifier() en_regressor = ElasticNetRegressor() et_classifier = ExtraTreesClassifier(n_estimators=10, max_features="auto") et_regressor = ExtraTreesRegressor(n_estimators=10, max_features="auto") rf_classifier = RandomForestClassifier(n_estimators=10, max_depth=3) rf_regressor = RandomForestRegressor(n_estimators=10, max_depth=3) linear_regressor = LinearRegressor() svm_classifier = SVMClassifier() svm_regressor = SVMRegressor() assert base_classifier.describe(return_dict=True) == { "name": "Baseline Classifier", "parameters": {"strategy": "mode"}, } assert base_regressor.describe(return_dict=True) == { "name": "Baseline Regressor", "parameters": {"strategy": "mean"}, } assert lr_classifier.describe(return_dict=True) == { "name": "Logistic Regression Classifier", "parameters": { "penalty": "l2", "C": 1.0, "n_jobs": -1, "multi_class": "auto", "solver": "lbfgs", }, } assert en_classifier.describe(return_dict=True) == { "name": "Elastic Net Classifier", "parameters": { "C": 1.0, "l1_ratio": 0.15, "n_jobs": -1, "multi_class": "auto", "solver": "saga", "penalty": "elasticnet", }, } assert en_regressor.describe(return_dict=True) == { "name": "Elastic Net Regressor", "parameters": { "alpha": 0.0001, "l1_ratio": 0.15, "max_iter": 1000, "normalize": False, }, } assert et_classifier.describe(return_dict=True) == { "name": "Extra Trees Classifier", "parameters": { "n_estimators": 10, "max_features": "auto", "max_depth": 6, "min_samples_split": 2, "min_weight_fraction_leaf": 0.0, "n_jobs": -1, }, } assert et_regressor.describe(return_dict=True) == { "name": "Extra Trees Regressor", "parameters": { "n_estimators": 10, "max_features": "auto", "max_depth": 6, "min_samples_split": 2, "min_weight_fraction_leaf": 0.0, "n_jobs": -1, }, } assert rf_classifier.describe(return_dict=True) == { "name": "Random Forest Classifier", "parameters": {"n_estimators": 10, "max_depth": 3, "n_jobs": -1}, } assert rf_regressor.describe(return_dict=True) == { "name": "Random Forest Regressor", "parameters": {"n_estimators": 10, "max_depth": 3, "n_jobs": -1}, } assert linear_regressor.describe(return_dict=True) == { "name": "Linear Regressor", "parameters": {"fit_intercept": True, "normalize": False, "n_jobs": -1}, } assert svm_classifier.describe(return_dict=True) == { "name": "SVM Classifier", "parameters": { "C": 1.0, "kernel": "rbf", "gamma": "auto", "probability": True, }, } assert svm_regressor.describe(return_dict=True) == { "name": "SVM Regressor", "parameters": {"C": 1.0, "kernel": "rbf", "gamma": "auto"}, } try: xgb_classifier = XGBoostClassifier( eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75 ) xgb_regressor = XGBoostRegressor( eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75 ) assert xgb_classifier.describe(return_dict=True) == { "name": "XGBoost Classifier", "parameters": { "eta": 0.1, "max_depth": 3, "min_child_weight": 1, "n_estimators": 75, "n_jobs": 12, "eval_metric": "logloss", }, } assert xgb_regressor.describe(return_dict=True) == { "name": "XGBoost Regressor", "parameters": { "eta": 0.1, "max_depth": 3, "min_child_weight": 1, "n_estimators": 75, "n_jobs": 12, }, } except ImportError: pass try: cb_classifier = CatBoostClassifier() cb_regressor = CatBoostRegressor() assert cb_classifier.describe(return_dict=True) == { "name": "CatBoost Classifier", "parameters": { "allow_writing_files": False, "n_estimators": 10, "eta": 0.03, "max_depth": 6, "bootstrap_type": None, "silent": True, "n_jobs": -1, }, } assert cb_regressor.describe(return_dict=True) == { "name": "CatBoost Regressor", "parameters": { "allow_writing_files": False, "n_estimators": 10, "eta": 0.03, "max_depth": 6, "bootstrap_type": None, "silent": False, "n_jobs": -1, }, } except ImportError: pass try: lg_classifier = LightGBMClassifier() lg_regressor = LightGBMRegressor() assert lg_classifier.describe(return_dict=True) == { "name": "LightGBM Classifier", "parameters": { "boosting_type": "gbdt", "learning_rate": 0.1, "n_estimators": 100, "max_depth": 0, "num_leaves": 31, "min_child_samples": 20, "n_jobs": -1, "bagging_fraction": 0.9, "bagging_freq": 0, }, } assert lg_regressor.describe(return_dict=True) == { "name": "LightGBM Regressor", "parameters": { "boosting_type": "gbdt", "learning_rate": 0.1, "n_estimators": 20, "max_depth": 0, "num_leaves": 31, "min_child_samples": 20, "n_jobs": -1, "bagging_fraction": 0.9, "bagging_freq": 0, }, } except ImportError: pass try: prophet_regressor = ProphetRegressor() assert prophet_regressor.describe(return_dict=True) == { "name": "Prophet Regressor", "parameters": { "changepoint_prior_scale": 0.05, "date_index": None, "holidays_prior_scale": 10, "seasonality_mode": "additive", "seasonality_prior_scale": 10, "stan_backend": "CMDSTANPY", }, } except ImportError: pass try: vw_binary_classifier = VowpalWabbitBinaryClassifier( loss_function="classic", learning_rate=0.1, decay_learning_rate=1.0, power_t=0.1, passes=1, ) vw_multi_classifier = VowpalWabbitMulticlassClassifier( loss_function="classic", learning_rate=0.1, decay_learning_rate=1.0, power_t=0.1, passes=1, ) vw_regressor = VowpalWabbitRegressor( learning_rate=0.1, decay_learning_rate=1.0, power_t=0.1, passes=1 ) assert vw_binary_classifier.describe(return_dict=True) == { "name": "Vowpal Wabbit Binary Classifier", "parameters": { "loss_function": "classic", "learning_rate": 0.1, "decay_learning_rate": 1.0, "power_t": 0.1, "passes": 1, }, } assert vw_multi_classifier.describe(return_dict=True) == { "name": "Vowpal Wabbit Multiclass Classifier", "parameters": { "loss_function": "classic", "learning_rate": 0.1, "decay_learning_rate": 1.0, "power_t": 0.1, "passes": 1, }, } assert vw_regressor.describe(return_dict=True) == { "name": "Vowpal Wabbit Regressor", "parameters": { "learning_rate": 0.1, "decay_learning_rate": 1.0, "power_t": 0.1, "passes": 1, }, } except ImportError: pass def test_missing_attributes(X_y_binary): class MockComponentName(ComponentBase): pass with pytest.raises(TypeError): MockComponentName() class MockComponentModelFamily(ComponentBase): name = "Mock Component" with pytest.raises(TypeError): MockComponentModelFamily() class MockEstimatorWithoutAttribute(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL with pytest.raises(TypeError): MockEstimatorWithoutAttribute() def test_missing_methods_on_components(X_y_binary, test_classes): X, y = X_y_binary MockComponent, MockEstimator, MockTransformer = test_classes component = MockComponent() with pytest.raises( MethodPropertyNotFoundError, match="Component requires a fit method or a component_obj that implements fit", ): component.fit(X) estimator = MockEstimator() estimator._is_fitted = True with pytest.raises( MethodPropertyNotFoundError, match="Estimator requires a predict method or a component_obj that implements predict", ): estimator.predict(X) with pytest.raises( MethodPropertyNotFoundError, match="Estimator requires a predict_proba method or a component_obj that implements predict_proba", ): estimator.predict_proba(X) with pytest.raises( MethodPropertyNotFoundError, match="Estimator requires a feature_importance property or a component_obj that implements feature_importances_", ): estimator.feature_importance transformer = MockTransformer() transformer._is_fitted = True with pytest.raises( MethodPropertyNotFoundError, match="Component requires a fit method or a component_obj that implements fit", ): transformer.fit(X, y) transformer.transform(X) with pytest.raises( MethodPropertyNotFoundError, match="Component requires a fit method or a component_obj that implements fit", ): transformer.fit_transform(X) def test_component_fit(X_y_binary): X, y = X_y_binary class MockEstimator: def fit(self, X, y): pass class MockComponent(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] hyperparameter_ranges = {} def __init__(self): parameters = {} est = MockEstimator() super().__init__(parameters=parameters, component_obj=est, random_seed=0) est = MockComponent() assert isinstance(est.fit(X, y), ComponentBase) def test_component_fit_transform(X_y_binary): X, y = X_y_binary class MockTransformerWithFitTransform(Transformer): name = "Mock Transformer" hyperparameter_ranges = {} def fit_transform(self, X, y=None): return X def transform(self, X, y=None): return X def __init__(self): parameters = {} super().__init__(parameters=parameters, component_obj=None, random_seed=0) class MockTransformerWithFitTransformButError(Transformer): name = "Mock Transformer" hyperparameter_ranges = {} def fit_transform(self, X, y=None): raise RuntimeError def transform(self, X, y=None): return X def __init__(self): parameters = {} super().__init__(parameters=parameters, component_obj=None, random_seed=0) class MockTransformerWithFitAndTransform(Transformer): name = "Mock Transformer" hyperparameter_ranges = {} def fit(self, X, y=None): return self def transform(self, X, y=None): return X def __init__(self): parameters = {} super().__init__(parameters=parameters, component_obj=None, random_seed=0) # convert data to pd DataFrame, because the component classes don't # standardize to pd DataFrame X = pd.DataFrame(X) y = pd.Series(y) component = MockTransformerWithFitTransform() assert isinstance(component.fit_transform(X, y), pd.DataFrame) component = MockTransformerWithFitTransformButError() with pytest.raises(RuntimeError): component.fit_transform(X, y) component = MockTransformerWithFitAndTransform() assert isinstance(component.fit_transform(X, y), pd.DataFrame) def test_model_family_components(test_classes): _, MockEstimator, _ = test_classes assert MockEstimator.model_family == ModelFamily.LINEAR_MODEL def test_regressor_call_predict_proba(test_classes): X = np.array([]) _, MockEstimator, _ = test_classes component = MockEstimator() component._is_fitted = True with pytest.raises(MethodPropertyNotFoundError): component.predict_proba(X) def test_component_describe(test_classes, caplog): MockComponent, _, _ = test_classes component = MockComponent() component.describe(print_name=True) out = caplog.text assert "Mock Component" in out def test_component_parameters_getter(test_classes): MockComponent, _, _ = test_classes component = MockComponent({"test": "parameter"}) assert component.parameters == {"test": "parameter"} component.parameters["test"] = "new" assert component.parameters == {"test": "parameter"} def test_component_parameters_init( logistic_regression_binary_pipeline_class, linear_regression_pipeline_class ): for component_class in all_components(): print("Testing component {}".format(component_class.name)) component = component_class() parameters = component.parameters component2 = component_class(**parameters) parameters2 = component2.parameters assert parameters == parameters2 def test_clone_init(): params = {"param_a": 2, "param_b": 11} clf = MockFitComponent(**params) clf_clone = clf.clone() assert clf.parameters == clf_clone.parameters assert clf_clone.random_seed == clf.random_seed def test_clone_fitted(X_y_binary): X, y = X_y_binary params = {"param_a": 3, "param_b": 7} clf = MockFitComponent(**params) clf.fit(X, y) predicted = clf.predict(X) clf_clone = clf.clone() assert clf_clone.random_seed == clf.random_seed assert clf.parameters == clf_clone.parameters with pytest.raises(ComponentNotYetFittedError, match="You must fit"): clf_clone.predict(X) clf_clone.fit(X, y) predicted_clone = clf_clone.predict(X) np.testing.assert_almost_equal(predicted, predicted_clone) def test_components_init_kwargs(): for component_class in all_components(): try: component = component_class() except EnsembleMissingPipelinesError: continue if component._component_obj is None: continue if isinstance(component, StackedEnsembleBase): continue obj_class = component._component_obj.__class__.__name__ module = component._component_obj.__module__ importlib.import_module(module, obj_class) patched = module + "." + obj_class + ".__init__" if component_class == LabelEncoder: # scikit-learn's LabelEncoder found in different module than where we import from patched = module[: module.rindex(".")] + "." + obj_class + ".__init__" def all_init(self, *args, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) with patch(patched, new=all_init) as _: component = component_class(test_arg="test") component_with_different_kwargs = component_class(diff_test_arg="test") assert component.parameters["test_arg"] == "test" if not isinstance(component, (PolynomialDetrender, LabelEncoder)): assert component._component_obj.test_arg == "test" # Test equality of different components with same or different kwargs assert component == component_class(test_arg="test") assert component != component_with_different_kwargs def test_component_has_random_seed(): for component_class in all_components(): params = inspect.signature(component_class.__init__).parameters assert "random_seed" in params def test_transformer_transform_output_type(X_y_binary): X_np, y_np = X_y_binary assert isinstance(X_np, np.ndarray) assert isinstance(y_np, np.ndarray) y_list = list(y_np) X_df_no_col_names = pd.DataFrame(X_np) range_index = pd.RangeIndex(start=0, stop=X_np.shape[1], step=1) X_df_with_col_names = pd.DataFrame( X_np, columns=["x" + str(i) for i in range(X_np.shape[1])] ) y_series_no_name = pd.Series(y_np) y_series_with_name = pd.Series(y_np, name="target") datatype_combos = [ (X_np, y_np, range_index), (X_np, y_list, range_index), (X_df_no_col_names, y_series_no_name, range_index), (X_df_with_col_names, y_series_with_name, X_df_with_col_names.columns), ] for component_class in _all_transformers(): if component_class in [PolynomialDetrender, LogTransformer, LabelEncoder]: # Skipping because these tests are handled in their respective test files continue print("Testing transformer {}".format(component_class.name)) for X, y, X_cols_expected in datatype_combos: print( 'Checking output of transform for transformer "{}" on X type {} cols {}, y type {} name {}'.format( component_class.name, type(X), X.columns if isinstance(X, pd.DataFrame) else None, type(y), y.name if isinstance(y, pd.Series) else None, ) ) component = component_class() # SMOTE will throw an error if we pass a ratio lower than the current class balance if "Oversampler" == component_class.name: # we cover this case in test_oversamplers continue elif component_class == TimeSeriesFeaturizer: # covered in test_delayed_feature_transformer.py continue component.fit(X, y=y) transform_output = component.transform(X, y=y) if component.modifies_target: assert isinstance(transform_output[0], pd.DataFrame) assert isinstance(transform_output[1], pd.Series) else: assert isinstance(transform_output, pd.DataFrame) if isinstance(component, SelectColumns) or isinstance( component, SelectByType ): assert transform_output.shape == (X.shape[0], 0) elif isinstance(component, PCA) or isinstance( component, LinearDiscriminantAnalysis ): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] <= X.shape[1] elif isinstance(component, DFSTransformer): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] >= X.shape[1] elif component.modifies_target: assert transform_output[0].shape == X.shape assert transform_output[1].shape[0] == X.shape[0] assert len(transform_output[1].shape) == 1 else: assert transform_output.shape == X.shape assert list(transform_output.columns) == list(X_cols_expected) transform_output = component.fit_transform(X, y=y) if component.modifies_target: assert isinstance(transform_output[0], pd.DataFrame) assert isinstance(transform_output[1], pd.Series) else: assert isinstance(transform_output, pd.DataFrame) if isinstance(component, SelectColumns) or isinstance( component, SelectByType ): assert transform_output.shape == (X.shape[0], 0) elif isinstance(component, PCA) or isinstance( component, LinearDiscriminantAnalysis ): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] <= X.shape[1] elif isinstance(component, DFSTransformer): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] >= X.shape[1] elif component.modifies_target: assert transform_output[0].shape == X.shape assert transform_output[1].shape[0] == X.shape[0] assert len(transform_output[1].shape) == 1 else: assert transform_output.shape == X.shape assert list(transform_output.columns) == list(X_cols_expected) @pytest.mark.parametrize( "cls", [ cls for cls in all_components() if cls not in [ StackedEnsembleClassifier, StackedEnsembleRegressor, ] ], ) def test_default_parameters(cls): assert ( cls.default_parameters == cls().parameters ), f"{cls.__name__}'s default parameters don't match __init__." @pytest.mark.parametrize("cls", [cls for cls in all_components()]) def test_default_parameters_raise_no_warnings(cls): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") cls() assert len(w) == 0 def test_estimator_check_for_fit(X_y_binary): class MockEstimatorObj: def __init__(self): pass def fit(self, X, y): return self def predict(self, X): series = pd.Series([0] * len(X)) series.ww.init() return series def predict_proba(self, X): df = pd.DataFrame({0: [0] * len(X)}) df.ww.init() return df class MockEstimator(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] def __init__(self, parameters=None, component_obj=None, random_seed=0): est = MockEstimatorObj() super().__init__( parameters=parameters, component_obj=est, random_seed=random_seed ) X, y = X_y_binary est = MockEstimator() with pytest.raises(ComponentNotYetFittedError, match="You must fit"): est.predict(X) with pytest.raises(ComponentNotYetFittedError, match="You must fit"): est.predict_proba(X) est.fit(X, y) est.predict(X) est.predict_proba(X) def test_transformer_check_for_fit(X_y_binary): class MockTransformerObj: def __init__(self): pass def fit(self, X, y): return self def transform(self, X, y=None): return X def fit_transform(self, X, y=None): return X class MockTransformer(Transformer): name = "Mock Transformer" def __init__(self, parameters=None, component_obj=None, random_seed=0): transformer = MockTransformerObj() super().__init__( parameters=parameters, component_obj=transformer, random_seed=random_seed, ) def transform(self, X, y=None): return X def inverse_transform(self, X, y=None): return X, y X, y = X_y_binary trans = MockTransformer() with pytest.raises(ComponentNotYetFittedError, match="You must fit"): trans.transform(X) with pytest.raises(ComponentNotYetFittedError, match="You must fit"): trans.inverse_transform(X, y) trans.fit(X, y) trans.transform(X) trans.fit_transform(X, y) trans.inverse_transform(X, y) def test_transformer_check_for_fit_with_overrides(X_y_binary): class MockTransformerWithOverride(Transformer): name = "Mock Transformer" def fit(self, X, y): return self def transform(self, X, y=None): df = pd.DataFrame() df.ww.init() return df class MockTransformerWithOverrideSubclass(Transformer): name = "Mock Transformer Subclass" def fit(self, X, y): return self def transform(self, X, y=None): df = pd.DataFrame() df.ww.init() return df X, y = X_y_binary transformer = MockTransformerWithOverride() transformer_subclass = MockTransformerWithOverrideSubclass() with pytest.raises(ComponentNotYetFittedError, match="You must fit"): transformer.transform(X) with pytest.raises(ComponentNotYetFittedError, match="You must fit"): transformer_subclass.transform(X) transformer.fit(X, y) transformer.transform(X) transformer_subclass.fit(X, y) transformer_subclass.transform(X) def test_all_transformers_needs_fitting(): for component_class in _all_transformers() + _all_estimators(): if component_class.__name__ in [ "DropColumns", "SelectColumns", "SelectByType", ]: assert not component_class.needs_fitting else: assert component_class.needs_fitting def test_all_transformers_check_fit(X_y_binary, ts_data_binary): for component_class in _all_transformers(): X, y = X_y_binary if not component_class.needs_fitting: continue component = component_class() # SMOTE will throw errors if we call it but cannot oversample if "Oversampler" == component_class.name: component = component_class(sampling_ratio=1) elif component_class == TimeSeriesFeaturizer: X, y = ts_data_binary component = component_class(date_index="date") with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}" ): component.transform(X, y) component.fit(X, y) component.transform(X, y) component = component_class() if "Oversampler" == component_class.name: component = component_class(sampling_ratio=1) elif component_class == TimeSeriesFeaturizer: component = component_class(date_index="date") component.fit_transform(X, y) component.transform(X, y) def test_all_estimators_check_fit( X_y_binary, ts_data, test_estimator_needs_fitting_false, helper_functions ): estimators_to_check = [ estimator for estimator in _all_estimators() if estimator not in [ StackedEnsembleClassifier, StackedEnsembleRegressor, TimeSeriesBaselineEstimator, VowpalWabbitBinaryClassifier, VowpalWabbitMulticlassClassifier, VowpalWabbitRegressor, ] ] + [test_estimator_needs_fitting_false] for component_class in estimators_to_check: if not component_class.needs_fitting: continue if ( ProblemTypes.TIME_SERIES_REGRESSION in component_class.supported_problem_types ): X, y = ts_data else: X, y = X_y_binary component = helper_functions.safe_init_component_with_njobs_1(component_class) with patch.object(component, "_component_obj") as mock_component_obj: with patch.object( mock_component_obj, "predict" ) as mock_component_obj_predict: mock_component_obj_predict.return_value = pd.Series([0] * len(y)) if "Prophet" in component.name: mock_component_obj_predict.return_value = { "yhat": pd.Series([0] * len(y)), "ds": pd.Series([0] * len(y)), } with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}", ): component.predict(X) if ( ProblemTypes.BINARY in component.supported_problem_types or ProblemTypes.MULTICLASS in component.supported_problem_types ): with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}", ): component.predict_proba(X) with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}", ): component.feature_importance component.fit(X, y) if ( ProblemTypes.BINARY in component.supported_problem_types or ProblemTypes.MULTICLASS in component.supported_problem_types ): component.predict_proba(X) component.predict(X) component.feature_importance @pytest.mark.parametrize("data_type", ["li", "np", "pd", "ww"]) def test_all_transformers_check_fit_input_type( data_type, X_y_binary, make_data_type, ts_data_binary ): for component_class in _all_transformers(): X, y = X_y_binary X = make_data_type(data_type, X) y = make_data_type(data_type, y) kwargs = {} if not component_class.needs_fitting or "Oversampler" in component_class.name: # since SMOTE determines categorical columns through the logical type, it can only accept ww data continue if component_class == TimeSeriesFeaturizer: X, y = ts_data_binary kwargs = {"date_index": "date"} component = component_class(**kwargs) component.fit(X, y) def test_no_fitting_required_components( X_y_binary, test_estimator_needs_fitting_false, helper_functions ): X, y = X_y_binary for component_class in all_components() + [test_estimator_needs_fitting_false]: if not component_class.needs_fitting: component = helper_functions.safe_init_component_with_njobs_1( component_class ) if issubclass(component_class, Estimator): component.predict(X) else: component.transform(X, y) def test_serialization(X_y_binary, ts_data, tmpdir, helper_functions): path = os.path.join(str(tmpdir), "component.pkl") requires_date_index = [ARIMARegressor, ProphetRegressor, TimeSeriesFeaturizer] for component_class in all_components(): print("Testing serialization of component {}".format(component_class.name)) component = helper_functions.safe_init_component_with_njobs_1(component_class) if component_class in requires_date_index: component = component_class(date_index="date") X, y = ts_data else: X, y = X_y_binary component.fit(X, y) for pickle_protocol in range(cloudpickle.DEFAULT_PROTOCOL + 1): component.save(path, pickle_protocol=pickle_protocol) loaded_component = ComponentBase.load(path) assert component.parameters == loaded_component.parameters assert component.describe(return_dict=True) == loaded_component.describe( return_dict=True ) if issubclass(component_class, Estimator) and not ( isinstance( component, ( StackedEnsembleClassifier, StackedEnsembleRegressor, VowpalWabbitBinaryClassifier, VowpalWabbitMulticlassClassifier, VowpalWabbitRegressor, ), ) ): assert ( component.feature_importance == loaded_component.feature_importance ).all() @patch("cloudpickle.dump") def test_serialization_protocol(mock_cloudpickle_dump, tmpdir): path = os.path.join(str(tmpdir), "pipe.pkl") component = LogisticRegressionClassifier() component.save(path) assert len(mock_cloudpickle_dump.call_args_list) == 1 assert ( mock_cloudpickle_dump.call_args_list[0][1]["protocol"] == cloudpickle.DEFAULT_PROTOCOL ) mock_cloudpickle_dump.reset_mock() component.save(path, pickle_protocol=42) assert len(mock_cloudpickle_dump.call_args_list) == 1 assert mock_cloudpickle_dump.call_args_list[0][1]["protocol"] == 42 @pytest.mark.parametrize("estimator_class", _all_estimators()) def test_estimators_accept_all_kwargs( estimator_class, logistic_regression_binary_pipeline_class, linear_regression_pipeline_class, ): estimator = estimator_class() if estimator._component_obj is None: pytest.skip( f"Skipping {estimator_class} because does not have component object." ) if estimator_class.model_family == ModelFamily.ENSEMBLE: params = estimator.parameters elif estimator_class.model_family == ModelFamily.PROPHET: params = estimator.get_params() else: params = estimator._component_obj.get_params() if "random_state" in params: del params["random_state"] estimator_class(**params) def test_component_equality_different_classes(): # Tests that two classes which are equivalent are not equal class MockComponent(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False class MockComponentWithADifferentName(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False assert MockComponent() != MockComponentWithADifferentName() def test_component_equality_subclasses(): class MockComponent(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False class MockEstimatorSubclass(MockComponent): pass assert MockComponent() != MockEstimatorSubclass() def test_component_equality(): class MockComponent(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False def __init__(self, param_1=0, param_2=0, random_seed=0, **kwargs): parameters = {"param_1": param_1, "param_2": param_2} parameters.update(kwargs) super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed ) def fit(self, X, y=None): return self # Test self-equality mock_component = MockComponent() assert mock_component == mock_component # Test defaults assert MockComponent() == MockComponent() # Test random_state and random_seed assert MockComponent(random_seed=10) == MockComponent(random_seed=10) assert MockComponent(random_seed=10) != MockComponent(random_seed=0) # Test parameters assert MockComponent(1, 2) == MockComponent(1, 2) assert MockComponent(1, 2) != MockComponent(1, 0) assert MockComponent(0, 2) != MockComponent(1, 2) # Test fitted equality mock_component.fit(pd.DataFrame({})) assert mock_component != MockComponent() @pytest.mark.parametrize("component_class", all_components()) def test_component_equality_all_components( component_class, logistic_regression_binary_pipeline_class, linear_regression_pipeline_class, ): component = component_class() parameters = component.parameters equal_component = component_class(**parameters) assert component == equal_component def test_component_equality_with_subclasses(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes mock_component = MockComponent() mock_estimator = MockEstimator() mock_transformer = MockTransformer() assert mock_component != mock_estimator assert mock_component != mock_transformer assert mock_estimator != mock_component assert mock_estimator != mock_transformer assert mock_transformer != mock_component assert mock_transformer != mock_estimator def test_mock_component_str(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes assert str(MockComponent()) == "Mock Component" assert str(MockEstimator()) == "Mock Estimator" assert str(MockTransformer()) == "Mock Transformer" def test_mock_component_repr(): component = MockFitComponent() assert repr(component) == "MockFitComponent(param_a=2, param_b=10)" component_with_params = MockFitComponent(param_a=29, param_b=None, random_seed=42) assert repr(component_with_params) == "MockFitComponent(param_a=29, param_b=None)" component_with_nan = MockFitComponent(param_a=np.nan, param_b=float("nan")) assert ( repr(component_with_nan) == "MockFitComponent(param_a=np.nan, param_b=np.nan)" ) component_with_inf = MockFitComponent(param_a=np.inf, param_b=float("-inf")) assert ( repr(component_with_inf) == "MockFitComponent(param_a=float('inf'), param_b=float('-inf'))" ) @pytest.mark.parametrize("component_class", all_components()) def test_component_str( component_class, logistic_regression_binary_pipeline_class, linear_regression_pipeline_class, ): component = component_class() assert str(component) == component.name @pytest.mark.parametrize( "categorical", [ { "type": Categorical(["mean", "median", "mode"]), "categories": Categorical(["blue", "green"]), }, {"type": ["mean", "median", "mode"], "categories": ["blue", "green"]}, ], ) def test_categorical_hyperparameters(X_y_binary, categorical): X, y = X_y_binary class MockEstimator: def fit(self, X, y): pass class MockComponent(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] hyperparameter_ranges = categorical def __init__(self, agg_type, category="green"): parameters = {"type": agg_type, "categories": category} est = MockEstimator() super().__init__(parameters=parameters, component_obj=est, random_seed=0) assert MockComponent(agg_type="mean").fit(X, y) assert MockComponent(agg_type="moat", category="blue").fit(X, y) def test_generate_code_errors(): with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(BinaryClassificationPipeline([RandomForestClassifier])) with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(LinearRegressor) with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(Imputer) with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(ComponentBase) def test_generate_code(): expected_code = ( "from evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier import LogisticRegressionClassifier" "\n\nlogisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})" ) component_code = generate_component_code(LogisticRegressionClassifier()) assert component_code == expected_code expected_code = ( "from evalml.pipelines.components.estimators.regressors.et_regressor import ExtraTreesRegressor" "\n\nextraTreesRegressor = ExtraTreesRegressor(**{'n_estimators': 50, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1})" ) component_code = generate_component_code(ExtraTreesRegressor(n_estimators=50)) assert component_code == expected_code expected_code = ( "from evalml.pipelines.components.transformers.imputers.imputer import Imputer" "\n\nimputer = Imputer(**{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'categorical_fill_value': None, 'numeric_fill_value': None})" ) component_code = generate_component_code(Imputer()) assert component_code == expected_code def test_generate_code_custom(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes expected_code = "mockComponent = MockComponent(**{})" component_code = generate_component_code(MockComponent()) assert component_code == expected_code expected_code = "mockEstimator = MockEstimator(**{})" component_code = generate_component_code(MockEstimator()) assert component_code == expected_code expected_code = "mockTransformer = MockTransformer(**{})" component_code = generate_component_code(MockTransformer()) assert component_code == expected_code @pytest.mark.parametrize("transformer_class", _all_transformers()) @pytest.mark.parametrize("use_custom_index", [True, False]) def test_transformer_fit_and_transform_respect_custom_indices( use_custom_index, transformer_class, X_y_binary, ts_data_binary ): check_names = True if transformer_class == DFSTransformer: check_names = False if use_custom_index: pytest.skip("The DFSTransformer changes the index so we skip it.") if transformer_class == PolynomialDetrender: pytest.skip( "Skipping PolynomialDetrender because we test that it respects custom indices in " "test_polynomial_detrender.py" ) X, y = X_y_binary kwargs = {} if transformer_class == TimeSeriesFeaturizer: kwargs.update({"date_index": "date"}) X, y = ts_data_binary X = pd.DataFrame(X) y = pd.Series(y) if use_custom_index: custom_index = range(100, 100 + X.shape[0]) X.index = custom_index y.index = custom_index X_original_index = X.index.copy() y_original_index = y.index.copy() transformer = transformer_class(**kwargs) transformer.fit(X, y) pd.testing.assert_index_equal(X.index, X_original_index) pd.testing.assert_index_equal(y.index, y_original_index) if isinstance(transformer, BaseSampler): return elif transformer_class.modifies_target: X_t, y_t = transformer.transform(X, y) pd.testing.assert_index_equal( y_t.index, y_original_index, check_names=check_names ) else: X_t = transformer.transform(X, y) pd.testing.assert_index_equal( y.index, y_original_index, check_names=check_names ) if hasattr(transformer_class, "inverse_transform"): y_inv = transformer.inverse_transform(y) pd.testing.assert_index_equal( y_inv.index, y_original_index, check_names=check_names ) pd.testing.assert_index_equal(X_t.index, X_original_index, check_names=check_names) @pytest.mark.parametrize("estimator_class", _all_estimators()) @pytest.mark.parametrize("use_custom_index", [True, False]) def test_estimator_fit_respects_custom_indices( use_custom_index, estimator_class, X_y_binary, X_y_regression, ts_data, helper_functions, ): input_pipelines = [] supported_problem_types = estimator_class.supported_problem_types ts_problem = False if ProblemTypes.REGRESSION in supported_problem_types: X, y = X_y_regression elif ProblemTypes.TIME_SERIES_REGRESSION in supported_problem_types: X, y = ts_data ts_problem = True else: X, y = X_y_binary X = pd.DataFrame(X) y = pd.Series(y) if use_custom_index and ts_problem: X.index = pd.date_range("2020-10-01", "2020-10-31") y.index = pd.date_range("2020-10-01", "2020-10-31") elif use_custom_index and not ts_problem: custom_index = range(100, 100 + X.shape[0]) X.index = custom_index y.index = custom_index X_original_index = X.index.copy() y_original_index = y.index.copy() if input_pipelines: estimator = estimator_class(n_jobs=1, input_pipelines=input_pipelines) else: estimator = helper_functions.safe_init_component_with_njobs_1(estimator_class) estimator.fit(X, y) pd.testing.assert_index_equal(X.index, X_original_index)
pd.testing.assert_index_equal(y.index, y_original_index)
pandas.testing.assert_index_equal
""" This module contains methods that will be applied inside of the apply call on the freshly convertet Spark DF that is now as list of dicts. These methods are meant to be applied in the internal calls of the metadata extraction. They expect dictionaries which represent the metadata field extracted from Spark NLP annotators. """ import numpy as np from pyspark.sql import Row as PysparkRow from nlu.pipe.extractors.extractor_base_data_classes import * from functools import reduce, partial import pandas as pd def extract_pyspark_rows(r: pd.Series, ) -> pd.Series: """ Convert pyspark.sql.Row[Annotation] to List(Dict[str,str]) objects. Except for key=metadata in dict, this element in the Dict which is [str,Dict[str,str]] Checks if elements are of type list and wether they contain Pyspark Rows. If PysparkRow, call .asDict() on every row element to generate the dicts First method that runs after toPandas() call """ if isinstance(r, str): return r elif isinstance(r, list): if len(r) == 0: return r elif isinstance(r[0], PysparkRow): pyspark_row_to_list = lambda l: l.asDict() return list(map(pyspark_row_to_list, r)) return r def extract_pyarrow_rows(r: pd.Series, ) -> pd.Series: """ Convert pyspark.sql.Row[Annotation] to List(Dict[str,str]) objects. Except for key=metadata in dict, this element in the Dict which is [str,Dict[str,str]] Checks if elements are of type list and wether they contain Pyspark Rows. If PysparkRow, call .asDict() on every row element to generate the dicts First method that runs after toPandas() call """ if isinstance(r, str): return r elif isinstance(r, np.ndarray): if len(r) == 0: return r elif isinstance(r[0], dict) and 'annotatorType' in r[0].keys(): r[0]['metadata'] = dict(r[0]['metadata']) return r return r def extract_base_sparknlp_features(row: pd.Series, configs: SparkNLPExtractorConfig) -> dict: """ Extract base features common in all saprk NLP annotators Begin/End/Embedding/Metadata/Result, except for the blacklisted features Expects a list with Token Annotator Outputs from extract_pyspark_rows() , i.e Setting pop to true for a certain field will return only the first element of that fields list of elements. Useful if that field always has exactly 1 result, like many classifirs [{'annotatorType': 'token', 'begin': 0, 'embeddings': [], 'end': 4, 'metadata': {'sentence': '0'}, 'result': 'Hello' }] row = pyspark.row or [ {'annotatorType': 'language', 'begin': 0, 'embeddings': [], 'end': 57, 'metadata': {'bg': '0.0', 'sentence': '0', 'sl': '5.2462015E-24', 'sv': '2.5977007E-25'}, 'result': 'en'} ] returns a DICT """ unpack_dict_list = lambda d, k: d[k] unpack_begin = lambda x: unpack_dict_list(x, 'begin') unpack_end = lambda x: unpack_dict_list(x, 'end') unpack_annotator_type = lambda x: unpack_dict_list(x, 'annotatorType') unpack_result = lambda x: unpack_dict_list(x, 'result') unpack_embeddings = lambda x: unpack_dict_list(x, 'embeddings') # Either extract list of anno results and put them in a dict with corrosponding key name or return empty dict {} for easy merge in return annotator_types = {configs.output_col_prefix + '_types': list( map(unpack_annotator_type, row))} if configs.get_annotator_type else {} # Same logic as above, but we check wether to pop or not and either evaluate the map result with list() or just next() if configs.pop_result_list: results = {configs.output_col_prefix + '_results': next(map(unpack_result, row))} if configs.get_result else {} else: results = {configs.output_col_prefix + '_results': list(map(unpack_result, row))} if configs.get_result else {} if configs.pop_begin_list: beginnings = {configs.output_col_prefix + '_beginnings': next( map(unpack_begin, row))} if configs.get_begin or configs.get_positions else {} else: beginnings = {configs.output_col_prefix + '_beginnings': list( map(unpack_begin, row))} if configs.get_begin or configs.get_positions else {} if configs.pop_end_list: endings = {configs.output_col_prefix + '_endings': next( map(unpack_end, row))} if configs.get_end or configs.get_positions else {} else: endings = {configs.output_col_prefix + '_endings': list( map(unpack_end, row))} if configs.get_end or configs.get_positions else {} if configs.pop_embeds_list: embeddings = { configs.output_col_prefix + '_embeddings': next(map(unpack_embeddings, row))} if configs.get_embeds else {} else: embeddings = { configs.output_col_prefix + '_embeddings': list(map(unpack_embeddings, row))} if configs.get_embeds else {} return {**beginnings, **endings, **results, **annotator_types, **embeddings} # Merge dicts def extract_sparknlp_metadata(row: pd.Series, configs: SparkNLPExtractorConfig) -> dict: """ Extract base features common in all saprk NLP annotators Begin/End/Embedding/Metadata/Result, except for the blacklisted features Expects a list with Token Annotator Outputs, i.e. Can either use a WHITE_LISTE or BLACK_LIST or get ALL metadata For WHITE_LIST != [], only metadata keys/values will be kepts, for which the keys are contained in the white list For WHITE_LIST == [] AND BLACK_LIST !=, all metadata key/values will be returned, which are not on the black list. If WHITE_LIST is not [] the BLACK_LIST will be ignored. returns one DICT which will be merged into pd.Serise by the extractor calling this exctractor for .apply() in pythonify """ if len(row) == 0: return {} unpack_dict_list = lambda d, k: d[k] # extract list of metadata dictionaries (all dict should have same keys) unpack_metadata_to_dict_list = lambda x: unpack_dict_list(x, 'metadata') metadatas_dict_list = list(map(unpack_metadata_to_dict_list, row)) # extract keys, which should all be equal in all rows if configs.get_full_meta: keys_in_metadata = list(metadatas_dict_list[0].keys()) if len(metadatas_dict_list) > 0 else [] elif len(configs.meta_white_list) != 0: keys_in_metadata = [k for k in metadatas_dict_list[0].keys() if k in configs.meta_white_list] elif len(configs.meta_black_list) != 0: keys_in_metadata = [k for k in metadatas_dict_list[0].keys() if k not in configs.meta_black_list] else: keys_in_metadata = [] # dectorate lambda with key to extract, equalt to def decorate_f(key): return lambda x,y : x+ [y[key]] # For a list of dicts which all have the same keys, will return a lit of all the values for one key in all the dicts extract_val_from_dic_list_to_list = lambda key: lambda x, y: x + [y[key]] # List of lambda expression, on for each Key to be extracted. (TODO balcklisting?) dict_value_extractors = list(map(extract_val_from_dic_list_to_list, keys_in_metadata)) # reduce list of dicts with same struct and a common key to a list of values for thay key. Leveraging closuer for meta_dict_list reduce_dict_list_to_values = lambda t: reduce(t, metadatas_dict_list, []) # list of lists, where each list is corrosponding to all values in the previous dict list meta_values_list = list(map(reduce_dict_list_to_values, dict_value_extractors)) # , metadatas_dict_list,[] )) # add prefix to key and zip with values for final dict result result = dict( zip(list(map(lambda x: 'meta_' + configs.output_col_prefix + '_' + x, keys_in_metadata)), meta_values_list)) return result def extract_master(row: pd.Series, configs: SparkNLPExtractorConfig) -> pd.Series: """ Re-Usable base extractor for simple Annotators like Document/Token/etc..? extract_universal/?/Better name? row = a list or Spark-NLP annotations as dictionary """ if len(row) == 0: return
pd.Series({})
pandas.Series
""" Compute the statistical impact of features given a trained estimator """ from scipy.stats.mstats import mquantiles import numpy import pandas def averaged_impact(impact, normalize=True): """ Computes the averaged impact across all quantiles for each feature :param impact: Array-like object of shape [n_quantiles, n_features]. This should be the return value of FeatureImpact.compute_impact() :param normalize: Whether to normalize the averaged impacts such that that the impacts sum up to one :returns: The averaged impact as a pandas.Series of shape [n_features] """ impact = pandas.DataFrame(impact) average = pandas.Series(index=impact.columns, dtype=float) for col in impact: average[col] = impact[col].mean() if normalize: average /= average.sum() return average class FeatureImpact(object): """ Compute the statistical impact of features given a trained estimator """ def __init__(self): self._quantiles = None @property def quantiles(self): """ The quantiles corresponding to the features :returns: pandas.DataFrame of shape [n_quantiles, n_features] or None """ return self._quantiles @quantiles.setter def quantiles(self, value): """ The quantiles corresponding to the features :param value: Array-like object of shape [n_quantiles, n_features] """ self._quantiles = pandas.DataFrame(value, dtype=float) def make_quantiles(self, X, n_quantiles=9): """ Generates the quantiles for each feature in X. The quantiles for one feature are computed such that the area between quantiles is the same throughout. The default quantiles are computed at the following probablities: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 The actual quantiles being used are the values that are closest to the computed quantiles. This ensures only values are used that are actually part of the features, particularly important for distributions with multiple peaks (e.g. categorical features). :param X: Features. Array-like object of shape [n_samples, n_features] :param n_quantiles: The number of quantiles to compute """ if n_quantiles < 1: raise FeatureImpactError("n_quantiles must be at least one.") X = pandas.DataFrame(X) probs = numpy.linspace(0.0, 1.0, n_quantiles + 2)[1:-1] self._quantiles = pandas.DataFrame(dtype=float) for col in X: feature = X[col].dropna().values values = [] for quantile in mquantiles(feature, probs): closest = numpy.abs(feature - quantile).argmin() values.append(feature[closest]) self._quantiles[col] = values def compute_impact(self, estimator, X, method='predict'): """ Computes the statistical impact of each feature based on the mean variation of the difference between perturbed and original predictions. The impact is always >= 0. :param estimator: A trained estimator implementing the given predict `method`. It is assumed that the predict method does not change its input. :param X: Features. Array-like object of shape [n_samples, n_features] :param method: The predict method to call on `estimator`. :returns: Impact as a pandas.DataFrame of shape [n_quantiles, n_features] """ if self._quantiles is None: raise FeatureImpactError("make_quantiles() must be called first " "or the quantiles explicitly assigned") if not hasattr(estimator, method): raise FeatureImpactError("estimator does not implement {}()".format(method)) X = pandas.DataFrame(X) y = getattr(estimator, method)(X) impact = pandas.DataFrame(dtype=float) for feature in X: orig_feat = pandas.Series(X[feature], copy=True) x_std = orig_feat.std(skipna=True) if x_std > 0.0: imp = [] for quantile, count in self._quantiles[feature].value_counts().iteritems(): X[feature] = quantile y_star = getattr(estimator, method)(X) diff_std =
pandas.Series(y - y_star)
pandas.Series